Department of Homeland Security — This map layer shows selected streamflow gaging stations of the United States, Puerto Rico, and the U.S. Virgin Islands, in 2013. Gaging stations, or gages, measure...
Streamflow characteristics at hydrologic bench-mark stations
Lawrence, C.L.
1987-01-01
The Hydrologic Bench-Mark Network was established in the 1960's. Its objectives were to document the hydrologic characteristics of representative undeveloped watersheds nationwide and to provide a comparative base for studying the effects of man on the hydrologic environment. The network, which consists of 57 streamflow gaging stations and one lake-stage station in 39 States, is planned for permanent operation. This interim report describes streamflow characteristics at each bench-mark site and identifies time trends in annual streamflow that have occurred during the data-collection period. The streamflow characteristics presented for each streamflow station are (1) flood and low-flow frequencies, (2) flow duration, (3) annual mean flow, and (4) the serial correlation coefficient for annual mean discharge. In addition, Kendall's tau is computed as an indicator of time trend in annual discharges. The period of record for most stations was 13 to 17 years, although several stations had longer periods of record. The longest period was 65 years for Merced River near Yosemite, Calif. Records of flow at 6 of 57 streamflow sites in the network showed a statistically significant change in annual mean discharge over the period of record, based on computations of Kendall's tau. The values of Kendall's tau ranged from -0.533 to 0.648. An examination of climatological records showed that changes in precipitation were most likely the cause for the change in annual mean discharge.
Linear genetic programming application for successive-station monthly streamflow prediction
Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit
2014-09-01
In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.
The Effect of Warming Oceans at a Tide Gauge Station
Bâki Iz H.
2016-01-01
This study proposes a new paradigm for assessing thermosteric effects of warming oceans at a tide gauge station. For demonstration, the trend due to the global thermosteric sea level at the Key West, FL tide gauge station was estimated using the tide gauge measurements and the global sea surface temperature anomalies that were represented by yearly distributed lags. A comparison of the estimate with the trend estimate from a descriptive model revealed that 0.7±0.1 mm/y...
McCarthy, Peter M.
2016-04-05
Chapter E of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality and the Montana Department of Natural Resources and Conservation, to provide an update of statewide streamflow characteristics based on data through water year 2009 for streamflow-gaging stations in or near Montana. Streamflow characteristics are presented for 408 streamflow-gaging stations in Montana and adjacent areas having 10 or more years of record. Data include the magnitude and probability of annual low and high streamflow, the magnitude and probability of low streamflow for three seasons (March–June, July–October, and November–February), streamflow duration statistics for monthly and annual periods, and mean streamflows for monthly and annual periods. Streamflow is considered to be regulated at streamflow-gaging stations where dams or other large-scale human modifications affect 20 percent or more of the contributing drainage basin. Separate streamflow characteristics are presented for the unregulated and regulated periods of record for streamflow-gaging stations with sufficient data.
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2017-12-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method
Lee, Hak Su; Seo, Dong-Jun; Liu, Yuqiong; McKee, Paul; Corby, Robert
2010-05-01
State updating of distributed hydrologic models via assimilation of streamflow data is subject to "overfitting" because large dimensionality of the state space of the model may render the assimilation problem seriously underdetermined. To examine the issue in the context of operational hydrology, we carried out a set of real-world experiments in which we assimilate streamflow data at interior and/or outlet locations into gridded SAC and kinematic-wave routing models of the U.S. National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM). We used for the experiments nine basins in the southern plains of the U.S. The experiments consist of selectively assimilating streamflow at different gauge locations, outlet and/or interior, and carrying out both dependent and independent validation. To assess the sensitivity of the quality of assimilation-aided streamflow simulation to the reduced dimensionality of the state space, we carried out data assimilation at spatially semi-distributed or lumped scale and by adjusting biases in precipitation and potential evaporation at a 6-hourly or larger scale. In this talk, we present the results and findings.
Spatial and Temporal Streamflow Trends in Northern Taiwan
Directory of Open Access Journals (Sweden)
Chen-Feng Yeh
2015-02-01
Full Text Available Streamflow is an important factor in the study of water resource management, floods, and droughts. Dramatic climate change has created extreme rainfall distributions, making the study of streamflow trends and variability even more crucial. In this study, the long-term streamflow data and trends recorded at gauging stations in Northern Taiwan are analyzed using the Mann-Kendall test. The data used for trend analysis are the average annual streamflow, the average seasonal streamflow, and the high and low flows. The slope trend is calculated using the Theil-Sen estimator. Finally, change point analysis is conducted using the Mann-Whitney-Pettit test and the cumulative deviation test to gain further information about the change points and to understand the changes in streamflow before and after the change points. The average annual streamflow of the 12 gauging stations in the study area is analyzed using the Mann-Kendall test. The results show that of the 12 gauging stations, only the Ximen Bridge Station in the Lanyang River basin show a significant downward streamflow trend. Results of the monthly and seasonal average streamflow analysis show that in the spring, 72.2% of the gauging stations showed upward streamflow trends, most of which were located in the Tamsui River and the Touqian River basins. The high and low flow data analysis shows that the Ximen Bridge Station was the only gauging station to feature a significant downward streamflow trend for both high and low flows. This distribution pattern provides valuable information for regional hydrological studies and water management.
Dhakal, A. S.; Adera, S.
2017-12-01
Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS
Estimating ice-affected streamflow by extended Kalman filtering
Holtschlag, D.J.; Grewal, M.S.
1998-01-01
An extended Kalman filter was developed to automate the real-time estimation of ice-affected streamflow on the basis of routine measurements of stream stage and air temperature and on the relation between stage and streamflow during open-water (ice-free) conditions. The filter accommodates three dynamic modes of ice effects: sudden formation/ablation, stable ice conditions, and eventual elimination. The utility of the filter was evaluated by applying it to historical data from two long-term streamflow-gauging stations, St. John River at Dickey, Maine and Platte River at North Bend, Nebr. Results indicate that the filter was stable and that parameters converged for both stations, producing streamflow estimates that are highly correlated with published values. For the Maine station, logarithms of estimated streamflows are within 8% of the logarithms of published values 87.2% of the time during periods of ice effects and within 15% 96.6% of the time. Similarly, for the Nebraska station, logarithms of estimated streamflows are within 8% of the logarithms of published values 90.7% of the time and within 15% 97.7% of the time. In addition, the correlation between temporal updates and published streamflows on days of direct measurements at the Maine station was 0.777 and 0.998 for ice-affected and open-water periods, respectively; for the Nebraska station, corresponding correlations were 0.864 and 0.997.
A spatial assessment of stream-flow characteristics and hydrologic ...
African Journals Online (AJOL)
The global hydrologic regime has been intensively altered through activities such as dam construction, water abstraction, and inter-basin transfers. This paper uses the Range of Variability Approach (RVA) and daily stream flow records from nine gauging stations to characterize stream-flow post dam construction in the ...
Directory of Open Access Journals (Sweden)
William H. Farmer
2017-10-01
New hydrological insights for the region: Several methods for estimating nonexceedance probabilities of daily mean streamflows are explored, including single-index methodologies (nearest-neighboring index and geospatial tools (kriging and topological kriging. These methods were evaluated by conducting leave-one-out cross-validations based on analyses of nearly 7 years of daily streamflow data from 79 unregulated streamgages in Ohio and neighboring states. The pooled, ordinary kriging model, with a median Nash–Sutcliffe performance of 0.87, was superior to the single-site index methods, though there was some bias in the tails of the probability distribution. Incorporating network structure through topological kriging did not improve performance. The pooled, ordinary kriging model was applied to 118 locations without systematic streamgaging across Ohio where instantaneous streamflow measurements had been made concurrent with water-quality sampling on at least 3 separate days. Spearman rank correlations between estimated nonexceedance probabilities and measured streamflows were high, with a median value of 0.76. In consideration of application, the degree of regulation in a set of sample sites helped to specify the streamgages required to implement kriging approaches successfully.
Spatial patterns of March and September streamflow trends in Pacific Northwest Streams, 1958-2008
Chang, Heejun; Jung, Il-Won; Steele, Madeline; Gannett, Marshall
2012-01-01
Summer streamflow is a vital water resource for municipal and domestic water supplies, irrigation, salmonid habitat, recreation, and water-related ecosystem services in the Pacific Northwest (PNW) in the United States. This study detects significant negative trends in September absolute streamflow in a majority of 68 stream-gauging stations located on unregulated streams in the PNW from 1958 to 2008. The proportion of March streamflow to annual streamflow increases in most stations over 1,000 m elevation, with a baseflow index of less than 50, while absolute March streamflow does not increase in most stations. The declining trends of September absolute streamflow are strongly associated with seven-day low flow, January–March maximum temperature trends, and the size of the basin (19–7,260 km2), while the increasing trends of the fraction of March streamflow are associated with elevation, April 1 snow water equivalent, March precipitation, center timing of streamflow, and October–December minimum temperature trends. Compared with ordinary least squares (OLS) estimated regression models, spatial error regression and geographically weighted regression (GWR) models effectively remove spatial autocorrelation in residuals. The GWR model results show spatial gradients of local R 2 values with consistently higher local R 2 values in the northern Cascades. This finding illustrates that different hydrologic landscape factors, such as geology and seasonal distribution of precipitation, also influence streamflow trends in the PNW. In addition, our spatial analysis model results show that considering various geographic factors help clarify the dynamics of streamflow trends over a large geographical area, supporting a spatial analysis approach over aspatial OLS-estimated regression models for predicting streamflow trends. Results indicate that transitional rain–snow surface water-dominated basins are likely to have reduced summer streamflow under warming scenarios
National Research Council Canada - National Science Library
Kuhn, Gerhard
2003-01-01
The U.S Geological Survey, in cooperation with the Grand Mesa, Uncompahgre, and Gunnison National Forests, began a study in 2000 to develop selected streamflow characteristics for 60 streamflow-gaging...
Similarity indices of meteo-climatic gauging stations: definition and comparison.
Barca, Emanuele; Bruno, Delia Evelina; Passarella, Giuseppe
2016-07-01
Space-time dependencies among monitoring network stations have been investigated to detect and quantify similarity relationships among gauging stations. In this work, besides the well-known rank correlation index, two new similarity indices have been defined and applied to compute the similarity matrix related to the Apulian meteo-climatic monitoring network. The similarity matrices can be applied to address reliably the issue of missing data in space-time series. In order to establish the effectiveness of the similarity indices, a simulation test was then designed and performed with the aim of estimating missing monthly rainfall rates in a suitably selected gauging station. The results of the simulation allowed us to evaluate the effectiveness of the proposed similarity indices. Finally, the multiple imputation by chained equations method was used as a benchmark to have an absolute yardstick for comparing the outcomes of the test. In conclusion, the new proposed multiplicative similarity index resulted at least as reliable as the selected benchmark.
Streamflow Trends and Responses to Climate Variability and Land Cover Change in South Dakota
Directory of Open Access Journals (Sweden)
Karishma Niloy Kibria
2016-01-01
Full Text Available Trends in high, moderate, and low streamflow conditions from United States Geological Survey (USGS gauging stations were evaluated for a period of 1951–2013 for 18 selected watersheds in South Dakota (SD using a modified Mann-Kendall test. Rainfall trends from 21 rainfall observation stations located within 20-km of the streamflow gauging stations were also evaluated for the same study period. The concept of elasticity was used to examine sensitivity of streamflow to variation in rainfall and land cover (i.e., grassland in the study watersheds. Results indicated significant increasing trends in seven of the studied streams (of which five are in the east and two are located in the west, nine with slight increasing trends, and two with decreasing trends for annual streamflow. About half of the streams exhibited significant increasing trends in low and moderate flow conditions compared to high flow conditions. Ten rainfall stations showed slight increasing trends and seven showed decreasing trends for annual rainfall. Streamflow elasticity analysis revealed that streamflow was highly influenced by rainfall across the state (five of eastern streams and seven of western streams. Based on this analysis, a 10% increase in annual rainfall would result in 11%–30% increase in annual streamflow in more than 60% of SD streams. While streamflow appears to be more sensitive to rainfall across the state, high sensitivity of streamflow to rapid decrease in grassland area was detected in two western watersheds. This study provides valuable insight into of the relationship between streamflow, climate, and grassland cover in SD and would support further research and stakeholder decision making about water resources.
Alipour, M. H.; Kibler, Kelly M.
2018-02-01
A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model evaluation is developed to select models that balance runoff efficiency with selection of accurate parameter values. Sparse observed data are supplemented by uncertain or low-resolution information, incorporated as 'soft' data, to estimate parameter values a priori. Model performance is tested in two catchments within a data-poor region of southwestern China, and results are compared to models selected using alternative calibration methods. While all models perform consistently with respect to runoff efficiency (NSE range of 0.67-0.78), models selected using the proposed multi-objective method may incorporate more representative parameter values than those selected by traditional calibration. Notably, parameter values estimated by the proposed method resonate with direct estimates of catchment subsurface storage capacity (parameter residuals of 20 and 61 mm for maximum soil moisture capacity (Cmax), and 0.91 and 0.48 for soil moisture distribution shape factor (B); where a parameter residual is equal to the centroid of a soft parameter value minus the calibrated parameter value). A model more traditionally calibrated to observed data only (single-objective model) estimates a much lower soil moisture capacity (residuals of Cmax = 475 and 518 mm and B = 1.24 and 0.7). A constrained single-objective model also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of Cmax = 246 and 289 mm). The proposed method may allow managers to more confidently transfer calibrated models to ungauged catchments for streamflow predictions, even in the world's most data-limited regions.
Detecting Abrupt Change of Streamflow at Lintong Station of Wei River
Directory of Open Access Journals (Sweden)
Jingjing Fan
2013-01-01
Full Text Available According to abrupt diagnosis of runoff, two methods, that is, moving approximate entropy and moving permutation entropy, are used to analyse the abrupt year of the daily river runoff from 1961 to 2006 at Lintong station of Wei River in Loess Plateau. The runoff series are divided into 4 stages. With the analysis of hydrological characters of different stages, we find that there are abrupt changes at the three years 1972, 1983, and 2002. The result shows that moving approximate entropy and moving permutation entropy methods are useful tools for abrupt diagnosis of runoff. The attribution of abrupt change at the Lintong runoff series is primarily due to the reduced precipitation, increased water conservancy project, increased water consumption of industry and agriculture, significantly decreased groundwater table, and increased evaporation.
IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia
Energy Technology Data Exchange (ETDEWEB)
Sahu, Netrananda; Yamashiki, Yosuke; Takara, Kaoru [Kyoto University, Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Gokasho, Uji City, Kyoto (Japan); Behera, Swadhin K. [JAMSTEC, Research Institute for Global Change, Yokohama, Kanagawa (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan); Yamagata, Toshio [University of Tokyo, School of Science, Bunkyo-ku, Tokyo (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan)
2012-10-15
Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Nina conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Nino Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Nino events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Nino for September-November season only. (orig.)
IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia
Sahu, Netrananda; Behera, Swadhin K.; Yamashiki, Yosuke; Takara, Kaoru; Yamagata, Toshio
2012-10-01
Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Niña conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Niño Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Niño events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Niño for September-November season only.
Alconis, Jenalyn; Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo; Lester Saddi, Ivan; Mongaya, Candeze; Figueroa, Kathleen Gay
2014-05-01
In response to the slew of disasters that devastates the Philippines on a regular basis, the national government put in place a program to address this problem. The Nationwide Operational Assessment of Hazards, or Project NOAH, consolidates the diverse scientific research being done and pushes the knowledge gained to the forefront of disaster risk reduction and management. Current activities of the project include installing rain gauges and water level sensors, conducting LIDAR surveys of critical river basins, geo-hazard mapping, and running information education campaigns. Approximately 700 automated weather stations and rain gauges installed in strategic locations in the Philippines hold the groundwork for the rainfall visualization system in the Project NOAH web portal at http://noah.dost.gov.ph. The system uses near real-time data from these stations installed in critical river basins. The sensors record the amount of rainfall in a particular area as point data updated every 10 to 15 minutes. The sensor sends the data to a central server either via GSM network or satellite data transfer for redundancy. The web portal displays the sensors as a placemarks layer on a map. When a placemark is clicked, it displays a graph of the rainfall data for the past 24 hours. The rainfall data is harvested by batch determined by a one-hour time frame. The program uses linear interpolation as the methodology implemented to visually represent a near real-time rainfall map. The algorithm allows very fast processing which is essential in near real-time systems. As more sensors are installed, precision is improved. This visualized dataset enables users to quickly discern where heavy rainfall is concentrated. It has proven invaluable on numerous occasions, such as last August 2013 when intense to torrential rains brought about by the enhanced Southwest Monsoon caused massive flooding in Metro Manila. Coupled with observations from Doppler imagery and water level sensors along the
DEFF Research Database (Denmark)
Wang, Sheng; Liu, Suxia; Mo, Xingguo
2015-01-01
along with the CMORPH gauge–satellite blended version (C-ga), which is virtually C-adj in precipitation ungauged regions and is controlled by gauge analysis over regions of a dense station network, were intercompared with daily streamflow predicted by the distributed vegetation interface processes (VIP...
Wiley, Jeffrey B.
2006-01-01
Five time periods between 1930 and 2002 are identified as having distinct patterns of annual minimum daily mean flows (minimum flows). Average minimum flows increased around 1970 at many streamflow-gaging stations in West Virginia. Before 1930, however, there might have been a period of minimum flows greater than any period identified between 1930 and 2002. The effects of climate variability are probably the principal causes of the differences among the five time periods. Comparisons of selected streamflow statistics are made between values computed for the five identified time periods and values computed for the 1930-2002 interval for 15 streamflow-gaging stations. The average difference between statistics computed for the five time periods and the 1930-2002 interval decreases with increasing magnitude of the low-flow statistic. The greatest individual-station absolute difference was 582.5 percent greater for the 7-day 10-year low flow computed for 1970-1979 compared to the value computed for 1930-2002. The hydrologically based low flows indicate approximately equal or smaller absolute differences than biologically based low flows. The average 1-day 3-year biologically based low flow (1B3) and 4-day 3-year biologically based low flow (4B3) are less than the average 1-day 10-year hydrologically based low flow (1Q10) and 7-day 10-year hydrologic-based low flow (7Q10) respectively, and range between 28.5 percent less and 13.6 percent greater. Seasonally, the average difference between low-flow statistics computed for the five time periods and 1930-2002 is not consistent between magnitudes of low-flow statistics, and the greatest difference is for the summer (July 1-September 30) and fall (October 1-December 31) for the same time period as the greatest difference determined in the annual analysis. The greatest average difference between 1B3 and 4B3 compared to 1Q10 and 7Q10, respectively, is in the spring (April 1-June 30), ranging between 11.6 and 102.3 percent
Improving the Quality of Satellite Imagery Based on Ground-Truth Data from Rain Gauge Stations
Directory of Open Access Journals (Sweden)
Ana F. Militino
2018-03-01
Full Text Available Multitemporal imagery is by and large geometrically and radiometrically accurate, but the residual noise arising from removal clouds and other atmospheric and electronic effects can produce outliers that must be mitigated to properly exploit the remote sensing information. In this study, we show how ground-truth data from rain gauge stations can improve the quality of satellite imagery. To this end, a simulation study is conducted wherein different sizes of outlier outbreaks are spread and randomly introduced in the normalized difference vegetation index (NDVI and the day and night land surface temperature (LST of composite images from Navarre (Spain between 2011 and 2015. To remove outliers, a new method called thin-plate splines with covariates (TpsWc is proposed. This method consists of smoothing the median anomalies with a thin-plate spline model, whereby transformed ground-truth data are the external covariates of the model. The performance of the proposed method is measured with the square root of the mean square error (RMSE, calculated as the root of the pixel-by-pixel mean square differences between the original data and the predicted data with the TpsWc model and with a state-space model with and without covariates. The study shows that the use of ground-truth data reduces the RMSE in both the TpsWc model and the state-space model used for comparison purposes. The new method successfully removes the abnormal data while preserving the phenology of the raw data. The RMSE reduction percentage varies according to the derived variables (NDVI or LST, but reductions of up to 20% are achieved with the new proposal.
Holmes, Robert R.; Singh, Vijay P.
2016-01-01
Autonomous direct determination of a continuous time series of streamflow is not economically feasible at present (2014). As such, surrogates are used to derive a continuous time series of streamflow. The derivation process entails developing a streamflow rating, which can range from a simple, single-valued relation between stage and streamflow to a fully dynamic one-dimensional model based on hydraulics of the flow.
Directory of Open Access Journals (Sweden)
Guangju Zhao
Full Text Available Variation of streamflow and sediment load in the Yellow River basin has received considerable attention due to its drastic reduction during the past several decades. This paper presents a detailed investigation on the changes of streamflow and sediment load from 1952 to 2011 using monthly observations at four gauging stations along the Yellow River. The results show significant decreasing trends for both streamflow and sediment load at all four gauging stations over the past 60 years. The wavelet transform demonstrated discontinuous periodicities from 1969 to 1973 and after 1986 due to the construction of large reservoirs and implementation of numerous soil and water conservations practices. The sediment rating curves with the power-law function was applied to investigate the relationship between discharge and sediment load. The results indicate distinct variations of the relationship between streamflow and sediment and implied significant hydro-morphological changes within different periods. The reducing sediment supply from the source region and the increased erosive power of the river are detected at Lanzhou station, while the decrease of the transport capacity at Toudaoguai is caused by severe siltation. Significant changes in the relationship between streamflow and sediment load are found at Huayuankou and Gaocun stations, which are largely induced by evident sediment income and trapping effects of large reservoirs. It is estimated that numerous reservoirs have strongly altered the regime and magnitude of streamflow and trapped large amount of sediment, leading to severe siltation and evident reduction of their total volumes. A decrease in precipitation, incoming water from the upper reaches, soil and water conservation measures as well as water consumption contribute most to the significant reduction of streamflow. The decrease of sediment load mainly resulted from various soil and water conservation measures and trapping in reservoirs
Wavelet-linear genetic programming: A new approach for modeling monthly streamflow
Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur
2017-06-01
The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.
Directory of Open Access Journals (Sweden)
H. X. Do
2018-04-01
Full Text Available This is the first part of a two-paper series presenting the Global Streamflow Indices and Metadata archive (GSIM, a worldwide collection of metadata and indices derived from more than 35 000 daily streamflow time series. This paper focuses on the compilation of the daily streamflow time series based on 12 free-to-access streamflow databases (seven national databases and five international collections. It also describes the development of three metadata products (freely available at https://doi.pangaea.de/10.1594/PANGAEA.887477: (1 a GSIM catalogue collating basic metadata associated with each time series, (2 catchment boundaries for the contributing area of each gauge, and (3 catchment metadata extracted from 12 gridded global data products representing essential properties such as land cover type, soil type, and climate and topographic characteristics. The quality of the delineated catchment boundary is also made available and should be consulted in GSIM application. The second paper in the series then explores production and analysis of streamflow indices. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.
Do, Hong Xuan; Gudmundsson, Lukas; Leonard, Michael; Westra, Seth
2018-04-01
This is the first part of a two-paper series presenting the Global Streamflow Indices and Metadata archive (GSIM), a worldwide collection of metadata and indices derived from more than 35 000 daily streamflow time series. This paper focuses on the compilation of the daily streamflow time series based on 12 free-to-access streamflow databases (seven national databases and five international collections). It also describes the development of three metadata products (freely available at https://doi.pangaea.de/10.1594/PANGAEA.887477" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.887477): (1) a GSIM catalogue collating basic metadata associated with each time series, (2) catchment boundaries for the contributing area of each gauge, and (3) catchment metadata extracted from 12 gridded global data products representing essential properties such as land cover type, soil type, and climate and topographic characteristics. The quality of the delineated catchment boundary is also made available and should be consulted in GSIM application. The second paper in the series then explores production and analysis of streamflow indices. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.
Macek-Rowland, Kathleen M.; Dressler, Valerie M.
2002-01-01
The quantity and quality of current and future water resources in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are concerns of people who reside within the basin. Additional water resources are needed because of recent growth in population, industry, and agriculture. How the management of current and future water-resources will impact water quality within the basin is a critical issue. Water-quality data, particularly for surface-water sources, will help water-resources managers make decisions about current and future water resources in the Red River of the North Basin. Statistical summaries of water-quality data for 43 streamflow-gaging stations in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are presented in this report. Statistical summaries include sample size, maximum, minimum, mean, and values for the 95th, 75th, 50th, 25th, and 5th percentiles.
Digital Repository Service at National Institute of Oceanography (India)
Srinivas, K.; Das, V.K.; DineshKumar, P.K.
This study investigates the suitability of statistical models for their predictive potential for the monthly mean sea level at different stations along the west and east coasts of the Indian subcontinent. Statistical modelling of the monthly mean...
Kleinherenbrink, Marcel; Riva, Riccardo; Frederikse, Thomas
2018-03-01
Tide gauge (TG) records are affected by vertical land motion (VLM), causing them to observe relative instead of geocentric sea level. VLM can be estimated from global navigation satellite system (GNSS) time series, but only a few TGs are equipped with a GNSS receiver. Hence, (multiple) neighboring GNSS stations can be used to estimate VLM at the TG. This study compares eight approaches to estimate VLM trends at 570 TG stations using GNSS by taking into account all GNSS trends with an uncertainty smaller than 1 mm yr-1 within 50 km. The range between the methods is comparable with the formal uncertainties of the GNSS trends. Taking the median of the surrounding GNSS trends shows the best agreement with differenced altimetry-tide gauge (ALT-TG) trends. An attempt is also made to improve VLM trends from ALT-TG time series. Only using highly correlated along-track altimetry and TG time series reduces the SD of ALT-TG time series by up to 10 %. As a result, there are spatially coherent changes in the trends, but the reduction in the root mean square (RMS) of differences between ALT-TG and GNSS trends is insignificant. However, setting correlation thresholds also acts like a filter to remove problematic TG time series. This results in sets of ALT-TG VLM trends at 344-663 TG locations, depending on the correlation threshold. Compared to other studies, we decrease the RMS of differences between GNSS and ALT-TG trends (from 1.47 to 1.22 mm yr-1), while we increase the number of locations (from 109 to 155), Depending on the methods the mean of differences between ALT-TG and GNSS trends vary between 0.1 and 0.2 mm yr-1. We reduce the mean of the differences by taking into account the effect of elastic deformation due to present-day mass redistribution. At varying ALT-TG correlation thresholds, we provide new sets of trends for 759 to 939 different TG stations. If both GNSS and ALT-TG trend estimates are available, we recommend using the GNSS trend estimates because residual
This study aimed to statistically and hydrologically assess the performance of four latest and widely used satellite–gauge combined precipitation estimates (SGPEs), namely CRT, BLD, 3B42CDR, and 3B42 for the extreme precipitation and stream'ow scenarios over the upper Yellow river basin (UYRB) in ch...
Roland, Mark A.; Stuckey, Marla H.
2007-01-01
The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed
Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
Chapter C of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources, to provide an update of statewide peak-flow frequency analyses and results for Montana. The purpose of this report chapter is to present peak-flow frequency analyses and results for 725 streamflow-gaging stations in or near Montana based on data through water year 2011. The 725 streamflow-gaging stations included in this study represent nearly all streamflowgaging stations in Montana (plus some from adjacent states or Canadian Provinces) that have at least 10 years of peak-flow records through water year 2011. For 29 of the 725 streamflow-gaging stations, peak-flow frequency analyses and results are reported for both unregulated and regulated conditions. Thus, peak-flow frequency analyses and results are reported for a total of 754 analyses. Estimates of peak-flow magnitudes for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals.
Horizontal scale calibration of theodolites and total station using a gauge index table
International Nuclear Information System (INIS)
Vieira, L H B; Filho, W L O; Barros, W S
2015-01-01
This paper shows a methodology to calibrate the horizontal scale of theodolites and total station using a high accuracy index table. The calibration pursued the method of circular scales and precision polygons (also called Rosette Method [1] or multistep). This method consists in the angle comparison of two circular divisions in all relative positions possibilities. Index table errors and theodolite horizontal scale errors were obtained using the method of least squares which is used to process the data from Rosette Method. An experimental setup was used to evaluate this methodology and the details of the mechanical assembly are also described in this paper. Several theodolites and total stations were calibrated using the proposed system and the results infer that the method is suitable to calibrate the different models available in the market. The system showed good stability over time with measurements uncertainties around 1' (one second) depending on instrument features. (paper)
Directory of Open Access Journals (Sweden)
Juan Gabriel León Hernández
2009-01-01
Full Text Available Using satellite altimeter radar technology for monitoring changes in water levels at continental scale is a relatively recent ad- vance. Several studies have demonstrated the interest being shown in applying this technology to monitoring the hydrographic patterns of large-scale basins worldwide. The current study presents the inference of time series representing changes in water le- vel for bodies of water by defining virtual gauge stations deduced for two very different rivers in terms of their biophysical and to- pographic characteristics; the two rivers were the Rio Negro in the Brazilian Amazon Basin and the Caqueta River on the Colombian side. The differences between the two rivers revealed the limits of satellite radar altimeter when applied to continental waters (±20cm and ±40 cm precision for Río Negro and Río Caquetá, respectively. However, applying this technology seems very promising, since new missions have been scheduled to be put into orbit by the end of 2008.
Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin
Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.
2008-01-01
In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.
Simulating streamflow and water table depth with a coupled hydrological model
Directory of Open Access Journals (Sweden)
Alphonce Chenjerayi Guzha
2010-09-01
Full Text Available A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit (R2, percent bias (PB, and Nash Sutcliffe efficiency (ENS values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average R2 values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.
Kleinherenbrink, M.; Riva, R.E.M.; Frederikse, T.
2018-01-01
Tide gauge (TG) records are affected by vertical land motion (VLM), causing them to observe relative instead of geocentric sea level. VLM can be estimated from global navigation satellite system (GNSS) time series, but only a few TGs are equipped with a GNSS receiver. Hence, (multiple)
Prediction of Missing Streamflow Data using Principle of Information Entropy
Directory of Open Access Journals (Sweden)
Santosa, B.
2014-01-01
Full Text Available Incomplete (missing of streamflow data often occurs. This can be caused by a not continous data recording or poor storage. In this study, missing consecutive streamflow data are predicted using the principle of information entropy. Predictions are performed using the complete monthly streamflow information from the nearby river. Data on average monthly streamflow used as a simulation sample are taken from observation stations Katulampa, Batubeulah, and Genteng, which are the Ciliwung Cisadane river areas upstream. The simulated prediction of missing streamflow data in 2002 and 2003 at Katulampa Station are based on information from Genteng Station, and Batubeulah Station. The mean absolute error (MAE average obtained was 0,20 and 0,21 in 2002 and the MAE average in 2003 was 0,12 and 0,16. Based on the value of the error and pattern of filled gaps, this method has the potential to be developed further.
STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...
African Journals Online (AJOL)
... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.
International Nuclear Information System (INIS)
Sowerby, B.D.
1982-01-01
Techniques employed in nuclear gauges for the measurement of level, thickness, density and moisture are described. The gauges include both transmission and backscatter gauges and utilize alpha particles, beta particles, neutrons or gamma radiation
Estimating mountain basin-mean precipitation from streamflow using Bayesian inference
Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.
2015-10-01
Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.
Has streamflow changed in the Nordic countries?
Energy Technology Data Exchange (ETDEWEB)
Hisdal, Hege; Holmqvist, Erik; Jonsdottir, Jona Finndis; Jonsson, Pall; Kuusisto, Esko; Lindstroem, Goeran; Roald, Lars A.
