WorldWideScience

Sample records for streamflow-gaging station network

  1. Streamflow Gaging Stations

    Data.gov (United States)

    Department of Homeland Security — This map layer shows selected streamflow gaging stations of the United States, Puerto Rico, and the U.S. Virgin Islands, in 2013. Gaging stations, or gages, measure...

  2. Streamflow characteristics based on data through water year 2009 for selected streamflow-gaging stations in or near Montana: Chapter E in Montana StreamStats

    Science.gov (United States)

    McCarthy, Peter M.

    2016-04-05

    Chapter E of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality and the Montana Department of Natural Resources and Conservation, to provide an update of statewide streamflow characteristics based on data through water year 2009 for streamflow-gaging stations in or near Montana. Streamflow characteristics are presented for 408 streamflow-gaging stations in Montana and adjacent areas having 10 or more years of record. Data include the magnitude and probability of annual low and high streamflow, the magnitude and probability of low streamflow for three seasons (March–June, July–October, and November–February), streamflow duration statistics for monthly and annual periods, and mean streamflows for monthly and annual periods. Streamflow is considered to be regulated at streamflow-gaging stations where dams or other large-scale human modifications affect 20 percent or more of the contributing drainage basin. Separate streamflow characteristics are presented for the unregulated and regulated periods of record for streamflow-gaging stations with sufficient data.

  3. Application of AFINCH as a tool for evaluating the effects of streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the southeast Lake Michigan hydrologic subregion

    Science.gov (United States)

    Koltun, G.F.; Holtschlag, David J.

    2010-01-01

    Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations.  Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971–2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages).Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the

  4. Streamflow characteristics at hydrologic bench-mark stations

    Science.gov (United States)

    Lawrence, C.L.

    1987-01-01

    The Hydrologic Bench-Mark Network was established in the 1960's. Its objectives were to document the hydrologic characteristics of representative undeveloped watersheds nationwide and to provide a comparative base for studying the effects of man on the hydrologic environment. The network, which consists of 57 streamflow gaging stations and one lake-stage station in 39 States, is planned for permanent operation. This interim report describes streamflow characteristics at each bench-mark site and identifies time trends in annual streamflow that have occurred during the data-collection period. The streamflow characteristics presented for each streamflow station are (1) flood and low-flow frequencies, (2) flow duration, (3) annual mean flow, and (4) the serial correlation coefficient for annual mean discharge. In addition, Kendall's tau is computed as an indicator of time trend in annual discharges. The period of record for most stations was 13 to 17 years, although several stations had longer periods of record. The longest period was 65 years for Merced River near Yosemite, Calif. Records of flow at 6 of 57 streamflow sites in the network showed a statistically significant change in annual mean discharge over the period of record, based on computations of Kendall's tau. The values of Kendall's tau ranged from -0.533 to 0.648. An examination of climatological records showed that changes in precipitation were most likely the cause for the change in annual mean discharge.

  5. Peak-flow frequency analyses and results based on data through water year 2011 for selected streamflow-gaging stations in or near Montana: Chapter C in Montana StreamStats

    Science.gov (United States)

    Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    Chapter C of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources, to provide an update of statewide peak-flow frequency analyses and results for Montana. The purpose of this report chapter is to present peak-flow frequency analyses and results for 725 streamflow-gaging stations in or near Montana based on data through water year 2011. The 725 streamflow-gaging stations included in this study represent nearly all streamflowgaging stations in Montana (plus some from adjacent states or Canadian Provinces) that have at least 10 years of peak-flow records through water year 2011. For 29 of the 725 streamflow-gaging stations, peak-flow frequency analyses and results are reported for both unregulated and regulated conditions. Thus, peak-flow frequency analyses and results are reported for a total of 754 analyses. Estimates of peak-flow magnitudes for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals.

  6. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow

    Science.gov (United States)

    Falcone, James A.

    2011-01-01

    This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they were the least-disturbed watersheds within the framework of broad regions, based on 12 major ecoregions across the United States. Of the 9,322 total sites, 2,057 are classified as reference, and 7,265 as non-reference. Of the 2,057 reference sites, 1,633 have (through 2009) 20+ years of record since 1950. Some sites have very long flow records: a number of gages have been in continuous service since 1900 (at least), and have 110 years of complete record (1900-2009) to date. The geospatial data include several hundred watershed characteristics compiled from national data sources, including environmental features (e.g. climate – including historical precipitation, geology, soils, topography) and anthropogenic influences (e.g. land use, road density, presence of dams, canals, or power plants). The dataset also includes comments from local USGS Water Science Centers, based on Annual Data Reports, pertinent to hydrologic modifications and influences. The data posted also include watershed boundaries in GIS format. This overall dataset is different in nature to the USGS Hydro-Climatic Data Network (HCDN; Slack and Landwehr 1992), whose data evaluation ended with water year 1988. The HCDN identifies stream gages which at some point in their history had

  7. Low-flow analysis and selected flow statistics representative of 1930-2002 for streamflow-gaging stations in or near West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.

    2006-01-01

    Five time periods between 1930 and 2002 are identified as having distinct patterns of annual minimum daily mean flows (minimum flows). Average minimum flows increased around 1970 at many streamflow-gaging stations in West Virginia. Before 1930, however, there might have been a period of minimum flows greater than any period identified between 1930 and 2002. The effects of climate variability are probably the principal causes of the differences among the five time periods. Comparisons of selected streamflow statistics are made between values computed for the five identified time periods and values computed for the 1930-2002 interval for 15 streamflow-gaging stations. The average difference between statistics computed for the five time periods and the 1930-2002 interval decreases with increasing magnitude of the low-flow statistic. The greatest individual-station absolute difference was 582.5 percent greater for the 7-day 10-year low flow computed for 1970-1979 compared to the value computed for 1930-2002. The hydrologically based low flows indicate approximately equal or smaller absolute differences than biologically based low flows. The average 1-day 3-year biologically based low flow (1B3) and 4-day 3-year biologically based low flow (4B3) are less than the average 1-day 10-year hydrologically based low flow (1Q10) and 7-day 10-year hydrologic-based low flow (7Q10) respectively, and range between 28.5 percent less and 13.6 percent greater. Seasonally, the average difference between low-flow statistics computed for the five time periods and 1930-2002 is not consistent between magnitudes of low-flow statistics, and the greatest difference is for the summer (July 1-September 30) and fall (October 1-December 31) for the same time period as the greatest difference determined in the annual analysis. The greatest average difference between 1B3 and 4B3 compared to 1Q10 and 7Q10, respectively, is in the spring (April 1-June 30), ranging between 11.6 and 102.3 percent

  8. Ten years of real-time streamflow gaging of turkey creek - where we have been and where we are going

    Science.gov (United States)

    Paul Conrads; Devendra Amatya

    2016-01-01

    The Turkey Creek watershed is a third-order coastal plain stream system draining an area of approximately 5,240 hectares of the Francis Marion National Forest and located about 37 miles northwest of Charleston near Huger, South Carolina. The U.S. Department of Agriculture (USDA) Forest Service maintained a streamflow gaging station on Turkey Creek from 1964 to 1981....

  9. Stage measurement at gaging stations

    Science.gov (United States)

    Sauer, Vernon B.; Turnipseed, D. Phil

    2010-01-01

    Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ±0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.

  10. Discharge measurements at gaging stations

    Science.gov (United States)

    Turnipseed, D. Phil; Sauer, Vernon B.

    2010-01-01

    The techniques and standards for making discharge measurements at streamflow gaging stations are described in this publication. The vertical axis rotating-element current meter, principally the Price current meter, has been traditionally used for most measurements of discharge; however, advancements in acoustic technology have led to important developments in the use of acoustic Doppler current profilers, acoustic Doppler velocimeters, and other emerging technologies for the measurement of discharge. These new instruments, based on acoustic Doppler theory, have the advantage of no moving parts, and in the case of the acoustic Doppler current profiler, quickly and easily provide three-dimensional stream-velocity profile data through much of the vertical water column. For much of the discussion of acoustic Doppler current profiler moving-boat methodology, the reader is referred to U.S. Geological Survey Techniques and Methods 3-A22 (Mueller and Wagner, 2009). Personal digital assistants (PDAs), electronic field notebooks, and other personal computers provide fast and efficient data-collection methods that are more error-free than traditional hand methods. The use of portable weirs and flumes, floats, volumetric tanks, indirect methods, and tracers in measuring discharge are briefly described.

  11. Linear genetic programming application for successive-station monthly streamflow prediction

    Science.gov (United States)

    Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit

    2014-09-01

    In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.

  12. Cost-effectiveness of the stream-gaging program in Maine; a prototype for nationwide implementation

    Science.gov (United States)

    Fontaine, Richard A.; Moss, M.E.; Smath, J.A.; Thomas, W.O.

    1984-01-01

    This report documents the results of a cost-effectiveness study of the stream-gaging program in Maine. Data uses and funding sources were identified for the 51 continuous stream gages currently being operated in Maine with a budget of $211,000. Three stream gages were identified as producing data no longer sufficiently needed to warrant continuing their operation. Operation of these stations should be discontinued. Data collected at three other stations were identified as having uses specific only to short-term studies; it is recommended that these stations be discontinued at the end of the data-collection phases of the studies. The remaining 45 stations should be maintained in the program for the foreseeable future. The current policy for operation of the 45-station program would require a budget of $180,300 per year. The average standard error of estimation of streamflow records is 17.7 percent. It was shown that this overall level of accuracy at the 45 sites could be maintained with a budget of approximately $170,000 if resources were redistributed among the gages. A minimum budget of $155,000 is required to operate the 45-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 25.1 percent. The maximum budget analyzed was $350,000, which resulted in an average standard error of 8.7 percent. Large parts of Maine's interior were identified as having sparse streamflow data. It was determined that this sparsity be remedied as funds become available.

  13. Statistical summaries of water-quality data for selected streamflow-gaging stations in the Red River of the North basin, North Dakota, Minnesota, and South Dakota

    Science.gov (United States)

    Macek-Rowland, Kathleen M.; Dressler, Valerie M.

    2002-01-01

    The quantity and quality of current and future water resources in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are concerns of people who reside within the basin. Additional water resources are needed because of recent growth in population, industry, and agriculture. How the management of current and future water-resources will impact water quality within the basin is a critical issue. Water-quality data, particularly for surface-water sources, will help water-resources managers make decisions about current and future water resources in the Red River of the North Basin. Statistical summaries of water-quality data for 43 streamflow-gaging stations in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are presented in this report. Statistical summaries include sample size, maximum, minimum, mean, and values for the 95th, 75th, 50th, 25th, and 5th percentiles.

  14. Return to normal streamflows and water levels: summary of hydrologic conditions in Georgia, 2013

    Science.gov (United States)

    Knaak, Andrew E.; Caslow, Kerry; Peck, Michael F.

    2015-01-01

    The U.S. Geological Survey (USGS) South Atlantic Water Science Center (SAWSC) Georgia office, in cooperation with local, State, and other Federal agencies, maintains a long-term hydrologic monitoring network of more than 340 real-time continuous-record streamflow-gaging stations (streamgages), including 10 real-time lake-level monitoring stations, 67 real-time surface-water-quality monitors, and several water-quality sampling programs. Additionally, the SAWSC Georgia office operates more than 180 groundwater monitoring wells, 39 of which are real-time. The wide-ranging coverage of streamflow, reservoir, and groundwater monitoring sites allows for a comprehensive view of hydrologic conditions across the State. One of the many benefits of this monitoring network is that the analyses of the data provide a spatially distributed overview of the hydrologic conditions of creeks, rivers, reservoirs, and aquifers in Georgia.

  15. Precipitation and streamflow data from the Fort Carson Military Reservation and precipitation, streamflow, and suspended-sediment data from the Piñon Canyon Maneuver Site, Southeastern Colorado, 2008-2012

    Science.gov (United States)

    Brown, Christopher R.

    2014-01-01

    In 2013, the U.S. Geological Survey (USGS), in cooperation with the U. S. Department of the Army, compiled available precipitation and streamflow data for the years of 2008–2012 from the Fort Carson Military Reservation (Fort Carson) near Colorado Springs, Colo., and precipitation, streamflow, and suspended-sediment loads from the Piñon Canyon Maneuver Site (PCMS) near Trinidad, Colo. Graphical representations of the data presented herein are a continuation of work completed by the USGS in 2008 to gain a better understanding of spatial and temporal trends within the hydrologic data. Precipitation stations at Fort Carson and the PCMS were divided into groups based on their land-surface altitude (LSA) to determine if there is a spatial difference in precipitation amounts based on LSA for either military facility. Two-sample t-tests and Wilcoxon rank-sum tests indicated statistically significant differences exist between precipitation values at different groups for Fort Carson but not for the PCMS. All five precipitation stations at Fort Carson exhibit a decrease in median daily total precipitation from years 2002–2007 to 2008–2012. For the PCMS, median precipitation values decreased from the first study period to the second for the 13 stations monitored year-round except for Burson and Big Hills. Mean streamflow for 2008–2012 is less than mean streamflow for 1983–2007 for all stream-gaging stations at Fort Carson and at the PCMS. During the study period, each of the stream-gaging stations within the tributary channels at the PCMS accounted for less than three percent of the total streamflow at the Purgatoire River at Rock Crossing gage. Peak streamflow for 2008–2012 is less than peak streamflow for 2002–2007 at both Fort Carson and the PCMS. At the PCMS, mean suspended-sediment yield for 2008–2012 increased by 54 percent in comparison to the mean yield for 2002–2007. This increase is likely related to the destruction of groundcover by a series of

  16. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    Science.gov (United States)

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period

  17. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    Science.gov (United States)

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  18. Analysis of flood-magnitude and flood-frequency data for streamflow-gaging stations in the Delaware and North Branch Susquehanna River Basins in Pennsylvania

    Science.gov (United States)

    Roland, Mark A.; Stuckey, Marla H.

    2007-01-01

    The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed

  19. Rainfall-runoff characteristics and effects of increased urban density on streamflow and infiltration in the eastern part of the San Jacinto River basin, Riverside County, California

    Science.gov (United States)

    Guay, Joel R.

    2002-01-01

    To better understand the rainfall-runoff characteristics of the eastern part of the San Jacinto River Basin and to estimate the effects of increased urbanization on streamflow, channel infiltration, and land-surface infiltration, a long-term (1950?98) time series of monthly flows in and out of the channels and land surfaces were simulated using the Hydrologic Simulation Program- FORTRAN (HSPF) rainfall-runoff model. Channel and land-surface infiltration includes rainfall or runoff that infiltrates past the zone of evapotranspiration and may become ground-water recharge. The study area encompasses about 256 square miles of the San Jacinto River drainage basin in Riverside County, California. Daily streamflow (for periods with available data between 1950 and 1998), and daily rainfall and evaporation (1950?98) data; monthly reservoir storage data (1961?98); and estimated mean annual reservoir inflow data (for 1974 conditions) were used to calibrate the rainfall-runoff model. Measured and simulated mean annual streamflows for the San Jacinto River near San Jacinto streamflow-gaging station (North-South Fork subbasin) for 1950?91 and 1997?98 were 14,000 and 14,200 acre-feet, respectively, a difference of 1.4 percent. The standard error of the mean for measured and simulated annual streamflow in the North-South Fork subbasin was 3,520 and 3,160 acre-feet, respectively. Measured and simulated mean annual streamflows for the Bautista Creek streamflow-gaging station (Bautista Creek subbasin) for 1950?98 were 980 acre-feet and 991 acre-feet, respectively, a difference of 1.1 percent. The standard error of the mean for measured and simulated annual streamflow in the Bautista Creek subbasin was 299 and 217 acre-feet, respectively. Measured and simulated annual streamflows for the San Jacinto River above State Street near San Jacinto streamflow-gaging station (Poppet subbasin) for 1998 were 23,400 and 23,500 acre-feet, respectively, a difference of 0.4 percent. The simulated

  20. Short-term streamflow forecasting with global climate change implications A comparative study between genetic programming and neural network models

    Science.gov (United States)

    Makkeasorn, A.; Chang, N. B.; Zhou, X.

    2008-05-01

    SummarySustainable water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods may also result in property damages and the loss of life. To more efficiently use the limited amount of water under the changing world or to resourcefully provide adequate time for flood warning, the issues have led us to seek advanced techniques for improving streamflow forecasting on a short-term basis. This study emphasizes the inclusion of sea surface temperature (SST) in addition to the spatio-temporal rainfall distribution via the Next Generation Radar (NEXRAD), meteorological data via local weather stations, and historical stream data via USGS gage stations to collectively forecast discharges in a semi-arid watershed in south Texas. Two types of artificial intelligence models, including genetic programming (GP) and neural network (NN) models, were employed comparatively. Four numerical evaluators were used to evaluate the validity of a suite of forecasting models. Research findings indicate that GP-derived streamflow forecasting models were generally favored in the assessment in which both SST and meteorological data significantly improve the accuracy of forecasting. Among several scenarios, NEXRAD rainfall data were proven its most effectiveness for a 3-day forecast, and SST Gulf-to-Atlantic index shows larger impacts than the SST Gulf-to-Pacific index on the streamflow forecasts. The most forward looking GP-derived models can even perform a 30-day streamflow forecast ahead of time with an r-square of 0.84 and RMS error 5.4 in our study.

  1. Streamflow Characteristics for Selected Stations In and Near the Grand Mesa, Uncompahgre, and Gunnison National Forests, Southwestern Colorado

    National Research Council Canada - National Science Library

    Kuhn, Gerhard

    2003-01-01

    The U.S Geological Survey, in cooperation with the Grand Mesa, Uncompahgre, and Gunnison National Forests, began a study in 2000 to develop selected streamflow characteristics for 60 streamflow-gaging...

  2. Improving Streamflow Simulation in Gaged and Ungaged Areas Using a Multi-Model Synthesis Combined with Remotely-Sensed Data and Estimates of Uncertainty

    Science.gov (United States)

    Lafontaine, J.; Hay, L.

    2015-12-01

    The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). More than 1,700 gaged watersheds across the CONUS were modeled to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models with remotely-sensed data products (i.e. - snow water equivalent) and estimates of uncertainty. Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison. As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. - snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve simulations of streamflow for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of simulated and measured information for model development and calibration at a given location of interest. In addition, these calibration strategies have been developed to be flexible so that new data products or simulated information can be assimilated. This analysis provides a foundation to understand how well models work when streamflow data is either not available or is limited and could be used to further inform hydrologic model parameter development for ungaged areas.

  3. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    Science.gov (United States)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  4. Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data

    Science.gov (United States)

    Gebert, Warren A.; Walker, John F.; Hunt, Randall J.

    2011-01-01

    The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.

  5. Exploring the Link Between Streamflow Trends and Climate Change in Indiana, USA

    Science.gov (United States)

    Kumar, S.; Kam, J.; Thurner, K.; Merwade, V.

    2007-12-01

    Streamflow trends in Indiana are evaluated for 85 USGS streamflow gaging stations that have continuous unregulated streamflow records varying from 10 to 80 years. The trends are analyzed by using the non-parametric Mann-Kendall test with prior trend-free pre-whitening to remove serial correlation in the data. Bootstrap method is used to establish field significance of the results. Trends are computed for 12 streamflow statistics to include low-, medium- (median and mean flow), and high-flow conditions on annual and seasonal time step. The analysis is done for six study periods, ranging from 10 years to more than 65 years, all ending in 2003. The trends in annual average streamflow, for 50 years study period, are compared with annual average precipitation trends from 14 National Climatic Data Center (NCDC) stations in Indiana, that have 50 years of continuous daily record. The results show field significant positive trends in annual low and medium streamflow statistics at majority of gaging stations for study periods that include 40 or more years of records. In seasonal analysis, all flow statistics in summer and fall (low flow seasons), and only low flow statistics in winter and spring (high flow seasons) are showing positive trends. No field significant trends in annual and seasonal flow statistics are observed for study periods that include 25 or fewer years of records, except for northern Indiana where localized negative trends are observed in 10 and 15 years study periods. Further, stream flow trends are found to be highly correlated with precipitation trends on annual time step. No apparent climate change signal is observed in Indiana stream flow records.

  6. Surface-water data and statistics from U.S. Geological Survey data-collection networks in New Jersey on the World Wide Web

    Science.gov (United States)

    Reiser, Robert G.; Watson, Kara M.; Chang, Ming; Nieswand, Steven P.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates and maintains a variety of surface-water data-collection networks throughout the State of New Jersey. The networks include streamflow-gaging stations, low-flow sites, crest-stage gages, tide gages, tidal creststage gages, and water-quality sampling sites. Both real-time and historical surface-water data for many of the sites in these networks are available at the USGS, New Jersey District, web site (http://nj.usgs.gov/), and water-quality data are available at the USGS National Water Information System (NWIS) web site (http://waterdata.usgs.gov/nwis/). These data are an important source of information for water managers, engineers, environmentalists, and private citizens.

  7. Preliminary assessment of streamflow characteristics for selected streams at Fort Gordon, Georgia, 1999-2000

    Science.gov (United States)

    Stamey, Timothy C.

    2001-01-01

    In 1999, the U.S. Geological Survey, in cooperation with the U.S. Army Signal Center and Fort Gordon, began collection of periodic streamflow data at four streams on the military base to assess and estimate streamflow characteristics of those streams for potential water-supply sources. Simple and reliable methods of determining streamflow characteristics of selected streams on the military base are needed for the initial implementation of the Fort Gordon Integrated Natural Resources Management Plan. Long-term streamflow data from the Butler Creek streamflow gaging station were used along with several concurrent discharge measurements made at three selected partial-record streamflow stations on Fort Gordon to determine selected low-flow streamflow characteristics. Streamflow data were collected and analyzed using standard U.S. Geological Survey methods and computer application programs to verify the use of simple drainage area to discharge ratios, which were used to estimate the low-flow characteristics for the selected streams. Low-flow data computed based on daily mean streamflow include: mean discharges for consecutive 1-, 3-, 7-, 14-, and 30-day period and low-flow estimates of 7Q10, 30Q2, 60Q2, and 90Q2 recurrence intervals. Flow-duration data also were determined for the 10-, 30-, 50-, 70-, and 90-percent exceedence flows. Preliminary analyses of the streamflow indicate that the flow duration and selected low-flow statistics for the selected streams averages from about 0.15 to 2.27 cubic feet per square mile. The long-term gaged streamflow data indicate that the streamflow conditions for the period analyzed were in the 50- to 90-percent flow range, or in which streamflow would be exceeded about 50 to 90 percent of the time.

  8. Floods of Selected Streams in Arkansas, Spring 2008

    Science.gov (United States)

    Funkhouser, Jaysson E.; Eng, Ken

    2009-01-01

    Floods can cause loss of life and extensive destruction to property. Monitoring floods and understanding the reasons for their occurrence are the responsibility of many Federal agencies. The National Weather Service, the U.S. Army Corps of Engineers, and the U.S. Geological Survey are among the most visible of these agencies. Together, these three agencies collect and analyze floodflow information to better understand the variety of mechanisms that cause floods, and how the characteristics and frequencies of floods vary with time and location. The U.S. Geological Survey (USGS) has monitored and assessed the quantity of streamflow in our Nation's streams since the agency's inception in 1879. Because of ongoing collection and assessment of streamflow data, the USGS can provide information about a range of surface-water issues including the suitability of water for public supply and irrigation and the effects of agriculture and urbanization on streamflow. As part of its streamflow-data collection activities, the USGS measured streamflow in multiple streams during extreme flood events in Arkansas in the spring of 2008. The analysis of streamflow information collected during flood events such as these provides a scientific basis for decision making related to resource management and restoration. Additionally, this information can be used by water-resource managers to better define flood-hazard areas and to design bridges, culverts, dams, levees, and other structures. Water levels (stage) and streamflow (discharge) currently are being monitored in near real-time at approximately 150 locations in Arkansas. The streamflow-gaging stations measure and record hydrologic data at 15-minute or hourly intervals; the data then are transmitted through satellites to the USGS database and displayed on the internet every 1 to 4 hours. Streamflow-gaging stations in Arkansas are part of a network of over 7,500 active streamflow-gaging stations operated by the USGS throughout the United

  9. Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA

    Science.gov (United States)

    Clayton, J.A.; Kean, J.W.

    2010-01-01

    Investigating the routing of streamflow through a large drainage basin requires the determination of discharge at numerous locations in the channel network. Establishing a dense network of stream gages using conventional methods is both cost-prohibitive and functionally impractical for many research projects. We employ herein a previously tested, fluid-mechanically based model for generating rating curves to establish a stream gaging network in the Whitewater River basin in south-central Kansas. The model was developed for the type of channels typically found in this watershed, meaning that it is designed to handle deep, narrow geomorphically stable channels with irregular planforms, and can model overbank flow over a vegetated floodplain. We applied the model to ten previously ungaged stream reaches in the basin, ranging from third- to sixth-order channels. At each site, detailed field measurements of the channel and floodplain morphology, bed and bank roughness, and vegetation characteristics were used to quantify the roughness for a range of flow stages, from low flow to overbank flooding. Rating curves that relate stage to discharge were developed for all ten sites. Both fieldwork and modeling were completed in less than 2 years during an anomalously dry period in the region, which underscores an advantage of using theoretically based (as opposed to empirically based) discharge estimation techniques. ?? 2010 Springer Science+Business Media B.V.

  10. Data Pre-Analysis and Ensemble of Various Artificial Neural Networks for Monthly Streamflow Forecasting

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2018-05-01

    Full Text Available This paper introduces three artificial neural network (ANN architectures for monthly streamflow forecasting: a radial basis function network, an extreme learning machine, and the Elman network. Three ensemble techniques, a simple average ensemble, a weighted average ensemble, and an ANN-based ensemble, were used to combine the outputs of the individual ANN models. The objective was to highlight the performance of the general regression neural network-based ensemble technique (GNE through an improvement of monthly streamflow forecasting accuracy. Before the construction of an ANN model, data preanalysis techniques, such as empirical wavelet transform (EWT, were exploited to eliminate the oscillations of the streamflow series. Additionally, a theory of chaos phase space reconstruction was used to select the most relevant and important input variables for forecasting. The proposed GNE ensemble model has been applied for the mean monthly streamflow observation data from the Wudongde hydrological station in the Jinsha River Basin, China. Comparisons and analysis of this study have demonstrated that the denoised streamflow time series was less disordered and unsystematic than was suggested by the original time series according to chaos theory. Thus, EWT can be adopted as an effective data preanalysis technique for the prediction of monthly streamflow. Concurrently, the GNE performed better when compared with other ensemble techniques.

  11. Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data

    Science.gov (United States)

    Gebert, Warren A.; Walker, John F.; Kennedy, James L.

    2011-01-01

    Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.

  12. Simulation of daily streamflows at gaged and ungaged locations within the Cedar River Basin, Iowa, using a Precipitation-Runoff Modeling System model

    Science.gov (United States)

    Christiansen, Daniel E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted a study to examine techniques for estimation of daily streamflows using hydrological models and statistical methods. This report focuses on the use of a hydrologic model, the U.S. Geological Survey's Precipitation-Runoff Modeling System, to estimate daily streamflows at gaged and ungaged locations. The Precipitation-Runoff Modeling System is a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The Cedar River Basin was selected to construct a Precipitation-Runoff Modeling System model that simulates the period from January 1, 2000, to December 31, 2010. The calibration period was from January 1, 2000, to December 31, 2004, and the validation periods were from January 1, 2005, to December 31, 2010 and January 1, 2000 to December 31, 2010. A Geographic Information System tool was used to delineate the Cedar River Basin and subbasins for the Precipitation-Runoff Modeling System model and to derive parameters based on the physical geographical features. Calibration of the Precipitation-Runoff Modeling System model was completed using a U.S. Geological Survey calibration software tool. The main objective of the calibration was to match the daily streamflow simulated by the Precipitation-Runoff Modeling System model with streamflow measured at U.S. Geological Survey streamflow gages. The Cedar River Basin daily streamflow model performed with a Nash-Sutcliffe efficiency ranged from 0.82 to 0.33 during the calibration period, and a Nash-Sutcliffe efficiency ranged from 0.77 to -0.04 during the validation period. The Cedar River Basin model is meeting the criteria of greater than 0.50 Nash-Sutcliffe and is a good fit for streamflow conditions for the calibration period at all but one location, Austin, Minnesota

  13. Estimation of Streamflow Characteristics for Charles M. Russell National Wildlife Refuge, Northeastern Montana

    Science.gov (United States)

    Sando, Steven K.; Morgan, Timothy J.; Dutton, DeAnn M.; McCarthy, Peter M.

    2009-01-01

    Charles M. Russell National Wildlife Refuge (CMR) encompasses about 1.1 million acres (including Fort Peck Reservoir on the Missouri River) in northeastern Montana. To ensure that sufficient streamflow remains in the tributary streams to maintain the riparian corridors, the U.S. Fish and Wildlife Service is negotiating water-rights issues with the Reserved Water Rights Compact Commission of Montana. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, conducted a study to gage, for a short period, selected streams that cross CMR, and analyze data to estimate long-term streamflow characteristics for CMR. The long-term streamflow characteristics of primary interest include the monthly and annual 90-, 80-, 50-, and 20-percent exceedance streamflows and mean streamflows (Q.90, Q.80, Q.50, Q.20, and QM, respectively), and the 1.5-, 2-, and 2.33- year peak flows (PK1.5, PK2, and PK2.33, respectively). The Regional Adjustment Relationship (RAR) was investigated for estimating the monthly and annual Q.90, Q.80, Q.50, Q.20, and QM, and the PK1.5, PK2, and PK2.33 for the short-term CMR gaging stations (hereinafter referred to as CMR stations). The RAR was determined to provide acceptable results for estimating the long-term Q.90, Q.80, Q.50, Q.20, and QM on a monthly basis for the months of March through June, and also on an annual basis. For the months of September through January, the RAR regression equations did not provide acceptable results for any long-term streamflow characteristic. For the month of February, the RAR regression equations provided acceptable results for the long-term Q.50 and QM, but poor results for the long-term Q.90, Q.80, and Q.20. For the months of July and August, the RAR provided acceptable results for the long-term Q.50, Q.20, and QM, but poor results for the long-term Q.90 and Q.80. Estimation coefficients were developed for estimating the long-term streamflow characteristics for which the RAR did not provide

  14. Floods in Central Texas, September 7-14, 2010

    Science.gov (United States)

    Winters, Karl E.

    2012-01-01

    Severe flooding occurred near the Austin metropolitan area in central Texas September 7–14, 2010, because of heavy rainfall associated with Tropical Storm Hermine. The U.S. Geological Survey, in cooperation with the Upper Brushy Creek Water Control and Improvement District, determined rainfall amounts and annual exceedance probabilities for rainfall resulting in flooding in Bell, Williamson, and Travis counties in central Texas during September 2010. We documented peak streamflows and the annual exceedance probabilities for peak streamflows recorded at several streamflow-gaging stations in the study area. The 24-hour rainfall total exceeded 12 inches at some locations, with one report of 14.57 inches at Lake Georgetown. Rainfall probabilities were estimated using previously published depth-duration frequency maps for Texas. At 4 sites in Williamson County, the 24-hour rainfall had an annual exceedance probability of 0.002. Streamflow measurement data and flood-peak data from U.S. Geological Survey surface-water monitoring stations (streamflow and reservoir gaging stations) are presented, along with a comparison of September 2010 flood peaks to previous known maximums in the periods of record. Annual exceedance probabilities for peak streamflow were computed for 20 streamflow-gaging stations based on an analysis of streamflow-gaging station records. The annual exceedance probability was 0.03 for the September 2010 peak streamflow at the Geological Survey's streamflow-gaging stations 08104700 North Fork San Gabriel River near Georgetown, Texas, and 08154700 Bull Creek at Loop 360 near Austin, Texas. The annual exceedance probability was 0.02 for the peak streamflow for Geological Survey's streamflow-gaging station 08104500 Little River near Little River, Texas. The lack of similarity in the annual exceedance probabilities computed for precipitation and streamflow might be attributed to the small areal extent of the heaviest rainfall over these and the other gaged

  15. Simulation of daily streamflow for nine river basins in eastern Iowa using the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.

    2015-10-14

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for nine river basins in eastern Iowa that drain into the Mississippi River. The models are part of a suite of methods for estimating daily streamflow at ungaged sites. The Precipitation-Runoff Modeling System is a deterministic, distributed- parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration and validation periods used in each basin mostly were October 1, 2002, through September 30, 2012, but differed depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.

  16. An initial abstraction and constant loss model, and methods for estimating unit hydrographs, peak streamflows, and flood volumes for urban basins in Missouri

    Science.gov (United States)

    Huizinga, Richard J.

    2014-01-01

    Streamflow data, basin characteristics, and rainfall data from 39 streamflow-gaging stations for urban areas in and adjacent to Missouri were used by the U.S. Geological Survey in cooperation with the Metropolitan Sewer District of St. Louis to develop an initial abstraction and constant loss model (a time-distributed basin-loss model) and a gamma unit hydrograph (GUH) for urban areas in Missouri. Study-specific methods to determine peak streamflow and flood volume for a given rainfall event also were developed.

  17. Occurrence and transport of selected constituents in streams near the Stibnite mining area, Central Idaho, 2012–14

    Science.gov (United States)

    Etheridge, Alexandra B.

    2015-12-07

    Mining of stibnite (antimony sulfide), tungsten, gold, silver, and mercury near the town of Stibnite in central Idaho has left a legacy of trace element contamination in local streams. Water-quality and streamflow monitoring data from a network of five streamflow-gaging stations were used to estimate trace-element and suspended-sediment loads and flow-weighted concentrations in the Stibnite mining area between 2012 and 2014. Measured concentrations of arsenic exceeded human health-based water-quality criteria at each streamflow-gaging station, except for Meadow Creek (site 2), which was selected to represent background conditions in the study area. Measured concentrations of antimony exceeded human health-based water-quality criteria at sites 3, 4, and 5.

  18. Hydro-Climatic Data Network (HCDN) Streamflow Data Set, 1874-1988

    Science.gov (United States)

    Slack, James Richard; Lumb, Alan M.; Landwehr, Jurate Maciunas

    1993-01-01

    records of 'natural flow' were permitted, nor was any record extended or had missing values 'filled in' using computational algorithms. If the streamflow at a station was judged to be free of controls for only a part of the entire period of record that is available for the station, then only that part was included in the HCDN, but only if it was of sufficient length (generally 20 years) to warrant inclusion. In addition to the daily mean discharge values, complete station identification information and basin characteristics were retrieved from WATSTORE for inclusion in the HCDN. Statistical characteristics, including the monthly mean discharge, as well as the annual mean, minimum and maximum discharge values, were derived for the records in the HCDN data set. For a full description of the development and content of the Hydro-Climatic Data Network, please take a look at the HCDN Report.

  19. GAGES: A stream gage database for evaluating natural and alteredflow conditions in the conterminous United States

    Science.gov (United States)

    Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.

    2010-01-01

    Stream flow is a controlling element in the ecology of rivers and streams. Knowledge of the natural flow regime facilitates the assessment of whether specific hydrologic attributes have been altered by humans in a particular stream and the establishment of specific goals for stream-flow restoration. Because most streams are ungaged or have been altered by human influences, characterizing the natural flow regime is often only possible by estimating flow characteristics based on nearby stream gages of reference quality, i.e., gaged locations that are least disturbed by human influences. The ability to evaluate natural stream flow, that which is not altered by human activities, would be enhanced by the existence of a nationally consistent and up-to-date database of gages in relatively undisturbed watersheds.

  20. Estimating Selected Streamflow Statistics Representative of 1930-2002 in West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.

    2008-01-01

    Regional equations and procedures were developed for estimating 1-, 3-, 7-, 14-, and 30-day 2-year; 1-, 3-, 7-, 14-, and 30-day 5-year; and 1-, 3-, 7-, 14-, and 30-day 10-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the 1-day, 3-year and 4-day, 3-year biologically based low-flow frequency values; the U.S. Environmental Protection Agency harmonic-mean flows; and the 10-, 25-, 50-, 75-, and 90-percent flow-duration values. Regional equations were developed using ordinary least-squares regression using statistics from 117 U.S. Geological Survey continuous streamflow-gaging stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia - North, South-Central, and Eastern Panhandle - were determined. Drainage area, precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. Estimating procedures are presented for determining statistics at a gaging station, a partial-record station, and an ungaged location. Examples of some estimating procedures are presented.

  1. Flood of June 22-24, 2006, in North-Central Ohio, With Emphasis on the Cuyahoga River Near Independence

    Science.gov (United States)

    Sherwood, James M.; Ebner, Andrew D.; Koltun, G.F.; Astifan, Brian M.

    2007-01-01

    Heavy rains caused severe flooding on June 22-24, 2006, and damaged approximately 4,580 homes and 48 businesses in Cuyahoga County. Damage estimates in Cuyahoga County for the two days of flooding exceed $47 million; statewide damage estimates exceed $150 million. Six counties (Cuyahoga, Erie, Huron, Lucas, Sandusky, and Stark) in northeast Ohio were declared Federal disaster areas. One death, in Lorain County, was attributed to the flooding. The peak streamflow of 25,400 cubic feet per second and corresponding peak gage height of 23.29 feet were the highest recorded at the U.S. Geological Survey (USGS) streamflow-gaging station Cuyahoga River at Independence (04208000) since the gaging station began operation in 1922, exceeding the previous peak streamflow of 24,800 cubic feet per second that occurred on January 22, 1959. An indirect calculation of the peak streamflow was made by use of a step-backwater model because all roads leading to the gaging station were inundated during the flood and field crews could not reach the station to make a direct measurement. Because of a statistically significant and persistent positive trend in the annual-peak-streamflow time series for the Cuyahoga River at Independence, a method was developed and applied to detrend the annual-peak-streamflow time series prior to the traditional log-Pearson Type III flood-frequency analysis. Based on this analysis, the recurrence interval of the computed peak streamflow was estimated to be slightly less than 100 years. Peak-gage-height data, peak-streamflow data, and recurrence-interval estimates for the June 22-24, 2006, flood are tabulated for the Cuyahoga River at Independence and 10 other USGS gaging stations in north-central Ohio. Because flooding along the Cuyahoga River near Independence and Valley View was particularly severe, a study was done to document the peak water-surface profile during the flood from approximately 2 miles downstream from the USGS streamflow-gaging station at

  2. Trends in Streamflow Characteristics of Selected Sites in the Elkhorn River, Salt Creek, and Lower Platte River Basins, Eastern Nebraska, 1928-2004, and Evaluation of Streamflows in Relation to Instream-Flow Criteria, 1953-2004

    Science.gov (United States)

    Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.

    2009-01-01

    The Nebraska Department of Natural Resources approved instream-flow appropriations on the Platte River to maintain fish communities, whooping crane roost habitat, and wet meadows used by several wild bird species. In the lower Platte River region, the Nebraska Game and Parks Commission owns an appropriation filed to maintain streamflow for fish communities between the Platte River confluence with the Elkhorn River and the mouth of the Platte River. Because Elkhorn River flow is an integral part of the flow in the reach addressed by this appropriation, the Upper Elkhorn and Lower Elkhorn Natural Resources Districts are involved in overall management of anthropogenic effects on the availability of surface water for instream requirements. The Physical Habitat Simulation System (PHABSIM) and other estimation methodologies were used previously to determine instream requirements for Platte River biota, which led to the filing of five water appropriations applications with the Nebraska Department of Natural Resources in 1993 by the Nebraska Game and Parks Commission. One of these requested instream-flow appropriations of 3,700 cubic feet per second was for the reach from the Elkhorn River to the mouth of the Platte River. Four appropriations were granted with modifications in 1998, by the Nebraska Department of Natural Resources. Daily streamflow data for the periods of record were summarized for 17 streamflow-gaging stations in Nebraska to evaluate streamflow characteristics, including low-flow intervals for consecutive durations of 1, 3, 7, 14, 30, 60, and 183 days. Temporal trends in selected streamflow statistics were not adjusted for variability in precipitation. Results indicated significant positive temporal trends in annual flow for the period of record at eight streamflow-gaging stations - Platte River near Duncan (06774000), Platte River at North Bend (06796000), Elkhorn River at Neligh (06798500), Logan Creek near Uehling (06799500), Maple Creek near Nickerson

  3. Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams

    Science.gov (United States)

    Watson, Kara M.; Schopp, Robert D.

    2009-01-01

    Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed

  4. Stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural streamflow

    Science.gov (United States)

    Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.

    2016-02-24

    -balance model was developed for simulating monthly natural (unregulated) mean streamflow based on precipitation, temperature, and potential evapotranspiration at select streamflow-gaging stations. The model was calibrated using streamflow data from the U.S. Geological Survey and Environment Canada, along with natural (unregulated) streamflow data from the U.S. Army Corps of Engineers. Correlation coefficients between simulated and natural (unregulated) flows generally were high (greater than 0.8), and the seasonal means and standard deviations of the simulated flows closely matched the means and standard deviations of the natural (unregulated) flows. After calibrating the model for a monthly time step, monthly streamflow for each subbasin was disaggregated into three values per month, or an approximately 10-day time step, and a separate routing model was developed for simulating 10-day streamflow for downstream gages.The stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration was combined with the water-balance model to simulate potential future sequences of 10-day mean streamflow for each of the streamflow-gaging station locations. Flood risk, as determined by equilibrium flow-frequency distributions for the dry (1912–69) and wet (1970–2011) climate states, was considerably higher for the wet state compared to the dry state. Future flood risk will remain high until the wet climate state ends, and for several years after that, because there may be a long lag-time between the return of drier conditions and the onset of a lower soil-moisture storage equilibrium.

  5. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002

    Science.gov (United States)

    Messinger, Terence; Wiley, Jeffrey B.

    2004-01-01

    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be

  6. Simulation of streamflow in the McTier Creek watershed, South Carolina

    Science.gov (United States)

    Feaster, Toby D.; Golden, Heather E.; Odom, Kenneth R.; Lowery, Mark A.; Conrads, Paul; Bradley, Paul M.

    2010-01-01

    The McTier Creek watershed is located in the Sand Hills ecoregion of South Carolina and is a small catchment within the Edisto River Basin. Two watershed hydrology models were applied to the McTier Creek watershed as part of a larger scientific investigation to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin. The two models are the topography-based hydrological model (TOPMODEL) and the grid-based mercury model (GBMM). TOPMODEL uses the variable-source area concept for simulating streamflow, and GBMM uses a spatially explicit modified curve-number approach for simulating streamflow. The hydrologic output from TOPMODEL can be used explicitly to simulate the transport of mercury in separate applications, whereas the hydrology output from GBMM is used implicitly in the simulation of mercury fate and transport in GBMM. The modeling efforts were a collaboration between the U.S. Geological Survey and the U.S. Environmental Protection Agency, National Exposure Research Laboratory. Calibrations of TOPMODEL and GBMM were done independently while using the same meteorological data and the same period of record of observed data. Two U.S. Geological Survey streamflow-gaging stations were available for comparison of observed daily mean flow with simulated daily mean flow-station 02172300, McTier Creek near Monetta, South Carolina, and station 02172305, McTier Creek near New Holland, South Carolina. The period of record at the Monetta gage covers a broad range of hydrologic conditions, including a drought and a significant wet period. Calibrating the models under these extreme conditions along with the normal flow conditions included in the record enhances the robustness of the two models. Several quantitative assessments of the goodness of fit between model simulations and the observed daily mean flows were done. These included the Nash-Sutcliffe coefficient

  7. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    Science.gov (United States)

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  8. In Brief: Online database for instantaneous streamflow data

    Science.gov (United States)

    Showstack, Randy

    2007-11-01

    Access to U.S. Geological Survey (USGS) historical instantaneous streamflow discharge data, dating from around 1990, is now available online through the Instantaneous Data Archive (IDA), the USGS announced on 14 November. In this new system, users can find streamflow information reported at the time intervals at which it is collected, typically 15-minute to hourly intervals. Although instantaneous data have been available for many years, they were not accessible through the Internet. Robert Hirsch, USGS Associate Director of Water, said, ``A user-friendly archive of historical instantaneous streamflow data is important to many different users for such things as floodplain mapping, flood modeling, and estimating pollutant transport.''The site currently has about 1.5 billion instantaneous data values from 5500 stream gages in 26 states. The number of states and stream gages with data will continue to increase, according to the USGS. For more information, visit the Web site: http://ida.water.usgs.gov/ida/.

  9. Streamflow in the upper Santa Cruz River basin, Santa Cruz and Pima Counties, Arizona

    Science.gov (United States)

    Condes de la Torre, Alberto

    1970-01-01

    Streamflow records obtained in the upper Santa Cruz River basin of southern Arizona, United States, and northern Sonora, Mexico, have been analyzed to aid in the appraisal of the surface-water resources of the area. Records are available for 15 sites, and the length of record ranges from 60 years for the gaging station on the Santa .Cruz River at Tucson to 6 years for Pantano Wash near Vail. The analysis provides information on flow duration, low-flow frequency magnitude, flood-volume frequency and magnitude, and storage requirements to maintain selected draft rates. Flood-peak information collected from the gaging stations has been projected on a regional basis from which estimates of flood magnitude and frequency may be made for any site in the basin. Most streams in the 3,503-square-mile basin are ephemeral. Ground water sustains low flows only at Santa Cruz River near Nogales, Sonoita Creek near Patagonia, and Pantano Wash near Vail. Elsewhere, flow occurs only in direct response to precipitation. The median number of days per year in which there is no flow ranges from 4 at Sonoita Creek near Patagonia to 335 at Rillito Creek near Tomson. The streamflow is extremely variable from year to year, and annual flows have a coefficient of variation close to or exceeding unity at most stations. Although the amount of flow in the basin is small most of the time, the area is subject to floods. Most floods result from high-intensity precipitation caused by thunderstorms during the period ,July to September. Occasionally, when snowfall at the lower altitudes is followed by rain, winter floods produce large volumes of flow.

  10. Implementation and Evaluation of the Streamflow Statistics (StreamStats) Web Application for Computing Basin Characteristics and Flood Peaks in Illinois

    Science.gov (United States)

    Ishii, Audrey L.; Soong, David T.; Sharpe, Jennifer B.

    2010-01-01

    Illinois StreamStats (ILSS) is a Web-based application for computing selected basin characteristics and flood-peak quantiles based on the most recently (2010) published (Soong and others, 2004) regional flood-frequency equations at any rural stream location in Illinois. Limited streamflow statistics including general statistics, flow durations, and base flows also are available for U.S. Geological Survey (USGS) streamflow-gaging stations. ILSS can be accessed on the Web at http://streamstats.usgs.gov/ by selecting the State Applications hyperlink and choosing Illinois from the pull-down menu. ILSS was implemented for Illinois by obtaining and projecting ancillary geographic information system (GIS) coverages; populating the StreamStats database with streamflow-gaging station data; hydroprocessing the 30-meter digital elevation model (DEM) for Illinois to conform to streams represented in the National Hydrographic Dataset 1:100,000 stream coverage; and customizing the Web-based Extensible Markup Language (XML) programs for computing basin characteristics for Illinois. The basin characteristics computed by ILSS then were compared to the basin characteristics used in the published study, and adjustments were applied to the XML algorithms for slope and basin length. Testing of ILSS was accomplished by comparing flood quantiles computed by ILSS at a an approximately random sample of 170 streamflow-gaging stations computed by ILSS with the published flood quantile estimates. Differences between the log-transformed flood quantiles were not statistically significant at the 95-percent confidence level for the State as a whole, nor by the regions determined by each equation, except for region 1, in the northwest corner of the State. In region 1, the average difference in flood quantile estimates ranged from 3.76 percent for the 2-year flood quantile to 4.27 percent for the 500-year flood quantile. The total number of stations in region 1 was small (21) and the mean

  11. An evaluation of the accuracy of modeled and computed streamflow time-series data for the Ohio River at Hannibal Lock and Dam and at a location upstream from Sardis, Ohio

    Science.gov (United States)

    Koltun, G.F.

    2015-01-01

    Between July 2013 and June 2014, the U.S. Geological Survey (USGS) made 10 streamflow measurements on the Ohio River about 1.5 miles (mi) downstream from the Hannibal Lock and Dam (near Hannibal, Ohio) and 11 streamflow measurements near the USGS Sardis gage (station number 03114306) located approximately 2.4 mi upstream from Sardis, Ohio. The measurement results were used to assess the accuracy of modeled or computed instantaneous streamflow time series created and supplied by the USGS, U.S. Army Corps of Engineers (USACE), and National Weather Service (NWS) for the Ohio River at Hannibal Lock and Dam and (or) at the USGS streamgage. Hydraulic or hydrologic models were used to create the modeled time series; index-velocity methods or gate-opening ratings coupled with hydropower operation data were used to create the computed time series. The time step of the various instantaneous streamflow time series ranged from 15 minutes to 24 hours (once-daily values at 12:00 Coordinated Universal Time [UTC]). The 15-minute time-series data, computed by the USGS for the Sardis gage, also were downsampled to 1-hour and 24-hour time steps to permit more direct comparisons with other streamflow time series.

  12. Changes in streamflow characteristics in Wisconsin as related to precipitation and land use

    Science.gov (United States)

    Gebert, Warren A.; Garn, Herbert S.; Rose, William J.

    2016-01-19

    Streamflow characteristics were determined for 15 longterm streamflow-gaging stations for the periods 1915–2008, 1915–68, and 1969–2008 to identify trends. Stations selected represent flow characteristics for the major river basins in Wisconsin. Trends were statistically significant at the 95 percent confidence level at 13 of the 15 streamflow-gaging stations for various streamflow characteristics for 1915–2008. Most trends indicated increases in low flows for streams with agriculture as the dominant land use. The three most important findings are: increases in low flows and average flows in agricultural watersheds, decreases in flood peak discharge for many streams in both agricultural and forested watersheds, and climatic change occurred with increasing annual precipitation and changes in monthly occurrence of precipitation. When the 1915–68 period is compared to the 1969–2008 period, the annual 7-day low flow increased an average of 60 percent for nine streams in agricultural areas as compared to a 15 percent increase for the five forested streams. Average annual flow for the same periods increased 23 percent for the agriculture streams and 0.6 percent for the forested streams. The annual flood peak discharge for the same periods decreased 15 percent for agriculture streams and 8 percent for forested streams. The largest increase in the annual 7-day low flow was 117 percent, the largest increase in annual average flow was 41 percent, and the largest decrease in annual peak discharge was 51 percent. The trends in streamflow characteristics affect frequency characteristics, which are used for a variety of design and compliance purposes. The frequencies for the 1969–2008 period were compared to frequencies for the 1915–68 period. The 7-day, 10-year (Q7, 10) low flow increased 91 percent for nine agricultural streams, while the five forested streams had an increase of 18 percent. The 100-year flood peak discharge decreased an average of 15 percent

  13. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Savard, C.S.

    1998-01-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches

  14. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  15. Hydrologic data for North Creek, Trinity River basin, Texas, 1979

    Science.gov (United States)

    Kidwell, C.C.

    1981-01-01

    This report contains rainfall and runoff data collected during the 1979 water year for the 21.6-square mile area above the stream-gaging station North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are collected to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations are included for one storm during the 1979 water year at the stream-gaging station. (USGS)

  16. Hydrologic data for North Creek, Trinity River basin, Texas, 1976

    Science.gov (United States)

    Kidwell, C.C.

    1978-01-01

    This report contains rainfall and runoff data collected during the 1976 water year for a 21.6-square mile area above the stream-gaging station on North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are used to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations, including hydrographs and mass curves, are included for two storm periods during the 1976 water year at the stream-gaging station. (Woodard-USGS)

  17. Overview of runoff of March 11, 1995, in Fortymile Wash and Amargosa River, Southern Nevada

    International Nuclear Information System (INIS)

    Beck, D.A.; Glancy, P.A.

    1996-01-01

    Yucca Mountain, approximately 120 miles northwest of Las Vegas, Nevada, is being studied by the US Department of Energy as a potential repository for long-term storage of the Nation's high-level nuclear waste. This site-characterization study includes elements pertaining to surface-water runoff, including the potential for flooding. The US Geological Survey (USGS), in cooperation with the US Department of Energy, is monitoring streamflow in southern Nevada through a network of stream-flow gaging stations and miscellaneous streamflow measurements in support of the site-characterization effort

  18. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    Science.gov (United States)

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  19. Spatial and Temporal Streamflow Trends in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chen-Feng Yeh

    2015-02-01

    Full Text Available Streamflow is an important factor in the study of water resource management, floods, and droughts. Dramatic climate change has created extreme rainfall distributions, making the study of streamflow trends and variability even more crucial. In this study, the long-term streamflow data and trends recorded at gauging stations in Northern Taiwan are analyzed using the Mann-Kendall test. The data used for trend analysis are the average annual streamflow, the average seasonal streamflow, and the high and low flows. The slope trend is calculated using the Theil-Sen estimator. Finally, change point analysis is conducted using the Mann-Whitney-Pettit test and the cumulative deviation test to gain further information about the change points and to understand the changes in streamflow before and after the change points. The average annual streamflow of the 12 gauging stations in the study area is analyzed using the Mann-Kendall test. The results show that of the 12 gauging stations, only the Ximen Bridge Station in the Lanyang River basin show a significant downward streamflow trend. Results of the monthly and seasonal average streamflow analysis show that in the spring, 72.2% of the gauging stations showed upward streamflow trends, most of which were located in the Tamsui River and the Touqian River basins. The high and low flow data analysis shows that the Ximen Bridge Station was the only gauging station to feature a significant downward streamflow trend for both high and low flows. This distribution pattern provides valuable information for regional hydrological studies and water management.

  20. Evaluation of the streamgage network for estimating streamflow statistics at ungaged sites in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York

    Science.gov (United States)

    Sloto, Ronald A.; Stuckey, Marla H.; Hoffman, Scott A.

    2017-05-10

    The current (2015) streamgage network in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York was evaluated in order to design a network that would meet the hydrologic needs of many partners and serve a variety of purposes and interests, including estimation of streamflow statistics at ungaged sites. This study was done by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection and the Susquehanna River Basin Commission. The study area includes the Commonwealth of Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York. For this study, 229 streamgages were identified as reference streamgages that could be used to represent ungaged watersheds. Criteria for a reference streamgage are a minimum of 10 years of continuous record, minimally altered streamflow, and a drainage area less than 1,500 square miles. Some of the reference streamgages have been discontinued but provide historical hydrologic information valuable in the determination of streamflow characteristics of ungaged watersheds. Watersheds in the study area not adequately represented by a reference streamgage were identified by examining a range of basin characteristics, the extent of geographic coverage, and the strength of estimated streamflow correlations between gaged and ungaged sites.Basin characteristics were determined for the reference streamgage watersheds and the 1,662 12-digit hydrologic unit code (HUC12) subwatersheds in Pennsylvania and the Susquehanna River Basin using a geographic information system (GIS) spatial analysis and nationally available GIS datasets. Basin characteristics selected for this study include drainage area, mean basin elevation, mean basin slope, percentage of urbanized area, percentage of forested area, percentage of carbonate bedrock, mean annual precipitation, and soil thickness. A GIS spatial analysis was used to identify HUC12 subwatersheds outside the range of basin

  1. Wavelet-linear genetic programming: A new approach for modeling monthly streamflow

    Science.gov (United States)

    Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur

    2017-06-01

    The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.