2010-01-15
Climate change studies traditionally include elaboration of possible scenarios for the future and attempts to detect a climate change signal in historical data. This study focuses on the latter. A pan-Nordic dataset of more than 160 streamflow records was analysed to detect spatial and temporal changes in streamflow. The Mann-Kendall trend test was applied to study changes in annual and seasonal streamflow as well as floods and droughts for three periods: 1961-2000, 1941-2002 and 1920-2002. The period analysed and the selection of stations influenced the regional patterns found, but the overall picture was that trends towards increased streamflow were dominating for annual values and the winter and spring seasons. Trends in summer flow highly depended on the period analysed whereas no trend was found for the autumn season. A signal towards earlier snowmelt floods was clear and a tendency towards more severe summer droughts was found in southern Norway. A qualitative comparison of the findings to available streamflow scenarios for the region showed that the strongest trends found are coherent with changes expected in the scenario period, for example increased winter discharge and earlier snowmelt floods. However, there are also expected changes that are not reflected in the trends, such as the expected increase in autumn discharge in Norway. It can be concluded that the observed temperature increase has clearly affected the streamflow in the Nordic countries. These changes correspond well with the estimated consequences of a projected temperature increase. The effect of the observed and projected precipitation increase on streamflow is less clear.(Author)
Sidibe, Moussa; Dieppois, Bastien; Mahé, Gil; Paturel, Jean-Emmanuel; Amoussou, Ernest; Anifowose, Babatunde; Lawler, Damian
2018-06-01
Over recent decades, regions of West and Central Africa have experienced different and significant changes in climatic patterns, which have significantly impacted hydrological regimes. Such impacts, however, are not fully understood at the regional scale, largely because of scarce hydroclimatic data. Therefore, the aim of this study is to (a) assemble a new, robust, reconstructed streamflow dataset of 152 gauging stations; (b) quantify changes in streamflow over 1950-2005 period, using these newly reconstructed datasets; (c) significantly reveal trends and variability in streamflow over West and Central Africa based on new reconstructions; and (d) assess the robustness of this dataset by comparing the results with those identified in key climatic drivers (e.g. precipitation and temperature) over the region. Gap filling methods applied to monthly time series (1950-2005) yielded robust results (median Kling-Gupta Efficiency >0.75). The study underlines a good agreement between precipitation and streamflow trends and reveals contrasts between western Africa (negative trends) and Central Africa (positive trends) in the 1950s and 1960s. Homogenous dry conditions of the 1970s and 1980s, characterized by reduced significant negative trends resulting from quasi-decadal modulations of the trend, are replaced by wetter conditions in the recent period (1993-2005). The effect of this rainfall recovery (which extends to West and Central Africa) on increased river flows are further amplified by land use change in some Sahelian basins. This is partially offset, however, by higher potential evapotranspiration rates over parts of Niger and Nigeria. Crucially, the new reconstructed streamflow datasets presented here will be available for both the scientific community and water resource managers.
Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales
Pérez Ciria, T.; Chiogna, G.
2017-12-01
Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.
International Nuclear Information System (INIS)
Lee, B.W.
1976-01-01
Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)
International Nuclear Information System (INIS)
Power, B.D.; Priestland, C.R.D.
1978-01-01
This invention relates to vacuum gauges, particularly of the type known as Penning gauges, which are cold cathode ionisation gauges, in which a magnetic field is used to lengthen the electron path and thereby increase the number of ions produced. (author)
International Nuclear Information System (INIS)
Kummer, W.; Mistelberger, H.; Schaller, P.; Schweda, M.
1989-01-01
Supersymmetric gauge theories can be suitably quantized in non-supersymmetric 'superaxial' gauges without abolishing the basic advantages of the superfield technique. In this review the state of the art is presented. It includes the proof of renormalization and the proof of gauge independence and supersymmetry of observable physical quantities. (author)
Macroinvertebrate community change associated with the severity of streamflow alteration
Carlisle, Daren M.; Eng, Kenny; Nelson, S.M.
2014-01-01
Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low-flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams.
KIM, J.; Smith, M. B.; Koren, V.; Salas, F.; Cui, Z.; Johnson, D.
2017-12-01
The National Oceanic and Atmospheric Administration (NOAA)-National Weather Service (NWS) developed the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) framework as an initial step towards spatially distributed modeling at River Forecast Centers (RFCs). Recently, the NOAA/NWS worked with the National Center for Atmospheric Research (NCAR) to implement the National Water Model (NWM) for nationally-consistent water resources prediction. The NWM is based on the WRF-Hydro framework and is run at a 1km spatial resolution and 1-hour time step over the contiguous United States (CONUS) and contributing areas in Canada and Mexico. In this study, we compare streamflow simulations from HL-RDHM and WRF-Hydro to observations from 279 USGS stations. For streamflow simulations, HL-RDHM is run on 4km grids with the temporal resolution of 1 hour for a 5-year period (Water Years 2008-2012), using a priori parameters provided by NOAA-NWS. The WRF-Hydro streamflow simulations for the same time period are extracted from NCAR's 23 retrospective run of the NWM (version 1.0) over CONUS based on 1km grids. We choose 279 USGS stations which are relatively less affected by dams or reservoirs, in the domains of six different RFCs. We use the daily average values of simulations and observations for the convenience of comparison. The main purpose of this research is to evaluate how HL-RDHM and WRF-Hydro perform at USGS gauge stations. We compare daily time-series of observations and both simulations, and calculate the error values using a variety of error functions. Using these plots and error values, we evaluate the performances of HL-RDHM and WRF-Hydro models. Our results show a mix of model performance across geographic regions.
Streamflow estimation in ungauged basins using remote sensed hydrological data
Vasquez, Nicolas; Vargas, Ximena
2017-04-01
In several parts of the world the scarcity of streamflow gauging stations produces an important deficit of information, and calibrating these basins remains a challenge for hydrologists. Improvements in remote sensing have provided significant information about hydrological cycle, which can be used to calibrate a hydrological model when streamflow information is not available. Several satellite products related to snow, evapotranspiration, soil moisture, among other variables provide essential information about hydrological processes, and can be used to calibrate physically based hydrological models. Despite this useful information, other aspects are unknown like aquifers dimensions or precipitation heterogeneity. We calibrated three snow driven basins in the Coquimbo Region in Northern Chile, using fSCA from MODIS (MOD10 and MYD10) and NDSI from Landsat. We also considered the MOD16 product to estimate evapotranspiration. Soil Moisture from AMSR-E was considered but it was not useful due to the spatial resolution of the product and the high heterogeneity of the terrain. The Cold Regional Hydrological Modal (CHRM) was selected to represent the hydrological processes due to the importance of snow processes which are, by far, the most important in this area, where precipitation falls as snow principally in winter (June to August) and the melting period begins in spring (September) and ends in the beginning of summer (December and January). The inputs used in the model are precipitation, temperature, short wave radiation, wind speed and relative humidity. The meteorological information was obtained from stations available in the area, and distributed spatially using orographic gradients for wind and precipitation and lapse rates for air temperature and dew point temperature. Short wave radiation was computed and corrected by cloud cover data from MODIS. Streamflow data was available but it was not used in the calibration process. The three basins are Cochiguaz river
Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate
Ferreira, Carla; Walsh, Rory; Ferreira, António
2017-04-01
Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas
Monthly streamflow forecasting at varying spatial scales in the Rhine basin
Schick, Simon; Rössler, Ole; Weingartner, Rolf
2018-02-01
Model output statistics (MOS) methods can be used to empirically relate an environmental variable of interest to predictions from earth system models (ESMs). This variable often belongs to a spatial scale not resolved by the ESM. Here, using the linear model fitted by least squares, we regress monthly mean streamflow of the Rhine River at Lobith and Basel against seasonal predictions of precipitation, surface air temperature, and runoff from the European Centre for Medium-Range Weather Forecasts. To address potential effects of a scale mismatch between the ESM's horizontal grid resolution and the hydrological application, the MOS method is further tested with an experiment conducted at the subcatchment scale. This experiment applies the MOS method to 133 additional gauging stations located within the Rhine basin and combines the forecasts from the subcatchments to predict streamflow at Lobith and Basel. In doing so, the MOS method is tested for catchments areas covering 4 orders of magnitude. Using data from the period 1981-2011, the results show that skill, with respect to climatology, is restricted on average to the first month ahead. This result holds for both the predictor combination that mimics the initial conditions and the predictor combinations that additionally include the dynamical seasonal predictions. The latter, however, reduce the mean absolute error of the former in the range of 5 to 12 %, which is consistently reproduced at the subcatchment scale. An additional experiment conducted for 5-day mean streamflow indicates that the dynamical predictions help to reduce uncertainties up to about 20 days ahead, but it also reveals some shortcomings of the present MOS method.
Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.
2018-01-01
Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1984-12-01
The fundamental laws of nature may be truely random, or they may be so complicated that a random description is adequate. With this philosophy we examine various ways in which a lattice gauge theory (at the Planck scale) can be generalized. Without here giving up a regular lattice structure (which we really ought to do) we consider two generalizations. Making the action (quenched) random has the effect that the gauge group tends to break down and some gauge bosons become massive, unless the gauge group has special properties: no noncentral corners in the geometry of conjugacy classes and furthermore a connected center. Making the concept of gauge transformation more general has a symmetry breaking effect for groups with outer automorphisms. A study of SU 5 -breaking in the context of the first breakdown mechanism (D. Bennett, E. Buturovic and H. B. Nielsen) is shortly reviewed. (orig.)
International Nuclear Information System (INIS)
Kenyon, I.R.
1986-01-01
Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)
Stamey, Timothy C.
2001-01-01
In 1999, the U.S. Geological Survey, in cooperation with the U.S. Army Signal Center and Fort Gordon, began collection of periodic streamflow data at four streams on the military base to assess and estimate streamflow characteristics of those streams for potential water-supply sources. Simple and reliable methods of determining streamflow characteristics of selected streams on the military base are needed for the initial implementation of the Fort Gordon Integrated Natural Resources Management Plan. Long-term streamflow data from the Butler Creek streamflow gaging station were used along with several concurrent discharge measurements made at three selected partial-record streamflow stations on Fort Gordon to determine selected low-flow streamflow characteristics. Streamflow data were collected and analyzed using standard U.S. Geological Survey methods and computer application programs to verify the use of simple drainage area to discharge ratios, which were used to estimate the low-flow characteristics for the selected streams. Low-flow data computed based on daily mean streamflow include: mean discharges for consecutive 1-, 3-, 7-, 14-, and 30-day period and low-flow estimates of 7Q10, 30Q2, 60Q2, and 90Q2 recurrence intervals. Flow-duration data also were determined for the 10-, 30-, 50-, 70-, and 90-percent exceedence flows. Preliminary analyses of the streamflow indicate that the flow duration and selected low-flow statistics for the selected streams averages from about 0.15 to 2.27 cubic feet per square mile. The long-term gaged streamflow data indicate that the streamflow conditions for the period analyzed were in the 50- to 90-percent flow range, or in which streamflow would be exceeded about 50 to 90 percent of the time.
International Nuclear Information System (INIS)
Mills, R.
1989-01-01
This article is a survey of the history and ideas of gauge theory. Described here are the gradual emergence of symmetry as a driving force in the shaping of physical theory; the elevation of Noether's theorem, relating symmetries to conservation laws, to a fundamental principle of nature; and the force of the idea (''the gauge principle'') that the symmetries of nature, like the interactions themselves, should be local in character. The fundamental role of gauge fields in mediating the interactions of physics springs from Noether's theorem and the gauge principle in a remarkably clean and elegant way, leaving, however, some tantalizing loose ends that might prove to be the clue to a future deeper level of understanding. The example of the electromagnetic field as the prototype gauge theory is discussed in some detail and serves as the basis for examining the similarities and differences that emerge in generalizing to non-Abelian gauge theories. The article concludes with a brief examination of the dream of total unification: all the forces of nature in a single unified gauge theory, with the differences among the forces due to the specific way in which the fundamental symmetries are broken in the local environment
Effect of monthly areal rainfall uncertainty on streamflow simulation
Ndiritu, J. G.; Mkhize, N.
2017-08-01
Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic
Directory of Open Access Journals (Sweden)
V. G. Konovalov
2014-01-01
Full Text Available The work was aimed at numerical modeling of spatial-temporal variability of the river Terek seasonal (April to September streamflow characteristics and long-term fluctuations of components of annual glacier mass balances in this basin and on the adjacent territories. Mass balance of glaciers Djankuat and Garabashi was calculated. Simulation was performed by means of stochastic modeling and discrete data presenting fields of main meteorological parameters (precipitation, air temperature and humidity having effect on the streamflow. Realization of this approach is complicated by the fact that spatial representativeness of hydrological and meteorological sites are not corresponding one to another. Data on the runoff is clearly related to the total drainage area closed by a gauging station. And for this data we study a relationship with meteorological parameters which are measured at a non-regular observational network whose spatial representativeness is unknown. These stations are generally located beyond the area under investigation (Fig. 2. Similar problem exists when we analyze a relationship between components of the mass balance of individual glaciers (Djankuat and Garabashi and the above climate characteristics measured at some stations located on the whole Caucasus territory. The same takes place when long-term indices of width and density of tree annual rings obtained in upper reaches of the river Kuban’ are used for analysis of variations of the runoff and the glacier mass balance in the river Terek basin located at a distance of 100-150 km from the Kuban’ dendrologic sites.To solve the problem we used a wide number of factors which directly (various information about the climate or indirectly (indices of the climate dryness, wood ring characteristics characterize conditions of formation of annual and seasonal river runoff and components of glacier mass balance in the North Caucasus. Use of all obtained information made possible the
International Nuclear Information System (INIS)
Jarlskog, C.
An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)
International Nuclear Information System (INIS)
Itzykson, C.
1978-01-01
In these notes the author provides some background on the theory of gauge fields, a subject of increasing popularity among particle physicists (and others). Detailed motivations and applications which are covered in the other lectures of this school are not presented. In particular the application to weak interactions is omitted by referring to the introduction given by J. Ilipoulos a year ago (CERN Report 76-11). The aim is rather to stress those aspects which suggest that gauge fields may play some role in a future theory of strong interactions. (Auth.)
Composite gauge bosons of transmuted gauge symmetry
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1987-10-01
It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)
International Nuclear Information System (INIS)
Bond, A.
1977-01-01
The present position of nucleonic techniques for process measurements, is considered from the technical and cost viewpoints. Systems considered include level, density, thickness (including coating thickness), moisture, and sulphur in hydrocarbons gauges and also belt weighers. The advantages of such systems are discussed and the cost-benefit position considered. The combination of nucleonic measuring equipment with a microcomputer is examined. (U.K.)
Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service
Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.
2016-12-01
The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.
International Nuclear Information System (INIS)
Qurnell, F.D.; Patterson, C.B.
1979-01-01
A gauge supporting device for measuring say a square tube comprises a pair of rods or guides in tension between a pair of end members, the end members being spaced apart by a compression member or members. The tensioned guides provide planes of reference for measuring devices moved therealong on a carriage. The device is especially useful for making on site dimensional measurements of components, such as irradiated and therefore radioactive components, that cannot readily be transported to an inspection laboratory. (UK)
Application of radiotracer methods in streamflow measurements
International Nuclear Information System (INIS)
Dincer, T.
1967-01-01
An attempt is made to evaluate methods using radiotracers in streamflow measurements. The basic principles of the tracer method are explained and background information given. Radiotracers used in stream discharge measurements are discussed and measurements made by different research workers are described. Problems such as adsorption of the tracer and the mixing length are discussed and the potential use of the radioisotopes as tracer in the routine stream-gauging work is evaluated. It is concluded that, at the present stage of development, radiotracer methods do not seem to be ready for routine use in stream-gauging work, and can only be used in some special cases. For gamma-emitting radioisotopes there are problems related to safety, transport and injection which should be solved. Tritium, though a very attractive tracer in some respects, has the disadvantages of having a relatively long half-life and of disturbing the natural tritium levels in the region. Finally, an attempt is made to define the objectives of the research in the field of application of radioisotopes in hydrometry. (author)
von Freyberg, J.; Schirmer, M.
2013-12-01
Non-linear hydrological behavior of small mountainous watersheds is often attributed to variable streamflow contributions from different landscape units that differ in subsurface properties, vegetation cover and land use. Within this concept, the role of landscape can be seen as that of a filter, translating hydro-climatic drivers into particular streamflow signals - such as discharge rates or water quality. Our research addresses the question of how hydrologic connectivity between the relevant landscape units evolves during storm events and droughts at headwater catchments and seeks to establish a general framework of interdisciplinary interest (e.g., ecology and climate science). We focus on the description of groundwater flow on the local and regional scale, since groundwater - surface water - interaction in the valley bottoms, transport mechanisms of nutrients within hyporheic zones, and groundwater flow dynamics in the shallow subsurface have all been identified as important processes in describing hydrologic catchment response and streamflow composition. Our field-based study takes place in the pre-Alpine Rietholzbach research catchment (~ 3 sq km) in the headwaters of the Thur basin in NE Switzerland. We investigated the effects of landscape properties on river water quality and catchment hydrology over a two-year period. The Rietholzbach research catchment is equipped with a meteorological station, a weighting lysimeter, 20 piezometers, 3 stream gauging stations and various soil moisture and temperature probes, which provide continuous, high-frequency measurements of atmospheric and hydrometric data. These measurements are used in combination with hydro-chemistry data to determine groundwater residence times and streamflow composition. The installed setup facilitates the investigation of annual, inter-seasonal as well as short-term dynamics of water flow and its links to associated parameters describing atmospheric, surface and subsurface properties. We
International Nuclear Information System (INIS)
Tominaga, Hiroshi
1980-01-01
A survey was made by Japan Atomic Industrial Forum, Inc., in August, 1979, on the uses of isotope-equipped measuring instruments in private industrial enterprises by sending questionnaires to 1372 enterprises using sealed radiation sources. The results are described. i.e. usage of isotope-equipped measuring instruments, the economic effects, and problems for the future, and also the general situation in this field. Such instruments used are gas chromatography apparatus, thickness, level and moisture gauges, sulfur analyzer, etc. Except the gas chromatography, the rest are mostly incorporated in automatic control systems. As the economic effects, there are the rises in productivity, quality and yield and the savings in materials, energy and manpower. While they are used to great advantage, there are still problems occasionally in measuring accuracy and others. (J.P.N.)
Introduction to gauge theories
International Nuclear Information System (INIS)
Wit, B. de
1983-01-01
In these lectures we present the key ingredients of theories with local gauge invariance. We introduce gauge invariance as a starting point for the construction of a certain class of field theories, both for abelian and nonabelian gauge groups. General implications of gauge invariance are discussed, and we outline in detail how gauge fields can acquire masses in a spontaneous fashion. (orig./HSI)
Continuum gauge fields from lattice gauge fields
International Nuclear Information System (INIS)
Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.
1993-01-01
On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)
Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data
Norris, Lam; Kean, Jason W.; Lyon, Steve
2016-01-01
The rating curve enables the translation of water depth into stream discharge through a reference cross-section. This study investigates coupling national scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. A digital terrain model was defined from these data and applied in a physically based 1-D hydraulic model to generate rating curves for a regularly monitored location in northern Sweden. Analysis of the ALS data showed that overestimation of the streambank elevation could be adjusted with a root mean square error (RMSE) block adjustment using a higher accuracy manual topographic survey. The results of our study demonstrate that the rating curve generated from the vertically corrected ALS data combined with ADCP data had lower errors (RMSE = 0.79 m3/s) than the empirical rating curve (RMSE = 1.13 m3/s) when compared to streamflow measurements. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establishing rating curves at gauging station sites similar to the Röån River.
Free internet datasets for streamflow modelling using SWAT in the Johor river basin, Malaysia
Tan, M. L.
2014-02-01
Streamflow modelling is a mathematical computational approach that represents terrestrial hydrology cycle digitally and is used for water resources assessment. However, such modelling endeavours require a large amount of data. Generally, governmental departments produce and maintain these data sets which make it difficult to obtain this data due to bureaucratic constraints. In some countries, the availability and quality of geospatial and climate datasets remain a critical issue due to many factors such as lacking of ground station, expertise, technology, financial support and war time. To overcome this problem, this research used public domain datasets from the Internet as "input" to a streamflow model. The intention is simulate daily and monthly streamflow of the Johor River Basin in Malaysia. The model used is the Soil and Water Assessment Tool (SWAT). As input free data including a digital elevation model (DEM), land use information, soil and climate data were used. The model was validated by in-situ streamflow information obtained from Rantau Panjang station for the year 2006. The coefficient of determination and Nash-Sutcliffe efficiency were 0.35/0.02 for daily simulated streamflow and 0.92/0.21 for monthly simulated streamflow, respectively. The results show that free data can provide a better simulation at a monthly scale compared to a daily basis in a tropical region. A sensitivity analysis and calibration procedure should be conducted in order to maximize the "goodness-of-fit" between simulated and observed streamflow. The application of Internet datasets promises an acceptable performance of streamflow modelling. This research demonstrates that public domain data is suitable for streamflow modelling in a tropical river basin within acceptable accuracy.
Free internet datasets for streamflow modelling using SWAT in the Johor river basin, Malaysia
International Nuclear Information System (INIS)
Tan, M L
2014-01-01
Streamflow modelling is a mathematical computational approach that represents terrestrial hydrology cycle digitally and is used for water resources assessment. However, such modelling endeavours require a large amount of data. Generally, governmental departments produce and maintain these data sets which make it difficult to obtain this data due to bureaucratic constraints. In some countries, the availability and quality of geospatial and climate datasets remain a critical issue due to many factors such as lacking of ground station, expertise, technology, financial support and war time. To overcome this problem, this research used public domain datasets from the Internet as ''input'' to a streamflow model. The intention is simulate daily and monthly streamflow of the Johor River Basin in Malaysia. The model used is the Soil and Water Assessment Tool (SWAT). As input free data including a digital elevation model (DEM), land use information, soil and climate data were used. The model was validated by in-situ streamflow information obtained from Rantau Panjang station for the year 2006. The coefficient of determination and Nash-Sutcliffe efficiency were 0.35/0.02 for daily simulated streamflow and 0.92/0.21 for monthly simulated streamflow, respectively. The results show that free data can provide a better simulation at a monthly scale compared to a daily basis in a tropical region. A sensitivity analysis and calibration procedure should be conducted in order to maximize the ''goodness-of-fit'' between simulated and observed streamflow. The application of Internet datasets promises an acceptable performance of streamflow modelling. This research demonstrates that public domain data is suitable for streamflow modelling in a tropical river basin within acceptable accuracy
Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.
2017-12-01
The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.
Global gauge fixing in lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))
1991-10-15
We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.
Diverse multi-decadal changes in streamflow within a rapidly urbanizing region
Diem, Jeremy E.; Hill, T. Chee; Milligan, Richard A.
2018-01-01
The impact of urbanization on streamflow depends on a variety of factors (e.g., climate, initial land cover, inter-basin transfers, water withdrawals, wastewater effluent, etc.). The purpose of this study is to examine trends in streamflow from 1986 to 2015 in a range of watersheds within the rapidly urbanizing Atlanta, GA metropolitan area. This study compares eight watersheds over three decades, while minimizing the influence of inter-annual precipitation variability. Population and land-cover data were used to analyze changes over approximately twenty years within the watersheds. Precipitation totals for the watersheds were estimated using precipitation totals at nearby weather stations. Multiple streamflow variables, such as annual streamflow, frequencies of high-flow days (HFDs), flashiness, and precipitation-adjusted streamflow, for the eight streams were calculated using daily streamflow data. Variables were tested for significant trends from 1986 to 2015 and significant differences between 1986-2000 and 2001-2015. Flashiness increased for all streams without municipal water withdrawals, and the four watersheds with the largest increase in developed land had significant increases in flashiness. Significant positive trends in precipitation-adjusted mean annual streamflow and HFDs occurred for the two watersheds (Big Creek and Suwanee Creek) that experienced the largest increases in development, and these were the only watersheds that went from majority forest land in 1986 to majority developed land in 2015. With a disproportionate increase in HFD occurrence during summer, Big Creek and Suwannee Creek also had a reduction in intra-annual variability of HFD occurrence. Watersheds that were already substantially developed at the beginning of the period and did not have wastewater discharge had declining streamflow. The most urbanized watershed (Peachtree Creek) had a significant decrease in streamflow, and a possible cause of the decrease was increasing
Thakur, B.; Pathak, P.; Kalra, A.; Ahmad, S.
2016-12-01
The identification of primary drivers of streamflow may prove beneficial in forecasting streamflow in the Midwestern U.S. In the past researches, streamflow in the region have been strongly correlated with El Niño-Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). The present study takes in to account the pre-defined Pacific and Atlantic Ocean regions (e.g., ENSO, PDO, AMO) along with new regions with an intent to identify new significantly correlated regions. This study assesses the interrelationship between sea surface temperatures (SST) anomalies in the Pacific and Atlantic Ocean and seasonal streamflow in the Midwestern U.S. Average Pacific and Atlantic Ocean SST anomalies, were calculated for 2 different 3 month series: September-November and December-February so as to create a lead time varying from 3 to 9 months. Streamflow were averaged for three seasons: spring (April-June), spring-summer (April-August) and summer (June-August). The correlation between streamflow and SST is analyzed using singular value decomposition for a period of 1960-2013. The result of the study showed several regions-other than the known Pacific and Atlantic Ocean regions- that were significantly correlated with streamflow stations. Higher correlation between the climate indices and streamflow were observed as the lead time decreased. The identification of the associations between SST and streamflow and significant SST regions in the Pacific and Atlantic Ocean may enhance the skill of streamflow predictability and water management in the region.
Radionuclides gauges. Gauges designed for permanent installation
International Nuclear Information System (INIS)
1987-06-01
This present norm determines, for radionuclides gauges designed for permanent installation, the characteristics that these gauges should satisfied in their construction and performance to respect the prescriptions. It indicates the testing methods which permit to verify the agreement, gives a classification of gauges and specifies the indications to put on the emitter block [fr
Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.
2009-05-01
Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.
Streamflow characteristics of the Colorado River Basin in Utah through September 1981
Christensen, R.C.; Johnson, E.B.; Plantz, G.G.
1987-01-01
This report summarizes discharge data and other streamflow characteristics developed from gag ing-station records collected through September 1981 at 337 stations in the Colorado River Basin in Utah. Data also are included for 14 stations in adjacent areas of the bordering states of Arizona, Colorado, and Wyoming (fig. 1). The study leading to this report was done in cooperation with the U.S. Bureau of Land Management, which needs the streamflow data in order to evaluate impacts of mining on the hydrologic system. The report also will be beneficial to other Federal, State, and county agencies and to individuals concerned with water supply and water problems in the Colorado River Basin.The streamflow characteristics in the report could be useful in many water-related studies that involve the following:Definition of baseline-hydrologic conditions; studies of the effects of man's activities on streamflow; frequency analyses of low and high flows; regional analyses of streamflow characteristics; design of water-supply systems; water-power studies; forecasting of stream discharge; time-series analyses of streamflow; design of flood-control structures; stream-pollution studies; and water-chemistry transport studies.The basic data used to develop the summaries in this report are records of daily and peak discharge collected by the U.S. Geological Survey and other Federal agencies. Much of the work of the Geological Survey was done in cooperation with Federal, State, and county agencies. Discharge recordsincluded in the report generally were for stations with at least 1 complete water year of record and nearby stations that were on the same stream and had different streamflow characteristics. A water year is a 12-month period ending September 30, and it is designated by the calendar year in which it ends. For streams that have had significant changes in regulation by reservoirs or diversions, the records before and after those changes were used separately to provide
International Nuclear Information System (INIS)
Wilkens, P.H.
1978-01-01
This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator
Stogner, Sr., Robert W.
2000-01-01
The Fountain Creek watershed, located in and along the eastern slope of the Front Range section of the southern Rocky Mountains, drains approximately 930 square miles of parts of Teller, El Paso, and Pueblo Counties in eastern Colorado. Streamflow in the watershed is dominated by spring snowmelt runoff and storm runoff during the summer monsoon season. Flooding during the 1990?s has resulted in increased streambank erosion. Property loss and damage associated with flooding and bank erosion has cost area residents, businesses, utilities, municipalities, and State and Federal agencies millions of dollars. Precipitation (4 stations) and streamflow (6 stations) data, aerial photographs, and channel reconnaissance were used to evaluate trends in precipitation and streamflow and changes in channel morphology. Trends were evaluated for pre-1977, post-1976, and period-of-record time periods. Analysis revealed the lack of trend in total annual and seasonal precipitation during the pre-1977 time period. In general, the analysis also revealed the lack of trend in seasonal precipitation for all except the spring season during the post-1976 time period. Trend analysis revealed a significant upward trend in long-term (period of record) total annual and spring precipitation data, apparently due to a change in total annual precipitation throughout the Fountain Creek watershed. During the pre-1977 time period, precipitation was generally below average; during the post- 1976 time period, total annual precipitation was generally above average. During the post- 1976 time period, an upward trend in total annual and spring precipitation was indicated at two stations. Because two of four stations evaluated had upward trends for the post-1976 period and storms that produce the most precipitation are isolated convection storms, it is plausible that other parts of the watershed had upward precipitation trends that could affect trends in streamflow. Also, because of the isolated nature of
Jamaludin, Suhaila
2017-05-01
Extreme rainfall events such as floods and prolonged dry spells have become common phenomena in tropical countries like Malaysia. Floods are regular natural disasters in Malaysia, and happen nearly every year during the monsoon season. Recently, the magnitude of streamflow seems to have altered frequently, both spatially and temporally. Therefore, in order to have effective planning and an efficient water management system, it is advisable that streamflow data are analysed continuously over a period of time. If the data are treated as a set of functions rather than as a set of discrete values, then this ensures that they are not restricted by physical time. In addition, the derivatives of the functions may themselves be treated as functional data, which provides new information. The objective of this study is to develop a functional framework for hydrological applications using streamflow as the functional data. The daily flow series from the Kelantan River Basin were used as the main input in this study. Seven streamflow stations were employed in the analysis. Classification between the stations was done using the functional principal component, which was based on the results of the factor scores. The results indicated that two stations, namely the Kelantan River (Guillemard Bridge) and the Galas River, have a different flow pattern from the other streamflow stations. The flow curves of these two rivers are considered as the extreme curves because of their different magnitude and shape.
Uncertainties in Forecasting Streamflow using Entropy Theory
Cui, H.; Singh, V. P.
2017-12-01
Streamflow forecasting is essential in river restoration, reservoir operation, power generation, irrigation, navigation, and water management. However, there is always uncertainties accompanied in forecast, which may affect the forecasting results and lead to large variations. Therefore, uncertainties must be considered and be assessed properly when forecasting streamflow for water management. The aim of our work is to quantify the uncertainties involved in forecasting streamflow and provide reliable streamflow forecast. Despite that streamflow time series are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting entails modeling seasonality, periodicity, and its correlation structure, and assessing uncertainties. This study applies entropy theory to forecast streamflow and measure uncertainties during the forecasting process. To apply entropy theory for streamflow forecasting, spectral analysis is combined to time series analysis, as spectral analysis can be employed to characterize patterns of streamflow variation and identify the periodicity of streamflow. That is, it permits to extract significant information for understanding the streamflow process and prediction thereof. Application of entropy theory for streamflow forecasting involves determination of spectral density, determination of parameters, and extension of autocorrelation function. The uncertainties brought by precipitation input, forecasting model and forecasted results are measured separately using entropy. With information theory, how these uncertainties transported and aggregated during these processes will be described.
Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada
International Nuclear Information System (INIS)
Savard, C.S.
1998-01-01
The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches
Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada
Energy Technology Data Exchange (ETDEWEB)
Savard, C.S.
1998-10-01
The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.
Asquith, William H.
2014-01-01
A database containing more than 16,300 discharge values and ancillary hydraulic attributes was assembled from summaries of discharge measurement records for 391 USGS streamflow-gauging stations (streamgauges) in Texas. Each discharge is between the 40th- and 60th-percentile daily mean streamflow as determined by period-of-record, streamgauge-specific, flow-duration curves. Each discharge therefore is assumed to represent a discharge measurement made for near-median streamflow conditions, and such conditions are conceptualized as representative of midrange to baseflow conditions in much of the state. The hydraulic attributes of each discharge measurement included concomitant cross-section flow area, water-surface top width, and reported mean velocity. Two regression equations are presented: (1) an expression for discharge and (2) an expression for mean velocity, both as functions of selected hydraulic attributes and watershed characteristics. Specifically, the discharge equation uses cross-sectional area, water-surface top width, contributing drainage area of the watershed, and mean annual precipitation of the location; the equation has an adjusted R-squared of approximately 0.95 and residual standard error of approximately 0.23 base-10 logarithm (cubic meters per second). The mean velocity equation uses discharge, water-surface top width, contributing drainage area, and mean annual precipitation; the equation has an adjusted R-squared of approximately 0.50 and residual standard error of approximately 0.087 third root (meters per second). Residual plots from both equations indicate that reliable estimates of discharge and mean velocity at ungauged stream sites are possible. Further, the relation between contributing drainage area and main-channel slope (a measure of whole-watershed slope) is depicted to aid analyst judgment of equation applicability for ungauged sites. Example applications and computations are provided and discussed within a real-world, discharge
International Nuclear Information System (INIS)
Mack, G.