  2. A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island

    Science.gov (United States)

    Barbaro, Jeffrey R.; Zarriello, Phillip J.

    2007-01-01

    Survey cooperative streamflow-gaging network, and at seven partial-record stations installed in 2004 for this study. Because the model-calibration period preceded data collection at the partial-record stations, a continuous streamflow record was estimated at these stations by correlation with flows at nearby continuous-record stations to provide additional streamflow data for model calibration. Water-use information was compiled for 1996-2001 and included municipal and commercial/industrial withdrawals, private residential withdrawals, golf-course withdrawals, municipal wastewater-return flows, and on-site septic effluent return flows. Streamflow depletion was computed for all time-varying ground-water withdrawals prior to simulation. Water-use data were included in the model to represent the net effect of water use on simulated hydrographs. Consequently, the calibrated values of the hydrologic parameters better represent the hydrologic response of the basin to precipitation. The model was calibrated for 1997-2001 to coincide with the land-use and water-use data compiled for the study. Four long-term stations (Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island) that monitor flow at 3.3, 5.4, 19, and 88 percent of the total basin area, respectively, provided the primary model-calibration points. Hydrographs, scatter plots, and flow-duration curves of observed and simulated discharges, along with various model-fit statistics, indicated that the model performed well over a range of hydrologic conditions. For example, the total runoff volume for the calibration period simulated at the Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island streamflow-gaging stations differed from the observed runoff v

  3. Retrospective evaluation of continental-scale streamflow nudging with WRF-Hydro National Water Model V1

    Science.gov (United States)

    McCreight, J. L.; Wu, Y.; Gochis, D.; Rafieeinasab, A.; Dugger, A. L.; Yu, W.; Cosgrove, B.; Cui, Z.; Oubeidillah, A.; Briar, D.

    2016-12-01

    The streamflow (discharge) data assimilation capability in version 1 of the National Water Model (NWM; a WRF-Hydro configuration) is applied and evaluated in a 5-year (2011-2015) retrospective study using NLDAS2 forcing data over CONUS. This talk will describe the NWM V1 operational nudging (continuous-time) streamflow data assimilation approach, its motivation, and its relationship to this retrospective evaluation. Results from this study will provide a an analysis-based (not forecast-based) benchmark for streamflow DA in the NWM. The goal of the assimilation is to reduce discharge bias and improve channel initial conditions for discharge forecasting (though forecasts are not considered here). The nudging method assimilates discharge observations at nearly 7,000 USGS gages (at frequency up to 1/15 minutes) to produce a (univariate) discharge reanalysis (i.e. this is the only variable affected by the assimilation). By withholding 14% nested gages throughout CONUS in a separate validation run, we evaluate the downstream impact of assimilation at upstream gages. Based on this sample, we estimate the skill of the streamflow reanalysis at ungaged locations and examine factors governing the skill of the assimilation. Comparison of assimilation and open-loop runs is presented. Performance of DA under both high and low flow regimes and selected flooding events is examined. Preliminary evaluation of nudging parameter sensitivity and its relationship to flow regime will be presented.

  4. Precipitation data for water years 1992 and 1993 from a network of nonrecording gages at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ambos, D.S.; Flint, A.L.; Hevesi, J.A.

    1995-01-01

    This report presents precipitation data collected in a storage gage network at Yucca Mountain, Nevada, from October 1, 1991, to September 30, 1993. The measured values indicate total accumulated precipitation for specified time intervals approximately corresponding to separate storm events. Installation of a precipitation monitoring network was initiated in January 1990, and was continually expanded and upgraded throughout the period ending in September 1993. The final network included 3 different gage types for a total of 133 gages at 108 locations within the three drainages overlying the potential repository site. Measured precipitation indicated above average accumulations for water years 1992 and 1993 relative to the most recent estimate of 6.7 inches for long-term average annual precipitation over the area of the network. The total precipitation averaged over the network in 1992 was about 8.2 inches with a maximum of about 11.2 inches measured at borehole USW GA-1. The total precipitation averaged over the network in 1993 was about 10.3 inches with a maximum of about 12.1 inches at neutron-access borehole UE-25 UZN number-sign 4

  5. Estimating ice-affected streamflow by extended Kalman filtering

    Science.gov (United States)

    Holtschlag, D.J.; Grewal, M.S.

    1998-01-01

    An extended Kalman filter was developed to automate the real-time estimation of ice-affected streamflow on the basis of routine measurements of stream stage and air temperature and on the relation between stage and streamflow during open-water (ice-free) conditions. The filter accommodates three dynamic modes of ice effects: sudden formation/ablation, stable ice conditions, and eventual elimination. The utility of the filter was evaluated by applying it to historical data from two long-term streamflow-gauging stations, St. John River at Dickey, Maine and Platte River at North Bend, Nebr. Results indicate that the filter was stable and that parameters converged for both stations, producing streamflow estimates that are highly correlated with published values. For the Maine station, logarithms of estimated streamflows are within 8% of the logarithms of published values 87.2% of the time during periods of ice effects and within 15% 96.6% of the time. Similarly, for the Nebraska station, logarithms of estimated streamflows are within 8% of the logarithms of published values 90.7% of the time and within 15% 97.7% of the time. In addition, the correlation between temporal updates and published streamflows on days of direct measurements at the Maine station was 0.777 and 0.998 for ice-affected and open-water periods, respectively; for the Nebraska station, corresponding correlations were 0.864 and 0.997.

  6. Low Cost Stream Gaging through Analysis of Stage Height Using Digital Photography

    Science.gov (United States)

    Mui, C. K.; Royem, A. A.; Walter, M. T.

    2010-12-01

    Through the middle of the twentieth century, the US was relatively rich in active streamflow gages. Over the past four decades, the number of gages has decreased by approximately 10% (approx. 20 gages a year) and it is likely this trend will continue for the foreseeable future. Not only are streaflow data valuable for water resources planning and management, but they are invaluable for assessing how land use and climate changes are impacting the environment. Affordable, easy-to-use systems need to be developed to enable a wider community to establish and maintain streamflow observation sites. Currently USGS-like gauges cost 30,000 to 50,000 to build and $6,000/year to maintain. We are developing a system that uses digital images in conjunction with MATLAB for image post processing that has the potential to both accurately and cost effectively monitor stream gauge. We explored several different staff gauge designs in conjunction with associated image processing code. The most robust design so far consists of a brightly colored metal staff gauge and and code that allows a point-and-click method for training the image processing code to correctly identify the staff. We ultimately envision a system in which users can upload their images via the Internet and post-processing is done on a remote server, which also collates data and metadata for open-access downloading.

  7. Simulation of the Quantity, Variability, and Timing of Streamflow in the Dennys River Basin, Maine, by Use of a Precipitation-Runoff Watershed Model

    Science.gov (United States)

    Dudley, Robert W.

    2008-01-01

    .76, respectively. The Cathance Stream model had an NSE value of 0.68. The Dennys River Basin models make use of limited streamflow-gaging station data and provide information to characterize subbasin hydrology. The calibrated PRMS watershed models of the Dennys River Basin provide simulated daily streamflow time series from October 1, 1985, through September 30, 2006, for nearly any location within the basin. These models enable natural-resources managers to characterize the timing and quantity of water moving through the basin to support many endeavors including geochemical calculations, water-use assessment, Atlantic salmon population dynamics and migration modeling, habitat modeling and assessment, and other resource-management scenario evaluations. Characterizing streamflow contributions from subbasins in the basin and the relative amounts of surface- and ground-water contributions to streamflow throughout the basin will lead to a better understanding of water quantity and quality in the basin. Improved water-resources information will support Atlantic salmon protection efforts.

  8. Characteristics of peak streamflows and extent of inundation in areas of West Virginia and southwestern Virginia affected by flooding, June 2016

    Science.gov (United States)

    Austin, Samuel H.; Watson, Kara M.; Lotspeich, R. Russell; Cauller, Stephen J.; White , Jeremy S.; Wicklein, Shaun M.

    2017-11-17

    Heavy rainfall occurred across central and southern West Virginia in June 2016 as a result of repeated rounds of torrential thunderstorms. The storms caused major flooding and flash flooding in central and southern West Virginia with Kanawha, Fayette, Nicholas, and Greenbrier Counties among the hardest hit. Over the duration of the storms, from 8 to 9.37 inches of rain was reported in areas in Greenbrier County. Peak streamflows were the highest on record at 7 locations, and streamflows at 18 locations ranked in the top five for the period of record at U.S. Geological Survey streamflow-gaging stations used in this study. Following the storms, U.S. Geological Survey hydrographers identified and documented 422 high-water marks in West Virginia, noting location and height of the water above land surface. Many of these high-water marks were used to create flood-inundation maps for selected communities of West Virginia that experienced flooding in June 2016. Digital datasets of the inundation areas, mapping boundaries, and water depth rasters are available online.

  9. Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings

    Science.gov (United States)

    Ravindranath, A.; Devineni, N.

    2016-12-01

    Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.

  10. Sources of Increased Spring and Streamflow Caused by the 2014 South Napa Earthquake

    Science.gov (United States)

    Rytuba, J. J.; Holzer, T. L.

    2014-12-01

    Seasonally dry springs and creeks began flowing over a broad region in the hills around Napa following the M6.0 South Napa earthquake on August 24, 2014. Flows in hillside creek beds, which were dry before the earthquake, were reported from 19 km west, to 6 km east, and 18 km north of Napa and the epicenter, an area that shook at MMI≥VI. The exact timing of the increased flow is unknown because the earthquake occurred at 3:20 AM PDT. A gaging station on the Napa River, which is downstream from several tributaries that began flowing after the earthquake, showed a sudden increase of flow rate within 45 minutes following the earthquake. The sudden increase at the gaging station suggests flows initiated either contemporaneously with or very soon after the strong shaking. This timing is consistent with eyewitness accounts of other streams and springs at daylight, a few hours after the earthquake. One of the largest increases of streamflow was in Green Valley, where a streamflow rate of about 100 cubic hectometers per day was measured in Wild Horse Creek. Two types of waters are being discharged in the Wild Horse Creek drainage: 1) water with low iron concentration that has exchanged with rhyolitic flows and tuffs in the upper part of the drainage; and 2) high iron concentration water that has exchanged with basaltic andesite in the middle part of drainage (vertical interval of about 75 meters). The high iron waters are depositing FeOOH other iron phases. Mixing of the two water types results in water with pH 6.9 and conductivity of 0.197 mS. This water is used by the Vallejo Water District for domestic purposes after it is mixed with recent surface water runoff stored in Lake Frey reservoir in order to improve its quality. Other drainages that have increased flow since the earthquake have water chemistry consistent with exchange with rhyolitic flows and tuffs that are the dominant rock type in these drainages.

  11. Watershed Data Management (WDM) database for West Branch DuPage River streamflow simulation, DuPage County, Illinois, January 1, 2007, through September 30, 2013

    Science.gov (United States)

    Bera, Maitreyee

    2017-10-16

    The U.S. Geological Survey (USGS), in cooperation with the DuPage County Stormwater Management Department, maintains a database of hourly meteorological and hydrologic data for use in a near real-time streamflow simulation system. This system is used in the management and operation of reservoirs and other flood-control structures in the West Branch DuPage River watershed in DuPage County, Illinois. The majority of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorological data (air temperature, dewpoint temperature, wind speed, and solar radiation) are collected at Argonne National Laboratory in Argonne, Ill. Potential evapotranspiration is computed from the meteorological data using the computer program LXPET (Lamoreux Potential Evapotranspiration). The hydrologic data (water-surface elevation [stage] and discharge) are collected at U.S.Geological Survey streamflow-gaging stations in and around DuPage County. These data are stored in a Watershed Data Management (WDM) database.This report describes a version of the WDM database that is quality-assured and quality-controlled annually to ensure datasets are complete and accurate. This database is named WBDR13.WDM. It contains data from January 1, 2007, through September 30, 2013. Each precipitation dataset may have time periods of inaccurate data. This report describes the methods used to estimate the data for the periods of missing, erroneous, or snowfall-affected data and thereby improve the accuracy of these data. The other meteorological datasets are described in detail in Over and others (2010), and the hydrologic datasets in the database are fully described in the online USGS annual water data reports for Illinois (U.S. Geological Survey, 2016) and, therefore, are described in less detail than the precipitation datasets in this report.

  12. Surface-water and karst groundwater interactions and streamflow-response simulations of the karst-influenced upper Lost River watershed, Orange County, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This

  13. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  14. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  15. Streamflow predictions in Alpine Catchments by using artificial neural networks. Application in the Alto Genil Basin (South Spain)

    Science.gov (United States)

    Jimeno-Saez, Patricia; Pegalajar-Cuellar, Manuel; Pulido-Velazquez, David

    2017-04-01

    This study explores techniques of modeling water inflow series, focusing on techniques of short-term steamflow prediction. An appropriate estimation of streamflow in advance is necessary to anticipate measures to mitigate the impacts and risks related to drought conditions. This study analyzes the prediction of future streamflow of nineteen subbasins in the Alto-Genil basin in Granada (Southeast of Spain). Some of these basin streamflow have an important component of snowmelt due to part of the system is located in Sierra Nevada Mountain Range, the highest mountain of continental Spain. Streamflow prediction models have been calibrated using time series of historical natural streamflows. The available streamflow measurements have been downloaded from several public data sources. These original data have been preprocessed to turn them to the original natural regime, removing the anthropic effects. The missing values in the adopted horizon period to calibrate the prediction models have been estimated by using a Temez hydrological balance model, approaching the snowmelt processes with a hybrid degree day method. In the experimentation, ARIMA models are used as baseline method, and recurrent neural networks ELMAN and nonlinear autoregressive neural network (NAR) to test if the prediction accuracy can be improved. After performing the multiple experiments with these models, non-parametric statistical tests are applied to select the best of these techniques. In the experiments carried out with ARIMA, it is concluded that ARIMA models are not adequate in this case study due to the existence of a nonlinear component that cannot be modeled. Secondly, ELMAN and NAR neural networks with multi-start training is performed with each network structure to deal with the local optimum problem, since in neural network training there is a very strong dependence on the initial weights of the network. The obtained results suggest that both neural networks are efficient for the short

  16. A comparison of four streamflow record extension techniques

    Science.gov (United States)

    Hirsch, Robert M.

    1982-01-01

    One approach to developing time series of streamflow, which may be used for simulation and optimization studies of water resources development activities, is to extend an existing gage record in time by exploiting the interstation correlation between the station of interest and some nearby (long-term) base station. Four methods of extension are described, and their properties are explored. The methods are regression (REG), regression plus noise (RPN), and two new methods, maintenance of variance extension types 1 and 2 (MOVE.l, MOVE.2). MOVE.l is equivalent to a method which is widely used in psychology, biometrics, and geomorphology and which has been called by various names, e.g., ‘line of organic correlation,’ ‘reduced major axis,’ ‘unique solution,’ and ‘equivalence line.’ The methods are examined for bias and standard error of estimate of moments and order statistics, and an empirical examination is made of the preservation of historic low-flow characteristics using 50-year-long monthly records from seven streams. The REG and RPN methods are shown to have serious deficiencies as record extension techniques. MOVE.2 is shown to be marginally better than MOVE.l, according to the various comparisons of bias and accuracy.

  17. Water Resources Data--California, Water Year 2002, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Rockwell, G.L.; Pope, G.L.; Agajanian, J.; Caldwell, L.A.

    2003-01-01

    Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 188 gaging stations and 10 crest-stage partial-record stations, stage and contents for 19 lakes and reservoirs, gage-height records for 2 stations, water quality for 39 streamflow-gaging stations and 11 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  18. Water Resources Data -- California, Water Year 2003, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Pope, G.L.; Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.

    2004-01-01

    Water-resources data for the 2003 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 193 gaging stations and 11 crest-stage partial-record stations, stage and contents for 22 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 12 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  19. Water resources data, California, water year 2004, volume 1: Southern Great Basin from Mexican border to Mono Lake Basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.; Pope, G.L.

    2005-01-01

    Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 195 gaging stations and 10 crest-stage partial-record stations, stage and contents for 25 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 7 partial-record stations, and precipitation data for 5 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  20. Prediction of Missing Streamflow Data using Principle of Information Entropy

    Directory of Open Access Journals (Sweden)

    Santosa, B.

    2014-01-01

    Full Text Available Incomplete (missing of streamflow data often occurs. This can be caused by a not continous data recording or poor storage. In this study, missing consecutive streamflow data are predicted using the principle of information entropy. Predictions are performed ​​using the complete monthly streamflow information from the nearby river. Data on average monthly streamflow used as a simulation sample are taken from observation stations Katulampa, Batubeulah, and Genteng, which are the Ciliwung Cisadane river areas upstream. The simulated prediction of missing streamflow data in 2002 and 2003 at Katulampa Station are based on information from Genteng Station, and Batubeulah Station. The mean absolute error (MAE average obtained was 0,20 and 0,21 in 2002 and the MAE average in 2003 was 0,12 and 0,16. Based on the value of the error and pattern of filled gaps, this method has the potential to be developed further.

  1. Surface-Water Techniques: On Demand Training Opportunities

    Science.gov (United States)

    ,

    2007-01-01

    The U.S. Geological Survey (USGS) has been collecting streamflow information since 1889 using nationally consistent methods. The need for such information was envisioned by John Wesley Powell as a key component for settlement of the arid western United States. Because of Powell?s vision the nation now has a rich streamflow data base that can be analyzed with confidence in both space and time. This means that data collected at a stream gaging station in Maine in 1903 can be compared to data collected in 2007 at the same gage in Maine or at a different gage in California. Such comparisons are becoming increasingly important as we work to assess climate variability and anthropogenic effects on streamflow. Training employees in proper and consistent techniques to collect and analyze streamflow data forms a cornerstone for maintaining the integrity of this rich data base.

  2. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow

    Science.gov (United States)

    Clark, M.P.; Hay, L.E.

    2004-01-01

    This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases

  3. Causes of systematic over- or underestimation of low streamflows by use of index-streamgage approaches in the United States

    Science.gov (United States)

    Eng, K.; Kiang, J.E.; Chen, Y.-Y.; Carlisle, D.M.; Granato, G.E.

    2011-01-01

    Low-flow characteristics can be estimated by multiple linear regressions or the index-streamgage approach. The latter transfers streamflow information from a hydrologically similar, continuously gaged basin ('index streamgage') to one with a very limited streamflow record, but often results in biased estimates. The application of the index-streamgage approach can be generalized into three steps: (1) selection of streamflow information of interest, (2) definition of hydrologic similarity and selection of index streamgage, and (3) application of an information-transfer approach. Here, we explore the effects of (1) the range of streamflow values, (2) the areal density of streamgages, and (3) index-streamgage selection criteria on the bias of three information-transfer approaches on estimates of the 7-day, 10-year minimum streamflow (Q7, 10). The three information-transfer approaches considered are maintenance of variance extension, base-flow correlation, and ratio of measured to concurrent gaged streamflow (Q-ratio invariance). Our results for 1120 streamgages throughout the United States suggest that only a small portion of the total bias in estimated streamflow values is explained by the areal density of the streamgages and the hydrologic similarity between the two basins. However, restricting the range of streamflow values used in the index-streamgage approach reduces the bias of estimated Q7, 10 values substantially. Importantly, estimated Q7, 10 values are heavily biased when the observed Q7, 10 values are near zero. Results of the analysis also showed that Q7, 10 estimates from two of the three index-streamgage approaches have lower root-mean-square error values than estimates derived from multiple regressions for the large regions considered in this study.

  4. USGS Hydro-Climatic Data Network 2009 (HCDN-2009)

    Science.gov (United States)

    Lins, Harry F.

    2012-01-01

    The U.S. Geological Survey's (USGS) Hydro-Climatic Data Network (HCDN) is a subset of all USGS streamgages for which the streamflow primarily reflects prevailing meteorological conditions for specified years. These stations were screened to exclude sites where human activities, such as artificial diversions, storage, and other activities in the drainage basin or the stream channel, affect the natural flow of the watercourse. In addition, sites were included in the network because their record length was sufficiently long for analysis of patterns in streamflow over time. The purpose of the network is to provide a streamflow dataset suitable for analyzing hydrologic variations and trends in a climatic context. When originally published, the network was composed of 1,659 stations (Slack and Landwehr, 1992) for which the years of primarily "natural" flow were identified. Since then data from the HCDN have been widely used and cited in climate-related hydrologic investigations of the United States. The network has also served as a model for establishing climate-sensitive streamgage networks in other countries around the world.

  5. Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System

  6. Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers

    Science.gov (United States)

    Boldt, Justin A.; Oberg, Kevin A.

    2015-01-01

    The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.

  7. Evaluation of Remotely Sensed Precipitation and its Performance for Streamflow Simulations in Basins of the Southeast Tibetan Plateau

    DEFF Research Database (Denmark)

    Wang, Sheng; Liu, Suxia; Mo, Xingguo

    2015-01-01

    along with the CMORPH gauge–satellite blended version (C-ga), which is virtually C-adj in precipitation ungauged regions and is controlled by gauge analysis over regions of a dense station network, were intercompared with daily streamflow predicted by the distributed vegetation interface processes (VIP...

  8. Stream-water and groundwater quality in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area, Pottawatomie County, Oklahoma, 2012-13

    Science.gov (United States)

    Becker, Carol J.

    2014-01-01

    The Citizen Potawatomi Nation needs to characterize their existing surface-water and groundwater resources in and near their tribal jurisdictional area to complete a water-resource management plan. Water resources in this area include surface water from the North Canadian and Little Rivers and groundwater from the terrace and alluvial aquifers and underlying bedrock aquifers. To assist in this effort, the U.S. Geological Survey (USGS), in cooperation with the Citizen Potawatomi Nation, collected water-quality samples at 4 sites on 3 streams and from 30 wells during 2012 and 2013 in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area in central Oklahoma. Stream samples were collected eight times on the North Canadian River at the upstream USGS streamflow-gaging station North Canadian River near Harrah, Okla. (07241550); at the downstream USGS streamflow-gaging station North Canadian River at Shawnee, Okla. (07241800); and on the Little River at the USGS streamflow-gaging station Little River near Tecumseh, Okla., (07230500). Stream samples also were collected three times at an ungaged site, Deer Creek near McLoud, Okla. (07241590). Water properties were measured, and water samples were analyzed for concentrations of major ions, nutrients, trace elements, counts of fecal-indicator bacteria, and 69 organic compounds.

  9. Internally Mounting Strain Gages

    Science.gov (United States)

    Jett, J. R., Jr.

    1984-01-01

    Technique for mounting strain gages inside bolt or cylinder simultaneously inserts gage, attached dowel segment, and length of expandable tubing. Expandable tubing holds gage in place while adhesive cures, assuring even distribution of pressure on gage and area gaged.

  10. Streamflow characteristics of the Colorado River Basin in Utah through September 1981

    Science.gov (United States)

    Christensen, R.C.; Johnson, E.B.; Plantz, G.G.

    1987-01-01

     This report summarizes discharge data and other streamflow characteristics developed from gag ing-station records collected through September 1981 at 337 stations in the Colorado River Basin in Utah. Data also are included for 14 stations in adjacent areas of the bordering states of Arizona, Colorado, and Wyoming (fig. 1). The study leading to this report was done in cooperation with the U.S. Bureau of Land Management, which needs the streamflow data in order to evaluate impacts of mining on the hydrologic system. The report also will be beneficial to other Federal, State, and county agencies and to individuals concerned with water supply and water problems in the Colorado River Basin.The streamflow characteristics in the report could be useful in many water-related studies that involve the following:Definition of baseline-hydrologic conditions; studies of the effects of man's activities on streamflow; frequency analyses of low and high flows; regional analyses of streamflow characteristics; design of water-supply systems; water-power studies; forecasting of stream discharge; time-series analyses of streamflow; design of flood-control structures; stream-pollution studies; and water-chemistry transport studies.The basic data used to develop the summaries in this report are records of daily and peak discharge collected by the U.S. Geological Survey and other Federal agencies. Much of the work of the Geological Survey was done in cooperation with Federal, State, and county agencies. Discharge recordsincluded in the report generally were for stations with at least 1 complete water year of record and nearby stations that were on the same stream and had different streamflow characteristics. A water year is a 12-month period ending September 30, and it is designated by the calendar year in which it ends. For streams that have had significant changes in regulation by reservoirs or diversions, the records before and after those changes were used separately to provide

  11. Streamflow Trends and Responses to Climate Variability and Land Cover Change in South Dakota

    Directory of Open Access Journals (Sweden)

    Karishma Niloy Kibria

    2016-01-01

    Full Text Available Trends in high, moderate, and low streamflow conditions from United States Geological Survey (USGS gauging stations were evaluated for a period of 1951–2013 for 18 selected watersheds in South Dakota (SD using a modified Mann-Kendall test. Rainfall trends from 21 rainfall observation stations located within 20-km of the streamflow gauging stations were also evaluated for the same study period. The concept of elasticity was used to examine sensitivity of streamflow to variation in rainfall and land cover (i.e., grassland in the study watersheds. Results indicated significant increasing trends in seven of the studied streams (of which five are in the east and two are located in the west, nine with slight increasing trends, and two with decreasing trends for annual streamflow. About half of the streams exhibited significant increasing trends in low and moderate flow conditions compared to high flow conditions. Ten rainfall stations showed slight increasing trends and seven showed decreasing trends for annual rainfall. Streamflow elasticity analysis revealed that streamflow was highly influenced by rainfall across the state (five of eastern streams and seven of western streams. Based on this analysis, a 10% increase in annual rainfall would result in 11%–30% increase in annual streamflow in more than 60% of SD streams. While streamflow appears to be more sensitive to rainfall across the state, high sensitivity of streamflow to rapid decrease in grassland area was detected in two western watersheds. This study provides valuable insight into of the relationship between streamflow, climate, and grassland cover in SD and would support further research and stakeholder decision making about water resources.

  12. Reconstruction and analysis of the past five centuries of streamflow on northern slopes on Tianshan Mountains in Northern Xinjiang, China

    Science.gov (United States)

    Yang, Yuhui; Chen, Yaning; Wang, Minzhong; Sun, Huilan

    2017-07-01

    We examined the changes in streamflow on the northern slopes of the Tianshan Mountains in northern Xinjiang, China, over two time scales: the past 500 years, based on dendrochronology data; and the past 50 years, based on streamflow data from hydrological stations. The method of artificial neural networks built from the data of the 50-year period was used to reconstruct the streamflow of the 500-year period. The results indicate that streamflow has undergone seven high-flow periods and four low-flow periods during the past 500 years. To identify possible transition points in the streamflow, we applied the Mann-Kendall and running T tests to the 50- and 500-year periods, respectively. During the past 500 years, streamflow has changed significantly from low to high flow about three to four times, and from high to low flow about three to five times. Over the recent 50 years, there have been three phases of variation in river runoff, and the most distinct transition of streamflow occurred in 1996.

  13. Artificial Neural Network Models for Long Lead Streamflow Forecasts using Climate Information

    Science.gov (United States)

    Kumar, J.; Devineni, N.

    2007-12-01

    Information on season ahead stream flow forecasts is very beneficial for the operation and management of water supply systems. Daily streamflow conditions at any particular reservoir primarily depend on atmospheric and land surface conditions including the soil moisture and snow pack. On the other hand recent studies suggest that developing long lead streamflow forecasts (3 months ahead) typically depends on exogenous climatic conditions particularly Sea Surface Temperature conditions (SST) in the tropical oceans. Examples of some oceanic variables are El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Identification of such conditions that influence the moisture transport into a given basin poses many challenges given the nonlinear dependency between the predictors (SST) and predictand (stream flows). In this study, we apply both linear and nonlinear dependency measures to identify the predictors that influence the winter flows into the Neuse basin. The predictor identification approach here adopted uses simple correlation coefficients to spearman rank correlation measures for detecting nonlinear dependency. All these dependency measures are employed with a lag 3 time series of the high flow season (January - February - March) using 75 years (1928-2002) of stream flows recorded in to the Falls Lake, Neuse River Basin. Developing streamflow forecasts contingent on these exogenous predictors will play an important role towards improved water supply planning and management. Recently, the soft computing techniques, such as artificial neural networks (ANNs) have provided an alternative method to solve complex problems efficiently. ANNs are data driven models which trains on the examples given to it. The ANNs functions as universal approximators and are non linear in nature. This paper presents a study aiming towards using climatic predictors for 3 month lead time streamflow forecast. ANN models representing the physical process of the system are

  14. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    J. C. Ochoa-Rivera

    2002-01-01

    Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..

  15. Spatial patterns of March and September streamflow trends in Pacific Northwest Streams, 1958-2008

    Science.gov (United States)

    Chang, Heejun; Jung, Il-Won; Steele, Madeline; Gannett, Marshall

    2012-01-01

    Summer streamflow is a vital water resource for municipal and domestic water supplies, irrigation, salmonid habitat, recreation, and water-related ecosystem services in the Pacific Northwest (PNW) in the United States. This study detects significant negative trends in September absolute streamflow in a majority of 68 stream-gauging stations located on unregulated streams in the PNW from 1958 to 2008. The proportion of March streamflow to annual streamflow increases in most stations over 1,000 m elevation, with a baseflow index of less than 50, while absolute March streamflow does not increase in most stations. The declining trends of September absolute streamflow are strongly associated with seven-day low flow, January–March maximum temperature trends, and the size of the basin (19–7,260 km2), while the increasing trends of the fraction of March streamflow are associated with elevation, April 1 snow water equivalent, March precipitation, center timing of streamflow, and October–December minimum temperature trends. Compared with ordinary least squares (OLS) estimated regression models, spatial error regression and geographically weighted regression (GWR) models effectively remove spatial autocorrelation in residuals. The GWR model results show spatial gradients of local R 2 values with consistently higher local R 2 values in the northern Cascades. This finding illustrates that different hydrologic landscape factors, such as geology and seasonal distribution of precipitation, also influence streamflow trends in the PNW. In addition, our spatial analysis model results show that considering various geographic factors help clarify the dynamics of streamflow trends over a large geographical area, supporting a spatial analysis approach over aspatial OLS-estimated regression models for predicting streamflow trends. Results indicate that transitional rain–snow surface water-dominated basins are likely to have reduced summer streamflow under warming scenarios

  16. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma

    Science.gov (United States)

    Esralew, Rachel A.; Smith, S. Jerrod

    2010-01-01

    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage

  17. Measurement of aerosol concentration with a beta-ray gage

    International Nuclear Information System (INIS)

    Auzac, G. d'; Dubillot, J.

    1978-01-01

    Because dusts in suspension are a dangerous polluting agent, several methods have been used to monitor their concentration. Among these, the beta-ray gage enjoys a privileged position. The authors describe such a gage and discuss the conditions to be observed for it to be capable of giving results comparable to those obtained with manual gravimetric methods. The satisfactory results obtained led to standardization of the method and a whole range of instruments based on this principle are employed in pollution supervising networks and for continuously monitoring industrial emissions [fr

  18. Low-flow characteristics of Virginia streams

    Science.gov (United States)

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly

  19. Comparison of NEXRAD multisensor precipitation estimates to rain gage observations in and near DuPage County, Illinois, 2002–12

    Science.gov (United States)

    Spies, Ryan R.; Over, Thomas M.; Ortel, Terry W.

    2018-05-21

    In this report, precipitation data from 2002 to 2012 from the hourly gridded Next-Generation Radar (NEXRAD)-based Multisensor Precipitation Estimate (MPE) precipitation product are compared to precipitation data from two rain gage networks—an automated tipping bucket network of 25 rain gages operated by the U.S. Geological Survey (USGS) and 51 rain gages from the volunteer-operated Community Collaborative Rain, Hail, and Snow (CoCoRaHS) network—in and near DuPage County, Illinois, at a daily time step to test for long-term differences in space, time, and distribution. The NEXRAD–MPE data that are used are from the fifty 2.5-mile grid cells overlying the rain gages from the other networks. Because of the challenges of measuring of frozen precipitation, the analysis period is separated between days with or without the chance of freezing conditions. The NEXRAD–MPE and tipping-bucket rain gage precipitation data are adjusted to account for undercatch by multiplying by a previously determined factor of 1.14. Under nonfreezing conditions, the three precipitation datasets are broadly similar in cumulative depth and distribution of daily values when the data are combined spatially across the networks. However, the NEXRAD–MPE data indicate a significant trend relative to both rain gage networks as a function of distance from the NEXRAD radar just south of the study area. During freezing conditions, of the USGS network rain gages only the heated gages were considered, and these gages indicate substantial mean undercatch of 50 and 61 percent compared to the NEXRAD–MPE and the CoCoRaHS gages, respectively. The heated USGS rain gages also indicate substantially lower quantile values during freezing conditions, except during the most extreme (highest) events. Because NEXRAD precipitation products are continually evolving, the report concludes with a discussion of recent changes in those products and their potential for improved precipitation estimation. An appendix

  20. FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015

    Science.gov (United States)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.

    2018-03-01

    Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.

  1. Cost effective stream-gaging strategies for the Lower Colorado River basin; the Blythe field office operations

    Science.gov (United States)

    Moss, Marshall E.; Gilroy, Edward J.

    1980-01-01

    This report describes the theoretical developments and illustrates the applications of techniques that recently have been assembled to analyze the cost-effectiveness of federally funded stream-gaging activities in support of the Colorado River compact and subsequent adjudications. The cost effectiveness of 19 stream gages in terms of minimizing the sum of the variances of the errors of estimation of annual mean discharge is explored by means of a sequential-search optimization scheme. The search is conducted over a set of decision variables that describes the number of times that each gaging route is traveled in a year. A gage route is defined as the most expeditious circuit that is made from a field office to visit one or more stream gages and return to the office. The error variance is defined as a function of the frequency of visits to a gage by using optimal estimation theory. Currently a minimum of 12 visits per year is made to any gage. By changing to a six-visit minimum, the same total error variance can be attained for the 19 stations with a budget of 10% less than the current one. Other strategies are also explored. (USGS)

  2. Perennial-streamflow characteristics related to channel geometry and sediment in Missouri River basin

    Science.gov (United States)

    Osterkamp, W.R.; Hedman, E.R.

    1982-01-01

    Geometry, channel-sediment, and discharge data were collected and compiled from 252 streamflow-gaging stations in the Missouri River basin. The sites represent the complete ranges of hydrologic and geologic conditions found in the basin. The data were analyzed by computer to yield equations relating various discharge characteristics to variables of channel geometry and bed and bank material. The equations provide discharge as the dependent variable for the purpose of making estimates of discharge characteristics at ungaged sites. Results show that channel width is best related to variables of discharge, but that reduction of standard errors can be achieved by considering channel-sediment properties, channel gradient, and discharge variability. The channel-material variables do not exert uniform effects on width-discharge relations and, therefore, are considered as sediment-data groups, or stream types, rather than as terms in multiple power-function equations. Relative to streamflow, narrowest channels occur when streams of steady discharge transport sufficient silt and clay to form stable, cohesive banks but have a small tractive load of sand and coarser sizes. Stable channels also are associated with high channel gradients, which cause high channel roughness and bed and bank armouring by coarse particle sizes. The widest, most unstable channels are found with streams that apparently transport of large tractive load of sand sizes. The downstream rates of change of width with discharge reflect these trends, suggesting that a given bed-material load necessitates a minimum width over which the tractive material can be moved. (USGS)

  3. Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Ferreira, António

    2017-04-01

    Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas

  4. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  5. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  6. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  7. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    ... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.

  8. Changes in streamflow and summary of major-ion chemistry and loads in the North Fork Red River basin upstream from Lake Altus, northwestern Texas and western Oklahoma, 1945-1999

    Science.gov (United States)

    Smith, S. Jerrod; Wahl, Kenneth L.

    2003-01-01

    Upstream from Lake Altus, the North Fork Red River drains an area of 2,515 square miles. The quantity and quality of surface water are major concerns at Lake Altus, and water-resource managers and consumers need historical information to make informed decisions about future development. The Lugert-Altus Irrigation District relies on withdrawals from the lake to sustain nearly 46,000 acres of agricultural land. Kendall's tau tests of precipitation data indicated no statistically significant trend over the entire 100 years of available record. However, a significant increase in precipitation occurred in the last 51 years. Four streamflow-gaging stations with more than 10 years of record were maintained in the basin. These stations recorded no significant trends in annual streamflow volume. Two stations, however, had significant increasing trends in the base-flow index, and three had significant decreasing trends in annual peak flows. Major-ion chemistry in the North Fork Red River is closely related to the chemical composition of the underlying bedrock. Two main lithologies are represented in the basin upstream from Lake Altus. In the upper reaches, young and poorly consolidated sediments include a range of sizes from coarse gravel to silt and clay. Nearsurface horizons commonly are cemented as calcium carbonate caliche. Finer-grained gypsiferous sandstones and shales dominate the lower reaches of the basin. A distinct increase in dissolved solids, specifically sodium, chloride, calcium, and sulfate, occurs as the river flows over rocks that contain substantial quantities of gypsum, anhydrite, and dolomite. These natural salts are the major dissolved constituents in the North Fork Red River.

  9. Obtaining Streamflow Statistics for Massachusetts Streams on the World Wide Web

    Science.gov (United States)

    Ries, Kernell G.; Steeves, Peter A.; Freeman, Aleda; Singh, Raj

    2000-01-01

    A World Wide Web application has been developed to make it easy to obtain streamflow statistics for user-selected locations on Massachusetts streams. The Web application, named STREAMSTATS (available at http://water.usgs.gov/osw/streamstats/massachusetts.html ), can provide peak-flow frequency, low-flow frequency, and flow-duration statistics for most streams in Massachusetts. These statistics describe the magnitude (how much), frequency (how often), and duration (how long) of flow in a stream. The U.S. Geological Survey (USGS) has published streamflow statistics, such as the 100-year peak flow, the 7-day, 10-year low flow, and flow-duration statistics, for its data-collection stations in numerous reports. Federal, State, and local agencies need these statistics to plan and manage use of water resources and to regulate activities in and around streams. Engineering and environmental consulting firms, utilities, industry, and others use the statistics to design and operate water-supply systems, hydropower facilities, industrial facilities, wastewater treatment facilities, and roads, bridges, and other structures. Until now, streamflow statistics for data-collection stations have often been difficult to obtain because they are scattered among many reports, some of which are not readily available to the public. In addition, streamflow statistics are often needed for locations where no data are available. STREAMSTATS helps solve these problems. STREAMSTATS was developed jointly by the USGS and MassGIS, the State Geographic Information Systems (GIS) agency, in cooperation with the Massachusetts Departments of Environmental Management and Environmental Protection. The application consists of three major components: (1) a user interface that displays maps and allows users to select stream locations for which they want streamflow statistics (fig. 1), (2) a data base of previously published streamflow statistics and descriptive information for 725 USGS data

  10. Temporal variation of streamflow, sediment load and their relationship in the Yellow River basin, China.

    Directory of Open Access Journals (Sweden)

    Guangju Zhao

    Full Text Available Variation of streamflow and sediment load in the Yellow River basin has received considerable attention due to its drastic reduction during the past several decades. This paper presents a detailed investigation on the changes of streamflow and sediment load from 1952 to 2011 using monthly observations at four gauging stations along the Yellow River. The results show significant decreasing trends for both streamflow and sediment load at all four gauging stations over the past 60 years. The wavelet transform demonstrated discontinuous periodicities from 1969 to 1973 and after 1986 due to the construction of large reservoirs and implementation of numerous soil and water conservations practices. The sediment rating curves with the power-law function was applied to investigate the relationship between discharge and sediment load. The results indicate distinct variations of the relationship between streamflow and sediment and implied significant hydro-morphological changes within different periods. The reducing sediment supply from the source region and the increased erosive power of the river are detected at Lanzhou station, while the decrease of the transport capacity at Toudaoguai is caused by severe siltation. Significant changes in the relationship between streamflow and sediment load are found at Huayuankou and Gaocun stations, which are largely induced by evident sediment income and trapping effects of large reservoirs. It is estimated that numerous reservoirs have strongly altered the regime and magnitude of streamflow and trapped large amount of sediment, leading to severe siltation and evident reduction of their total volumes. A decrease in precipitation, incoming water from the upper reaches, soil and water conservation measures as well as water consumption contribute most to the significant reduction of streamflow. The decrease of sediment load mainly resulted from various soil and water conservation measures and trapping in reservoirs

  11. Versatile radiation gaging system

    International Nuclear Information System (INIS)

    Long, P.J.

    1978-01-01

    The attributes of computerized versatile radiation gaging systems are described. The gages are used to measure plating thicknesses and material characteristics that can be determined from radiation attenuation and/or x-ray fluorescence measurements

  12. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    Science.gov (United States)

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow

  13. Impacts of uncertainties in weather and streamflow observations in calibration and evaluation of an elevation distributed HBV-model

    Science.gov (United States)

    Engeland, K.; Steinsland, I.; Petersen-Øverleir, A.; Johansen, S.

    2012-04-01

    The aim of this study is to assess the uncertainties in streamflow simulations when uncertainties in both observed inputs (precipitation and temperature) and streamflow observations used in the calibration of the hydrological model are explicitly accounted for. To achieve this goal we applied the elevation distributed HBV model operating on daily time steps to a small catchment in high elevation in Southern Norway where the seasonal snow cover is important. The uncertainties in precipitation inputs were quantified using conditional simulation. This procedure accounts for the uncertainty related to the density of the precipitation network, but neglects uncertainties related to measurement bias/errors and eventual elevation gradients in precipitation. The uncertainties in temperature inputs were quantified using a Bayesian temperature interpolation procedure where the temperature lapse rate is re-estimated every day. The uncertainty in the lapse rate was accounted for whereas the sampling uncertainty related to network density was neglected. For every day a random sample of precipitation and temperature inputs were drawn to be applied as inputs to the hydrologic model. The uncertainties in observed streamflow were assessed based on the uncertainties in the rating curve model. A Bayesian procedure was applied to estimate the probability for rating curve models with 1 to 3 segments and the uncertainties in their parameters. This method neglects uncertainties related to errors in observed water levels. Note that one rating curve was drawn to make one realisation of a whole time series of streamflow, thus the rating curve errors lead to a systematic bias in the streamflow observations. All these uncertainty sources were linked together in both calibration and evaluation of the hydrologic model using a DREAM based MCMC routine. Effects of having less information (e.g. missing one streamflow measurement for defining the rating curve or missing one precipitation station

  14. Streamflow profile classification using functional data analysis: A case study on the Kelantan River Basin

    Science.gov (United States)

    Jamaludin, Suhaila

    2017-05-01

    Extreme rainfall events such as floods and prolonged dry spells have become common phenomena in tropical countries like Malaysia. Floods are regular natural disasters in Malaysia, and happen nearly every year during the monsoon season. Recently, the magnitude of streamflow seems to have altered frequently, both spatially and temporally. Therefore, in order to have effective planning and an efficient water management system, it is advisable that streamflow data are analysed continuously over a period of time. If the data are treated as a set of functions rather than as a set of discrete values, then this ensures that they are not restricted by physical time. In addition, the derivatives of the functions may themselves be treated as functional data, which provides new information. The objective of this study is to develop a functional framework for hydrological applications using streamflow as the functional data. The daily flow series from the Kelantan River Basin were used as the main input in this study. Seven streamflow stations were employed in the analysis. Classification between the stations was done using the functional principal component, which was based on the results of the factor scores. The results indicated that two stations, namely the Kelantan River (Guillemard Bridge) and the Galas River, have a different flow pattern from the other streamflow stations. The flow curves of these two rivers are considered as the extreme curves because of their different magnitude and shape.

  15. Inexpensive Bolt-Load Gage

    Science.gov (United States)

    Long, M. J.

    1983-01-01

    "Built-in" gage determines whether large bolt or stud has been torqued to desired load and provides for continuous inspection to ensure proper load is being maintained. Gage detects longitudinal stress/strain bolt; requires no electronic or sonic test equipment.

  16. The Global Streamflow Indices and Metadata Archive (GSIM – Part 1: The production of a daily streamflow archive and metadata

    Directory of Open Access Journals (Sweden)

    H. X. Do

    2018-04-01

    Full Text Available This is the first part of a two-paper series presenting the Global Streamflow Indices and Metadata archive (GSIM, a worldwide collection of metadata and indices derived from more than 35 000 daily streamflow time series. This paper focuses on the compilation of the daily streamflow time series based on 12 free-to-access streamflow databases (seven national databases and five international collections. It also describes the development of three metadata products (freely available at https://doi.pangaea.de/10.1594/PANGAEA.887477: (1 a GSIM catalogue collating basic metadata associated with each time series, (2 catchment boundaries for the contributing area of each gauge, and (3 catchment metadata extracted from 12 gridded global data products representing essential properties such as land cover type, soil type, and climate and topographic characteristics. The quality of the delineated catchment boundary is also made available and should be consulted in GSIM application. The second paper in the series then explores production and analysis of streamflow indices. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.

  17. Has streamflow changed in the Nordic countries?

    Energy Technology Data Exchange (ETDEWEB)

    Hisdal, Hege; Holmqvist, Erik; Jonsdottir, Jona Finndis; Jonsson, Pall; Kuusisto, Esko; Lindstroem, Goeran; Roald, Lars A.

    2010-01-15

    Climate change studies traditionally include elaboration of possible scenarios for the future and attempts to detect a climate change signal in historical data. This study focuses on the latter. A pan-Nordic dataset of more than 160 streamflow records was analysed to detect spatial and temporal changes in streamflow. The Mann-Kendall trend test was applied to study changes in annual and seasonal streamflow as well as floods and droughts for three periods: 1961-2000, 1941-2002 and 1920-2002. The period analysed and the selection of stations influenced the regional patterns found, but the overall picture was that trends towards increased streamflow were dominating for annual values and the winter and spring seasons. Trends in summer flow highly depended on the period analysed whereas no trend was found for the autumn season. A signal towards earlier snowmelt floods was clear and a tendency towards more severe summer droughts was found in southern Norway. A qualitative comparison of the findings to available streamflow scenarios for the region showed that the strongest trends found are coherent with changes expected in the scenario period, for example increased winter discharge and earlier snowmelt floods. However, there are also expected changes that are not reflected in the trends, such as the expected increase in autumn discharge in Norway. It can be concluded that the observed temperature increase has clearly affected the streamflow in the Nordic countries. These changes correspond well with the estimated consequences of a projected temperature increase. The effect of the observed and projected precipitation increase on streamflow is less clear.(Author)

  18. Design of a sediment-monitoring gaging network on ephemeral tributaries of the Colorado River in Glen, Marble, and Grand Canyons, Arizona

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.

    2014-01-01

    stations beginning in 2000 on the larger of the previously ungaged tributaries of the Colorado River downstream from Glen Canyon Dam. The sediment-monitoring gaging stations consist of a downward-looking stage sensor and passive suspended-sediment samplers. Two stations are equipped with automatic pump samplers to collect suspended-sediment samples during flood events. Directly measuring discharge and collecting suspended-sediment samples in these remote ephemeral streams during significant sediment-transporting events is nearly impossible; most significant run-off events are short-duration events (lasting minutes to hours) associated with summer thunderstorms. As the remote locations and short duration of these floods make it prohibitively expensive, if not impossible, to directly measure the discharge of water or collect traditional depth-integrated suspended-sediment samples, a method of calculating sediment loads was developed that includes documentation of stream stages by field instrumentation, modeling of discharges associated with these stages, and automatic suspended-sediment measurements. The approach developed is as follows (1) survey and model flood high-water marks using a two-dimensional hydrodynamic model, (2) create a stage-discharge relation for each site by combining the modeled flood flows with the measured stage record, (3) calculate the discharge record for each site using the stage-discharge relation and the measured stage record, and (4) calculate the instantaneous and cumulative sediment loads using the discharge record and suspended-sediment concentrations measured from samples collected with passive US U-59 samplers and ISCOTM pump samplers. This paper presents the design of the gaging network and briefly describes the methods used to calculate discharge and sediment loads. The design and methods herein can easily be used at other remote locations where discharge and sediment loads are required.

  19. An Hourly Streamflow Forecasting Model Coupled with an Enforced Learning Strategy

    Directory of Open Access Journals (Sweden)

    Ming-Chang Wu

    2015-10-01

    Full Text Available Floods, one of the most significant natural hazards, often result in loss of life and property. Accurate hourly streamflow forecasting is always a key issue in hydrology for flood hazard mitigation. To improve the performance of hourly streamflow forecasting, a methodology concerning the development of neural network (NN based models with an enforced learning strategy is proposed in this paper. Firstly, four different NNs, namely back propagation network (BPN, radial basis function network (RBFN, self-organizing map (SOM, and support vector machine (SVM, are used to construct streamflow forecasting models. Through the cross-validation test, NN-based models with superior performance in streamflow forecasting are detected. Then, an enforced learning strategy is developed to further improve the performance of the superior NN-based models, i.e., SOM and SVM in this study. Finally, the proposed flow forecasting model is obtained. Actual applications are conducted to demonstrate the potential of the proposed model. Moreover, comparison between the NN-based models with and without the enforced learning strategy is performed to evaluate the effect of the enforced learning strategy on model performance. The results indicate that the NN-based models with the enforced learning strategy indeed improve the accuracy of hourly streamflow forecasting. Hence, the presented methodology is expected to be helpful for developing improved NN-based streamflow forecasting models.

  20. Trends in precipitation and streamflow and changes in stream morphology in the Fountain Creek watershed, Colorado, 1939-99

    Science.gov (United States)

    Stogner, Sr., Robert W.

    2000-01-01

    The Fountain Creek watershed, located in and along the eastern slope of the Front Range section of the southern Rocky Mountains, drains approximately 930 square miles of parts of Teller, El Paso, and Pueblo Counties in eastern Colorado. Streamflow in the watershed is dominated by spring snowmelt runoff and storm runoff during the summer monsoon season. Flooding during the 1990?s has resulted in increased streambank erosion. Property loss and damage associated with flooding and bank erosion has cost area residents, businesses, utilities, municipalities, and State and Federal agencies millions of dollars. Precipitation (4 stations) and streamflow (6 stations) data, aerial photographs, and channel reconnaissance were used to evaluate trends in precipitation and streamflow and changes in channel morphology. Trends were evaluated for pre-1977, post-1976, and period-of-record time periods. Analysis revealed the lack of trend in total annual and seasonal precipitation during the pre-1977 time period. In general, the analysis also revealed the lack of trend in seasonal precipitation for all except the spring season during the post-1976 time period. Trend analysis revealed a significant upward trend in long-term (period of record) total annual and spring precipitation data, apparently due to a change in total annual precipitation throughout the Fountain Creek watershed. During the pre-1977 time period, precipitation was generally below average; during the post- 1976 time period, total annual precipitation was generally above average. During the post- 1976 time period, an upward trend in total annual and spring precipitation was indicated at two stations. Because two of four stations evaluated had upward trends for the post-1976 period and storms that produce the most precipitation are isolated convection storms, it is plausible that other parts of the watershed had upward precipitation trends that could affect trends in streamflow. Also, because of the isolated nature of

  1. Non-metallic gage for gap

    International Nuclear Information System (INIS)

    Hiroki, Hideo.

    1996-01-01

    The present invention concerns a non-metallic gage for detecting a gap which can not be seen from the out side such as a gap between a water pipe and fuel rods without damaging an objective material as to whether the gap is formed within a standard value or not. The gage is made of a synthetic resin, for example, polyacetal having such a hardness as not damaging the objective material and endurable to repeating flexure upon use. The gage comprises a short gage portion having a predetermined standard thickness and an flexible extended connection portion reduced in the thickness. Provision of the extended connection portion enables wide range flexure thereof such as ±60deg relative to insertion direction during insertion operation upon testing to solve a drawback in the prior art such as worry of breakage of the gage, thereby enabling to conduct inspection rapidly at high reliability. (N.H.)

  2. The Global Streamflow Indices and Metadata Archive (GSIM) - Part 1: The production of a daily streamflow archive and metadata

    Science.gov (United States)

    Do, Hong Xuan; Gudmundsson, Lukas; Leonard, Michael; Westra, Seth

    2018-04-01

    This is the first part of a two-paper series presenting the Global Streamflow Indices and Metadata archive (GSIM), a worldwide collection of metadata and indices derived from more than 35 000 daily streamflow time series. This paper focuses on the compilation of the daily streamflow time series based on 12 free-to-access streamflow databases (seven national databases and five international collections). It also describes the development of three metadata products (freely available at https://doi.pangaea.de/10.1594/PANGAEA.887477" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.887477): (1) a GSIM catalogue collating basic metadata associated with each time series, (2) catchment boundaries for the contributing area of each gauge, and (3) catchment metadata extracted from 12 gridded global data products representing essential properties such as land cover type, soil type, and climate and topographic characteristics. The quality of the delineated catchment boundary is also made available and should be consulted in GSIM application. The second paper in the series then explores production and analysis of streamflow indices. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.

  3. Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010

    Science.gov (United States)

    Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District; City of Corpus Christi; Guadalupe-Blanco River Authority; San Antonio River Authority; and San Antonio Water System, developed, calibrated, and tested a Hydrological Simulation Program-FORTRAN (HSPF) watershed model to simulate streamflow and suspended-sediment concentrations and loads during 1958-2010 in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary in south Texas. Data available to simulate suspended-sediment concentrations and loads consisted of historical sediment data collected during 1942-82 in the study area and suspended-sediment concentration data collected periodically by the USGS during 2006-7 and 2010 at three USGS streamflow-gaging stations (08211000 Nueces River near Mathis, Tex. [the Mathis gage], 08211200 Nueces River at Bluntzer, Tex. [the Bluntzer gage], and 08211500 Nueces River at Calallen, Tex. [the Calallen gage]), and at one ungaged location on a Nueces River tributary (USGS station 08211050 Bayou Creek at Farm Road 666 near Mathis, Tex.). The Mathis gage is downstream from Wesley E. Seale Dam, which was completed in 1958 to impound Lake Corpus Christi. Suspended-sediment data collected before and after completion of Wesley E. Seale Dam provide insights to the effects of the dam and reservoir on suspended-sediment loads transported by the lower Nueces River downstream from the dam to the Nueces Estuary. Annual suspended-sediment loads at the Nueces River near the Mathis, Tex., gage were considerably lower for a given annual mean discharge after the dam was completed than before the dam was completed.