1982-01-01
After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)
International Nuclear Information System (INIS)
Weinberg, S.
1976-01-01
The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy
International Nuclear Information System (INIS)
Moriyasu, K.
1978-01-01
A pedagogical approach to gauge invariance is presented which is based on the analogy between gauge transformations and relativity. By using the concept of an internal space, purely geometrical arguments are used to teach the physical ideas behind gauge invariance. Many of the results are applicable to general gauge theories
Multi-site Stochastic Simulation of Daily Streamflow with Markov Chain and KNN Algorithm
Mathai, J.; Mujumdar, P.
2017-12-01
A key focus of this study is to develop a method which is physically consistent with the hydrologic processes that can capture short-term characteristics of daily hydrograph as well as the correlation of streamflow in temporal and spatial domains. In complex water resource systems, flow fluctuations at small time intervals require that discretisation be done at small time scales such as daily scales. Also, simultaneous generation of synthetic flows at different sites in the same basin are required. We propose a method to equip water managers with a streamflow generator within a stochastic streamflow simulation framework. The motivation for the proposed method is to generate sequences that extend beyond the variability represented in the historical record of streamflow time series. The method has two steps: In step 1, daily flow is generated independently at each station by a two-state Markov chain, with rising limb increments randomly sampled from a Gamma distribution and the falling limb modelled as exponential recession and in step 2, the streamflow generated in step 1 is input to a nonparametric K-nearest neighbor (KNN) time series bootstrap resampler. The KNN model, being data driven, does not require assumptions on the dependence structure of the time series. A major limitation of KNN based streamflow generators is that they do not produce new values, but merely reshuffle the historical data to generate realistic streamflow sequences. However, daily flow generated using the Markov chain approach is capable of generating a rich variety of streamflow sequences. Furthermore, the rising and falling limbs of daily hydrograph represent different physical processes, and hence they need to be modelled individually. Thus, our method combines the strengths of the two approaches. We show the utility of the method and improvement over the traditional KNN by simulating daily streamflow sequences at 7 locations in the Godavari River basin in India.
Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.
2015-10-14
The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for nine river basins in eastern Iowa that drain into the Mississippi River. The models are part of a suite of methods for estimating daily streamflow at ungaged sites. The Precipitation-Runoff Modeling System is a deterministic, distributed- parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration and validation periods used in each basin mostly were October 1, 2002, through September 30, 2012, but differed depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.
Directory of Open Access Journals (Sweden)
Jianzhong Zhou
2018-05-01
Full Text Available This paper introduces three artificial neural network (ANN architectures for monthly streamflow forecasting: a radial basis function network, an extreme learning machine, and the Elman network. Three ensemble techniques, a simple average ensemble, a weighted average ensemble, and an ANN-based ensemble, were used to combine the outputs of the individual ANN models. The objective was to highlight the performance of the general regression neural network-based ensemble technique (GNE through an improvement of monthly streamflow forecasting accuracy. Before the construction of an ANN model, data preanalysis techniques, such as empirical wavelet transform (EWT, were exploited to eliminate the oscillations of the streamflow series. Additionally, a theory of chaos phase space reconstruction was used to select the most relevant and important input variables for forecasting. The proposed GNE ensemble model has been applied for the mean monthly streamflow observation data from the Wudongde hydrological station in the Jinsha River Basin, China. Comparisons and analysis of this study have demonstrated that the denoised streamflow time series was less disordered and unsystematic than was suggested by the original time series according to chaos theory. Thus, EWT can be adopted as an effective data preanalysis technique for the prediction of monthly streamflow. Concurrently, the GNE performed better when compared with other ensemble techniques.
Kentel, E.; Cetinkaya, M. A.
2013-12-01
Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.
The role of groundwater in streamflow in a headwater catchment with sub-humid climate
Liu, Yaping; Tian, Fuqiang; Hu, Hongchang; Tie, Qiang
2015-04-01
Recent studies have suggested that bedrock groundwater can exert considerable influence on streamflow in headwater catchments under humid climate. However, study of the role of bedrock groundwater is still challenged due to limited direct observation data. In this study, by utilizing observed hydrometric and hydrochemical data, we aimed at characterize the bedrock groundwater's response to rainfall at hillslope and catchment scales in a small headwater catchment with sub-humid climate. We selected Xitaizi catchment with area of 6.7 km in the earth-rock mountain region, which located in the north of Beijing, China, as study area. The catchment bedrock is mainly consist of fractured granite. Four weather stations were installed to observe the weather condition and soil volumetric water content (VWC) at depth of 10-60 cm with 10-minute interval. Five wells with depth of 10 m were drilled in two slopes to monitor the bedrock water table by pneumatic water gauge. At slope 1, the soil VWC at depth of 10-80 cm were also observed by soil moisture sensors, and surface/subsurface hillslope runoff at three different layers (0-20cm, 20-80cm, 80-300cm) was observed by three recording buckets. Field works were conducted from July 2013 to November 2014. During the period, precipitation, river, spring and groundwater were sampled nearly monthly. Water temperature, electrical conductivity (EC) and pH were measured in site with portable instruments. In addition, the precipitation, river and groundwater were also sampled intensively during two storm events. All the samples were subjected to stable isotope analysis, the samples taken monthly during the period from July 2013 to July 2014 were subjected to hydrochemistry analysis. Our results show that: (1) the bedrock groundwater is the dominant component of streamflow in the headwater catchment with sub-humid climate; (2) stream is recharged by groundwater sourcing from different mountains with different hydrochemistry characteristics
Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data
Gebert, Warren A.; Walker, John F.; Hunt, Randall J.
2011-01-01
The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.
Feasibility study on a cosmic-ray level gauge
International Nuclear Information System (INIS)
Matsuda, H.; Fukaya, M.; Minato, S.
1989-01-01
Cosmic-ray intensities were measured at the stairs in a subway station in Nagoya City, inside a tall concrete building and under a cylindrical water tank, to examine the feasibility of a cosmic-ray level gauge. The measured results agreed quite well with the theoretical calculations. These results show that a cosmic-ray level gauge is feasible. (author)
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Exploring the Link Between Streamflow Trends and Climate Change in Indiana, USA
Kumar, S.; Kam, J.; Thurner, K.; Merwade, V.
2007-12-01
Streamflow trends in Indiana are evaluated for 85 USGS streamflow gaging stations that have continuous unregulated streamflow records varying from 10 to 80 years. The trends are analyzed by using the non-parametric Mann-Kendall test with prior trend-free pre-whitening to remove serial correlation in the data. Bootstrap method is used to establish field significance of the results. Trends are computed for 12 streamflow statistics to include low-, medium- (median and mean flow), and high-flow conditions on annual and seasonal time step. The analysis is done for six study periods, ranging from 10 years to more than 65 years, all ending in 2003. The trends in annual average streamflow, for 50 years study period, are compared with annual average precipitation trends from 14 National Climatic Data Center (NCDC) stations in Indiana, that have 50 years of continuous daily record. The results show field significant positive trends in annual low and medium streamflow statistics at majority of gaging stations for study periods that include 40 or more years of records. In seasonal analysis, all flow statistics in summer and fall (low flow seasons), and only low flow statistics in winter and spring (high flow seasons) are showing positive trends. No field significant trends in annual and seasonal flow statistics are observed for study periods that include 25 or fewer years of records, except for northern Indiana where localized negative trends are observed in 10 and 15 years study periods. Further, stream flow trends are found to be highly correlated with precipitation trends on annual time step. No apparent climate change signal is observed in Indiana stream flow records.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
Trends in Mean Annual Streamflows in Serra da Mantiqueira Environmental Protection Area
Mateus Ricardo Nogueira Vilanova
2014-01-01
The aim of this study was to detect trends in the mean annual streamflow in watersheds of Serra da Mantiqueira Environmental Protection Area, an important Brazilian conservation area located between Minas Gerais, São Paulo and Rio de Janeiro States. Historical series of four selected streamgage stations were analyzed for the periods of 1980-1998 and 1980-2009, using the Mann-Kendall and Regional Mann-Kendall tests. The results showed that the mean annual streamflows of Serra da Mantiqueira En...
Low Streamflow Forcasting using Minimum Relative Entropy
Cui, H.; Singh, V. P.
2013-12-01
Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.
Streamflow alteration at selected sites in Kansas
Juracek, Kyle E.; Eng, Ken
2017-06-26
An understanding of streamflow alteration in response to various disturbances is necessary for the effective management of stream habitat for a variety of species in Kansas. Streamflow alteration can have negative ecological effects. Using a modeling approach, streamflow alteration was assessed for 129 selected U.S. Geological Survey streamgages in the State for which requisite streamflow and basin-characteristic information was available. The assessment involved a comparison of the observed condition from 1980 to 2015 with the predicted expected (least-disturbed) condition for 29 streamflow metrics. The metrics represent various characteristics of streamflow including average flow (annual, monthly) and low and high flow (frequency, duration, magnitude).Streamflow alteration in Kansas was indicated locally, regionally, and statewide. Given the absence of a pronounced trend in annual precipitation in Kansas, a precipitation-related explanation for streamflow alteration was not supported. Thus, the likely explanation for streamflow alteration was human activity. Locally, a flashier flow regime (typified by shorter lag times and more frequent and higher peak discharges) was indicated for three streamgages with urbanized basins that had higher percentages of impervious surfaces than other basins in the State. The combination of localized reservoir effects and regional groundwater pumping from the High Plains aquifer likely was responsible, in part, for diminished conditions indicated for multiple streamflow metrics in western and central Kansas. Statewide, the implementation of agricultural land-management practices to reduce runoff may have been responsible, in part, for a diminished duration and magnitude of high flows. In central and eastern Kansas, implemented agricultural land-management practices may have been partly responsible for an inflated magnitude of low flows at several sites.
Skilful seasonal forecasts of streamflow over Europe?
Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian
2018-04-01
This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate
Streamflow responses in Chile to megathrust earthquakes in the 20th and 21st centuries
Mohr, Christian; Manga, Michael; Wang, Chi-yuen; Korup, Oliver
2016-04-01
Both coseismic static stress and dynamic stresses associated with seismic waves may cause responses in hydrological systems. Such responses include changes in the water level, hydrochemistry and streamflow discharge. Earthquake effects on hydrological systems provide a means to study the interaction between stress changes and regional hydrology, which is otherwise rarely possible. Chile is a country of frequent and large earthquakes and thus provides abundant opportunities to study such interactions and processes. We analyze streamflow responses in Chile to several megathrust earthquakes, including the 1943 Mw 8.1 Coquimbo, 1950 Mw 8.2 Antofagasta, 1960 Mw 9.5 Valdivia, 1985 Mw 8.0 Valparaiso, 1995 Mw 8.0 Antofagasta, 2010 Mw 8.8 Maule, and the 2014 Mw 8.2 Iquique earthquakes. We use data from 716 stream gauges distributed from the Altiplano in the North to Tierra del Fuego in the South. This network covers the Andes mountain ranges, the central valley, the Coastal Mountain ranges and (mainly in the more southern parts) the Coastal flats. We combine empirical magnitude-distance relationships, machine learning tools, and process-based modeling to characterize responses. We first assess the streamflow anomalies and relate these to topographical, hydro-climatic, geological and earthquake-related (volumetric and dynamic strain) factors using various classifiers. We then apply 1D-groundwater flow modeling to selected catchments in order to test competing hypotheses for the origin of streamflow changes. We show that the co-seismic responses of streamflow mostly involved increasing discharges. We conclude that enhanced vertical permeability can explain most streamflow responses at the regional scale. The total excess water released by a single earthquake, i.e. the Maule earthquake, yielded up to 1 km3. Against the background of megathrust earthquakes frequently hitting Chile, the amount of water released by earthquakes is substantial, particularly for the arid northern
Yang, Yuhui; Chen, Yaning; Wang, Minzhong; Sun, Huilan
2017-07-01
We examined the changes in streamflow on the northern slopes of the Tianshan Mountains in northern Xinjiang, China, over two time scales: the past 500 years, based on dendrochronology data; and the past 50 years, based on streamflow data from hydrological stations. The method of artificial neural networks built from the data of the 50-year period was used to reconstruct the streamflow of the 500-year period. The results indicate that streamflow has undergone seven high-flow periods and four low-flow periods during the past 500 years. To identify possible transition points in the streamflow, we applied the Mann-Kendall and running T tests to the 50- and 500-year periods, respectively. During the past 500 years, streamflow has changed significantly from low to high flow about three to four times, and from high to low flow about three to five times. Over the recent 50 years, there have been three phases of variation in river runoff, and the most distinct transition of streamflow occurred in 1996.
Directory of Open Access Journals (Sweden)
Fanping Zhang
2014-01-01
Full Text Available Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds and an approximation (A3 at three resolution levels (21-22-23 using Daubechies (db3 discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3 are added to the approximation (A3 as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed.
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
Stora's analysis is continued in discussing the nonabelian (Yang-Mills) gauge field models (G.F.M.). The gauge independence of the physical scattering operator is discussed in some details and the connection between its unitary and the Slavnov symmetry outlined. Only the models involving semisimple gauge groups are considered. This greatly simplifies the analysis of the possible quantum corrections to the Quantum Action Principle which is reduced to the study of the cohomology group of the Lie algebra characterizing the gauge theory. The discussion is at the classical level for the algebraic properties of the SU(2) Higgs-Kibble-Englert-Brout-Faddeev-Popov lagrangian and its invariance under Slavnov identity transformations is exhibited. The renormalization of the Slavnov identity in the G.M.F. involving semisimple gauge groups is studied. The unitary and gauge independence of the physical S operator in the SU(2) H.K. model is dealt with [fr
Ravindranath, A.; Devineni, N.
2017-12-01
Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.
Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.
2017-12-01
Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.
Estimating absolute sea level variations by combining GNSS and Tide gauge data
Digital Repository Service at National Institute of Oceanography (India)
Bos, M.S.; Fernandes, R.M.S; Vethamony, P.; Mehra, P.
Indian tide gauges can be used to estimate sea level rise. To separate relative sea level rise from vertical land motion at the tide gauges, various GNSS stations have been installed in the last years at, or nearby, tide gauges. Using the PSMSL...
Ladd, David E.; Law, George S.
2007-01-01
The U.S. Geological Survey (USGS) provides streamflow and other stream-related information needed to protect people and property from floods, to plan and manage water resources, and to protect water quality in the streams. Streamflow statistics provided by the USGS, such as the 100-year flood and the 7-day 10-year low flow, frequently are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. In addition to streamflow statistics, resource managers often need to know the physical and climatic characteristics (basin characteristics) of the drainage basins for locations of interest to help them understand the mechanisms that control water availability and water quality at these locations. StreamStats is a Web-enabled geographic information system (GIS) application that makes it easy for users to obtain streamflow statistics, basin characteristics, and other information for USGS data-collection stations and for ungaged sites of interest. If a user selects the location of a data-collection station, StreamStats will provide previously published information for the station from a database. If a user selects a location where no data are available (an ungaged site), StreamStats will run a GIS program to delineate a drainage basin boundary, measure basin characteristics, and estimate streamflow statistics based on USGS streamflow prediction methods. A user can download a GIS feature class of the drainage basin boundary with attributes including the measured basin characteristics and streamflow estimates.
Patterns of Precipitation and Streamflow Responses to Moisture Fluxes during Atmospheric Rivers
Henn, B. M.; Wilson, A. M.; Asgari Lamjiri, M.; Ralph, M.
2017-12-01
Precipitation from landfalling atmospheric rivers (ARs) have been shown to dominate the hydroclimate of many parts of the world. ARs are associated with saturated, neutrally-stable profiles in the lower atmosphere, in which forced ascent by topography induces precipitation. Understanding the spatial and temporal variability of precipitation over complex terrain during AR-driven precipitation is critical for accurate forcing of distributed hydrologic models and streamflow forecasts. Past studies using radar wind profilers and radiosondes have demonstrated predictability of precipitation rates based on upslope water vapor flux over coastal terrain, with certain levels of moisture flux exhibiting the greatest influence on precipitation. Additionally, these relationships have been extended to show that streamflow in turn responds predictably to upslope vapor flux. However, past studies have focused on individual pairs of profilers and precipitation gauges; the question of how orographic precipitation in ARs is distributed spatially over complex terrain, at different topographic scales, is less well known. Here, we examine profiles of atmospheric moisture transport from radiosondes and wind profilers, against a relatively dense network of precipitation gauges, as well as stream gauges, to assess relationships between upslope moisture flux and the spatial response of precipitation and streamflow. We focus on California's Russian River watershed in the 2016-2017 cool season, when regular radiosonde launches were made at two locations during an active sequence of landfalling ARs. We examine how atmospheric water vapor flux results in precipitation patterns across gauges with different topographic relationships to the prevailing moisture-bearing winds, and conduct a similar comparison of runoff volume response from several unimpaired watersheds in the upper Russian watershed, taking into account antecedent soil moisture conditions that influence runoff generation. Finally
International Nuclear Information System (INIS)
Partovi, M.H.
1982-01-01
From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories
International Nuclear Information System (INIS)
Lassig, C.C.; Joshi, G.C.
1995-01-01
The nonassociativity of the octonion algebra makes necessitates a bimodule representation, in which each element is represented by a left and a right multiplier. This representation can then be used to generate gauge transformations for the purpose of constructing a field theory symmetric under a gauged octonion algebra, the nonassociativity of which appears as a failure of the representation to close, and hence produces new interactions in the gauge field kinetic term of the symmetric Lagrangian. 5 refs., 1 tab
Introduction to gauge theories
International Nuclear Information System (INIS)
Okun, L.B.
1984-01-01
These lecture notes contain the text of five lectures and a Supplement. The lectures were given at the JINR-CERN School of Physics, Tabor, Czechoslovakia, 5-18 June 1983. The subgect of the lecinvariancetures: gauge of electromagnetic and weak interactions, higgs and supersymmetric particles. The Supplement contains reprints (or excerpts) of some classical papers on gauge invariance by V. Fock, F. London, O. Klein and H. Weyl, in which the concept of gauge invariance was introduced and developed
International Nuclear Information System (INIS)
Greensite, J.; Olejnik, S.
2003-01-01
We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.
Implementing general gauge mediation
International Nuclear Information System (INIS)
Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.
2009-01-01
Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-01-01
Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-01-01
To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).
Nonabelian generalized gauge multiplets
International Nuclear Information System (INIS)
Lindstroem, Ulf; Zabzine, Maxim; Rocek, Martin; Ryb, Itai; Unge, Rikard von
2009-01-01
We give the nonabelian extension of the newly discovered N = (2, 2) two-dimensional vector multiplets. These can be used to gauge symmetries of sigma models on generalized Kaehler geometries. Starting from the transformation rule for the nonabelian case we find covariant derivatives and gauge covariant field-strengths and write their actions in N = (2, 2) and N = (1, 1) superspace.
DEFF Research Database (Denmark)
2017-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... relates to a method for manufacturing a strain gauge as mentioned above....
International Nuclear Information System (INIS)
Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu
1983-01-01
These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)
Streamflow conditions along Soldier Creek, Northeast Kansas
Juracek, Kyle E.
2017-11-14
The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.
Spatial Correlation Of Streamflows: An Analytical Approach
Betterle, A.; Schirmer, M.; Botter, G.
2016-12-01
The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the
Long-range forecasting of intermittent streamflow
F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby
2011-01-01
Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine th...
Long-range forecasting of intermittent streamflow
F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby
2011-01-01
Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a probabilistic statistical model to forecast streamflow 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probabil...
Streamflow disaggregation: a nonlinear deterministic approach
Directory of Open Access Journals (Sweden)
B. Sivakumar
2004-01-01
Full Text Available This study introduces a nonlinear deterministic approach for streamflow disaggregation. According to this approach, the streamflow transformation process from one scale to another is treated as a nonlinear deterministic process, rather than a stochastic process as generally assumed. The approach follows two important steps: (1 reconstruction of the scalar (streamflow series in a multi-dimensional phase-space for representing the transformation dynamics; and (2 use of a local approximation (nearest neighbor method for disaggregation. The approach is employed for streamflow disaggregation in the Mississippi River basin, USA. Data of successively doubled resolutions between daily and 16 days (i.e. daily, 2-day, 4-day, 8-day, and 16-day are studied, and disaggregations are attempted only between successive resolutions (i.e. 2-day to daily, 4-day to 2-day, 8-day to 4-day, and 16-day to 8-day. Comparisons between the disaggregated values and the actual values reveal excellent agreements for all the cases studied, indicating the suitability of the approach for streamflow disaggregation. A further insight into the results reveals that the best results are, in general, achieved for low embedding dimensions (2 or 3 and small number of neighbors (less than 50, suggesting possible presence of nonlinear determinism in the underlying transformation process. A decrease in accuracy with increasing disaggregation scale is also observed, a possible implication of the existence of a scaling regime in streamflow.
Guay, Joel R.
2002-01-01
To better understand the rainfall-runoff characteristics of the eastern part of the San Jacinto River Basin and to estimate the effects of increased urbanization on streamflow, channel infiltration, and land-surface infiltration, a long-term (1950?98) time series of monthly flows in and out of the channels and land surfaces were simulated using the Hydrologic Simulation Program- FORTRAN (HSPF) rainfall-runoff model. Channel and land-surface infiltration includes rainfall or runoff that infiltrates past the zone of evapotranspiration and may become ground-water recharge. The study area encompasses about 256 square miles of the San Jacinto River drainage basin in Riverside County, California. Daily streamflow (for periods with available data between 1950 and 1998), and daily rainfall and evaporation (1950?98) data; monthly reservoir storage data (1961?98); and estimated mean annual reservoir inflow data (for 1974 conditions) were used to calibrate the rainfall-runoff model. Measured and simulated mean annual streamflows for the San Jacinto River near San Jacinto streamflow-gaging station (North-South Fork subbasin) for 1950?91 and 1997?98 were 14,000 and 14,200 acre-feet, respectively, a difference of 1.4 percent. The standard error of the mean for measured and simulated annual streamflow in the North-South Fork subbasin was 3,520 and 3,160 acre-feet, respectively. Measured and simulated mean annual streamflows for the Bautista Creek streamflow-gaging station (Bautista Creek subbasin) for 1950?98 were 980 acre-feet and 991 acre-feet, respectively, a difference of 1.1 percent. The standard error of the mean for measured and simulated annual streamflow in the Bautista Creek subbasin was 299 and 217 acre-feet, respectively. Measured and simulated annual streamflows for the San Jacinto River above State Street near San Jacinto streamflow-gaging station (Poppet subbasin) for 1998 were 23,400 and 23,500 acre-feet, respectively, a difference of 0.4 percent. The simulated
International Nuclear Information System (INIS)
Linauskas, S.H.
1988-08-01
Field studies to measure actual radiation exposures of operators of commercial moisture-density gauges were undertaken in several regions of Canada. Newly developed bubble detector dosimeter technology and conventional dosimetry such as thermoluminescent dosimeters (TLDs), integrating electronic dosimeters (DRDs), and CR-39 neutron track-etch detectors were used to estimate the doses received by 23 moisture-density gauge operators and maintenance staff. These radiation dose estimates were supported by mapping radiation fields and accounting for the time an operator was near a gauge. Major findings indicate that gauge maintenance and servicing workers were more likely than gauge operators to receive exposures above the level of 5 mSv, and that neutron doses were roughly the same as gamma doses. Gauge operators receive approximately 75% of their dose when transporting and carrying the gauge. Dose to their hands is similar to the dose to their trunks, but the dose to their feet area is 6 to 30 times higher. Gamma radiation is the primary source of radiation contributing to operator dose
Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.
2005-01-01
Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period
Huizinga, Richard J.
2014-01-01
Streamflow data, basin characteristics, and rainfall data from 39 streamflow-gaging stations for urban areas in and adjacent to Missouri were used by the U.S. Geological Survey in cooperation with the Metropolitan Sewer District of St. Louis to develop an initial abstraction and constant loss model (a time-distributed basin-loss model) and a gamma unit hydrograph (GUH) for urban areas in Missouri. Study-specific methods to determine peak streamflow and flood volume for a given rainfall event also were developed.
International Nuclear Information System (INIS)
O'Raifeartaigh, L.
1979-01-01
This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)
Microcomputerized neutron moisture gauge
International Nuclear Information System (INIS)
Liu Shengkang; Mei Yu
1987-01-01
A microcomputerized neutron moisture gauge is introduced. This gauge consists of a neutron moisture sensor and instruments. It is developed from the neutron moisture gauge for concrete mixer. A TECH-81 single card microcomputer is used for count, computation and display. It has the function of computing compensated quantity of sand. It can acquire the data from several neutron sensors by the multichanneling sampling, therefore it can measure moisture values of sand in several hoppers simultaneously. The precision of the static state calibration curve is 0.24% wt. The error limits of the dynamic state check is < 0.50% wt
International Nuclear Information System (INIS)
Krejci, M.; Pilat, M.; Stulik, P.
1977-01-01
Equipment was developed measuring the heavy water level in the TR-0 reactor core within an accuracy of several hundredths of a millimeter in a range of around 3.5 m and at a temperature of up to 90 degC. The equipment uses a vibrating needle contact as a high sensitivity level gauge and a servomechanical system with a motion screw carrying the gauge for monitoring and measuring the level in the desired range. The advantage of the unique level gauge consists in that that the transducer converts the measured level position to an electric signal, ie., pulse width, with high sensitivity and without hysteresis. (Kr)
International Nuclear Information System (INIS)
Meade, Patrick; Seiberg, Nathan; Shih, David
2009-01-01
We give a general definition of gauge mediated supersymmetry breaking which encompasses all the known gauge mediation models. In particular, it includes both models with messengers as well as direct mediation models. A formalism for computing the soft terms in the generic model is presented. Such a formalism is necessary in strongly-coupled direct mediation models where perturbation theory cannot be used. It allows us to identify features of the entire class of gauge mediation models and to distinguish them from specific signatures of various subclasses. (author)
Obtaining Streamflow Statistics for Massachusetts Streams on the World Wide Web
Ries, Kernell G.; Steeves, Peter A.; Freeman, Aleda; Singh, Raj
2000-01-01
A World Wide Web application has been developed to make it easy to obtain streamflow statistics for user-selected locations on Massachusetts streams. The Web application, named STREAMSTATS (available at http://water.usgs.gov/osw/streamstats/massachusetts.html ), can provide peak-flow frequency, low-flow frequency, and flow-duration statistics for most streams in Massachusetts. These statistics describe the magnitude (how much), frequency (how often), and duration (how long) of flow in a stream. The U.S. Geological Survey (USGS) has published streamflow statistics, such as the 100-year peak flow, the 7-day, 10-year low flow, and flow-duration statistics, for its data-collection stations in numerous reports. Federal, State, and local agencies need these statistics to plan and manage use of water resources and to regulate activities in and around streams. Engineering and environmental consulting firms, utilities, industry, and others use the statistics to design and operate water-supply systems, hydropower facilities, industrial facilities, wastewater treatment facilities, and roads, bridges, and other structures. Until now, streamflow statistics for data-collection stations have often been difficult to obtain because they are scattered among many reports, some of which are not readily available to the public. In addition, streamflow statistics are often needed for locations where no data are available. STREAMSTATS helps solve these problems. STREAMSTATS was developed jointly by the USGS and MassGIS, the State Geographic Information Systems (GIS) agency, in cooperation with the Massachusetts Departments of Environmental Management and Environmental Protection. The application consists of three major components: (1) a user interface that displays maps and allows users to select stream locations for which they want streamflow statistics (fig. 1), (2) a data base of previously published streamflow statistics and descriptive information for 725 USGS data
Past and future changes of streamflow in Poyang Lake Basin, Southeastern China
Directory of Open Access Journals (Sweden)
S. L. Sun
2012-07-01
Full Text Available To understand the causes of the past water cycle variations and the influence of climate variability on the streamflow, lake storage, and flood potential, we analyze the changes in streamflow and the underlying drivers in four typical watersheds (Gaosha, Meigang, Saitang, and Xiashan within the Poyang Lake Basin, based on the meteorological observations at 79 weather stations, and datasets of streamflow and river level at four hydrological stations for the period of 1961-2000. The contribution of different climate factors to the change in streamflow in each watershed is estimated quantitatively using the water balance equations. Results show that in each watershed, the annual streamflow exhibits an increasing trend from 1961–2000. The increases in streamflow by 4.80 m^{3} s^{−1} yr^{−1} and 1.29 m^{3} s^{−1} yr^{−1} at Meigang and Gaosha, respectively, are statistically significant at the 5% level. The increase in precipitation is the biggest contributor to the streamflow increment in Meigang (3.79 m^{3} s^{−1} yr^{−1}, Gaosha (1.12 m^{3} s^{−1} yr^{−1}, and Xiashan (1.34 m^{3} s^{−1} yr^{−1}, while the decrease in evapotranspiration is the major factor controlling the streamflow increment in Saitang (0.19 m^{3} s^{−1} yr^{−1}. In addition, radiation and wind contribute more than actual vapor pressure and mean temperature to the changes in evapotranspiration and streamflow for the four watersheds.
For revealing the possible change of streamflow due to the future climate change, we also investigate the projected precipitation and evapotranspiration from of the Coupled Model Intercomparison Project phase 3 (CMIP3 under three greenhouse gases emission scenarios (SRESA1B, SRESA2 and SRESB1 for the period of 2061–2100. When the future changes in the soil water storage
Return to normal streamflows and water levels: summary of hydrologic conditions in Georgia, 2013
Knaak, Andrew E.; Caslow, Kerry; Peck, Michael F.
2015-01-01
The U.S. Geological Survey (USGS) South Atlantic Water Science Center (SAWSC) Georgia office, in cooperation with local, State, and other Federal agencies, maintains a long-term hydrologic monitoring network of more than 340 real-time continuous-record streamflow-gaging stations (streamgages), including 10 real-time lake-level monitoring stations, 67 real-time surface-water-quality monitors, and several water-quality sampling programs. Additionally, the SAWSC Georgia office operates more than 180 groundwater monitoring wells, 39 of which are real-time. The wide-ranging coverage of streamflow, reservoir, and groundwater monitoring sites allows for a comprehensive view of hydrologic conditions across the State. One of the many benefits of this monitoring network is that the analyses of the data provide a spatially distributed overview of the hydrologic conditions of creeks, rivers, reservoirs, and aquifers in Georgia.
Reconstruction of missing daily streamflow data using dynamic regression models
Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault
2015-12-01
River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.
International Nuclear Information System (INIS)
Cabibbo, N.
1983-01-01
This chapter attempts to present some of the fundamental geometrical ideas at the basis of gauge theories. Describes Dirac Monopoles and discusses those ideas that are not usually found in more ''utilitarian'' presentations which concentrate on QCD or on the Glashow-Salam-Weinberg model. This topic was chosen because of the announcement of the possible detection of a Dirac monopole. The existence of monopoles depends on topological features of gauge theories (i.e., on global properties of field configurations which are unique to gauge theories). Discusses global symmetry-local symmetry; the connection; path dependence and the gauge fields; topology and monopoles; the case of SU(3) x U(1); and the 't Hooft-Polyakov monopole
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1979-01-01
The construction of field strength copies without any gauge constraint is discussed. Several examples are given, one of which is not only a field strength copy but also (at the same time) a 'current copy'. (author) [pt
Nuclear radiation gauge standard
International Nuclear Information System (INIS)
Berry, R.L.
1977-01-01
A hydrophobic standard for calibrating nuclear radiation moisture gauges is described, comprising a body of superposed interleaved thin layers of a moderating material containing hydrogen in the molecular structure thereof and of a substantially non-moderating material
International Nuclear Information System (INIS)
Rizzo, T.G.
1995-01-01
Present and future prospects for the discovery of new gauge bosons, Z' and W', are reviewed. Particular attention is paid to hadron and e + e - collider searches for the W' of the Left-Right Symmetric Model
Sando, Steven K.; Morgan, Timothy J.; Dutton, DeAnn M.; McCarthy, Peter M.
2009-01-01
Charles M. Russell National Wildlife Refuge (CMR) encompasses about 1.1 million acres (including Fort Peck Reservoir on the Missouri River) in northeastern Montana. To ensure that sufficient streamflow remains in the tributary streams to maintain the riparian corridors, the U.S. Fish and Wildlife Service is negotiating water-rights issues with the Reserved Water Rights Compact Commission of Montana. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, conducted a study to gage, for a short period, selected streams that cross CMR, and analyze data to estimate long-term streamflow characteristics for CMR. The long-term streamflow characteristics of primary interest include the monthly and annual 90-, 80-, 50-, and 20-percent exceedance streamflows and mean streamflows (Q.90, Q.80, Q.50, Q.20, and QM, respectively), and the 1.5-, 2-, and 2.33- year peak flows (PK1.5, PK2, and PK2.33, respectively). The Regional Adjustment Relationship (RAR) was investigated for estimating the monthly and annual Q.90, Q.80, Q.50, Q.20, and QM, and the PK1.5, PK2, and PK2.33 for the short-term CMR gaging stations (hereinafter referred to as CMR stations). The RAR was determined to provide acceptable results for estimating the long-term Q.90, Q.80, Q.50, Q.20, and QM on a monthly basis for the months of March through June, and also on an annual basis. For the months of September through January, the RAR regression equations did not provide acceptable results for any long-term streamflow characteristic. For the month of February, the RAR regression equations provided acceptable results for the long-term Q.50 and QM, but poor results for the long-term Q.90, Q.80, and Q.20. For the months of July and August, the RAR provided acceptable results for the long-term Q.50, Q.20, and QM, but poor results for the long-term Q.90 and Q.80. Estimation coefficients were developed for estimating the long-term streamflow characteristics for which the RAR did not provide
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
International Nuclear Information System (INIS)
Nielsen, H.B.; Bennett, D.L.
1987-08-01
Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)
International Nuclear Information System (INIS)
Natale, A.A.; Shellard, R.C.
1981-01-01
The problem of gauge hierarchy in Grand Unified Theories using a toy model with O(N) symmetry is discussed. It is shown that there is no escape to the unnatural adjustment of coupling constants, made only after the computation of several orders in perturbation theory is performed. The propositions of some authors on ways to overcome the gauge hierarchy problem are commented. (Author) [pt
International Nuclear Information System (INIS)
Leite Lopes, J.
1981-01-01
The book is intended to explain, in an elementary way, the basic notions and principles of gauge theories. Attention is centred on the Salem-Weinberg model of electro-weak interactions, as well as neutrino-lepton scattering and the parton model. Classical field theory, electromagnetic, Yang-Mills and gravitational gauge fields, weak interactions, Higgs mechanism and the SU(5) model of grand unification are also discussed. (U.K.)
Directory of Open Access Journals (Sweden)
Farshad Fathian
2017-02-01
Full Text Available Introduction: Time series models are one of the most important tools for investigating and modeling hydrological processes in order to solve problems related to water resources management. Many hydrological time series shows nonstationary and nonlinear behaviors. One of the important hydrological modeling tasks is determining the existence of nonstationarity and the way through which we can access the stationarity accordingly. On the other hand, streamflow processes are usually considered as nonlinear mechanisms while in many studies linear time series models are used to model streamflow time series. However, it is not clear what kind of nonlinearity is acting underlying the streamflowprocesses and how intensive it is. Materials and Methods: Streamflow time series of 6 hydro-gauge stations located in the upstream basin rivers of ZarrinehRoud dam (located in the southern part of Urmia Lake basin have been considered to investigate stationarity and nonlinearity. All data series used here to startfrom January 1, 1997, and end on December 31, 2011. In this study, stationarity is tested by ADF and KPSS tests and nonlinearity is tested by BDS, Keenan and TLRT tests. The stationarity test is carried out with two methods. Thefirst one method is the augmented Dickey-Fuller (ADF unit root test first proposed by Dickey and Fuller (1979 and modified by Said and Dickey (1984, which examinsthe presence of unit roots in time series.The second onemethod is KPSS test, proposed by Kwiatkowski et al. (1992, which examinesthestationarity around a deterministic trend (trend stationarity and the stationarity around a fixed level (level stationarity. The BDS test (Brock et al., 1996 is a nonparametric method for testing the serial independence and nonlinear structure in time series based on the correlation integral of the series. The null hypothesis is the time series sample comes from an independent identically distributed (i.i.d. process. The alternative hypothesis
McKean, Sarah E.; Anderholm, Scott K.
2014-01-01
The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow
Directory of Open Access Journals (Sweden)
Fei Yuan
2017-03-01
Full Text Available Satellite precipitation products from the Global Precipitation Measurement (GPM mission and its predecessor the Tropical Rainfall Measuring Mission (TRMM are a critical data source for hydrological applications in ungauged basins. This study conducted an initial and early evaluation of the performance of the Integrated Multi-satellite Retrievals for GPM (IMERG final run and the TRMM Multi-satellite Precipitation Analysis 3B42V7 precipitation products, and their feasibility in streamflow simulations in the Chindwin River basin, Myanmar, from April 2014 to December 2015 was also assessed. Results show that, although IMERG and 3B42V7 can potentially capture the spatiotemporal patterns of historical precipitation, the two products contain considerable errors. Compared with 3B42V7, no significant improvements were found in IMERG. Moreover, 3B42V7 outperformed IMERG at daily and monthly scales and in heavy rain detections at four out of five gauges. The large errors in IMERG and 3B42V7 distinctly propagated to streamflow simulations via the Xinanjiang hydrological model, with a significant underestimation of total runoff and high flows. The bias correction of the satellite precipitation effectively improved the streamflow simulations. The 3B42V7-based streamflow simulations performed better than the gauge-based simulations. In general, IMERG and 3B42V7 are feasible for use in streamflow simulations in the study area, although 3B42V7 is better suited than IMERG.
Mat Jan, Nur Amalina; Shabri, Ani
2017-01-01
TL-moments approach has been used in an analysis to identify the best-fitting distributions to represent the annual series of maximum streamflow data over seven stations in Johor, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: Three-parameter lognormal (LN3) and Pearson Type III (P3) distribution. The main objective of this study is to derive the TL-moments ( t 1,0), t 1 = 1,2,3,4 methods for LN3 and P3 distributions. The performance of TL-moments ( t 1,0), t 1 = 1,2,3,4 was compared with L-moments through Monte Carlo simulation and streamflow data over a station in Johor, Malaysia. The absolute error is used to test the influence of TL-moments methods on estimated probability distribution functions. From the cases in this study, the results show that TL-moments with four trimmed smallest values from the conceptual sample (TL-moments [4, 0]) of LN3 distribution was the most appropriate in most of the stations of the annual maximum streamflow series in Johor, Malaysia.
Use of medium-range numerical weather prediction model output to produce forecasts of streamflow
Clark, M.P.; Hay, L.E.
2004-01-01
This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases
Quantum and classical gauge symmetries
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Terashima, Hiroaki
2001-01-01
The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)
Application of the geological streamflow and Muskingum Cunge ...
African Journals Online (AJOL)
... of the geological streamflow and Muskingum Cunge models in the Yala River Basin, Kenya. ... can be represented by the application of hydrologic and hydraulic models. ... verification and streamflow routing based on a split record analysis.
Maldacena, Juan; Milekhin, Alexey
2018-04-01
The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.
Derivation of the gauge link in light cone gauge
International Nuclear Information System (INIS)
Gao Jianhua
2010-01-01
In light cone gauge, a gauge link at light cone infinity is necessary for transverse momentum-dependent parton distribution to restore the gauge invariance in some specific boundary conditions. We derive such transverse gauge link in a more regular and general method. We find the gauge link at light cone infinity naturally arises from the contribution of the pinched poles: one is from the quark propagator and the other is hidden in the gauge vector field in light cone gauge. Actually, in the amplitude level, we have obtained a more general gauge link over the hypersurface at light cone infinity which is beyond the transverse direction. The difference of such gauge link between semi-inclusive deep inelastic scattering and Drell-Yan processes can also be obtained directly and clearly in our derivation.
Renormalizable Non-Covariant Gauges and Coulomb Gauge Limit
Baulieu, L
1999-01-01
To study ``physical'' gauges such as the Coulomb, light-cone, axial or temporal gauge, we consider ``interpolating'' gauges which interpolate linearly between a covariant gauge, such as the Feynman or Landau gauge, and a physical gauge. Lorentz breaking by the gauge-fixing term of interpolating gauges is controlled by extending the BRST method to include not only the local gauge group, but also the global Lorentz group. We enumerate the possible divergences of interpolating gauges, and show that they are renormalizable, and we show that the expectation value of physical observables is the same as in a covariant gauge. In the second part of the article we study the Coulomb-gauge as the singular limit of the Landau-Coulomb interpolating gauge. We find that unrenormalized and renormalized correlation functions are finite in this limit. We also find that there are finite two-loop diagrams of ``unphysical'' particles that are not present in formal canonical quantization in the Coulomb gauge. We verify that in the ...
Poincare gauge in electrodynamics
International Nuclear Information System (INIS)
Brittin, W.E.; Smythe, W.R.; Wyss, W.
1982-01-01
The gauge presented here, which we call the Poincare gauge, is a generalization of the well-known expressions phi = -rxE 0 and A = 1/2 B 0 x r for the scalar and vector potentials which describe static, uniform electric and magnetic fields. This gauge provides a direct method for calculating a vector potential for any given static or dynamic magnetic field. After we establish the validity and generality of this gauge, we use it to produce a simple and unambiguous method of computing the flux linking an arbitrary knotted and twisted closed circuit. The magnetic flux linking the curve bounding a Moebius band is computed as a simple example. Arguments are then presented that physics students should have the opportunity of learning early in their curriculum modern geometric approaches to physics. (The language of exterior calculus may be as important to future physics as vector calculus was to the past.) Finally, an appendix illustrates how the Poincare gauge (and others) may be derived from Poincare's lemma relating exact and closed exterior differential forms
Lara, Antonio; Bahamondez, Alejandra; González-Reyes, Alvaro; Muñoz, Ariel A.; Cuq, Emilio; Ruiz-Gómez, Carolina
2015-10-01
streamflow of the Baker River documented here for the 1980-2004 period is consistent with precipitation decrease associated with the SAM. Conversely, other studies have reported an increase of summer streamflow for a portion of the Baker River for the 1994-2008 period, explained by ice melt associated with temperature increase and glacier retreat and thinning. Future research should consider the development of new tree-ring reconstructions to increase the geographic range and to cover the last 1000 or more years using long-lived species (e.g. Fitzroya cupressoides and Pilgerodendron uviferum). Expanding the network and quality of instrumental weather, streamflow and other monitoring stations as well as the study and modeling of the complex hydrological processes in the Baker basin are necessary. This should be the basis for planning, policy design and decision making regarding water resources in the Baker basin.
Singh, R.; Archfield, S.A.; Wagener, T.
2014-01-01
Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...
Renormalization of gauge theories
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-04-01
Gauge theories are characterized by the Slavnov identities which express their invariance under a family of transformations of the supergauge type which involve the Faddeev Popov ghosts. These identities are proved to all orders of renormalized perturbation theory, within the BPHZ framework, when the underlying Lie algebra is semi-simple and the gauge function is chosen to be linear in the fields in such a way that all fields are massive. An example, the SU2 Higgs Kibble model is analyzed in detail: the asymptotic theory is formulated in the perturbative sense, and shown to be reasonable, namely, the physical S operator is unitary and independant from the parameters which define the gauge function [fr
International Nuclear Information System (INIS)
Stora, R.
1976-09-01
The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed
Generally covariant gauge theories
International Nuclear Information System (INIS)
Capovilla, R.
1992-01-01
A new class of generally covariant gauge theories in four space-time dimensions is investigated. The field variables are taken to be a Lie algebra valued connection 1-form and a scalar density. Modulo an important degeneracy, complex [euclidean] vacuum general relativity corresponds to a special case in this class. A canonical analysis of the generally covariant gauge theories with the same gauge group as general relativity shows that they describe two degrees of freedom per space point, qualifying therefore as a new set of neighbors of general relativity. The modification of the algebra of the constraints with respect to the general relativity case is computed; this is used in addressing the question of how general relativity stands out from its neighbors. (orig.)
Supersymmetric gauge field theories
International Nuclear Information System (INIS)
Slavnov, A.A.
1976-01-01
The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models
International Nuclear Information System (INIS)
Creutz, M.
1983-04-01
In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed
Hydro-Climatic Data Network (HCDN) Streamflow Data Set, 1874-1988
Slack, James Richard; Lumb, Alan M.; Landwehr, Jurate Maciunas
1993-01-01
records of 'natural flow' were permitted, nor was any record extended or had missing values 'filled in' using computational algorithms. If the streamflow at a station was judged to be free of controls for only a part of the entire period of record that is available for the station, then only that part was included in the HCDN, but only if it was of sufficient length (generally 20 years) to warrant inclusion. In addition to the daily mean discharge values, complete station identification information and basin characteristics were retrieved from WATSTORE for inclusion in the HCDN. Statistical characteristics, including the monthly mean discharge, as well as the annual mean, minimum and maximum discharge values, were derived for the records in the HCDN data set. For a full description of the development and content of the Hydro-Climatic Data Network, please take a look at the HCDN Report.
Brown, Christopher R.
2014-01-01
In 2013, the U.S. Geological Survey (USGS), in cooperation with the U. S. Department of the Army, compiled available precipitation and streamflow data for the years of 2008–2012 from the Fort Carson Military Reservation (Fort Carson) near Colorado Springs, Colo., and precipitation, streamflow, and suspended-sediment loads from the Piñon Canyon Maneuver Site (PCMS) near Trinidad, Colo. Graphical representations of the data presented herein are a continuation of work completed by the USGS in 2008 to gain a better understanding of spatial and temporal trends within the hydrologic data. Precipitation stations at Fort Carson and the PCMS were divided into groups based on their land-surface altitude (LSA) to determine if there is a spatial difference in precipitation amounts based on LSA for either military facility. Two-sample t-tests and Wilcoxon rank-sum tests indicated statistically significant differences exist between precipitation values at different groups for Fort Carson but not for the PCMS. All five precipitation stations at Fort Carson exhibit a decrease in median daily total precipitation from years 2002–2007 to 2008–2012. For the PCMS, median precipitation values decreased from the first study period to the second for the 13 stations monitored year-round except for Burson and Big Hills. Mean streamflow for 2008–2012 is less than mean streamflow for 1983–2007 for all stream-gaging stations at Fort Carson and at the PCMS. During the study period, each of the stream-gaging stations within the tributary channels at the PCMS accounted for less than three percent of the total streamflow at the Purgatoire River at Rock Crossing gage. Peak streamflow for 2008–2012 is less than peak streamflow for 2002–2007 at both Fort Carson and the PCMS. At the PCMS, mean suspended-sediment yield for 2008–2012 increased by 54 percent in comparison to the mean yield for 2002–2007. This increase is likely related to the destruction of groundcover by a series of
1994-01-01
This volume is a compilation of works which, taken together, give a complete and consistent presentation of instanton calculus in non-Abelian gauge theories, as it exists now. Some of the papers reproduced are instanton classics. Among other things, they show from a historical perspective how the instanton solution has been found, the motivation behind it and how the physical meaning of instantons has been revealed. Other papers are devoted to different aspects of instanton formalism including instantons in supersymmetric gauge theories. A few unsolved problems associated with instantons are d
Energy Technology Data Exchange (ETDEWEB)
Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study
2009-06-19
We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.
Vining, Kevin C.; Vecchia, Aldo V.
2014-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, used the stochastic monthly water-balance model and existing climate data to estimate monthly streamflows for 1951–2010 for selected streamgaging stations located within the Aynak copper, cobalt, and chromium area of interest in Afghanistan. The model used physically based, nondeterministic methods to estimate the monthly volumetric water-balance components of a watershed. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Kabul River at Maidan and Kabul River at Tangi-Saidan indicated that the stochastic water-balance model was able to provide satisfactory estimates of monthly streamflows for high-flow months and low-flow months even though withdrawals for irrigation likely occurred. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Logar River at Shekhabad and Logar River at Sangi-Naweshta also indicated that the stochastic water-balance model was able to provide reasonable estimates of monthly streamflows for the high-flow months; however, for the upstream streamgaging station, the model overestimated monthly streamflows during periods when summer irrigation withdrawals likely occurred. Results from the stochastic water-balance model indicate that the model should be able to produce satisfactory estimates of monthly streamflows for locations along the Kabul and Logar Rivers. This information could be used by Afghanistan authorities to make decisions about surface-water resources for the Aynak copper, cobalt, and chromium area of interest.
HYDRORECESSION: A toolbox for streamflow recession analysis
Arciniega, S.
2015-12-01
Streamflow recession curves are hydrological signatures allowing to study the relationship between groundwater storage and baseflow and/or low flows at the catchment scale. Recent studies have showed that streamflow recession analysis can be quite sensitive to the combination of different models, extraction techniques and parameter estimation methods. In order to better characterize streamflow recession curves, new methodologies combining multiple approaches have been recommended. The HYDRORECESSION toolbox, presented here, is a Matlab graphical user interface developed to analyse streamflow recession time series with the support of different tools allowing to parameterize linear and nonlinear storage-outflow relationships through four of the most useful recession models (Maillet, Boussinesq, Coutagne and Wittenberg). The toolbox includes four parameter-fitting techniques (linear regression, lower envelope, data binning and mean squared error) and three different methods to extract hydrograph recessions segments (Vogel, Brutsaert and Aksoy). In addition, the toolbox has a module that separates the baseflow component from the observed hydrograph using the inverse reservoir algorithm. Potential applications provided by HYDRORECESSION include model parameter analysis, hydrological regionalization and classification, baseflow index estimates, catchment-scale recharge and low-flows modelling, among others. HYDRORECESSION is freely available for non-commercial and academic purposes.
Long-range forecasting of intermittent streamflow
van Ogtrop, F. F.; Vervoort, R. W.; Heller, G. Z.; Stasinopoulos, D. M.; Rigby, R. A.
2011-11-01
Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth) of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.
Long-range forecasting of intermittent streamflow
Directory of Open Access Journals (Sweden)
F. F. van Ogtrop
2011-11-01
Full Text Available Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.
Barlow, Paul M.; Leake, Stanley A.
2012-11-02
Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.
Davids, Jeffrey C; van de Giesen, Nick; Rutten, Martine
2017-07-01
Hydrologic data has traditionally been collected with permanent installations of sophisticated and accurate but expensive monitoring equipment at limited numbers of sites. Consequently, observation frequency and costs are high, but spatial coverage of the data is limited. Citizen Hydrology can possibly overcome these challenges by leveraging easily scaled mobile technology and local residents to collect hydrologic data at many sites. However, understanding of how decreased observational frequency impacts the accuracy of key streamflow statistics such as minimum flow, maximum flow, and runoff is limited. To evaluate this impact, we randomly selected 50 active United States Geological Survey streamflow gauges in California. We used 7 years of historical 15-min flow data from 2008 to 2014 to develop minimum flow, maximum flow, and runoff values for each gauge. To mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, and their respective distributions, from 50 subsample iterations with four different subsampling frequencies ranging from daily to monthly. Minimum flows were estimated within 10% for half of the subsample iterations at 39 (daily) and 23 (monthly) of the 50 sites. However, maximum flows were estimated within 10% at only 7 (daily) and 0 (monthly) sites. Runoff volumes were estimated within 10% for half of the iterations at 44 (daily) and 12 (monthly) sites. Watershed flashiness most strongly impacted accuracy of minimum flow, maximum flow, and runoff estimates from subsampled data. Depending on the questions being asked, lower frequency Citizen Hydrology observations can provide useful hydrologic information.
Chemical potentials in gauge theories
International Nuclear Information System (INIS)
Actor, A.; Pennsylvania State Univ., Fogelsville
1985-01-01
One-loop calculations of the thermodynamic potential Ω are presented for temperature gauge and non-gauge theories. Prototypical formulae are derived which give Ω as a function of both (i) boson and/or fermion chemical potential, and in the case of gauge theories (ii) the thermal vacuum parameter Asub(O)=const (Asub(μ) is the euclidean gauge potential). From these basic abelian gauge theory formulae, the one-loop contribution to Ω can readily be constructed for Yang-Mills theories, and also for non-gauge theories. (orig.)
Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.
2016-02-24
-balance model was developed for simulating monthly natural (unregulated) mean streamflow based on precipitation, temperature, and potential evapotranspiration at select streamflow-gaging stations. The model was calibrated using streamflow data from the U.S. Geological Survey and Environment Canada, along with natural (unregulated) streamflow data from the U.S. Army Corps of Engineers. Correlation coefficients between simulated and natural (unregulated) flows generally were high (greater than 0.8), and the seasonal means and standard deviations of the simulated flows closely matched the means and standard deviations of the natural (unregulated) flows. After calibrating the model for a monthly time step, monthly streamflow for each subbasin was disaggregated into three values per month, or an approximately 10-day time step, and a separate routing model was developed for simulating 10-day streamflow for downstream gages.The stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration was combined with the water-balance model to simulate potential future sequences of 10-day mean streamflow for each of the streamflow-gaging station locations. Flood risk, as determined by equilibrium flow-frequency distributions for the dry (1912–69) and wet (1970–2011) climate states, was considerably higher for the wet state compared to the dry state. Future flood risk will remain high until the wet climate state ends, and for several years after that, because there may be a long lag-time between the return of drier conditions and the onset of a lower soil-moisture storage equilibrium.
Davids, J. C.; Rutten, M.; Van De Giesen, N.
2016-12-01
Hydrologic data has traditionally been collected with permanent installations of sophisticated and relatively accurate but expensive monitoring equipment at limited numbers of sites. Consequently, the spatial coverage of the data is limited and costs are high. Achieving adequate maintenance of sophisticated monitoring equipment often exceeds local technical and resource capacity, and permanently deployed monitoring equipment is susceptible to vandalism, theft, and other hazards. Rather than using expensive, vulnerable installations at a few points, SmartPhones4Water (S4W), a form of Citizen Hydrology, leverages widely available mobile technology to gather hydrologic data at many sites in a manner that is repeatable and scalable. However, there is currently a limited understanding of the impact of decreased observational frequency on the accuracy of key streamflow statistics like minimum flow, maximum flow, and runoff. As a first step towards evaluating the tradeoffs between traditional continuous monitoring approaches and emerging Citizen Hydrology methods, we randomly selected 50 active U.S. Geological Survey (USGS) streamflow gauges in California. We used historical 15 minute flow data from 01/01/2008 through 12/31/2014 to develop minimum flow, maximum flow, and runoff values (7 year total) for each gauge. In order to mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, along with their respective distributions, from 50 subsample iterations with four different subsampling intervals (i.e. daily, three day, weekly, and monthly). Based on our results we conclude that, depending on the types of questions being asked, and the watershed characteristics, Citizen Hydrology streamflow measurements can provide useful and accurate information. Depending on watershed characteristics, minimum flows were reasonably estimated with subsample intervals ranging from
Hermiticity and gauge invariance
International Nuclear Information System (INIS)
Treder, H.J.
1987-01-01
In the Theory of Hermitian Relativity (HRT) the postulates of hermiticity and gauge invariance are formulated in different ways, due to a different understanding of the idea of hermiticity. However all hermitian systems of equations have to satisfy Einstein's weak system of equations being equivalent to Einstein-Schroedinger equations. (author)
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Gauge theory and renormalization
Hooft, G. 't
1996-01-01
Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
International Nuclear Information System (INIS)
Bennerstedt, T.
1986-01-01
A great number of industrial nuclear gauges are used in Sweden. The administrative routines for testing, approval and licensing are briefly described. Safety standards, including basic ICRP criteria, are summarized and a theoretical background to the various measuring techniques is given. Numerous practical examples are given. (author)
Disentangling the response of streamflow to forest management and climate
Dymond, S.; Miniat, C.; Bladon, K. D.; Keppeler, E.; Caldwell, P. V.
2016-12-01
Paired watershed studies have showcased the relationships between forests, management, and streamflow. However, classical analyses of paired-watershed studies have done little to disentangle the effects of management from overarching climatic signals, potentially masking the interaction between management and climate. Such approaches may confound our understanding of how forest management impacts streamflow. Here we use a 50-year record of streamflow and climate data from the Caspar Creek Experimental Watersheds (CCEW), California, USA to separate the effects of forest management and climate on streamflow. CCEW has two treatment watersheds that have been harvested in the past 50 years. We used a nonlinear mixed model to combine the pre-treatment relationship between streamflow and climate and the post-treatment relationship via an interaction between climate and management into one equation. Our results show that precipitation and potential evapotranspiration alone can account for >95% of the variability in pre-treatment streamflow. Including management scenarios into the model explained most of the variability in streamflow (R2 > 0.98). While forest harvesting altered streamflow in both of our modeled watersheds, removing 66% of the vegetation via selection logging using a tractor yarding system over the entire watershed had a more substantial impact on streamflow than clearcutting small portions of a watershed using cable-yarding. These results suggest that forest harvesting may result in differing impacts on streamflow and highlights the need to incorporate climate into streamflow analyses of paired-watershed studies.
Koppa, A.; Gebremichael, M.; Yeh, W. W. G.
2017-12-01
Calibrating hydrologic models in large catchments using a sparse network of streamflow gauges adversely affects the spatial and temporal accuracy of other water balance components which are important for climate-change, land-use and drought studies. This study combines remote sensing data and the concept of Pareto-Optimality to address the following questions: 1) What is the impact of streamflow (SF) calibration on the spatio-temporal accuracy of Evapotranspiration (ET), near-surface Soil Moisture (SM) and Total Water Storage (TWS)? 2) What is the best combination of fluxes that can be used to calibrate complex hydrological models such that both the accuracy of streamflow and the spatio-temporal accuracy of ET, SM and TWS is preserved? The study area is the Mississippi Basin in the United States (encompassing HUC-2 regions 5,6,7,9,10 and 11). 2003 and 2004, two climatologically average years are chosen for calibration and validation of the Noah-MP hydrologic model. Remotely sensed ET data is sourced from GLEAM, SM from ESA-CCI and TWS from GRACE. Single objective calibration is carried out using DDS Algorithm. For Multi objective calibration PA-DDS is used. First, the Noah-MP model is calibrated using a single objective function (Minimize Mean Square Error) for the outflow from the 6 HUC-2 sub-basins for 2003. Spatial correlograms are used to compare the spatial structure of ET, SM and TWS between the model and the remote sensing data. Spatial maps of RMSE and Mean Error are used to quantify the impact of calibrating streamflow on the accuracy of ET, SM and TWS estimates. Next, a multi-objective calibration experiment is setup to determine the pareto optimal parameter sets (pareto front) for the following cases - 1) SF and ET, 2) SF and SM, 3) SF and TWS, 4) SF, ET and SM, 5) SF, ET and TWS, 6) SF, SM and TWS, 7) SF, ET, SM and TWS. The best combination of fluxes that provides the optimal trade-off between accurate streamflow and preserving the spatio
Modeling multisite streamflow dependence with maximum entropy copula
Hao, Z.; Singh, V. P.
2013-10-01
Synthetic streamflows at different sites in a river basin are needed for planning, operation, and management of water resources projects. Modeling the temporal and spatial dependence structure of monthly streamflow at different sites is generally required. In this study, the maximum entropy copula method is proposed for multisite monthly streamflow simulation, in which the temporal and spatial dependence structure is imposed as constraints to derive the maximum entropy copula. The monthly streamflows at different sites are then generated by sampling from the conditional distribution. A case study for the generation of monthly streamflow at three sites in the Colorado River basin illustrates the application of the proposed method. Simulated streamflow from the maximum entropy copula is in satisfactory agreement with observed streamflow.
Solution of the gauge identities in the axial gauge
International Nuclear Information System (INIS)
Delbourgo, R.
1981-01-01
Starting from the spectral representation of the two-point functions in the axial gauge, the gauge identities are solved so as to express the higher-point Green functions linearly in terms of the two-point spectral function. The four-point functions are an important input for investigations of scalar electrodynamics and vector chromodynamics based on the gauge technique. (author)
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
We discuss the viability of using interpolating gauges to deﬁne the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition deﬁning term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter ...
Gauge symmetry breaking in gauge theories -- in search of clarification
Friederich, Simon
2013-01-01
The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by
Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.
2018-03-01
Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.
Weighing Rain Gauge Recording Charts
National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...
A comparison of four streamflow record extension techniques
Hirsch, Robert M.
1982-01-01
One approach to developing time series of streamflow, which may be used for simulation and optimization studies of water resources development activities, is to extend an existing gage record in time by exploiting the interstation correlation between the station of interest and some nearby (long-term) base station. Four methods of extension are described, and their properties are explored. The methods are regression (REG), regression plus noise (RPN), and two new methods, maintenance of variance extension types 1 and 2 (MOVE.l, MOVE.2). MOVE.l is equivalent to a method which is widely used in psychology, biometrics, and geomorphology and which has been called by various names, e.g., ‘line of organic correlation,’ ‘reduced major axis,’ ‘unique solution,’ and ‘equivalence line.’ The methods are examined for bias and standard error of estimate of moments and order statistics, and an empirical examination is made of the preservation of historic low-flow characteristics using 50-year-long monthly records from seven streams. The REG and RPN methods are shown to have serious deficiencies as record extension techniques. MOVE.2 is shown to be marginally better than MOVE.l, according to the various comparisons of bias and accuracy.
Energy Technology Data Exchange (ETDEWEB)
Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Vysoký, Jan, E-mail: vysokjan@fjfi.cvut.cz [Jacobs University Bremen, 28759 Bremen (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague 115 19 (Czech Republic)
2014-06-02
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
International Nuclear Information System (INIS)
Jurčo, Branislav; Schupp, Peter; Vysoký, Jan
2014-01-01
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
Izuka, Scot K.; Ewart, Charles J.
1995-01-01
A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride
The renaissance of gauge theory
International Nuclear Information System (INIS)
Moriyasu, K.
1982-01-01
Gauge theory is a classic example of a good idea proposed before its time. A brief historical review of gauge theory is presented to see why it required over 50 years for gauge invariance to be rediscovered as the basic principle governing the fundamental forces of Nature. (author)
The string unification of gauge couplings and gauge kinetic mixings
International Nuclear Information System (INIS)
Hattori, Chuichiro; Matsuda, Masahisa; Matsuoka, Takeo; Mochinaga, Daizo.
1993-01-01
In the superstring models we have not only the complete 27 multiplets of E 6 but also extra incomplete (27+27-bar) chiral supermultiplets being alive at low energies. Associated with these additional multiplets, when the gauge symmetry contains more than one U(1) gauge group, there may exist gauge kinetic mixings among these U(1) gauge groups. In such cases the effect of gauge kinetic mixings should be incorporated into the study of unification of gauge couplings. We study these interesting effects systematically in these models. The string threshold effect is also taken into account. It is found that in the four-generation models we do not have an advisable solution of string unification of gauge couplings consistent with experimental values at the electroweak scale. We also discuss the possible scenarios to solve this problem. (author)
Smith, Kirk P.
2015-01-01
Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2013 (October 1, 2012, through September 30, 2013) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB) in the cooperative study. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2013 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2013.
Koltun, G.F.; Holtschlag, David J.
2010-01-01
Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations. Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971–2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages).Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Radioactive thickness gauge (1962)
International Nuclear Information System (INIS)
Guizerix, J.
1962-01-01
The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
International Nuclear Information System (INIS)
Arodz, H.
1987-01-01
The two formulations of quantum theory of the free electromagnetic field are presented. In the Coulomb gauge approach the independent dynamical variables have been identified and then, in order to quantize the theory, it has been sufficient to apply the straightforward canonical quantization. In the Gupta-Bleuler approach the auxilliary theory is first considered. The straightforward canonical quantization of it leads to the quantum theory defined in the space G with indefinite norm. 15 refs. (author)
International Nuclear Information System (INIS)
Petronzio, R.