  4. Free internet datasets for streamflow modelling using SWAT in the Johor river basin, Malaysia

    International Nuclear Information System (INIS)

    Tan, M L

    2014-01-01

    Streamflow modelling is a mathematical computational approach that represents terrestrial hydrology cycle digitally and is used for water resources assessment. However, such modelling endeavours require a large amount of data. Generally, governmental departments produce and maintain these data sets which make it difficult to obtain this data due to bureaucratic constraints. In some countries, the availability and quality of geospatial and climate datasets remain a critical issue due to many factors such as lacking of ground station, expertise, technology, financial support and war time. To overcome this problem, this research used public domain datasets from the Internet as ''input'' to a streamflow model. The intention is simulate daily and monthly streamflow of the Johor River Basin in Malaysia. The model used is the Soil and Water Assessment Tool (SWAT). As input free data including a digital elevation model (DEM), land use information, soil and climate data were used. The model was validated by in-situ streamflow information obtained from Rantau Panjang station for the year 2006. The coefficient of determination and Nash-Sutcliffe efficiency were 0.35/0.02 for daily simulated streamflow and 0.92/0.21 for monthly simulated streamflow, respectively. The results show that free data can provide a better simulation at a monthly scale compared to a daily basis in a tropical region. A sensitivity analysis and calibration procedure should be conducted in order to maximize the ''goodness-of-fit'' between simulated and observed streamflow. The application of Internet datasets promises an acceptable performance of streamflow modelling. This research demonstrates that public domain data is suitable for streamflow modelling in a tropical river basin within acceptable accuracy

  5. Free internet datasets for streamflow modelling using SWAT in the Johor river basin, Malaysia

    Science.gov (United States)

    Tan, M. L.

    2014-02-01

    Streamflow modelling is a mathematical computational approach that represents terrestrial hydrology cycle digitally and is used for water resources assessment. However, such modelling endeavours require a large amount of data. Generally, governmental departments produce and maintain these data sets which make it difficult to obtain this data due to bureaucratic constraints. In some countries, the availability and quality of geospatial and climate datasets remain a critical issue due to many factors such as lacking of ground station, expertise, technology, financial support and war time. To overcome this problem, this research used public domain datasets from the Internet as "input" to a streamflow model. The intention is simulate daily and monthly streamflow of the Johor River Basin in Malaysia. The model used is the Soil and Water Assessment Tool (SWAT). As input free data including a digital elevation model (DEM), land use information, soil and climate data were used. The model was validated by in-situ streamflow information obtained from Rantau Panjang station for the year 2006. The coefficient of determination and Nash-Sutcliffe efficiency were 0.35/0.02 for daily simulated streamflow and 0.92/0.21 for monthly simulated streamflow, respectively. The results show that free data can provide a better simulation at a monthly scale compared to a daily basis in a tropical region. A sensitivity analysis and calibration procedure should be conducted in order to maximize the "goodness-of-fit" between simulated and observed streamflow. The application of Internet datasets promises an acceptable performance of streamflow modelling. This research demonstrates that public domain data is suitable for streamflow modelling in a tropical river basin within acceptable accuracy.

  6. Macroinvertebrate community change associated with the severity of streamflow alteration

    Science.gov (United States)

    Carlisle, Daren M.; Eng, Kenny; Nelson, S.M.

    2014-01-01

    Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low-flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams. 

  7. REDISTRIBUTION OF BASE STATIONS LOAD IN MOBILE COMMUNICATION NETWORKS

    Directory of Open Access Journals (Sweden)

    Igor Ruban

    2017-09-01

    Full Text Available The subject matter of the article is the processes of load distribution in mobile communication networks. The object of research is the handover. The goal is to develop a method for redistributing the load between neighboring areas for mobile nodes. The considered base stations are supposed to have the signal-to-noise ratios that are equal or close. The methods that are used: methods of system analysis, methods of digital signal processing. The following results are obtained. The method that allows mobile nodes, whose signal-to-noise ratios are equal or close, to switch to a less loaded base station. This method allows the base station to launch the handover process enabling more even distribution of the load from mobile nodes among neighboring base stations in wireless and mobile networks. In the suggested modification of the method, the function assessing the bandwidth of the uplink channel is added to the base stations, as well a threshold value for using its bandwidth. Thus, when the current value of bandwidth reaches the threshold, the base station starts sending out a message to all mobile nodes and verifies free neighboring areas for switching over mobile nodes. If there are adjacent areas with a lower load, the base station notifies all potential candidates about the necessity of their switching over. The handover process is launched when the available bandwidth of the base station decreases below a certain threshold. Therefore, it is possible to optimize the operation of the WiMAX network with respect to the criterion of the total bandwidth capacity of the base stations. Besides, the results of the comparative analysis of the handover process in networks based on the WiMAX technology that are obtained using the OpNet simulation environment are presented. Conclusions.The suggested approach can be used to improve the basic software of mobile communication networks. When moving a node from one area to another one in access servers, the

  8. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats

    Science.gov (United States)

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from

  9. Development of high temperature strain gage, (5)

    International Nuclear Information System (INIS)

    Yuuki, Hiroshi; Kobayashi, Yukio; Kanai, Kenji; Yamaura, Yoshio

    1976-01-01

    Development and improvement of resistance wire type strain gages usable for experimental measurement of thermal strains generated at high temperature in various structures and equipments that consist of a Fast Breeder Reactor have been carried out, and various characteristics of the strain gages have been investigated. Based on the results obtained up to now, development and research of this time mainly aim to improve strain and fatigue characteristics. As the results, characteristics of strain gages with sensing elements of nichrome V are improved, specifically mechanical hysteresis is decreased, strain limit is increased, etc. Also, improvement is recognized in thermal output, and it becomes clear that dummy gages work effectively. However, a filling method of MgO and an inserting method of active-dummy elements are selected as primary objects to improve strain characteristics, and many hours are taken for these objects, so confirmations of characteristics of platinum-tungsten strain gages, strain sensing elements of which are troublesome to produce, have not been completely done, though the performance of the gages has been improved in several points. As to nichrome V strain gages, there is a fair prospect of obtaining ones, specifications of which are quite close to the goal, though problems in manufacturing technics remain for future. As to platinum-tungsten strain gages, it is expected that similar strain gages to nichrome V are obtainable by improvement in manufacturing of sensing elements. (auth.)

  10. Tennessee StreamStats: A Web-Enabled Geographic Information System Application for Automating the Retrieval and Calculation of Streamflow Statistics

    Science.gov (United States)

    Ladd, David E.; Law, George S.

    2007-01-01

    The U.S. Geological Survey (USGS) provides streamflow and other stream-related information needed to protect people and property from floods, to plan and manage water resources, and to protect water quality in the streams. Streamflow statistics provided by the USGS, such as the 100-year flood and the 7-day 10-year low flow, frequently are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. In addition to streamflow statistics, resource managers often need to know the physical and climatic characteristics (basin characteristics) of the drainage basins for locations of interest to help them understand the mechanisms that control water availability and water quality at these locations. StreamStats is a Web-enabled geographic information system (GIS) application that makes it easy for users to obtain streamflow statistics, basin characteristics, and other information for USGS data-collection stations and for ungaged sites of interest. If a user selects the location of a data-collection station, StreamStats will provide previously published information for the station from a database. If a user selects a location where no data are available (an ungaged site), StreamStats will run a GIS program to delineate a drainage basin boundary, measure basin characteristics, and estimate streamflow statistics based on USGS streamflow prediction methods. A user can download a GIS feature class of the drainage basin boundary with attributes including the measured basin characteristics and streamflow estimates.

  11. Water resources of the Cook Inlet Basin, Alaska

    Science.gov (United States)

    Freethey, Geoffrey W.; Scully, David R.

    1980-01-01

    Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)

  12. Regression models to estimate real-time concentrations of selected constituents in two tributaries to Lake Houston near Houston, Texas, 2005-07

    Science.gov (United States)

    Oden, Timothy D.; Asquith, William H.; Milburn, Matthew S.

    2009-01-01

    In December 2005, the U.S. Geological Survey in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (total coliform and Escherichia coli), atrazine, and suspended sediment at two U.S. Geological Survey streamflow-gaging stations upstream from Lake Houston near Houston (08068500 Spring Creek near Spring, Texas, and 08070200 East Fork San Jacinto River near New Caney, Texas). The data from the discrete water-quality samples collected during 2005-07, in conjunction with monitored real-time data already being collected - physical properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), streamflow, and rainfall - were used to develop regression models for predicting water-quality constituent concentrations for inflows to Lake Houston. Rainfall data were obtained from a rain gage monitored by Harris County Homeland Security and Emergency Management and colocated with the Spring Creek station. The leaps and bounds algorithm was used to find the best subsets of possible regression models (minimum residual sum of squares for a given number of variables). The potential explanatory or predictive variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, rainfall, and time (to account for seasonal variations inherent in some water-quality data). The response variables at each site were nitrite plus nitrate nitrogen, total phosphorus, organic carbon, Escherichia coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities as a means to estimate concentrations of the various constituents under investigation, with accompanying estimates of measurement uncertainty. Each regression equation can be used to estimate concentrations of a given constituent in real time. In conjunction with estimated concentrations, constituent loads were estimated by multiplying the

  13. How the Schmidt-Boelter gage really works

    International Nuclear Information System (INIS)

    Kidd, C.T.; Nelson, C.G.

    1995-01-01

    The Schmidt-Boelter gage is but one version of a proven heat flux measurement concept generally referred to as the axial temperature gradient method. This gage has been used since the mid-1950's and has gained wide acceptance because the transducer provides a high-level, self-generating output signal directly proportional to the heat flux incident upon the sensing surface. Utilization of this transducer in aerospace measurements since the late 1970's has broadened the scope of application of the device, but has raised questions concerning the proper interpretation of the results. The principle of operation of the gage can correctly be divided into two distinct categories-the thermal and thermoelectric functions. The thermal response of the gage can be approximated by simple steady-state equations. But due to the number of different materials required in the construction of the gage, the transient temperature and heat conduction in gage members are more accurately characterized by finite-element thermal analysis techniques. Results of these analyses are presented in graphical format in the paper. Thermoelectric characteristics of the gage are accurately defined by basic principles of thermoelectric thermometry. Altogether, the analyses presented in this paper demonstrate how this transducer actually works. The conclusions presented herein may be different than opinions held by most casual users regarding gage operation. Results of limited laboratory experiments which support the analyses are described and presented

  14. Properties of strain gages at cryogenic temperature

    International Nuclear Information System (INIS)

    Shibata, Nobuo; Fujiyoshi, Toshimitsu.

    1978-01-01

    At the time of developing superconduction generators, the stress measurement for rotor parts is required to grasp the safety and performance of the rotor at cryogenic temperature, which is cooled with liquid helium. In case of carrying out the stress measurement with strain gages, the problems are as follows. The strain gages and lead wires are exposed to cryogenic temperature from 4 to 10 K and strong magnetic field of about 3T, and subjected to high centrifugal acceleration of about 500G. In order to establish the techniques of the stress measurement under such conditions, the adhesives and damp-proof coatings for strain gages and strain gages themselves in Japan and foreign countries were examined on the properties at cryogenic temperature. As for the properties of strain gages, mainly the apparent strain owing to temperature change was investigated, and the change of the gage factors was studies only at liquid nitrogen temperature. The stress measurement with strain gages at low temperature had been studied in detail down to liquid nitrogen temperature concerning LNG tanks. The experimental apparatus, the samples, the testing methods and the test results of cooling tests on adhesives and damp-proof coatings, and the temperature characteristics of strain gages are reported. The usable adhesives and coatings were found, and correction by accurate temperature measurement is required for apparent strain. (Kako, I.)

  15. Estimated monthly streamflows for selected locations on the Kabul and Logar Rivers, Aynak copper, cobalt, and chromium area of interest, Afghanistan, 1951-2010

    Science.gov (United States)

    Vining, Kevin C.; Vecchia, Aldo V.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, used the stochastic monthly water-balance model and existing climate data to estimate monthly streamflows for 1951–2010 for selected streamgaging stations located within the Aynak copper, cobalt, and chromium area of interest in Afghanistan. The model used physically based, nondeterministic methods to estimate the monthly volumetric water-balance components of a watershed. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Kabul River at Maidan and Kabul River at Tangi-Saidan indicated that the stochastic water-balance model was able to provide satisfactory estimates of monthly streamflows for high-flow months and low-flow months even though withdrawals for irrigation likely occurred. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Logar River at Shekhabad and Logar River at Sangi-Naweshta also indicated that the stochastic water-balance model was able to provide reasonable estimates of monthly streamflows for the high-flow months; however, for the upstream streamgaging station, the model overestimated monthly streamflows during periods when summer irrigation withdrawals likely occurred. Results from the stochastic water-balance model indicate that the model should be able to produce satisfactory estimates of monthly streamflows for locations along the Kabul and Logar Rivers. This information could be used by Afghanistan authorities to make decisions about surface-water resources for the Aynak copper, cobalt, and chromium area of interest.

  16. Flood characteristics for the New River in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.; Cunningham, M.K.

    1994-01-01

    The frequency and magnitude of flooding of the New River in the New River Gorge National River was studied. A steady-state, one-dimensional flow model was applied to the study reach. Rating curves, cross sections, and Manning's roughness coefficients that were used are presented in this report. Manning's roughness coefficients were evaluated by comparing computed elevations (from application of the steady-state, one-dimensional flow model) to rated elevations at U.S. Geological Survey (USGS) streamflow-gaging stations and miscellaneous-rating sites. Manning's roughness coefficients ranged from 0.030 to 0.075 and varied with hydraulic depth. The 2-, 25-, and 100-year flood discharges were esti- mated on the basis of information from flood- insurance studies of Summers County, Fayette County, and the city of Hinton, and flood-frequency analysis of discharge records for the USGS streamflow-gaging stations at Hinton and Thurmond. The 100-year discharge ranged from 107,000 cubic feet per second at Hinton to 150,000 cubic feet per second at Fayette.

  17. Innovation in monitoring: The U.S. Geological Survey Sacramento–San Joaquin River Delta, California, flow-station network

    Science.gov (United States)

    Burau, Jon; Ruhl, Cathy; Work, Paul A.

    2016-01-29

    The U.S. Geological Survey (USGS) installed the first gage to measure the flow of water into California’s Sacramento–San Joaquin River Delta from the Sacramento River in the late 1800s. Today, a network of 35 hydro-acoustic meters measure flow throughout the delta. This region is a critical part of California’s freshwater supply and conveyance system. With the data provided by this flow-station network—sampled every 15 minutes and updated to the web every hour—state and federal water managers make daily decisions about how much freshwater can be pumped for human use, at which locations, and when. Fish and wildlife scientists, working with water managers, also use this information to protect fish species affected by pumping and loss of habitat. The data are also used to help determine the success or failure of efforts to restore ecosystem processes in what has been called the “most managed and highly altered” watershed in the country.

  18. Hydrologic conditions in New Hampshire and Vermont, water year 2011

    Science.gov (United States)

    Kiah, Richard G.; Jarvis, Jason D.; Hegemann, Robert F.; Hilgendorf, Gregory S.; Ward, Sanborn L.

    2013-01-01

    Record-high hydrologic conditions in New Hampshire and Vermont occurred during water year 2011, according to data from 125 streamgages and lake gaging stations, 27 creststage gages, and 41 groundwater wells. Annual runoff for the 2011 water year was the sixth highest on record for New Hampshire and the highest on record for Vermont on the basis of a 111-year reference period (water years 1901–2011). Groundwater levels for the 2011 water year were generally normal in New Hampshire and normal to above normal in Vermont. Record flooding occurred in April, May, and August of water year 2011. Peak-of-record streamflows were recorded at 38 streamgages, 25 of which had more than 10 years of record. Flooding in April 2011 was widespread in parts of northern New Hampshire and Vermont; peak-of-record streamflows were recorded at nine streamgages. Flash flooding in May 2011 was isolated to central and northeastern Vermont; peakof- record streamflows were recorded at five streamgages. Devastating flooding in August 2011 occurred throughout most of Vermont and in parts of New Hampshire as a result of the heavy rains associated with Tropical Storm Irene. Peak-ofrecord streamflows were recorded at 24 streamgages.

  19. UMTS Network Stations

    Science.gov (United States)

    Hernandez, C.

    2010-09-01

    The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed

  20. Streamflow ratings

    Science.gov (United States)

    Holmes, Robert R.; Singh, Vijay P.

    2016-01-01

    Autonomous direct determination of a continuous time series of streamflow is not economically feasible at present (2014). As such, surrogates are used to derive a continuous time series of streamflow. The derivation process entails developing a streamflow rating, which can range from a simple, single-valued relation between stage and streamflow to a fully dynamic one-dimensional model based on hydraulics of the flow.

  1. Radio-location of mobile stations in third generation networks

    Directory of Open Access Journals (Sweden)

    Milan Manojle Šunjevarić

    2013-06-01

    Full Text Available Mobile station localization in mobile networks started with simple methods (e.g. Cell-ID method which required only slight modifications of network infrastructures. Principally, it was about network localization by which a localization service became available to all types of mobile phones. Due to low precision, the initiated development of more sophisticated methods has not been finished yet. Among the advanced location-based methods are those based on the measurement of location parameters in the time domain. In this paper the general consideration of radio location methods in 3G (UMTS radio networks is presented. The use of time based measurement methods was analysed in detail. Due to the limited article length, the use of other locating methods in 3G networks (based on power measurements, on radio direction measurement, and on cells identification – Cell ID and global positioning system - GPS are not described. Introduction Mobile station localization within modern cellular networks increases the level of user security and opens wide opportunities for commercial operators who provide this service. The major obstacle for the implementation of this service, which also prevents its practical usage, is the modification of the existing network infrastructure. In general, depending on the infrastructure used, positioning methods can be divided into two groups: integrated and independent. Integrated methods are primarily created for communication networks. A possibility to locate users represents just an additional service within a radio network. Independent methods are totally detached from the communication network in which the user whose location is being determined is. Radio location methods Determining the location of a mobile radio station is performed by determining the intersection of two or more lines of position. These lines represent the position of the set of points at which the mobile station may be located. These lines can be: (a

  2. Travel Times, Streamflow Velocities, and Dispersion Rates in the Yellowstone River, Montana

    Science.gov (United States)

    McCarthy, Peter M.

    2009-01-01

    dispersion rates of the dye plume for this study ranged from 0.06 ft/s for the subreach upstream from Forsyth Bridge to 2.25 ft/s for the subreach upstream from Calyspo Bridge for subreaches where the dye was completely laterally mixed. A relation was determined between travel time of the peak concentration and time for the dye plume to pass a site (duration). This relation can be used to estimate when the receding concentration of a potential contaminant reaches 10 percent of its peak concentration for accidental spills into the Yellowstone River. Data from this dye-tracer study were used to evaluate velocity and concentration estimates from a transport model developed as part of an earlier USGS study. Comparison of the estimated and calculated velocities for the study reach indicate that the transport model estimates the velocities of the Yellowstone River between Huntley Bridge and Glendive Bridge with reasonable accuracy. Velocities of the peak concentration of the dye plume calculated for this study averaged 10 percent faster than the most probable velocities and averaged 12 percent slower than the maximum probable velocities estimated from the transport model. Peak Rhodamine WT dye concentrations were consistently lower than the transport model estimates except for the most upstream subreach of each dye injection. The most upstream subreach of each dye injection is expected to have a higher concentration because of incomplete lateral mixing. Lower measured peak concentrations for all other sites were expected because Rhodamine WT dye deteriorates when exposed to sunlight and will sorb onto the streambanks and stream bottom. Velocity-streamflow relations developed by using routine streamflow measurements at USGS gaging stations and the transport model can be used to estimate mean streamflow velocities throughout a range of streamflows. The variation in these velocity-streamflow relations emphasizes the uncertainty in estimating the mean streamflow veloc

  3. Past and future changes of streamflow in Poyang Lake Basin, Southeastern China

    Directory of Open Access Journals (Sweden)

    S. L. Sun

    2012-07-01

    Full Text Available To understand the causes of the past water cycle variations and the influence of climate variability on the streamflow, lake storage, and flood potential, we analyze the changes in streamflow and the underlying drivers in four typical watersheds (Gaosha, Meigang, Saitang, and Xiashan within the Poyang Lake Basin, based on the meteorological observations at 79 weather stations, and datasets of streamflow and river level at four hydrological stations for the period of 1961-2000. The contribution of different climate factors to the change in streamflow in each watershed is estimated quantitatively using the water balance equations. Results show that in each watershed, the annual streamflow exhibits an increasing trend from 1961–2000. The increases in streamflow by 4.80 m3 s−1 yr−1 and 1.29 m3 s−1 yr−1 at Meigang and Gaosha, respectively, are statistically significant at the 5% level. The increase in precipitation is the biggest contributor to the streamflow increment in Meigang (3.79 m3 s−1 yr−1, Gaosha (1.12 m3 s−1 yr−1, and Xiashan (1.34 m3 s−1 yr−1, while the decrease in evapotranspiration is the major factor controlling the streamflow increment in Saitang (0.19 m3 s−1 yr−1. In addition, radiation and wind contribute more than actual vapor pressure and mean temperature to the changes in evapotranspiration and streamflow for the four watersheds.

    For revealing the possible change of streamflow due to the future climate change, we also investigate the projected precipitation and evapotranspiration from of the Coupled Model Intercomparison Project phase 3 (CMIP3 under three greenhouse gases emission scenarios (SRESA1B, SRESA2 and SRESB1 for the period of 2061–2100. When the future changes in the soil water storage

  4. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida

    Science.gov (United States)

    Metz, P.A.; Lewelling, B.R.

    2009-01-01

    The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlying carbonate bedrock. With the reversal in groundwater head gradients, river water is lost to the underlying groundwater system through these karst features. An investigation was conducted to evaluate the hydrologic conditions that influence streamflow losses in the karst region of the upper Peace River. The upper Peace River is located in a basin that has been altered substantially by phosphate mining and increases in groundwater use. These alterations have changed groundwater flow patterns and caused streamflow declines through time. Hydrologic factors that have had the greatest influence on streamflow declines in the upper Peace River include the lowering of the potentiometric surfaces of the intermediate aquifer system and Upper Floridan aquifer beneath the riverbed elevation due to below-average rainfall (droughts), increases in groundwater use, and the presence of numerous karst features in the low-water channel and floodplain that enhance the loss of streamflow. Seepage runs conducted along the upper Peace River, from Bartow to Fort Meade, indicate that the greatest streamflow losses occurred along an approximate 2-mile section of the river beginning about 1 mile south of the Peace River at Bartow gaging station. Along the low-water and floodplain channel of this 2-mile section, there are about 10 prominent karst features that influence streamflow losses. Losses from the individual karst features ranged from 0.22 to 16 cubic feet per second based on measurements made between 2002 and 2007. The largest measured flow loss for all the karst features was about 50 cubic

  5. INDUSTRIAL MEASUREMENT AND CONTROL OF SLURRIES USING RADIOISOTOPE GAGES

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jr., H. L.

    1963-09-15

    Radioactivity gages are available in a variety of configurations to suit the problem of process measurement. The placement of any gage configuration must be selected carefully so that the process material flowing past the gage is representative of actual process conditions. The initial calibration of a gage is relatively simple but when the gage reading is compared with the existing manual sample measurement, confusion can result if the manual measurement is not basically accurate or subject to human error. Routine mechanical and electrical maintenance of the gage is relatively simple, because modern gages use solidstate circuitry with modular plug-in construction. Thus, routine maintenance of the gage is usually limited to restandardization to compensate for source decay. Two types of zero suppression are available, via. fixed and reductionwith-time. If reduction-with-time suppression is used the re-standardization period is about ten times longer than that required for fixed-zero suppression. Routine maintenance of the process piping and machinery is necessary to assure that a representative process material sample continues to flow through the gage. (auth)

  6. Sensitivity of hot-cathode ionization vacuum gages in several gases

    Science.gov (United States)

    Holanda, R.

    1972-01-01

    Four hot-cathode ionization vacuum gages were calibrated in 12 gases. The relative sensitivities of these gages were compared to several gas properties. Ionization cross section was the physical property which correlated best with gage sensitivity. The effects of gage accelerating voltage and ionization-cross-section energy level were analyzed. Recommendations for predicting gage sensitivity according to gage type were made.

  7. Estimating distribution parameters of annual maximum streamflows in Johor, Malaysia using TL-moments approach

    Science.gov (United States)

    Mat Jan, Nur Amalina; Shabri, Ani

    2017-01-01

    TL-moments approach has been used in an analysis to identify the best-fitting distributions to represent the annual series of maximum streamflow data over seven stations in Johor, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: Three-parameter lognormal (LN3) and Pearson Type III (P3) distribution. The main objective of this study is to derive the TL-moments ( t 1,0), t 1 = 1,2,3,4 methods for LN3 and P3 distributions. The performance of TL-moments ( t 1,0), t 1 = 1,2,3,4 was compared with L-moments through Monte Carlo simulation and streamflow data over a station in Johor, Malaysia. The absolute error is used to test the influence of TL-moments methods on estimated probability distribution functions. From the cases in this study, the results show that TL-moments with four trimmed smallest values from the conceptual sample (TL-moments [4, 0]) of LN3 distribution was the most appropriate in most of the stations of the annual maximum streamflow series in Johor, Malaysia.

  8. A spatial assessment of stream-flow characteristics and hydrologic ...

    African Journals Online (AJOL)

    The global hydrologic regime has been intensively altered through activities such as dam construction, water abstraction, and inter-basin transfers. This paper uses the Range of Variability Approach (RVA) and daily stream flow records from nine gauging stations to characterize stream-flow post dam construction in the ...

  9. Spatial Correlation Of Streamflows: An Analytical Approach

    Science.gov (United States)

    Betterle, A.; Schirmer, M.; Botter, G.

    2016-12-01

    The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the

  10. Estimating magnitude and frequency of peak discharges for rural, unregulated, streams in West Virginia

    Science.gov (United States)

    Wiley, J.B.; Atkins, John T.; Tasker, Gary D.

    2000-01-01

    Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).

  11. Shallow and Deep Groundwater Contributions to Ephemeral Streamflow Generation

    Science.gov (United States)

    Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Our understanding of streamflow generation processes in low relief, humid landscapes is limited. To address this, we utilized an ephemeral-to-intermittent drainage network in the Piedmont region of the United States to gain new understanding about the drivers of ephemeral streamflow generation, stream-groundwater interactions, and longitudinal expansion and contraction of the stream network. We used hydrometric and chemical data collected within zero through second order catchments to characterize streamflow and overland, shallow soil, and deep subsurface flow across landscape positions. Results showed bi-directionality in stream-groundwater gradients that were dependent on catchment storage state. This led to annual groundwater recharge magnitudes that were similar to annual streamflow. Perched shallow and deep water table contributions shifted dominance with changes in catchment storage state, producing distinct stream hydrograph recession constants. Active channel length versus runoff followed a consistent relationship independent of storage state, but exhibited varying discharge-solute hysteresis directions. Together, our results suggest that temporary streams can act as both important groundwater recharge and discharge locations across the landscape, especially in this region where ephemeral drainage densities are among the highest recorded. Our results also highlight that the internal catchment dynamics that generate temporary streams play an important role in dictating biogeochemical fluxes at the landscape scale.

  12. Computer Programs for Obtaining and Analyzing Daily Mean Steamflow Data from the U.S. Geological Survey National Water Information System Web Site

    Science.gov (United States)

    Granato, Gregory E.

    2009-01-01

    Research Council, 2004). The USGS maintains the National Water Information System (NWIS), a distributed network of computers and file servers used to store and retrieve hydrologic data (Mathey, 1998; U.S. Geological Survey, 2008). NWISWeb is an online version of this database that includes water data from more than 24,000 streamflow-gaging stations throughout the United States (U.S. Geological Survey, 2002, 2008). Information from NWISWeb is commonly used to characterize streamflows at gaged sites and to help predict streamflows at ungaged sites. Five computer programs were developed for obtaining and analyzing streamflow from the National Water Information System (NWISWeb). The programs were developed as part of a study by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, to develop a stochastic empirical loading and dilution model. The programs were developed because reliable, efficient, and repeatable methods are needed to access and process streamflow information and data. The first program is designed to facilitate the downloading and reformatting of NWISWeb streamflow data. The second program is designed to facilitate graphical analysis of streamflow data. The third program is designed to facilitate streamflow-record extension and augmentation to help develop long-term statistical estimates for sites with limited data. The fourth program is designed to facilitate statistical analysis of streamflow data. The fifth program is a preprocessor to create batch input files for the U.S. Environmental Protection Agency DFLOW3 program for calculating low-flow statistics. These computer programs were developed to facilitate the analysis of daily mean streamflow data for planning-level water-quality analyses but also are useful for many other applications pertaining to streamflow data and statistics. These programs and the associated documentation are included on the CD-ROM accompanying this report. This report and the appendixes on the

  13. Strain gage based determination of mixed mode SIFs

    Science.gov (United States)

    Murthy, K. S. R. K.; Sarangi, H.; Chakraborty, D.

    2018-05-01

    Accurate determination of mixed mode stress intensity factors (SIFs) is essential in understanding and analysis of mixed mode fracture of engineering components. Only a few strain gage determination of mixed mode SIFs are reported in literatures and those also do not provide any prescription for radial locations of strain gages to ensure accuracy of measurement. The present investigation experimentally demonstrates the efficacy of a proposed methodology for the accurate determination of mixed mode I/II SIFs using strain gages. The proposed approach is based on the modified Dally and Berger's mixed mode technique. Using the proposed methodology appropriate gage locations (optimal locations) for a given configuration have also been suggested ensuring accurate determination of mixed mode SIFs. Experiments have been conducted by locating the gages at optimal and non-optimal locations to study the efficacy of the proposed approach. The experimental results from the present investigation show that highly accurate SIFs (0.064%) can be determined using the proposed approach if the gages are located at the suggested optimal locations. On the other hand, results also show the very high errors (212.22%) in measured SIFs possible if the gages are located at non-optimal locations. The present work thus clearly substantiates the importance of knowing the optimal locations of the strain gages apriori in accurate determination of SIFs.

  14. Trends in Mean Annual Streamflows in Serra da Mantiqueira Environmental Protection Area

    OpenAIRE

    Mateus Ricardo Nogueira Vilanova

    2014-01-01

    The aim of this study was to detect trends in the mean annual streamflow in watersheds of Serra da Mantiqueira Environmental Protection Area, an important Brazilian conservation area located between Minas Gerais, São Paulo and Rio de Janeiro States. Historical series of four selected streamgage stations were analyzed for the periods of 1980-1998 and 1980-2009, using the Mann-Kendall and Regional Mann-Kendall tests. The results showed that the mean annual streamflows of Serra da Mantiqueira En...

  15. Comparison of Ruska and Rosemont pressure gages (U)

    International Nuclear Information System (INIS)

    Harvel, C.D.

    1991-01-01

    This paper reports that a 150,000 gallon tank was calibrated during the months of May and July of 1990. Six calibration runs were completed. Ruska and Rosemont pressure gages were installed to make in-tank liquid level measurements during the calibration process. A flow meter was used to measure the incremental volumes of water added to or removed from the tank. The Ruska and Rosemont gages were compared to determine the gage best suited for tank operation. One comparison criteria was the tolerance limits of error (LOE) for the predicted standardized in-tank volumes. For accountability purposes, the effects of the two gages on the LOE for the predicted inventory of U-235 were evaluated. The most important comparison criteria was the gage's contribution to the U-235 inventory LOE. The choice of which gage to use depends on the other measurement methods used for material accountability. The contributions to the inventory LOE were evaluated for two in-tank liquid level measurement methods, two concentration measurement methods, and one isotopic measurement method. The results indicate the Ruska pressure gage is best suited for tank operation only if the best concentration measurement method is used

  16. LambdaStation: Exploiting Advance Networks In Data Intensive High Energy Physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Harvey B. Newman

    2009-09-11

    Lambda Station software implements selective, dynamic, secure path control between local storage & analysis facilities, and high bandwidth, wide-area networks (WANs). It is intended to facilitate use of desirable, alternate wide area network paths which may only be intermittently available, or subject to policies that restrict usage to specified traffic. Lambda Station clients gain awareness of potential alternate network paths via Clarens-based web services, including path characteristics such as bandwidth and availability. If alternate path setup is requested and granted, Lambda Station will configure the local network infrastructure to properly forward designated data flows via the alternate path. A fully functional implementation of Lambda Station, capable of dynamic alternate WAN path setup and teardown, has been successfully developed. A limited Lambda Station-awareness capability within the Storage Resource Manager (SRM) product has been developed. Lambda Station has been successfully tested in a number of venues, including Super Computing 2008. LambdaStation software, developed by the Fermilab team, enables dynamic allocation of alternate network paths for high impact traffic and to forward designated flows across LAN. It negotiates with reservation and provisioning systems of WAN control planes, be it based on SONET channels, demand tunnels, or dynamic circuit networks. It creates End-To-End circuit between single hosts, computer farms or networks with predictable performance characteristics, preserving QoS if supported in LAN and WAN and tied security policy allowing only specific traffic to be forwarded or received through created path. Lambda Station project also explores Network Awareness capabilities.

  17. Hydrologic Effects of the 1988 Galena Fire, Black Hills Area, South Dakota

    Science.gov (United States)

    Driscoll, Daniel G.; Carter, Janet M.; Ohlen, Donald O.

    2004-01-01

    The Galena Fire burned about 16,788 acres of primarily ponderosa pine forest during July 5-8, 1988, in the Black Hills area of South Dakota. The fire burned primarily within the Grace Coolidge Creek drainage basin and almost entirely within the boundaries of Custer State Park. A U.S. Geological Survey gaging station with streamflow records dating back to 1977 was located along Grace Coolidge Creek within the burned area. About one-half of the gaging station's 26.8-square-mile drainage area was burned. The drainage basin for Bear Gulch, which is tributary to Grace Coolidge Creek, was burned particularly severely, with complete deforestation occurring in nearly the entirety of the area upstream from a gaging station that was installed in 1989. A study to evaluate effects of the Galena Fire on streamflow, geomorphology, and water quality was initiated in 1988. The geomorphologic and water-quality components of the study were completed by 1990 and are summarized in this report. A data-collection network consisting of streamflow- and precipitation-gaging stations was operated through water year 1998 for evaluation of effects on streamflow characteristics, including both annual-yield and peak-flow characteristics, which are the main focus of this report. Moderately burned areas did not experience a substantial increase in the rate of surface erosion; however, severely burned areas underwent surficial erosion nearly twice that of the unburned areas. The sediment production rate of Bear Gulch estimated 8 to 14 months after the fire was 870 ft3/acre (44 tons/acre). Substantial degradation of stream channels within the severely burned headwater areas of Bear Gulch was documented. Farther downstream, channel aggradation resulted from deposition of sediments transported from the headwater areas. The most notable water-quality effect was on concentrations of suspended sediment, which were orders of magnitude higher for Bear Gulch than for the unburned control area. Effects on

  18. Lambda Station: Alternate network path forwarding for production SciDAC applications

    International Nuclear Information System (INIS)

    Grigoriev, Maxim; Bobyshev, Andrey; Crawford, Matt; DeMar, Phil; Grigaliunas, Vyto; Moibenko, Alexander; Petravick, Don; Newman, Harvey; Steenberg, Conrad; Thomas, Michael

    2007-01-01

    The LHC era will start very soon, creating immense data volumes capable of demanding allocation of an entire network circuit for task-driven applications. Circuit-based alternate network paths are one solution to meeting the LHC high bandwidth network requirements. The Lambda Station project is aimed at addressing growing requirements for dynamic allocation of alternate network paths. Lambda Station facilitates the rerouting of designated traffic through site LAN infrastructure onto so-called 'high-impact' wide-area networks. The prototype Lambda Station developed with Service Oriented Architecture (SOA) approach in mind will be presented. Lambda Station has been successfully integrated into the production version of the Storage Resource Manager (SRM), and deployed at US CMS Tier1 center at Fermilab, as well as at US-CMS Tier-2 site at Caltech. This paper will discuss experiences using the prototype system with production SciDAC applications for data movement between Fermilab and Caltech. The architecture and design principles of the production version Lambda Station software, currently being implemented as Java based web services, will also be presented in this paper

  19. Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin

    Science.gov (United States)

    Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.

    2008-01-01

    In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.

  20. Water resources data for California, water year 1975; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1977-01-01

    Water-resources data for the 1975 water year for California consist of records of streamflow and contents of reservoirs at gaging stations, partial-record stations, and miscellaneous sites; records of water quality including the physical, chemical, and biological characteristics of surface and ground water; and records of water levels in selected observation wells. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic data section. These data represent that part of the National Water Data System collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  1. Service offerings and interfaces for the ACTS network of earth stations

    Science.gov (United States)

    Coney, T. A.; Dobyns, T. R.; Chitre, D. M.; Lindstrom, R.

    1988-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) will use a network of about 20 earth stations to operate as a Mode 1 network. This network will support two ACTS program objectives: to verify the technical performance of ACTS Mode 1 operation in GEO and to demonstrate the types and quality of services that can be provided by an ACTS Mode 1 communications system. The terrestrial interface design is a critical element in assuring that these network earth stations will meet the objectives. In this paper, the applicable terrestrial interface design requirements, the resulting interface specifications, and the associated terrestrial input/output hardware are discussed. A functional block diagram of a network earth station is shown.

  2. Downscaling of GCM forecasts to streamflow over Scandinavia

    DEFF Research Database (Denmark)

    Nilsson, P.; Uvo, C.B.; Landman, W.A.

    2008-01-01

    flows. The technique includes model output statistics (MOS) based on a non-linear Neural Network (NN) approach. Results show that streamflow forecasts from Global Circulation Model (GCM) predictions, for the Scandinavia region are viable and highest skill values were found for basins located in south......A seasonal forecasting technique to produce probabilistic and deterministic streamflow forecasts for 23 basins in Norway and northern Sweden is developed in this work. Large scale circulation and moisture fields, forecasted by the ECHAM4.5 model 4 months in advance, are used to forecast spring...

  3. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Netrananda; Yamashiki, Yosuke; Takara, Kaoru [Kyoto University, Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Gokasho, Uji City, Kyoto (Japan); Behera, Swadhin K. [JAMSTEC, Research Institute for Global Change, Yokohama, Kanagawa (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan); Yamagata, Toshio [University of Tokyo, School of Science, Bunkyo-ku, Tokyo (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan)

    2012-10-15

    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Nina conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Nino Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Nino events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Nino for September-November season only. (orig.)

  4. Changing characteristics of streamflow in the Midwest and its relation to oceanic-atmospheric oscillations

    Science.gov (United States)

    Thakur, B.; Pathak, P.; Kalra, A.; Ahmad, S.

    2016-12-01

    The identification of primary drivers of streamflow may prove beneficial in forecasting streamflow in the Midwestern U.S. In the past researches, streamflow in the region have been strongly correlated with El Niño-Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). The present study takes in to account the pre-defined Pacific and Atlantic Ocean regions (e.g., ENSO, PDO, AMO) along with new regions with an intent to identify new significantly correlated regions. This study assesses the interrelationship between sea surface temperatures (SST) anomalies in the Pacific and Atlantic Ocean and seasonal streamflow in the Midwestern U.S. Average Pacific and Atlantic Ocean SST anomalies, were calculated for 2 different 3 month series: September-November and December-February so as to create a lead time varying from 3 to 9 months. Streamflow were averaged for three seasons: spring (April-June), spring-summer (April-August) and summer (June-August). The correlation between streamflow and SST is analyzed using singular value decomposition for a period of 1960-2013. The result of the study showed several regions-other than the known Pacific and Atlantic Ocean regions- that were significantly correlated with streamflow stations. Higher correlation between the climate indices and streamflow were observed as the lead time decreased. The identification of the associations between SST and streamflow and significant SST regions in the Pacific and Atlantic Ocean may enhance the skill of streamflow predictability and water management in the region.

  5. Variable complexity online sequential extreme learning machine, with applications to streamflow prediction

    Science.gov (United States)

    Lima, Aranildo R.; Hsieh, William W.; Cannon, Alex J.

    2017-12-01

    In situations where new data arrive continually, online learning algorithms are computationally much less costly than batch learning ones in maintaining the model up-to-date. The extreme learning machine (ELM), a single hidden layer artificial neural network with random weights in the hidden layer, is solved by linear least squares, and has an online learning version, the online sequential ELM (OSELM). As more data become available during online learning, information on the longer time scale becomes available, so ideally the model complexity should be allowed to change, but the number of hidden nodes (HN) remains fixed in OSELM. A variable complexity VC-OSELM algorithm is proposed to dynamically add or remove HN in the OSELM, allowing the model complexity to vary automatically as online learning proceeds. The performance of VC-OSELM was compared with OSELM in daily streamflow predictions at two hydrological stations in British Columbia, Canada, with VC-OSELM significantly outperforming OSELM in mean absolute error, root mean squared error and Nash-Sutcliffe efficiency at both stations.

  6. "Artificial intelligence" at streamgaging stations

    Science.gov (United States)

    R. B. Thomas

    1985-01-01

    Two types of problems are related to collecting hydrologic data at stream gaging stations. One includes the technical/logistical questions associated with measuring and transferring data for processing. Effort spent on these problems ranges from improving devices for sensing data to using electronic data loggers.

  7. Estimation of sediment inflows to Lake Tuscaloosa, Alabama, 2009-11

    Science.gov (United States)

    Lee, K.G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, evaluated the concentrations, loads, and yields of suspended sediment in the tributaries to Lake Tuscaloosa in west-central Alabama, from October 1, 2008, to January 31, 2012. The collection and analysis of these data will facilitate the comparison with historical data, serve as a baseline for future sediment-collection efforts, and help to identify areas of concern. Lake Tuscaloosa, at the reservoir dam, receives runoff from a drainage area of 423 square miles (mi2). Basinwide in 2006, forested land was the primary land cover (68 percent). Comparison of historical imagery with the National Land Cover Database (2001 and 2006) indicated that the greatest temporal land-use change was timber harvest. The land cover in 2006 was indicative of this change, with shrub/scrub land (12 percent) being the secondary land use in the basin. Agricultural land use (10 percent) was represented predominantly by hay and pasture or grasslands. Urban land use was minimal, accounting for 4 percent of the entire basin. The remaining 6 percent of the basin has a land use of open water or wetlands. Storm and monthly suspended-sediment samples were collected from seven tributaries to Lake Tuscaloosa: North River, Turkey Creek, Binion Creek, Pole Bridge Creek, Tierce Creek, Carroll Creek, and Brush Creek. Suspended-sediment concentrations and streamflow measurements were statistically analyzed to estimate annual suspended-sediment loads and yields from each of these contributing watersheds. Estimated annual suspended-sediment yields in 2009 were 360, 540, and 840 tons per square mile (tons/mi2) at the North River, Turkey Creek, and Carroll Creek streamflow-gaging stations, respectively. Estimated annual suspended-sediment yields in 2010 were 120 and 86 tons/mi2 at the Binion Creek and Pole Bridge Creek streamflow-gaging stations, respectively. Estimated annual suspended-sediment yields in 2011 were 190 and 300 tons/mi2

  8. Simulating streamflow and water table depth with a coupled hydrological model

    Directory of Open Access Journals (Sweden)

    Alphonce Chenjerayi Guzha

    2010-09-01

    Full Text Available A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit (R2, percent bias (PB, and Nash Sutcliffe efficiency (ENS values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average R2 values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.

  9. Greening radio access networks using distributed base station architectures

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2010-01-01

    Several actions for developing environmentally friendly technologies have been taken in most industrial fields. Significant resources have also been devoted in mobile communications industry. Moving towards eco-friendly alternatives is primarily a social responsibility for network operators....... However besides this, increasing energy efficiency represents a key factor for reducing operating expenses and deploying cost effective mobile networks. This paper presents how distributed base station architectures can contribute in greening radio access networks. More specifically, the advantages...... energy saving. Different subsystems have to be coordinated real-time and intelligent network nodes supporting complicated functionalities are necessary. Distributed base station architectures are ideal for this purpose mainly because of their high degree of configurability and self...

  10. Probabilistic Harmonic Calculation in Distribution Networks with Electric Vehicle Charging Stations

    Directory of Open Access Journals (Sweden)

    Jianxue Wang

    2014-01-01

    Full Text Available Integrating EV charging station into power grid will bring impacts on power system, among which the most significant one is the harmonic pollution on distribution networks. Due to the uncertainty of the EV charging process, the harmonic currents brought by EV charging stations have a random nature. This paper proposed a mathematical simulation method for studying the working status of charging stations, which considers influencing factors including random leaving factor, electricity price, and waiting time. Based on the proposed simulation method, the probability distribution of the harmonic currents of EV charging stations is obtained and used in the calculation of the probability harmonic power flow. Then the impacts of EVs and EV charging stations on distribution networks can be analyzed. In the case study, the proposed simulation and analysis method is implemented on the IEEE-34 distribution network. The influences of EV arrival rates, the penetration rate, and the accessing location of EV charging station are also investigated. Results show that this research has good potential in guiding the planning and construction of charging station.

  11. Improved nuclear gage development - phase i and ii. Interim report

    International Nuclear Information System (INIS)

    Chan, E.L.; Champion, F.C.; Castanon, D.R.; Chang, J.C.; Hannon, J.B.

    1976-09-01

    This report contains Phase I and II of an investigation covering the design and construction of a prototype nuclear-moisture-density backscatter gage. Gage development was based upon the analysis of several factors which affect gage performance. This research indicated that the prototype gage measurements are approximately equivalent to measurements obtained by a commercial transmission gage. The implication of this research finding concerns the qualification of the backscatter test method as a valid, reliable, and expedient procedure for determining in-situ soil conditions

  12. Impact of Electric Vehicle Charging Station Load on Distribution Network

    Directory of Open Access Journals (Sweden)

    Sanchari Deb

    2018-01-01

    Full Text Available Recent concerns about environmental pollution and escalating energy consumption accompanied by the advancements in battery technology have initiated the electrification of the transportation sector. With the universal resurgence of Electric Vehicles (EVs the adverse impact of the EV charging loads on the operating parameters of the power system has been noticed. The detrimental impact of EV charging station loads on the electricity distribution network cannot be neglected. The high charging loads of the fast charging stations results in increased peak load demand, reduced reserve margins, voltage instability, and reliability problems. Further, the penalty paid by the utility for the degrading performance of the power system cannot be neglected. This work aims to investigate the impact of the EV charging station loads on the voltage stability, power losses, reliability indices, as well as economic losses of the distribution network. The entire analysis is performed on the IEEE 33 bus test system representing a standard radial distribution network for six different cases of EV charging station placement. It is observed that the system can withstand placement of fast charging stations at the strong buses up to a certain level, but the placement of fast charging stations at the weak buses of the system hampers the smooth operation of the power system. Further, a strategy for the placement of the EV charging stations on the distribution network is proposed based on a novel Voltage stability, Reliability, and Power loss (VRP index. The results obtained indicate the efficacy of the VRP index.

  13. Trends in Surface-Water Quality at Selected Ambient-Monitoring Network Stations in Kentucky, 1979-2004

    Science.gov (United States)

    Crain, Angela S.; Martin, Gary R.

    2009-01-01

    Increasingly complex water-management decisions require water-quality monitoring programs that provide data for multiple purposes, including trend analyses, to detect improvement or deterioration in water quality with time. Understanding surface-water-quality trends assists resource managers in identifying emerging water-quality concerns, planning remediation efforts, and evaluating the effectiveness of the remediation. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to analyze and summarize long-term water-quality trends of selected properties and water-quality constituents in selected streams in Kentucky's ambient stream water-quality monitoring network. Trends in surface-water quality for 15 properties and water-quality constituents were analyzed at 37 stations with drainage basins ranging in size from 62 to 6,431 square miles. Analyses of selected physical properties (temperature, specific conductance, pH, dissolved oxygen, hardness, and suspended solids), for major ions (chloride and sulfate), for selected metals (iron and manganese), for nutrients (total phosphorus, total nitrogen, total Kjeldahl nitrogen, nitrite plus nitrate), and for fecal coliform were compiled from the Commonwealth's ambient water-quality monitoring network. Trend analyses were completed using the S-Plus statistical software program S-Estimate Trend (S-ESTREND), which detects trends in water-quality data. The trend-detection techniques supplied by this software include the Seasonal Kendall nonparametric methods for use with uncensored data or data censored with only one reporting limit and the Tobit-regression parametric method for use with data censored with multiple reporting limits. One of these tests was selected for each property and water-quality constituent and applied to all station records so that results of the trend procedure could be compared among

  14. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    Science.gov (United States)

    Sahu, Netrananda; Behera, Swadhin K.; Yamashiki, Yosuke; Takara, Kaoru; Yamagata, Toshio

    2012-10-01

    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Niña conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Niño Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Niño events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Niño for September-November season only.

  15. Diverse multi-decadal changes in streamflow within a rapidly urbanizing region

    Science.gov (United States)

    Diem, Jeremy E.; Hill, T. Chee; Milligan, Richard A.

    2018-01-01

    The impact of urbanization on streamflow depends on a variety of factors (e.g., climate, initial land cover, inter-basin transfers, water withdrawals, wastewater effluent, etc.). The purpose of this study is to examine trends in streamflow from 1986 to 2015 in a range of watersheds within the rapidly urbanizing Atlanta, GA metropolitan area. This study compares eight watersheds over three decades, while minimizing the influence of inter-annual precipitation variability. Population and land-cover data were used to analyze changes over approximately twenty years within the watersheds. Precipitation totals for the watersheds were estimated using precipitation totals at nearby weather stations. Multiple streamflow variables, such as annual streamflow, frequencies of high-flow days (HFDs), flashiness, and precipitation-adjusted streamflow, for the eight streams were calculated using daily streamflow data. Variables were tested for significant trends from 1986 to 2015 and significant differences between 1986-2000 and 2001-2015. Flashiness increased for all streams without municipal water withdrawals, and the four watersheds with the largest increase in developed land had significant increases in flashiness. Significant positive trends in precipitation-adjusted mean annual streamflow and HFDs occurred for the two watersheds (Big Creek and Suwanee Creek) that experienced the largest increases in development, and these were the only watersheds that went from majority forest land in 1986 to majority developed land in 2015. With a disproportionate increase in HFD occurrence during summer, Big Creek and Suwannee Creek also had a reduction in intra-annual variability of HFD occurrence. Watersheds that were already substantially developed at the beginning of the period and did not have wastewater discharge had declining streamflow. The most urbanized watershed (Peachtree Creek) had a significant decrease in streamflow, and a possible cause of the decrease was increasing

  16. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    Science.gov (United States)

    Conrads, Paul; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    The real-time Everglades Depth Estimation Network (EDEN) has been established to support a variety of scientific and water management purposes. The expansiveness of the Everglades, limited number of gaging stations, and extreme sensitivity of the ecosystem to small changes in water depth have created a need for accurate water-level and water-depth maps. The EDEN water-surface elevation model uses data from approximately 240 gages in the Everglades to create daily continuous interpolations of the water-surface elevation and water depth for the freshwater portion of the Everglades from 2000 to the present (2014). These maps provide hydrologic data previously unavailable for assessing biological and ecological studies.

  17. Gage for measuring coastal erosion and sedimentation

    Science.gov (United States)

    Carpini, T. D.; Moughon, W. C.

    1970-01-01

    Underwater sand height gage, which measures heights up to 12 inches, is comprised of two standard flush-diaphragm pressure transducers. Gage is very sensitive to buried water heights and is useful as a research tool in study of wet earth and landslide phenomena.

  18. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2013

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2013 (October 1, 2012, through September 30, 2013) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB) in the cooperative study. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2013 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2013.

  19. Rainfall, runoff, and water-quality data for the urban storm-water program in the Albuquerque, New Mexico, metropolitan area, water year 2004

    Science.gov (United States)

    Kelly, Todd; Romero, Orlando; Jimenez, Mike

    2006-01-01

    Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.

  20. Reconstructing streamflow variation of the Baker River from tree-rings in Northern Patagonia since 1765

    Science.gov (United States)

    Lara, Antonio; Bahamondez, Alejandra; González-Reyes, Alvaro; Muñoz, Ariel A.; Cuq, Emilio; Ruiz-Gómez, Carolina

    2015-10-01

    streamflow of the Baker River documented here for the 1980-2004 period is consistent with precipitation decrease associated with the SAM. Conversely, other studies have reported an increase of summer streamflow for a portion of the Baker River for the 1994-2008 period, explained by ice melt associated with temperature increase and glacier retreat and thinning. Future research should consider the development of new tree-ring reconstructions to increase the geographic range and to cover the last 1000 or more years using long-lived species (e.g. Fitzroya cupressoides and Pilgerodendron uviferum). Expanding the network and quality of instrumental weather, streamflow and other monitoring stations as well as the study and modeling of the complex hydrological processes in the Baker basin are necessary. This should be the basis for planning, policy design and decision making regarding water resources in the Baker basin.

  1. Evaluation results of the 700 deg C Chinese strain gages

    Science.gov (United States)

    Hobart, H. F.

    1984-01-01

    There is a continuing interest and need for resistance strain gages capable of making static strain measurements on components located in the hot section of gas turbine engines. A paper by Tsen-tai Wu describes the development and evaluation of high temperature gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire. Several of these gages and a quantity of P12-2 ceramic adhesive were purchased for evaluation. Nine members of the aircraft turbine engine community were invited to participate in an evaluation of these gages. Each participant was sent one strain gage, a small amount of ceramic adhesive, instructions for mounting the gage on a test beam, and a set of suggestions for the experiment. Data on gage factor variation with temperature, apparent strain, and drift are discussed.

  2. Simulation of streamflow and water quality in the White Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    , residential, and urban.The hydrologic component of the model was run at an hourly time step and primarily calibrated using streamflow data from two U.S. Geological Survey (USGS) streamflow-measurement stations for the period of October 1, 1994, through October 29, 1998. Additional calibration was done using data from two other USGS streamflow-measurement stations with periods of record shorter than the calibration period. Daily precipitation data from two National Oceanic and Atmospheric Administration (NOAA) gages and hourly precipitation and other meteorological data for one NOAA gage were used for model input. The difference between simulated and observed streamflow volume ranged from -0.9 to 1.8 percent for the 4-year period at the two calibration sites with 4-year records. Annual differences between observed and simulated streamflow generally were greater than the overall error. For example, at a site near the bottom of the basin (drainage area of 89.1 mi2), annual differences between observed and simulated streamflow ranged from -5.8 to 14.4 percent and the overall error for the 4-year period was -0.9 percent. Calibration errors for 36 storm periods at the two calibration sites for total volume, low-flowrecession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were within the recommended criteria of 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the hourly rainfall data.The water-quality component of the model was calibrated using data collected by the USGS and state agencies at three USGS streamflow-measurement stations with variable water-quality monitoring periods ending October 1998. Because of availability, monitoring data for suspended-solids concentrations were used as surrogates for suspended-sediment concentrations, although suspended solids may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulation. Comparison of

  3. Evaluation of Integration Degree of the ASG-EUPOS Polish Reference Networks With Ukrainian GeoTerrace Network Stations in the Border Area

    Science.gov (United States)

    Siejka, Zbigniew

    2017-09-01

    GNSS systems are currently the basic tools for determination of the highest precision station coordinates (e.g. basic control network stations or stations used in the networks for geodynamic studies) as well as for land, maritime and air navigation. All of these tasks are carried out using active, large scale, satellite geodetic networks which are complex, intelligent teleinformatic systems offering post processing services along with corrections delivered in real-time for kinematic measurements. Many countries in the world, also in Europe, have built their own multifunctional networks and enhance them with their own GNSS augmentation systems. Nowadays however, in the era of international integration, there is a necessity to consider collective actions in order to build a unified system, covering e.g. the whole Europe or at least some of its regions. Such actions have already been undertaken in many regions of the world. In Europe such an example is the development for EUPOS which consists of active national networks built in central eastern European countries. So far experience and research show, that the critical areas for connecting these networks are border areas, in which the positioning accuracy decreases (Krzeszowski and Bosy, 2011). This study attempts to evaluate the border area compatibility of Polish ASG-EUPOS (European Position Determination System) reference stations and Ukrainian GeoTerrace system reference stations in the context of their future incorporation into the EUPOS. The two networks analyzed in work feature similar hardware parameters. In the ASG-EUPOS reference stations network, during the analyzed period, 2 stations (WLDW and CHEL) used only one system (GPS), while, in the GeoTerrace network, all the stations were equipped with both GPS and GLONASS receivers. The ASG EUPOS reference station network (95.6%) has its average completeness greater by about 6% when compared to the GeoTerrace network (89.8%).

  4. User's Guide to the Weighted-Multiple-Linear Regression Program (WREG version 1.0)

    Science.gov (United States)

    Eng, Ken; Chen, Yin-Yu; Kiang, Julie.E.

    2009-01-01

    Streamflow is not measured at every location in a stream network. Yet hydrologists, State and local agencies, and the general public still seek to know streamflow characteristics, such as mean annual flow or flood flows with different exceedance probabilities, at ungaged basins. The goals of this guide are to introduce and familiarize the user with the weighted multiple-linear regression (WREG) program, and to also provide the theoretical background for program features. The program is intended to be used to develop a regional estimation equation for streamflow characteristics that can be applied at an ungaged basin, or to improve the corresponding estimate at continuous-record streamflow gages with short records. The regional estimation equation results from a multiple-linear regression that relates the observable basin characteristics, such as drainage area, to streamflow characteristics.

  5. A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting

    Directory of Open Access Journals (Sweden)

    Fanping Zhang

    2014-01-01

    Full Text Available Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds and an approximation (A3 at three resolution levels (21-22-23 using Daubechies (db3 discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3 are added to the approximation (A3 as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed.

  6. Streamflow of 2016—Water year summary

    Science.gov (United States)

    Jian, Xiaodong; Wolock, David M.; Lins, Harry F.; Brady, Steven J.

    2017-09-26

    The maps and graphs in this summary describe national streamflow conditions for water year 2016 (October 1, 2015, to September 30, 2016) in the context of streamflow ranks relative to the 87-year period of 1930–2016, unless otherwise noted. The illustrations are based on observed data from the U.S. Geological Survey’s (USGS) National Streamflow Network. The period of 1930–2016 was used because the number of streamgages before 1930 was too small to provide representative data for computing statistics for most regions of the country.In the summary, reference is made to the term “runoff,” which is the depth to which a river basin, State, or other geographic area would be covered with water if all the streamflow within the area during a specified period was uniformly distributed on it. Runoff quantifies the magnitude of water flowing through the Nation’s rivers and streams in measurement units that can be compared from one area to another.In all the graphics, a rank of 1 indicates the highest flow of all years analyzed and 87 indicates the lowest flow of all years. Rankings of streamflow are grouped into much below normal, below normal, normal, above normal, and much above normal based on percentiles of flow (less than 10 percent, 10–24 percent, 25–75 percent, 76–90 percent, and greater than 90 percent, respectively). Some of the data used to produce the maps and graphs are provisional and subject to change.

  7. Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa

    Science.gov (United States)

    Eash, David A.

    2006-01-01

    Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.

  8. Detecting earthquakes over a seismic network using single-station similarity measures

    Science.gov (United States)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-06-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected moveout. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to 2 weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalogue (including 95 per cent of the catalogue events), and less than 1 per cent of these candidate events are false detections.

  9. Comparison of base flows to selected streamflow statistics representative of 1930-2002 in West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.

    2012-01-01

    Base flows were compared with published streamflow statistics to assess climate variability and to determine the published statistics that can be substituted for annual and seasonal base flows of unregulated streams in West Virginia. The comparison study was done by the U.S. Geological Survey, in cooperation with the West Virginia Department of Environmental Protection, Division of Water and Waste Management. The seasons were defined as winter (January 1-March 31), spring (April 1-June 30), summer (July 1-September 30), and fall (October 1-December 31). Differences in mean annual base flows for five record sub-periods (1930-42, 1943-62, 1963-69, 1970-79, and 1980-2002) range from -14.9 to 14.6 percent when compared to the values for the period 1930-2002. Differences between mean seasonal base flows and values for the period 1930-2002 are less variable for winter and spring, -11.2 to 11.0 percent, than for summer and fall, -47.0 to 43.6 percent. Mean summer base flows (July-September) and mean monthly base flows for July, August, September, and October are approximately equal, within 7.4 percentage points of mean annual base flow. The mean of each of annual, spring, summer, fall, and winter base flows are approximately equal to the annual 50-percent (standard error of 10.3 percent), 45-percent (error of 14.6 percent), 75-percent (error of 11.8 percent), 55-percent (error of 11.2 percent), and 35-percent duration flows (error of 11.1 percent), respectively. The mean seasonal base flows for spring, summer, fall, and winter are approximately equal to the spring 50- to 55-percent (standard error of 6.8 percent), summer 45- to 50-percent (error of 6.7 percent), fall 45-percent (error of 15.2 percent), and winter 60-percent duration flows (error of 8.5 percent), respectively. Annual and seasonal base flows representative of the period 1930-2002 at unregulated streamflow-gaging stations and ungaged locations in West Virginia can be estimated using previously published

  10. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the

  11. Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression

    Science.gov (United States)

    Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli

    2018-06-01

    Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.

  12. Hydrologic drought of water year 2011 compared to four major drought periods of the 20th century in Oklahoma

    Science.gov (United States)

    Shivers, Molly J.; Andrews, William J.

    2013-01-01

    Water year 2011 (October 1, 2010, through September 30, 2011) was a year of hydrologic drought (based on streamflow) in Oklahoma and the second-driest year to date (based on precipitation) since 1925. Drought conditions worsened substantially in the summer, with the highest monthly average temperature record for all States being broken by Oklahoma in July (89.1 degrees Fahrenheit), June being the second hottest and August being the hottest on record for those months for the State since 1895. Drought conditions continued into the fall, with all of the State continuing to be in severe to exceptional drought through the end of September. In addition to effects on streamflow and reservoirs, the 2011 drought increased damage from wildfires, led to declarations of states of emergency, water-use restrictions, and outdoor burning bans; caused at least $2 billion of losses in the agricultural sector and higher prices for food and other agricultural products; caused losses of tourism and wildlife; reduced hydropower generation; and lowered groundwater levels in State aquifers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to compare the severity of the 2011 drought with four previous major hydrologic drought periods during the 20th century – water years 1929–41, 1952–56, 1961–72, and 1976–81. The period of water years 1925–2011 was selected as the period of record because few continuous record streamflow-gaging stations existed before 1925, and gaps in time existed where no streamflow-gaging stations were operated before 1925. In water year 2011, statewide annual precipitation was the 2d lowest, statewide annual streamflow was 16th lowest, and statewide annual runoff was 42d lowest of those 87 years of record. Annual area-averaged precipitation totals by the nine National Weather Service climate divisions from water year 2011 were compared to those during four previous major hydrologic drought

  13. Surface-water investigations at Barrow, Alaska

    Science.gov (United States)

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  14. New Jersey StreamStats: A web application for streamflow statistics and basin characteristics

    Science.gov (United States)

    Watson, Kara M.; Janowicz, Jon A.

    2017-08-02

    StreamStats is an interactive, map-based web application from the U.S. Geological Survey (USGS) that allows users to easily obtain streamflow statistics and watershed characteristics for both gaged and ungaged sites on streams throughout New Jersey. Users can determine flood magnitude and frequency, monthly flow-duration, monthly low-flow frequency statistics, and watershed characteristics for ungaged sites by selecting a point along a stream, or they can obtain this information for streamgages by selecting a streamgage location on the map. StreamStats provides several additional tools useful for water-resources planning and management, as well as for engineering purposes. StreamStats is available for most states and some river basins through a single web portal.Streamflow statistics for water resources professionals include the 1-percent annual chance flood flow (100-year peak flow) used to define flood plain areas and the monthly 7-day, 10-year low flow (M7D10Y) used in water supply management and studies of recreation, wildlife conservation, and wastewater dilution. Additionally, watershed or basin characteristics, including drainage area, percent area forested, and average percent of impervious areas, are commonly used in land-use planning and environmental assessments. These characteristics are easily derived through StreamStats.

  15. Oceanographic data collected from Hammond Tide Gage by Center for Coastal Margin Observation and Prediction (CMOP) and assembled by Northwest Association of Networked Ocean Observation Systems (NANOOS) in the Columbia River Estuary and North East Pacific Ocean from 2005-06-24 to 2013-02-08 (NCEI Accession 0162194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162194 contains navigational and physical data collected at Hammond Tide Gage, a fixed station in the Columbia River estuary - Washington/Oregon....

  16. Multi-site Stochastic Simulation of Daily Streamflow with Markov Chain and KNN Algorithm

    Science.gov (United States)

    Mathai, J.; Mujumdar, P.

    2017-12-01

    A key focus of this study is to develop a method which is physically consistent with the hydrologic processes that can capture short-term characteristics of daily hydrograph as well as the correlation of streamflow in temporal and spatial domains. In complex water resource systems, flow fluctuations at small time intervals require that discretisation be done at small time scales such as daily scales. Also, simultaneous generation of synthetic flows at different sites in the same basin are required. We propose a method to equip water managers with a streamflow generator within a stochastic streamflow simulation framework. The motivation for the proposed method is to generate sequences that extend beyond the variability represented in the historical record of streamflow time series. The method has two steps: In step 1, daily flow is generated independently at each station by a two-state Markov chain, with rising limb increments randomly sampled from a Gamma distribution and the falling limb modelled as exponential recession and in step 2, the streamflow generated in step 1 is input to a nonparametric K-nearest neighbor (KNN) time series bootstrap resampler. The KNN model, being data driven, does not require assumptions on the dependence structure of the time series. A major limitation of KNN based streamflow generators is that they do not produce new values, but merely reshuffle the historical data to generate realistic streamflow sequences. However, daily flow generated using the Markov chain approach is capable of generating a rich variety of streamflow sequences. Furthermore, the rising and falling limbs of daily hydrograph represent different physical processes, and hence they need to be modelled individually. Thus, our method combines the strengths of the two approaches. We show the utility of the method and improvement over the traditional KNN by simulating daily streamflow sequences at 7 locations in the Godavari River basin in India.

  17. Surface water of Little River basin in southeastern Oklahoma (with a section on quality of water by R. P. Orth)

    Science.gov (United States)

    Westfall, A.O.; Orth, Richard Philip

    1963-01-01

    This report summarizes basic hydrologic data of the surface water resources of Little River basin above the Oklahoma-Arkansas state line near Cerrogordo, Okla., and by analysis and interpretation, presents certain streamflow characteristics at specified points in the basin. Little River basin above the state line includes 2,269 square miles, of which about 250 square miles of the Mountain Fork River is in Arkansas. The climate is humid and the annual precipitation averages about 46 inches. Gross annual lake evaporation averages 49 inches per year. There are three reservoirs totaling 2,831,800 acre-feet of storage, either authorized or under construction in the basin. The average annual discharge at the gaging stations for the period 1930-61 is 674,900 acre-feet for Little River near Wright City; 1,273,000 acre-feet for Little River below Lukfata Creek, near Idabel; and 989,000 acre-feet for Mountain Fork River near Eagletown. The average annual discharge of Little River at the Oklahoma-Arkansas state line near Cerrogordo is 2,401,000 acre-feet. Flow-duration curves have been developed from daily records for the gaging stations. These curves show the percentage of time various rates of discharge have been equaled or exceeded. Procedures for defining the frequency of annual floods at any point in the basin are given. Low-flow frequency curves for the gaging stations defining the recurrence intervals of 7, 14 or 15, 30, 60, and 120 day mean flows have been prepared. Curves showing the relation of instantaneous discharge at specified upstream points to the daily mean discharge at two gaging stations are presented. The storage requirements for suplementing natural flows have been prepared for the gaging-station sites. Chemical analyses show that the surface water in the basin is suitable for domestic and industrial uses.

  18. Strain-gage signal-conditioning system for use in the LCP

    International Nuclear Information System (INIS)

    Ellis, J.F.; Walstrom, P.L.

    1979-01-01

    A strain-gage signal-conditioning system, providing wide-band noise rejection and isolation from high voltages that occur during emergency coil discharges, has been developed and tested. The multichannel system combines double-shielded transformers, neutralizing networks, and bandpass filters (with commercial 3-kHz carrier amplifier modules to isolate the strain gages to 5000 V) eliminate thermoelectric effects, and provide a signal bandwidth of 200 Hz. Common-mode interference occurs primarily as a result of beat-note effects between the carrier and the superimposed noise at frequencies near the odd harmonics of the carrier. The common-mode rejection of the test circuit was measured to be 120 dB for noise at 2750 and 3250 Hz, 135 dB at 3 kHz, and 135 dB and better at the odd harmonics of 9 kHz and above. The system has been successfully used in strain measurements on the toroidal field coils of the ISX-B tokamak and will be used in the Large Coil Test Facility to monitor strains in the energized coil conductors

  19. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  20. Low pressure gage type VM-01

    International Nuclear Information System (INIS)

    Brandea, I.; Curuia, M.; Culcer, M.

    2000-01-01

    High vacuum systems became an important element of many applied technologies, from gas analysers to rocket engines. An intelligent apparatus for pressure measurement in the range of 10 -3 - 10 -8 mbar, with incorporated INTEL 80C51 microcontroller is presented. Based on a Bayard-Alpert hot cathode gage, equally developed in our institute, the pressure gage allows the displaying of different operation parameters and also of the error codes for different kinds of malfunctioning, as for instance missing of grid voltage, grid-collector breakdown, pressure increasing above 10 -3 mbar. Its operation is based on a microcontroller assembly language program especially worked out and introduced in the central units EPROM memory. The gage characteristics for different gases are also introduced in an EPROM memory, and the type of the gas is selected by the operator from the front panel. One can select also from the front panel the pressure unit (mbar, torr, Pa). If a remote control is necessary, this can be done by means of a PC, with a program written in the LabVIEW graphical programming language. The pressure gage was tested and calibrated in relation with an EDWARDS vacuum measuring system and provided a good accuracy (better than 25%). Its field of application is both laboratory and industrial measurements. Its main features are: - supply voltage, 220 V ac / 50 Hz; - power consumption, 30 W; - gage's grid supply voltage, 160 V; grid current, 2 mA / p = 10 -5 ...10 -8 mbar and 0.2 mA / p = 10 -3 ...10 -5 mbar; - cathode heating current, max. 3 A; - measuring range, 10 -3 ...10 -8 mbar; - error of measurement, ±35%; - remote control, according to the RS232 standard; - size, 320 x 200 x 100 mm; - weight, 3.5 Kg. (authors)

  1. Citizen Hydrology - Tradeoffs between Traditional Continuous Approaches and Temporally Discrete Hydrologic Monitoring

    Science.gov (United States)

    Davids, Jeffrey; Rutten, Martine; van de Giesen, Nick; Mehl, Steffen; Norris, James

    2016-04-01

    Traditional approaches to hydrologic data collection rely on permanent installations of sophisticated and relatively accurate but expensive monitoring equipment at limited numbers of sites. Consequently, the spatial coverage of the data is limited and the cost is high. Moreover, achieving adequate maintenance of the sophisticated equipment often exceeds local technical and resource capacity, and experience has shown that permanently deployed monitoring equipment is susceptible to vandalism, theft, and other hazards. Rather than using expensive, vulnerable installations at a few points, SmartPhones4Water (S4W), a form of citizen science, leverages widely available mobile technology to gather hydrologic data at many sites in a manner that is highly repeatable and scalable. The tradeoff for increased spatial resolution, however, is reduced observation frequency. As a first step towards evaluating the tradeoffs between the traditional continuous monitoring approach and emerging citizen science methods, 50 U.S. Geological Survey (USGS) streamflow gages were randomly selected from the population of roughly 350 USGS gages operated in California. Gaging station metadata and historical 15 minute flow data for the period from 01/10/2007 through 31/12/2014 were compiled for each of the selected gages. Historical 15 minute flow data were then used to develop daily, monthly, and yearly determinations of average, minimum, maximum streamflow, cumulative runoff, and streamflow distribution. These statistics were then compared to similar statistics developed from randomly selected daily and weekly spot measurements of streamflow. Cumulative runoff calculated from daily and weekly observations were within 10 percent of actual runoff calculated from 15 minute data for 75 percent and 46 percent of sites respectively. As anticipated, larger watersheds with less dynamic temporal variability compared more favorably for all statistics evaluated than smaller watersheds. Based on the

  2. Vision system for dial gage torque wrench calibration

    Science.gov (United States)

    Aggarwal, Neelam; Doiron, Theodore D.; Sanghera, Paramjeet S.

    1993-11-01

    In this paper, we present the development of a fast and robust vision system which, in conjunction with the Dial Gage Calibration system developed by AKO Inc., will be used by the U.S. Army in calibrating dial gage torque wrenches. The vision system detects the change in the angular position of the dial pointer in a dial gage. The angular change is proportional to the applied torque. The input to the system is a sequence of images of the torque wrench dial gage taken at different dial pointer positions. The system then reports the angular difference between the different positions. The primary components of this vision system include modules for image acquisition, linear feature extraction and angle measurements. For each of these modules, several techniques were evaluated and the most applicable one was selected. This system has numerous other applications like vision systems to read and calibrate analog instruments.

  3. An analysis of annual maximum streamflows in Terengganu, Malaysia using TL-moments approach

    Science.gov (United States)

    Ahmad, Ummi Nadiah; Shabri, Ani; Zakaria, Zahrahtul Amani

    2013-02-01

    TL-moments approach has been used in an analysis to determine the best-fitting distributions to represent the annual series of maximum streamflow data over 12 stations in Terengganu, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: generalized pareto (GPA), generalized logistic, and generalized extreme value distribution. The influence of TL-moments on estimated probability distribution functions are examined by evaluating the relative root mean square error and relative bias of quantile estimates through Monte Carlo simulations. The boxplot is used to show the location of the median and the dispersion of the data, which helps in reaching the decisive conclusions. For most of the cases, the results show that TL-moments with one smallest value was trimmed from the conceptual sample (TL-moments (1,0)), of GPA distribution was the most appropriate in majority of the stations for describing the annual maximum streamflow series in Terengganu, Malaysia.

  4. A super base station based centralized network architecture for 5G mobile communication systems

    Directory of Open Access Journals (Sweden)

    Manli Qian

    2015-04-01

    Full Text Available To meet the ever increasing mobile data traffic demand, the mobile operators are deploying a heterogeneous network with multiple access technologies and more and more base stations to increase the network coverage and capacity. However, the base stations are isolated from each other, so different types of radio resources and hardware resources cannot be shared and allocated within the overall network in a cooperative way. The mobile operators are thus facing increasing network operational expenses and a high system power consumption. In this paper, a centralized radio access network architecture, referred to as the super base station (super BS, is proposed, as a possible solution for an energy-efficient fifth-generation (5G mobile system. The super base station decouples the logical functions and physical entities of traditional base stations, so different types of system resources can be horizontally shared and statistically multiplexed among all the virtual base stations throughout the entire system. The system framework and main functionalities of the super BS are described. Some key technologies for system implementation, i.e., the resource pooling, real-time virtualization, adaptive hardware resource allocation are also highlighted.

  5. Optimization of municipal pressure pumping station layout and sewage pipe network design

    Science.gov (United States)

    Tian, Jiandong; Cheng, Jilin; Gong, Yi

    2018-03-01

    Accelerated urbanization places extraordinary demands on sewer networks; thus optimization research to improve the design of these systems has practical significance. In this article, a subsystem nonlinear programming model is developed to optimize pumping station layout and sewage pipe network design. The subsystem model is expanded into a large-scale complex nonlinear programming system model to find the minimum total annual cost of the pumping station and network of all pipe segments. A comparative analysis is conducted using the sewage network in Taizhou City, China, as an example. The proposed method demonstrated that significant cost savings could have been realized if the studied system had been optimized using the techniques described in this article. Therefore, the method has practical value for optimizing urban sewage projects and provides a reference for theoretical research on optimization of urban drainage pumping station layouts.

  6. Use of instantaneous streamflow measurements to improve regression estimates of index flow for the summer month of lowest streamflow in Michigan

    Science.gov (United States)

    Holtschlag, David J.

    2011-01-01

    In Michigan, index flow Q50 is a streamflow characteristic defined as the minimum of median flows for July, August, and September. The state of Michigan uses index flow estimates to help regulate large (greater than 100,000 gallons per day) water withdrawals to prevent adverse effects on characteristic fish populations. At sites where long-term streamgages are located, index flows are computed directly from continuous streamflow records as GageQ50. In an earlier study, a multiple-regression equation was developed to estimate index flows IndxQ50 at ungaged sites. The index equation explains about 94 percent of the variability of index flows at 147 (index) streamgages by use of six explanatory variables describing soil type, aquifer transmissivity, land cover, and precipitation characteristics. This report extends the results of the previous study, by use of Monte Carlo simulations, to evaluate alternative flow estimators, DiscQ50, IntgQ50, SiteQ50, and AugmQ50. The Monte Carlo simulations treated each of the available index streamgages, in turn, as a miscellaneous site where streamflow conditions are described by one or more instantaneous measurements of flow. In the simulations, instantaneous flows were approximated by daily mean flows at the corresponding site. All estimators use information that can be obtained from instantaneous flow measurements and contemporaneous daily mean flow data from nearby long-term streamgages. The efficacy of these estimators was evaluated over a set of measurement intensities in which the number of simulated instantaneous flow measurements ranged from 1 to 100 at a site. The discrete measurement estimator DiscQ50 is based on a simple linear regression developed between information on daily mean flows at five or more streamgages near the miscellaneous site and their corresponding GageQ50 index flows. The regression relation then was used to compute a DiscQ50 estimate at the miscellaneous site by use of the simulated instantaneous flow

  7. Theory and Practice of Shear/Stress Strain Gage Hygrometry

    Science.gov (United States)

    Shams, Qamar A.; Fenner, Ralph L.

    2006-01-01

    Mechanical hygrometry has progressed during the last several decades from crude hygroscopes to state-of-the art strain-gage sensors. The strain-gage devices vary from different metallic beams to strain-gage sensors using cellulose crystallite elements, held in full shear restraint. This old technique is still in use but several companies are now actively pursuing development of MEMS miniaturized humidity sensors. These new sensors use polyimide thin film for water vapor adsorption and desorption. This paper will provide overview about modern humidity sensors.

  8. The central monitoring station of Indian Environmental Radiation Monitoring Network (IERMON): the architecture and functions

    International Nuclear Information System (INIS)

    Garg, Saurabh; Ratheesh, M.P.; Mukundan, T.; Patel, M.D.; Nair, C.K.G.; Puranik, V.D.

    2010-01-01

    The Indian Environmental Radiation Monitoring Network (IERMON) is being established across the country by the Bhabha Atomic Research Centre, Mumbai. The network consists of stations with automated systems for environmental radiation monitoring with online data communication facility. Currently about 100 stations are operational and additional 500 stations are expected to be installed by March, 2012. The network is established with different objectives, the main objective being the detection and reporting of any nuclear emergency anywhere in the country. The central monitoring station of the network is established in Mumbai. This paper describes the architecture and functions of IERMON Central Station. The Central Station consists of server room for online data collection from remote stations and maintenance of databases for various applications; central monitoring room for user interaction with database and IERMON website maintenance and development room for the development of new applications. The functions of IERMON Central Station include detection and reporting of nuclear emergency, maintenance of remote stations, enhancement of public awareness on environmental radiation through public display systems and website, etc. The details on system layout and data protocols can be found in the paper. (author)

  9. Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy

    DEFF Research Database (Denmark)

    Gjerstorff, M F; Johansen, L E; Nielsen, O

    2006-01-01

    The GAGE cancer testis antigen gene family encodes products that can be recognized by autologous T cells, and GAGE proteins have been suggested as potential targets for cancer immunotherapy. Analysis of GAGE expression in tumours has primarily been performed at the level of gene transcription, wh...

  10. Optimal base station placement for wireless sensor networks with successive interference cancellation.

    Science.gov (United States)

    Shi, Lei; Zhang, Jianjun; Shi, Yi; Ding, Xu; Wei, Zhenchun

    2015-01-14

    We consider the base station placement problem for wireless sensor networks with successive interference cancellation (SIC) to improve throughput. We build a mathematical model for SIC. Although this model cannot be solved directly, it enables us to identify a necessary condition for SIC on distances from sensor nodes to the base station. Based on this relationship, we propose to divide the feasible region of the base station into small pieces and choose a point within each piece for base station placement. The point with the largest throughput is identified as the solution. The complexity of this algorithm is polynomial. Simulation results show that this algorithm can achieve about 25% improvement compared with the case that the base station is placed at the center of the network coverage area when using SIC.

  11. Vertical datum conversion process for the inland and coastal gage network located in the New England, Mid-Atlantic, and South Atlantic-Gulf hydrologic regions

    Science.gov (United States)

    Rydlund, Jr., Paul H.; Noll, Michael L.

    2017-03-07

    Datum conversions from the National Geodetic Vertical Datum of 1929 to the North American Vertical Datum of 1988 among inland and coastal gages throughout the hydrologic regions of New England, the Mid-Atlantic, and the South Atlantic-Gulf have implications among river and storm surge forecasting, general commerce, and water-control operations. The process of data conversions may involve the application of a recovered National Geodetic Vertical Datum of 1929–North American Vertical Datum of 1988 offset, a simplistic datum transformation using VDatum or VERTCON software, or a survey, depending on a gaging network datum evaluation, anticipated uncertainties for data use among the cooperative water community, and methods used to derive the conversion. Datum transformations from National Geodetic Vertical Datum of 1929 to North American Vertical Datum of 1988 using VERTCON purport errors of ± 0.13 foot at the 95 percent confidence level among modeled points, claiming more consistency along the east coast. Survey methods involving differential and trigonometric leveling, along with observations using Global Navigation Satellite System technology, afford a variety of approaches to establish or perpetuate a datum during a survey. Uncertainties among leveling approaches are generally quality category and ≥0.1 foot for Level II or III quality categories (defined by the U.S. Geological Survey) by observation and review of experienced practice. The conversion process is initiated with an evaluation of the inland and coastal gage network datum, beginning with altitude datum components and the history of those components queried through the U.S. Geological Survey Groundwater Site Inventory database. Subsequent edits to the Groundwater Site Inventory database may be required and a consensus reached among the U.S. Geological Survey Water Science Centers to identify the outstanding workload categorized as in-office datum transformations or offset applications versus out

  12. SAF line pellet gaging

    International Nuclear Information System (INIS)

    Jedlovec, D.R.; Bowen, W.W.; Brown, R.L.

    1983-10-01

    Automated and remotely controlled pellet inspection operations will be utilized in the Secure Automated Fabrication (SAF) line. A prototypic pellet gage was designed and tested to verify conformance to the functions and requirements for measurement of diameter, surface flaws and weight-per-unit length

  13. The role of GAGE cancer/testis antigen in metastasis

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Terp, Mikkel Green; Hansen, Malene Bredahl

    2016-01-01

    with migratory and invasive properties and were found to be upregulated in cancer cells with metastasizing potential in a gastric cancer model. METHODS: We have addressed the direct role of GAGE proteins in supporting metastasis using an isogenic metastasis model of human cancer, consisting of 4 isogenic cell......) and moderately metastatic clones (LM3), stable downregulation of GAGE expression did not affect the ability of CL16 cells to establish primary tumors and form metastasis in the lungs of immunodeficient mice. CONCLUSIONS: These results suggest that GAGE proteins per se do not support metastasis and that further...

  14. Single-frequency receivers as master permanent stations in GNSS networks: precision and accuracy of the positioning in mixed networks

    Science.gov (United States)

    Dabove, Paolo; Manzino, Ambrogio Maria

    2015-04-01

    The use of GPS/GNSS instruments is a common practice in the world at both a commercial and academic research level. Since last ten years, Continuous Operating Reference Stations (CORSs) networks were born in order to achieve the possibility to extend a precise positioning more than 15 km far from the master station. In this context, the Geomatics Research Group of DIATI at the Politecnico di Torino has carried out several experiments in order to evaluate the achievable precision obtainable with different GNSS receivers (geodetic and mass-market) and antennas if a CORSs network is considered. This work starts from the research above described, in particular focusing the attention on the usefulness of single frequency permanent stations in order to thicken the existing CORSs, especially for monitoring purposes. Two different types of CORSs network are available today in Italy: the first one is the so called "regional network" and the second one is the "national network", where the mean inter-station distances are about 25/30 and 50/70 km respectively. These distances are useful for many applications (e.g. mobile mapping) if geodetic instruments are considered but become less useful if mass-market instruments are used or if the inter-station distance between master and rover increases. In this context, some innovative GNSS networks were developed and tested, analyzing the performance of rover's positioning in terms of quality, accuracy and reliability both in real-time and post-processing approach. The use of single frequency GNSS receivers leads to have some limits, especially due to a limited baseline length, the possibility to obtain a correct fixing of the phase ambiguity for the network and to fix the phase ambiguity correctly also for the rover. These factors play a crucial role in order to reach a positioning with a good level of accuracy (as centimetric o better) in a short time and with an high reliability. The goal of this work is to investigate about the

  15. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    Science.gov (United States)

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and

  16. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    Science.gov (United States)

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    storage, rainfall-runoff processes, and groundwater-level differences in the upper basin allow it to generate approximately half of the streamflow from the Charlie Creek basin. Therefore, future development in the upper basin that would alter the hydraulic connectivity of wetlands during high flow conditions or expand recharging groundwater conditions could substantially affect streamflow in Charlie Creek. LIDAR (Light detection and ranging) based topographic maps and integrated modeling results were used to quantify the water stored in wetlands and other topographic depressions, and to describe the network of shallow stream channels connecting wetlands to Charlie Creek and its tributaries over distances of several thousand feet. Peak flows at all but one streamflow station were underpredicted in MIKE SHE simulations, possibly because the hydraulics of surface channels connecting wetlands to stream channels were not explicitly simulated in the model. Explicitly simulating the smaller channels connecting wetlands and stream channels should improve the ability of future watershed models to simulate peak flows in streams with headwater wetlands. The runoff potential was greater in the lower half of the Charlie Creek basin than in the upper half, and the streambed of Charlie Creek had greater potential to both directly gain streamflow from groundwater and lose streamflow to groundwater. Charlie Creek is more incised into the surficial aquifer in the lower basin than in the upper basin, and the streambed intersects the top of the intermediate aquifer system at two known locations. Groundwater levels in the intermediate aquifer system varied widely in the lower half of the basin from artesian conditions inducing upward flow toward the surficial aquifer and streams, to recharging conditions allowing downward flow and stream leakage. Recharge areas were greatest in May 2004 when rainfall was at a seasonal low and irrigation pumping was at a seasonal high. Recharge conditions

  17. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    Science.gov (United States)

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the

  18. Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow

    Science.gov (United States)

    Barlow, Paul M.; Leake, Stanley A.

    2012-11-02

    Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.

  19. Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Bolton, D. E.; Cook, D. J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.

  20. Uncertainties in Forecasting Streamflow using Entropy Theory

    Science.gov (United States)

    Cui, H.; Singh, V. P.

    2017-12-01

    Streamflow forecasting is essential in river restoration, reservoir operation, power generation, irrigation, navigation, and water management. However, there is always uncertainties accompanied in forecast, which may affect the forecasting results and lead to large variations. Therefore, uncertainties must be considered and be assessed properly when forecasting streamflow for water management. The aim of our work is to quantify the uncertainties involved in forecasting streamflow and provide reliable streamflow forecast. Despite that streamflow time series are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting entails modeling seasonality, periodicity, and its correlation structure, and assessing uncertainties. This study applies entropy theory to forecast streamflow and measure uncertainties during the forecasting process. To apply entropy theory for streamflow forecasting, spectral analysis is combined to time series analysis, as spectral analysis can be employed to characterize patterns of streamflow variation and identify the periodicity of streamflow. That is, it permits to extract significant information for understanding the streamflow process and prediction thereof. Application of entropy theory for streamflow forecasting involves determination of spectral density, determination of parameters, and extension of autocorrelation function. The uncertainties brought by precipitation input, forecasting model and forecasted results are measured separately using entropy. With information theory, how these uncertainties transported and aggregated during these processes will be described.

  1. Development of a Precipitation-Runoff Model to Simulate Unregulated Streamflow in the Salmon Creek Basin, Okanogan County, Washington

    Science.gov (United States)

    van Heeswijk, Marijke

    2006-01-01

    Surface water has been diverted from the Salmon Creek Basin for irrigation purposes since the early 1900s, when the Bureau of Reclamation built the Okanogan Project. Spring snowmelt runoff is stored in two reservoirs, Conconully Reservoir and Salmon Lake Reservoir, and gradually released during the growing season. As a result of the out-of-basin streamflow diversions, the lower 4.3 miles of Salmon Creek typically has been a dry creek bed for almost 100 years, except during the spring snowmelt season during years of high runoff. To continue meeting the water needs of irrigators but also leave water in lower Salmon Creek for fish passage and to help restore the natural ecosystem, changes are being considered in how the Okanogan Project is operated. This report documents development of a precipitation-runoff model for the Salmon Creek Basin that can be used to simulate daily unregulated streamflows. The precipitation-runoff model is a component of a Decision Support System (DSS) that includes a water-operations model the Bureau of Reclamation plans to develop to study the water resources of the Salmon Creek Basin. The DSS will be similar to the DSS that the Bureau of Reclamation and the U.S. Geological Survey developed previously for the Yakima River Basin in central southern Washington. The precipitation-runoff model was calibrated for water years 1950-89 and tested for water years 1990-96. The model was used to simulate daily streamflows that were aggregated on a monthly basis and calibrated against historical monthly streamflows for Salmon Creek at Conconully Dam. Additional calibration data were provided by the snowpack water-equivalent record for a SNOTEL station in the basin. Model input time series of daily precipitation and minimum and maximum air temperatures were based on data from climate stations in the study area. Historical records of unregulated streamflow for Salmon Creek at Conconully Dam do not exist for water years 1950-96. Instead, estimates of

  2. Strategy to design the sea-level monitoring networks for small tsunamigenic oceanic basins: the Western Mediterranean case

    Directory of Open Access Journals (Sweden)

    F. Schindelé

    2008-09-01

    Full Text Available The 26 December 2004 Indian Ocean tsunami triggered a number of international and national initiatives aimed at establishing modern, reliable and robust tsunami warning systems. In addition to the seismic network for initial warning, the main component of the monitoring system is the sea level network. Networks of coastal tide gages and tsunameters are implemented to detect the tsunami after the occurrence of a large earthquake, to confirm or refute the tsunami occurrence. Large oceans tsunami monitoring currently in place in the Pacific and in implementation in the Indian Ocean will be able to detect tsunamis in 1 h. But due to the very short time of waves propagation, in general less than 1 h, a tsunami monitoring system in a smaller basin requires a denser network located close to the seismic zones. A methodology is proposed based on the modeling of tsunami travel time and waveform, and on the estimation of the delay of transmission to design the location and the spacing of the stations. In the case of Western Mediterranean, we demonstrate that a network of around 17 coastal tide gages and 13 tsunameters located at 50 km along the shore is required to detect and measure nearly all tsunamis generated on the Northern coasts of Africa.

  3. From the shadows into the limelight: Intelligent local network stations; Vom Schattendasein ins Rampenlicht. Intelligente Ortsnetzstationen

    Energy Technology Data Exchange (ETDEWEB)

    Opitsch, Bruno [Siemens AG, Energy Sektor, Nuernberg (Germany)

    2011-03-21

    Local network stations ought to receive greater attention in view of increasing consumption, increasing supply from decentral power stations, load management and new functions relating to increasing electromobility in individual traffic. Higher efficiency should be the central goal in making local network stations fit for the 21st century.

  4. Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York

    Directory of Open Access Journals (Sweden)

    Chris C. Gianfagna

    2015-09-01

    New hydrological insights for the region: Watershed area ratio was the most important basin parameter for estimating flow at upstream sites based on downstream flow. The area ratio alone explained 93% of the variance in the slopes of relationships between upstream and downstream flows. Regression analysis indicated that flow at any upstream point can be estimated by multiplying the flow at a downstream reference gage by the watershed area ratio. This method accurately predicted upstream flows at area ratios as low as 0.005. We also observed a very strong relationship (R2 = 0.79 between area ratio and flow–flow slopes in non-nested catchments. Our results indicate that a simple flow estimation method based on watershed area ratios is justifiable, and indeed preferred, for the estimation of daily streamflow in ungaged watersheds in the Catskills region.

  5. Estimation of annual suspended-sediment fluxes, 1931-95, and evaluation of geomorphic changes, 1950-2010, in the Arkansas River near Tulsa, Oklahoma

    Science.gov (United States)

    Lewis, Jason M.; Smith, S. Jerrod; Buck, Stephanie D.; Strong, Scott A.

    2011-01-01

    An understanding of fluvial sediment transport and changing channel morphology can assist planners in making responsible decisions with future riverine development or restoration projects. Sediment rating curves can serve as simple models and can provide predictive tools to estimate annual sediment fluxes. Sediment flux models can aid in the design of river projects by providing insight to past and potential future sediment fluxes. Historical U.S. Geological Survey suspended-sediment and discharge data were evaluated to estimate annual suspended-sediment fluxes for two stations on the Arkansas River located downstream from Keystone Dam in Tulsa County. Annual suspended-sediment fluxes were estimated from 1931-95 for the Arkansas River at Tulsa streamflow-gaging station (07164500) and from 1973-82 for the Arkansas River near Haskell streamflow-gaging station (07165570). The annual flow-weighted suspended-sediment concentration decreased from 1,970 milligrams per liter to 350 milligrams per liter after the completion of Keystone Dam at the Tulsa station. The streambed elevation at the Arkansas River at Tulsa station has changed less than 1 foot from 1970 to 2005, but the thalweg has shifted from a location near the right bank to a position near the left bank. There was little change in the position of most of the banks of the Arkansas River channel from 1950 to 2009. The most substantial change evident from visual inspection of aerial photographs was an apparent decrease in sediment storage in the form of mid-channel and meander bars. The Arkansas River channel between Keystone Dam and the Tulsa-Wagoner County line showed a narrowing and lengthening (increase in sinuosity) over the transition period 1950-77 followed by a steady widening and shortening of the river channel (decrease in sinuosity) during the post-dam (Keystone) periods 1977-85, 1985-2003, and 2003-10.

  6. Simulation of streamflow and water quality in the Red Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    subbasin are agricultural, forested, residential, and urban.The hydrologic component of the model was run at an hourly time step and calibrated using streamflow data from three U.S. Geological Survey (USGS) streamflow-measurement stations for the period of October 1, 1994, through October 29, 1998. Daily precipitation data from one National Oceanic and Atmospheric Administration (NOAA) gage and hourly data from one NOAA gage were used for model input. The difference between observed and simulated stream- flow volume ranged from -0.8 to 2.1 percent for the 4-year period at the three calibration sites. Annual differences between observed and simulated streamflow generally were greater than the overall error for the 4-year period. For example, at a site near Stanton, Del., near the bottom of the basin (drainage area of 50.2 mi2), annual differences between observed and simulated streamflow ranged from -5.8 to 6.0 percent and the overall error for the 4-year period was -0.8 percent. Calibration errors for 36 storm periods at the three calibration sites for total volume, low-flow-recession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the rainfall data.The water-quality component of the model was calibrated using nonpoint-source monitoring data collected in 1998 at one USGS streamflowmeasurement station and other water-quality monitoring data collected at three USGS streamflowmeasurement stations. The period of record for waterquality monitoring was variable at the stations, with an end date of October 1998 but the start date ranging from October 1994 to January 1998. Because of availability, monitoring data for suspended-solids concentrations were used as surrogates for suspendedsediment concentrations, although suspended solids may underestimate suspended sediment and affect apparent accuracy of the suspended

  7. History of natural flows--Kansas River

    Science.gov (United States)

    Leeson, Elwood R.

    1958-01-01

    Through its Water Resources Division, the United States Geological Survey has become the major water-resources historian for the nation. The Geological Survey's collection of streamflow records in Kansas began on a very small scale in 1895 in response to some early irrigation interest, Since that time the program has grown, and we now have about 21 350 station-years of record accumulated. A station-year of record is defined as a continuous record of flow collected at a fixed point for a period of one year. Volume of data at hand, however, is not in itself an, adequate measure of its usefullness. An important element in historical streamflow data which enhances its value as a tool for the prediction of the future is the length of continuous records available in the area being studied. The records should be of sufficient length that they may be regarded as a reasonable sample of what has gone before and may be expected in the future. Table 1 gives a graphical inventory of the available streamflow records in Kansas. It shows that, in general, there is a fair coverage of stations with records of about thirty-seven years in length, This is not a long period as history goes but it does include considerable experience with floods and droughts.Although a large quantity of data on Kansas streamflow has been accumulated, hydrologists and planning engineers find that stream flow information for many areas of the State is considerably less than adequate. The problem of obtaining adequate coverage has been given careful study by the Kansas Water Resources Board in cooperation with the U. S. Geological Survey and a report entitled "Development of A Balanced Stream-Gaging Program For Kansas", has been published by the Board as Bulletin No. 4, That report presents an analysis of the existing stream-gaging program and recommendations for a program to meet the rapidly expanding needs for more comprehensive basic data.The Kansas River is formed near Junction City, Kansas, by the

  8. Water quality, streamflow conditions, and annual flow-duration curves for streams of the San Juan–Chama Project, southern Colorado and northern New Mexico, 1935-2010

    Science.gov (United States)

    Falk, Sarah E.; Anderholm, Scott K.; Hafich, Katya A.

    2013-01-01

    , Horse Lake Creek, and Willow Creek watersheds, which are underlain mostly by Cretaceous-aged marine shale, was compositionally similar and had large concentrations of sulfate relative to the other streams in the study area, though the water from the Navajo River had lower specific-conductance values than did the water from Horse Lake Creek above Heron Reservoir and Willow Creek above Azotea Creek. Generally, surface-water quality varied with streamflow conditions throughout the year. Streamflow in spring and summer is generally a mixture of base flow (the component of streamflow derived from groundwater discharged to the stream channel) diluted with runoff from snowmelt and precipitation events, whereas streamflow in fall and winter is generally solely base flow. Major- and trace-element concentrations in the streams sampled were lower than U.S. Environmental Protection Agency primary and secondary drinking-water standards and New Mexico Environment Department surface-water standards for the streams. In general, years with increased annual discharge, compared to years with decreased annual discharge, had a smaller percentage of discharge in March, a larger percentage of discharge in June, an interval of discharge derived from snowmelt runoff that occurred later in the year, and a larger discharge in June. Additionally, years with increased annual discharge generally had a longer duration of runoff, and the streamflow indicators occurred at dates later in the year than the years with less snowmelt runoff. Additionally, the seasonal distribution of streamflow was more strongly controlled by the change in the amount of annual discharge than by changes in streamflow over time. The variation of streamflow conditions over time at one streamflow-gaging station in the study area, Navajo River at Banded Peak Ranch, was not significantly monotonic over the period of record with a Kendall’s tau of 0.0426 and with a p-value of 0.5938 for 1937 to 2009 (a trend was considered

  9. Geographic, geologic, and hydrologic summaries of intermontane basins of the northern Rocky Mountains, Montana

    Science.gov (United States)

    Kendy, Eloise; Tresch, R.E.

    1996-01-01

    This report combines a literature review with new information to provide summaries of the geography, geology, and hydrology of each of 32 intermontane basins in western Montana. The summary of each intermontane basin includes concise descriptions of topography, areal extent, altitude, climate, 1990 population, land and water use, geology, surface water, aquifer hydraulic characteristics, ground-water flow, and ground-water quality. If present, geothermal features are described. Average annual and monthly temperature and precipitation are reported from one National Weather Service station in each basin. Streamflow data, including the drainage area, period of record, and average, minimum, and maximum historical streamflow, are reported for all active and discontinued USGS streamflow-gaging stations in each basin. Monitoring-well data, including the well depth, aquifer, period of record, and minimum and maximum historical water levels, are reported for all long-term USGS monitoring wells in each basin. Brief descriptions of geologic, geophysical, and potentiometric- surface maps available for each basin also are included. The summary for each basin also includes a bibliography of hydrogeologic literature. When used alone or in conjunction with regional RASA reports, this report provides a practical starting point for site-specific hydrogeologic investigations.

  10. Propagation Characteristics of International Space Station Wireless Local Area Network

    Science.gov (United States)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  11. Bivariate Drought Analysis Using Streamflow Reconstruction with Tree Ring Indices in the Sacramento Basin, California, USA

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2016-03-01

    Full Text Available Long-term streamflow data are vital for analysis of hydrological droughts. Using an artificial neural network (ANN model and nine tree-ring indices, this study reconstructed the annual streamflow of the Sacramento River for the period from 1560 to 1871. Using the reconstructed streamflow data, the copula method was used for bivariate drought analysis, deriving a hydrological drought return period plot for the Sacramento River basin. Results showed strong correlation among drought characteristics, and the drought with a 20-year return period (17.2 million acre-feet (MAF per year in the Sacramento River basin could be considered a critical level of drought for water shortages.

  12. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.

    Science.gov (United States)

    Rathi, Shweta; Gupta, Rajesh

    2014-04-01

    Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.

  13. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000

    Science.gov (United States)

    Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.

    2004-01-01

    stream reach is based on a mass-balance approach and accounts for exchanges with (inputs from or losses to) ground-water systems. Two test examples are used to illustrate some of the capabilities of the SFR1 Package. The first test simulation was designed to illustrate how pumping of ground water from an aquifer connected to streams can affect streamflow, depth, width, and streambed conductance using the different options. The second test simulation was designed to illustrate solute transport through interconnected lakes, streams, and aquifers. Because of the need to examine time series results from the model simulations, the Gage Package first described in the LAK3 documentation was revised to include time series results of selected variables (streamflows, stream depth and width, streambed conductance, solute concentrations, and solute loads) for specified stream reaches. The mass-balance or continuity approach for routing flow and solutes through a stream network may not be applicable for all interactions between streams and aquifers. The SFR1 Package is best suited for modeling long-term changes (months to hundreds of years) in ground-water flow and solute concentrations using averaged flows in streams. The Package is not recommended for modeling the transient exchange of water between streams and aquifers when the objective is to examine short-term (minutes to days) effects caused by rapidly changing streamflows.

  14. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir Drainage Area, Rhode Island, water year 2015

    Science.gov (United States)

    Smith, Kirk P.

    2018-05-11

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91

  15. Resilient design of recharging station networks for electric transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  16. Space station common module network topology and hardware development

    Science.gov (United States)

    Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.

    1990-01-01

    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.

  17. Managing Recurrent Congestion of Subway Network in Peak Hours with Station Inflow Control

    OpenAIRE

    Qingru Zou; Xiangming Yao; Peng Zhao; Fei Dou; Taoyuan Yang

    2018-01-01

    Station inflow control (SIC) is an important and effective method for reducing recurrent congestion during peak hours in the Beijing, Shanghai, and Guangzhou subway systems. This work proposes a practical and efficient method for establishing a static SIC scheme in normal weekdays for large-scale subway networks. First, a traffic assignment model without capacity constraint is utilized to determine passenger flow distributions on the network. An internal relationship between station inflows a...

  18. Intercomparison of Streamflow Simulations between WRF-Hydro and Hydrology Laboratory-Research Distributed Hydrologic Model Frameworks

    Science.gov (United States)

    KIM, J.; Smith, M. B.; Koren, V.; Salas, F.; Cui, Z.; Johnson, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA)-National Weather Service (NWS) developed the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) framework as an initial step towards spatially distributed modeling at River Forecast Centers (RFCs). Recently, the NOAA/NWS worked with the National Center for Atmospheric Research (NCAR) to implement the National Water Model (NWM) for nationally-consistent water resources prediction. The NWM is based on the WRF-Hydro framework and is run at a 1km spatial resolution and 1-hour time step over the contiguous United States (CONUS) and contributing areas in Canada and Mexico. In this study, we compare streamflow simulations from HL-RDHM and WRF-Hydro to observations from 279 USGS stations. For streamflow simulations, HL-RDHM is run on 4km grids with the temporal resolution of 1 hour for a 5-year period (Water Years 2008-2012), using a priori parameters provided by NOAA-NWS. The WRF-Hydro streamflow simulations for the same time period are extracted from NCAR's 23 retrospective run of the NWM (version 1.0) over CONUS based on 1km grids. We choose 279 USGS stations which are relatively less affected by dams or reservoirs, in the domains of six different RFCs. We use the daily average values of simulations and observations for the convenience of comparison. The main purpose of this research is to evaluate how HL-RDHM and WRF-Hydro perform at USGS gauge stations. We compare daily time-series of observations and both simulations, and calculate the error values using a variety of error functions. Using these plots and error values, we evaluate the performances of HL-RDHM and WRF-Hydro models. Our results show a mix of model performance across geographic regions.

  19. Streamflow and water-quality data for Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, December 1987 - November 1988

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, from December 1987 to November 1988, to determine the prevailing quality of surface water throughout the basin. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water-quality station on Little Scrubgrass Creek near Lisbon, provided continuous-record of stream stage, Ph, specific conductance, and water temperature. Monthly water-quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended sediment concentrations. Fourteen partial-record sites, located throughout the basin, were similarly sampled four times during the period of study. Streamflow and water-quality data obtained at these sites during various base flow periods are also presented. 14 refs., 4 figs., 14 tabs

  20. Simulation and reconstruction of parameters of streamflow and glacier mass balance in the Northern Caucasus

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2014-01-01

    Full Text Available The work was aimed at numerical modeling of spatial-temporal variability of the river Terek seasonal (April to September streamflow characteristics and long-term fluctuations of components of annual glacier mass balances in this basin and on the adjacent territories. Mass balance of glaciers Djankuat and Garabashi was calculated. Simulation was performed by means of stochastic modeling and discrete data presenting fields of main meteorological parameters (precipitation, air temperature and humidity having effect on the streamflow. Realization of this approach is complicated by the fact that spatial representativeness of hydrological and meteorological sites are not corresponding one to another. Data on the runoff is clearly related to the total drainage area closed by a gauging station. And for this data we study a relationship with meteorological parameters which are measured at a non-regular observational network whose spatial representativeness is unknown. These stations are generally located beyond the area under investigation (Fig. 2. Similar problem exists when we analyze a relationship between components of the mass balance of individual glaciers (Djankuat and Garabashi and the above climate characteristics measured at some stations located on the whole Caucasus territory. The same takes place when long-term indices of width and density of tree annual rings obtained in upper reaches of the river Kuban’ are used for analysis of variations of the runoff and the glacier mass balance in the river Terek basin located at a distance of 100-150 km from the Kuban’ dendrologic sites.To solve the problem we used a wide number of factors which directly (various information about the climate or indirectly (indices of the climate dryness, wood ring characteristics characterize conditions of formation of annual and seasonal river runoff and components of glacier mass balance in the North Caucasus. Use of all obtained information made possible the

  1. Standard Test Method for Measuring Heat Flux Using Flush-Mounted Insert Temperature-Gradient Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using gages inserted flush with the surface. The geometry is the same as heat-flux gages covered by Test Method E 511, but the measurement principle is different. The gages covered by this standard all use a measurement of the temperature gradient normal to the surface to determine the heat that is exchanged to or from the surface. Although in a majority of cases the net heat flux is to the surface, the gages operate by the same principles for heat transfer in either direction. 1.2 This general test method is quite broad in its field of application, size and construction. Two different gage types that are commercially available are described in detail in later sections as examples. A summary of common heat-flux gages is given by Diller (1). Applications include both radiation and convection heat transfer. The gages used for aerospace applications are generally small (0.155 to 1.27 cm diameter), have a fast time response ...

  2. Using a predictive model to evaluate spatiotemporal variability in streamflow permanence across the Pacific Northwest region

    Science.gov (United States)

    Jaeger, K. L.

    2017-12-01

    The U.S. Geological Survey (USGS) has developed the PRObability Of Streamflow PERmanence (PROSPER) model, a GIS-based empirical model that provides predictions of the annual probability of a stream channel having year-round flow (Streamflow permanence probability; SPP) for any unregulated and minimally-impaired stream channel in the Pacific Northwest (Washington, Oregon, Idaho, western Montana). The model provides annual predictions for 2004-2016 at a 30-m spatial resolution based on monthly or annually updated values of climatic conditions, and static physiographic variables associated with the upstream basin. Prediction locations correspond to the channel network consistent with the National Hydrography Dataset stream grid and are publicly available through the USGS StreamStats platform (https://water.usgs.gov/osw/streamstats/). In snowmelt-driven systems, the most informative predictor variable was mean upstream snow water equivalent on May 1, which highlights the influence of late spring snow cover for supporting streamflow in mountain river networks. In non-snowmelt-driven systems, the most informative variable was mean annual precipitation. Streamflow permanence probabilities varied across the study area by geography and from year-to-year. Notably lower SPP corresponded to the climatically drier subregions of the study area. Higher SPP were concentrated in coastal and higher elevation mountain regions. In addition, SPP appeared to trend with average hydroclimatic conditions, which were also geographically coherent. The year-to-year variability lends support for the growing recognition of the spatiotemporal dynamism of streamflow permanence. An analysis of three focus basins located in contrasting geographical and hydroclimatic settings demonstrates differences in the sensitivity of streamflow permanence to antecedent climate conditions as a function of geography. Consequently, results suggest that PROSPER model can be a useful tool to evaluate regions of the

  3. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2006

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter

  4. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter

  5. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per

  6. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter

  7. Implementation of Biogas Stations into Smart Heating and Cooling Network

    Science.gov (United States)

    Milčák, P.; Konvička, J.; Jasenská, M.