1992-01-01
Lattice gauge theories are about fifteen years old and I will report on the present status of the field without making the elementary introduction that can be found in the proceedings of the last two conferences. The talk covers briefly the following subjects: the determination of α s , the status of spectroscopy, heavy quark physics and in particular the calculation of their hadronic weak matrix elements, high temperature QCD, non perturbative Higgs bounds, chiral theories on the lattice and induced theories
Anomalous gauge theories revisited
International Nuclear Information System (INIS)
Matsui, Kosuke; Suzuki, Hiroshi
2005-01-01
A possible formulation of chiral gauge theories with an anomalous fermion content is re-examined in light of the lattice framework based on the Ginsparg-Wilson relation. It is shown that the fermion sector of a wide class of anomalous non-abelian theories cannot consistently be formulated within this lattice framework. In particular, in 4 dimension, all anomalous non-abelian theories are included in this class. Anomalous abelian chiral gauge theories cannot be formulated with compact U(1) link variables, while a non-compact formulation is possible at least for the vacuum sector in the space of lattice gauge fields. Our conclusion is not applied to effective low-energy theories with an anomalous fermion content which are obtained from an underlying anomaly-free theory by sending the mass of some of fermions to infinity. For theories with an anomalous fermion content in which the anomaly is cancelled by the Green-Schwarz mechanism, a possibility of a consistent lattice formulation is not clear. (author)
De Simone, Andrea; Giudice, Gian Francesco; Pappadopulo, Duccio; Rattazzi, Riccardo
2011-01-01
It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called $\\mu$-$B_\\mu$ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of $B_\\mu$ and of the other Higgs-sector soft masses, as predicted in models where both $\\mu$ and $B_\\mu$ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of $\\tan\\beta$. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of ne...
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)
2017-05-25
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Understanding uncertainties in future Colorado River streamflow
Julie A. Vano,; Bradley Udall,; Cayan, Daniel; Jonathan T Overpeck,; Brekke, Levi D.; Das, Tapash; Hartmann, Holly C.; Hidalgo, Hugo G.; Hoerling, Martin P; McCabe, Gregory J.; Morino, Kiyomi; Webb, Robert S.; Werner, Kevin; Lettenmaier, Dennis P.
2014-01-01
The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamf low changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamf lows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.
Dual beam x-ray thickness gauge
International Nuclear Information System (INIS)
Allport, J.J.
1977-01-01
The apparatus and method for continuous measurement of thickness of a sheet at a rolling mill or the like without contacting the sheet are described. A system directing radiation through the sheet in two energy bands and providing a measure of change in composition of the material as it passes the thickness gauging station is included. A system providing for changing the absorption coefficient of the material in the thickness measurement as a function of the change in composition so that the measured thickness is substantially independent of variations in composition is described
An unusual kind of diurnal streamflow variation
Directory of Open Access Journals (Sweden)
Cuevas Jaime G.
2018-03-01
Full Text Available During hydrological research in a Chilean swamp forest, we noted a pattern of higher streamflows close to midday and lower ones close to midnight, the opposite of an evapotranspiration (Et-driven cycle. We analyzed this diurnal streamflow signal (DSS, which appeared mid-spring (in the growing season. The end of this DSS coincided with a sustained rain event in autumn, which deeply affected stream and meteorological variables. A survey along the stream revealed that the DSS maximum and minimum values appeared 6 and 4 hours earlier, respectively, at headwaters located in the mountain forests/ plantations than at the control point in the swamp forest. Et in the swamp forest was higher in the morning and in the late afternoon, but this process could not influence the groundwater stage. Trees in the mountain headwaters reached their maximum Ets in the early morning and/or close to midday. Our results suggest that the DSS is a wave that moves from forests high in the mountains towards lowland areas, where Et is decoupled from the DSS. This signal delay seems to convert the link between streamflow and Et in an apparent, but spurious positive relationship. It also highlights the role of landscape heterogeneity in shaping hydrological processes.
van Heeswijk, Marijke
2006-01-01
Surface water has been diverted from the Salmon Creek Basin for irrigation purposes since the early 1900s, when the Bureau of Reclamation built the Okanogan Project. Spring snowmelt runoff is stored in two reservoirs, Conconully Reservoir and Salmon Lake Reservoir, and gradually released during the growing season. As a result of the out-of-basin streamflow diversions, the lower 4.3 miles of Salmon Creek typically has been a dry creek bed for almost 100 years, except during the spring snowmelt season during years of high runoff. To continue meeting the water needs of irrigators but also leave water in lower Salmon Creek for fish passage and to help restore the natural ecosystem, changes are being considered in how the Okanogan Project is operated. This report documents development of a precipitation-runoff model for the Salmon Creek Basin that can be used to simulate daily unregulated streamflows. The precipitation-runoff model is a component of a Decision Support System (DSS) that includes a water-operations model the Bureau of Reclamation plans to develop to study the water resources of the Salmon Creek Basin. The DSS will be similar to the DSS that the Bureau of Reclamation and the U.S. Geological Survey developed previously for the Yakima River Basin in central southern Washington. The precipitation-runoff model was calibrated for water years 1950-89 and tested for water years 1990-96. The model was used to simulate daily streamflows that were aggregated on a monthly basis and calibrated against historical monthly streamflows for Salmon Creek at Conconully Dam. Additional calibration data were provided by the snowpack water-equivalent record for a SNOTEL station in the basin. Model input time series of daily precipitation and minimum and maximum air temperatures were based on data from climate stations in the study area. Historical records of unregulated streamflow for Salmon Creek at Conconully Dam do not exist for water years 1950-96. Instead, estimates of
Changes in streamflow characteristics in Wisconsin as related to precipitation and land use
Gebert, Warren A.; Garn, Herbert S.; Rose, William J.
2016-01-19
Streamflow characteristics were determined for 15 longterm streamflow-gaging stations for the periods 1915–2008, 1915–68, and 1969–2008 to identify trends. Stations selected represent flow characteristics for the major river basins in Wisconsin. Trends were statistically significant at the 95 percent confidence level at 13 of the 15 streamflow-gaging stations for various streamflow characteristics for 1915–2008. Most trends indicated increases in low flows for streams with agriculture as the dominant land use. The three most important findings are: increases in low flows and average flows in agricultural watersheds, decreases in flood peak discharge for many streams in both agricultural and forested watersheds, and climatic change occurred with increasing annual precipitation and changes in monthly occurrence of precipitation. When the 1915–68 period is compared to the 1969–2008 period, the annual 7-day low flow increased an average of 60 percent for nine streams in agricultural areas as compared to a 15 percent increase for the five forested streams. Average annual flow for the same periods increased 23 percent for the agriculture streams and 0.6 percent for the forested streams. The annual flood peak discharge for the same periods decreased 15 percent for agriculture streams and 8 percent for forested streams. The largest increase in the annual 7-day low flow was 117 percent, the largest increase in annual average flow was 41 percent, and the largest decrease in annual peak discharge was 51 percent. The trends in streamflow characteristics affect frequency characteristics, which are used for a variety of design and compliance purposes. The frequencies for the 1969–2008 period were compared to frequencies for the 1915–68 period. The 7-day, 10-year (Q7, 10) low flow increased 91 percent for nine agricultural streams, while the five forested streams had an increase of 18 percent. The 100-year flood peak discharge decreased an average of 15 percent
Mississippi River streamflow measurement techniques at St. Louis, Missouri
Wastson, Chester C.; Holmes, Robert R.; Biedenham, David S.
2013-01-01
Streamflow measurement techniques of the Mississippi River at St. Louis have changed through time (1866–present). In addition to different methods used for discrete streamflow measurements, the density and range of discrete measurements used to define the rating curve (stage versus streamflow) have also changed. Several authors have utilized published water surface elevation (stage) and streamflow data to assess changes in the rating curve, which may be attributed to be caused by flood control and/or navigation structures. The purpose of this paper is to provide a thorough review of the available flow measurement data and techniques and to assess how a strict awareness of the limitations of the data may affect previous analyses. It is concluded that the pre-1930s discrete streamflow measurement data are not of sufficient accuracy to be compared with modern streamflow values in establishing long-term trends of river behavior.
Local gauge coupling running in supersymmetric gauge theories on orbifolds
International Nuclear Information System (INIS)
Hillenbach, M.
2007-01-01
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Local gauge coupling running in supersymmetric gauge theories on orbifolds
Energy Technology Data Exchange (ETDEWEB)
Hillenbach, M.
2007-11-21
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Piniewski, Mikołaj
2016-05-01
The objective of this study was to apply a previously developed large-scale and high-resolution SWAT model of the Vistula and the Odra basins, calibrated with the focus of natural flow simulation, in order to assess the impact of three different dam reservoirs on streamflow using the Indicators of Hydrologic Alteration (IHA). A tailored spatial calibration approach was designed, in which calibration was focused on a large set of relatively small non-nested sub-catchments with semi-natural flow regime. These were classified into calibration clusters based on the flow statistics similarity. After performing calibration and validation that gave overall positive results, the calibrated parameter values were transferred to the remaining part of the basins using an approach based on hydrological similarity of donor and target catchments. The calibrated model was applied in three case studies with the purpose of assessing the effect of dam reservoirs (Włocławek, Siemianówka and Czorsztyn Reservoirs) on streamflow alteration. Both the assessment based on gauged streamflow (Before-After design) and the one based on simulated natural streamflow showed large alterations in selected flow statistics related to magnitude, duration, high and low flow pulses and rate of change. Some benefits of using a large-scale and high-resolution hydrological model for the assessment of streamflow alteration include: (1) providing an alternative or complementary approach to the classical Before-After designs, (2) isolating the climate variability effect from the dam (or any other source of alteration) effect, (3) providing a practical tool that can be applied at a range of spatial scales over large area such as a country, in a uniform way. Thus, presented approach can be applied for designing more natural flow regimes, which is crucial for river and floodplain ecosystem restoration in the context of the European Union's policy on environmental flows.
Directory of Open Access Journals (Sweden)
M. Piniewski
2016-05-01
Full Text Available The objective of this study was to apply a previously developed large-scale and high-resolution SWAT model of the Vistula and the Odra basins, calibrated with the focus of natural flow simulation, in order to assess the impact of three different dam reservoirs on streamflow using the Indicators of Hydrologic Alteration (IHA. A tailored spatial calibration approach was designed, in which calibration was focused on a large set of relatively small non-nested sub-catchments with semi-natural flow regime. These were classified into calibration clusters based on the flow statistics similarity. After performing calibration and validation that gave overall positive results, the calibrated parameter values were transferred to the remaining part of the basins using an approach based on hydrological similarity of donor and target catchments. The calibrated model was applied in three case studies with the purpose of assessing the effect of dam reservoirs (Włocławek, Siemianówka and Czorsztyn Reservoirs on streamflow alteration. Both the assessment based on gauged streamflow (Before-After design and the one based on simulated natural streamflow showed large alterations in selected flow statistics related to magnitude, duration, high and low flow pulses and rate of change. Some benefits of using a large-scale and high-resolution hydrological model for the assessment of streamflow alteration include: (1 providing an alternative or complementary approach to the classical Before-After designs, (2 isolating the climate variability effect from the dam (or any other source of alteration effect, (3 providing a practical tool that can be applied at a range of spatial scales over large area such as a country, in a uniform way. Thus, presented approach can be applied for designing more natural flow regimes, which is crucial for river and floodplain ecosystem restoration in the context of the European Union's policy on environmental flows.
International Nuclear Information System (INIS)
Kostelnik, K.M.; Durlin, R.R.
1989-01-01
Streamflow and water-quality data were collected throughout the Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, from December 1987 to November 1988, to determine the prevailing quality of surface water throughout the basin. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water-quality station on Little Scrubgrass Creek near Lisbon, provided continuous-record of stream stage, Ph, specific conductance, and water temperature. Monthly water-quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended sediment concentrations. Fourteen partial-record sites, located throughout the basin, were similarly sampled four times during the period of study. Streamflow and water-quality data obtained at these sites during various base flow periods are also presented. 14 refs., 4 figs., 14 tabs
Global aspects of gauge anomalies
International Nuclear Information System (INIS)
Zhang, H.
1988-01-01
This dissertation discusses the global aspects of gauge anomalies in even dimensions. After a very brief description of local gauge anomalies, the possible global gauge anomalies for various gauge theories are discussed using homotopy theory. One of the main results obtained in a general formula for the SU(n - k) global gauge anomaly coefficient in arbitrary 2n dimensions. The result is expressed in terms of the James number of the Stiefel manifold SU(n + 1)/SU(n - k) and the generalized Dynkin indices. From this, the possibilities of SU(n), SU(n - 1), and SU(2) global gauge anomalies in arbitrary 2n dimensions have been determined. We have also determined the possibilities of global gauge anomalies for the gauge groups SP(2N) and SO(N) in certain general dimensions, as well as for the exceptional gauge groups in specific dimensions. Moreover, several general propositions are formulated and proved which are very useful in the study of global gauge anomalies
Gauge fixing conditions for the SU(3) gauge theory
International Nuclear Information System (INIS)
Ragiadakos, Ch.; Viswanathan, K.S.
1979-01-01
SU(3) gauge theory is quantized in the temporal gauge A 0 =0. Gauge fixing conditions are imposed completely on the electric field components, conjugate to the vector potential Ssub(i) that belongs to the subalgebra SO(3) of SU(3). The generating functional in terms of the independent variables is derived. It is ghost-free and may be regarded as a theory of (non-relativistic) spin-0, 1, 2, and 3 fields. (Auth.)
Inflation and gauge mediation in supersymmetric gauge theory
International Nuclear Information System (INIS)
Nakai, Yuichiro; Sakai, Manabu
2011-01-01
We propose a simple high-scale inflationary scenario based on a phenomenologically viable model with direct gauge mediation of low-scale supersymmetry breaking. Hybrid inflation occurs in a hidden supersymmetry breaking sector. Two hierarchical mass scales to reconcile both high-scale inflation and gauge mediation are necessary for the stability of the metastable supersymmetry breaking vacuum. Our scenario is also natural in light of the Landau pole problem of direct gauge mediation. (author)
Drivers influencing streamflow changes in the Upper Turia basin, Spain.
Salmoral, Gloria; Willaarts, Bárbara A; Troch, Peter A; Garrido, Alberto
2015-01-15
Many rivers across the world have experienced a significant streamflow reduction over the last decades. Drivers of the observed streamflow changes are multiple, including climate change (CC), land use and land cover changes (LULCC), water transfers and river impoundment. Many of these drivers inter-act simultaneously, making it difficult to discern the impact of each driver individually. In this study we isolate the effects of LULCC on the observed streamflow reduction in the Upper Turia basin (east Spain) during the period 1973-2008. Regression models of annual streamflow are fitted with climatic variables and also additional time variant drivers like LULCC. The ecohydrological model SWAT is used to study the magnitude and sign of streamflow change when LULCC occurs. Our results show that LULCC does play a significant role on the water balance, but it is not the main driver underpinning the observed reduction on Turia's streamflow. Increasing mean temperature is the main factor supporting increasing evapotranspiration and streamflow reduction. In fact, LULCC and CC have had an offsetting effect on the streamflow generation during the study period. While streamflow has been negatively affected by increasing temperature, ongoing LULCC have positively compensated with reduced evapotranspiration rates, thanks to mainly shrubland clearing and forest degradation processes. These findings are valuable for the management of the Turia river basin, as well as a useful approach for the determination of the weight of LULCC on the hydrological response in other regions. Copyright © 2014 Elsevier B.V. All rights reserved.
Human influences on streamflow drought characteristics in England and Wales
Directory of Open Access Journals (Sweden)
E. Tijdeman
2018-02-01
Full Text Available Human influences can affect streamflow drought characteristics and propagation. The question is where, when and why? To answer these questions, the impact of different human influences on streamflow droughts were assessed in England and Wales, across a broad range of climate and catchments conditions. We used a dataset consisting of catchments with near-natural flow as well as catchments for which different human influences have been indicated in the metadata (Factors Affecting Runoff of the UK National River Flow Archive (NRFA. A screening approach was applied on the streamflow records to identify human-influenced records with drought characteristics that deviated from those found for catchments with near-natural flow. Three different deviations were considered, specifically deviations in (1 the relationship between streamflow drought duration and the base flow index, BFI (specifically, BFIHOST, the BFI predicted from the hydrological properties of soils, (2 the correlation between streamflow and precipitation and (3 the temporal occurrence of streamflow droughts compared to precipitation droughts, i.e. an increase or decrease in streamflow drought months relative to precipitation drought months over the period of record. The identified deviations were then related to the indicated human influences. Results showed that the majority of catchments for which human influences were indicated did not show streamflow drought characteristics that deviated from those expected under near-natural conditions. For the catchments that did show deviating streamflow drought characteristics, prolonged streamflow drought durations were found in some of the catchments affected by groundwater abstractions. Weaker correlations between streamflow and precipitation were found for some of the catchments with reservoirs, water transfers or groundwater augmentation schemes. An increase in streamflow drought occurrence towards the end of their records was found for
Human influences on streamflow drought characteristics in England and Wales
Tijdeman, Erik; Hannaford, Jamie; Stahl, Kerstin
2018-02-01
Human influences can affect streamflow drought characteristics and propagation. The question is where, when and why? To answer these questions, the impact of different human influences on streamflow droughts were assessed in England and Wales, across a broad range of climate and catchments conditions. We used a dataset consisting of catchments with near-natural flow as well as catchments for which different human influences have been indicated in the metadata (Factors Affecting Runoff) of the UK National River Flow Archive (NRFA). A screening approach was applied on the streamflow records to identify human-influenced records with drought characteristics that deviated from those found for catchments with near-natural flow. Three different deviations were considered, specifically deviations in (1) the relationship between streamflow drought duration and the base flow index, BFI (specifically, BFIHOST, the BFI predicted from the hydrological properties of soils), (2) the correlation between streamflow and precipitation and (3) the temporal occurrence of streamflow droughts compared to precipitation droughts, i.e. an increase or decrease in streamflow drought months relative to precipitation drought months over the period of record. The identified deviations were then related to the indicated human influences. Results showed that the majority of catchments for which human influences were indicated did not show streamflow drought characteristics that deviated from those expected under near-natural conditions. For the catchments that did show deviating streamflow drought characteristics, prolonged streamflow drought durations were found in some of the catchments affected by groundwater abstractions. Weaker correlations between streamflow and precipitation were found for some of the catchments with reservoirs, water transfers or groundwater augmentation schemes. An increase in streamflow drought occurrence towards the end of their records was found for some of the
Ault, Stanley K.
1993-01-01
A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.
International Nuclear Information System (INIS)
Pokorski, S.
1987-01-01
Quantum field theory forms the present theoretical framework for the understanding of the fundamental interactions of particle physics. This book examines gauge theories and their symmetries with an emphasis on their physical and technical aspects. The author discusses field-theoretical techniques and encourages the reader to perform many of the calculations presented. This book includes a brief introduction to perturbation theory, the renormalization programme, and the use of the renormalization group equation. Several topics of current research interest are covered, including chiral symmetry and its breaking, anomalies, and low energy effective lagrangians and some basics of supersymmetry
International Nuclear Information System (INIS)
Natale, A.A.
The problem of gauge hierarchy in a O(N) model is discussed. It is shown the existence of an upper bound for the hierarchy of order α- 1 / 2 , as proposed by Gildener. This same constraint appears when the breaking is made by the radiative corrections in a scheme elaborated by Weinberg. It is found that fine tunning or redefinition of coupling constants to improve hieracrchy, as proposed in several papers, cannot be done before the calculation of higher order contributions to the effective potential. (Author) [pt
Fourier acceleration in lattice gauge theories. I. Landau gauge fixing
International Nuclear Information System (INIS)
Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.
1988-01-01
Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations
Wang, Taihua; Yang, Hanbo; Yang, Dawen; Qin, Yue; Wang, Yuhan
2018-03-01
The source region of the Yellow River (SRYR) is greatly important for water resources throughout the entire Yellow River Basin. Streamflow in the SRYR has experienced great changes over the past few decades, which is closely related to the frozen ground degradation; however, the extent of this influence is still unclear. In this study, the air freezing index (DDFa) is selected as an indicator for the degree of frozen ground degradation. A water-energy balance equation within the Budyko framework is employed to quantify the streamflow response to the direct impact of climate change, which manifests as changes in the precipitation and potential evapotranspiration, as well as the impact of frozen ground degradation, which can be regarded as part of the indirect impact of climate change. The results show that the direct impact of climate change and the impact of frozen ground degradation can explain 55% and 33%, respectively, of the streamflow decrease for the entire SRYR from Period 1 (1965-1989) to Period 2 (1990-2003). In the permafrost-dominated region upstream of the Jimai hydrological station, the impact of frozen ground degradation can explain 71% of the streamflow decrease. From Period 2 (1990-2003) to Period 3 (2004-2015), the observed streamflow did not increase as much as the precipitation; this could be attributed to the combined effects of increasing potential evapotranspiration and more importantly, frozen ground degradation. Frozen ground degradation could influence streamflow by increasing the groundwater storage when the active layer thickness increases in permafrost-dominated regions. These findings will help develop a better understanding of the impact of frozen ground degradation on water resources in the Tibetan Plateau.
Directory of Open Access Journals (Sweden)
L. Gudmundsson
2018-04-01
Full Text Available This is Part 2 of a two-paper series presenting the Global Streamflow Indices and Metadata Archive (GSIM, which is a collection of daily streamflow observations at more than 30 000 stations around the world. While Part 1 (Do et al., 2018a describes the data collection process as well as the generation of auxiliary catchment data (e.g. catchment boundary, land cover, mean climate, Part 2 introduces a set of quality controlled time-series indices representing (i the water balance, (ii the seasonal cycle, (iii low flows and (iv floods. To this end we first consider the quality of individual daily records using a combination of quality flags from data providers and automated screening methods. Subsequently, streamflow time-series indices are computed for yearly, seasonal and monthly resolution. The paper provides a generalized assessment of the homogeneity of all generated streamflow time-series indices, which can be used to select time series that are suitable for a specific task. The newly generated global set of streamflow time-series indices is made freely available with an digital object identifier at https://doi.pangaea.de/10.1594/PANGAEA.887470 and is expected to foster global freshwater research, by acting as a ground truth for model validation or as a basis for assessing the role of human impacts on the terrestrial water cycle. It is hoped that a renewed interest in streamflow data at the global scale will foster efforts in the systematic assessment of data quality and provide momentum to overcome administrative barriers that lead to inconsistencies in global collections of relevant hydrological observations.
Engeland, K.; Steinsland, I.; Petersen-Øverleir, A.; Johansen, S.
2012-04-01
The aim of this study is to assess the uncertainties in streamflow simulations when uncertainties in both observed inputs (precipitation and temperature) and streamflow observations used in the calibration of the hydrological model are explicitly accounted for. To achieve this goal we applied the elevation distributed HBV model operating on daily time steps to a small catchment in high elevation in Southern Norway where the seasonal snow cover is important. The uncertainties in precipitation inputs were quantified using conditional simulation. This procedure accounts for the uncertainty related to the density of the precipitation network, but neglects uncertainties related to measurement bias/errors and eventual elevation gradients in precipitation. The uncertainties in temperature inputs were quantified using a Bayesian temperature interpolation procedure where the temperature lapse rate is re-estimated every day. The uncertainty in the lapse rate was accounted for whereas the sampling uncertainty related to network density was neglected. For every day a random sample of precipitation and temperature inputs were drawn to be applied as inputs to the hydrologic model. The uncertainties in observed streamflow were assessed based on the uncertainties in the rating curve model. A Bayesian procedure was applied to estimate the probability for rating curve models with 1 to 3 segments and the uncertainties in their parameters. This method neglects uncertainties related to errors in observed water levels. Note that one rating curve was drawn to make one realisation of a whole time series of streamflow, thus the rating curve errors lead to a systematic bias in the streamflow observations. All these uncertainty sources were linked together in both calibration and evaluation of the hydrologic model using a DREAM based MCMC routine. Effects of having less information (e.g. missing one streamflow measurement for defining the rating curve or missing one precipitation station
Gudmundsson, Lukas; Do, Hong Xuan; Leonard, Michael; Westra, Seth
2018-04-01
This is Part 2 of a two-paper series presenting the Global Streamflow Indices and Metadata Archive (GSIM), which is a collection of daily streamflow observations at more than 30 000 stations around the world. While Part 1 (Do et al., 2018a) describes the data collection process as well as the generation of auxiliary catchment data (e.g. catchment boundary, land cover, mean climate), Part 2 introduces a set of quality controlled time-series indices representing (i) the water balance, (ii) the seasonal cycle, (iii) low flows and (iv) floods. To this end we first consider the quality of individual daily records using a combination of quality flags from data providers and automated screening methods. Subsequently, streamflow time-series indices are computed for yearly, seasonal and monthly resolution. The paper provides a generalized assessment of the homogeneity of all generated streamflow time-series indices, which can be used to select time series that are suitable for a specific task. The newly generated global set of streamflow time-series indices is made freely available with an digital object identifier at https://doi.pangaea.de/10.1594/PANGAEA.887470" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.887470 and is expected to foster global freshwater research, by acting as a ground truth for model validation or as a basis for assessing the role of human impacts on the terrestrial water cycle. It is hoped that a renewed interest in streamflow data at the global scale will foster efforts in the systematic assessment of data quality and provide momentum to overcome administrative barriers that lead to inconsistencies in global collections of relevant hydrological observations.
Ten years of real-time streamflow gaging of turkey creek - where we have been and where we are going
Paul Conrads; Devendra Amatya
2016-01-01
The Turkey Creek watershed is a third-order coastal plain stream system draining an areaÂ of approximately 5,240 hectares of the Francis Marion National Forest and located aboutÂ 37 miles northwest of Charleston near Huger, South Carolina. The U.S. Department ofÂ Agriculture (USDA) Forest Service maintained a streamflow gaging station on Turkey CreekÂ from 1964 to 1981....
Directory of Open Access Journals (Sweden)
J.J. Gibson
2016-03-01
Full Text Available Study region: This study is based on the rapidly developing Athabasca Oil Sands region, northeastern Alberta. Study focus: Hydrograph separation using stable isotopes of water is applied to partition streamflow sources in the Athabasca River and its tributaries. Distinct isotopic labelling of snow, rain, groundwater and surface water are applied to estimate the contribution of these sources to streamflow from analysis of multi-year records of isotopes in streamflow. New hydrological insights for the region: The results provide new insight into runoff generation mechanisms operating in six tributaries and at four stations along the Athabasca River. Groundwater, found to be an important flow source at all stations, is the dominant component of the hydrograph in three tributaries (Steepbank R., Muskeg R., Firebag R., accounting for 39–50% of annual streamflow. Surface water, mainly drainage from peatlands, is also found to be widely important, and dominant in three tributaries (Clearwater R., Mackay R., Ells R., accounting for 45–81% of annual streamflow. Fairly limited contributions from direct precipitation illustrate that most snow and rain events result in indirect displacement of pre-event water by fill and spill mechanisms. Systematic shifts in regional groundwater to surface-water ratios are expected to be an important control on spatial and temporal distribution of water quality parameters and useful for evaluating the susceptibility of rivers to climate and development impacts. Keywords: Stable isotopes, Hydrograph separation, Groundwater, Surface water, Snowmelt, Oil sands
Comments on general gauge mediation
International Nuclear Information System (INIS)
Intriligator, Kenneth; Sudano, Matthew
2008-01-01
There has been interest in generalizing models of gauge mediation of supersymmetry breaking. As shown by Meade, Seiberg, and Shih (MSS), the soft masses of general gauge mediation can be expressed in terms of the current two-point functions of the susy-breaking sector. We here give a simple extension of their result which provides, for general gauge mediation, the full effective potential for squark pseudo-D-flat directions. The effective potential reduces to the sfermion soft masses near the origin, and the full potential, away from the origin, can be useful for cosmological applications. We also generalize the soft masses and effective potential to allow for general gauge mediation by Higgsed gauge groups. Finally, we discuss general gauge mediation in the limit of small F-terms, and how the results of MSS connect with the analytic continuation in superspace results, based on a spurion analysis.
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
A natural Poincare gauge model
International Nuclear Information System (INIS)
Aldrovandi, R.; Pereira, J.G.
1985-01-01
A natural candidate model for a gauge theory for the Poincare group is discussed. It satisfies the usual electric-magnetic symmetry of gauge models and is a contraction of a gauge model for the De Sitter group. Its field equations are just the Yang-Mills equations for the Poincare group. It is shown that these equations do not follow from a Lagrangean. (Author) [pt
Wetterich, C.
2018-06-01
We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.
Stochastic quantization and gauge theories
International Nuclear Information System (INIS)
Kolck, U. van.
1987-01-01
Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt
Travel Times, Streamflow Velocities, and Dispersion Rates in the Yellowstone River, Montana
McCarthy, Peter M.
2009-01-01
dispersion rates of the dye plume for this study ranged from 0.06 ft/s for the subreach upstream from Forsyth Bridge to 2.25 ft/s for the subreach upstream from Calyspo Bridge for subreaches where the dye was completely laterally mixed. A relation was determined between travel time of the peak concentration and time for the dye plume to pass a site (duration). This relation can be used to estimate when the receding concentration of a potential contaminant reaches 10 percent of its peak concentration for accidental spills into the Yellowstone River. Data from this dye-tracer study were used to evaluate velocity and concentration estimates from a transport model developed as part of an earlier USGS study. Comparison of the estimated and calculated velocities for the study reach indicate that the transport model estimates the velocities of the Yellowstone River between Huntley Bridge and Glendive Bridge with reasonable accuracy. Velocities of the peak concentration of the dye plume calculated for this study averaged 10 percent faster than the most probable velocities and averaged 12 percent slower than the maximum probable velocities estimated from the transport model. Peak Rhodamine WT dye concentrations were consistently lower than the transport model estimates except for the most upstream subreach of each dye injection. The most upstream subreach of each dye injection is expected to have a higher concentration because of incomplete lateral mixing. Lower measured peak concentrations for all other sites were expected because Rhodamine WT dye deteriorates when exposed to sunlight and will sorb onto the streambanks and stream bottom. Velocity-streamflow relations developed by using routine streamflow measurements at USGS gaging stations and the transport model can be used to estimate mean streamflow velocities throughout a range of streamflows. The variation in these velocity-streamflow relations emphasizes the uncertainty in estimating the mean streamflow veloc
International Nuclear Information System (INIS)
Tellis, D.R.
2000-01-01
Full text: Instantons in pure Yang-Mills gauge theory have been studied extensively by physicists and mathematicians alike. The surprisingly rich topological structure plays an important role in hadron structure. A crucial role is played by how the boundary conditions on the gauge fields are imposed. While the topology of gauge fields in pure Yang-Mills gauge theory is understood for the compact manifold of the 4-sphere, the manifold of the 4-torus remains an active area of study. The latter is particularly important in the study of Lattice QCD
Lee, Hyun Min
2018-03-01
We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.
Feasibility study of a level gauge using cosmic-rays
International Nuclear Information System (INIS)
Matsuda, Hideharu; Fukaya, Mitsuharu; Minato, Susumu
1989-01-01
Cosmic-ray intensities were measured at the stairs in a subway station in Nagoya City, inside a tall concrete building and under a cylindrical water tank to examine the feasibility of a cosmic-ray level gauge using a scintillation counter. The measured results agreed quite well with theoretical calculations. The maximum distinguishable water depth was evaluated to be approximately the radius of the tank from the results of many systematic calculations. It was found from these results that the practical application of a cosmic-ray level gauge is feasible. (author)
Energy Technology Data Exchange (ETDEWEB)
A.G. Crook Company
1993-04-01
The development of irrigation projects since the 1830's and the construction of major dams and reservoirs since the early 1900's have altered substantially the natural streamflow regimen of the Columbia River and its tributaries. As development expanded a multipurpose approach to streamflow regulation evolved to provide flood control, irrigation, hydropower generation, navigation, recreation, water quality enhancement, fish and wildlife, and instream flow maintenance. The responsible agencies use computer programs to determine the effects of various alternative system regulations. This report describes the development of the streamflow data that these computer programs use.
Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...
Residual gauge invariance of Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Ryang, S.; Saito, T.; Shigemoto, K.
1984-01-01
The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)
Yoon, Y.; Beighley, E.
2015-12-01
The Amazon River basin is the largest watershed in the world containing thousands of tributaries. Although the mainstream and its larger tributaries have been the focus on much research, there has been few studies focused on the hydrodynamics of smaller rivers in the foothills of the Andes Mountains. These smaller rivers are of particular importance for the fishery industry because fish migrate up these headwater rivers to spawn. During the rainy season, fish wait for storm event to increase water depths to a sufficient level for their passage. Understanding how streamflow dynamics will change in response to future conditions is vital for the sustainable management of the fishery industry. In this paper, we focus on improving the accuracy of river discharge estimates on relatively small-scale sub-catchments (100 ~ 40,000 km2) in the headwaters of the Amazon River basin. The Hillslope River Routing (HRR) hydrologic model and remotely sensed datasets are used. We provide annual runoff, seasonal patterns, and daily discharge characteristics for 81 known migration reaches. The model is calibrated for the period 2000-2014 and climate forecasts for the period 2070-2100 are used to assess future changes in streamflow dynamics. The forecasts for the 2070 to 2100 period were obtained by selecting 5 climate models from IPCC's Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) based on their ability to represent the main aspects of recent (1970 to 2000) Amazon climate. The river network for the HRR model is developing using surface topography based on the SRTM digital elevation model. Key model forcings include precipitation (TRMM 3B42) and evapotranspiration (MODIS ET, MOD16). Model parameters for soil depth, hydraulic conductivity, runoff coefficients and lateral routing were initially approximated based on literature values and adjusted during calibration. Measurements from stream gauges located near the reaches of interest were used for
Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California
Kocis, Tiffany N.; Dahlke, Helen E.
2017-08-01
California’s climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF) for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. The results show that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for 25-30 days between November and April. The results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.
A comprehensive analysis of high-magnitude streamflow and trends in the Central Valley, California
Kocis, T. N.; Dahlke, H. E.
2017-12-01
California's climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US. This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF "metrics") over multiple time periods for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. In addition, we present trend analyses conducted on the same dataset and all HMF metrics using generalized additive models, the Mann-Kendall trend test, and the Signal to Noise Ratio test. The results of the comprehensive analysis show, in short, that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta, often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for a total of 25-30 days between November and April. Preliminary trend tests suggest that all HMF metrics show limited change over the last 50 years. As a whole, the results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.
Streamflow response to increasing precipitation extremes altered by forest management
Charlene N. Kelly; Kevin J. McGuire; Chelcy Ford Miniat; James M. Vose
2016-01-01
Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the...
Application of ANN and fuzzy logic algorithms for streamflow ...
Indian Academy of Sciences (India)
The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years ...
International Nuclear Information System (INIS)
Correa, Diego H.; Silva, Guillermo A.
2008-01-01
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents
International Nuclear Information System (INIS)
Walton, H.
1985-01-01
Apparatus for gauging physical dimensions of solid or tubular bodies (e.g. a nuclear fuel pellet) comprises a capacitive transducer having electrodes forming diametrically arranged pairs of capacitors and means for connecting the pairs, preferably sequentially, in an arm of a four arm electrical network. For circumferential scanning of a solid body along its length, the body is moved along a path of travel through head assembly including the transducer by means of plungers with the axis of the body being coincident with the axis of the transducer. As the body moves through the transducer the diametrically arranged pairs of capacitors scan the surface to result in a surface profile of the body. For scanning the bore of a pipe or tube the transducer is inserted as a probe and moved along the bore of the pipe or tube, means being provided for maintaining the probe coaxial with the pipe or tube. (author)
International Nuclear Information System (INIS)
Kerner, R.
1983-01-01
The mathematical background for a graded extension of gauge theories is investigated. After discussing the general properties of graded Lie algebras and what may serve as a model for a graded Lie group, the graded fiber bundle is constructed. Its basis manifold is supposed to be the so-called superspace, i.e. the product of the Minkowskian space-time with the Grassmann algebra spanned by the anticommuting Lorentz spinors; the vertical subspaces tangent to the fibers are isomorphic with the graded extension of the SU(N) Lie algebra. The connection and curvature are defined then on this bundle; the two different gradings are either independent of each other, or may be unified in one common grading, which is equivalent to the choice of the spin-statistics dependence. The Yang-Mills lagrangian is investigated in the simplified case. The conformal symmetry breaking is discussed, as well as some other physical consequences of the model. (orig.)
International Nuclear Information System (INIS)
Hasenfratz, A.; Hasenfratz, P.
1985-01-01
This paper deals almost exclusively with applications in QCD. Presumably QCD will remain in the center of lattice calculations in the near future. The existing techniques and the available computer resources should be able to produce trustworthy results in pure SU(3) gauge theory and in quenched hadron spectroscopy. Going beyond the quenched approximation might require some technical breakthrough or exceptional computer resources, or both. Computational physics has entered high-energy physics. From this point of view, lattice QCD is only one (although the most important, at present) of the research fields. Increasing attention is devoted to the study of other QFTs. It is certain that the investigation of nonasymptotically free theories, the Higgs phenomenon, or field theories that are not perturbatively renormalizable will be important research areas in the future
International Nuclear Information System (INIS)
Bailin, D.
1980-01-01
The author reviews the present status of the standard model of weak and electromagnetic interactions and of QCD and examines the likely avenues of future development. The most attractive possibility is that there is a ''grand unified theory'' (GUT) which describes all known interactions except gravity, and in which the only input energy scale is the Planck mass. The GUTs so far proposed share the deficiency that they offer no explanation of the (>=3) observed fermion generations. The author reviews the 'horizontal' symmetries invented to bring order to the fermion sector. Typically such theories have non-minimal Higgs content, so he reviews the processes whereby charged or neutral scalars may be found. The incorporation of supersymmetry into the gauge theory of strong, weak and electromagnetic interactions is another attractive prospect and he discusses briefly the attempts to do this and the likely experimental signatures of such a scheme. (Auth.)
Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.
2016-12-22
The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.
International Nuclear Information System (INIS)
Kostelnik, K.M.; Witt, E.C.
1989-01-01
Streamflow and water-quality data were collected throughout the Meadow Run basin, Fayette County, Pennsylvania, from December 7, 1987 through November 15, 1988, to determine the prevailing quality of surface water over a range of hydrologic conditions. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal-mine permit applications. A water-quality station near the mouth of Meadow Run provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended-sediment concentrations
On the dynamics of gauge potential
International Nuclear Information System (INIS)
Tao Jiafu; Li Yuanjie; Zhang Jinru
1992-01-01
The gauge potential is resolved into gauge potential of strength and gauge potential of phase. The phase gauge potential can be described with an equivalent potential of inertial force. A Lagrangian density with phase gauge potential is given and some examples are discussed. The method proposed has been extended to the case of the non-Abelian group
How do extreme streamflow due to hurricane IRMA compare during 1938-2017 in South Eastern US?
Anandhi, A.
2017-12-01
The question related to Irma, Harvey, Maria, and other hurricanes is: are hurricane more frequent and intense than they have been in the past. Recent hurricanes were unusually strong hitting the US Coastline or territories as a category 4 or 5, dropping unusually large amounts of precipitation on the affected areas creating extreme high-flow events in rivers and streams in affected areas. The objective of the study is to determine how extreme are streamflows from recent hurricanes (e.g. IRMA) when compared to streamflow's during 1938-2017 time-period. Additionally, in this study, the extreme precipitations are also compared during IRMA. Extreme high flows are selected from Indicators of Hydrologic Alteration (IHA). They are distributions, timing, duration, frequency, magnitude, pulses, and days of extreme events in rivers of the southeastern United States and Gulf of Mexico Hydrologic Region—03. Streamflow data from 30 stations in the region with at least 79 years of record (1938-2017) are used. Historical precipitation changes is obtained from meta-analysis of published literature. Our preliminary results indicate the extremeness of streamflow from recent hurricanes vary with the IHA indicator selected. Some potential implications of these extreme events on the region's ecosystem are also discussed using causal chains and loops.
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
Physics from multidimensional gauge theories
International Nuclear Information System (INIS)
Forgacs, P.; Lust, D.; Zoupanos, G.
1986-01-01
The authors motivate high dimensional theories by recalling the original Kaluza-Klein proposal. They review the dimensional reduction of symmetric gauge theories and they present the results of the attempts to obtain realistic description of elementary particles interactions starting from symmetric gauge theories in high dimensions
CP violation in gauge theories
International Nuclear Information System (INIS)
Escobar, C.O.
Some aspects of CP violation in gauge theories are reviewed. The topics covered include a discussion of the Kobayashi-Maskawa six-quarks model, models of soft- CP violation (extended Higgs sector), the strong CP problem and finally some speculations relating CP violation and magnetic charges in non-abelian gauge theories. (Author) [pt
Pressure gauge experiments in India
Digital Repository Service at National Institute of Oceanography (India)
Joseph, A; Desa, E.; VijayKumar, K.; Desa, E.S.; Desai, R.G.P.; Prabhudesai, S.
. The effective mean density directly estimated by the use of a dual pressure gauge system was in close agreement with the density of water samples measured using a precision densitometer. Good quality sea level measurements can be obtained from pressure gauges...
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton and observes that it violates a positivity property. (Auth.)
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports on a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton (1980) and observes that it violates a positivity property. (Auth.)
Particle structure of gauge theories
International Nuclear Information System (INIS)
Fredenhagen, K.
1985-11-01
The implications of the principles of quantum field theory for the particle structure of gauge theories are discussed. The general structure which emerges is compared with that of the Z 2 Higgs model on a lattice. The discussion leads to several confinement criteria for gauge theories with matter fields. (orig.)
Krishnan, Chethan; Raju, Avinash
2017-08-01
We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.
Gauge invariance of string fields
International Nuclear Information System (INIS)
Banks, T.; Peskin, M.E.
1985-10-01
Some work done to understand the appearance of gauge bosons and gravitons in string theories is reported. An action has been constructed for free (bosonic) string field theory which is invariant under an infinite set of gauge transformations which include Yang-Mills transformations and general coordinate transformations as special cases. 15 refs., 1 tab
Poole, Sandra; Vis, Marc; Knight, Rodney; Seibert, Jan
2017-01-01
Ecologically relevant streamflow characteristics (SFCs) of ungauged catchments are often estimated from simulated runoff of hydrologic models that were originally calibrated on gauged catchments. However, SFC estimates of the gauged donor catchments and subsequently the ungauged catchments can be substantially uncertain when models are calibrated using traditional approaches based on optimization of statistical performance metrics (e.g., Nash–Sutcliffe model efficiency). An improved calibration strategy for gauged catchments is therefore crucial to help reduce the uncertainties of estimated SFCs for ungauged catchments. The aim of this study was to improve SFC estimates from modeled runoff time series in gauged catchments by explicitly including one or several SFCs in the calibration process. Different types of objective functions were defined consisting of the Nash–Sutcliffe model efficiency, single SFCs, or combinations thereof. We calibrated a bucket-type runoff model (HBV – Hydrologiska Byråns Vattenavdelning – model) for 25 catchments in the Tennessee River basin and evaluated the proposed calibration approach on 13 ecologically relevant SFCs representing major flow regime components and different flow conditions. While the model generally tended to underestimate the tested SFCs related to mean and high-flow conditions, SFCs related to low flow were generally overestimated. The highest estimation accuracies were achieved by a SFC-specific model calibration. Estimates of SFCs not included in the calibration process were of similar quality when comparing a multi-SFC calibration approach to a traditional model efficiency calibration. For practical applications, this implies that SFCs should preferably be estimated from targeted runoff model calibration, and modeled estimates need to be carefully interpreted.
Gauge invariance and holographic renormalization
Directory of Open Access Journals (Sweden)
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.
2013-07-01
The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic
Hess, Glen W.; Stonewall, Adam J.
2014-01-01
In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The
International Nuclear Information System (INIS)
Zet, G.
2002-01-01
The self-duality equations are important in gauge theories because they show the connection between gauge models with internal symmetry groups and gauge theory of gravity. They are differential equations of the first order and it is easier to investigate the solutions for different particular configurations of the gauge fields and of space-times.One of the most important property of the self-duality equations is that they imply the Yang-Mills field equations. In this paper we will prove this property for the general case of a gauge theory with compact Lie group of symmetry over a 4-dimensional space-time manifold. It is important to remark that there are 3m independent self-duality equations (of the first order) while the number of Yang-Mills equations is equal to 4m, where m is the dimension of the gauge group. Both of them have 4m unknown functions which are the gauge potentials A μ a (x), a = 1, 2, ....,m; μ = 0, 1, 2, 3. But, we have, in addition, m gauge conditions for A μ a (x), (for example Coulomb, Lorentz or axial gauge) which together with the selfduality equation constitute a system of 4m equations. The Bianchi identities for the self-dual stress tensor F μν a coincide with the Yang-Mills equations and do not imply therefore supplementary conditions. We use the axial gauge in order to obtain the self duality equations for a SU(2) gauge theory over a curved space-time. The compatibility between self-duality and Yang-Mills equations is studied and some classes of solutions are obtained. In fact, we will write the Einstein-Yang-Mills equations and we will analyse only the Yang-Mills sector. The Einstein equations can not be obtained of course from self-duality. They should be obtained if we would consider a gauge theory having P x SU(2) as symmetry group, where P is the Poincare group. More generally, a gauge theory of N-extended supersymmetry can be developed by imposing the self-duality condition. (author)
Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data
Gebert, Warren A.; Walker, John F.; Kennedy, James L.
2011-01-01
Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.
An analysis of annual maximum streamflows in Terengganu, Malaysia using TL-moments approach
Ahmad, Ummi Nadiah; Shabri, Ani; Zakaria, Zahrahtul Amani
2013-02-01
TL-moments approach has been used in an analysis to determine the best-fitting distributions to represent the annual series of maximum streamflow data over 12 stations in Terengganu, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: generalized pareto (GPA), generalized logistic, and generalized extreme value distribution. The influence of TL-moments on estimated probability distribution functions are examined by evaluating the relative root mean square error and relative bias of quantile estimates through Monte Carlo simulations. The boxplot is used to show the location of the median and the dispersion of the data, which helps in reaching the decisive conclusions. For most of the cases, the results show that TL-moments with one smallest value was trimmed from the conceptual sample (TL-moments (1,0)), of GPA distribution was the most appropriate in majority of the stations for describing the annual maximum streamflow series in Terengganu, Malaysia.
Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression
Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli
2018-06-01
Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.
International Nuclear Information System (INIS)
Ne'eman, Y.
1998-01-01
The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of
What's wrong with anomalous chiral gauge theory?
International Nuclear Information System (INIS)
Kieu, T.D.
1994-05-01
It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs
TIGA Tide Gauge Data Reprocessing at GFZ
Deng, Zhiguo; Schöne, Tilo; Gendt, Gerd
2014-05-01
To analyse the tide gauge measurements for the purpose of global long-term sea level change research a well-defined absolute reference frame is required by oceanographic community. To create such frame the data from a global GNSS network located at or near tide gauges are processed. For analyzing the GNSS data on a preferably continuous basis the International GNSS Service (IGS) Tide Gauge Benchmark Monitoring Working Group (TIGA-WG) is responsible. As one of the TIGA Analysis Centers the German Research Centre for Geosciences (GFZ) is contributing to the IGS TIGA Reprocessing Campaign. The solutions of the TIGA Reprocessing Campaign will also contribute to 2nd IGS Data Reprocessing Campaign with GFZ IGS reprocessing solution. After the first IGS reprocessing finished in 2010 some improvements were implemented into the latest GFZ software version EPOS.P8: reference frame IGb08 based on ITRF2008, antenna calibration igs08.atx, geopotential model (EGM2008), higher-order ionospheric effects, new a priori meteorological model (GPT2), VMF mapping function, and other minor improvements. GPS data of the globally distributed tracking network of 794 stations for the time span from 1994 until end of 2012 are used for the TIGA reprocessing. To handle such large network a new processing strategy is developed and described in detail. In the TIGA reprocessing the GPS@TIGA data are processed in precise point positioning (PPP) mode to clean data using the IGS reprocessing orbit and clock products. To validate the quality of the PPP coordinate results the rates of 80 GPS@TIGA station vertical movement are estimated from the PPP results using Maximum Likelihood Estimation (MLE) method. The rates are compared with the solution of University of LaRochelle Consortium (ULR) (named ULR5). 56 of the 80 stations have a difference of the vertical velocities below 1 mm/yr. The error bars of PPP rates are significant larger than those of ULR5, which indicates large time correlated noise in
Energy Technology Data Exchange (ETDEWEB)
Bharucha, Aoife [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Technische Univ. Muenchen, Garching (Germany). Physik-Dept. T31; Goudelis, Andreas [Savoie Univ., CNRS, Annecy-le-Vieux (France). LAPTh; McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-10-15
The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space statisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.
International Nuclear Information System (INIS)
Bharucha, Aoife; Goudelis, Andreas; McGarrie, Moritz
2014-01-01
The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space satisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncoloured sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS. (orig.)
Gauge and non-gauge curvature tensor copies
International Nuclear Information System (INIS)
Srivastava, P.P.
1982-10-01
A procedure for constructing curvature tensor copies is discussed using the anholonomic geometrical framework. The corresponding geometries are compared and the notion of gauge copy is elucidated. An explicit calculation is also made. (author)
BRST gauge fixing and regularization
International Nuclear Information System (INIS)
Damgaard, P.H.; Jonghe, F. de; Sollacher, R.
1995-05-01
In the presence of consistent regulators, the standard procedure of BRST gauge fixing (or moving from one gauge to another) can require non-trivial modifications. These modifications occur at the quantum level, and gauges exist which are only well-defined when quantum mechanical modifications are correctly taken into account. We illustrate how this phenomenon manifests itself in the solvable case of two-dimensional bosonization in the path-integral formalism. As a by-product, we show how to derive smooth bosonization in Batalin-Vilkovisky Lagrangian BRST quantization. (orig.)
Dynamical Messengers for Gauge Mediation
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2011-08-17
We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.
Gauge theory of amorphous magnets
International Nuclear Information System (INIS)
Nesterov, A.I.; Ovchinnikov, S.G.
1989-01-01
A gauge theory of disordered magnets as a field theory in the principal fiber bundle with structure group SL(3, R) is constructed. The gauge field interacting with a vector field (the magnetization) is responsible for the disorder. A complete system of equations, valid for arbitrary disordered magnets, is obtained. In the limiting case of a free gauge field the proposed approach leads to the well-known Volovik-Dzyaloshinskii theory, which describes isotropic spin glasses. In the other limiting case when the curvature is zero the results of Ignatchenko and Iskhakov for weakly disordered ferromagnets are reproduced
'Baldin autumn' and gauge fields
International Nuclear Information System (INIS)
Konopleva, N.P.
2008-01-01
The paper is the reminiscences of the participant of the gauge field theory beginning and the first 'Baldin Autumn' conference in 1969. This conference was named 'Vector Mesons and Electromagnetic Interactions'. At that time, just the processes with vector mesons participation contained some experimental indications of new universal interactions existence. Vector dominance was the experimental evidence of physical reasons of the gauge field theory. In the course of time the gauge field theory form, which was under discussion thirty seven years ago, became generally recognized and experimentally corroborated. It led to construction of the well-known Standard Model of elementary particle interactions
Covariant gauges at finite temperature
Landshoff, Peter V
1992-01-01
A prescription is presented for real-time finite-temperature perturbation theory in covariant gauges, in which only the two physical degrees of freedom of the gauge-field propagator acquire thermal parts. The propagators for the unphysical degrees of freedom of the gauge field, and for the Faddeev-Popov ghost field, are independent of temperature. This prescription is applied to the calculation of the one-loop gluon self-energy and the two-loop interaction pressure, and is found to be simpler to use than the conventional one.
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
Department of Homeland Security — Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic data set containing Amtrak intercity railroad...
Directory of Open Access Journals (Sweden)
P. Wu
2018-06-01
Full Text Available Though extensive researches were conducted in the source region of the Yellow River (SRYR to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale. A tank model (TM was proposed and calibrated with monthly observation streamflow from 1991 to 1998. In the validation period, though there is a simulation deviation during the water storage and power generation period, simulated streamflow agrees favourably with observation data from 2008 to 2013. The model was further validated by two inside lakes area obtained from Landsat 5, 7, 8 datasets from 2000 to 2014, and significant correlations were found between the simulated lake outlet runoff and respective lake area. Then 21 Global Climate Models (GCM ensembled data of three emission scenarios (SRA2, SRA1B and SRB1 were downscaled and used as input to the TM to simulate the runoff change of three benchmark periods 2011–2030 (2020s, 2046–2065 (2050s, 2080–2099 (2090s, respectively. Though temperature increase dramatically, these projected results similarly indicated that streamflow shows an increase trend in the long term. Runoff increase is mainly caused by increasing precipitation and decreasing evaporation. Water resources distribution is projected to change from summer-autumn dominant to autumn winter dominant. Annual lowest runoff will occur in May caused by earlier snow melting and increasing evaporation in March. According to the obtained results, winter runoff should be artificially stored by reservoir regulation in the future to prevent zero-flow occurrent in May. This research is helpful for water resources management and provides a better understand of streamflow change caused by climate change in the
Wu, Pan; Wang, Xu-Sheng; Liang, Sihai
2018-06-01
Though extensive researches were conducted in the source region of the Yellow River (SRYR) to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR) where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale. A tank model (TM) was proposed and calibrated with monthly observation streamflow from 1991 to 1998. In the validation period, though there is a simulation deviation during the water storage and power generation period, simulated streamflow agrees favourably with observation data from 2008 to 2013. The model was further validated by two inside lakes area obtained from Landsat 5, 7, 8 datasets from 2000 to 2014, and significant correlations were found between the simulated lake outlet runoff and respective lake area. Then 21 Global Climate Models (GCM) ensembled data of three emission scenarios (SRA2, SRA1B and SRB1) were downscaled and used as input to the TM to simulate the runoff change of three benchmark periods 2011-2030 (2020s), 2046-2065 (2050s), 2080-2099 (2090s), respectively. Though temperature increase dramatically, these projected results similarly indicated that streamflow shows an increase trend in the long term. Runoff increase is mainly caused by increasing precipitation and decreasing evaporation. Water resources distribution is projected to change from summer-autumn dominant to autumn winter dominant. Annual lowest runoff will occur in May caused by earlier snow melting and increasing evaporation in March. According to the obtained results, winter runoff should be artificially stored by reservoir regulation in the future to prevent zero-flow occurrent in May. This research is helpful for water resources management and provides a better understand of streamflow change caused by climate change in the future.
Metz, P.A.; Lewelling, B.R.
2009-01-01
The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlying carbonate bedrock. With the reversal in groundwater head gradients, river water is lost to the underlying groundwater system through these karst features. An investigation was conducted to evaluate the hydrologic conditions that influence streamflow losses in the karst region of the upper Peace River. The upper Peace River is located in a basin that has been altered substantially by phosphate mining and increases in groundwater use. These alterations have changed groundwater flow patterns and caused streamflow declines through time. Hydrologic factors that have had the greatest influence on streamflow declines in the upper Peace River include the lowering of the potentiometric surfaces of the intermediate aquifer system and Upper Floridan aquifer beneath the riverbed elevation due to below-average rainfall (droughts), increases in groundwater use, and the presence of numerous karst features in the low-water channel and floodplain that enhance the loss of streamflow. Seepage runs conducted along the upper Peace River, from Bartow to Fort Meade, indicate that the greatest streamflow losses occurred along an approximate 2-mile section of the river beginning about 1 mile south of the Peace River at Bartow gaging station. Along the low-water and floodplain channel of this 2-mile section, there are about 10 prominent karst features that influence streamflow losses. Losses from the individual karst features ranged from 0.22 to 16 cubic feet per second based on measurements made between 2002 and 2007. The largest measured flow loss for all the karst features was about 50 cubic
Description of Measurements on Biogas Stations
Directory of Open Access Journals (Sweden)
Ladislav Novosád
2016-08-01
Full Text Available This paper focuses mainly on performance analysis for three biogas stations situated within the territory of the Czech Republic. This paper contains basic details of the individual biogas stations as well as description of their types. It also refers to the general description of the measurement gauge involved, with specifications of its potential use. The final part of this paper deals with the analysis of course data obtained, with special regard to voltage, current, active power and reactive power data.
Effective potential for spontaneously broken gauge theories and gauge hierarchies
International Nuclear Information System (INIS)
Hagiwara, T.; Ovrut, B.
1979-01-01
The Appelquist-Carazzone effective-field-theory method, where one uses effective light-field coupling constants dependent on the heavy-field sector, is explicitly shown to be valid for the discussion of the gauge-hierarchy problem in grand unified gauge models. Using the method of functionals we derive an expression for the one-loop approximation to the scalar-field effective potential for spontaneously broken theories in an arbitrary R/sub xi/ gauge. We argue that this potential generates, through its derivatives, valid zero-momentum, one-particle-irreducible vertices for any value of xi (not just the xi→infinity Landau gauge). The equation that the one-loop vacuum correction must satisfy is presented, and we solve this equation for a number of spontaneously broken theories including gauge theories with gauge groups U(1) and SO(3). We find that a one-loop vacuum shift in a massless, non-Goldstone direction occurs via the Coleman-Weinberg mechanism with an effective coupling constant dependent on the heavy-field sector
Some observations on interpolating gauges and non-covariant gauges
International Nuclear Information System (INIS)
Joglekar, Satish D.
2003-01-01
We discuss the viability of using interpolating gauges to define the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition defining term. We show that the boundary condition needed to maintain gauge invariance as the interpolating parameter θ varies, depends very sensitively on the parameter variation. We do this with a gauge used by Doust. We also consider the Lagrangian path-integrals in Minkowski space for gauges with a residual gauge-invariance. We point out the necessity of inclusion of an ε-term (even) in the formal treatments, without which one may reach incorrect conclusions. We, further, point out that the ε-term can contribute to the BRST WT-identities in a non-trivial way (even as ε → 0). We point out that these contributions lead to additional constraints on Green's function that are not normally taken into account in the BRST formalism that ignores the ε-term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable. (author)
Kumar, Brijesh; Lakshmi, Venkat
2018-03-01
The paper examines the quality of Tropical Rainfall Monitoring Mission (TRMM) 3B42 V7 precipitation product to simulate the streamflow using Soil Water Assessment Tool (SWAT) model for various rainfall intensities over the Himalayan region. The SWAT model has been set up for Gandak River Basin with 41 sub-basins and 420 HRUs. Five stream gauge locations are used to simulate the streamflow for a time span of 10 years (2000-2010). Daily streamflow for the simulation period is collected from Central Water Commission (CWC), India and Department of Hydrology and Meteorology (DHM), Nepal. The simulation results are found good in terms of Nash-Sutcliffe efficiency (NSE) {>}0.65, coefficient of determination (R2) {>}0.67 and Percentage Bias (PBIAS){}124.4 mm/d). The PBIAS and RSR show that TRMM simulated streamflow is suitable for moderate to heavy rainfall intensities. However, it does not perform well for light- and extremely-heavy rainfall intensities. The finding of the present work is useful for the problems related to water resources management, irrigation planning and hazard analysis over the Himalayan regions.
Path integral quantization in the temporal gauge
International Nuclear Information System (INIS)
Scholz, B.; Steiner, F.
1983-06-01
The quantization of non-Abelian gauge theories in the temporal gauge is studied within Feynman's path integral approach. The standard asymptotic boundary conditions are only imposed on the transverse gauge fields. The fictituous longitudinal gauge quanta are eliminated asymptotically by modified boundary conditions. This abolishes the residual time-independent gauge transformations and leads to a unique fixing of the temporal gauge. The resulting path integral for the generating functional respects automatically Gauss's law. The correct gauge field propagator is derived. It does not suffer from gauge singularities at n x k = 0 present in the usual treatment of axial gauges. The standard principal value prescription does not work. As a check, the Wilson loop in temporal gauge is calculated with the new propagator. To second order (and to all orders in the Abelian case) the result agrees with the one obtained in the Feynman and Coulomb gauge. (orig.)
Burns, Douglas A.; Gazoorian, Christopher L.
2015-01-01
Streamflow in the Esopus Creek watershed is altered by two major watershed management activities carried out by the New York City Department of Environmental Protection as part of its responsibility to maintain a water supply for New York City: (1) diversion of water from the Schoharie Creek watershed to the Esopus Creek through the Shandaken Tunnel, and (2) impoundment of the Esopus Creek by a dam that forms the Ashokan Reservoir and subsequent release through the Catskill Aqueduct. Stakeholders in the Catskill region are interested and concerned about the extent to which these watershed management activities have altered streamflow, especially low and high flows, in the Esopus Creek. To address these concerns, natural (in the absence of diversion and impoundment) daily discharge from October 1, 1931, to September 30, 2012, was estimated for the U.S. Geological Survey streamgages at Coldbrook (station number 01362500), downstream of the Shandaken Tunnel discharge, and at Mount Marion (01364500), downstream of the Ashokan Reservoir.
ENRAF gauge reference level calculations
Energy Technology Data Exchange (ETDEWEB)
Huber, J.H., Fluor Daniel Hanford
1997-02-06
This document describes the method for calculating reference levels for Enraf Series 854 Level Detectors as installed in the tank farms. The reference level calculation for each installed level gauge is contained herein.
Gauge theories in particle physics
International Nuclear Information System (INIS)
Aitchison, I.J.R.; Hey, A.J.G.
1982-01-01
The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)
Technical data on nucleonic gauges
International Nuclear Information System (INIS)
2005-07-01
This nucleonic gauge manual and directory provides a reference database of nucleonic control systems available to potential users in the fields of exploration, exploitation and processing of natural resources and in the manufacturing industries. It starts with background information an the general principals of nucleonic gauges, followed by portable nuclear analysis systems (PNAS), computer tomography, cost-benefit on NCS (Nucleonic Control Systems) applications and trends and transfer of NCS technology. It continues with radiation protection and safety, discusses nucleonic gauges with low radioactivity sources and ends with typical models of nucleonic gauges. The basic principles of the most popular techniques are reviewed and reference data links to suppliers are provided. Information sheets on many typical commercial devices are also included. It will help end-users to select the most suitable alternative to solve a particular problem or to measure a certain parameter in a specific process
Spontaneous emergence of gauge symmetry
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1987-05-01
Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)
Symmetry breaking in gauge glasses
International Nuclear Information System (INIS)
Hansen, K.
1988-09-01
In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
Radiative processes in gauge theories
International Nuclear Information System (INIS)
Berends, F.A.; Kleiss, R.; Danckaert, D.; Causmaecker, P. De; Gastmans, R.; Troost, W.; Tai Tsun Wu
1982-01-01
It is shown how the introduction of explicit polarization vectors of the radiated gauge particles leads to great simplifications in the calculation of bremsstrahlung processes at high energies. (author)
Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.
2017-10-24
The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System
Hard amplitudes in gauge theories
International Nuclear Information System (INIS)
Parke, S.J.
1991-03-01
In this lecture series 1 presents recent developments in perturbation theory methods for gauge theories for processes with many partons. These techniques and results are useful in the calculation of cross sections for processes with many final state partons which have applications in the study of multi-jet phenomena in high-energy colliders. The results illuminate many important and interesting properties of non-abelian gauge theories. 30 refs., 9 figs
Optical Rain Gauge Instrument Handbook
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-04-01
To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).
International Nuclear Information System (INIS)
Leite Lopes, J.
1998-04-01
In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author)
Simulation of streamflow in the McTier Creek watershed, South Carolina
Feaster, Toby D.; Golden, Heather E.; Odom, Kenneth R.; Lowery, Mark A.; Conrads, Paul; Bradley, Paul M.