    2016-10-01

    The paper is aimed at the description of implementation of a biogas station into software environment for the "Smart Heating and Cooling Networks". The aim of this project is creation of a software tool for preparation of operation and optimization of treatment of heat/cool in small regions. In this case, the biogas station represents a kind of renewable energy source, which, however, has its own operational specifics which need to be taken into account at the creation of an implementation project. For a specific biogas station, a detailed computational model was elaborated, which is parameterized in particular for an optimization of the total computational time.

  8. Isotope-based partitioning of streamflow in the oil sands region, northern Alberta: Towards a monitoring strategy for assessing flow sources and water quality controls

    Directory of Open Access Journals (Sweden)

    J.J. Gibson

    2016-03-01

    Full Text Available Study region: This study is based on the rapidly developing Athabasca Oil Sands region, northeastern Alberta. Study focus: Hydrograph separation using stable isotopes of water is applied to partition streamflow sources in the Athabasca River and its tributaries. Distinct isotopic labelling of snow, rain, groundwater and surface water are applied to estimate the contribution of these sources to streamflow from analysis of multi-year records of isotopes in streamflow. New hydrological insights for the region: The results provide new insight into runoff generation mechanisms operating in six tributaries and at four stations along the Athabasca River. Groundwater, found to be an important flow source at all stations, is the dominant component of the hydrograph in three tributaries (Steepbank R., Muskeg R., Firebag R., accounting for 39–50% of annual streamflow. Surface water, mainly drainage from peatlands, is also found to be widely important, and dominant in three tributaries (Clearwater R., Mackay R., Ells R., accounting for 45–81% of annual streamflow. Fairly limited contributions from direct precipitation illustrate that most snow and rain events result in indirect displacement of pre-event water by fill and spill mechanisms. Systematic shifts in regional groundwater to surface-water ratios are expected to be an important control on spatial and temporal distribution of water quality parameters and useful for evaluating the susceptibility of rivers to climate and development impacts. Keywords: Stable isotopes, Hydrograph separation, Groundwater, Surface water, Snowmelt, Oil sands

  9. Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales

    Science.gov (United States)

    Pérez Ciria, T.; Chiogna, G.

    2017-12-01

    Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.

  10. Analysis of trends of water quality and streamflow in the Blackstone, Branch, Pawtuxet, and Pawcatuck Rivers, Massachusetts and Rhode Island, 1979 to 2015

    Science.gov (United States)

    Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.

    2017-02-21

    Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for

  11. Federated Ground Station Network Model and Interface Specification

    Science.gov (United States)

    2014-12-01

    of-sight of a small portion of the ground at any moment due to the geometry of a satellite in LEO above a planet of Earth’s size. The portion of the...Subnetwork 3 started out as a lone network in which there was a single CA and a number of ground stations. Then Subnetwork 3 joined with SA 1 and its

  12. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network

    Science.gov (United States)

    Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun

    2016-01-01

    A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0–1 integer programming to describe passengers’ responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated. PMID:27935963

  13. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.

    Directory of Open Access Journals (Sweden)

    Haodong Yin

    Full Text Available A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1 A basic passenger behavior optimization model is mathematically constructed based on 0-1 integer programming to describe passengers' responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2 An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1, the impact of the closure can be somewhat mitigated.

  14. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.

    Science.gov (United States)

    Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun

    2016-01-01

    A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0-1 integer programming to describe passengers' responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated.

  15. Adjusted Streamflow and Storage 1928-1989 : with Listings of Historical Streamflow, Summation of Storage Change and Adjusted Streamflow : Columbia River and Coastal Basins.

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Crook Company

    1993-04-01

    The development of irrigation projects since the 1830's and the construction of major dams and reservoirs since the early 1900's have altered substantially the natural streamflow regimen of the Columbia River and its tributaries. As development expanded a multipurpose approach to streamflow regulation evolved to provide flood control, irrigation, hydropower generation, navigation, recreation, water quality enhancement, fish and wildlife, and instream flow maintenance. The responsible agencies use computer programs to determine the effects of various alternative system regulations. This report describes the development of the streamflow data that these computer programs use.

  16. Modeling multisite streamflow dependence with maximum entropy copula

    Science.gov (United States)

    Hao, Z.; Singh, V. P.

    2013-10-01

    Synthetic streamflows at different sites in a river basin are needed for planning, operation, and management of water resources projects. Modeling the temporal and spatial dependence structure of monthly streamflow at different sites is generally required. In this study, the maximum entropy copula method is proposed for multisite monthly streamflow simulation, in which the temporal and spatial dependence structure is imposed as constraints to derive the maximum entropy copula. The monthly streamflows at different sites are then generated by sampling from the conditional distribution. A case study for the generation of monthly streamflow at three sites in the Colorado River basin illustrates the application of the proposed method. Simulated streamflow from the maximum entropy copula is in satisfactory agreement with observed streamflow.

  17. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

    Science.gov (United States)

    Ulbrich, N.

    2015-01-01

    An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

  18. Streamflow alteration at selected sites in Kansas

    Science.gov (United States)

    Juracek, Kyle E.; Eng, Ken

    2017-06-26

    An understanding of streamflow alteration in response to various disturbances is necessary for the effective management of stream habitat for a variety of species in Kansas. Streamflow alteration can have negative ecological effects. Using a modeling approach, streamflow alteration was assessed for 129 selected U.S. Geological Survey streamgages in the State for which requisite streamflow and basin-characteristic information was available. The assessment involved a comparison of the observed condition from 1980 to 2015 with the predicted expected (least-disturbed) condition for 29 streamflow metrics. The metrics represent various characteristics of streamflow including average flow (annual, monthly) and low and high flow (frequency, duration, magnitude).Streamflow alteration in Kansas was indicated locally, regionally, and statewide. Given the absence of a pronounced trend in annual precipitation in Kansas, a precipitation-related explanation for streamflow alteration was not supported. Thus, the likely explanation for streamflow alteration was human activity. Locally, a flashier flow regime (typified by shorter lag times and more frequent and higher peak discharges) was indicated for three streamgages with urbanized basins that had higher percentages of impervious surfaces than other basins in the State. The combination of localized reservoir effects and regional groundwater pumping from the High Plains aquifer likely was responsible, in part, for diminished conditions indicated for multiple streamflow metrics in western and central Kansas. Statewide, the implementation of agricultural land-management practices to reduce runoff may have been responsible, in part, for a diminished duration and magnitude of high flows. In central and eastern Kansas, implemented agricultural land-management practices may have been partly responsible for an inflated magnitude of low flows at several sites.

  19. Evaluation test on stability of high temperature strain gage

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshimi (Kyowa Electronic Instruments Co. Ltd., Tokyo (Japan)); Ito, Haruhiko; Tanaka, Isao; Komori, Yoshihiro

    1983-08-01

    This report deals with the results on a stability test of high temperature strain gage which is utilized for development of the Stethoscope for OGL - 1 Components in Elevated Temperature Services (ab. SOCETS). The test has proved that the weldable strain gage (KHC - 20 - G5) exhibits excellent stability at 500/sup 0/C during 3000 to 4000 hours service and can be applied sufficiently to evaluate integrity of OGL - 1 high temperature pipings and others.

  20. Evaluation test on stability of high temperature strain gage

    International Nuclear Information System (INIS)

    Sato, Toshimi; Ito, Haruhiko; Tanaka, Isao; Komori, Yoshihiro.

    1983-01-01

    This report deals with the results on a stability test of high temperature strain gage which is utilized for development of the Stethoscope for OGL - 1 Components in Elevated Temperature Services (ab. SOCETS). The test has proved that the weldable strain gage (KHC - 20 - G5) exhibits excellent stability at 500 0 C during 3000 to 4000 hours service and can be applied sufficiently to evaluate integrity of OGL - 1 high temperature pipings and others. (author)

  1. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    Science.gov (United States)

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per

  2. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012

    Science.gov (United States)

    Smith, Kirk P.

    2014-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected

  3. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011

    Science.gov (United States)

    Smith, Kirk P.

    2013-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were

  4. Present day geodynamics in Iceland monitored by a permanent network of continuous GPS stations

    Science.gov (United States)

    Völksen, Christof; Árnadóttir, Thóra; Geirsson, Halldór; Valsson, Guðmundur

    2009-12-01

    Iceland is located on the Mid-Atlantic Ridge and thereby offers a rare opportunity to study crustal movements at a divergent plate boundary. Iceland is not only characterized by the divergence of the Eurasian and North American Plates, as several active volcanoes are located on the island. Moderate size earthquakes occur in the transform zones, causing measurable crustal deformation. In 1999 the installation of a permanent network of continuous GPS stations (ISGPS) was initiated in order to observe deformation due to unrest in the Hengill volcanic system and at the Katla volcano. The ISGPS network has been enlarged over the years and consists today of more than 25 CGPS stations. Most of the stations are located along the plate boundary, where most of the active deformation takes place. Uplift due to post-glacial rebound due to the melting of the largest glacier in Europe, Vatnajökull, is also detected by the ISGPS network. This study presents results from analysis of 9 years of data from the ISGPS network, in the global reference frame PDR05, which has been evaluated by the Potsdam-Dresden-Reprocessing group with reprocessed GPS data only. We thus determine subsidence or land uplift in a global frame. The horizontal station velocities clearly show spreading across the plate boundary of about 20 mm/a. Stations in the vicinity of the glacier Vatnajökull indicate uplift in the range of 12 mm/a, while a station in the central part of Iceland shows uplift rates of about 25 mm/a. Tide gauge readings in Reykjavik and current subsidence rates observed with CGPS agree also quite well.

  5. Streamflow and water-quality data for Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, December 1987-November 1988. Open File Report

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, from December 1987 to November 1988, to determine the prevailing quality of surface water throughout the basin. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water-quality station on Little Scrubgrass Creek near Lisbon, provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended sediment concentrations. Fourteen partial-record sites, located throughout the basin, were similarly sampled four times during the period of study. Streamflow and water-quality data obtained at these sites during various base flow periods are also presented

  6. Reconstruction of missing daily streamflow data using dynamic regression models

    Science.gov (United States)

    Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault

    2015-12-01

    River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.

  7. Hydrologic data for North Creek, Trinity River basin, Texas, 1975

    Science.gov (United States)

    Kidwell, C.C.

    1977-01-01

    This report contains the rainfall, runoff, and storage data collected during the 1975 water year for the 21.6-square-mile area above the stream-gaging station North Creek near Jacksboro, Texas. The weighted-mean rainfall in the study area during the water year was 39.01 inches, which is greater than the 18-year average of 30.21 inches for the period 1958-75. Monthly rainfall totals ranged from 1.04 inches in November to 7.94 inches in May. The mean discharge for 1975 at the stream-gaging station was 5.98 cfs, compared with the 14-year (1957-70) average of 5.75 cfs. The annual runoff from the basin above the stream-gaging station was 4,330 acre-feet or 3.76 inches. Three storms were selected for detailed computations for the 1975 water year. The storms occurred on Oct. 30-31, 1974, May 2, 1975 , and Aug. 26, 1975. Rainfall and discharge were computed on the basis of a refined time breakdown. Patterns of the storms are illustrated by hydrographs and mass curves. A summary of rainfall-runoff data is tabulated. There are five floodwater-retarding structures in the study area. These structures have a total capacity of 4,425 acre-feet below flood-spillway crests and regulate streamflow from 16.3 square miles, or 75 percent of the study area. A summary of the physical data at each of the floodwater-retarding structures is included. (Woodard-USGS)

  8. Skilful seasonal forecasts of streamflow over Europe?

    Science.gov (United States)

    Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian

    2018-04-01

    This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate

  9. Streamflow, suspended-sediment, and soil-erosion data from Kaulana and Hakioawa watersheds, Kaho'olawe, Hawai'i,

    Science.gov (United States)

    Izuka, Scot K.; Abbott, Lyman L.

    2010-01-01

    Various events over the last two centuries have destroyed the vegetation and caused rapid soil erosion on large areas of the small, arid, windy tropical shield-volcano island of Kaho`olawe, Hawai`i. These activities were largely halted in the 1990s, and efforts have been made to restore the island's vegetation in order to stem erosion. In 2003, the Kaho`olawe Island Reserve Commission (KIRC) began restoration efforts using native vegetation. In 2006 to 2010, the U.S. Geological Survey (USGS), in cooperation with the KIRC, monitored streamflow, fluvial suspended-sediment transport, and erosion rates in the Hakioawa and Kaulana watersheds on northeastern Kaho`olawe to provide information needed to assess the effectiveness of restoration efforts. This report presents the results from this monitoring. Results.-Hakioawa and Kaulana gulches were dry about 90 percent of the time during the monitoring period; mean annual flow was 0.06 ft3/s at Hakioawa Gulch gage and 0.01 ft3/s at the Kaulana Gulch gage. For the period when the sediment gages on both gulches were operating concurrently (October 2007 to September 2009), sediment discharge was higher from Hakioawa Gulch than from Kaulana Gulch. The annual suspended-sediment loads for the concurrent period averaged 1,880 tons at the Hakioawa Gulch gage and 276 tons at the Kaulana Gulch gage. Of the 77 erosion-monitoring sites in the Hakioawa and Kaulana watersheds, 50 had overall rates of change indicating erosion for the monitoring period, ranging from -1 to -10 mm/yr and averaging -3 mm/yr. Seven sites had rates of change indicating overall deposition, ranging from 1 to 15 mm/yr and averaging 5 mm/yr. Twenty had rates of change below detection (less than ?1 mm/yr). The average rate of change for the 26 sites in areas that have undergone restoration by the KIRC was below the detection limit of the erosion-monitoring method. In comparison, the 51 sites in nonrestoration areas averaged -2 mm/y. Both of these averages, however

  10. Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination

    Science.gov (United States)

    Hadi, Sinan Jasim; Tombul, Mustafa

    2018-06-01

    Streamflow is an essential component of the hydrologic cycle in the regional and global scale and the main source of fresh water supply. It is highly associated with natural disasters, such as droughts and floods. Therefore, accurate streamflow forecasting is essential. Forecasting streamflow in general and monthly streamflow in particular is a complex process that cannot be handled by data-driven models (DDMs) only and requires pre-processing. Wavelet transformation is a pre-processing technique; however, application of continuous wavelet transformation (CWT) produces many scales that cause deterioration in the performance of any DDM because of the high number of redundant variables. This study proposes multigene genetic programming (MGGP) as a selection tool. After the CWT analysis, it selects important scales to be imposed into the artificial neural network (ANN). A basin located in the southeast of Turkey is selected as case study to prove the forecasting ability of the proposed model. One month ahead downstream flow is used as output, and downstream flow, upstream, rainfall, temperature, and potential evapotranspiration with associated lags are used as inputs. Before modeling, wavelet coherence transformation (WCT) analysis was conducted to analyze the relationship between variables in the time-frequency domain. Several combinations were developed to investigate the effect of the variables on streamflow forecasting. The results indicated a high localized correlation between the streamflow and other variables, especially the upstream. In the models of the standalone layout where the data were entered to ANN and MGGP without CWT, the performance is found poor. In the best-scale layout, where the best scale of the CWT identified as the highest correlated scale is chosen and enters to ANN and MGGP, the performance increased slightly. Using the proposed model, the performance improved dramatically particularly in forecasting the peak values because of the inclusion

  11. Treating pre-instrumental data as "missing" data: using a tree-ring-based paleoclimate record and imputations to reconstruct streamflow in the Missouri River Basin

    Science.gov (United States)

    Ho, M. W.; Lall, U.; Cook, E. R.

    2015-12-01

    Advances in paleoclimatology in the past few decades have provided opportunities to expand the temporal perspective of the hydrological and climatological variability across the world. The North American region is particularly fortunate in this respect where a relatively dense network of high resolution paleoclimate proxy records have been assembled. One such network is the annually-resolved Living Blended Drought Atlas (LBDA): a paleoclimate reconstruction of the Palmer Drought Severity Index (PDSI) that covers North America on a 0.5° × 0.5° grid based on tree-ring chronologies. However, the use of the LBDA to assess North American streamflow variability requires a model by which streamflow may be reconstructed. Paleoclimate reconstructions have typically used models that first seek to quantify the relationship between the paleoclimate variable and the environmental variable of interest before extrapolating the relationship back in time. In contrast, the pre-instrumental streamflow is here considered as "missing" data. A method of imputing the "missing" streamflow data, prior to the instrumental record, is applied through multiple imputation using chained equations for streamflow in the Missouri River Basin. In this method, the distribution of the instrumental streamflow and LBDA is used to estimate sets of plausible values for the "missing" streamflow data resulting in a ~600 year-long streamflow reconstruction. Past research into external climate forcings, oceanic-atmospheric variability and its teleconnections, and assessments of rare multi-centennial instrumental records demonstrate that large temporal oscillations in hydrological conditions are unlikely to be captured in most instrumental records. The reconstruction of multi-centennial records of streamflow will enable comprehensive assessments of current and future water resource infrastructure and operations under the existing scope of natural climate variability.

  12. GAGE cancer-germline antigens bind DNA and are recruited to the nuclear envelope by Germ cell-less

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Rösner, Heike; Pedersen, Christina Bøg

    GAGE genes encode a highly similar, primate-specific protein family with unique primary structure and undefined roles in germ cells, various fetal cells and cancer cells. We report that GAGE proteins are intrinsically disordered proteins that provide novel interfaces between chromatin and the nuc......GAGE genes encode a highly similar, primate-specific protein family with unique primary structure and undefined roles in germ cells, various fetal cells and cancer cells. We report that GAGE proteins are intrinsically disordered proteins that provide novel interfaces between chromatin...... and the nuclear envelope. Structural analysis by NMR and CD spectroscopy showed GAGE proteins lack distinct secondary or tertiary structure and are therefore intrinsically disordered. In normal cells and cancer cells GAGE proteins localize predominantly in the nucleus; we found GAGE proteins formed stable......) at the nuclear envelope. Furthermore, exogenous and endogenous GAGE proteins were recruited to the nuclear envelope in GCL-overexpressing cells. Gene expression analysis and immunohistochemical staining suggest GAGE proteins and GCL interact physiologically in human cells that express both, including male germ...

  13. How do extreme streamflow due to hurricane IRMA compare during 1938-2017 in South Eastern US?

    Science.gov (United States)

    Anandhi, A.

    2017-12-01

    The question related to Irma, Harvey, Maria, and other hurricanes is: are hurricane more frequent and intense than they have been in the past. Recent hurricanes were unusually strong hitting the US Coastline or territories as a category 4 or 5, dropping unusually large amounts of precipitation on the affected areas creating extreme high-flow events in rivers and streams in affected areas. The objective of the study is to determine how extreme are streamflows from recent hurricanes (e.g. IRMA) when compared to streamflow's during 1938-2017 time-period. Additionally, in this study, the extreme precipitations are also compared during IRMA. Extreme high flows are selected from Indicators of Hydrologic Alteration (IHA). They are distributions, timing, duration, frequency, magnitude, pulses, and days of extreme events in rivers of the southeastern United States and Gulf of Mexico Hydrologic Region—03. Streamflow data from 30 stations in the region with at least 79 years of record (1938-2017) are used. Historical precipitation changes is obtained from meta-analysis of published literature. Our preliminary results indicate the extremeness of streamflow from recent hurricanes vary with the IHA indicator selected. Some potential implications of these extreme events on the region's ecosystem are also discussed using causal chains and loops.

  14. Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.

    Science.gov (United States)

    Feng, Jianyuan; Feng, Zhiyong

    2017-09-11

    Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.

  15. Streamflow and water-quality data for Little Clearfield Creek basin, Clearfield County, Pennsylvania, December 1987-November 1988. Open File Report

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Clearfield Creek basin, Clearfield County, Pennsylvania, from December 1987 through November 1988, to determine the existing quality of surface water over a range of hydrologic conditions. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal-mine permit applications. A water-quality station near the mouth of Little Clearfield Creek provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations, and suspended-sediment concentrations. Seventeen partial-record sites, located throughout the basin, were similarly sampled four times during the study. Streamflow and water-quality data obtained at these sites during a winter base flow, a spring storm event, a low summer base flow, and a more moderate summer base flow also are presented

  16. Comparison of streamflow and water-quality data collection techniques for the Saginaw River, Michigan

    Science.gov (United States)

    Hoard, C.J.; Holtschlag, D.J.; Duris, J.W.; James, D.A.; Obenauer, D.J.

    2012-01-01

    on sampling technique was 37 percent for suspended sediment, 26 percent for turbidity, and 9.7 percent for total phosphorus samples collected at both. Acoustic techniques were also used to assist in the determination of the effectiveness of using acoustic-backscatter information for estimating the suspended-sediment concentration of the river water. Backscatter data was collected by use of an acoustic Doppler current profiler, and a Van Dorn manual sampler was simultaneously used to collect discrete water samples at 10 depths (3.5, 7.5, 11, 14, 15.5, 17.5, 19.5, 20.5, 22, and 24.5 ft below the water surface) along two vertical profiles near the center of the Saginaw River near Bay City. The Van Dorn samples were analyzed for suspended-sediment concentrations, and these data were then used to develop a relationship between acoustic-backscatter data. Acoustic-backscatter data was strongly correlated to sediment concentrations and, by using a linear regression, was able to explain 89 percent of the variability. Although this regression technique showed promise for using acoustic backscatter to estimate suspended-sediment concentration, attempts to compare suspended-sediment concentrations to the acoustic signal-to-noise ratio estimates, recorded at the fixed acoustic streamflow-gaging station near Bay City (04157061), resulted in a poor correlation.

  17. Potential of commercial microwave link network derived rainfall for river runoff simulations

    Science.gov (United States)

    Smiatek, Gerhard; Keis, Felix; Chwala, Christian; Fersch, Benjamin; Kunstmann, Harald

    2017-03-01

    Commercial microwave link networks allow for the quantification of path integrated precipitation because the attenuation by hydrometeors correlates with rainfall between transmitter and receiver stations. The networks, operated and maintained by cellphone companies, thereby provide completely new and country wide precipitation measurements. As the density of traditional precipitation station networks worldwide is significantly decreasing, microwave link derived precipitation estimates receive increasing attention not only by hydrologists but also by meteorological and hydrological services. We investigate the potential of microwave derived precipitation estimates for streamflow prediction and water balance analyses, exemplarily shown for an orographically complex region in the German Alps (River Ammer). We investigate the additional value of link derived rainfall estimations combined with station observations compared to station and weather radar derived values. Our river runoff simulation system employs a distributed hydrological model at 100 × 100 m grid resolution. We analyze the potential of microwave link derived precipitation estimates for two episodes of 30 days with typically moderate river flow and an episode of extreme flooding. The simulation results indicate the potential of this novel precipitation monitoring method: a significant improvement in hydrograph reproduction has been achieved in the extreme flooding period that was characterized by a large number of local strong precipitation events. The present rainfall monitoring gauges alone were not able to correctly capture these events.

  18. Low Streamflow Forcasting using Minimum Relative Entropy

    Science.gov (United States)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  19. A distributed water level network in ephemeral river reaches to identify hydrological processes within anthropogenic catchments

    Science.gov (United States)

    Sarrazin, B.; Braud, I.; Lagouy, M.; Bailly, J. S.; Puech, C.; Ayroles, H.

    2009-04-01

    In order to study the impact of land use change on the water cycle, distributed hydrological models are more and more used, because they have the ability to take into account the land surface heterogeneity and its evolution due to anthropogenic pressure. These models provide continuous distributed simulations of streamflow, runoff, soil moisture, etc, which, ideally, should be evaluated against continuous distributed measurements, taken at various scales and located in nested sub-catchments. Distributed network of streamflow gauging stations are in general scarce and very expensive to maintain. Furthermore, they can hardly be installed in the upstream parts of the catchments where river beds are not well defined. In this paper, we present an alternative to these standard streamflow gauging stations network, based on self powered high resolution water level sensors using a capacitive water height data logger. One of their advantages is that they can be installed even in ephemeral reaches and from channel head locations to high order streams. Furthermore, these innovative and easily adaptable low cost sensors offer the possibility to develop in the near future, a wireless network application. Such a network, including 15 sensors has been set up on nested watersheds in small and intermittent streams of a 7 km² catchment, located in the mountainous "Mont du Lyonnais" area, close to the city of Lyon, France. The land use of this catchment is mostly pasture, crop and forest, but the catchment is significantly affected by human activities, through the existence of a dense roads and paths network and urbanized areas. The equipment provides water levels survey during precipitation events in the hydrological network with a very accurate time step (2 min). Water levels can be related to runoff production and catchment response as a function of scale. This response will depend, amongst other, on variable soil water storage capacity, physiographic data and characteristics of

  20. Model simulation of the Manasquan water-supply system in Monmouth County, New Jersey

    Science.gov (United States)

    Chang, Ming; Tasker, Gary D.; Nieswand, Steven

    2001-01-01

    Model simulation of the Manasquan Water Supply System in Monmouth County, New Jersey, was completed using historic hydrologic data to evaluate the effects of operational and withdrawal alternatives on the Manasquan reservoir and pumping system. Changes in the system operations can be simulated with the model using precipitation forecasts. The Manasquan Reservoir system model operates by using daily streamflow values, which were reconstructed from historical U.S. Geological Survey streamflow-gaging station records. The model is able to run in two modes--General Risk analysis Model (GRAM) and Position Analysis Model (POSA). The GRAM simulation procedure uses reconstructed historical streamflow records to provide probability estimates of certain events, such as reservoir storage levels declining below a specific level, when given an assumed set of operating rules and withdrawal rates. POSA can be used to forecast the likelihood of specified outcomes, such as streamflows falling below statutory passing flows, associated with a specific working plan for the water-supply system over a period of months. The user can manipulate the model and generate graphs and tables of streamflows and storage, for example. This model can be used as a management tool to facilitate the development of drought warning and drought emergency rule curves and safe yield values for the water-supply system.

  1. Dynamic safety assessment of natural gas stations using Bayesian network

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Esmaeil, E-mail: smlzarei65@gmail.com [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Azadeh, Ali [School of Industrial and Systems Engineering, Center of Excellence for Intelligent-Based Experimental Mechanic, College of Engineering, University of Tehran (Iran, Islamic Republic of); Khakzad, Nima [Safety and Security Science Section, Delft University of Technology, Delft (Netherlands); Aliabadi, Mostafa Mirzaei [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Mohammadfam, Iraj, E-mail: mohammadfam@umsha.ac.ir [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of)

    2017-01-05

    Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.

  2. Dynamic safety assessment of natural gas stations using Bayesian network

    International Nuclear Information System (INIS)

    Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj

    2017-01-01

    Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.

  3. Latin square three dimensional gage master

    Science.gov (United States)

    Jones, Lynn L.

    1982-01-01

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  4. Latin-square three-dimensional gage master

    Science.gov (United States)

    Jones, L.

    1981-05-12

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  5. Investigation of factors affecting the calibration of strain gage based transducers (''Goodzeit gages'') for SSC magnets

    International Nuclear Information System (INIS)

    Davidson, M.; Gilbertson, A.; Dougherty, M.

    1991-03-01

    These transducers are designed to measure stresses on SSC collared coils. They are individually calibrated with a bonded ten-stack of SSC inner coil cable by applying a known load and reading corresponding output from the gages. The transducer is supported by a notched ''backing plate'' that allows for bending of the gage beam during calibration or in use with an actual coil. Several factors affecting the calibration and use of the transducers are: the number of times a ''backing plate'' is used, the similarities or difficulties between bonded ten-stacks, and the differences between the ten-stacks and the coil they represent. The latter is probably the most important because a calibration curve is a model of how a transducer should react within a coil. If the model is wrong, the calibration curve is wrong. Information will be presented regarding differences in calibrations between Brookhaven National Labs (also calibrating these transducers) and Fermilab -- what caused these differences, the investigation into the differences between coils and ten-stacks and how they relate to transducer calibration, and some suggestions for future calibrations

  6. Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kontou, Eleftheria [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Motoaki, Yutaka [Idaho National Laboratory; Smart, John [Idaho National Laboratory; Zhou, Zhi [Argonne National Laboratory

    2018-04-03

    Today's electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation of EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations. Results suggest that the hypothetical transportation network company fleet increases daily vehicle miles traveled per EV with less overall down time, resulting in increased demand for DCFC. Sites with overhead service lines are recommended for hosting DCFC stations to minimize the need for trenching underground service lines. A negative relationship was found between cost per unit of energy and fast charging utilization, underscoring the importance of prioritizing utilization over installation costs when siting DCFC stations. Although this preliminary analysis of the impacts of new mobility paradigms on alternative fueling infrastructure requirements has produced several key results, the complexity of the problem warrants further investigation.

  7. On the effectiveness of single and multiple base station sleep modes in cellular networks

    OpenAIRE

    Marsan, Marco Ajmone; Chiaraviglio, Luca; Ciullo, Delia; Meo, Michela

    2013-01-01

    In this paper we study base station sleep modes that, by reducing power consumption in periods of low traffic, improve the energy efficiency of cellular access networks. We assume that when some base stations enter sleep mode, radio coverage and service provisioning are provided by the base stations that remain active, so as to guarantee that service is available over the whole area at all times. This may be an optimistic assumption in the case of the sparse base station layouts typical of ru...

  8. Testing for moisture content in foods by neutron gaging

    International Nuclear Information System (INIS)

    Helf, S.

    1976-01-01

    Neutron gaging was applied to the testing for moisture content in bulk powdered foods and in canned Army field rations. The technique is based on the moderation or thermalization of fast neutrons by hydrogenous matter and the measurement of thermal neutron intensity as a function of moisture content. A small californium-252 capsule, of approximate output 10 7 neutrons per second, was used as the source of fast neutrons. It is concluded that a fast neutron moderation technique is feasible for the nondestructive measurement or control of moisture or both in near-dry bulk powdered foods. Samples must be measured under identical geometric conditions, that is, uniform bulk density and volume using a standard metal container or cell. For canned or otherwise prepacked rations, measurement of moisture is interfered with by variations in fill weight among cans or packages of the same product. A gamma-ray attenuation gaging method proved to be of insufficient sensitivity to correct for fill weight variation and was further complicated by nonuniformity in can wall dimensions. Neutron gaging, however, appears to be quite useful for monitoring a standard packaged item for fill weight since the neutron signal is virtually unaffected by variations in container dimensions. The radiation dose imparted to a sample or package of food subjected to such a test is judged to pose no threat to humans from subsequent consumption of the food. An estimate is given for the cost range of a commercial neutron gage and of encapsulated radioisotopic neutron sources

  9. Analysis of infrequent hydrologic events with regard to existing streamflow monitoring capabilities in White Oak Creek watershed

    International Nuclear Information System (INIS)

    Edgar, D.E.

    1978-10-01

    The quantity and concentration of radionuclides released to the environment by ORNL must be monitored continuously and accurately in order to ensure compliance with legal requirements established by Federal and state guidelines. Of the five streamflow monitoring stations located within White Oak Creek watershed, stations 3, 4, and 5 are of primary importance in quantifying the flux of water, sediment, and radionuclides through the drainage basin. Currently, the maximum measurable discharge at these three stations is 1.42 m 3 /sec (50 cfs), 0.54 m 3 /sec (19 cfs), and 4.25 m 3 /sec (150 cfs), respectively. Estimates of flood magnitude and frequency indicate that even small floods which are expected to recur often are significantly larger than the existing monitoring system can measure. Several independent studies have shown that most of the sediment transported from a watershed is carried by larger, less frequent streamflows which occur only a small percentage of the time. It also has been shown that certain radionuclides are transported in association with fluvial sediment. Thus, the flux of radionuclides, both in solution and associated with sediment, increases significantly during flood conditions. Estimates of peak discharges resulting from recent storms indicate that the drainage system has experienced variable flood conditions during the past few years for which no accurate and reliable records exist

  10. REDUCING THE BOOSTER STATIONS ENERGY CONSUMPTION BY WAY OF ELIMINATING OVERPRESSURE IN THE WATER SUPPLY NETWORK

    Directory of Open Access Journals (Sweden)

    G. N. Zdor

    2015-01-01

    Full Text Available The energy efficiency improvement of the city housing-and-utilities infrastructure and watersupply and water-disposal systems poses an occurrent problem. The water-supply systems energy consumption sizable share falls on the pump plants. The article deals with the issues of the operating regime management of the existing booster stations equipped with a group of pumping units regulated with frequency converters. One of the optimization directions of their energy consumption is the reduction of over-pressure in the water-distribution network and its sustentation within the regulatory values. The authors offer the structure and methodology of the data collection-and-analysis automated system utilization for revealing and eliminating the overpressure in the water-supply network. This system is designed for the group management of booster-stations operating regimes on the ground of data obtained from the pressure controlling devices at the consumers. The data exchange in the system is realized via GSM.The paper presents results of the tests carried out at the booster stations in some major cities of the Republic of Belarus. The authors analyze dependence of overpressure in the network on the methods of the plant output pressure sustentation (daily graph or constant pressure. The authors study the elimination effect of over-pressure in the water distribution network on changing the booster station pumping units operation regimes. The study shows that eliminating over pressure in the water distributing network leads to lowering the booster station pressure. This in its turn decreases its energy consumption by 15–20 % depending on the over pressure fixed level.

  11. Skin-friction measurements with hot-wire gages

    Science.gov (United States)

    Houdeville, R.; Juillen, J. C.; Cousteix, J.

    1983-11-01

    The development of two hot-wire gauges for implantation in wind-tunnel models and their application to the measurement of skin-friction phenomena are reported. The measurement principle is explained; the design and calibration of a single-wire gage containing a thermocouple for temperature determination (Cousteix and Juillen, 1982-1983) are summarized; and sample results for 2D and 3D flows with positive pressure gradients are shown. An advanced design employing a thin hot film deposited on an 80-micron-diameter quartz fiber extending into a 1-mm-sq 0.8-mm-deep cavity is characterized and demonstrated on a pulsed flow on a flat plate, Tollmien-Schlichting waves, and a turbulent boundary layer. Two cold-wire temperature sensors are added to this gage to permit detection of the skin of the skin friction in the separated flow over a cylinder.

  12. Entropy Applications to Water Monitoring Network Design: A Review

    Directory of Open Access Journals (Sweden)

    Jongho Keum

    2017-11-01

    Full Text Available Having reliable water monitoring networks is an essential component of water resources and environmental management. A standardized process for the design of water monitoring networks does not exist with the exception of the World Meteorological Organization (WMO general guidelines about the minimum network density. While one of the major challenges in the design of optimal hydrometric networks has been establishing design objectives, information theory has been successfully adopted to network design problems by providing measures of the information content that can be deliverable from a station or a network. This review firstly summarizes the common entropy terms that have been used in water monitoring network designs. Then, this paper deals with the recent applications of the entropy concept for water monitoring network designs, which are categorized into (1 precipitation; (2 streamflow and water level; (3 water quality; and (4 soil moisture and groundwater networks. The integrated design method for multivariate monitoring networks is also covered. Despite several issues, entropy theory has been well suited to water monitoring network design. However, further work is still required to provide design standards and guidelines for operational use.

  13. GAGE cancer-germline antigens are recruited to the nuclear envelope by germ cell-less (GCL)

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Rösner, Heike I; Pedersen, Christina B

    2012-01-01

    GAGE proteins are highly similar, primate-specific molecules with unique primary structure and undefined cellular roles. They are restricted to cells of the germ line in adult healthy individuals, but are broadly expressed in a wide range of cancers. In a yeast two-hybrid screen we identified the...... different dsDNA fragments, suggesting sequence-nonspecific binding. Dual association of GAGE family members with GCL at the nuclear envelope inner membrane in cells, and with dsDNA in vitro, implicate GAGE proteins in chromatin regulation in germ cells and cancer cells....... the metazoan transcriptional regulator, Germ cell-less (GCL), as an interaction partner of GAGE12I. GCL directly binds LEM-domain proteins (LAP2β, emerin, MAN1) at the nuclear envelope, and we found that GAGE proteins were recruited to the nuclear envelope inner membrane by GCL. Based on yeast two...

  14. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    Evaluation and calibration measurements were performed on commercial nickel-chromium metal-foil strain gages in a high-magnetic-field (12 T), liquid-helium (4.2 K) environment. The purpose was to fully characterize strain gages for use at cryogenic temperatures in high magnetic fields. In this study, the magnetoresistance of a number of strain gages was measured in three orthogonal directions at mechanical strain levels to 8900 μm/m. As a result, a unique calibration curve was defined for magnetoresistance strain errors that is independent of strain level and field direction to 12 T at 4.2 K. A current strain-gage application is the measurement of superconductor mechanical properties. These gages will soon be used in the stress analysis of superconducting fusion magnets during cooldown from ambient temperatures and during operation at 4.2 K with magnetic fields to 12 T

  15. Streamflow disaggregation: a nonlinear deterministic approach

    Directory of Open Access Journals (Sweden)

    B. Sivakumar

    2004-01-01

    Full Text Available This study introduces a nonlinear deterministic approach for streamflow disaggregation. According to this approach, the streamflow transformation process from one scale to another is treated as a nonlinear deterministic process, rather than a stochastic process as generally assumed. The approach follows two important steps: (1 reconstruction of the scalar (streamflow series in a multi-dimensional phase-space for representing the transformation dynamics; and (2 use of a local approximation (nearest neighbor method for disaggregation. The approach is employed for streamflow disaggregation in the Mississippi River basin, USA. Data of successively doubled resolutions between daily and 16 days (i.e. daily, 2-day, 4-day, 8-day, and 16-day are studied, and disaggregations are attempted only between successive resolutions (i.e. 2-day to daily, 4-day to 2-day, 8-day to 4-day, and 16-day to 8-day. Comparisons between the disaggregated values and the actual values reveal excellent agreements for all the cases studied, indicating the suitability of the approach for streamflow disaggregation. A further insight into the results reveals that the best results are, in general, achieved for low embedding dimensions (2 or 3 and small number of neighbors (less than 50, suggesting possible presence of nonlinear determinism in the underlying transformation process. A decrease in accuracy with increasing disaggregation scale is also observed, a possible implication of the existence of a scaling regime in streamflow.

  16. Study on the three-station typical network deployments of workspace Measurement and Positioning System

    Science.gov (United States)

    Xiong, Zhi; Zhu, J. G.; Xue, B.; Ye, Sh. H.; Xiong, Y.

    2013-10-01

    As a novel network coordinate measurement system based on multi-directional positioning, workspace Measurement and Positioning System (wMPS) has outstanding advantages of good parallelism, wide measurement range and high measurement accuracy, which makes it to be the research hotspots and important development direction in the field of large-scale measurement. Since station deployment has a significant impact on the measurement range and accuracy, and also restricts the use-cost, the optimization method of station deployment was researched in this paper. Firstly, positioning error model was established. Then focusing on the small network consisted of three stations, the typical deployments and error distribution characteristics were studied. Finally, through measuring the simulated fuselage using typical deployments at the industrial spot and comparing the results with Laser Tracker, some conclusions are obtained. The comparison results show that under existing prototype conditions, I_3 typical deployment of which three stations are distributed in a straight line has an average error of 0.30 mm and the maximum error is 0.50 mm in the range of 12 m. Meanwhile, C_3 typical deployment of which three stations are uniformly distributed in the half-circumference of an circle has an average error of 0.17 mm and the maximum error is 0.28 mm. Obviously, C_3 typical deployment has a higher control effect on precision than I_3 type. The research work provides effective theoretical support for global measurement network optimization in the future work.

  17. Characterization of peak streamflows and flood inundation at selected areas in North Carolina following Hurricane Matthew, October 2016

    Science.gov (United States)

    Musser, Jonathan W.; Watson, Kara M.; Gotvald, Anthony J.

    2017-05-05

    The passage of Hurricane Matthew through central and eastern North Carolina during October 7–9, 2016, brought heavy rainfall, which resulted in major flooding. More than 15 inches of rain was recorded in some areas. More than 600 roads were closed, including Interstates 95 and 40, and nearly 99,000 structures were affected by floodwaters. Immediately following the flooding, the U.S. Geological Survey documented 267 high-water marks, of which 254 were surveyed. North Carolina Emergency Management documented and surveyed 353 high-water marks. Using a subset of these highwater marks, six flood-inundation maps were created for hard-hit communities. Digital datasets of the inundation areas, study reach boundary, and water-depth rasters are available for download. In addition, peak gage-height data, peak streamflow data, and annual exceedance probabilities (in percent) were determined for 24 U.S. Geological Survey streamgages located near the heavily flooded communities.

  18. Reference hydrologic networks I. The status and potential future directions of national reference hydrologic networks for detecting trends

    Science.gov (United States)

    Whitfield, Paul H.; Burn, Donald H.; Hannaford, Jamie; Higgins, Hélène; Hodgkins, Glenn A.; Marsh, Terry; Looser, Ulrich

    2012-01-01

    Identifying climate-driven trends in river flows on a global basis is hampered by a lack of long, quality time series data for rivers with relatively undisturbed regimes. This is a global problem compounded by the lack of support for essential long-term monitoring. Experience demonstrates that, with clear strategic objectives, and the support of sponsoring organizations, reference hydrologic networks can constitute an exceptionally valuable data source to effectively identify, quantify and interpret hydrological change—the speed and magnitude of which is expected to a be a primary driver of water management and flood alleviation strategies through the future—and for additional applications. Reference hydrologic networks have been developed in many countries in the past few decades. These collections of streamflow gauging stations, that are maintained and operated with the intention of observing how the hydrology of watersheds responds to variations in climate, are described. The status of networks under development is summarized. We suggest a plan of actions to make more effective use of this collection of networks.

  19. Estimated dissolved-solids loads and trends at selected streams in and near the Uinta Basin, Utah, Water Years 1989–2013

    Science.gov (United States)

    Thiros, Susan A.

    2017-03-23

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show

  20. The Global Streamflow Indices and Metadata Archive (GSIM) - Part 2: Quality control, time-series indices and homogeneity assessment

    Science.gov (United States)

    Gudmundsson, Lukas; Do, Hong Xuan; Leonard, Michael; Westra, Seth

    2018-04-01

    This is Part 2 of a two-paper series presenting the Global Streamflow Indices and Metadata Archive (GSIM), which is a collection of daily streamflow observations at more than 30 000 stations around the world. While Part 1 (Do et al., 2018a) describes the data collection process as well as the generation of auxiliary catchment data (e.g. catchment boundary, land cover, mean climate), Part 2 introduces a set of quality controlled time-series indices representing (i) the water balance, (ii) the seasonal cycle, (iii) low flows and (iv) floods. To this end we first consider the quality of individual daily records using a combination of quality flags from data providers and automated screening methods. Subsequently, streamflow time-series indices are computed for yearly, seasonal and monthly resolution. The paper provides a generalized assessment of the homogeneity of all generated streamflow time-series indices, which can be used to select time series that are suitable for a specific task. The newly generated global set of streamflow time-series indices is made freely available with an digital object identifier at https://doi.pangaea.de/10.1594/PANGAEA.887470" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.887470 and is expected to foster global freshwater research, by acting as a ground truth for model validation or as a basis for assessing the role of human impacts on the terrestrial water cycle. It is hoped that a renewed interest in streamflow data at the global scale will foster efforts in the systematic assessment of data quality and provide momentum to overcome administrative barriers that lead to inconsistencies in global collections of relevant hydrological observations.

  1. Expression, purification and characterization of the cancer-germline antigen GAGE12I: a candidate for cancer immunotherapy

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Besir, Hüseyin; Larsen, Martin R

    2010-01-01

    GAGE cancer-germline antigens are frequently expressed in a broad range of different cancers, while their expression in normal tissues is limited to the germ cells of the immune privileged organs, testis and ovary. GAGE proteins are immunogenic in humans, which make them promising targets...... for immunotherapy and candidates for cancer vaccines. Recombinant proteins may be superior to peptides as immunogens, since they have the potential to prime both CD4(+) and CD8(+) T cells and are not dependent on patient HLA-type. We have developed a method for production of highly pure recombinant GAGE12I...... filtration and formaldehyde cross-linking indicated that GAGE12I forms tetramers. The purified recombinant GAGE12I represents a candidate molecule for vaccination of cancer patients and will form the basis for further structural analysis of GAGE proteins....

  2. Assessment of dissolved-selenium concentrations and loads in the lower Gunnison River Basin, Colorado, as part of the Selenium Management Program, from 2011 to 2016

    Science.gov (United States)

    Henneberg, Mark F.

    2018-04-23

    The Gunnison Basin Selenium Management Program implemented a water-quality monitoring network in 2011 in the lower Gunnison River Basin in Colorado. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents the percentile values of selenium because regulatory agencies in Colorado make decisions based on the U.S. Environmental Protection Agency (EPA) Clean Water Act Section 303(d) that uses percentile values of concentration. Also presented are dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for water years (WYs) 2011–2016 (October 1, 2010, through September 30, 2016). Annual dissolved-selenium loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations. Annual dissolved-selenium loads for WY 2011 through WY 2016 ranged from 179 and 391 pounds (lb) at Uncompahgre River at Colona to 11,100 and 17,300 lb at Gunnison River near Grand Junction (herein called Whitewater), respectively. Instantaneous loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations and 13 ancillary sites where discrete water-quality sampling also took place, using discrete water-quality samples and the associated discharge measurements collected during the period. Median instantaneous loads ranged from 0.01 pound per day (lb/d) at Smith Fork near Lazear to 33.0 lb/d at Whitewater. Mean instantaneous loads ranged from 0.06 lb/d at Smith Fork near Lazear to 36.2 lb/d at Whitewater. Most tributary sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb/day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream. The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved

  3. Effects of urbanization and stormwater control measures on streamflows in the vicinity of Clarksburg, Maryland, USA

    Science.gov (United States)

    Rhea, Lee; Jarnagin, Taylor; Hogan, Dianna; Loperfido, J. V.; Shuster, William

    2015-01-01

    Understanding the efficacy of revised watershed management methods is important to mitigating the impacts of urbanization on streamflow. We evaluated the influence of land use change, primarily as urbanization, and stormwater control measures on the relationship between precipitation and stream discharge over an 8-year period for five catchments near Clarksburg, Montgomery County, Maryland, USA. A unit-hydrograph model based on a temporal transfer function was employed to account for and standardize temporal variation in rainfall pattern, and properly apportion rainfall to streamflow at different time lags. From these lagged relationships, we quantified a correction to the precipitation time series to achieve a hydrograph that showed good agreement between precipitation and discharge records. Positive corrections appeared to include precipitation events that were of limited areal extent and therefore not captured by our rain gages. Negative corrections were analysed for potential causal relationships. We used mixed-model statistical techniques to isolate different sources of variance as drivers that mediate the rainfall–runoff dynamic before and after management. Seasonal periodicity mediated rainfall–runoff relationships, and land uses (i.e. agriculture, natural lands, wetlands and stormwater control measures) were statistically significant predictors of precipitation apportionment to stream discharge. Our approach is one way to evaluate actual effectiveness of management efforts in the face of complicating circumstances and could be paired with cost data to understand economic efficiency or life cycle aspects of watershed management. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    Science.gov (United States)

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Potential impact of climate change to the future streamflow of Yellow River Basin based on CMIP5 data

    Science.gov (United States)

    Yang, Xiaoli; Zheng, Weifei; Ren, Liliang; Zhang, Mengru; Wang, Yuqian; Liu, Yi; Yuan, Fei; Jiang, Shanhu

    2018-02-01

    The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change on the future streamflow in this basin is very important for local policy and planning on food security. In this study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm) statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity (VIC) model with 0.25° × 0.25° spatial resolution was developed based on downscaled fields for simulating streamflow in the future period over YRB. The results show that with the global warming trend, the annual streamflow will reduced about 10 % during the period of 2021-2050, compared to the base period of 1961-1990 in YRB. There should be suitable water resources planning to meet the demands of growing populations and future climate changing in this region.

  6. Disentangling the response of streamflow to forest management and climate

    Science.gov (United States)

    Dymond, S.; Miniat, C.; Bladon, K. D.; Keppeler, E.; Caldwell, P. V.

    2016-12-01

    Paired watershed studies have showcased the relationships between forests, management, and streamflow. However, classical analyses of paired-watershed studies have done little to disentangle the effects of management from overarching climatic signals, potentially masking the interaction between management and climate. Such approaches may confound our understanding of how forest management impacts streamflow. Here we use a 50-year record of streamflow and climate data from the Caspar Creek Experimental Watersheds (CCEW), California, USA to separate the effects of forest management and climate on streamflow. CCEW has two treatment watersheds that have been harvested in the past 50 years. We used a nonlinear mixed model to combine the pre-treatment relationship between streamflow and climate and the post-treatment relationship via an interaction between climate and management into one equation. Our results show that precipitation and potential evapotranspiration alone can account for >95% of the variability in pre-treatment streamflow. Including management scenarios into the model explained most of the variability in streamflow (R2 > 0.98). While forest harvesting altered streamflow in both of our modeled watersheds, removing 66% of the vegetation via selection logging using a tractor yarding system over the entire watershed had a more substantial impact on streamflow than clearcutting small portions of a watershed using cable-yarding. These results suggest that forest harvesting may result in differing impacts on streamflow and highlights the need to incorporate climate into streamflow analyses of paired-watershed studies.

  7. Analysis of 20th century rainfall and streamflow to characterize drought and water resources in Puerto Rico

    Science.gov (United States)

    Larsen, Matthew C.

    2000-01-01

    During the period from 1990 to 1997, annual rainfall accumulation averaged 87% of normal at the 12 stations with the longest period of record in Puerto Rico, a Caribbean island with a 1999 population of 3.8 million. Streamflow in rivers supplying the La Plata and Loíza reservoirs, the principal water supply of the San Juan metropolitan area, was at or below the 10th flow percentile for 27% to 50% of the time between December 1993 and May 1996. Diminished reservoir levels in 1994 and 1995 affected more than 1 million people in the San Juan metropolitan area. Water rationing was implemented during this period and significant agricultural losses, valued at $165 million, were recorded in 1994. The public endured a year of mandatory water rationing in which sections of the city had their water-distribution networks shut off for 24 to 36 hours on alternate days. During the winter and spring of 1997–1998, water was rationed to more than 200,000 people in northwestern Puerto Rico because water level in the Guajataca reservoir was well below normal for two years because of rainfall deficits. The drought period of 1993–1996 was comparable in magnitude to a drought in 1966–1968, but water rationing was more severe during the 1993–1996 period, indicating that water management issues such as demand, storage capacity, water production and losses, and per capita consumption are increasingly important as population and development in Puerto Rico expand. [Key words: drought, streamflow, water resources, Caribbean, Puerto Rico, rainfall, water supply.

  8. Regression model development and computational procedures to support estimation of real-time concentrations and loads of selected constituents in two tributaries to Lake Houston near Houston, Texas, 2005-9

    Science.gov (United States)

    Lee, Michael T.; Asquith, William H.; Oden, Timothy D.

    2012-01-01

    In December 2005, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (Escherichia coli and total coliform), atrazine, and suspended sediment at two USGS streamflow-gaging stations that represent watersheds contributing to Lake Houston (08068500 Spring Creek near Spring, Tex., and 08070200 East Fork San Jacinto River near New Caney, Tex.). Data from the discrete water-quality samples collected during 2005–9, in conjunction with continuously monitored real-time data that included streamflow and other physical water-quality properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), were used to develop regression models for the estimation of concentrations of water-quality constituents of substantial source watersheds to Lake Houston. The potential explanatory variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, and time (to account for seasonal variations inherent in some water-quality data). The response variables (the selected constituents) at each site were nitrite plus nitrate nitrogen, total phosphorus, total organic carbon, E. coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities to serve as potential surrogate variables to estimate concentrations of the selected constituents through statistical regression. Statistical regression also facilitates accompanying estimates of uncertainty in the form of prediction intervals. Each regression model potentially can be used to estimate concentrations of a given constituent in real time. Among other regression diagnostics, the diagnostics used as indicators of general model reliability and reported herein include the adjusted R-squared, the residual standard error, residual plots, and p-values. Adjusted R-squared values for the Spring Creek models ranged

  9. The Global Streamflow Indices and Metadata Archive (GSIM – Part 2: Quality control, time-series indices and homogeneity assessment

    Directory of Open Access Journals (Sweden)

    L. Gudmundsson

    2018-04-01

    Full Text Available This is Part 2 of a two-paper series presenting the Global Streamflow Indices and Metadata Archive (GSIM, which is a collection of daily streamflow observations at more than 30 000 stations around the world. While Part 1 (Do et al., 2018a describes the data collection process as well as the generation of auxiliary catchment data (e.g. catchment boundary, land cover, mean climate, Part 2 introduces a set of quality controlled time-series indices representing (i the water balance, (ii the seasonal cycle, (iii low flows and (iv floods. To this end we first consider the quality of individual daily records using a combination of quality flags from data providers and automated screening methods. Subsequently, streamflow time-series indices are computed for yearly, seasonal and monthly resolution. The paper provides a generalized assessment of the homogeneity of all generated streamflow time-series indices, which can be used to select time series that are suitable for a specific task. The newly generated global set of streamflow time-series indices is made freely available with an digital object identifier at https://doi.pangaea.de/10.1594/PANGAEA.887470 and is expected to foster global freshwater research, by acting as a ground truth for model validation or as a basis for assessing the role of human impacts on the terrestrial water cycle. It is hoped that a renewed interest in streamflow data at the global scale will foster efforts in the systematic assessment of data quality and provide momentum to overcome administrative barriers that lead to inconsistencies in global collections of relevant hydrological observations.

  10. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  11. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    Science.gov (United States)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  12. Reference Climatological Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reference Climatological Stations (RCS) network represents the first effort by NOAA to create and maintain a nationwide network of stations located only in areas...

  13. Mississippi River streamflow measurement techniques at St. Louis, Missouri

    Science.gov (United States)

    Wastson, Chester C.; Holmes, Robert R.; Biedenham, David S.

    2013-01-01

    Streamflow measurement techniques of the Mississippi River at St. Louis have changed through time (1866–present). In addition to different methods used for discrete streamflow measurements, the density and range of discrete measurements used to define the rating curve (stage versus streamflow) have also changed. Several authors have utilized published water surface elevation (stage) and streamflow data to assess changes in the rating curve, which may be attributed to be caused by flood control and/or navigation structures. The purpose of this paper is to provide a thorough review of the available flow measurement data and techniques and to assess how a strict awareness of the limitations of the data may affect previous analyses. It is concluded that the pre-1930s discrete streamflow measurement data are not of sufficient accuracy to be compared with modern streamflow values in establishing long-term trends of river behavior.

  14. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    Science.gov (United States)

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  15. Temporal and Spatial Variations in Precipitation, Streamflow, Suspended-Sediment Loads and Yields, and Land-Condition Trend Analysis at the U.S. Army Pinon Canyon Maneuver Site, Las Animas County, Colorado, 1983 through 2007

    Science.gov (United States)

    Stevens, M.R.; Dupree, J.; Kuzmiak, J.M.

    2008-01-01

    In 2007, the U.S. Geological Survey, in cooperation with the U.S. Department of the Army, began an assessment of the spatial and temporal variations in precipitation, streamflow, suspended-sediment loads and yields, changes in land condition, effects of the tributaries on the Purgatoire River and the possible relation of effects from military training to hydrology and land conditions that have occurred at Pinon Canyon Maneuver Site (PCMS) from 1983 through 2007. Data were collected for precipitation (19 stations) and streamflow and sediment load (5 tributary and 2 main-stem Purgatoire River stations) during 1983 through 2007 for various time periods. The five tributary stations were Van Bremer Arroyo near Model, Taylor Arroyo below Rock Crossing, Lockwood Canyon Creek near Thatcher, Red Rock Canyon Creek at the mouth, and Bent Canyon Creek at the mouth. In addition, data were collected at two Purgatoire River stations: Purgatoire River near Thatcher and Purgatoire River at Rock Crossing.

  16. Human influences on streamflow drought characteristics in England and Wales

    Science.gov (United States)

    Tijdeman, Erik; Hannaford, Jamie; Stahl, Kerstin

    2018-02-01

    Human influences can affect streamflow drought characteristics and propagation. The question is where, when and why? To answer these questions, the impact of different human influences on streamflow droughts were assessed in England and Wales, across a broad range of climate and catchments conditions. We used a dataset consisting of catchments with near-natural flow as well as catchments for which different human influences have been indicated in the metadata (Factors Affecting Runoff) of the UK National River Flow Archive (NRFA). A screening approach was applied on the streamflow records to identify human-influenced records with drought characteristics that deviated from those found for catchments with near-natural flow. Three different deviations were considered, specifically deviations in (1) the relationship between streamflow drought duration and the base flow index, BFI (specifically, BFIHOST, the BFI predicted from the hydrological properties of soils), (2) the correlation between streamflow and precipitation and (3) the temporal occurrence of streamflow droughts compared to precipitation droughts, i.e. an increase or decrease in streamflow drought months relative to precipitation drought months over the period of record. The identified deviations were then related to the indicated human influences. Results showed that the majority of catchments for which human influences were indicated did not show streamflow drought characteristics that deviated from those expected under near-natural conditions. For the catchments that did show deviating streamflow drought characteristics, prolonged streamflow drought durations were found in some of the catchments affected by groundwater abstractions. Weaker correlations between streamflow and precipitation were found for some of the catchments with reservoirs, water transfers or groundwater augmentation schemes. An increase in streamflow drought occurrence towards the end of their records was found for some of the

  17. Human influences on streamflow drought characteristics in England and Wales

    Directory of Open Access Journals (Sweden)

    E. Tijdeman

    2018-02-01

    Full Text Available Human influences can affect streamflow drought characteristics and propagation. The question is where, when and why? To answer these questions, the impact of different human influences on streamflow droughts were assessed in England and Wales, across a broad range of climate and catchments conditions. We used a dataset consisting of catchments with near-natural flow as well as catchments for which different human influences have been indicated in the metadata (Factors Affecting Runoff of the UK National River Flow Archive (NRFA. A screening approach was applied on the streamflow records to identify human-influenced records with drought characteristics that deviated from those found for catchments with near-natural flow. Three different deviations were considered, specifically deviations in (1 the relationship between streamflow drought duration and the base flow index, BFI (specifically, BFIHOST, the BFI predicted from the hydrological properties of soils, (2 the correlation between streamflow and precipitation and (3 the temporal occurrence of streamflow droughts compared to precipitation droughts, i.e. an increase or decrease in streamflow drought months relative to precipitation drought months over the period of record. The identified deviations were then related to the indicated human influences. Results showed that the majority of catchments for which human influences were indicated did not show streamflow drought characteristics that deviated from those expected under near-natural conditions. For the catchments that did show deviating streamflow drought characteristics, prolonged streamflow drought durations were found in some of the catchments affected by groundwater abstractions. Weaker correlations between streamflow and precipitation were found for some of the catchments with reservoirs, water transfers or groundwater augmentation schemes. An increase in streamflow drought occurrence towards the end of their records was found for

  18. Long-range forecasting of intermittent streamflow

    Science.gov (United States)

    van Ogtrop, F. F.; Vervoort, R. W.; Heller, G. Z.; Stasinopoulos, D. M.; Rigby, R. A.

    2011-11-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth) of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.

  19. Long-range forecasting of intermittent streamflow

    Directory of Open Access Journals (Sweden)

    F. F. van Ogtrop

    2011-11-01

    Full Text Available Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.

  20. Streamflow responses in Chile to megathrust earthquakes in the 20th and 21st centuries

    Science.gov (United States)

    Mohr, Christian; Manga, Michael; Wang, Chi-yuen; Korup, Oliver

    2016-04-01

    Both coseismic static stress and dynamic stresses associated with seismic waves may cause responses in hydrological systems. Such responses include changes in the water level, hydrochemistry and streamflow discharge. Earthquake effects on hydrological systems provide a means to study the interaction between stress changes and regional hydrology, which is otherwise rarely possible. Chile is a country of frequent and large earthquakes and thus provides abundant opportunities to study such interactions and processes. We analyze streamflow responses in Chile to several megathrust earthquakes, including the 1943 Mw 8.1 Coquimbo, 1950 Mw 8.2 Antofagasta, 1960 Mw 9.5 Valdivia, 1985 Mw 8.0 Valparaiso, 1995 Mw 8.0 Antofagasta, 2010 Mw 8.8 Maule, and the 2014 Mw 8.2 Iquique earthquakes. We use data from 716 stream gauges distributed from the Altiplano in the North to Tierra del Fuego in the South. This network covers the Andes mountain ranges, the central valley, the Coastal Mountain ranges and (mainly in the more southern parts) the Coastal flats. We combine empirical magnitude-distance relationships, machine learning tools, and process-based modeling to characterize responses. We first assess the streamflow anomalies and relate these to topographical, hydro-climatic, geological and earthquake-related (volumetric and dynamic strain) factors using various classifiers. We then apply 1D-groundwater flow modeling to selected catchments in order to test competing hypotheses for the origin of streamflow changes. We show that the co-seismic responses of streamflow mostly involved increasing discharges. We conclude that enhanced vertical permeability can explain most streamflow responses at the regional scale. The total excess water released by a single earthquake, i.e. the Maule earthquake, yielded up to 1 km3. Against the background of megathrust earthquakes frequently hitting Chile, the amount of water released by earthquakes is substantial, particularly for the arid northern

  1. Methods for estimating drought streamflow probabilities for Virginia streams

    Science.gov (United States)

    Austin, Samuel H.

    2014-01-01

    Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.

  2. Streamflow conditions along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-11-14

    The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.

  3. A Web-Based Tool to Interpolate Nitrogen Loading Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Youn Shik Park

    2014-09-01

    Full Text Available Water quality data may not be collected at a high frequency, nor over the range of streamflow data. For instance, water quality data are often collected monthly, biweekly, or weekly, since collecting and analyzing water quality samples are costly compared to streamflow data. Regression models are often used to interpolate pollutant loads from measurements made intermittently. Web-based Load Interpolation Tool (LOADIN was developed to provide user-friendly interfaces and to allow use of streamflow and water quality data from U.S. Geological Survey (USGS via web access. LOADIN has a regression model assuming that instantaneous load is comprised of the pollutant load based on streamflow and the pollutant load variation within the period. The regression model has eight coefficients determined by a genetic algorithm with measured water quality data. LOADIN was applied to eleven water quality datasets from USGS gage stations located in Illinois, Indiana, Michigan, Minnesota, and Wisconsin states with drainage areas from 44 km2 to 1,847,170 km2. Measured loads were calculated by multiplying nitrogen data by streamflow data associated with measured nitrogen data. The estimated nitrogen loads and measured loads were evaluated using Nash-Sutcliffe Efficiency (NSE and coefficient of determination (R2. NSE ranged from 0.45 to 0.91, and R2 ranged from 0.51 to 0.91 for nitrogen load estimation.

  4. Computing daily mean streamflow at ungaged locations in Iowa by using the Flow Anywhere and Flow Duration Curve Transfer statistical methods

    Science.gov (United States)

    Linhart, S. Mike; Nania, Jon F.; Sanders, Curtis L.; Archfield, Stacey A.

    2012-01-01

    linear regression method and the daily mean streamflow for the 15th day of every other month. The Flow Duration Curve Transfer method was used to estimate unregulated daily mean streamflow from the physical and climatic characteristics of gaged basins. For the Flow Duration Curve Transfer method, daily mean streamflow quantiles at the ungaged site were estimated with the parameter-based regression model, which results in a continuous daily flow-duration curve (the relation between exceedance probability and streamflow for each day of observed streamflow) at the ungaged site. By the use of a reference streamgage, the Flow Duration Curve Transfer is converted to a time series. Data used in the Flow Duration Curve Transfer method were retrieved for 113 continuous-record streamgages in Iowa and within a 50-mile buffer of Iowa. The final statewide regression equations for Iowa were computed by using a weighted-least-squares multiple linear regression method and were computed for the 0.01-, 0.05-, 0.10-, 0.15-, 0.20-, 0.30-, 0.40-, 0.50-, 0.60-, 0.70-, 0.80-, 0.85-, 0.90-, and 0.95-exceedance probability statistics determined from the daily mean streamflow with a reporting limit set at 0.1 ft3/s. The final statewide regression equation for Iowa computed by using left-censored regression techniques was computed for the 0.99-exceedance probability statistic determined from the daily mean streamflow with a low limit threshold and a reporting limit set at 0.1 ft3/s. For the Flow Anywhere method, results of the validation study conducted by using six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 1,016 to 138 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 1,690 to 237 ft3/s. Values of the percent root-mean-square error ranged from 115 percent to 26.2 percent. The logarithm (base 10) streamflow percent root

  5. Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models

    Science.gov (United States)

    Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri

    2015-09-01

    Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.

  6. Water resources data, Idaho, 2002; Volume 2. Upper Columbia River basin and Snake River basin below King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  7. Water resources data, Idaho, 2002; Volume 1. Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  8. Geospatial tools effectively estimate nonexceedance probabilities of daily streamflow at ungauged and intermittently gauged locations in Ohio

    Directory of Open Access Journals (Sweden)

    William H. Farmer

    2017-10-01

    New hydrological insights for the region: Several methods for estimating nonexceedance probabilities of daily mean streamflows are explored, including single-index methodologies (nearest-neighboring index and geospatial tools (kriging and topological kriging. These methods were evaluated by conducting leave-one-out cross-validations based on analyses of nearly 7 years of daily streamflow data from 79 unregulated streamgages in Ohio and neighboring states. The pooled, ordinary kriging model, with a median Nash–Sutcliffe performance of 0.87, was superior to the single-site index methods, though there was some bias in the tails of the probability distribution. Incorporating network structure through topological kriging did not improve performance. The pooled, ordinary kriging model was applied to 118 locations without systematic streamgaging across Ohio where instantaneous streamflow measurements had been made concurrent with water-quality sampling on at least 3 separate days. Spearman rank correlations between estimated nonexceedance probabilities and measured streamflows were high, with a median value of 0.76. In consideration of application, the degree of regulation in a set of sample sites helped to specify the streamgages required to implement kriging approaches successfully.

  9. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework

    Science.gov (United States)

    Wang, Taihua; Yang, Hanbo; Yang, Dawen; Qin, Yue; Wang, Yuhan

    2018-03-01

    The source region of the Yellow River (SRYR) is greatly important for water resources throughout the entire Yellow River Basin. Streamflow in the SRYR has experienced great changes over the past few decades, which is closely related to the frozen ground degradation; however, the extent of this influence is still unclear. In this study, the air freezing index (DDFa) is selected as an indicator for the degree of frozen ground degradation. A water-energy balance equation within the Budyko framework is employed to quantify the streamflow response to the direct impact of climate change, which manifests as changes in the precipitation and potential evapotranspiration, as well as the impact of frozen ground degradation, which can be regarded as part of the indirect impact of climate change. The results show that the direct impact of climate change and the impact of frozen ground degradation can explain 55% and 33%, respectively, of the streamflow decrease for the entire SRYR from Period 1 (1965-1989) to Period 2 (1990-2003). In the permafrost-dominated region upstream of the Jimai hydrological station, the impact of frozen ground degradation can explain 71% of the streamflow decrease. From Period 2 (1990-2003) to Period 3 (2004-2015), the observed streamflow did not increase as much as the precipitation; this could be attributed to the combined effects of increasing potential evapotranspiration and more importantly, frozen ground degradation. Frozen ground degradation could influence streamflow by increasing the groundwater storage when the active layer thickness increases in permafrost-dominated regions. These findings will help develop a better understanding of the impact of frozen ground degradation on water resources in the Tibetan Plateau.

  10. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Directory of Open Access Journals (Sweden)

    Kazancı Selma Zengin

    2017-12-01

    Full Text Available In recent years, Global Navigation Satellite Systems (GNSS have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK. With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  11. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Science.gov (United States)

    Kazancı, Selma Zengin; Kayıkçı, Emine Tanır

    2017-12-01

    In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled "Using Regional GNSS Networks to Strengthen Severe Weather Prediction" was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  12. Characteristics and changes of streamflow on the Tibetan Plateau: A review

    Directory of Open Access Journals (Sweden)

    Lan Cuo

    2014-11-01

    New hydrological insights for the region: Streamflow follows the monthly patterns of precipitation and temperature in that all peak in May–September. Streamflow changes are affected by climate change and human activities depending on the basins. Streamflow is precipitation dominated in the northern, eastern and southeastern basins. In the central and western basin either melt water or groundwater, or both contributes significantly to streamflow. Human activities have altered streamflow in the lower reaches of the eastern, northern and western basins. Long-term trends in streamflow vary with basins. Outstanding research issues include: (1 What are the linkages between streamflow and climate systems? (2 What are the basin-wide hydrological processes? And (3 What are the cryospheric change impacts on hydrological processes and water balance?

  13. Effect of monthly areal rainfall uncertainty on streamflow simulation

    Science.gov (United States)

    Ndiritu, J. G.; Mkhize, N.

    2017-08-01

    Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic

  14. Seasonal Patterns of Gastrointestinal Illness and Streamflow along the Ohio River

    Directory of Open Access Journals (Sweden)

    Elena N. Naumova

    2012-05-01

    Full Text Available Waterborne gastrointestinal (GI illnesses demonstrate seasonal increases associated with water quality and meteorological characteristics. However, few studies have been conducted on the association of hydrological parameters, such as streamflow, and seasonality of GI illnesses. Streamflow is correlated with biological contamination and can be used as proxy for drinking water contamination. We compare seasonal patterns of GI illnesses in the elderly (65 years and older along the Ohio River for a 14-year period (1991–2004 to seasonal patterns of streamflow. Focusing on six counties in close proximity to the river, we compiled weekly time series of hospitalizations for GI illnesses and streamflow data. Seasonal patterns were explored using Poisson annual harmonic regression with and without adjustment for streamflow. GI illnesses demonstrated significant seasonal patterns with peak timing preceding peak timing of streamflow for all six counties. Seasonal patterns of illness remain consistent after adjusting for streamflow. This study found that the time of peak GI illness precedes the peak of streamflow, suggesting either an indirect relationship or a more direct path whereby pathogens enter water supplies prior to the peak in streamflow. Such findings call for interdisciplinary research to better understand associations among streamflow, pathogen loading, and rates of gastrointestinal illnesses.

  15. Streamflow and water-quality data for Meadow Run Basin, Fayette County, Pennsylvania, December 1987-November 1988. Open file report

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Witt, E.C.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Meadow Run basin, Fayette County, Pennsylvania, from December 7, 1987 through November 15, 1988, to determine the prevailing quality of surface water over a range of hydrologic conditions. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal-mine permit applications. A water-quality station near the mouth of Meadow Run provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended-sediment concentrations

  16. Monthly streamflow forecasting at varying spatial scales in the Rhine basin

    Science.gov (United States)

    Schick, Simon; Rössler, Ole; Weingartner, Rolf

    2018-02-01

    Model output statistics (MOS) methods can be used to empirically relate an environmental variable of interest to predictions from earth system models (ESMs). This variable often belongs to a spatial scale not resolved by the ESM. Here, using the linear model fitted by least squares, we regress monthly mean streamflow of the Rhine River at Lobith and Basel against seasonal predictions of precipitation, surface air temperature, and runoff from the European Centre for Medium-Range Weather Forecasts. To address potential effects of a scale mismatch between the ESM's horizontal grid resolution and the hydrological application, the MOS method is further tested with an experiment conducted at the subcatchment scale. This experiment applies the MOS method to 133 additional gauging stations located within the Rhine basin and combines the forecasts from the subcatchments to predict streamflow at Lobith and Basel. In doing so, the MOS method is tested for catchments areas covering 4 orders of magnitude. Using data from the period 1981-2011, the results show that skill, with respect to climatology, is restricted on average to the first month ahead. This result holds for both the predictor combination that mimics the initial conditions and the predictor combinations that additionally include the dynamical seasonal predictions. The latter, however, reduce the mean absolute error of the former in the range of 5 to 12 %, which is consistently reproduced at the subcatchment scale. An additional experiment conducted for 5-day mean streamflow indicates that the dynamical predictions help to reduce uncertainties up to about 20 days ahead, but it also reveals some shortcomings of the present MOS method.

  17. Streamflow estimation in ungauged basins using remote sensed hydrological data

    Science.gov (United States)

    Vasquez, Nicolas; Vargas, Ximena

    2017-04-01

    In several parts of the world the scarcity of streamflow gauging stations produces an important deficit of information, and calibrating these basins remains a challenge for hydrologists. Improvements in remote sensing have provided significant information about hydrological cycle, which can be used to calibrate a hydrological model when streamflow information is not available. Several satellite products related to snow, evapotranspiration, soil moisture, among other variables provide essential information about hydrological processes, and can be used to calibrate physically based hydrological models. Despite this useful information, other aspects are unknown like aquifers dimensions or precipitation heterogeneity. We calibrated three snow driven basins in the Coquimbo Region in Northern Chile, using fSCA from MODIS (MOD10 and MYD10) and NDSI from Landsat. We also considered the MOD16 product to estimate evapotranspiration. Soil Moisture from AMSR-E was considered but it was not useful due to the spatial resolution of the product and the high heterogeneity of the terrain. The Cold Regional Hydrological Modal (CHRM) was selected to represent the hydrological processes due to the importance of snow processes which are, by far, the most important in this area, where precipitation falls as snow principally in winter (June to August) and the melting period begins in spring (September) and ends in the beginning of summer (December and January). The inputs used in the model are precipitation, temperature, short wave radiation, wind speed and relative humidity. The meteorological information was obtained from stations available in the area, and distributed spatially using orographic gradients for wind and precipitation and lapse rates for air temperature and dew point temperature. Short wave radiation was computed and corrected by cloud cover data from MODIS. Streamflow data was available but it was not used in the calibration process. The three basins are Cochiguaz river

  18. Lag times of bank filtration at a well field, Cincinnati, Ohio, USA

    Science.gov (United States)

    Sheets, R.A.; Darner, R.A.; Whitteberry, B.L.

    2002-01-01

    Wells placed next to surface-water bodies to induce infiltration have come under scrutiny because of the presence of the potential pathogens in surface water. Removal of pathogens and other contaminants by bank filtration is assumed, but regulatory agencies question the effectiveness of this process. To investigate transport processes of biological constituents, advective groundwater traveltimes to production wells under the influence of surface water need to be established first to determine appropriate water-quality sampling schedules. This paper presents the results of a study of bank filtration at a well field in southwestern Ohio. Field parameters such as water level, specific conductance, and water temperature were measured at least hourly at a streamflow gaging station and at five monitoring wells each at two separate sites, corresponding to two nearby production wells. Water-quality samples also were collected in all wells and the streamflow gaging station. Specific conductance is directly related to concentration of chloride, a chemically conservative constituent. Cross-correlation methods were used to determine the average traveltime from the river to the monitoring wells. Traveltimes based on specific conductance ranged from approximately 20 h to 10 days at one site and 5 days to 3 months at the other site. Calculated groundwater flow velocities ranged from 2.1 ?? 10-3 to 6.0 ?? 10-3 cm/s and 3.5 ?? 10-4 to 7.1 ?? 10-4 cm/s at the two sites. Data collected when a production well is continuously pumping reveal shorter and more consistent traveltimes than when the same well is pumped intermittently. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Wind Tunnel Strain-Gage Balance Calibration Data Analysis Using a Weighted Least Squares Approach

    Science.gov (United States)

    Ulbrich, N.; Volden, T.

    2017-01-01

    A new approach is presented that uses a weighted least squares fit to analyze wind tunnel strain-gage balance calibration data. The weighted least squares fit is specifically designed to increase the influence of single-component loadings during the regression analysis. The weighted least squares fit also reduces the impact of calibration load schedule asymmetries on the predicted primary sensitivities of the balance gages. A weighting factor between zero and one is assigned to each calibration data point that depends on a simple count of its intentionally loaded load components or gages. The greater the number of a data point's intentionally loaded load components or gages is, the smaller its weighting factor becomes. The proposed approach is applicable to both the Iterative and Non-Iterative Methods that are used for the analysis of strain-gage balance calibration data in the aerospace testing community. The Iterative Method uses a reasonable estimate of the tare corrected load set as input for the determination of the weighting factors. The Non-Iterative Method, on the other hand, uses gage output differences relative to the natural zeros as input for the determination of the weighting factors. Machine calibration data of a six-component force balance is used to illustrate benefits of the proposed weighted least squares fit. In addition, a detailed derivation of the PRESS residuals associated with a weighted least squares fit is given in the appendices of the paper as this information could not be found in the literature. These PRESS residuals may be needed to evaluate the predictive capabilities of the final regression models that result from a weighted least squares fit of the balance calibration data.

  20. Drivers influencing streamflow changes in the Upper Turia basin, Spain.

    Science.gov (United States)

    Salmoral, Gloria; Willaarts, Bárbara A; Troch, Peter A; Garrido, Alberto

    2015-01-15

    Many rivers across the world have experienced a significant streamflow reduction over the last decades. Drivers of the observed streamflow changes are multiple, including climate change (CC), land use and land cover changes (LULCC), water transfers and river impoundment. Many of these drivers inter-act simultaneously, making it difficult to discern the impact of each driver individually. In this study we isolate the effects of LULCC on the observed streamflow reduction in the Upper Turia basin (east Spain) during the period 1973-2008. Regression models of annual streamflow are fitted with climatic variables and also additional time variant drivers like LULCC. The ecohydrological model SWAT is used to study the magnitude and sign of streamflow change when LULCC occurs. Our results show that LULCC does play a significant role on the water balance, but it is not the main driver underpinning the observed reduction on Turia's streamflow. Increasing mean temperature is the main factor supporting increasing evapotranspiration and streamflow reduction. In fact, LULCC and CC have had an offsetting effect on the streamflow generation during the study period. While streamflow has been negatively affected by increasing temperature, ongoing LULCC have positively compensated with reduced evapotranspiration rates, thanks to mainly shrubland clearing and forest degradation processes. These findings are valuable for the management of the Turia river basin, as well as a useful approach for the determination of the weight of LULCC on the hydrological response in other regions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. U.S. Geological Survey Streamgage Operation and Maintenance Cost Evaluation...from the National Streamflow Information Program

    Science.gov (United States)

    Norris, J. Michael

    2010-01-01

    To help meet the goal of providing earth-science information to the Nation, the U.S. Geological Survey (USGS) operates and maintains the largest streamgage network in the world, with over 7,600 active streamgages in 2010. This network is operated in cooperation with over 850 Federal, tribal, State, and local funding partners. The streamflow information provided by the USGS is used for the protection of life and property; for the assessment, allocation, and management of water resources; for the design of roads, bridges, dams, and water works; for the delineation of flood plains; for the assessment and evaluation of habitat; for understanding the effects of land-use, water-use, and climate changes; for evaluation of water quality; and for recreational safety and enjoyment. USGS streamgages are managed and operated to rigorous national standards, allowing analyses of data from streamgages in different areas and spanning long time periods, some with more than 100 years of data. About 90 percent of USGS streamgages provide streamflow information real-time on the web. Physical measurements of streamflow are made at streamgages multiple times a year, depending on flow conditions, to ensure the highest level of accuracy possible. In addition, multiple reviews and quality assurance checks are performed before the data is finalized. In 2006, the USGS reviewed all activities, operations, equipment, support, and costs associated with operating and maintaining a streamgage program (Norris and others, 2008). A summary of the percentages of costs associated with activities required to operate a streamgage on an annual basis are presented in figure 1. This information represents what it costs to fund a 'typical' USGS streamgage and how those funds are utilized. It should be noted that some USGS streamgages have higher percentages for some categories than do others depending on location and conditions. Forty-one percent of the funding for the typical USGS streamgage is for labor

  2. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  3. A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction

    Science.gov (United States)

    Danandeh Mehr, Ali; Kahya, Ercan

    2017-06-01

    Genetic programming (GP) is able to systematically explore alternative model structures of different accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological system identification has been recognized in recent studies. However, selecting a parsimonious (accurate and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model for single-station streamflow prediction. The three main components of the approach that take us from observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and, eventually simplification component exploits Pareto front plot to select a parsimonious model through an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP, MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy importance of being applied in practice. In addition, the approach allows the user to enter human insight into the problem to examine evolved models and pick the best performing programs out for further analysis.

  4. Magnetic Repeat Station Network on the Baltic Sea — Why So Needed?

    Directory of Open Access Journals (Sweden)

    Welker Elżbieta

    2017-12-01

    Full Text Available The development of navigation systems requires more and more accurate base data. Currently, attention is paid to utilization of geophysical fields — gravitational and magnetic ones — for navigation purposes. The Earth’s magnetic field distribution — both onshore and offshore — is complicated and variable in time. Hence, it is essential to precisely know the secular variations in the area of interest. In the case of Baltic Sea, this involves establishing (re-establishing of a marine network of secular points (repeat stations and regular magnetic measurements of the three independent components of the Earth’s magnetic field. Such measurements require equipment that ensures not only high stability, but also information about sensors’ orientation in relation to geographic north and to the level. This article presents a new project of the Baltic network of repeat stations and gives a solution for the instruments usable for quasi-absolute magnetic measurements.

  5. Spiking Phineas Gage: a neurocomputational theory of cognitive-affective integration in decision making.

    Science.gov (United States)

    Wagar, Brandon M; Thagard, Paul

    2004-01-01

    The authors present a neurological theory of how cognitive information and emotional information are integrated in the nucleus accumbens during effective decision making. They describe how the nucleus accumbens acts as a gateway to integrate cognitive information from the ventromedial prefrontal cortex and the hippocampus with emotional information from the amygdala. The authors have modeled this integration by a network of spiking artificial neurons organized into separate areas and used this computational model to simulate 2 kinds of cognitive-affective integration. The model simulates successful performance by people with normal cognitive-affective integration. The model also simulates the historical case of Phineas Gage as well as subsequent patients whose ability to make decisions became impeded by damage to the ventromedial prefrontal cortex.

  6. Water Level Station History

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Images contain station history information for 175 stations in the National Water Level Observation Network (NWLON). The NWLON is a network of long-term,...

  7. Streamflow Correlation Map Grids in and near West Virginia 1930-2011

    Data.gov (United States)

    Department of the Interior — Correlation of flows at pairs of streamgages were evaluated using a Spearman’s rho correlation coefficient to better identify gages that can be used as index gages...

  8. Managing Recurrent Congestion of Subway Network in Peak Hours with Station Inflow Control

    Directory of Open Access Journals (Sweden)

    Qingru Zou

    2018-01-01

    Full Text Available Station inflow control (SIC is an important and effective method for reducing recurrent congestion during peak hours in the Beijing, Shanghai, and Guangzhou subway systems. This work proposes a practical and efficient method for establishing a static SIC scheme in normal weekdays for large-scale subway networks. First, a traffic assignment model without capacity constraint is utilized to determine passenger flow distributions on the network. An internal relationship between station inflows and section flows is then constructed. Second, capacity bottlenecks are identified by considering the transport capacity of each section. Then, a feedback-based bottleneck elimination strategy is established to search target control stations and determine their control time and control strength. To validate the effectiveness of the proposed approach, a decision support system coded in the C# programming language was developed, and the Beijing subway was used as a case study. The results indicate that the proposed method and tool are capable of practical applications, and the generated SIC plan has better performance over the existing SIC plan. This study provides a practical and useful method for operation agencies to construct SIC schemes in the subway system.

  9. Application of the geological streamflow and Muskingum Cunge ...

    African Journals Online (AJOL)

    ... of the geological streamflow and Muskingum Cunge models in the Yala River Basin, Kenya. ... can be represented by the application of hydrologic and hydraulic models. ... verification and streamflow routing based on a split record analysis.

  10. Potential Release Site Sediment Concentrations Correlated to Storm Water Station Runoff through GIS Modeling

    International Nuclear Information System (INIS)

    McLean, C.T.

    2005-01-01

    DOE DWDCG. Tables were then created for each analyte that listed the PRSs average value by storm water station allowing a tabular view of the mapped data. The final table that was created listed the number of high erosion PRSs and regular PRSs over background values that were contained in each watershed. An overall relationship between the high erosion PRSs or the regular PRSs and the storm water stations was not identified through the methods used in this research. However, the Arc Hydro data models created for this analysis were used to track possible sources of contamination found through sampling at the storm water gaging stations. This geometric network tracing was used to identify possible relationships between the storm water stations and the PRSs. The methods outlined for the geometric network tracing could be used to find other relationships between the sites. A cursory statistical analysis was performed which could be expanded and applied to the data sets generated during this research to establish a broader relationship between the PRSs and storm water stations

  11. Compilation of hydrologic data for White Sands pupfish habitat and nonhabitat areas, northern Tularosa Basin, White Sands Missile Range and Holloman Air Force Base, New Mexico, 1911-2008

    Science.gov (United States)

    Naus, C.A.; Myers, R.G.; Saleh, D.K.; Myers, N.C.

    2014-01-01

    The White Sands pupfish (Cyprinodon tularosa), listed as threatened by the State of New Mexico and as a Federal species of concern, is endemic to the Tularosa Basin, New Mexico. Because water quality can affect pupfish and the environmental conditions of their habitat, a comprehensive compilation of hydrologic data for pupfish habitat and nonhabitat areas in the northern Tularosa Basin was undertaken by the U.S. Geological Survey in cooperation with White Sands Missile Range. The four locations within the Tularosa Basin that are known pupfish habitat areas are the Salt Creek, Malpais Spring and Malpais Salt Marsh, Main Mound Spring, and Lost River habitat areas. Streamflow data from the Salt Creek near Tularosa streamflow-gaging station indicated that the average annual mean streamflow and average annual total streamflow for water years 1995–2008 were 1.35 cubic feet per second (ft3/s) and 983 acre-feet, respectively. Periods of no flow were observed in water years 2002 through 2006. Dissolved-solids concentrations in Salt Creek samples collected from 1911 through 2007 ranged from 2,290 to 66,700 milligrams per liter (mg/L). The average annual mean streamflow and average annual total streamflow at the Malpais Spring near Oscura streamflow-gaging station for water years 2003–8 were 6.81 ft3/s and 584 acre-feet, respectively. Dissolved-solids concentrations for 16 Malpais Spring samples ranged from 3,882 to 5,500 mg/L. Isotopic data for a Malpais Spring near Oscura water sample collected in 1982 indicated that the water was more than 27,900 years old. Streamflow from Main Mound Spring was estimated at 0.007 ft3/s in 1955 and 1957 and ranged from 0.02 to 0.07 ft3/s from 1996 to 2001. Dissolved-solids concentrations in samples collected between 1955 and 2007 ranged from an estimated 3,760 to 4,240 mg/L in the upper pond and 4,840 to 5,120 mg/L in the lower pond. Isotopic data for a Main Mound Spring water sample collected in 1982 indicated that the water was about

  12. Non-Coop Station History

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Station history documentation for stations outside the US Cooperative Observer network. Primarily National Weather Service stations assigned WBAN station IDs. Other...

  13. Generalized Skew Coefficients of Annual Peak Flows for Rural, Unregulated Streams in West Virginia

    Science.gov (United States)

    Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.

    2009-01-01

    Generalized skew was determined from analysis of records from 147 streamflow-gaging stations in or near West Virginia. The analysis followed guidelines established by the Interagency Advisory Committee on Water Data described in Bulletin 17B, except that stations having 50 or more years of record were used instead of stations with the less restrictive recommendation of 25 or more years of record. The generalized-skew analysis included contouring, averaging, and regression of station skews. The best method was considered the one with the smallest mean square error (MSE). MSE is defined as the following quantity summed and divided by the number of peaks: the square of the difference of an individual logarithm (base 10) of peak flow less the mean of all individual logarithms of peak flow. Contouring of station skews was the best method for determining generalized skew for West Virginia, with a MSE of about 0.2174. This MSE is an improvement over the MSE of about 0.3025 for the national map presented in Bulletin 17B.

  14. Compilation of streamflow statistics calculated from daily mean streamflow data collected during water years 1901–2015 for selected U.S. Geological Survey streamgages

    Science.gov (United States)

    Granato, Gregory E.; Ries, Kernell G.; Steeves, Peter A.

    2017-10-16

    Streamflow statistics are needed by decision makers for many planning, management, and design activities. The U.S. Geological Survey (USGS) StreamStats Web application provides convenient access to streamflow statistics for many streamgages by accessing the underlying StreamStatsDB database. In 2016, non-interpretive streamflow statistics were compiled for streamgages located throughout the Nation and stored in StreamStatsDB for use with StreamStats and other applications. Two previously published USGS computer programs that were designed to help calculate streamflow statistics were updated to better support StreamStats as part of this effort. These programs are named “GNWISQ” (Get National Water Information System Streamflow (Q) files), updated to version 1.1.1, and “QSTATS” (Streamflow (Q) Statistics), updated to version 1.1.2.Statistics for 20,438 streamgages that had 1 or more complete years of record during water years 1901 through 2015 were calculated from daily mean streamflow data; 19,415 of these streamgages were within the conterminous United States. About 89 percent of the 20,438 streamgages had 3 or more years of record, and about 65 percent had 10 or more years of record. Drainage areas of the 20,438 streamgages ranged from 0.01 to 1,144,500 square miles. The magnitude of annual average streamflow yields (streamflow per square mile) for these streamgages varied by almost six orders of magnitude, from 0.000029 to 34 cubic feet per second per square mile. About 64 percent of these streamgages did not have any zero-flow days during their available period of record. The 18,122 streamgages with 3 or more years of record were included in the StreamStatsDB compilation so they would be available via the StreamStats interface for user-selected streamgages. All the statistics are available in a USGS ScienceBase data release.

  15. Trend and variability in a new, reconstructed streamflow dataset for West and Central Africa, and climatic interactions, 1950-2005

    Science.gov (United States)

    Sidibe, Moussa; Dieppois, Bastien; Mahé, Gil; Paturel, Jean-Emmanuel; Amoussou, Ernest; Anifowose, Babatunde; Lawler, Damian

    2018-06-01

    Over recent decades, regions of West and Central Africa have experienced different and significant changes in climatic patterns, which have significantly impacted hydrological regimes. Such impacts, however, are not fully understood at the regional scale, largely because of scarce hydroclimatic data. Therefore, the aim of this study is to (a) assemble a new, robust, reconstructed streamflow dataset of 152 gauging stations; (b) quantify changes in streamflow over 1950-2005 period, using these newly reconstructed datasets; (c) significantly reveal trends and variability in streamflow over West and Central Africa based on new reconstructions; and (d) assess the robustness of this dataset by comparing the results with those identified in key climatic drivers (e.g. precipitation and temperature) over the region. Gap filling methods applied to monthly time series (1950-2005) yielded robust results (median Kling-Gupta Efficiency >0.75). The study underlines a good agreement between precipitation and streamflow trends and reveals contrasts between western Africa (negative trends) and Central Africa (positive trends) in the 1950s and 1960s. Homogenous dry conditions of the 1970s and 1980s, characterized by reduced significant negative trends resulting from quasi-decadal modulations of the trend, are replaced by wetter conditions in the recent period (1993-2005). The effect of this rainfall recovery (which extends to West and Central Africa) on increased river flows are further amplified by land use change in some Sahelian basins. This is partially offset, however, by higher potential evapotranspiration rates over parts of Niger and Nigeria. Crucially, the new reconstructed streamflow datasets presented here will be available for both the scientific community and water resource managers.

  16. Streamflow impacts of biofuel policy-driven landscape change.

    Directory of Open Access Journals (Sweden)

    Sami Khanal

    Full Text Available Likely changes in precipitation (P and potential evapotranspiration (PET resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979-2004 using the Weather Research Forecast (WRF model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity.

  17. Sensitivity of streamflow to climate change in California

    Science.gov (United States)

    Grantham, T.; Carlisle, D.; Wolock, D.; McCabe, G. J.; Wieczorek, M.; Howard, J.

    2015-12-01

    Trends of decreasing snowpack and increasing risk of drought are looming challenges for California water resource management. Increasing vulnerability of the state's natural water supplies threatens California's social-economic vitality and the health of its freshwater ecosystems. Despite growing awareness of potential climate change impacts, robust management adaptation has been hindered by substantial uncertainty in future climate predictions for the region. Down-scaled global climate model (GCM) projections uniformly suggest future warming of the region, but projections are highly variable with respect to the direction and magnitude of change in regional precipitation. Here we examine the sensitivity of California surface water supplies to climate variation independently of GCMs. We use a statistical approach to construct predictive models of monthly streamflow based on historical climate and river basin features. We then propagate an ensemble of synthetic climate simulations through the models to assess potential streamflow responses to changes in temperature and precipitation in different months and regions of the state. We also consider the range of streamflow change predicted by bias-corrected downscaled GCMs. Our results indicate that the streamflow in the xeric and coastal mountain regions of California is more sensitive to changes in precipitation than temperature, whereas streamflow in the interior mountain region responds strongly to changes in both temperature and precipitation. Mean climate projections for 2025-2075 from GCM ensembles are highly variable, indicating streamflow changes of -50% to +150% relative to baseline (1980-2010) for most months and regions. By quantifying the sensitivity of streamflow to climate change, rather than attempting to predict future hydrologic conditions based on uncertain GCM projections, these results should be more informative to water managers seeking to assess, and potentially reduce, the vulnerability of surface

  18. Historical Channel Adjustment and Estimates of Selected Hydraulic Values in the Lower Sabine River and Lower Brazos River Basins, Texas and Louisiana

    Science.gov (United States)

    Heitmuller, Franklin T.; Greene, Lauren E.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, evaluated historical channel adjustment and estimated selected hydraulic values at U.S. Geological Survey streamflow-gaging stations in the lower Sabine River Basin in Texas and Louisiana and lower Brazos River Basin in Texas to support geomorphic assessments of the Texas Instream Flow Program. Channel attributes including cross-section geometry, slope, and planform change were evaluated to learn how each river's morphology changed over the years in response to natural and anthropogenic disturbances. Historical and contemporary cross-sectional channel geometries at several gaging stations on each river were compared, planform changes were assessed, and hydraulic values were estimated including mean flow velocity, bed shear stress, Froude numbers, and hydraulic depth. The primary sources of historical channel morphology information were U.S. Geological Survey hard-copy discharge-measurement field notes. Additional analyses were done using computations of selected flow hydraulics, comparisons of historical and contemporary aerial photographs, comparisons of historical and contemporary ground photographs, evaluations of how frequently stage-discharge rating curves were updated, reviews of stage-discharge relations for field measurements, and considerations of bridge and reservoir construction activities. Based on historical cross sections at three gaging stations downstream from Toledo Bend Reservoir, the lower Sabine River is relatively stable, but is subject to substantial temporary scour-and-fill processes during floods. Exceptions to this characterization of relative stability include an episode of channel aggradation at the Sabine River near Bon Wier, Texas, during the 1930s, and about 2 to 3 feet of channel incision at the Sabine River near Burkeville, Texas, since the late 1950s. The Brazos River, at gaging stations downstream from Waco, Texas, has adjusted to a combination of

  19. Response of streamflow to climate change in a sub-basin of the source region of the Yellow River based on a tank model

    Science.gov (United States)

    Wu, Pan; Wang, Xu-Sheng; Liang, Sihai

    2018-06-01

    Though extensive researches were conducted in the source region of the Yellow River (SRYR) to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR) where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale. A tank model (TM) was proposed and calibrated with monthly observation streamflow from 1991 to 1998. In the validation period, though there is a simulation deviation during the water storage and power generation period, simulated streamflow agrees favourably with observation data from 2008 to 2013. The model was further validated by two inside lakes area obtained from Landsat 5, 7, 8 datasets from 2000 to 2014, and significant correlations were found between the simulated lake outlet runoff and respective lake area. Then 21 Global Climate Models (GCM) ensembled data of three emission scenarios (SRA2, SRA1B and SRB1) were downscaled and used as input to the TM to simulate the runoff change of three benchmark periods 2011-2030 (2020s), 2046-2065 (2050s), 2080-2099 (2090s), respectively. Though temperature increase dramatically, these projected results similarly indicated that streamflow shows an increase trend in the long term. Runoff increase is mainly caused by increasing precipitation and decreasing evaporation. Water resources distribution is projected to change from summer-autumn dominant to autumn winter dominant. Annual lowest runoff will occur in May caused by earlier snow melting and increasing evaporation in March. According to the obtained results, winter runoff should be artificially stored by reservoir regulation in the future to prevent zero-flow occurrent in May. This research is helpful for water resources management and provides a better understand of streamflow change caused by climate change in the future.

  20. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine th...

  1. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a probabilistic statistical model to forecast streamflow 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probabil...

  2. Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes

    Directory of Open Access Journals (Sweden)

    W. Wang

    2005-01-01

    Full Text Available Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average models for seasonal streamflow series. However, with McLeod-Li test and Engle's Lagrange Multiplier test, clear evidences are found for the existence of autoregressive conditional heteroskedasticity (i.e. the ARCH (AutoRegressive Conditional Heteroskedasticity effect, a nonlinear phenomenon of the variance behaviour, in the residual series from linear models fitted to daily and monthly streamflow processes of the upper Yellow River, China. It is shown that the major cause of the ARCH effect is the seasonal variation in variance of the residual series. However, while the seasonal variation in variance can fully explain the ARCH effect for monthly streamflow, it is only a partial explanation for daily flow. It is also shown that while the periodic autoregressive moving average model is adequate in modelling monthly flows, no model is adequate in modelling daily streamflow processes because none of the conventional time series models takes the seasonal variation in variance, as well as the ARCH effect in the residuals, into account. Therefore, an ARMA-GARCH (Generalized AutoRegressive Conditional Heteroskedasticity error model is proposed to capture the ARCH effect present in daily streamflow series, as well as to preserve seasonal variation in variance in the residuals. The ARMA-GARCH error model combines an ARMA model for modelling the mean behaviour and a GARCH model for modelling the variance behaviour of the residuals from the ARMA model. Since the GARCH model is not followed widely in statistical hydrology, the work can be a useful addition in terms of statistical modelling of daily streamflow processes for the hydrological community.

  3. A collaborative network middleware project by Lambda Station, TeraPaths, and Phoebus

    International Nuclear Information System (INIS)

    Bobyshev, A.; Bradley, S.; Crawford, M.; DeMar, P.; Katramatos, D.; Shroff, K.; Swany, M.; Yu, D.

    2010-01-01

    The TeraPaths, Lambda Station, and Phoebus projects, funded by the US Department of Energy, have successfully developed network middleware services that establish on-demand and manage true end-to-end, Quality-of-Service (QoS) aware, virtual network paths across multiple administrative network domains, select network paths and gracefully reroute traffic over these dynamic paths, and streamline traffic between packet and circuit networks using transparent gateways. These services improve network QoS and performance for applications, playing a critical role in the effective use of emerging dynamic circuit network services. They provide interfaces to applications, such as dCache SRM, translate network service requests into network device configurations, and coordinate with each other to setup up end-to-end network paths. The End Site Control Plane Subsystem (ESCPS) builds upon the success of the three projects by combining their individual capabilities into the next generation of network middleware. ESCPS addresses challenges such as cross-domain control plane signalling and interoperability, authentication and authorization in a Grid environment, topology discovery, and dynamic status tracking. The new network middleware will take full advantage of the perfSONAR monitoring infrastructure and the Inter-Domain Control plane efforts and will be deployed and fully vetted in the Large Hadron Collider data movement environment.

  4. A new strain gage method for measuring the contractile strain ratio of Zircaloy tubing

    International Nuclear Information System (INIS)

    Hwang, S.K.; Sabol, G.P.

    1988-01-01

    An improved strain gage method for determining the contractile strain ratio (CSR) of Zircaloy tubing was developed. The new method consists of a number of load-unload cyclings at approximately 0.2% plastic strain interval. With this method the CSR of Zircaloy-4 tubing could be determined accurately because it was possible to separate the plastic strains from the elastic strain involvement. The CSR values determined by use of the new method were in good agreement with those calculated from conventional post-test manual measurements. The CSR of the tubing was found to decrease with the amount of deformation during testing because of uneven plastic flow in the gage section. A new technique of inscribing gage marks by use of a YAG laser is discussed. (orig.)

  5. A System to Produce Precise Global GPS Network Solutions for all Geodetic GPS Stations in the World

    Science.gov (United States)

    Blewitt, G.; Kreemer, C. W.

    2010-12-01

    We have developed an end-to-end system that automatically seeks and routinely retrieves geodetic GPS data from ~5000 stations (currently) around the globe, reduces the data into unique, daily global network solutions, and produces high precision time series for station coordinates ready for time-series analysis, geophysical modeling and interpretation. Moreover, “carrier range” data are produced for all stations, enabling epoch-by-epoch tracking of individual station motions by precise point positioning for investigation of sub-daily processes, such as post-seismic after-slip and ocean tidal loading. Solutions are computed in a global reference frame aligned to ITRF, and optionally in user-specified continental-scale reference frames that can filter out common-mode signals to enhance regional strain anomalies. We describe the elements of this system, the underlying signal processing theory, the products, operational statistics, and scientific applications of our system. The system is fundamentally based on precise point positioning using JPL's GIPSY OASIS II software, coupled with ambiguity resolution and a global network adjustment of ~300,000 parameters per day using our newly developed Ambizap3 software. The system is designed to easily and efficiently absorb stations that deliver data very late, by recycling prior computations in the network adjustment, such that the resulting network solution is identical to starting from scratch. Thus, it becomes possible to trawl continuously the Internet for late arriving data, or for newly discovered data, and seamlessly update all GPS station time series using the new information content. As new stations are added to the processing archive, automated e-mail requests are made to H.-G. Scherneck's server at Chalmers University to compute ocean loading coefficients used by the station motion model. Rinex file headers are parsed and compared with alias tables in order to infer the correct receiver type and antenna

  6. Iterative Strain-Gage Balance Calibration Data Analysis for Extended Independent Variable Sets

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2011-01-01

    A new method was developed that makes it possible to use an extended set of independent calibration variables for an iterative analysis of wind tunnel strain gage balance calibration data. The new method permits the application of the iterative analysis method whenever the total number of balance loads and other independent calibration variables is greater than the total number of measured strain gage outputs. Iteration equations used by the iterative analysis method have the limitation that the number of independent and dependent variables must match. The new method circumvents this limitation. It simply adds a missing dependent variable to the original data set by using an additional independent variable also as an additional dependent variable. Then, the desired solution of the regression analysis problem can be obtained that fits each gage output as a function of both the original and additional independent calibration variables. The final regression coefficients can be converted to data reduction matrix coefficients because the missing dependent variables were added to the data set without changing the regression analysis result for each gage output. Therefore, the new method still supports the application of the two load iteration equation choices that the iterative method traditionally uses for the prediction of balance loads during a wind tunnel test. An example is discussed in the paper that illustrates the application of the new method to a realistic simulation of temperature dependent calibration data set of a six component balance.

  7. Seasonal streamflow prediction by a combined climate-hydrologic system for river basins of Taiwan

    Science.gov (United States)

    Kuo, Chun-Chao; Gan, Thian Yew; Yu, Pao-Shan

    2010-06-01

    SummaryA combined, climate-hydrologic system with three components to predict the streamflow of two river basins of Taiwan at one season (3-month) lead time for the NDJ and JFM seasons was developed. The first component consists of the wavelet-based, ANN-GA model (Artificial Neural Network calibrated by Genetic Algorithm) which predicts the seasonal rainfall by using selected sea surface temperature (SST) as predictors, given that SST are generally predictable by climate models up to 6-month lead time. For the second component, three disaggregation models, Valencia and Schaake (VS), Lane, and Canonical Random Cascade Model (CRCM), were tested to compare the accuracy of seasonal rainfall disaggregated by these three models to 3-day time scale rainfall data. The third component consists of the continuous rainfall-runoff model modified from HBV (called the MHBV) and calibrated by a global optimization algorithm against the observed rainfall and streamflow data of the Shihmen and Tsengwen river basins of Taiwan. The proposed system was tested, first by disaggregating the predicted seasonal rainfall of ANN-GA to rainfall of 3-day time step using the Lane model; then the disaggregated rainfall data was used to drive the calibrated MHBV to predict the streamflow for both river basins at 3-day time step up to a season's lead time. Overall, the streamflow predicted by this combined system for the NDJ season, which is better than that of the JFM season, will be useful for the seasonal planning and management of water resources of these two river basins of Taiwan.

  8. Effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek, Indianapolis, Indiana

    Science.gov (United States)

    Martin, Jeffrey D.

    1995-01-01

    In 1986, the U.S. Geological Survey and the Indianapolis Department of Public Works began a study to evaluate the effects of combined-sewer overflows and urban runoff discharging to Fall Geek on the White River. This report describes the effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek during summer 1987 by comparing the water quality during base flow with that during storm runoff and by comparing water quality in the urbanized area with that in the less urbanized area upstream from the combined-sewer overflows. Data were collected at three streamflow-gaging stations located upstream from, downstream from, and in the middle of 27 combined-sewer overflows on Fall Creek. The most downstream station also was immediately downstream from the discharge of filter backwash from a water-treatment plant for public supply.

  9. Output power distributions of mobile radio base stations based on network measurements

    International Nuclear Information System (INIS)

    Colombi, D; Thors, B; Persson, T; Törnevik, C; Wirén, N; Larsson, L-E

    2013-01-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  10. Output power distributions of mobile radio base stations based on network measurements

    Science.gov (United States)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  11. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds

    Science.gov (United States)

    Nourani, Vahid; Andalib, Gholamreza; Dąbrowska, Dominika

    2017-05-01

    Accurate nitrate load predictions can elevate decision management of water quality of watersheds which affects to environment and drinking water. In this paper, two scenarios were considered for Multi-Station (MS) nitrate load modeling of the Little River watershed. In the first scenario, Markovian characteristics of streamflow-nitrate time series were proposed for the MS modeling. For this purpose, feature extraction criterion of Mutual Information (MI) was employed for input selection of artificial intelligence models (Feed Forward Neural Network, FFNN and least square support vector machine). In the second scenario for considering seasonality-based characteristics of the time series, wavelet transform was used to extract multi-scale features of streamflow-nitrate time series of the watershed's sub-basins to model MS nitrate loads. Self-Organizing Map (SOM) clustering technique which finds homogeneous sub-series clusters was also linked to MI for proper cluster agent choice to be imposed into the models for predicting the nitrate loads of the watershed's sub-basins. The proposed MS method not only considers the prediction of the outlet nitrate but also covers predictions of interior sub-basins nitrate load values. The results indicated that the proposed FFNN model coupled with the SOM-MI improved the performance of MS nitrate predictions compared to the Markovian-based models up to 39%. Overall, accurate selection of dominant inputs which consider seasonality-based characteristics of streamflow-nitrate process could enhance the efficiency of nitrate load predictions.

  12. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  13. Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada

    Science.gov (United States)

    Wiley, Jeffrey B.; Curran, Janet H.

    2003-01-01

    Methods for estimating daily mean flow-duration statistics for seven regions in Alaska and low-flow frequencies for one region, southeastern Alaska, were developed from daily mean discharges for streamflow-gaging stations in Alaska and conterminous basins in Canada. The 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows were computed for the October-through-September water year for 222 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the individual months of July, August, and September for 226 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the season July-through-September for 65 stations in southeastern Alaska. The 7-day, 10-year and 7-day, 2-year low-flow frequencies for the season July-through-September were computed for 65 stations for most of southeastern Alaska. Low-flow analyses were limited to particular months or seasons in order to omit winter low flows, when ice effects reduce the quality of the records and validity of statistical assumptions. Regression equations for estimating the selected high-flow and low-flow statistics for the selected months and seasons for ungaged sites were developed from an ordinary-least-squares regression model using basin characteristics as independent variables. Drainage area and precipitation were significant explanatory variables for high flows, and drainage area, precipitation, mean basin elevation, and area of glaciers were significant explanatory variables for low flows. The estimating equations can be used at ungaged sites in Alaska and conterminous basins in Canada where streamflow regulation, streamflow diversion, urbanization, and natural damming and releasing of water do not affect the streamflow data for the given month or season. Standard errors of estimate ranged from 15 to 56 percent for high-duration flow

  14. Streamflow in the upper Mississippi river basin as simulated by SWAT driven by 20{sup th} century contemporary results of global climate models and NARCCAP regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Takle, Eugene S.; Jha, Manoj; Lu, Er; Arritt, Raymond W.; Gutowski, William J. [Iowa State Univ. Ames, IA (United States)

    2010-06-15

    We use Soil and Water Assessment Tool (SWAT) when driven by observations and results of climate models to evaluate hydrological quantities, including streamflow, in the Upper Mississippi River Basin (UMRB) for 1981-2003 in comparison to observed streamflow. Daily meteorological conditions used as input to SWAT are taken from (1) observations at weather stations in the basin, (2) daily meteorological conditions simulated by a collection of regional climate models (RCMs) driven by reanalysis boundary conditions, and (3) daily meteorological conditions simulated by a collection of global climate models (GCMs). Regional models used are those whose data are archived by the North American Regional Climate Change Assessment Program (NARCCAP). Results show that regional models correctly simulate the seasonal cycle of precipitation, temperature, and streamflow within the basin. Regional models also capture interannual extremes represented by the flood of 1993 and the dry conditions of 2000. The ensemble means of both the GCM-driven and RCM-driven simulations by SWAT capture both the timing and amplitude of the seasonal cycle of streamflow with neither demonstrating significant superiority at the basin level. (orig.)