2010-01-01
The McTier Creek watershed is located in the Sand Hills ecoregion of South Carolina and is a small catchment within the Edisto River Basin. Two watershed hydrology models were applied to the McTier Creek watershed as part of a larger scientific investigation to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin. The two models are the topography-based hydrological model (TOPMODEL) and the grid-based mercury model (GBMM). TOPMODEL uses the variable-source area concept for simulating streamflow, and GBMM uses a spatially explicit modified curve-number approach for simulating streamflow. The hydrologic output from TOPMODEL can be used explicitly to simulate the transport of mercury in separate applications, whereas the hydrology output from GBMM is used implicitly in the simulation of mercury fate and transport in GBMM. The modeling efforts were a collaboration between the U.S. Geological Survey and the U.S. Environmental Protection Agency, National Exposure Research Laboratory. Calibrations of TOPMODEL and GBMM were done independently while using the same meteorological data and the same period of record of observed data. Two U.S. Geological Survey streamflow-gaging stations were available for comparison of observed daily mean flow with simulated daily mean flow-station 02172300, McTier Creek near Monetta, South Carolina, and station 02172305, McTier Creek near New Holland, South Carolina. The period of record at the Monetta gage covers a broad range of hydrologic conditions, including a drought and a significant wet period. Calibrating the models under these extreme conditions along with the normal flow conditions included in the record enhances the robustness of the two models. Several quantitative assessments of the goodness of fit between model simulations and the observed daily mean flows were done. These included the Nash-Sutcliffe coefficient
Makkeasorn, A.; Chang, N. B.; Zhou, X.
2008-05-01
SummarySustainable water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods may also result in property damages and the loss of life. To more efficiently use the limited amount of water under the changing world or to resourcefully provide adequate time for flood warning, the issues have led us to seek advanced techniques for improving streamflow forecasting on a short-term basis. This study emphasizes the inclusion of sea surface temperature (SST) in addition to the spatio-temporal rainfall distribution via the Next Generation Radar (NEXRAD), meteorological data via local weather stations, and historical stream data via USGS gage stations to collectively forecast discharges in a semi-arid watershed in south Texas. Two types of artificial intelligence models, including genetic programming (GP) and neural network (NN) models, were employed comparatively. Four numerical evaluators were used to evaluate the validity of a suite of forecasting models. Research findings indicate that GP-derived streamflow forecasting models were generally favored in the assessment in which both SST and meteorological data significantly improve the accuracy of forecasting. Among several scenarios, NEXRAD rainfall data were proven its most effectiveness for a 3-day forecast, and SST Gulf-to-Atlantic index shows larger impacts than the SST Gulf-to-Pacific index on the streamflow forecasts. The most forward looking GP-derived models can even perform a 30-day streamflow forecast ahead of time with an r-square of 0.84 and RMS error 5.4 in our study.
More gaugings of N=8 supergravity
International Nuclear Information System (INIS)
Hull, C.M.
1984-01-01
New non-compact gaugings of N = 8 supergravity are constructed. The gauge groups are SO(p,q) (with p + q = 8) and the group contraction of SO(p,q) about SO(p). The SO(4,4) gauging and the corresponding contraction truncate to gauged N = 4 supergravity theories. (orig.)
Gauge invariance and fermion mass dimensions
International Nuclear Information System (INIS)
Elias, V.
1979-05-01
Renormalization-group equation fermion mass dimensions are shown to be gauge dependent in gauge theories possessing non-vector couplings of gauge bosons to fermions. However, the ratios of running fermion masses are explicitly shown to be gauge invariant in the SU(5) and SU(2) x U(1) examples of such theories. (author)
Improved Landau gauge fixing and discretisation errors
International Nuclear Information System (INIS)
Bonnet, F.D.R.; Bowman, P.O.; Leinweber, D.B.; Richards, D.G.; Williams, A.G.
2000-01-01
Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition displays the secondary benefit of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition
Nuclear radiation moisture gauge calibration standard
International Nuclear Information System (INIS)
1977-01-01
A hydrophobic standard for calibrating nuclear radiation moisture gauges is described. Each standard has physical characteristics and dimensions effective for representing to a nuclear gauge undergoing calibration, an infinite mass of homogeneous hydrogen content. Calibration standards are discussed which are suitable for use with surface gauges and with depth gauges. (C.F.)
International Nuclear Information System (INIS)
Brown, W.S.; Higgins, J.C.; Wachtel, J.A.
1993-01-01
This paper describes research concerning the effects of human engineering design at local control stations (i.e., operator interfaces located outside the control room) on human performance and plant safety. The research considered both multifunction panels (e.g. remote shutdown panels) as well as single-function interfaces (e.g., valves, breakers, gauges, etc.). Changes in performance shaping factors associated with variations in human engineering at LCSs were estimated based on expert opinion. By means of a scaling procedure, these estimates were used to modify the human error probabilities in a PRA model, which was then employed to generate estimates of plant risk and scoping-level value/impact ratios for various human engineering upgrades. Recent documentation of human engineering deficiencies at single-function LCSs was also reviewed, and an assessment of the current status of LCSs with respect to human engineering was conducted
Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes
Directory of Open Access Journals (Sweden)
W. Wang
2005-01-01
Full Text Available Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average models for seasonal streamflow series. However, with McLeod-Li test and Engle's Lagrange Multiplier test, clear evidences are found for the existence of autoregressive conditional heteroskedasticity (i.e. the ARCH (AutoRegressive Conditional Heteroskedasticity effect, a nonlinear phenomenon of the variance behaviour, in the residual series from linear models fitted to daily and monthly streamflow processes of the upper Yellow River, China. It is shown that the major cause of the ARCH effect is the seasonal variation in variance of the residual series. However, while the seasonal variation in variance can fully explain the ARCH effect for monthly streamflow, it is only a partial explanation for daily flow. It is also shown that while the periodic autoregressive moving average model is adequate in modelling monthly flows, no model is adequate in modelling daily streamflow processes because none of the conventional time series models takes the seasonal variation in variance, as well as the ARCH effect in the residuals, into account. Therefore, an ARMA-GARCH (Generalized AutoRegressive Conditional Heteroskedasticity error model is proposed to capture the ARCH effect present in daily streamflow series, as well as to preserve seasonal variation in variance in the residuals. The ARMA-GARCH error model combines an ARMA model for modelling the mean behaviour and a GARCH model for modelling the variance behaviour of the residuals from the ARMA model. Since the GARCH model is not followed widely in statistical hydrology, the work can be a useful addition in terms of statistical modelling of daily streamflow processes for the hydrological community.
Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.
2009-01-01
The Nebraska Department of Natural Resources approved instream-flow appropriations on the Platte River to maintain fish communities, whooping crane roost habitat, and wet meadows used by several wild bird species. In the lower Platte River region, the Nebraska Game and Parks Commission owns an appropriation filed to maintain streamflow for fish communities between the Platte River confluence with the Elkhorn River and the mouth of the Platte River. Because Elkhorn River flow is an integral part of the flow in the reach addressed by this appropriation, the Upper Elkhorn and Lower Elkhorn Natural Resources Districts are involved in overall management of anthropogenic effects on the availability of surface water for instream requirements. The Physical Habitat Simulation System (PHABSIM) and other estimation methodologies were used previously to determine instream requirements for Platte River biota, which led to the filing of five water appropriations applications with the Nebraska Department of Natural Resources in 1993 by the Nebraska Game and Parks Commission. One of these requested instream-flow appropriations of 3,700 cubic feet per second was for the reach from the Elkhorn River to the mouth of the Platte River. Four appropriations were granted with modifications in 1998, by the Nebraska Department of Natural Resources. Daily streamflow data for the periods of record were summarized for 17 streamflow-gaging stations in Nebraska to evaluate streamflow characteristics, including low-flow intervals for consecutive durations of 1, 3, 7, 14, 30, 60, and 183 days. Temporal trends in selected streamflow statistics were not adjusted for variability in precipitation. Results indicated significant positive temporal trends in annual flow for the period of record at eight streamflow-gaging stations - Platte River near Duncan (06774000), Platte River at North Bend (06796000), Elkhorn River at Neligh (06798500), Logan Creek near Uehling (06799500), Maple Creek near Nickerson
Substantial proportion of global streamflow less than three months old
Jasechko, Scott; Kirchner, James W.; Welker, Jeffrey M.; McDonnell, Jeffrey J.
2016-02-01
Biogeochemical cycles, contaminant transport and chemical weathering are regulated by the speed at which precipitation travels through landscapes and reaches streams. Streamflow is a mixture of young and old precipitation, but the global proportions of these young and old components are not known. Here we analyse seasonal cycles of oxygen isotope ratios in rain, snow and streamflow compiled from 254 watersheds around the world, and calculate the fraction of streamflow that is derived from precipitation that fell within the past two or three months. This young streamflow accounts for about a third of global river discharge, and comprises at least 5% of discharge in about 90% of the catchments we investigated. We conclude that, although typical catchments have mean transit times of years or even decades, they nonetheless can rapidly transmit substantial fractions of soluble contaminant inputs to streams. Young streamflow is less prevalent in steeper landscapes, which suggests they are characterized by deeper vertical infiltration. Because young streamflow is derived from less than 0.1% of global groundwater storage, we conclude that this thin veneer of aquifer storage will have a disproportionate influence on stream water quality.
Methods for estimating drought streamflow probabilities for Virginia streams
Austin, Samuel H.
2014-01-01
Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.
Streamflow in the upper Santa Cruz River basin, Santa Cruz and Pima Counties, Arizona
Condes de la Torre, Alberto
1970-01-01
Streamflow records obtained in the upper Santa Cruz River basin of southern Arizona, United States, and northern Sonora, Mexico, have been analyzed to aid in the appraisal of the surface-water resources of the area. Records are available for 15 sites, and the length of record ranges from 60 years for the gaging station on the Santa .Cruz River at Tucson to 6 years for Pantano Wash near Vail. The analysis provides information on flow duration, low-flow frequency magnitude, flood-volume frequency and magnitude, and storage requirements to maintain selected draft rates. Flood-peak information collected from the gaging stations has been projected on a regional basis from which estimates of flood magnitude and frequency may be made for any site in the basin. Most streams in the 3,503-square-mile basin are ephemeral. Ground water sustains low flows only at Santa Cruz River near Nogales, Sonoita Creek near Patagonia, and Pantano Wash near Vail. Elsewhere, flow occurs only in direct response to precipitation. The median number of days per year in which there is no flow ranges from 4 at Sonoita Creek near Patagonia to 335 at Rillito Creek near Tomson. The streamflow is extremely variable from year to year, and annual flows have a coefficient of variation close to or exceeding unity at most stations. Although the amount of flow in the basin is small most of the time, the area is subject to floods. Most floods result from high-intensity precipitation caused by thunderstorms during the period ,July to September. Occasionally, when snowfall at the lower altitudes is followed by rain, winter floods produce large volumes of flow.
Directory of Open Access Journals (Sweden)
Ansoumana Bodian
2018-03-01
Full Text Available This research investigated the effect of climate change on the two main river basins of Senegal in West Africa: the Senegal and Gambia River Basins. We used downscaled projected future rainfall and potential evapotranspiration based on projected temperature from six General Circulation Models (CanESM2, CNRM, CSIRO, HadGEM2-CC, HadGEM2-ES, and MIROC5 and two scenarios (RCP4.5 and RCP8.5 to force the GR4J model. The GR4J model was calibrated and validated using observed daily rainfall, potential evapotranspiration from observed daily temperature, and streamflow data. For the cross-validation, two periods for each river basin were considered: 1961–1982 and 1983–2004 for the Senegal River Basin at Bafing Makana, and 1969–1985 and 1986–2000 for the Gambia River Basin at Mako. Model efficiency is evaluated using a multi-criteria function (Fagg which aggregates Nash and Sutcliffe criteria, cumulative volume error, and mean volume error. Alternating periods of simulation for calibration and validation were used. This process allows us to choose the parameters that best reflect the rainfall-runoff relationship. Once the model was calibrated and validated, we simulated streamflow at Bafing Makana and Mako stations in the near future at a daily scale. The characteristic flow rates were calculated to evaluate their possible evolution under the projected climate scenarios at the 2050 horizon. For the near future (2050 horizon, compared to the 1971–2000 reference period, results showed that for both river basins, multi-model ensemble predicted a decrease of annual streamflow from 8% (Senegal River Basin to 22% (Gambia River Basin under the RCP4.5 scenario. Under the RCP8.5 scenario, the decrease is more pronounced: 16% (Senegal River Basin and 26% (Gambia River Basin. The Gambia River Basin will be more affected by the climate change.
Gauge-invariant variational methods for Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Horn, D.; Weinstein, M.
1982-01-01
This paper develops variational methods for calculating the ground-state and excited-state spectrum of Hamiltonian lattice gauge theories defined in the A 0 = 0 gauge. The scheme introduced in this paper has the advantage of allowing one to convert more familiar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approximation, which are by their very nature gauge-noninvariant methods, into fully gauge-invariant techniques. We show that these methods apply in the same way to both Abelian and non-Abelian theories, and that they are at least powerful enough to describe correctly the physics of periodic quantum electrodynamics (PQED) in (2+1) and (3+1) space-time dimensions. This paper formulates the problem for both Abelian and non-Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of computing the partition function of a classical spin system. We discuss the evaluation of the effective spin problem which one derives the PQED and then discuss ways of carrying out the evaluation of the partition function for the system equivalent to a non-Abelian theory. The explicit form of the effective partition function for the non-Abelian theory is derived, but because the evaluation of this function is considerably more complicated than the one derived in the Abelian theory no explicit evaluation of this function is presented. However, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of the pure SU(2) gauge theory, we are able to show that extremely interesting differences emerge between these theories even at this simple level. We close with a discussion of fermions and a discussion of how one can extend these ideas to allow the computation of the glueball and hadron spectrum
Streamflow variation of forest covered catchments
Gribovszki, Z.; Kalicz, P.; Kucsara, M.
2003-04-01
Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).
Streamflow Prediction in Ungauged, Irrigated Basins
Zhang, M.; Thompson, S. E.
2016-12-01
The international "predictions in ungauged basins" or "PUB" effort has broadened and improved the tools available to support water resources management in sparsely observed regions. These tools have, however, been primarily focused on regions with limited diversion of surface or shallow groundwater resources. Incorporating anthropogenic activity into PUB methods is essential given the high level of development of many basins. We extended an existing stochastic framework used to predict the flow duration curve to explore the effects of irrigation on streamflow dynamics. Four canonical scenarios were considered in which irrigation water was (i) primarily sourced from water imports, (ii) primarily sourced from direct in-channel diversions, (iii) sourced from shallow groundwater with direct connectivity to stream channels, or (iv) sourced from deep groundwater that is indirectly connected to surface flow via a shallow aquifer. By comparing the predicted flow duration curves to those predicted by accounting for climate and geomorphic factors in isolation, specific "fingerprints" of human water withdrawals could be identified for the different irrigation scenarios, and shown to be sensitive to irrigation volumes and scheduling. The results provide a first insight into PUB methodologies that could be employed in heavily managed basins.
Small gauge vitrectomy: Recent update
Directory of Open Access Journals (Sweden)
Sumeet Khanduja
2013-01-01
Full Text Available Small gauge vitrectomy, also known as minimally invasive vitreous surgery (MIVS, is a classic example of progress in biomedical engineering. Disparity in conjunctival and scleral wound location and reduction in wound diameter are its core principles. Fluidic changes include increased pressure head loss with consequent reduction in infusional flow rate and use of higher aspiration vacuum at the cutter port. Increase An increase in port open/port closed time maintains an adequate rate of vitreous removal. High Intensity Discharge (HID lamps maintain adequate illumination in spite of a decrease in the number of fiberoptic fibers. The advantages of MIVS are, a shorter surgical time, minimal conjunctival damage, and early postoperative recovery. Most complications are centered on wound stability and risk of postoperative hypotony, endophthalmitis, and port site retinal break formation. MIVS is suited in most cases, however, it can cause dehiscence of recent cataract wounds. Retraction of the infusion cannula in the suprachoroidal space may occur in eyes with scleral thinning. As a lot has been published and discussed about sutureless vitrectomy a review of this subject is necessary. A PubMed search was performed in December 2011 with terms small gauge vitrectomy, 23-gauge vitrectomy, 25-gauge vitrectomy, and 27 gauge vitrectomy, which were revised in August 2012. There were no restrictions on the date of publication but it was restricted to articles in English or other languages, if there abstracts were available in English.
Tracking frequency laser distance gauge
International Nuclear Information System (INIS)
Phillips, J.D.; Reasenberg, R.D.
2005-01-01
Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components
Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.
2017-02-21
Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for
Kretzschmar, Ann; Tych, Wlodek; Beven, Keith; Chappell, Nick
2017-04-01
Flooding is the most widely occurring natural disaster affecting thousands of lives and businesses worldwide each year, and the size and frequency of flood-events are predicted to increase with climate change. The main input-variable for models used in flood prediction is rainfall. Estimating the rainfall input is often based on a sparse network of raingauges, which may or may not be representative of the salient rainfall characteristics responsible for generating of storm-hydrographs. A method based on Reverse Hydrology (Kretzschmar et al 2014 Environ Modell Softw) has been developed and is being tested using the intensively-instrumented Brue catchment (Southwest England) to explore the spatiotemporal structure of the rainfall-field (using 23 rain gauges over the 135.2 km2 basin). We compare how well the rainfall measured at individual gauges, or averaged over the basin, represent the rainfall inferred from the streamflow signal. How important is it to get the detail of the spatiotemporal rainfall structure right? Rainfall is transformed by catchment processes as it moves to streams, so exact duplication of the structure may not be necessary. 'True' rainfall estimated using 23 gauges / 135.2 km2 is likely to be a good estimate of the overall-catchment-rainfall, however, the integration process 'smears' the rainfall patterns in time, i.e. reduces the number of and lengthens rain-events as they travel across the catchment. This may have little impact on the simulation of stream-hydrographs when events are extensive across the catchment (e.g., frontal rainfall events) but may be significant for high-intensity, localised convective events. The Reverse Hydrology approach uses the streamflow record to infer a rainfall sequence with a lower time-resolution than the original input time-series. The inferred rainfall series is, however, able simulate streamflow as well as the observed, high resolution rainfall (Kretzschmar et al 2015 Hydrol Res). Most gauged catchments in
Lee, T.M.; Sacks, L.A.; Hughes, J.D.
2010-01-01
The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland
Carbon nanotubes based vacuum gauge
Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.
2017-11-01
We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Introduzione alle teorie di gauge
Cabibbo, Nicola; Benhar, Omar
2016-01-01
"Introduzione alle Teorie di Gauge" completa la serie di tre volumi basati sulle lezioni dei corsi di Meccanica Quantistica Relativistica, Interazioni Elettrodeboli e Teorie di Gauge, impartite dagli autori agli studenti delle Lauree Magistrali in Fisica e Astronomia & Astrofisica dell'Universita "La Sapienza" di Roma, nell'arco di qualche decennio. L'obiettivo principale del volume è di introdurre i concetti di base della rinormalizzazione nella teoria quantistica dei campi e i fondamenti delle moderne teorie di Gauge. Anche se collegato ai volumi precedenti, il libro si presta ad una lettura indipendente, che presume solo conoscenze generali di relativita speciale, della seconda quantizzazione e della fenomenologia delle interazioni elettrodeboli. Lo strumento di base è l'integrale sui cammini di Feynman, introdotto nei capitoli iniziali e sistematicamente impiegato nel seguito. L'esposizione segue un percorso pedagogico, che parte dal caso semplice dell'ampiezza di transizione in meccanica quantistic...
International Nuclear Information System (INIS)
Kostelnik, K.M.; Durlin, R.R.
1989-01-01
Streamflow and water-quality data were collected throughout the Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, from December 1987 to November 1988, to determine the prevailing quality of surface water throughout the basin. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water-quality station on Little Scrubgrass Creek near Lisbon, provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended sediment concentrations. Fourteen partial-record sites, located throughout the basin, were similarly sampled four times during the period of study. Streamflow and water-quality data obtained at these sites during various base flow periods are also presented
International Nuclear Information System (INIS)
Kostelnik, K.M.; Durlin, R.R.
1989-01-01
Streamflow and water-quality data were collected throughout the Little Clearfield Creek basin, Clearfield County, Pennsylvania, from December 1987 through November 1988, to determine the existing quality of surface water over a range of hydrologic conditions. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal-mine permit applications. A water-quality station near the mouth of Little Clearfield Creek provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations, and suspended-sediment concentrations. Seventeen partial-record sites, located throughout the basin, were similarly sampled four times during the study. Streamflow and water-quality data obtained at these sites during a winter base flow, a spring storm event, a low summer base flow, and a more moderate summer base flow also are presented
Osterkamp, W.R.; Hedman, E.R.
1982-01-01
Geometry, channel-sediment, and discharge data were collected and compiled from 252 streamflow-gaging stations in the Missouri River basin. The sites represent the complete ranges of hydrologic and geologic conditions found in the basin. The data were analyzed by computer to yield equations relating various discharge characteristics to variables of channel geometry and bed and bank material. The equations provide discharge as the dependent variable for the purpose of making estimates of discharge characteristics at ungaged sites. Results show that channel width is best related to variables of discharge, but that reduction of standard errors can be achieved by considering channel-sediment properties, channel gradient, and discharge variability. The channel-material variables do not exert uniform effects on width-discharge relations and, therefore, are considered as sediment-data groups, or stream types, rather than as terms in multiple power-function equations. Relative to streamflow, narrowest channels occur when streams of steady discharge transport sufficient silt and clay to form stable, cohesive banks but have a small tractive load of sand and coarser sizes. Stable channels also are associated with high channel gradients, which cause high channel roughness and bed and bank armouring by coarse particle sizes. The widest, most unstable channels are found with streams that apparently transport of large tractive load of sand sizes. The downstream rates of change of width with discharge reflect these trends, suggesting that a given bed-material load necessitates a minimum width over which the tractive material can be moved. (USGS)
Khai Tiu, Ervin Shan; Huang, Yuk Feng; Ling, Lloyd
2018-03-01
An accurate streamflow forecasting model is important for the development of flood mitigation plan as to ensure sustainable development for a river basin. This study adopted Variational Mode Decomposition (VMD) data-preprocessing technique to process and denoise the rainfall data before putting into the Support Vector Machine (SVM) streamflow forecasting model in order to improve the performance of the selected model. Rainfall data and river water level data for the period of 1996-2016 were used for this purpose. Homogeneity tests (Standard Normal Homogeneity Test, the Buishand Range Test, the Pettitt Test and the Von Neumann Ratio Test) and normality tests (Shapiro-Wilk Test, Anderson-Darling Test, Lilliefors Test and Jarque-Bera Test) had been carried out on the rainfall series. Homogenous and non-normally distributed data were found in all the stations, respectively. From the recorded rainfall data, it was observed that Dungun River Basin possessed higher monthly rainfall from November to February, which was during the Northeast Monsoon. Thus, the monthly and seasonal rainfall series of this monsoon would be the main focus for this research as floods usually happen during the Northeast Monsoon period. The predicted water levels from SVM model were assessed with the observed water level using non-parametric statistical tests (Biased Method, Kendall's Tau B Test and Spearman's Rho Test).
Streamflow impacts of biofuel policy-driven landscape change.
Directory of Open Access Journals (Sweden)
Sami Khanal
Full Text Available Likely changes in precipitation (P and potential evapotranspiration (PET resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979-2004 using the Weather Research Forecast (WRF model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity.
Sensitivity of streamflow to climate change in California
Grantham, T.; Carlisle, D.; Wolock, D.; McCabe, G. J.; Wieczorek, M.; Howard, J.
2015-12-01
Trends of decreasing snowpack and increasing risk of drought are looming challenges for California water resource management. Increasing vulnerability of the state's natural water supplies threatens California's social-economic vitality and the health of its freshwater ecosystems. Despite growing awareness of potential climate change impacts, robust management adaptation has been hindered by substantial uncertainty in future climate predictions for the region. Down-scaled global climate model (GCM) projections uniformly suggest future warming of the region, but projections are highly variable with respect to the direction and magnitude of change in regional precipitation. Here we examine the sensitivity of California surface water supplies to climate variation independently of GCMs. We use a statistical approach to construct predictive models of monthly streamflow based on historical climate and river basin features. We then propagate an ensemble of synthetic climate simulations through the models to assess potential streamflow responses to changes in temperature and precipitation in different months and regions of the state. We also consider the range of streamflow change predicted by bias-corrected downscaled GCMs. Our results indicate that the streamflow in the xeric and coastal mountain regions of California is more sensitive to changes in precipitation than temperature, whereas streamflow in the interior mountain region responds strongly to changes in both temperature and precipitation. Mean climate projections for 2025-2075 from GCM ensembles are highly variable, indicating streamflow changes of -50% to +150% relative to baseline (1980-2010) for most months and regions. By quantifying the sensitivity of streamflow to climate change, rather than attempting to predict future hydrologic conditions based on uncertain GCM projections, these results should be more informative to water managers seeking to assess, and potentially reduce, the vulnerability of surface
Seasonal Prediction of Taiwan's Streamflow Using Teleconnection Patterns
Chen, Chia-Jeng; Lee, Tsung-Yu
2017-04-01
Seasonal streamflow as an integrated response to complex hydro-climatic processes can be subject to activity of prevailing weather systems potentially modulated by large-scale climate oscillations (e.g., El Niño-Southern Oscillation, ENSO). To develop a seamless seasonal forecasting system in Taiwan, this study assesses how significant Taiwan's precipitation and streamflow in different seasons correlate with selected teleconnection patterns. Long-term precipitation and streamflow data in three major precipitation seasons, namely the spring rains (February to April), Mei-Yu (May and June), and typhoon (July to September) seasons, are derived at 28 upstream and 13 downstream catchments in Taiwan. The three seasons depict a complete wet period of Taiwan as well as many regions bearing similar climatic conditions in East Asia. Lagged correlation analysis is then performed to investigate how the precipitation and streamflow data correlate with predominant teleconnection indices at varied lead times. Teleconnection indices are selected only if they show certain linkage with weather systems and activity in the three seasons based on previous literature. For instance, the ENSO and Quasi-Biennial Oscillation, proven to influence East Asian climate across seasons and summer typhoon activity, respectively, are included in the list of climate indices for correlation analysis. Significant correlations found between Taiwan's precipitation and streamflow and teleconnection indices are further examined by a climate regime shift (CRS) test to identify any abrupt changes in the correlations. The understanding of existing CRS is useful for informing the forecasting system of the changes in the predictor-predictand relationship. To evaluate prediction skill in the three seasons and skill differences between precipitation and streamflow, hindcasting experiments of precipitation and streamflow are conducted using stepwise linear regression models. Discussion and suggestions for coping
Translational groups as generators of gauge transformations
International Nuclear Information System (INIS)
Scaria, Tomy
2003-01-01
We examine the gauge generating nature of the translational subgroup of Wigner's little group for the case of massless tensor gauge theories and show that the gauge transformations generated by the translational group are only a subset of the complete set of gauge transformations. We also show that, just as in the case of topologically massive gauge theories, translational groups act as generators of gauge transformations in gauge theories obtained by extending massive gauge noninvariant theories by a Stueckelberg mechanism. The representations of the translational groups that generate gauge transformations in such Stueckelberg extended theories can be obtained by the method of dimensional descent. We illustrate these results with the examples of Stueckelberg extended first class versions of Proca, Einstein-Pauli-Fierz, and massive Kalb-Ramond theories in 3+1 dimensions. A detailed analysis of the partial gauge generation in massive and massless second rank symmetric gauge theories is provided. The gauge transformations generated by the translational group in two-form gauge theories are shown to explicitly manifest the reducibility of gauge transformations in these theories
Translational groups as generators of gauge transformations
Scaria, Tomy
2003-11-01
We examine the gauge generating nature of the translational subgroup of Wigner’s little group for the case of massless tensor gauge theories and show that the gauge transformations generated by the translational group are only a subset of the complete set of gauge transformations. We also show that, just as in the case of topologically massive gauge theories, translational groups act as generators of gauge transformations in gauge theories obtained by extending massive gauge noninvariant theories by a Stückelberg mechanism. The representations of the translational groups that generate gauge transformations in such Stückelberg extended theories can be obtained by the method of dimensional descent. We illustrate these results with the examples of Stückelberg extended first class versions of Proca, Einstein-Pauli-Fierz, and massive Kalb-Ramond theories in 3+1 dimensions. A detailed analysis of the partial gauge generation in massive and massless second rank symmetric gauge theories is provided. The gauge transformations generated by the translational group in two-form gauge theories are shown to explicitly manifest the reducibility of gauge transformations in these theories.
Gyrocenter-gauge kinetic theory
International Nuclear Information System (INIS)
Qin, H.; Tang, W.M.; Lee, W.W.
2000-01-01
Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is
Gauge theory and variational principles
Bleecker, David
2005-01-01
This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas.Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field
Machines for lattice gauge theory
International Nuclear Information System (INIS)
Mackenzie, P.B.
1989-05-01
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig
Introduction to lattice gauge theories
International Nuclear Information System (INIS)
La Cock, P.
1988-03-01
A general introduction to Lattice Gauge Theory (LGT) is given. The theory is discussed from first principles to facilitate an understanding of the techniques used in LGT. These include lattice formalism, gauge invariance, fermions on the lattice, group theory and integration, strong coupling methods and mean field techniques. A review of quantum chromodynamics on the lattice at finite temperature and density is also given. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. 224 refs., 33 figs., 14 tabs
Renormalization of gauge fields models
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1974-01-01
A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr
An introduction to gauge theories
Cabibbo, Nicola; Benhar, Omar
2017-01-01
Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.
Dark coupling and gauge invariance
International Nuclear Information System (INIS)
Gavela, M.B.; Honorez, L. Lopez; Mena, O.; Rigolin, S.
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data
Dark Coupling and Gauge Invariance
Gavela, M B; Mena, O; Rigolin, S
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Stevens, M.R.; Dupree, J.; Kuzmiak, J.M.
2008-01-01
In 2007, the U.S. Geological Survey, in cooperation with the U.S. Department of the Army, began an assessment of the spatial and temporal variations in precipitation, streamflow, suspended-sediment loads and yields, changes in land condition, effects of the tributaries on the Purgatoire River and the possible relation of effects from military training to hydrology and land conditions that have occurred at Pinon Canyon Maneuver Site (PCMS) from 1983 through 2007. Data were collected for precipitation (19 stations) and streamflow and sediment load (5 tributary and 2 main-stem Purgatoire River stations) during 1983 through 2007 for various time periods. The five tributary stations were Van Bremer Arroyo near Model, Taylor Arroyo below Rock Crossing, Lockwood Canyon Creek near Thatcher, Red Rock Canyon Creek at the mouth, and Bent Canyon Creek at the mouth. In addition, data were collected at two Purgatoire River stations: Purgatoire River near Thatcher and Purgatoire River at Rock Crossing.
International Nuclear Information System (INIS)
Edgar, D.E.