  15. Propagation of soil moisture memory to streamflow and evapotranspiration in Europe

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2013-10-01

    As a key variable of the land-climate system soil moisture is a main driver of streamflow and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence) characteristics. Many studies also report distinct low frequency variations for streamflow, which are likely related to soil moisture memory. Using data from over 100 near-natural catchments located across Europe, we investigate in this study the connection between soil moisture memory and the respective memory of streamflow and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalised by precipitation) and evapotranspiration (normalised by radiation) on soil moisture are fitted using streamflow observations. The model therefore allows us to compute the memory characteristics of soil moisture, streamflow and evapotranspiration on the catchment scale. We find considerable memory in soil moisture and streamflow in many parts of the continent, and evapotranspiration also displays some memory at monthly time scale in some catchments. We show that the memory of streamflow and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of streamflow and evapotranspiration to soil moisture. Furthermore, we find that the coupling strengths of streamflow and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe, we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  16. Propagation of soil moisture memory to streamflow and evapotranspiration in Europe

    Directory of Open Access Journals (Sweden)

    R. Orth

    2013-10-01

    Full Text Available As a key variable of the land-climate system soil moisture is a main driver of streamflow and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence characteristics. Many studies also report distinct low frequency variations for streamflow, which are likely related to soil moisture memory. Using data from over 100 near-natural catchments located across Europe, we investigate in this study the connection between soil moisture memory and the respective memory of streamflow and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalised by precipitation and evapotranspiration (normalised by radiation on soil moisture are fitted using streamflow observations. The model therefore allows us to compute the memory characteristics of soil moisture, streamflow and evapotranspiration on the catchment scale. We find considerable memory in soil moisture and streamflow in many parts of the continent, and evapotranspiration also displays some memory at monthly time scale in some catchments. We show that the memory of streamflow and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of streamflow and evapotranspiration to soil moisture. Furthermore, we find that the coupling strengths of streamflow and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe, we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  17. 49 CFR 213.110 - Gage restraint measurement systems.

    Science.gov (United States)

    2010-10-01

    ... requirements specified in §§ 213.109 and 213.127. (5) If the PTLF becomes non-functional or is missing, the... and fastener requirements specified in §§ 213.109 and 213.127 provided that— (1) The track owner... the minimum design requirements of a GRMS vehicle which specify that— (1) Gage restraint shall be...

  18. HYDRORECESSION: A toolbox for streamflow recession analysis

    Science.gov (United States)

    Arciniega, S.

    2015-12-01

    Streamflow recession curves are hydrological signatures allowing to study the relationship between groundwater storage and baseflow and/or low flows at the catchment scale. Recent studies have showed that streamflow recession analysis can be quite sensitive to the combination of different models, extraction techniques and parameter estimation methods. In order to better characterize streamflow recession curves, new methodologies combining multiple approaches have been recommended. The HYDRORECESSION toolbox, presented here, is a Matlab graphical user interface developed to analyse streamflow recession time series with the support of different tools allowing to parameterize linear and nonlinear storage-outflow relationships through four of the most useful recession models (Maillet, Boussinesq, Coutagne and Wittenberg). The toolbox includes four parameter-fitting techniques (linear regression, lower envelope, data binning and mean squared error) and three different methods to extract hydrograph recessions segments (Vogel, Brutsaert and Aksoy). In addition, the toolbox has a module that separates the baseflow component from the observed hydrograph using the inverse reservoir algorithm. Potential applications provided by HYDRORECESSION include model parameter analysis, hydrological regionalization and classification, baseflow index estimates, catchment-scale recharge and low-flows modelling, among others. HYDRORECESSION is freely available for non-commercial and academic purposes.

  19. Seasonal Prediction of Taiwan's Streamflow Using Teleconnection Patterns

    Science.gov (United States)

    Chen, Chia-Jeng; Lee, Tsung-Yu

    2017-04-01

    Seasonal streamflow as an integrated response to complex hydro-climatic processes can be subject to activity of prevailing weather systems potentially modulated by large-scale climate oscillations (e.g., El Niño-Southern Oscillation, ENSO). To develop a seamless seasonal forecasting system in Taiwan, this study assesses how significant Taiwan's precipitation and streamflow in different seasons correlate with selected teleconnection patterns. Long-term precipitation and streamflow data in three major precipitation seasons, namely the spring rains (February to April), Mei-Yu (May and June), and typhoon (July to September) seasons, are derived at 28 upstream and 13 downstream catchments in Taiwan. The three seasons depict a complete wet period of Taiwan as well as many regions bearing similar climatic conditions in East Asia. Lagged correlation analysis is then performed to investigate how the precipitation and streamflow data correlate with predominant teleconnection indices at varied lead times. Teleconnection indices are selected only if they show certain linkage with weather systems and activity in the three seasons based on previous literature. For instance, the ENSO and Quasi-Biennial Oscillation, proven to influence East Asian climate across seasons and summer typhoon activity, respectively, are included in the list of climate indices for correlation analysis. Significant correlations found between Taiwan's precipitation and streamflow and teleconnection indices are further examined by a climate regime shift (CRS) test to identify any abrupt changes in the correlations. The understanding of existing CRS is useful for informing the forecasting system of the changes in the predictor-predictand relationship. To evaluate prediction skill in the three seasons and skill differences between precipitation and streamflow, hindcasting experiments of precipitation and streamflow are conducted using stepwise linear regression models. Discussion and suggestions for coping

  20. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Magnetoresistance measurements of strain gages were made. The magnitude and variation of the magnetoresistance of a large number of strain gages were measured for the following conditions: (1) dc magnetic fields up to 12 T, (2) three orthogonal field directions, (3) increasing and decreasing fields, (4) a wide range of strain levels, and (5) liquid helium temperature

  1. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham

    2017-10-04

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  2. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham; Dai, Wenhan; Alouini, Mohamed-Slim; Win, Moe Z.

    2017-01-01

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  3. Substantial proportion of global streamflow less than three months old

    Science.gov (United States)

    Jasechko, Scott; Kirchner, James W.; Welker, Jeffrey M.; McDonnell, Jeffrey J.

    2016-02-01

    Biogeochemical cycles, contaminant transport and chemical weathering are regulated by the speed at which precipitation travels through landscapes and reaches streams. Streamflow is a mixture of young and old precipitation, but the global proportions of these young and old components are not known. Here we analyse seasonal cycles of oxygen isotope ratios in rain, snow and streamflow compiled from 254 watersheds around the world, and calculate the fraction of streamflow that is derived from precipitation that fell within the past two or three months. This young streamflow accounts for about a third of global river discharge, and comprises at least 5% of discharge in about 90% of the catchments we investigated. We conclude that, although typical catchments have mean transit times of years or even decades, they nonetheless can rapidly transmit substantial fractions of soluble contaminant inputs to streams. Young streamflow is less prevalent in steeper landscapes, which suggests they are characterized by deeper vertical infiltration. Because young streamflow is derived from less than 0.1% of global groundwater storage, we conclude that this thin veneer of aquifer storage will have a disproportionate influence on stream water quality.

  4. Evaluation of Measurements Collected with Multi-Parameter Continuous Water-Quality Monitors in Selected Illinois Streams, 2001-03

    Science.gov (United States)

    Groschen, George E.; King, Robin B.

    2005-01-01

    Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago

  5. HydroCloud: A Web Application for Exploring Stream Gage Data

    Directory of Open Access Journals (Sweden)

    Martin C. Roberge

    2017-08-01

    Full Text Available HydroCloud (hydrocloud.org is a mobile-friendly web application for visually browsing hydrology data from multiple sources. Data providers such as the US Geological Survey (USGS and the German 'Wasserstraßen- und Schifffahrtsverwaltung des Bundes' (WSV currently serve stream discharge data from more than 10,000 stream gages around the world. HydroCloud allows users to plot these data while out in the field, while also providing contextual information such as the current NEXRAD weather imagery or descriptive information about the stream gage and its watershed. Additional features include a chat mechanism for contacting developers, and the use of local storage for saving data.   Funding Statement: This project was supported in part by a grant from the Towson University School of Emerging Technology.

  6. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.

    Science.gov (United States)

    Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk

    2015-01-01

    Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system

  7. An introduction to NH-A neutron earth base moisture gage

    International Nuclear Information System (INIS)

    Zhu Huaian; Jiang Yulan; Yin Xilin; Yu Peiying; Luo Pinjie

    1988-01-01

    NH-A neutron earth base moisture gage is an accurate instrument which can measure earth moisture rapidly and non-destructively and display moisture results immediately. The deviation is estimated at ±0.012g/cm

  8. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  9. Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region

    NARCIS (Netherlands)

    Givoni, M.; Rietveld, P.

    2014-01-01

    Promoting the use of rail is an important element in sustainable transport policy. One of the most important decisions to make in planning the railway network is on the number of stations to provide. Stations are the access points to rail services and while each additional station increases rail's

  10. Experimental investigations of overvoltages in 6kV station service cable networks of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vukelja, P.I.; Naumov, R.M.; Drobnjak, G.V.; Mrvic, J.D. [Nikola Tesla Inst., Belgrade (Yugoslavia)

    1996-12-31

    The paper presents the results of experimental investigations of overvoltages on 6kV isolated neutral station service cable networks of thermal power plants. The overvoltages were recorded with capacitive voltage measurement systems made at the Nikola Tesla Institute. Wideband capacitive voltage measurement systems recorded a flat response from below power frequencies to 10MHz. Investigations of overvoltages were performed for appearance and interruption of metal earth faults, intermittent earth faults, switching operation of HV motors switchgear, switching operation of transformers switchgear, and transfer of the network supply from one transformer to another. On the basis of these investigations, certain measures are proposed for limiting overvoltages and for the reliability of station service of thermal power plants.

  11. Estimates of natural streamflow at two streamgages on the Esopus Creek, New York, water years 1932 to 2012

    Science.gov (United States)

    Burns, Douglas A.; Gazoorian, Christopher L.

    2015-01-01

    Streamflow in the Esopus Creek watershed is altered by two major watershed management activities carried out by the New York City Department of Environmental Protection as part of its responsibility to maintain a water supply for New York City: (1) diversion of water from the Schoharie Creek watershed to the Esopus Creek through the Shandaken Tunnel, and (2) impoundment of the Esopus Creek by a dam that forms the Ashokan Reservoir and subsequent release through the Catskill Aqueduct. Stakeholders in the Catskill region are interested and concerned about the extent to which these watershed management activities have altered streamflow, especially low and high flows, in the Esopus Creek. To address these concerns, natural (in the absence of diversion and impoundment) daily discharge from October 1, 1931, to September 30, 2012, was estimated for the U.S. Geological Survey streamgages at Coldbrook (station number 01362500), downstream of the Shandaken Tunnel discharge, and at Mount Marion (01364500), downstream of the Ashokan Reservoir.

  12. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  13. Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices

    Directory of Open Access Journals (Sweden)

    F. Fundel

    2013-01-01

    Full Text Available Streamflow droughts, characterized by low runoff as consequence of a drought event, affect numerous aspects of life. Economic sectors that are impacted by low streamflow are, e.g., power production, agriculture, tourism, water quality management and shipping. Those sectors could potentially benefit from forecasts of streamflow drought events, even of short events on the monthly time scales or below. Numerical hydrometeorological models have increasingly been used to forecast low streamflow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the evaluation of low streamflow and of the derived indices as duration, severity and magnitude, characterizing streamflow droughts up to a lead time of one month.

    The ECMWF VarEPS 5-member ensemble reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification reveals that, compared to probabilistic peak-flow forecasts, which show skill up to a lead time of two weeks, forecasts of streamflow droughts are skilful over the entire forecast range of one month. For forecasts at the lower end of the runoff regime, the quality of the initial state seems to be crucial to achieve a good forecast quality in the longer range. It is shown that the states used in this study to initialize forecasts satisfy this requirement. The produced forecasts of streamflow drought indices, derived from the ensemble forecasts, could be beneficially included in a decision-making process. This is valid for probabilistic forecasts of streamflow drought events falling below a daily varying threshold, based on a quantile derived from a runoff climatology. Although the forecasts have a tendency to overpredict streamflow droughts, it is shown that the relative economic value of the ensemble forecasts reaches up to 60%, in case a forecast user is able to take preventive

  14. Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices

    Science.gov (United States)

    Fundel, F.; Jörg-Hess, S.; Zappa, M.

    2013-01-01

    Streamflow droughts, characterized by low runoff as consequence of a drought event, affect numerous aspects of life. Economic sectors that are impacted by low streamflow are, e.g., power production, agriculture, tourism, water quality management and shipping. Those sectors could potentially benefit from forecasts of streamflow drought events, even of short events on the monthly time scales or below. Numerical hydrometeorological models have increasingly been used to forecast low streamflow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the evaluation of low streamflow and of the derived indices as duration, severity and magnitude, characterizing streamflow droughts up to a lead time of one month. The ECMWF VarEPS 5-member ensemble reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification reveals that, compared to probabilistic peak-flow forecasts, which show skill up to a lead time of two weeks, forecasts of streamflow droughts are skilful over the entire forecast range of one month. For forecasts at the lower end of the runoff regime, the quality of the initial state seems to be crucial to achieve a good forecast quality in the longer range. It is shown that the states used in this study to initialize forecasts satisfy this requirement. The produced forecasts of streamflow drought indices, derived from the ensemble forecasts, could be beneficially included in a decision-making process. This is valid for probabilistic forecasts of streamflow drought events falling below a daily varying threshold, based on a quantile derived from a runoff climatology. Although the forecasts have a tendency to overpredict streamflow droughts, it is shown that the relative economic value of the ensemble forecasts reaches up to 60%, in case a forecast user is able to take preventive action based on the forecast.

  15. Large scale network management. Condition indicators for network stations, high voltage power conductions and cables

    International Nuclear Information System (INIS)

    Eggen, Arnt Ove; Rolfseng, Lars; Langdal, Bjoern Inge

    2006-02-01

    In the Strategic Institute Programme (SIP) 'Electricity Business enters e-business (eBee)' SINTEF Energy research has developed competency that can help the energy business employ ICT systems and computer technology in an improved way. Large scale network management is now a reality, and it is characterized by large entities with increasing demands on efficiency and quality. These are goals that can only be reached by using ICT systems and computer technology in a more clever way than what is the case today. At the same time it is important that knowledge held by experienced co-workers is consulted when formal rules for evaluations and decisions in ICT systems are developed. In this project an analytical concept for evaluation of networks based information in different ICT systems has been developed. The method estimating the indicators to describe different conditions in a network is general, and indicators can be made to fit different levels of decision and network levels, for example network station, transformer circuit, distribution network and regional network. Moreover, the indicators can contain information about technical aspects, economy and HSE. An indicator consists of an indicator name, an indicator value, and an indicator colour based on a traffic-light analogy to indicate a condition or a quality for the indicator. Values on one or more indicators give an impression of important conditions in the network, and make up the basis for knowing where more detailed evaluations have to be conducted before a final decision on for example maintenance or renewal is made. A prototype has been developed for testing the new method. The prototype has been developed in Excel, and especially designed for analysing transformer circuits in a distribution network. However, the method is a general one, and well suited for implementation in a commercial computer system (ml)

  16. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  17. The effects of changing land cover on streamflow simulation in Puerto Rico

    Science.gov (United States)

    Van Beusekom, Ashley; Hay, Lauren E.; Viger, Roland; Gould, William A.; Collazo, Jaime; Henareh Khalyani, Azad

    2014-01-01

    This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from four land cover scenes for the period 1953-2012. The PRMS simulations based on static land cover illustrated consistent differences in simulated streamflow across the island. It was determined that the scale of the analysis makes a difference: large regions with localized areas that have undergone dramatic land cover change may show negligible difference in total streamflow, but streamflow simulations using dynamic land cover parameters for a highly altered subwatershed clearly demonstrate the effects of changing land cover on simulated streamflow. Incorporating dynamic parameterization in these highly altered watersheds can reduce the predictive uncertainty in simulations of streamflow using PRMS. Hydrologic models that do not consider the projected changes in land cover may be inadequate for water resource management planning for future conditions.

  18. Parameterizing sub-surface drainage with geology to improve modeling streamflow responses to climate in data limited environments

    Directory of Open Access Journals (Sweden)

    C. L. Tague

    2013-01-01

    Full Text Available Hydrologic models are one of the core tools used to project how water resources may change under a warming climate. These models are typically applied over a range of scales, from headwater streams to higher order rivers, and for a variety of purposes, such as evaluating changes to aquatic habitat or reservoir operation. Most hydrologic models require streamflow data to calibrate subsurface drainage parameters. In many cases, long-term gage records may not be available for calibration, particularly when assessments are focused on low-order stream reaches. Consequently, hydrologic modeling of climate change impacts is often performed in the absence of sufficient data to fully parameterize these hydrologic models. In this paper, we assess a geologic-based strategy for assigning drainage parameters. We examine the performance of this modeling strategy for the McKenzie River watershed in the US Oregon Cascades, a region where previous work has demonstrated sharp contrasts in hydrology based primarily on geological differences between the High and Western Cascades. Based on calibration and verification using existing streamflow data, we demonstrate that: (1 a set of streams ranging from 1st to 3rd order within the Western Cascade geologic region can share the same drainage parameter set, while (2 streams from the High Cascade geologic region require a different parameter set. Further, we show that a watershed comprised of a mixture of High and Western Cascade geologies can be modeled without additional calibration by transferring parameters from these distinctive High and Western Cascade end-member parameter sets. More generally, we show that by defining a set of end-member parameters that reflect different geologic classes, we can more efficiently apply a hydrologic model over a geologically complex landscape and resolve geo-climatic differences in how different watersheds are likely to respond to simple warming scenarios.

  19. Alteration of streamflow magnitudes and potential ecological consequences: A multiregional assessment

    Science.gov (United States)

    Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.

    2011-01-01

    Human impacts on watershed hydrology are widespread in the US, but the prevalence and severity of stream-flow alteration and its potential ecological consequences have not been quantified on a national scale. We assessed streamflow alteration at 2888 streamflow monitoring sites throughout the conterminous US. The magnitudes of mean annual (1980–2007) minimum and maximum streamflows were found to have been altered in 86% of assessed streams. The occurrence, type, and severity of streamflow alteration differed markedly between arid and wet climates. Biological assessments conducted on a subset of these streams showed that, relative to eight chemical and physical covariates, diminished flow magnitudes were the primary predictors of biological integrity for fish and macroinvertebrate communities. In addition, the likelihood of biological impairment doubled with increasing severity of diminished streamflows. Among streams with diminished flow magnitudes, increasingly common fish and macroinvertebrate taxa possessed traits characteristic of lake or pond habitats, including a preference for fine-grained substrates and slow-moving currents, as well as the ability to temporarily leave the aquatic environment.

  20. Response of streamflow to climate change in a sub-basin of the source region of the Yellow River based on a tank model

    Directory of Open Access Journals (Sweden)

    P. Wu

    2018-06-01

    Full Text Available Though extensive researches were conducted in the source region of the Yellow River (SRYR to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale. A tank model (TM was proposed and calibrated with monthly observation streamflow from 1991 to 1998. In the validation period, though there is a simulation deviation during the water storage and power generation period, simulated streamflow agrees favourably with observation data from 2008 to 2013. The model was further validated by two inside lakes area obtained from Landsat 5, 7, 8 datasets from 2000 to 2014, and significant correlations were found between the simulated lake outlet runoff and respective lake area. Then 21 Global Climate Models (GCM ensembled data of three emission scenarios (SRA2, SRA1B and SRB1 were downscaled and used as input to the TM to simulate the runoff change of three benchmark periods 2011–2030 (2020s, 2046–2065 (2050s, 2080–2099 (2090s, respectively. Though temperature increase dramatically, these projected results similarly indicated that streamflow shows an increase trend in the long term. Runoff increase is mainly caused by increasing precipitation and decreasing evaporation. Water resources distribution is projected to change from summer-autumn dominant to autumn winter dominant. Annual lowest runoff will occur in May caused by earlier snow melting and increasing evaporation in March. According to the obtained results, winter runoff should be artificially stored by reservoir regulation in the future to prevent zero-flow occurrent in May. This research is helpful for water resources management and provides a better understand of streamflow change caused by climate change in the

  1. Data acquisition from vacuum gage controlled by RS-232 standard using LabVIEW

    International Nuclear Information System (INIS)

    Brandea, Iulian; Culcer, Mihai; Steflea, Dumitru

    1999-01-01

    This paper deals with the problem of connecting a microcontroller-based vacuum gage to a personal computer, using the RS-232 hardware standard and the software LabVIEW and his collection of virtual instruments from National Instruments. To solve the problem an instrument driver was created. This provided the customer with a perfect solution for the remote control and data acquisition from an Intel 80CXX microcontroller-based vacuum gage. The remote control making use of an IBM-PC was design and manufactured in our institute. In order to make it intelligent the device was provided with a microprocessor or a microcontroller. To fulfill the requirements a vacuum gage with an 80C31 microcontroller and two Bayard-Alpert ion gauges, for very low pressures (10 -3 to 10 -7 mbar) and low pressure (10 mbar to 10 -3 mbar) was built. Because this microcontroller has a built-in circuitry for a serial communication, we established a serial communication between the PC (Pentium -166 MHz) and the vacuum gage, according to the RS-232 hardware standard. Optimum selection of software development tools however, was not as straightforward. Most producers use the C/C ++ - language programming tool for developing instrument drivers for their intelligent devices. One of the advantages of C/C ++ is its speed, but the compilation and the high-level skill required for optimum programming do not fit well with some requirements, particularly those of versatility, upgradability and user friendliness. After careful evaluation of several options, a final decision was to develop a hybrid software package using two different software development tools: LabVIEW, and assembly language. We chose LabVIEW because it is dedicated to data acquisition and communications, containing libraries for data collection, analysis, presentation and storage. The assembly language for Intel 8051's microcontrollers family is used to write the firmware for the vacuum gage and arithmetic routines. (authors)

  2. Reconstructions of Columbia River streamflow from tree-ring chronologies in the Pacific Northwest, USA

    Science.gov (United States)

    Littell, Jeremy; Pederson, Gregory T.; Gray, Stephen T.; Tjoelker, Michael; Hamlet, Alan F.; Woodhouse, Connie A.

    2016-01-01

    We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree-ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree-ring chronologies where high snowpack limits growth, which better represent the contribution of cool-season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high-intensity, long-duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s-1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm-season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late-19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands

  3. Mobile environmental radiation monitoring station

    International Nuclear Information System (INIS)

    Assido, H.; Shemesh, Y.; Mazor, T.; Tal, N.; Barak, D.

    1997-01-01

    A mobile environmental radiation monitoring station has been developed and established for the Israeli Ministry of Environment. The radiation monitoring station is ready for immediate placing in any required location, or can be operated from a vehicle. The station collects data Tom the detector and transfers it via cellular communication network to a Computerized Control Center for data storage, processing, and display . The mobile station is fully controlled from the. Routinely, the mobile station responses to the data request accumulated since the last communication session. In case of fault or alarm condition in the mobile station, a local claim is activated and immediately initiates communication with the via cellular communication network. (authors)

  4. Reconstructing pre-instrumental streamflow in Eastern Australia using a water balance approach

    Science.gov (United States)

    Tozer, C. R.; Kiem, A. S.; Vance, T. R.; Roberts, J. L.; Curran, M. A. J.; Moy, A. D.

    2018-03-01

    Streamflow reconstructions based on paleoclimate proxies provide much longer records than the short instrumental period records on which water resource management plans are currently based. In Australia there is a lack of in-situ high resolution paleoclimate proxy records, but remote proxies with teleconnections to Australian climate have utility in producing streamflow reconstructions. Here we investigate, via a case study for a catchment in eastern Australia, the novel use of an Antarctic ice-core based rainfall reconstruction within a Budyko-framework to reconstruct ∼1000 years of annual streamflow. The resulting streamflow reconstruction captures interannual to decadal variability in the instrumental streamflow, validating both the use of the ice core rainfall proxy record and the Budyko-framework method. In the preinstrumental era the streamflow reconstruction shows longer wet and dry epochs and periods of streamflow variability that are higher than observed in the instrumental era. Importantly, for both the instrumental record and preinstrumental reconstructions, the wet (dry) epochs in the rainfall record are shorter (longer) in the streamflow record and this non-linearity must be considered when inferring hydroclimatic risk or historical water availability directly from rainfall proxy records alone. These insights provide a better understanding of present infrastructure vulnerability in the context of past climate variability for eastern Australia. The streamflow reconstruction presented here also provides a better understanding of the range of hydroclimatic variability possible, and therefore represents a more realistic baseline on which to quantify the potential impacts of anthropogenic climate change on water security.

  5. A field study in the Swiss Rietholzbach basin to understand landscape filtering of hydro-climatic drivers and its effects on streamflow composition

    Science.gov (United States)

    von Freyberg, J.; Schirmer, M.

    2013-12-01

    Non-linear hydrological behavior of small mountainous watersheds is often attributed to variable streamflow contributions from different landscape units that differ in subsurface properties, vegetation cover and land use. Within this concept, the role of landscape can be seen as that of a filter, translating hydro-climatic drivers into particular streamflow signals - such as discharge rates or water quality. Our research addresses the question of how hydrologic connectivity between the relevant landscape units evolves during storm events and droughts at headwater catchments and seeks to establish a general framework of interdisciplinary interest (e.g., ecology and climate science). We focus on the description of groundwater flow on the local and regional scale, since groundwater - surface water - interaction in the valley bottoms, transport mechanisms of nutrients within hyporheic zones, and groundwater flow dynamics in the shallow subsurface have all been identified as important processes in describing hydrologic catchment response and streamflow composition. Our field-based study takes place in the pre-Alpine Rietholzbach research catchment (~ 3 sq km) in the headwaters of the Thur basin in NE Switzerland. We investigated the effects of landscape properties on river water quality and catchment hydrology over a two-year period. The Rietholzbach research catchment is equipped with a meteorological station, a weighting lysimeter, 20 piezometers, 3 stream gauging stations and various soil moisture and temperature probes, which provide continuous, high-frequency measurements of atmospheric and hydrometric data. These measurements are used in combination with hydro-chemistry data to determine groundwater residence times and streamflow composition. The installed setup facilitates the investigation of annual, inter-seasonal as well as short-term dynamics of water flow and its links to associated parameters describing atmospheric, surface and subsurface properties. We

  6. Contribution of human and climate change impacts to changes in streamflow of Canada.

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2015-12-04

    Climate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.

  7. Variance analysis of forecasted streamflow maxima in a wet temperate climate

    Science.gov (United States)

    Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.

    2018-05-01

    Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.

  8. Development and application of the variable focus laser leveling gage

    International Nuclear Information System (INIS)

    Gong Kun; Ma Jinglong

    2005-01-01

    The variable focus laser leveling gage was developed. The performance and structure were introduced. The several alignments and tests in KrF laser angle multi-path optical system were accomplished with them. Its application in other optical equipment was discussed too. (author)

  9. Air pollution assessment in the Slovak Republic in 2005. Measurement stations of air quality monitoring network

    International Nuclear Information System (INIS)

    Anon

    2006-05-01

    In this Appendix to the report 'Air pollution assessment in the Slovak Republic in 2005' the main characteristics of measurement stations of air quality monitoring network of the Slovak Republic are presented

  10. Air pollution assessment in the Slovak Republic in 2004. Measurement stations of air quality monitoring network

    International Nuclear Information System (INIS)

    Anon

    2005-07-01

    In this Appendix to the report 'Air pollution assessment in the Slovak Republic in 2004' the main characteristics of measurement stations of air quality monitoring network of the Slovak Republic are presented

  11. Decadal GPS Time Series and Velocity Fields Spanning the North American Continent and Beyond: New Data Products, Cyberinfrastructure and Case Studies from the EarthScope Plate Boundary Observatory (PBO) and Other Regional Networks

    Science.gov (United States)

    Phillips, D. A.; Herring, T.; Melbourne, T. I.; Murray, M. H.; Szeliga, W. M.; Floyd, M.; Puskas, C. M.; King, R. W.; Boler, F. M.; Meertens, C. M.; Mattioli, G. S.

    2017-12-01

    The Geodesy Advancing Geosciences and EarthScope (GAGE) Facility, operated by UNAVCO, provides a diverse suite of geodetic data, derived products and cyberinfrastructure services to support community Earth science research and education. GPS data and products including decadal station position time series and velocities are provided for 2000+ continuous GPS stations from the Plate Boundary Observatory (PBO) and other networks distributed throughout the high Arctic, North America, and Caribbean regions. The position time series contain a multitude of signals in addition to the secular motions, including coseismic and postseismic displacements, interseismic strain accumulation, and transient signals associated with hydrologic and other processes. We present our latest velocity field solutions, new time series offset estimate products, and new time series examples associated with various phenomena. Position time series, and the signals they contain, are inherently dependent upon analysis parameters such as network scaling and reference frame realization. The estimation of scale changes for example, a common practice, has large impacts on vertical motion estimates. GAGE/PBO velocities and time series are currently provided in IGS (IGb08) and North America (NAM08, IGb08 rotated to a fixed North America Plate) reference frames. We are reprocessing all data (1996 to present) as part of the transition from IGb08 to IGS14 that began in 2017. New NAM14 and IGS14 data products are discussed. GAGE/PBO GPS data products are currently generated using onsite computing clusters. As part of an NSF funded EarthCube Building Blocks project called "Deploying MultiFacility Cyberinfrastructure in Commercial and Private Cloud-based Systems (GeoSciCloud)", we are investigating performance, cost, and efficiency differences between local computing resources and cloud based resources. Test environments include a commercial cloud provider (Amazon/AWS), NSF cloud-like infrastructures within

  12. DESIGN AND ENGINEERING BACKGROUND FOR STATION NETWORKS OF VERTICAL IONOSPHERE SOUNDING

    Directory of Open Access Journals (Sweden)

    A. Y. Grishentsev

    2013-05-01

    Full Text Available The paper deals with analysis of the network stations structure for ionosphere vertical sounding. Design features and creation principle of the program complexes for automated processing, analysis and storage of ionosphere sounding are considered. Conceptual model of complex database control system is created. The results of work are used in research practice of leading national organizations to study the ionosphere. Obtained application results of suggested algorithms and programs for automated processing and analysis of ionosphere vertical sounding are shown.

  13. INTERACT Station Catalogue - 2015

    DEFF Research Database (Denmark)

    INTERACT stations are located in all major environmental envelopes of the Arctic providing an ideal platform for studying climate change and its impact on the environment and local communities. Since alpine environments face similar changes and challenges as the Arctic, the INTERACT network also ...... catalogue includes descriptions of 73 research stations included in the network at the time of printing....

  14. Performance analysis of PPP ambiguity resolution with UPD products estimated from different scales of reference station networks

    Science.gov (United States)

    Wang, Siyao; Li, Bofeng; Li, Xingxing; Zang, Nan

    2018-01-01

    Integer ambiguity fixing with uncalibrated phase delay (UPD) products can significantly shorten the initialization time and improve the accuracy of precise point positioning (PPP). Since the tracking arcs of satellites and the behavior of atmospheric biases can be very different for the reference networks with different scales, the qualities of corresponding UPD products may be also various. The purpose of this paper is to comparatively investigate the influence of different scales of reference station networks on UPD estimation and user ambiguity resolution. Three reference station networks with global, wide-area and local scales are used to compute the UPD products and analyze their impact on the PPP-AR. The time-to-first-fix, the unfix rate and the incorrect fix rate of PPP-AR are analyzed. Moreover, in order to further shorten the convergence time for obtaining precise positioning, a modified partial ambiguity resolution (PAR) and corresponding validation strategy are presented. In this PAR method, the ambiguity subset is determined by removing the ambiguity one by one in the order of ascending elevations. Besides, for static positioning mode, a coordinate validation strategy is employed to enhance the reliability of the fixed coordinate. The experiment results show that UPD products computed by smaller station network are more accurate and lead to a better coordinate solution; the PAR method used in this paper can shorten the convergence time and the coordinate validation strategy can improve the availability of high precision positioning.

  15. New approach for calibration and interpretation of IRAD GAGE vibrating-wire stressmeters

    International Nuclear Information System (INIS)

    Mao, N.

    1986-05-01

    IRAD GAGE vibrating-wire stressmeters were installed in the Spent Fuel Facility at the Nevada Test Site to measure the change in in-situ stress during the Spent Fuel Test-Climax (SFT-C). This paper discusses the results of removing a cylindrical section of rock and gages as a unit through overcoring, and the subsequent post-test calibration of the stressmeters in the laboratory. The estimated in-situ stresses based on post test calibration data are quite consistent with those directly measured in nearby holes. The magnitude of stress change calculated from pre-test calibration data is generally much smaller than that estimated from post test calibration data. 11 refs., 5 figs., 2 tabs

  16. Application of ANN and fuzzy logic algorithms for streamflow ...

    Indian Academy of Sciences (India)

    The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years ...

  17. Non-Coop Station History (Unindexed)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Station history documentation for stations outside the US Cooperative Observer network. Documents should be compared with those in the Non-Coop Station History...

  18. Thermal expansion measurement of turbine and main steam piping by using strain gages in power plants

    International Nuclear Information System (INIS)

    Na, Sang Soo; Chung, Jae Won; Bong, Suk Kun; Jun, Dong Ki; Kim, Yun Suk

    2000-01-01

    One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shaft alignment problem which sometimes is changed by thermal expansion and external force, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants

  19. Climate model assessment of changes in winter-spring streamflow timing over North America

    Science.gov (United States)

    Kam, Jonghun; Knutson, Thomas R.; Milly, Paul C. D.

    2018-01-01

    Over regions where snow-melt runoff substantially contributes to winter-spring streamflows, warming can accelerate snow melt and reduce dry-season streamflows. However, conclusive detection of changes and attribution to anthropogenic forcing is hindered by brevity of observational records, model uncertainty, and uncertainty concerning internal variability. In this study, a detection/attribution of changes in mid-latitude North American winter-spring streamflow timing is examined using nine global climate models under multiple forcing scenarios. In this study, robustness across models, start/end dates for trends, and assumptions about internal variability is evaluated. Marginal evidence for an emerging detectable anthropogenic influence (according to four or five of nine models) is found in the north-central U.S., where winter-spring streamflows have been coming earlier. Weaker indications of detectable anthropogenic influence (three of nine models) are found in the mountainous western U.S./southwestern Canada and in extreme northeastern U.S./Canadian Maritimes. In the former region, a recent shift toward later streamflows has rendered the full-record trend toward earlier streamflows only marginally significant, with possible implications for previously published climate change detection findings for streamflow timing in this region. In the latter region, no forced model shows as large a shift toward earlier streamflow timing as the detectable observed shift. In other (including warm, snow-free) regions, observed trends are typically not detectable, although in the U.S. central plains we find detectable delays in streamflow, which are inconsistent with forced model experiments.

  20. Water resources data, Idaho, 2004; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  1. Water resources data, Idaho, 2003; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2004-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  2. Improving Energy Efficiency of Cooperative Femtocell Networks via Base Station Switching Off

    Directory of Open Access Journals (Sweden)

    Woongsup Lee

    2016-01-01

    Full Text Available Recently, energy efficiency (EE of cellular networks has become an important performance metric, and several techniques have been proposed to increase the EE. Among them, turning off base stations (BSs when not needed is considered as one of the most powerful techniques due to its simple operation and effectiveness. Herein, we propose a novel BS switching-off technique for cooperative femtocell networks where multiple femtocell BSs (FBSs simultaneously send packets to the same mobile station (MS. Unlike conventional schemes, cooperative operation of FBSs, also known as coordinated multipoint (CoMP transmission, is considered to determine which BSs are turned off in the proposed technique. We first formulate the optimization problem to find the optimal set of FBSs to be turned off. Then, we propose a suboptimal scheme operating in a distributed manner in order to reduce the computational complexity of the optimal scheme. The suboptimal scheme is based on throughput ratio (TR which specifies the importance of a particular FBS for the cooperative transmission. Through simulations, we show that the energy consumption can be greatly reduced with the proposed technique, compared with conventional schemes. Moreover, we show that the suboptimal scheme also achieves the near-optimal performance even without the excessive computations.

  3. Water quality monitoring and data collection in the Mississippi sound

    Science.gov (United States)

    Runner, Michael S.; Creswell, R.

    2002-01-01

    The United States Geological Survey and the Mississippi Department of Marine Resources are collecting data on the quality of the water in the Mississippi Sound of the Gulf of Mexico, and streamflow data for its tributaries. The U.S. Geological Survey is collecting continuous water-level data, continuous and discrete water-temperature data, continuous and discrete specific-conductance data, as well as chloride and salinity samples at two locations in the Mississippi Sound and three Corps of Engineers tidal gages. Continuous-discharge data are also being collected at two additional stations on tributaries. The Mississippi Department of Marine Resources collects water samples at 169 locations in the Gulf of Mexico. Between 1800 and 2000 samples are collected annually which are analyzed for turbidity and fecal coliform bacteria. The continuous data are made available real-time through the internet and are being used in conjunction with streamflow data, weather data, and sampling data for the monitoring and management of the oyster reefs, the shrimp fishery and other marine species and their habitats.

  4. Design of FPGA Based Neural Network Controller for Earth Station Power System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Automation of generating hardware description language code from neural networks models can highly decrease time of implementation those networks into a digital devices, thus significant money savings. To implement the neural network into hardware designer, it is required to translate generated model into device structure. VHDL language is used to describe those networks into hardware. VHDL code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic of the earth station and the satellite power systems using ModelSim PE 6.6 simulator tool. Integration between MATLAB and VHDL is used to save execution time of computation. The results shows that a good agreement between MATLAB and VHDL and a fast/flexible feed forward NN which is capable of dealing with floating point arithmetic operations; minimum number of CLB slices; and good speed of performance. FPGA synthesis results are obtained with view RTL schematic and technology schematic from Xilinix tool. Minimum number of utilized resources is obtained by using Xilinix VERTIX5.

  5. Relative contributions of transient and steady state infiltration during ephemeral streamflow

    Science.gov (United States)

    Blasch, Kyle W.; Ferré, Ty P.A.; Hoffmann, John P.; Fleming, John B.

    2006-01-01

    Simulations of infiltration during three ephemeral streamflow events in a coarse‐grained alluvial channel overlying a less permeable basin‐fill layer were conducted to determine the relative contribution of transient infiltration at the onset of streamflow to cumulative infiltration for the event. Water content, temperature, and piezometric measurements from 2.5‐m vertical profiles within the alluvial sediments were used to constrain a variably saturated water flow and heat transport model. Simulated and measured transient infiltration rates at the onset of streamflow were about two to three orders of magnitude greater than steady state infiltration rates. The duration of simulated transient infiltration ranged from 1.8 to 20 hours, compared with steady state flow periods of 231 to 307 hours. Cumulative infiltration during the transient period represented 10 to 26% of the total cumulative infiltration, with an average contribution of approximately 18%. Cumulative infiltration error for the simulated streamflow events ranged from 9 to 25%. Cumulative infiltration error for typical streamflow events of about 8 hours in duration in is about 90%. This analysis indicates that when estimating total cumulative infiltration in coarse‐grained ephemeral stream channels, consideration of the transient infiltration at the onset of streamflow will improve predictions of the total volume of infiltration that may become groundwater recharge.

  6. State updating and calibration period selection to improve dynamic monthly streamflow forecasts for an environmental flow management application

    Science.gov (United States)

    Gibbs, Matthew S.; McInerney, David; Humphrey, Greer; Thyer, Mark A.; Maier, Holger R.; Dandy, Graeme C.; Kavetski, Dmitri

    2018-02-01

    Monthly to seasonal streamflow forecasts provide useful information for a range of water resource management and planning applications. This work focuses on improving such forecasts by considering the following two aspects: (1) state updating to force the models to match observations from the start of the forecast period, and (2) selection of a shorter calibration period that is more representative of the forecast period, compared to a longer calibration period traditionally used. The analysis is undertaken in the context of using streamflow forecasts for environmental flow water management of an open channel drainage network in southern Australia. Forecasts of monthly streamflow are obtained using a conceptual rainfall-runoff model combined with a post-processor error model for uncertainty analysis. This model set-up is applied to two catchments, one with stronger evidence of non-stationarity than the other. A range of metrics are used to assess different aspects of predictive performance, including reliability, sharpness, bias and accuracy. The results indicate that, for most scenarios and metrics, state updating improves predictive performance for both observed rainfall and forecast rainfall sources. Using the shorter calibration period also improves predictive performance, particularly for the catchment with stronger evidence of non-stationarity. The results highlight that a traditional approach of using a long calibration period can degrade predictive performance when there is evidence of non-stationarity. The techniques presented can form the basis for operational monthly streamflow forecasting systems and provide support for environmental decision-making.

  7. Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma

    International Nuclear Information System (INIS)

    Gjerstorff, Morten F; Pøhl, Mette; Olsen, Karen E; Ditzel, Henrik J

    2013-01-01

    The unique expression pattern and immunogenic properties of cancer/testis antigens make them ideal targets for immunotherapy of cancer. The MAGE-A3 cancer/testis antigen is frequently expressed in non-small cell lung cancer (NSCLC) and vaccination with MAGE-A3 in patients with MAGE-A3-positive NSCLC has shown promising results. However, little is known about the expression of other cancer/testis antigens in NSCLC. In the present study the expression of cancer/testis antigens GAGE, NY-ESO-1 and SP17 was investigated in patients with completely resected, early stage, primary NSCLC. Tumor biopsies from normal lung tissue and from a large cohort (n = 169) of NSCLC patients were examined for GAGE, NY-ESO-1 and SP17 protein expression by immunohistochemical analysis. The expression of these antigens was further matched to clinical and pathological features using univariate cox regression analysis. GAGE and NY-ESO-1 cancer/testis antigens were not expressed in normal lung tissue, while SP17 was expressed in ciliated lung epithelia. The frequency of GAGE, NY-ESO-1 and SP17 expression in NSCLC tumors were 26.0% (44/169), 11.8% (20/169) and 4.7% (8/169), respectively, and 33.1% (56/169) of the tumors expressed at least one of these antigens. In general, the expression of GAGE, NY-ESO-1 and SP17 was not significantly associated with a specific histotype (adenocarcinoma vs. squamous cell carcinoma), but high-level GAGE expression (>50%) was more frequent in squamous cell carcinoma (p = 0.02). Furthermore, the frequency of GAGE expression was demonstrated to be significantly higher in stage II-IIIa than stage I NSCLC (17.0% vs. 35.8%; p = 0.02). Analysis of the relation between tumor expression of GAGE and NY-ESO-1 and survival endpoints revealed no significant associations. Our study demonstrates that GAGE, NY-ESO-1 and SP17 cancer/testis antigens are candidate targets for immunotherapy of NSCLC and further suggest that multi-antigen vaccines may be beneficial

  8. Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example.

    Science.gov (United States)

    Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton

    2017-04-21

    Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf.

  9. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains

    Science.gov (United States)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Chen, Yaning; Brenning, Alexander

    2018-02-01

    Streamflow and snowmelt runoff timing of mountain rivers are susceptible to climate change. Trends and variability in streamflow and snowmelt runoff timing in four mountain basins in the southern Tianshan were analyzed in this study. Streamflow trends were detected by Mann-Kendall tests and changes in snowmelt runoff timing were analyzed based on the winter/spring snowmelt runoff center time (WSCT). Pearson's correlation coefficient was further calculated to analyze the relationships between climate variables, streamflow and WSCT. Annual streamflow increased significantly in past decades in the southern Tianshan, especially in spring and winter months. However, the relations between streamflow and temperature/precipitation depend on the different streamflow generation processes. Annual precipitation plays a vital role in controlling recharge in the Toxkon basin, while the Kaidu and Huangshuigou basins are governed by both precipitation and temperature. Seasonally, temperature has a strong effect on streamflow in autumn and winter, while summer streamflow appears more sensitive to changes in precipitation. However, temperature is the dominant factor for streamflow in the glacierized Kunmalik basin at annual and seasonal scales. An uptrend in streamflow begins in the 1990s at both annual and seasonal scales, which is generally consistent with temperature and precipitation fluctuations. Average WSCT dates in the Kaidu and Huangshuigou basins are earlier than in the Toxkon and Kunmalik basins, and shifted towards earlier dates since the mid-1980s in all the basins. It is plausible that WSCT dates are more sensitive to warmer temperature in spring period compared to precipitation, except for the Huangshuigou basin. Taken together, these findings are useful for applications in flood risk regulation, future hydropower projects and integrated water resources management.

  10. Moving Beyond Streamflow Observations: Lessons From A Multi-Objective Calibration Experiment in the Mississippi Basin

    Science.gov (United States)

    Koppa, A.; Gebremichael, M.; Yeh, W. W. G.

    2017-12-01

    Calibrating hydrologic models in large catchments using a sparse network of streamflow gauges adversely affects the spatial and temporal accuracy of other water balance components which are important for climate-change, land-use and drought studies. This study combines remote sensing data and the concept of Pareto-Optimality to address the following questions: 1) What is the impact of streamflow (SF) calibration on the spatio-temporal accuracy of Evapotranspiration (ET), near-surface Soil Moisture (SM) and Total Water Storage (TWS)? 2) What is the best combination of fluxes that can be used to calibrate complex hydrological models such that both the accuracy of streamflow and the spatio-temporal accuracy of ET, SM and TWS is preserved? The study area is the Mississippi Basin in the United States (encompassing HUC-2 regions 5,6,7,9,10 and 11). 2003 and 2004, two climatologically average years are chosen for calibration and validation of the Noah-MP hydrologic model. Remotely sensed ET data is sourced from GLEAM, SM from ESA-CCI and TWS from GRACE. Single objective calibration is carried out using DDS Algorithm. For Multi objective calibration PA-DDS is used. First, the Noah-MP model is calibrated using a single objective function (Minimize Mean Square Error) for the outflow from the 6 HUC-2 sub-basins for 2003. Spatial correlograms are used to compare the spatial structure of ET, SM and TWS between the model and the remote sensing data. Spatial maps of RMSE and Mean Error are used to quantify the impact of calibrating streamflow on the accuracy of ET, SM and TWS estimates. Next, a multi-objective calibration experiment is setup to determine the pareto optimal parameter sets (pareto front) for the following cases - 1) SF and ET, 2) SF and SM, 3) SF and TWS, 4) SF, ET and SM, 5) SF, ET and TWS, 6) SF, SM and TWS, 7) SF, ET, SM and TWS. The best combination of fluxes that provides the optimal trade-off between accurate streamflow and preserving the spatio

  11. StreamStats: A water resources web application

    Science.gov (United States)

    Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.

    2008-01-01

    Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations

  12. A watershed modeling approach to streamflow reconstruction from tree-ring records

    International Nuclear Information System (INIS)

    Saito, Laurel; Biondi, Franco; Salas, Jose D; Panorska, Anna K; Kozubowski, Tomasz J

    2008-01-01

    Insight into long-term changes of streamflow is critical for addressing implications of global warming for sustainable water management. To date, dendrohydrologists have employed sophisticated regression techniques to extend runoff records, but this empirical approach cannot directly test the influence of watershed factors that alter streamflow independently of climate. We designed a mechanistic watershed model to calculate streamflows at annual timescales using as few inputs as possible. The model was calibrated for upper reaches of the Walker River, which straddles the boundary between the Sierra Nevada of California and the Great Basin of Nevada. Even though the model incorporated simplified relationships between precipitation and other components of the hydrologic cycle, it predicted water year streamflows with correlations of 0.87 when appropriate precipitation values were used

  13. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    Science.gov (United States)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  14. Portable neutron moisture gage for the moisture determination of structure parts

    International Nuclear Information System (INIS)

    Harnisch, M.

    1985-01-01

    For determining the moisture of structure parts during building or before repairing a portable neutron moisture gage consisting of a neutron probe and pulse analyzer has been developed. The measuring process, calibration, and prerequisites of application are briefly discussed

  15. Evaluation test of high temperature strain gages used in a stethoscope for OGL-1 components in an elevated temperature service

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshimi (Kyowa Electronic Inst. Co. Ltd. (Japan)); Tanaka, Isao; Komori, Yoshihiro; Suzuki; Toshiaki

    1982-08-01

    The stethoscope for OGL-1 components in a elevated temperature service (SOCETS) is a measuring system of evaluation integrity of structures for high temperature pipings during operations of Japan Material Testing Reactor. This paper is described about the results on fundamental performance on high temperature strain gages. From their test results that have been based on correlation of temperature-timestrain factors, it became clear that two weldable strain gages and a capacitance strain gage were available for strain measurements of OGL-1 components.

  16. Methodology to measure strains at high temperatures using electrical strain gages with free filaments

    International Nuclear Information System (INIS)

    Atanazio Filho, Nelson N.; Gomes, Paulo T. Vida; Scaldaferri, Denis H.B.; Silva, Luiz L. da; Rabello, Emerson G.; Mansur, Tanius R.

    2013-01-01

    An experimental methodology used for strains measuring at high temperatures is show in this work. In order to do the measurements, it was used electric strain gages with loose filaments attached to a stainless steel 304 beam with specific cements. The beam has triangular shape and a constant thickness, so the strain is the same along its length. Unless the beam surface be carefully prepared, the strain gage attachment is not efficient. The showed results are for temperatures ranging from 20 deg C to 300 deg C, but the experimental methodology could be used to measure strains at a temperature up to 900 deg C. Analytical calculations based on solid mechanics were used to verify the strain gage electrical installation and the measured strains. At a first moment, beam deformations as a temperature function were plotted. After that, beam deformations with different weighs were plotted as a temperature function. The results shown allowed concluding that the experimental methodology is trustable to measure strains at temperatures up to 300 deg C. (author)

  17. Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.

    2018-01-01

    Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain

  18. Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models

    Directory of Open Access Journals (Sweden)

    Behzad Asadieh

    2016-05-01

    Full Text Available To understand changes in global mean and extreme streamflow volumes over recent decades, we statistically analyzed runoff and streamflow simulated by the WBM-plus hydrological model using either observational-based meteorological inputs from WATCH Forcing Data (WFD, or bias-corrected inputs from five global climate models (GCMs provided by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP. Results show that the bias-corrected GCM inputs yield very good agreement with the observation-based inputs in average magnitude of runoff and streamflow. On global average, the observation-based simulated mean runoff and streamflow both decreased about 1.3% from 1971 to 2001. However, GCM-based simulations yield increasing trends over that period, with an inter-model global average of 1% for mean runoff and 0.9% for mean streamflow. In the GCM-based simulations, relative changes in extreme runoff and extreme streamflow (annual maximum daily values and annual-maximum seven-day streamflow are slightly greater than those of mean runoff and streamflow, in terms of global and continental averages. Observation-based simulations show increasing trend in mean runoff and streamflow for about one-half of the land areas and decreasing trend for the other half. However, mean and extreme runoff and streamflow based on the GCMs show increasing trend for approximately two-thirds of the global land area and decreasing trend for the other one-third. Further work is needed to understand why GCM simulations appear to indicate trends in streamflow that are more positive than those suggested by climate observations, even where, as in ISI-MIP, bias correction has been applied so that their streamflow climatology is realistic.

  19. RadNet Air Quality (Fixed Station) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet is a national network of monitoring stations that regularly collect air for analysis of radioactivity. The RadNet network, which has stations in each State,...

  20. Methods to estimate historical daily streamflow for ungaged stream locations in Minnesota

    Science.gov (United States)

    Lorenz, David L.; Ziegeweid, Jeffrey R.

    2016-03-14

    Effective and responsible management of water resources relies on a thorough understanding of the quantity and quality of available water; however, streamgages cannot be installed at every location where streamflow information is needed. Therefore, methods for estimating streamflow at ungaged stream locations need to be developed. This report presents a statewide study to develop methods to estimate the structure of historical daily streamflow at ungaged stream locations in Minnesota. Historical daily mean streamflow at ungaged locations in Minnesota can be estimated by transferring streamflow data at streamgages to the ungaged location using the QPPQ method. The QPPQ method uses flow-duration curves at an index streamgage, relying on the assumption that exceedance probabilities are equivalent between the index streamgage and the ungaged location, and estimates the flow at the ungaged location using the estimated flow-duration curve. Flow-duration curves at ungaged locations can be estimated using recently developed regression equations that have been incorporated into StreamStats (http://streamstats.usgs.gov/), which is a U.S. Geological Survey Web-based interactive mapping tool that can be used to obtain streamflow statistics, drainage-basin characteristics, and other information for user-selected locations on streams.

  1. Geological controls on isotopic signatures of streamflow: results from a nested catchment experiment in Luxembourg (Europe)

    Science.gov (United States)

    Pfister, Laurent; McDonnell, Jeffrey J.; Hissler, Christophe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; François Iffly, Jean; Barnich, François; Stewart, Mike K.

    2014-05-01

    Controls of geology and topography on hydrological metrics, like summer low flow (Grant and Tague, 2004) or dynamic storage (Sayama et al., 2011), have been identified in nested catchment experiments. However, most tracer-based studies on streamflow generation have been carried out in small (10 km2) homogenous catchments (Klaus and McDonnell, 2013). The controlling effects of catchment physiography on how catchments store and release water, and how this eventually controls stream isotope behaviour over a large range of scale are poorly understood. Here, we present results from a nested catchment analysis in the Alzette River basin (Luxembourg, Europe). Our hydro-climatological network consists of 16 recording streamgauges and 21 pluviographs. Catchment areas range from 0.47 to 285 km2, with clean and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Our objective was to identify geological controls on (i) winter runoff ratios, (ii) maximum storage and (iii) isotopic signatures in streamflow. For each catchment we determined average runoff ratios from winter season precipitation-discharge double-mass curves. Maximum catchment storage was based on the dynamic storage change approach of Sayama et al. (2011). Changes in isotopic signatures of streamflow were documented along individual catchment flow duration curves. We found strong correlations between average winter runoff ratios, maximum storage and the prevailing geological settings. Catchments with impermeable bedrock (e.g. marls or schists) were characterised by small storage potential and high average filling ratios. As a consequence, these catchments also exhibited the highest average runoff ratios. In catchments underlain by permeable bedrock (e.g. sandstone), storage potential was significantly higher and runoff ratios were considerably smaller. The isotopic signatures of streamflow showed large differences between catchments. In catchments dominated by

  2. In ecoregions across western USA streamflow increases during post-wildfire recovery

    Science.gov (United States)

    Wine, Michael L.; Cadol, Daniel; Makhnin, Oleg

    2018-01-01

    Continued growth of the human population on Earth will increase pressure on already stressed terrestrial water resources required for drinking water, agriculture, and industry. This stress demands improved understanding of critical controls on water resource availability, particularly in water-limited regions. Mechanistic predictions of future water resource availability are needed because non-stationary conditions exist in the form of changing climatic conditions, land management paradigms, and ecological disturbance regimes. While historically ecological disturbances have been small and could be neglected relative to climatic effects, evidence is accumulating that ecological disturbances, particularly wildfire, can increase regional water availability. However, wildfire hydrologic impacts are typically estimated locally and at small spatial scales, via disparate measurement methods and analysis techniques, and outside the context of climate change projections. Consequently, the relative importance of climate change driven versus wildfire driven impacts on streamflow remains unknown across the western USA. Here we show that considering wildfire in modeling streamflow significantly improves model predictions. Mixed effects modeling attributed 2%-14% of long-term annual streamflow to wildfire effects. The importance of this wildfire-linked streamflow relative to predicted climate change-induced streamflow reductions ranged from 20%-370% of the streamflow decrease predicted to occur by 2050. The rate of post-wildfire vegetation recovery and the proportion of watershed area burned controlled the wildfire effect. Our results demonstrate that in large areas of the western USA affected by wildfire, regional predictions of future water availability are subject to greater structural uncertainty than previously thought. These results suggest that future streamflows may be underestimated in areas affected by increased prevalence of hydrologically relevant ecological

  3. Evaluation test of high temperature strain gages used in a stethoscope for OGL-1 components in an elevated temperature service

    International Nuclear Information System (INIS)

    Sato, Toshimi; Tanaka, Isao; Komori, Yoshihiro; Suzuki; Toshiaki.

    1982-01-01

    The stethoscope for OGL-1 components in a elevated temperature service (SOCETS) is a measuring system of evaluation integrity of structures for high temperature pipings during operations of Japan Material Testing Reactor. This paper is described about the results on fundamental performance on high temperature strain gages. From their test results that have been based on correlation of temperature-timestrain factors, it became clear that two weldable strain gages and a capacitance strain gage were available for strain measurements of OGL-1 components. (author)

  4. Predictive Models of the Hydrological Regime of Unregulated Streams in Arizona

    Science.gov (United States)

    Anning, David W.; Parker, John T.C.

    2009-01-01

    Three statistical models were developed by the U.S. Geological Survey in cooperation with the Arizona Department of Environmental Quality to improve the predictability of flow occurrence in unregulated streams throughout Arizona. The models can be used to predict the probabilities of the hydrological regime being one of four categories developed by this investigation: perennial, which has streamflow year-round; nearly perennial, which has streamflow 90 to 99.9 percent of the year; weakly perennial, which has streamflow 80 to 90 percent of the year; or nonperennial, which has streamflow less than 80 percent of the year. The models were developed to assist the Arizona Department of Environmental Quality in selecting sites for participation in the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program. One model was developed for each of the three hydrologic provinces in Arizona - the Plateau Uplands, the Central Highlands, and the Basin and Range Lowlands. The models for predicting the hydrological regime were calibrated using statistical methods and explanatory variables of discharge, drainage-area, altitude, and location data for selected U.S. Geological Survey streamflow-gaging stations and a climate index derived from annual precipitation data. Models were calibrated on the basis of streamflow data from 46 stations for the Plateau Uplands province, 82 stations for the Central Highlands province, and 90 stations for the Basin and Range Lowlands province. The models were developed using classification trees that facilitated the analysis of mixed numeric and factor variables. In all three models, a threshold stream discharge was the initial variable to be considered within the classification tree and was the single most important explanatory variable. If a stream discharge value at a station was below the threshold, then the station record was determined as being nonperennial. If, however, the stream discharge was above the threshold

  5. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    Science.gov (United States)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover

  6. Thirty Years Later: Reflections of the Big Thompson Flood, Colorado, 1976 to 2006

    Science.gov (United States)

    Jarrett, R. D.; Costa, J. E.; Brunstein, F. C.; Quesenberry, C. A.; Vandas, S. J.; Capesius, J. P.; O'Neill, G. B.

    2006-12-01

    Thirty years ago, over 300 mm of rain fell in about 4 to 6 hours in the middle reaches of the Big Thompson River Basin during the devastating flash flood on July 31, 1976. The rainstorm produced flood discharges that exceeded 40 m3/s/km2. A peak discharge of 883 m3/s was estimated at the Big Thompson River near Drake streamflow-gaging station. The raging waters left 144 people dead, 250 injured, and over 800 people were evacuated by helicopter. Four-hundred eighteen homes and businesses were destroyed, as well as 438 automobiles, and damage to infrastructure left the canyon reachable only via helicopter. Total damage was estimated in excess of $116 million (2006 dollars). Natural hazards similar to the Big Thompson flood are rare, but the probability of a similar event hitting the Front Range, other parts of Colorado, or other parts of the Nation is real. Although much smaller in scale than the Big Thompson flood, several flash floods have happened during the monsoon in early July 2006 in the Colorado foothills that reemphasized the hazards associated with flash flooding. The U.S. Geological Survey (USGS) conducts flood research to help understand and predict the magnitude and likelihood of large streamflow events such as the Big Thompson flood. A summary of hydrologic conditions of the 1976 flood, what the 1976 flood can teach us about flash floods, a description of some of the advances in USGS flood science as a consequence of this disaster, and lessons that we learned to help reduce loss of life from this extraordinary flash flood are discussed. In the 30 years since the Big Thompson flood, there have been important advances in streamflow monitoring and flood warning. The National Weather Service (NWS) NEXRAD radar allows real-time monitoring of precipitation in most places in the United States. The USGS currently (2006) operates about 7,250 real-time streamflow-gaging stations in the United States that are monitored by the USGS, the NWS, and emergency managers

  7. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  8. Causes of interannual to decadal variability of Gila River streamflow over the past century

    Directory of Open Access Journals (Sweden)

    M.A. Pascolini-Campbell

    2015-03-01

    Full Text Available Study region: The Gila River, New Mexico, is characterized by two peaks in streamflow: one in the winter–spring (December–May, and summer (August–September. The region is influenced both by Pacific SST variability as well as the North American Monsoon. Study focus: The mechanisms responsible for the variability of the winter–spring and summer streamflow peaks are investigated by correlation of streamflow with precipitation and sea surface temperature for 1928–2012. Decadal variability in the flow record is examined for a longer term perspective on Gila River streamflow using tree ring-based reconstructions of the Palmer Drought Severity Index (PDSI and the Standardized Precipitation Index (SPI. New hydrological insights for the region: Results indicate a strong influence of winter–spring precipitation and Pacific SST anomalies on the winter–spring streamflow, with El Niño conditions in the Pacific causing increased precipitation and streamflow. Decadal Pacific variability helps explain the transition from high winter flow in the late 20th century to lower flows in the most recent decade. The summer streamflow has a somewhat weaker correlation with precipitation and Pacific SST than the winter–spring streamflow. Its variability is more likely influenced by local North American Monsoon precipitation variability. PDSI and SPI reconstructions indicate much more severe and extended periods of droughts and pluvials in past centuries as well as periods of concurrent winter and summer drought. Keywords: Streamflow decadal variability, Drought, Pluvials, Treering, Teleconnections, North American Monsoon

  9. Hydrology of the middle San Pedro area, southeastern Arizona

    Science.gov (United States)

    Cordova, Jeffrey T.; Dickinson, Jesse; Beisner, Kimberly R.; Hopkins, Candice B.; Kennedy, Jeffrey R.; Pool, Donald R.; Glenn, Edward P.; Nagler, Pamela L.; Thomas, Blakemore E.

    2015-05-05

    In the middle San Pedro Watershed in southeastern Arizona, groundwater is the primary source of water supply for municipal, domestic, industrial, and agricultural use. The watershed comprises two smaller subareas, the Benson subarea and the Narrows-Redington subarea. Early 21st century projections for heavy population growth in the watershed have not yet become a reality, but increased groundwater withdrawals could have undesired consequences - such as decreased base flow to the San Pedro River, and groundwater-level declines - that would lead to the need to deepen existing wells. This report describes the hydrology, hydrochemistry, water quality, and development of a groundwater budget for the middle San Pedro Watershed, focusing primarily on the elements of groundwater movement that could be most useful for the development of a groundwater modelPrecipitation data from Tombstone, Arizona, and base flow at the stream-gaging station on the San Pedro River at Charleston both show relatively dry periods during the 1960s through the mid-1980s and in the mid-1990s to 2009, and wetter periods from the mid-1980s through the mid-1990s. Water levels in four out of five wells near the mountain fronts show cyclical patterns of recharge, with rates of recharge greatest in the early 1980s through the mid-1990s. Three wells near the San Pedro River recorded their lowest levels during the 1950s to the mid-1960s. The water-level record from one well, completed in the confined part of the coarse-grained lower basin fill, showed a decline of approximately 21 meters.Annual flow of the San Pedro River, measured at the Charleston and Redington gages, has decreased since the 1940s. The median annual streamflow and base flow at the gaging station on the river near Tombstone has decreased by 50 percent between the periods 1968–1986 and 1997–2009. Estimates of streamflow infiltration along the San Pedro River during 1914–2009 have decreased 44 percent, with the largest decreases in

  10. UK 2009-2010 repeat station report

    Directory of Open Access Journals (Sweden)

    Thomas J.G. Shanahan

    2013-03-01

    Full Text Available The British Geological Survey is responsible for conducting the UK geomagnetic repeat station programme. Measurements made at the UK repeat station sites are used in conjunction with the three UK magnetic observatories: Hartland, Eskdalemuir and Lerwick, to produce a regional model of the local field each year. The UK network of repeat stations comprises 41 stations which are occupied at approximately 3-4 year intervals. Practices for conducting repeat station measurements continue to evolve as advances are made in survey instrumentation and as the usage of the data continues to change. Here, a summary of the 2009 and 2010 UK repeat station surveys is presented, highlighting the measurement process and techniques, density of network, reduction process and recent results.

  11. The importance of warm season warming to western U.S. streamflow changes

    Science.gov (United States)

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  12. An environmental streamflow assessment for the Santiam River basin, Oregon

    Science.gov (United States)

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  13. Breadth of Scientific Activities and Network Station Specifications in the International GPS Service (IGS)

    Science.gov (United States)

    Moore, A. W.; Neilan, R. E.; Springer, T. A.; Reigber, Ch.

    2000-01-01

    A strong multipurpose aspect of the International GPS Service (IGS) is revealed by a glance at the titles of current projects and working groups within the IGS: IGS/BIPM Time Transfer Project; Ionosphere Working Group; Troposphere Working Group; International GLONASS Experiment; Working Group on Low-Earth Orbiter Missions; and Tide Gauges, CGPS, and the IGS. The IGS network infrastructure, in large part originally commissioned for geodynamical investigations, has proved to be a valuable asset in developing application-oriented subnetworks whose requirements overlap the characteristics of existing IGS stations and future station upgrades. Issues encountered thus far in the development of multipurpose or multitechnique IGS projects as well as future possibilities will be reviewed.

  14. Streamflow characteristics and trends along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-08-16

    Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.

  15. Identification of symmetric and asymmetric responses in seasonal streamflow globally to ENSO phase

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip J.; Block, Paul

    2018-04-01

    The phase of the El Niño Southern Oscillation (ENSO) has large-ranging effects on streamflow and hydrologic conditions globally. While many studies have evaluated this relationship through correlation analysis between annual streamflow and ENSO indices, an assessment of potential asymmetric relationships between ENSO and streamflow is lacking. Here, we evaluate seasonal variations in streamflow by ENSO phase to identify asymmetric (AR) and symmetric (SR) spatial pattern responses globally and further corroborate with local precipitation and hydrological condition. The AR and SR patterns between seasonal precipitation and streamflow are identified at many locations for the first time. Our results identify strong SR patterns in particular regions including northwestern and southern US, northeastern and southeastern South America, northeastern and southern Africa, southwestern Europe, and central-south Russia. The seasonally lagged anomalous streamflow patterns are also identified and attributed to snowmelt, soil moisture, and/or cumulative hydrological processes across river basins. These findings may be useful in water resources management and natural hazards planning by better characterizing the propensity of flood or drought conditions by ENSO phase.

  16. Background noise spectra of global seismic stations

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  17. Design of Gages for Direct Skin Friction Measurements in Complex Turbulent Flows with Shock Impingement Compensation

    Science.gov (United States)

    2007-06-07

    100 kW/m2 for 0.1 s. Along with the material change, an oil leak problem required a geometric change. Initially, we considered TIG welding or...shear and moment, is addressed through the design, development, and testing of the CF1 and CF2 gages. Chapter 3 presents the evolutionary process ...a shock. Chapter 4 examines the performance of each gage to the nominal load conditions. Through this process , objective 2 is met. The best

  18. Networked simulation for team training of Space Station astronauts, ground controllers, and scientists - A training and development environment

    Science.gov (United States)

    Hajare, Ankur R.; Wick, Daniel T.; Bovenzi, James J.

    1991-01-01

    The purpose of this paper is to describe plans for the Space Station Training Facility (SSTF) which has been designed to meet the envisioned training needs for Space Station Freedom. To meet these needs, the SSTF will integrate networked simulators with real-world systems in five training modes: Stand-Alone, Combined, Joint-Combined, Integrated, and Joint-Integrated. This paper describes the five training modes within the context of three training scenaries. In addition, this paper describes an authoring system which will support the rapid integration of new real-world system changes in the Space Station Freedom Program.

  19. Streamflow response to increasing precipitation extremes altered by forest management

    Science.gov (United States)

    Charlene N. Kelly; Kevin J. McGuire; Chelcy Ford Miniat; James M. Vose

    2016-01-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the...

  20. Estimation of selected seasonal streamflow statistics representative of 1930-2002 in West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Atkins, John T.

    2010-01-01

    Regional equations and procedures were developed for estimating seasonal 1-day 10-year, 7-day 10-year, and 30-day 5-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the seasonal U.S. Environmental Protection Agency harmonic-mean flows and the 50-percent flow-duration values. The seasons were defined as winter (January 1-March 31), spring (April 1-June 30), summer (July 1-September 30), and fall (October 1-December 31). Regional equations were developed using ordinary least squares regression using statistics from 117 U.S. Geological Survey continuous streamgage stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia-North, South-Central, and Eastern Panhandle Regions-were determined. Drainage area, average annual precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. The average standard error of estimates for the equations ranged from 12.6 to 299 percent. Procedures developed to estimate the selected seasonal streamflow statistics in this study are applicable only to rural, unregulated streams within the boundaries of West Virginia that have independent variables within the limits of the stations used to develop the regional equations: drainage area from 16.3 to 1,516 square miles in the North Region, from 2.78 to 1,619 square miles in the South-Central Region, and from 8.83 to 3,041 square miles in the Eastern Panhandle Region; average annual precipitation from 42.3 to 61.4 inches in the South-Central Region and from 39.8 to 52.9 inches in the Eastern Panhandle Region; and longitude of the basin centroid from 79.618 to 82.023 decimal degrees in the North Region. All estimates of seasonal streamflow statistics are representative of the period from the 1930 to the 2002 climatic year.

  1. How Hydroclimate Influences the Effectiveness of Particle Filter Data Assimilation of Streamflow in Initializing Short- to Medium-range Streamflow Forecasts

    Science.gov (United States)

    Clark, E.; Wood, A.; Nijssen, B.; Clark, M. P.

    2017-12-01

    Short- to medium-range (1- to 7-day) streamflow forecasts are important for flood control operations and in issuing potentially life-save flood warnings. In the U.S., the National Weather Service River Forecast Centers (RFCs) issue such forecasts in real time, depending heavily on a manual data assimilation (DA) approach. Forecasters adjust model inputs, states, parameters and outputs based on experience and consideration of a range of supporting real-time information. Achieving high-quality forecasts from new automated, centralized forecast systems will depend critically on the adequacy of automated DA approaches to make analogous corrections to the forecasting system. Such approaches would further enable systematic evaluation of real-time flood forecasting methods and strategies. Toward this goal, we have implemented a real-time Sequential Importance Resampling particle filter (SIR-PF) approach to assimilate observed streamflow into simulated initial hydrologic conditions (states) for initializing ensemble flood forecasts. Assimilating streamflow alone in SIR-PF improves simulated streamflow and soil moisture during the model spin up period prior to a forecast, with consequent benefits for forecasts. Nevertheless, it only consistently limits error in simulated snow water equivalent during the snowmelt season and in basins where precipitation falls primarily as snow. We examine how the simulated initial conditions with and without SIR-PF propagate into 1- to 7-day ensemble streamflow forecasts. Forecasts are evaluated in terms of reliability and skill over a 10-year period from 2005-2015. The focus of this analysis is on how interactions between hydroclimate and SIR-PF performance impact forecast skill. To this end, we examine forecasts for 5 hydroclimatically diverse basins in the western U.S. Some of these basins receive most of their precipitation as snow, others as rain. Some freeze throughout the mid-winter while others experience significant mid-winter melt

  2. A Dual-Range Strain Gage Weighing Transducer Employing Automatic Switching

    Science.gov (United States)

    Rodger A. Arola

    1968-01-01

    Describes a dual-range strain gage transducer which has proven to be an excellent weight-sensing device for weighing trees and tree-length logs; discusses basic principals of the design and operation; and shows that a single transducer having two sensitivity ranges with automatic internal switching can sense weight with good repeatability and that one calibration curve...

  3. A report on upgraded seismic monitoring stations in Myanmar: Station performance and site response

    Science.gov (United States)

    Thiam, Hrin Nei; Min Htwe, Yin Myo; Kyaw, Tun Lin; Tun, Pa Pa; Min, Zaw; Htwe, Sun Hninn; Aung, Tin Myo; Lin, Kyaw Kyaw; Aung, Myat Min; De Cristofaro, Jason; Franke, Mathias; Radman, Stefan; Lepiten, Elouie; Wolin, Emily; Hough, Susan E.

    2017-01-01

    Myanmar is in a tectonically complex region between the eastern edge of the Himalayan collision zone and the northern end of the Sunda megathrust. Until recently, earthquake monitoring and research efforts have been hampered by a lack of modern instrumentation and communication infrastructure. In January 2016, a major upgrade of the Myanmar National Seismic Network (MNSN; network code MM) was undertaken to improve earthquake monitoring capability. We installed five permanent broadband and strong‐motion seismic stations and real‐time data telemetry using newly improved cellular networks. Data are telemetered to the MNSN hub in Nay Pyi Taw and archived at the Incorporated Research Institutions for Seismology Data Management Center. We analyzed station noise characteristics and site response using noise and events recorded over the first six months of station operation. Background noise characteristics vary across the array, but indicate that the new stations are performing well. MM stations recorded more than 20 earthquakes of M≥4.5 within Myanmar and its immediate surroundings, including an M 6.8 earthquake located northwest of Mandalay on 13 April 2016 and the Mw 6.8 Chauk event on 24 August 2016. We use this new dataset to calculate horizontal‐to‐vertical spectral ratios, which provide a preliminary characterization of site response of the upgraded MM stations.

  4. Understanding uncertainties in future Colorado River streamflow

    Science.gov (United States)

    Julie A. Vano,; Bradley Udall,; Cayan, Daniel; Jonathan T Overpeck,; Brekke, Levi D.; Das, Tapash; Hartmann, Holly C.; Hidalgo, Hugo G.; Hoerling, Martin P; McCabe, Gregory J.; Morino, Kiyomi; Webb, Robert S.; Werner, Kevin; Lettenmaier, Dennis P.

    2014-01-01

    The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamf low changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamf lows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.

  5. Streamflow predictions under climate scenarios in the Boulder Creek Watershed at Orodell

    Science.gov (United States)

    Zhang, Q.; Williams, M. W.; Livneh, B.

    2016-12-01

    Mountainous areas have complex geological features and climatic variability, which limit our ability to simulate and predict hydrologic processes, especially in face to a changing climate. Hydrologic models can improve our understanding of land surface water and energy budgets in these regions. In this study, a distributed physically-based hydrologic model is applied to the Boulder Creek Watershed, USA to study streamflow conditions under future climatic scenarios. Model parameters were adjusted using observed streamflow data at 1/16th degree resolution, with a NSE value of 0.69. The results from CMIP5 models can give a general range of streamflow conditions under different climatic scenarios. Two scenarios are being applied, including the RCP 4.5 and 8.5 scenarios. RCP 8.5 has higher emission concentrations than RCP 4.5, but not very significant in the period of study. Using pair t-test and Mann-Whitney test at specific grid cells to compare modeled and observed climate data, four CMIP5 models were chosen to predict streamflow from 2010 to 2025. Of the four models, two models predicted increased precipitation, while the other two models predicted decreased precipitation, and the four models predicted increased minimum and maximum temperature in RCP 4.5. Average streamflow decreased by 2% 14%, while maximum SWE varies from -7% to +210% from 2010 to 2025, relative to 2006 to 2010. In RCP 8.5, three models predicted increased precipitation, while the other one model predicted decreased precipitation, and the four models predicted increased maximum and minimum temperature. Besides one model, the other three models predicted increased average streamflow by 3.5% 32%, which results from the higher increasing magnitude in precipitation. Maximum SWE varies by 6% 55% higher than that from 2006 to 2010. This study shows that average daily maximum and minimum temperature will increase toward 2025 from different climate models, while average streamflow will decrease in RCP 4

  6. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    Science.gov (United States)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  7. The network architecture and site test of DCIS in Lungmen nuclear power station

    International Nuclear Information System (INIS)

    Lee, C. K.

    2006-01-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  8. The network architecture and site test of DCIS in Lungmen nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. K. [Instrument and Control Section, Lungmen Nuclear Power Station, Taiwan Power Company, Taipei County Taiwan (China)

    2006-07-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  9. Statistical summaries of selected Iowa streamflow data through September 2013

    Science.gov (United States)

    Eash, David A.; O'Shea, Padraic S.; Weber, Jared R.; Nguyen, Kevin T.; Montgomery, Nicholas L.; Simonson, Adrian J.

    2016-01-04

    Statistical summaries of streamflow data collected at 184 streamgages in Iowa are presented in this report. All streamgages included for analysis have at least 10 years of continuous record collected before or through September 2013. This report is an update to two previously published reports that presented statistical summaries of selected Iowa streamflow data through September 1988 and September 1996. The statistical summaries include (1) monthly and annual flow durations, (2) annual exceedance probabilities of instantaneous peak discharges (flood frequencies), (3) annual exceedance probabilities of high discharges, and (4) annual nonexceedance probabilities of low discharges and seasonal low discharges. Also presented for each streamgage are graphs of the annual mean discharges, mean annual mean discharges, 50-percent annual flow-duration discharges (median flows), harmonic mean flows, mean daily mean discharges, and flow-duration curves. Two sets of statistical summaries are presented for each streamgage, which include (1) long-term statistics for the entire period of streamflow record and (2) recent-term statistics for or during the 30-year period of record from 1984 to 2013. The recent-term statistics are only calculated for streamgages with streamflow records pre-dating the 1984 water year and with at least 10 years of record during 1984–2013. The streamflow statistics in this report are not adjusted for the effects of water use; although some of this water is used consumptively, most of it is returned to the streams.

  10. Artificial Neural Networks (ANNs for flood forecasting at Dongola Station in the River Nile, Sudan

    Directory of Open Access Journals (Sweden)

    Sulafa Hag Elsafi

    2014-09-01

    Full Text Available Heavy seasonal rains cause the River Nile in Sudan to overflow and flood the surroundings areas. The floods destroy houses, crops, roads, and basic infrastructure, resulting in the displacement of people. This study aimed to forecast the River Nile flow at Dongola Station in Sudan using an Artificial Neural Network (ANN as a modeling tool and validated the accuracy of the model against actual flow. The ANN model was formulated to simulate flows at a certain location in the river reach, based on flow at upstream locations. Different procedures were applied to predict flooding by the ANN. Readings from stations along the Blue Nile, White Nile, Main Nile, and River Atbara between 1965 and 2003 were used to predict the likelihood of flooding at Dongola Station. The analysis indicated that the ANN provides a reliable means of detecting the flood hazard in the River Nile.

  11. Climate change streamflow scenarios designed for critical period water resources planning studies

    Science.gov (United States)

    Hamlet, A. F.; Snover, A. K.; Lettenmaier, D. P.

    2003-04-01

    Long-range water planning in the United States is usually conducted by individual water management agencies using a critical period planning exercise based on a particular period of the observed streamflow record and a suite of internally-developed simulation tools representing the water system. In the context of planning for climate change, such an approach is flawed in that it assumes that the future climate will be like the historic record. Although more sophisticated planning methods will probably be required as time goes on, a short term strategy for incorporating climate uncertainty into long-range water planning as soon as possible is to create alternate inputs to existing planning methods that account for climate uncertainty as it affects both supply and demand. We describe a straight-forward technique for constructing streamflow scenarios based on the historic record that include the broad-based effects of changed regional climate simulated by several global climate models (GCMs). The streamflow scenarios are based on hydrologic simulations driven by historic climate data perturbed according to regional climate signals from four GCMs using the simple "delta" method. Further data processing then removes systematic hydrologic model bias using a quantile-based bias correction scheme, and lastly, the effects of random errors in the raw hydrologic simulations are removed. These techniques produce streamflow scenarios that are consistent in time and space with the historic streamflow record while incorporating fundamental changes in temperature and precipitation from the GCM scenarios. Planning model simulations based on these climate change streamflow scenarios can therefore be compared directly to planning model simulations based on the historic record of streamflows to help planners understand the potential impacts of climate uncertainty. The methods are currently being tested and refined in two large-scale planning exercises currently being conducted in the

  12. Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal adjustment scale

    Science.gov (United States)

    Lee, H.; Seo, D.-J.; Liu, Y.; Koren, V.; McKee, P.; Corby, R.

    2012-01-01

    State updating of distributed rainfall-runoff models via streamflow assimilation is subject to overfitting because large dimensionality of the state space of the model may render the assimilation problem seriously under-determined. To examine the issue in the context of operational hydrology, we carry out a set of real-world experiments in which streamflow data is assimilated into gridded Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic-wave routing models of the US National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM) with the variational data assimilation technique. Study basins include four basins in Oklahoma and five basins in Texas. To assess the sensitivity of data assimilation performance to dimensionality reduction in the control vector, we used nine different spatiotemporal adjustment scales, where state variables are adjusted in a lumped, semi-distributed, or distributed fashion and biases in precipitation and potential evaporation (PE) are adjusted hourly, 6-hourly, or kept time-invariant. For each adjustment scale, three different streamflow assimilation scenarios are explored, where streamflow observations at basin interior points, at the basin outlet, or at both interior points and the outlet are assimilated. The streamflow assimilation experiments with nine different basins show that the optimum spatiotemporal adjustment scale varies from one basin to another and may be different for streamflow analysis and prediction in all of the three streamflow assimilation scenarios. The most preferred adjustment scale for seven out of nine basins is found to be the distributed, hourly scale, despite the fact that several independent validation results at this adjustment scale indicated the occurrence of overfitting. Basins with highly correlated interior and outlet flows tend to be less sensitive to the adjustment scale and could benefit more from streamflow assimilation. In comparison to outlet flow assimilation, interior flow

  13. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of

  14. Estimation of average annual streamflows and power potentials for Alaska and Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, Kristine L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2004-05-01

    This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from the EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.

  15. Testing for Stationarity and Nonlinearity of Daily Streamflow Time Series Based on Different Statistical Tests (Case Study: Upstream Basin Rivers of Zarrineh Roud Dam

    Directory of Open Access Journals (Sweden)

    Farshad Fathian

    2017-02-01

    Full Text Available Introduction: Time series models are one of the most important tools for investigating and modeling hydrological processes in order to solve problems related to water resources management. Many hydrological time series shows nonstationary and nonlinear behaviors. One of the important hydrological modeling tasks is determining the existence of nonstationarity and the way through which we can access the stationarity accordingly. On the other hand, streamflow processes are usually considered as nonlinear mechanisms while in many studies linear time series models are used to model streamflow time series. However, it is not clear what kind of nonlinearity is acting underlying the streamflowprocesses and how intensive it is. Materials and Methods: Streamflow time series of 6 hydro-gauge stations located in the upstream basin rivers of ZarrinehRoud dam (located in the southern part of Urmia Lake basin have been considered to investigate stationarity and nonlinearity. All data series used here to startfrom January 1, 1997, and end on December 31, 2011. In this study, stationarity is tested by ADF and KPSS tests and nonlinearity is tested by BDS, Keenan and TLRT tests. The stationarity test is carried out with two methods. Thefirst one method is the augmented Dickey-Fuller (ADF unit root test first proposed by Dickey and Fuller (1979 and modified by Said and Dickey (1984, which examinsthe presence of unit roots in time series.The second onemethod is KPSS test, proposed by Kwiatkowski et al. (1992, which examinesthestationarity around a deterministic trend (trend stationarity and the stationarity around a fixed level (level stationarity. The BDS test (Brock et al., 1996 is a nonparametric method for testing the serial independence and nonlinear structure in time series based on the correlation integral of the series. The null hypothesis is the time series sample comes from an independent identically distributed (i.i.d. process. The alternative hypothesis

  16. The forest-streamflow relationship in China: a 40-year retrospect

    Science.gov (United States)

    Xiaohua Wei; Ge Sun; Shirong Liu; Hong Jiang; Guoyi Zhou; Limin Dai

    2008-01-01

    The relationship between forests and streamflows has long been an important research interest in China. The purpose of this paper is to summarize progress and lessons learned from the forest-streamflow studies over the past four decades in China. To better measure the research gaps between China and other parts of the world, a brief global review on the findings from...

  17. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN).

    Science.gov (United States)

    Park, Sechan; Kim, Minjeong; Kim, Minhae; Namgung, Hyeong-Gyu; Kim, Ki-Tae; Cho, Kyung Hwa; Kwon, Soon-Bark

    2018-01-05

    The indoor air quality of subway systems can significantly affect the health of passengers since these systems are widely used for short-distance transit in metropolitan urban areas in many countries. The particles generated by abrasion during subway operations and the vehicle-emitted pollutants flowing in from the street in particular affect the air quality in underground subway stations. Thus the continuous monitoring of particulate matter (PM) in underground station is important to evaluate the exposure level of PM to passengers. However, it is difficult to obtain indoor PM data because the measurement systems are expensive and difficult to install and operate for significant periods of time in spaces crowded with people. In this study, we predicted the indoor PM concentration using the information of outdoor PM, the number of subway trains running, and information on ventilation operation by the artificial neural network (ANN) model. As well, we investigated the relationship between ANN's performance and the depth of underground subway station. ANN model showed a high correlation between the predicted and actual measured values and it was able to predict 67∼80% of PM at 6 subway station. In addition, we found that platform shape and depth influenced the model performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Drivers of annual to decadal streamflow variability in the lower Colorado River Basin

    Science.gov (United States)

    Lambeth-Beagles, R. S.; Troch, P. A.

    2010-12-01

    The Colorado River is the main water supply to the southwest region. As demand reaches the limit of supply in the southwest it becomes increasingly important to understand the dynamics of streamflow in the Colorado River and in particular the tributaries to the lower Colorado River. Climate change may pose an additional threat to the already-scarce water supply in the southwest. Due to the narrowing margin for error, water managers are keen on extending their ability to predict streamflow volumes on a mid-range to decadal scale. Before a predictive streamflow model can be developed, an understanding of the physical drivers of annual to decadal streamflow variability in the lower Colorado River Basin is needed. This research addresses this need by applying multiple statistical methods to identify trends, patterns and relationships present in streamflow, precipitation and temperature over the past century in four contributing watersheds to the lower Colorado River. The four watersheds selected were the Paria, Little Colorado, Virgin/Muddy, and Bill Williams. Time series data over a common period from 1906-2007 for streamflow, precipitation and temperature were used for the initial analysis. Through statistical analysis the following questions were addressed: 1) are there observable trends and patterns in these variables during the past century and 2) if there are trends or patterns, how are they related to each other? The Mann-Kendall test was used to identify trends in the three variables. Assumptions regarding autocorrelation and persistence in the data were taken into consideration. Kendall’s tau-b test was used to establish association between any found trends in the data. Initial results suggest there are two primary processes occurring. First, statistical analysis reveals significant upward trends in temperatures and downward trends in streamflow. However, there appears to be no trend in precipitation data. These trends in streamflow and temperature speak to

  19. United States Geological Survey discharge data from five example gages on intermittent streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data are mean daily discharge data at United States Geological Survey gages. Once column provides the date (mm/dd/yyyy) and the other column provides the mean...

  20. mizuRoute version 1: A river network routing tool for a continental domain water resources applications

    Science.gov (United States)

    Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.

  1. Evaluation of metal-foil strain gages for cryogenic application in magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    The requirement for the design and construction of large superconducting magnet systems for fusion research has raised a number of new questions regarding the properties of composite superconducting conductors. One of these, the effect of mechanical stress on the current-carrying capacity of Nb 3 Sn, is of major importance in determining the feasibility of constructing large magnets with this material. A typical experiment for determining such data involves the measurement of critical current versus magnetic field while the conductor is being mechanically strained to various degrees. Techniques are well developed for the current and field measurements, but much less so for the accurate measurement of strain at liquid-helium temperature in a high magnetic field. A study was made of commercial, metal-foil strain gages for use under these conditions. The information developed can also be applied to the use of strain gages as diagnostic tools in superconducting magnets

  2. Behavior of porous beryllium under thermomechanical loading. Part 7. Calibration studies on the carbon piezoresistive gage

    International Nuclear Information System (INIS)

    Horning, R.R.; Isbell, W.M.

    1975-01-01

    The calibrations, time responses, and Hugoniot for carbon piezoresistive gages from two manufacturers are presented. These gages exhibit a high sensitivity of about --20 percent resistance change per GPa at 0.5 GPa. Their equilibrium times, when tested in fused silica, exceed 0.6 μs below 0.5 GPa but improve at higher stresses and under better impedance matching conditions. They can be made of low atomic number materials, making them interesting candidates for studying the mechanical responses of materials to electron and x-ray deposition. (U.S.)

  3. United States streamflow probabilities based on forecasted La Nina, winter-spring 2000

    Science.gov (United States)

    Dettinger, M.D.; Cayan, D.R.; Redmond, K.T.

    1999-01-01

    Although for the last 5 months the TahitiDarwin Southern Oscillation Index (SOI) has hovered close to normal, the “equatorial” SOI has remained in the La Niña category and predictions are calling for La Niña conditions this winter. In view of these predictions of continuing La Niña and as a direct extension of previous studies of the relations between El NiñoSouthern Oscil-lation (ENSO) conditions and streamflow in the United States (e.g., Redmond and Koch, 1991; Cayan and Webb, 1992; Redmond and Cayan, 1994; Dettinger et al., 1998; Garen, 1998; Cayan et al., 1999; Dettinger et al., in press), the probabilities that United States streamflows from December 1999 through July 2000 will be in upper and lower thirds (terciles) of the historical records are estimated here. The processes that link ENSO to North American streamflow are discussed in detail in these diagnostics studies. Our justification for generating this forecast is threefold: (1) Cayan et al. (1999) recently have shown that ENSO influences on streamflow variations and extremes are proportionately larger than the corresponding precipitation teleconnections. (2) Redmond and Cayan (1994) and Dettinger et al. (in press) also have shown that the low-frequency evolution of ENSO conditions support long-lead correlations between ENSO and streamflow in many rivers of the conterminous United States. (3) In many rivers, significant (weeks-to-months) delays between precipitation and the release to streams of snowmelt or ground-water discharge can support even longer term forecasts of streamflow than is possible for precipitation. The relatively slow, orderly evolution of El Niño-Southern Oscillation episodes, the accentuated dependence of streamflow upon ENSO, and the long lags between precipitation and flow encourage us to provide the following analysis as a simple prediction of this year’s river flows.

  4. Predictability of soil moisture and streamflow on subseasonal timescales: A case study

    Science.gov (United States)

    Orth, Rene; Seneviratne, Sonia I.

    2013-10-01

    Hydrological forecasts constitute an important tool in water resource management, especially in the case of impending extreme events. This study investigates the potential predictability of soil moisture and streamflow in Switzerland using a conceptual model including a simple water balance representation and a snow module. Our results show that simulated soil moisture and streamflow are more predictable (as indicated by significantly improved performance compared to climatology) until lead times of approximately 1 week and 2-3 days, respectively, when using initial soil moisture information and climatological atmospheric forcing. Using also initial snow information and seasonal weather forecasts as forcing, the predictable lead time doubles in case of soil moisture and triples for streamflow. The skill contributions of the additional information vary with altitude; at low altitudes the precipitation forecast is most important, whereas in mountainous areas the temperature forecast and the initial snow information are the most valuable contributors. We find furthermore that the soil moisture and streamflow forecast skills increase with increasing initial soil moisture anomalies. Comparing the respective value of realistic initial conditions and state-of-the-art forcing forecasts, we show that the former are generally more important for soil moisture forecasts, whereas the latter are more valuable for streamflow forecasts. To relate the derived predictabilities to respective soil moisture and streamflow memories investigated in other publications, we additionally illustrate the similarity between the concepts of memory and predictability as measures of persistence in the last part of this study.

  5. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of an Inflatable Module

    Science.gov (United States)

    Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio

    2012-01-01

    This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.

  6. A Linear Dynamical Systems Approach to Streamflow Reconstruction Reveals History of Regime Shifts in Northern Thailand

    Science.gov (United States)

    Nguyen, Hung T. T.; Galelli, Stefano

    2018-03-01

    Catchment dynamics is not often modeled in streamflow reconstruction studies; yet, the streamflow generation process depends on both catchment state and climatic inputs. To explicitly account for this interaction, we contribute a linear dynamic model, in which streamflow is a function of both catchment state (i.e., wet/dry) and paleoclimatic proxies. The model is learned using a novel variant of the Expectation-Maximization algorithm, and it is used with a paleo drought record—the Monsoon Asia Drought Atlas—to reconstruct 406 years of streamflow for the Ping River (northern Thailand). Results for the instrumental period show that the dynamic model has higher accuracy than conventional linear regression; all performance scores improve by 45-497%. Furthermore, the reconstructed trajectory of the state variable provides valuable insights about the catchment history—e.g., regime-like behavior—thereby complementing the information contained in the reconstructed streamflow time series. The proposed technique can replace linear regression, since it only requires information on streamflow and climatic proxies (e.g., tree-rings, drought indices); furthermore, it is capable of readily generating stochastic streamflow replicates. With a marginal increase in computational requirements, the dynamic model brings more desirable features and value to streamflow reconstructions.

  7. An unusual kind of diurnal streamflow variation

    Directory of Open Access Journals (Sweden)

    Cuevas Jaime G.

    2018-03-01

    Full Text Available During hydrological research in a Chilean swamp forest, we noted a pattern of higher streamflows close to midday and lower ones close to midnight, the opposite of an evapotranspiration (Et-driven cycle. We analyzed this diurnal streamflow signal (DSS, which appeared mid-spring (in the growing season. The end of this DSS coincided with a sustained rain event in autumn, which deeply affected stream and meteorological variables. A survey along the stream revealed that the DSS maximum and minimum values appeared 6 and 4 hours earlier, respectively, at headwaters located in the mountain forests/ plantations than at the control point in the swamp forest. Et in the swamp forest was higher in the morning and in the late afternoon, but this process could not influence the groundwater stage. Trees in the mountain headwaters reached their maximum Ets in the early morning and/or close to midday. Our results suggest that the DSS is a wave that moves from forests high in the mountains towards lowland areas, where Et is decoupled from the DSS. This signal delay seems to convert the link between streamflow and Et in an apparent, but spurious positive relationship. It also highlights the role of landscape heterogeneity in shaping hydrological processes.

  8. Drainage areas of the Potomac River basin, West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.

    1996-01-01

    This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.

  9. Climate and Streamflow Reconstruction on the São Francisco Basin, Brazil, Using Tree-Ring Data

    Science.gov (United States)

    Pereira, G. D. A.; Barbosa, A. C. M. C.; Granato-Souza, D.; Stahle, D. W.; Torbenson, M.; dos Santos, R. M.; Rodrigues Alves Delfino Barbosa, J. P.

    2017-12-01

    The São Francisco River crosses the most drought-prone region of Brazil and regional economic dynamics are dependent on the water availability in the basin. The seasonally dry forests are widely distributed in the basin, where Cedrela fissilis Vell (cedro) are frequently found. This semi-arid region provides a favorable setting where the deciduous cedro trees form well-defined semi-ring porous annual rings that can be exactly crossdated and used to build climate sensitive chronologies. Therefore, we have developed chronologies of cedro from seasonally dry forest fragments of three sites located in the middle-sector of the São Francisco River basin and south limit of the Brazilian Drought Polygon. The samples were analyzed according to standard procedures: sample preparation, ring count, crossdating and measurement of the tree rings. Dating quality was tested using the computer program COFECHA and ring-width time series where detrended and standardized to produce the final index chronology using the ARSTAN program. The results show that crossdating within and among trees from different sites demonstrate the potential to expand the spatial sampling. The tree-ring chronologies are sensitive with wet season precipitation totals (October - March), and can explain approximately 40% of the variance (1961-2015). Significant correlation was also observed with total annual discharge of the Rio São Francisco River measured at Barra (r=0.48; 1961-2015). However, the correlation disapears after 1993 (r=0.64 for 1961-1993, but r=-0.004 for 1994-2015) and we suspect that the stream gage at Barra has been impacted by human activity. Tree-ring chronologies can provide important information on climate and streamflow variability of São Francisco River, where hydrological records are often short and discontinuous. This chronology is now being extended with 150-yr old trees from the region and may be used to reconstruct climate and streamflow records back to the pre

  10. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    Science.gov (United States)

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    , as a response for a more interdisciplinary science approach to understanding the coastal Everglades ecological system, the SOFL-GCC hydrology project was integrated into the “Dynamics of Land-Margin Ecosystems: Historical Change, Hydrology, Vegetation, Sediment, and Climate” study (Smith and others, 2002). Data from the ongoing study has been useful in providing an empirical hydrologic baseline for the greater Everglades ecosystem restoration science and management needs. The hydrology network consisted of 13 hydrologic gaging stations installed in the southwestern coastal region of Everglades National Park along three transects: Shark River (Shark or SH) transect, Lostmans River (Lostmans or LO) transect, and Chatham River (Chatham or CH) transect (fig. 1). There were five paired surface-water/groundwater gaging stations on the Shark transect (SH1, SH2, SH3, SH4, and SH5) and one stage gaging station (BSC) in the Big Sable Creek; four paired surface-water/groundwater gaging stations on the Lostmans transect (LO1, LO2, LO3, and LO4); and three paired surface-water/groundwater gaging stations on the Chatham transect (CH1, CH2, and CH3). Both surface-water and groundwater levels, salinities, and temperatures were monitored at the paired gaging stations. Rainfall was recorded at marsh and open canopy gaging stations. This report details the study introduction, method, and description of data collected, which are accessible through the final instantaneous hydrologic dataset stored in the USGS South Florida Information Access (SOFIA) South Florida Hydrology Database website, http://sofia.usgs.gov/exchange/sfl_hydro_data/location.html#brdlandmargin.

  11. Consistent and efficient processing of ADCP streamflow measurements

    Science.gov (United States)

    Mueller, David S.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    The use of Acoustic Doppler Current Profilers (ADCPs) from a moving boat is a commonly used method for measuring streamflow. Currently, the algorithms used to compute the average depth, compute edge discharge, identify invalid data, and estimate velocity and discharge for invalid data vary among manufacturers. These differences could result in different discharges being computed from identical data. Consistent computational algorithm, automated filtering, and quality assessment of ADCP streamflow measurements that are independent of the ADCP manufacturer are being developed in a software program that can process ADCP moving-boat discharge measurements independent of the ADCP used to collect the data.

  12. Improving the performance of streamflow forecasting model using data-preprocessing technique in Dungun River Basin

    Science.gov (United States)

    Khai Tiu, Ervin Shan; Huang, Yuk Feng; Ling, Lloyd

    2018-03-01

    An accurate streamflow forecasting model is important for the development of flood mitigation plan as to ensure sustainable development for a river basin. This study adopted Variational Mode Decomposition (VMD) data-preprocessing technique to process and denoise the rainfall data before putting into the Support Vector Machine (SVM) streamflow forecasting model in order to improve the performance of the selected model. Rainfall data and river water level data for the period of 1996-2016 were used for this purpose. Homogeneity tests (Standard Normal Homogeneity Test, the Buishand Range Test, the Pettitt Test and the Von Neumann Ratio Test) and normality tests (Shapiro-Wilk Test, Anderson-Darling Test, Lilliefors Test and Jarque-Bera Test) had been carried out on the rainfall series. Homogenous and non-normally distributed data were found in all the stations, respectively. From the recorded rainfall data, it was observed that Dungun River Basin possessed higher monthly rainfall from November to February, which was during the Northeast Monsoon. Thus, the monthly and seasonal rainfall series of this monsoon would be the main focus for this research as floods usually happen during the Northeast Monsoon period. The predicted water levels from SVM model were assessed with the observed water level using non-parametric statistical tests (Biased Method, Kendall's Tau B Test and Spearman's Rho Test).

  13. User's Guide, software for reduction and analysis of daily weather and surface-water data: Tools for time series analysis of precipitation, temperature, and streamflow data

    Science.gov (United States)

    Hereford, Richard

    2006-01-01

    The software described here is used to process and analyze daily weather and surface-water data. The programs are refinements of earlier versions that include minor corrections and routines to calculate frequencies above a threshold on an annual or seasonal basis. Earlier versions of this software were used successfully to analyze historical precipitation patterns of the Mojave Desert and the southern Colorado Plateau regions, ecosystem response to climate variation, and variation of sediment-runoff frequency related to climate (Hereford and others, 2003; 2004; in press; Griffiths and others, 2006). The main program described here (Day_Cli_Ann_v5.3) uses daily data to develop a time series of various statistics for a user specified accounting period such as a year or season. The statistics include averages and totals, but the emphasis is on the frequency of occurrence in days of relatively rare weather or runoff events. These statistics are indices of climate variation; for a discussion of climate indices, see the Climate Research Unit website of the University of East Anglia (http://www.cru.uea.ac.uk/projects/stardex/) and the Climate Change Indices web site (http://cccma.seos.uvic.ca/ETCCDMI/indices.html). Specifically, the indices computed with this software are the frequency of high intensity 24-hour rainfall, unusually warm temperature, and unusually high runoff. These rare, or extreme events, are those greater than the 90th percentile of precipitation, streamflow, or temperature computed for the period of record of weather or gaging stations. If they cluster in time over several decades, extreme events may produce detectable change in the physical landscape and ecosystem of a given region. Although the software has been tested on a variety of data, as with any software, the user should carefully evaluate the results with their data. The programs were designed for the range of precipitation, temperature, and streamflow measurements expected in the semiarid

  14. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    Science.gov (United States)

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is

  15. Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California

    Science.gov (United States)

    Moss, D. R.; Fogg, G. E.; Wallender, W. W.

    2011-12-01

    Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time

  16. Hydrograph simulation models of the Hillsborough and Alafia Rivers, Florida: a preliminary report

    Science.gov (United States)

    Turner, James F.

    1972-01-01

    Mathematical (digital) models that simulate flood hydrographs from rainfall records have been developed for the following gaging stations in the Hillsborough and Alafia River basins of west-central Florida: Hillsborough River near Tampa, Alafia River at Lithia, and north Prong Alafia River near Keysville. These models, which were developed from historical streamflow and and rainfall records, are based on rainfall-runoff and unit-hydrograph procedures involving an arbitrary separation of the flood hydrograph. These models assume the flood hydrograph to be composed of only two flow components, direct (storm) runoff, and base flow. Expressions describing these two flow components are derived from streamflow and rainfall records and are combined analytically to form algorithms (models), which are programmed for processing on a digital computing system. Most Hillsborough and Alafia River flood discharges can be simulated with expected relative errors less than or equal to 30 percent and flood peaks can be simulated with average relative errors less than 15 percent. Because of the inadequate rainfall network that is used in obtaining input data for the North Prong Alafia River model, simulated peaks are frequently in error by more than 40 percent, particularly for storms having highly variable areal rainfall distribution. Simulation errors are the result of rainfall sample errors and, to a lesser extent, model inadequacy. Data errors associated with the determination of mean basin precipitation are the result of the small number and poor areal distribution of rainfall stations available for use in the study. Model inadequacy, however, is attributed to the basic underlying theory, particularly the rainfall-runoff relation. These models broaden and enhance existing water-management capabilities within these basins by allowing the establishment and implementation of programs providing for continued development in these areas. Specifically, the models serve not only as a

  17. Can additional urban development have major impacts on streamflow of a peri-urban catchment? A case study from Portugal

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Nunes, João; Steenhuis, Tammo; de Lima, João; Coelho, Celeste; Ferreira, António

    2016-04-01

    It is well known that urban development brings about changes in hydrological response. Relatively little, however, is known about impacts on streamflow during urban development in the Mediterranean climate. This paper examines changes in streamflow resulting from the construction of an enterprise park, a major road and apartment blocks in a small partially urbanized peri-urban catchment (6.2 km2) in central Portugal. These developments led to an increase in urban area from 32% to 40% over a five-year period (hydrological years 2008/09-2012/13). In the initial two-year period minor land-use changes increased impervious surfaces from 12.8% to 13.2%. The subsequent three-year period led to a further 17.2% increase in impervious area. Streamflow was recorded by a V-notch weir at the catchment outlet. Rainfall was recorded at a weather station 0.5km north of the catchment, and by five tipping-bucket raingauges installed in January 2011 within the study catchment. Annual runoff and storm runoff coefficients ranged from 14% to 21% and 9% to 14%, respectively, recorded in 2011/12 and 2012/13. Although these differences in runoff were caused in part by variation in rainfall, the comparison between 2009/10 (pre-) and 2012/13 (post-additional urban development), with broadly similar rainfall (887mm vs 947mm, respectively) and evapotranspiration (740mm vs 746mm), showed a 43% increase in storm runoff (from 90mm to 129mm), resulting from additional overland flow generated largely by the 4.4% increase in impervious surfaces. The additional urban development also led to changes in hydrograph parameters. The increase in storm runoff was not progressive over the study period, but regression lines of storm runoff against rainstorm parameters exhibited higher vertical positions in 2012/13 than 2008/09. Increasing peak flows, however, were more progressive over the study period, with annual regression lines displaying higher vertical positions, but with a clear distance between pre

  18. On the probability distribution of daily streamflow in the United States

    Science.gov (United States)

    Blum, Annalise G.; Archfield, Stacey A.; Vogel, Richard M.

    2017-06-01

    Daily streamflows are often represented by flow duration curves (FDCs), which illustrate the frequency with which flows are equaled or exceeded. FDCs have had broad applications across both operational and research hydrology for decades; however, modeling FDCs has proven elusive. Daily streamflow is a complex time series with flow values ranging over many orders of magnitude. The identification of a probability distribution that can approximate daily streamflow would improve understanding of the behavior of daily flows and the ability to estimate FDCs at ungaged river locations. Comparisons of modeled and empirical FDCs at nearly 400 unregulated, perennial streams illustrate that the four-parameter kappa distribution provides a very good representation of daily streamflow across the majority of physiographic regions in the conterminous United States (US). Further, for some regions of the US, the three-parameter generalized Pareto and lognormal distributions also provide a good approximation to FDCs. Similar results are found for the period of record FDCs, representing the long-term hydrologic regime at a site, and median annual FDCs, representing the behavior of flows in a typical year.

  19. Towards a publicly available, map-based regional software tool to estimate unregulated daily streamflow at ungauged rivers

    Directory of Open Access Journals (Sweden)

    S. A. Archfield

    2013-01-01

    Full Text Available Streamflow information is critical for addressing any number of hydrologic problems. Often, streamflow information is needed at locations that are ungauged and, therefore, have no observations on which to base water management decisions. Furthermore, there has been increasing need for daily streamflow time series to manage rivers for both human and ecological functions. To facilitate negotiation between human and ecological demands for water, this paper presents the first publicly available, map-based, regional software tool to estimate historical, unregulated, daily streamflow time series (streamflow not affected by human alteration such as dams or water withdrawals at any user-selected ungauged river location. The map interface allows users to locate and click on a river location, which then links to a spreadsheet-based program that computes estimates of daily streamflow for the river location selected. For a demonstration region in the northeast United States, daily streamflow was, in general, shown to be reliably estimated by the software tool. Estimating the highest and lowest streamflows that occurred in the demonstration region over the period from 1960 through 2004 also was accomplished but with more difficulty and limitations. The software tool provides a general framework that can be applied to other regions for which daily streamflow estimates are needed.

  20. Towards a publicly available, map-based regional software tool to estimate unregulated daily streamflow at ungauged rivers

    Science.gov (United States)

    Archfield, Stacey A.; Steeves, Peter A.; Guthrie, John D.; Ries, Kernell G.

    2013-01-01

    Streamflow information is critical for addressing any number of hydrologic problems. Often, streamflow information is needed at locations that are ungauged and, therefore, have no observations on which to base water management decisions. Furthermore, there has been increasing need for daily streamflow time series to manage rivers for both human and ecological functions. To facilitate negotiation between human and ecological demands for water, this paper presents the first publicly available, map-based, regional software tool to estimate historical, unregulated, daily streamflow time series (streamflow not affected by human alteration such as dams or water withdrawals) at any user-selected ungauged river location. The map interface allows users to locate and click on a river location, which then links to a spreadsheet-based program that computes estimates of daily streamflow for the river location selected. For a demonstration region in the northeast United States, daily streamflow was, in general, shown to be reliably estimated by the software tool. Estimating the highest and lowest streamflows that occurred in the demonstration region over the period from 1960 through 2004 also was accomplished but with more difficulty and limitations. The software tool provides a general framework that can be applied to other regions for which daily streamflow estimates are needed.