1978-10-01
The quantity and concentration of radionuclides released to the environment by ORNL must be monitored continuously and accurately in order to ensure compliance with legal requirements established by Federal and state guidelines. Of the five streamflow monitoring stations located within White Oak Creek watershed, stations 3, 4, and 5 are of primary importance in quantifying the flux of water, sediment, and radionuclides through the drainage basin. Currently, the maximum measurable discharge at these three stations is 1.42 m 3 /sec (50 cfs), 0.54 m 3 /sec (19 cfs), and 4.25 m 3 /sec (150 cfs), respectively. Estimates of flood magnitude and frequency indicate that even small floods which are expected to recur often are significantly larger than the existing monitoring system can measure. Several independent studies have shown that most of the sediment transported from a watershed is carried by larger, less frequent streamflows which occur only a small percentage of the time. It also has been shown that certain radionuclides are transported in association with fluvial sediment. Thus, the flux of radionuclides, both in solution and associated with sediment, increases significantly during flood conditions. Estimates of peak discharges resulting from recent storms indicate that the drainage system has experienced variable flood conditions during the past few years for which no accurate and reliable records exist
A global evaluation of streamflow drought characteristics
Directory of Open Access Journals (Sweden)
A. K. Fleig
2006-01-01
Full Text Available How drought is characterised depends on the purpose and region of the study and the available data. In case of regional applications or global comparison a standardisation of the methodology to characterise drought is preferable. In this study the threshold level method in combination with three common pooling procedures is applied to daily streamflow series from a wide range of hydrological regimes. Drought deficit characteristics, such as drought duration and deficit volume, are derived, and the methods are evaluated for their applicability for regional studies. Three different pooling procedures are evaluated: the moving-average procedure (MA-procedure, the inter-event time method (IT-method, and the sequent peak algorithm (SPA. The MA-procedure proved to be a flexible approach for the different series, and its parameter, the averaging interval, can easily be optimised for each stream. However, it modifies the discharge series and might introduce dependency between drought events. For the IT-method it is more difficult to find an optimal value for its parameter, the length of the excess period, in particular for flashy streams. The SPA can only be recommended as pooling procedure for the selection of annual maximum series of deficit characteristics and for very low threshold levels to ensure that events occurring shortly after major events are recognized. Furthermore, a frequency analysis of deficit volume and duration is conducted based on partial duration series of drought events. According to extreme value theory, excesses over a certain limit are Generalized Pareto (GP distributed. It was found that this model indeed performed better than or equally to other distribution models. In general, the GP-model could be used for streams of all regime types. However, for intermittent streams, zero-flow periods should be treated as censored data. For catchments with frost during the winter season, summer and winter droughts have to be analysed
Yang, Xiaoli; Zheng, Weifei; Ren, Liliang; Zhang, Mengru; Wang, Yuqian; Liu, Yi; Yuan, Fei; Jiang, Shanhu
2018-02-01
The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change on the future streamflow in this basin is very important for local policy and planning on food security. In this study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm) statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity (VIC) model with 0.25° × 0.25° spatial resolution was developed based on downscaled fields for simulating streamflow in the future period over YRB. The results show that with the global warming trend, the annual streamflow will reduced about 10 % during the period of 2021-2050, compared to the base period of 1961-1990 in YRB. There should be suitable water resources planning to meet the demands of growing populations and future climate changing in this region.
Directory of Open Access Journals (Sweden)
H. E. Beck
2017-12-01
Full Text Available We undertook a comprehensive evaluation of 22 gridded (quasi-global (sub-daily precipitation (P datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized ( < 50 000 km2 catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7 or near-surface soil moisture (SM2RAIN-ASCAT, and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS. Two of the three reanalyses (ERA-Interim and JRA-55 unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified, and MSWEP V1.2 and V2.0 generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU, which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1. Our results highlight large differences in estimation accuracy
DEFF Research Database (Denmark)
Landex, Alex
2011-01-01
the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...
Quantum gauge freedom in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal (India)
2017-02-15
We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.
Streamflow characteristics and trends along Soldier Creek, Northeast Kansas
Juracek, Kyle E.
2017-08-16
Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.
Statistical summaries of selected Iowa streamflow data through September 2013
Eash, David A.; O'Shea, Padraic S.; Weber, Jared R.; Nguyen, Kevin T.; Montgomery, Nicholas L.; Simonson, Adrian J.
2016-01-04
Statistical summaries of streamflow data collected at 184 streamgages in Iowa are presented in this report. All streamgages included for analysis have at least 10 years of continuous record collected before or through September 2013. This report is an update to two previously published reports that presented statistical summaries of selected Iowa streamflow data through September 1988 and September 1996. The statistical summaries include (1) monthly and annual flow durations, (2) annual exceedance probabilities of instantaneous peak discharges (flood frequencies), (3) annual exceedance probabilities of high discharges, and (4) annual nonexceedance probabilities of low discharges and seasonal low discharges. Also presented for each streamgage are graphs of the annual mean discharges, mean annual mean discharges, 50-percent annual flow-duration discharges (median flows), harmonic mean flows, mean daily mean discharges, and flow-duration curves. Two sets of statistical summaries are presented for each streamgage, which include (1) long-term statistics for the entire period of streamflow record and (2) recent-term statistics for or during the 30-year period of record from 1984 to 2013. The recent-term statistics are only calculated for streamgages with streamflow records pre-dating the 1984 water year and with at least 10 years of record during 1984–2013. The streamflow statistics in this report are not adjusted for the effects of water use; although some of this water is used consumptively, most of it is returned to the streams.
Streamflow of 2016—Water year summary
Jian, Xiaodong; Wolock, David M.; Lins, Harry F.; Brady, Steven J.
2017-09-26
The maps and graphs in this summary describe national streamflow conditions for water year 2016 (October 1, 2015, to September 30, 2016) in the context of streamflow ranks relative to the 87-year period of 1930–2016, unless otherwise noted. The illustrations are based on observed data from the U.S. Geological Survey’s (USGS) National Streamflow Network. The period of 1930–2016 was used because the number of streamgages before 1930 was too small to provide representative data for computing statistics for most regions of the country.In the summary, reference is made to the term “runoff,” which is the depth to which a river basin, State, or other geographic area would be covered with water if all the streamflow within the area during a specified period was uniformly distributed on it. Runoff quantifies the magnitude of water flowing through the Nation’s rivers and streams in measurement units that can be compared from one area to another.In all the graphics, a rank of 1 indicates the highest flow of all years analyzed and 87 indicates the lowest flow of all years. Rankings of streamflow are grouped into much below normal, below normal, normal, above normal, and much above normal based on percentiles of flow (less than 10 percent, 10–24 percent, 25–75 percent, 76–90 percent, and greater than 90 percent, respectively). Some of the data used to produce the maps and graphs are provisional and subject to change.
High accuracy step gauge interferometer
Byman, V.; Jaakkola, T.; Palosuo, I.; Lassila, A.
2018-05-01
Step gauges are convenient transfer standards for the calibration of coordinate measuring machines. A novel interferometer for step gauge calibrations implemented at VTT MIKES is described. The four-pass interferometer follows Abbe’s principle and measures the position of the inductive probe attached to a measuring head. The measuring head of the instrument is connected to a balanced boom above the carriage by a piezo translation stage. A key part of the measuring head is an invar structure on which the inductive probe and the corner cubes of the measuring arm of the interferometer are attached. The invar structure can be elevated so that the probe is raised without breaking the laser beam. During probing, the bending of the probe and the interferometer readings are recorded and the measurement face position is extrapolated to zero force. The measurement process is fully automated and the face positions of the steps can be measured up to a length of 2 m. Ambient conditions are measured continuously and the refractive index of air is compensated for. Before measurements the step gauge is aligned with an integrated 2D coordinate measuring system. The expanded uncertainty of step gauge calibration is U=\\sqrt{{{(64 nm)}2}+{{(88× {{10}-9}L)}2}} .
Covariant gauges for constrained systems
International Nuclear Information System (INIS)
Gogilidze, S.A.; Khvedelidze, A.M.; Pervushin, V.N.
1995-01-01
The method of constructing of extended phase space for singular theories which permits the consideration of covariant gauges without the introducing of a ghost fields, is proposed. The extension of the phase space is carried out by the identification of the initial theory with an equivalent theory with higher derivatives and applying to it the Ostrogradsky method of Hamiltonian description. 7 refs
Interfaces in hot gauge theory
Bronoff, S.
1996-01-01
The string tension at low T and the free energy of domain walls at high T can be computed from one and the same observable. We show by explicit calculation that domain walls in hot Z(2) gauge theory have good thermodynamical behaviour. This is due to roughening of the wall, which expresses the restoration of translational symmetry.
Experimental tests of gauge theories
International Nuclear Information System (INIS)
Haidt, D.
1984-11-01
This series of five lectures is intended to provide the experimental basis to the theoretical courses on gauge symmetries delivered by C. Jarlskog and R. Petronzio. The framework is the standard model. The experimental material is taken mainly from lepton-hadron and e + e - -experiments. (orig./HSI)
Gauged multisoliton baby Skyrme model
Samoilenka, A.; Shnir, Ya.
2016-03-01
We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.
Gauge unification of fundamental forces
International Nuclear Information System (INIS)
Salam, A.
1980-02-01
After having reviewed briefly the last twenty years' progress in the theory of unification, with the twin aspects of development of a gauge theory of basic interactions linked with internal symmetry and the spontaneous breaking of these symmetries, the Nobel prize winners have summarized the present situation and the immediate problems. At the end, an extrapolation of the future is also given
Singlets of fermionic gauge symmetries
Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.
1989-01-01
We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and Îº-symmetry and
Gauge theory and elementary particles
International Nuclear Information System (INIS)
Zwirn, H.
1982-01-01
The present orientation of particle physics, founded on local gauge invariance theories and spontaneous symmetry breaking is described in a simple formalism. The application of these ideas to the latest theories describing electromagnetic and weak interactions (Glashow, Weinberg, Salam models) and strong interactions, quantum chromodynamics, is presented so as to give a general picture of the mechanisms subtending these theories [fr
Gauge symmetries, topology, and quantisation
International Nuclear Information System (INIS)
Balachandran, A.P.
1994-01-01
The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem
Burby, Joshua; Brizard, Alain
2017-10-01
Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).
New gauged N = 8, D = 4 supergravities
International Nuclear Information System (INIS)
Hull, C M
2003-01-01
New gaugings of four-dimensional N = 8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N = 2 supersymmetry and in which the gauge group is broken to SU(3) x U(1) 2 . Previous gaugings used the form of the ungauged action which is invariant under a rigid SL (8,R) symmetry and promoted a 28-dimensional subgroup (SO(8), SO(p, 8 - p) or the non-semi-simple contraction CSO(p, q, 8 - p - q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU*(8) instead of SL (8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p, 8 - 2p) groups, denoted as CSO*(2p, 8 - 2p), and the new theories have a rigid SU(2) symmetry. The five-dimensional gauged N = 8 supergravities are dimensionally reduced to D = 4. The D = 5, SO(p, 6 - p) gauge theories reduce, after a duality transformation, to the D = 4, CSO(p, 6 - p, 2) gauging while the SO*(6) gauge theory reduces to the D = 4, CSO*(6, 2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualized to forms with different gauge groups
Dynamical supersymmetry breaking and gauge anomalies
International Nuclear Information System (INIS)
Zhang, H.
1991-01-01
Some aspects of supersymmetric gauge theories are discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possible Z 2 global gauge anomaly in extended supersymmetric SO(10) (or spin (10)) gauge theories in D=10 dimensions containing additional Weyl fermions in a spinor representation of SO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories are Z 2 global gauge anomalies for extended supersymmetric SP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation of SP(2N) with an odd 2nd-order Dynkin index. (orig.)
Rose, S.; Peters, N.E.
2001-01-01
For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less-urbanized and non-urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: In the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline-rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less-urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: Values were 0.54 for the two Blue Ridge streams. 0.37 for the four middle Piedmont streams (near Atlanta), and 0.28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater then peak flows for the other stream. The storm recession period for the urban stream was 1-2 days less than that for the other streams and the recession was characterized by a 2-day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less-urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater
A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction
Danandeh Mehr, Ali; Kahya, Ercan
2017-06-01
Genetic programming (GP) is able to systematically explore alternative model structures of different accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological system identification has been recognized in recent studies. However, selecting a parsimonious (accurate and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model for single-station streamflow prediction. The three main components of the approach that take us from observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and, eventually simplification component exploits Pareto front plot to select a parsimonious model through an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP, MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy importance of being applied in practice. In addition, the approach allows the user to enter human insight into the problem to examine evolved models and pick the best performing programs out for further analysis.
In Brief: Online database for instantaneous streamflow data
Showstack, Randy
2007-11-01
Access to U.S. Geological Survey (USGS) historical instantaneous streamflow discharge data, dating from around 1990, is now available online through the Instantaneous Data Archive (IDA), the USGS announced on 14 November. In this new system, users can find streamflow information reported at the time intervals at which it is collected, typically 15-minute to hourly intervals. Although instantaneous data have been available for many years, they were not accessible through the Internet. Robert Hirsch, USGS Associate Director of Water, said, ``A user-friendly archive of historical instantaneous streamflow data is important to many different users for such things as floodplain mapping, flood modeling, and estimating pollutant transport.''The site currently has about 1.5 billion instantaneous data values from 5500 stream gages in 26 states. The number of states and stream gages with data will continue to increase, according to the USGS. For more information, visit the Web site: http://ida.water.usgs.gov/ida/.
Orthogonal stack of global tide gauge sea level data
Trupin, A.; Wahr, J.
1990-01-01
Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.
Gauge theories as theories of spontaneous breakdown
International Nuclear Information System (INIS)
Ivanov, E.A.; Ogievetsky, V.I.
1976-01-01
Any gauge theory is proved to arise from spontaneous breakdown of symmetry under certain infinite parameter group, the corresponding gauge field being the Goldstone field by which this breakdown is accompanied
Notes on gauge theory and gravitation
International Nuclear Information System (INIS)
Wallner, R.P.
1981-01-01
In order to investigate whether Einstein's general relativity theory (GRT) fits into the general scheme of a gauge theory, first the concept of a (classical) gauge theory is outlined in an introductionary spacetime approach. Having thus fixed the notation and the main properties of gauge fields, GRT is examined to find out what the gauge potentials and the corresponding gauge group might be. In this way the possibility of interpreting GRT as a gauge theory of the 4-dimensional translation group T(4) = (R 4 , +), and where the gauge potentials are incorporated in a T(4)-invariant way via orthonormal anholonomic basis 1-forms is considered. To include also the spin aspect a natural extension of GRT is given by gauging also the Lorentz group, whereby a Riemann-Cartan spacetime (U 4 -spacetime) comes into play. (Auth.)
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Calibration of pressure gauge for Cherenkov detector
Saponjic, Nevena
2013-01-01
Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.
Introduction to gauge theories of electroweak interactions
International Nuclear Information System (INIS)
Ecker, G.
1982-01-01
The author presents an introduction to electroweak gauge theories. Emphasis is placed on the properties of a general gauge theory. The standard model is discussed as the simplest example to illustrate these properties. (G.T.H.)
Gauge-invariant cosmological density perturbations
International Nuclear Information System (INIS)
Sasaki, Misao.
1986-06-01
Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)
Estimating Selected Streamflow Statistics Representative of 1930-2002 in West Virginia
Wiley, Jeffrey B.
2008-01-01
Regional equations and procedures were developed for estimating 1-, 3-, 7-, 14-, and 30-day 2-year; 1-, 3-, 7-, 14-, and 30-day 5-year; and 1-, 3-, 7-, 14-, and 30-day 10-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the 1-day, 3-year and 4-day, 3-year biologically based low-flow frequency values; the U.S. Environmental Protection Agency harmonic-mean flows; and the 10-, 25-, 50-, 75-, and 90-percent flow-duration values. Regional equations were developed using ordinary least-squares regression using statistics from 117 U.S. Geological Survey continuous streamflow-gaging stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia - North, South-Central, and Eastern Panhandle - were determined. Drainage area, precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. Estimating procedures are presented for determining statistics at a gaging station, a partial-record station, and an ungaged location. Examples of some estimating procedures are presented.
Multi-step contrast sensitivity gauge
Quintana, Enrico C; Thompson, Kyle R; Moore, David G; Heister, Jack D; Poland, Richard W; Ellegood, John P; Hodges, George K; Prindville, James E
2014-10-14
An X-ray contrast sensitivity gauge is described herein. The contrast sensitivity gauge comprises a plurality of steps of varying thicknesses. Each step in the gauge includes a plurality of recesses of differing depths, wherein the depths are a function of the thickness of their respective step. An X-ray image of the gauge is analyzed to determine a contrast-to-noise ratio of a detector employed to generate the image.
Noncommutative gauge theory for Poisson manifolds
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de
2000-09-25
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.
Noncommutative gauge theory for Poisson manifolds
International Nuclear Information System (INIS)
Jurco, Branislav; Schupp, Peter; Wess, Julius
2000-01-01
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem
Parameter space of general gauge mediation
International Nuclear Information System (INIS)
Rajaraman, Arvind; Shirman, Yuri; Smidt, Joseph; Yu, Felix
2009-01-01
We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.
Theorems for asymptotic safety of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-06-15
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)
Analytic stochastic regularization: gauge and supersymmetry theories
International Nuclear Information System (INIS)
Abdalla, M.C.B.
1988-01-01
Analytic stochastic regularization for gauge and supersymmetric theories is considered. Gauge invariance in spinor and scalar QCD is verified to brak fown by an explicit one loop computation of the two, theree and four point vertex function of the gluon field. As a result, non gauge invariant counterterms must be added. However, in the supersymmetric multiplets there is a cancellation rendering the counterterms gauge invariant. The calculation is considered at one loop order. (author) [pt
Consistent and efficient processing of ADCP streamflow measurements
Mueller, David S.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan
2016-01-01
The use of Acoustic Doppler Current Profilers (ADCPs) from a moving boat is a commonly used method for measuring streamflow. Currently, the algorithms used to compute the average depth, compute edge discharge, identify invalid data, and estimate velocity and discharge for invalid data vary among manufacturers. These differences could result in different discharges being computed from identical data. Consistent computational algorithm, automated filtering, and quality assessment of ADCP streamflow measurements that are independent of the ADCP manufacturer are being developed in a software program that can process ADCP moving-boat discharge measurements independent of the ADCP used to collect the data.
An environmental streamflow assessment for the Santiam River basin, Oregon
Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.
2012-01-01
The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual
Downscaling of GCM forecasts to streamflow over Scandinavia
DEFF Research Database (Denmark)
Nilsson, P.; Uvo, C.B.; Landman, W.A.
2008-01-01
flows. The technique includes model output statistics (MOS) based on a non-linear Neural Network (NN) approach. Results show that streamflow forecasts from Global Circulation Model (GCM) predictions, for the Scandinavia region are viable and highest skill values were found for basins located in south......A seasonal forecasting technique to produce probabilistic and deterministic streamflow forecasts for 23 basins in Norway and northern Sweden is developed in this work. Large scale circulation and moisture fields, forecasted by the ECHAM4.5 model 4 months in advance, are used to forecast spring...
2010-04-01
... or warehouseman; and (j) Gauge data: (1) Package identification, tank number, volumetric or weight... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gauge record. 19.768... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Records and Reports Other Records § 19.768 Gauge...
Some formal problems in gauge theories
International Nuclear Information System (INIS)
Magpantay, J.A.
1980-01-01
The concerns of this thesis are the problems due to the extra degrees of freedom in gauge-invariant theories. Since gauge-invariant Lagrangians are singular, Dirac's consistency formalism and Fadeev's extension are first reviewed. A clarification on the origin of primary constraints is given, and some of the open problems in singular Lagrangian theory are discussed. The criteria in choosing a gauge, i.e., attainability, maintainability and Poincare invariance are summarized and applied to various linear gauges. The effects of incomplete removal of all gauge freedom on the criteria for gauge conditions are described. A simple example in point mechanics that contains some of the features of gauge field theories is given. Finally, we describe a method of constructing gauge-invariant variables in various gauge field theories. For the Abelian theory, the gauge-invariant, transverse potential and Dirac's gauge-invariant fermion field was derived. For the non-Abelian case we introduce a local set of basis vectors and gauge transformations are interpreted as rotations of the basis vectors introduced. The analysis leads to the reformulation of local SU(2) field theory in terms of path-dependent U(1) x U(1) x U(1). However, the analysis fails to include the matter fields as of now
Gaugings at angles from orientifold reductions
International Nuclear Information System (INIS)
Roest, Diederik
2009-01-01
We consider orientifold reductions to N= 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter vacua. We show how such gaugings at angles generically arise in orientifold reductions.
Gauge theories and their superspace quantization
International Nuclear Information System (INIS)
Falck, N.K.
1984-01-01
In this thesis the mathematical formalism for gauge theory is treated together with its extensions to supersymmetry. After a description of the differential calculus in superspace, gauge theories at the classical level are considered. Then the superspace quantization of gauge theories is described. (HSI)
The gauge technique in supersymmetric QED2
Roo, M. de; Steringa, J.J.
1988-01-01
We construct an extension of the gauge technique to two-dimensional supersymmetric gauge theories. This involves a derivation of the spectral representation of a scalar superpropagator in two dimensions. We apply the method to the massive supersymmetric Schwinger model. In the case that the gauge
Gauge fixing problem in the conformal QED
International Nuclear Information System (INIS)
Ichinose, Shoichi
1986-01-01
The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Takle, Eugene S.; Jha, Manoj; Lu, Er; Arritt, Raymond W.; Gutowski, William J. [Iowa State Univ. Ames, IA (United States)
2010-06-15
We use Soil and Water Assessment Tool (SWAT) when driven by observations and results of climate models to evaluate hydrological quantities, including streamflow, in the Upper Mississippi River Basin (UMRB) for 1981-2003 in comparison to observed streamflow. Daily meteorological conditions used as input to SWAT are taken from (1) observations at weather stations in the basin, (2) daily meteorological conditions simulated by a collection of regional climate models (RCMs) driven by reanalysis boundary conditions, and (3) daily meteorological conditions simulated by a collection of global climate models (GCMs). Regional models used are those whose data are archived by the North American Regional Climate Change Assessment Program (NARCCAP). Results show that regional models correctly simulate the seasonal cycle of precipitation, temperature, and streamflow within the basin. Regional models also capture interannual extremes represented by the flood of 1993 and the dry conditions of 2000. The ensemble means of both the GCM-driven and RCM-driven simulations by SWAT capture both the timing and amplitude of the seasonal cycle of streamflow with neither demonstrating significant superiority at the basin level. (orig.)
Smith, Kirk P.
2016-05-03
Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per
Smith, Kirk P.
2014-01-01
Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected
Smith, Kirk P.
2013-01-01
Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were
Smith, Kirk P.
2018-05-11
Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91
International Nuclear Information System (INIS)
Cawte, H.; Philpott, E.F.
1980-01-01
The object is to provide a method of operating a dual purpose power station so that the steam supply system is operated at a high load factor. The available steam not required for electricity generation is used to provide process heat and the new feature is that the process plant capacity is determined to make the most economic use of the steam supply system, and not to match the passout capacity of the turbine of the turbogenerator. The product of the process plant should, therefore, be capable of being stored. A dual-purpose power station with a nuclear-powered steam source, turbogenerating means connected to the steam source and steam-powered process plant susceptible to wide variation in its rate of operation is described. (U.K.)
M. Safeeq; G.E. Grant; S.L. Lewis; M.G. Kramer; B. Staab
2014-01-01
Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most regional-scale assessments of climate change impacts on streamflow use downscaled temperature and precipitation projections from general circulation...
Gauge theory of glass transition
International Nuclear Information System (INIS)
Vasin, Mikhail
2011-01-01
A new analytical approach for the description of the glass transition in a frustrated system is suggested. The theory is based on the non-equilibrium dynamics technique, and takes into account the interaction of the local order field with the massive gauge field, which describes frustration-induced plastic deformation. The glass transition is regarded as a phase transition interrupted because of the premature critical slowing-down of one of the degrees of freedom caused by the frustrations. It is shown that freezing of the system appears when the correlation length and relaxation time of the gauge field diverge. The Vogel–Fulcher–Tammann relation for the transition kinetics and the critical exponent for the nonlinear susceptibility, 2.5∼ t correlation function dependence on time, and explains the boson peak appearance on this curve. In addition, the function of the glass transition temperature value with cooling rate is derived; this dependence fully conforms with known experimental data
Energy Technology Data Exchange (ETDEWEB)
Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-03-15
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, D.; Love, A.
1986-01-01
This book provides a postgraduate level introduction to gauge field theory entirely from a path integral standpoint without any reliance on the more traditional method of canonical quantisation. The ideas are developed by quantising the self-interacting scalar field theory, and are then used to deal with all the gauge field theories relevant to particle physics, quantum electrodynamics, quantum chromodynamics, electroweak theory, grand unified theories, and field theories at non-zero temperature. The use of these theories to make precise experimental predictions requires the development of the renormalised theories. This book provides a knowledge of relativistic quantum mechanics, but not of quantum field theory. The topics covered form a foundation for a knowledge of modern relativistic quantum field theory, providing a comprehensive coverage with emphasis on the details of actual calculations rather than the phenomenology of the applications
Gauge invariant fractional electromagnetic fields
International Nuclear Information System (INIS)
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Weak interactions and gauge theories
International Nuclear Information System (INIS)
Gaillard, M.K.
1979-12-01
The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and √(5/3)g' of SU(3)/sub c/ x SU(2) 2 x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and it takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
International Nuclear Information System (INIS)
Torres del Castillo, G.F.; Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 Mexico, D. F., Mexico)
1987-01-01
It is shown that in an algebraically special space-time that admits a congruence of null strings, the Yang--Mills equations with sources reduce to a pair of nonlinear first-order differential equations for two matrices, provided that the gauge field is aligned with the congruence. In the case where the current is tangent to the null strings, the gauge field is determined by a matrix potential that has to satisfy a second-order differential equation with quadratic nonlinearities. As an example of this case, the Yang--Mills--Weyl equations are reduced, assuming that the multiplet of Weyl neutrino fields are also aligned with the congruence, and a reduced form of the Einstein--Yang--Mills--Weyl equations is also given
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another
International Nuclear Information System (INIS)
Djouadi, A.; Leike, A.; Riemann, T.; Schaile, D.; Verzegnassi, C.
1991-12-01
We analyze signals of additional neutral gauge bosons originating from E 6 and Left-Right models, at a future e + e - collider with 500 GeV c.m. energy. Radiative corrections as well as the experimental situation are taken into account. We show that masses considerably higher than the total energy can be probed, and that a discrimination between theoretical models is possible. (orig.)
BROOKHAVEN: Lattice gauge theory symposium
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-12-15
Originally introduced by Kenneth Wilson in the early 70s, the lattice formulation of a quantum gauge theory became a hot topic of investigation after Mike Creutz, Laurence Jacobs and Claudio Rebbi demonstrated in 1979 the feasibility of meaningful computer simulations. The initial enthusiasm led gradually to a mature research effort, with continual attempts to improve upon previous results, to develop better computational techniques and to find new domains of application.
Dilation operator in gauge theories
International Nuclear Information System (INIS)
Galayda, J.
1984-01-01
The electromagnetic field is expanded in a series of O(4) eigenstates of total spin, and quantized by specifying commutators on surfaces of constant x/sub μ/x/sup μ/ = R 2 in four-dimensional Euclidean space. It is demonstrated that, under an arbitrary gauge transformation, some of the O(4) eigenstates are invariant; these gauge-invariant states are labeled by SU(2)xSU(2) total (orbital plus internal) spin quantum numbers (A,B) and with Anot =B. Only these gauge-invariant states are nontrivial in the absence of sources, and are quantized. The leading-twist quantum states of the dilation field theory contain the minimum number of these dilation photons. The remaining spin degrees of freedom of the electromagnetic field are most simply written as a function of the form partial/sub μ/phi(x)+x/sub μ/psi(x)/R 2 . phi(x) is obviously devoid of physics while psi(x) is a classical field propagating between radial projections of two electric currents x/sub μ/ J/sup μ/(x) and y/sub μ/ J/sup μ/(y) only if x/sub μ/ x/sup μ/ = y/sub μ/ y/sup μ/. The quantization procedure described herein may be applied to non-Abelian theories. The procedure does not lead to a gauge-invariant decomposition of a non-Abelian field, but the identification of leading-twist quantum states is preserved in the zero-coupling limit
Topological methods in gauge theory
International Nuclear Information System (INIS)
Sarukkai, S.R.
1992-01-01
The author begins with an overview of the important topological methods used in gauge theory. In the first chapter, the author discusses the general structure of fiber bundles and associated mathematical concepts and briefly discuss their application in gauge theory. The second chapter deals with the study of instantons in both gauge and gravity theories. These self-dual solutions are presented. This chapter is also a broad introduction to certain topics in gravitational physics. Gravity and gauge theory are unified in Kaluza-Klein theory as discussed in the third chapter. Of particular interest is the physics of the U(1) bundles over non-trivial manifolds. The radius of the fifth dimension is undetermined classically in the Kaluza-Klein theory. A mechanism is described using topological information to derive the functional form of the radius of the fifth dimension and show that it is possible classically to derive expressions for the radius as a consequence of topology. The behavior of the radius is dependent on the information present in the base metric. Results are computed for three gravitational instantons. Consequences of this mechanism are discussed. The description is studied of instantons in terms of projector valued fields and universal bundles. The results of the previous chapter and this are connected via the study of universal bundles. Projector valued transformations are defined and their consequences discussed. With the solutions of instantons in this formalism, it is shown explicitly that there can be solutions which allow for a Sp(n) instanton to be transformed to a Sp(k) instanton, thus showing that there can be interpolations which carry one instanton with a rank n to another characterized by rank k with different topological numbers
Liouville action in cone gauge
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1989-01-01
The effective action of the conformally invariant field theory in the curved background space is considered in the light cone gauge. The effective potential in the classical background stress is defined as the Legendre transform of the Liouville action. This potential is tightly connected with the sl(2) current algebra. The series of the covariant differential operators is constructed and the anomalies of their determinants are reduced to this effective potential. 7 refs
Gauge invariance and Nielsen identities
International Nuclear Information System (INIS)
Lima, A.F. de; Bazaia, D.
1989-01-01
The one-loop contribution to the effective potential and mass are computed within the context of scalar electrodynamics for the class of general R gauges in the MS scheme. These calculations are performed in order to construct a non-trivial verification of the corresponding Nielsen identities within the context of the Higgs model. Some brief comments on the Coleman-Weinberg model are also included. (author) [pt
Stochastic quantization and gauge invariance
International Nuclear Information System (INIS)
Viana, R.L.
1987-01-01
A survey of the fundamental ideas about Parisi-Wu's Stochastic Quantization Method, with applications to Scalar, Gauge and Fermionic theories, is done. In particular, the Analytic Stochastic Regularization Scheme is used to calculate the polarization tensor for Quantum Electrodynamics with Dirac bosons or Fermions. The regularization influence is studied for both theories and an extension of this method for some supersymmetrical models is suggested. (author)
Differential renormalization of gauge theories
International Nuclear Information System (INIS)
Aguila, F. del; Perez-Victoria, M.
1998-01-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author)
Differential renormalization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)
1998-10-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab
Flow-gauging structures in South African rivers Part 2: Calibration ...
African Journals Online (AJOL)
Accurate hydrological information is of paramount importance in a dry country such as South Africa. Flow measurements in rivers are complicated by the high variability of flows as well as by sediment loads and debris. It has been found necessary to modify and even substitute certain internationally accepted gauging station ...
Calibration Of A Nucleonic Density Gauge For Molasses Brie Control In Vacuum Pan Operation
International Nuclear Information System (INIS)
Griffith, J.M.; Cuesta, J.; Laria, J.; Desdin, L.F.
1999-01-01
In order to establish a strict control of the molasses to be feed to the vacuum pan station during industrial evaluations of this facility in the next season, the calibration of a prototype of nucleonic density gauge, constructed in close collaboration between CEADEN and ICINAZ has been performed. Some preliminary results of this complementary task of the project are described
Calibration of a nucleonic density gauge for molasses brix control in vacuum pan operation
International Nuclear Information System (INIS)
Griffith, J.M.; Laria, J.; Desdin, L.F; Cuesta, J.
1999-01-01
In order to establish a strict control of the molasses to be feed to the vacuum pan station during industrial evaluations of this facility in the next season, the calibration of a prototype of nucleonic density gauge, constructed in close collaboration between ceaden and icinaz has been performed. Some preliminary results of this complementary task of the project are described
Flow-gauging structures in South African rivers Part 1: An overview
African Journals Online (AJOL)
2007-10-16
Oct 16, 2007 ... to measure discharge; the gauging of stage and the translation of stage into discharge. Various ... station operational earlier than 1900 was established in 1898 on the Breede River near ..... save on concrete. If the structure is ...
Noncommutative gauge theories and Kontsevich's formality theorem
International Nuclear Information System (INIS)
Jurco, B.; Schupp, P.; Wess, J.
2001-01-01
The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a 'Mini Seiberg-Witten map' that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor
Perturbative ambiguities in Coulomb gauge QCD
International Nuclear Information System (INIS)
Doust, P.
1987-01-01
The naive Coulomb gauge Feynman rules in non-abelian gauge theory give rise to ambiguous integrals, in addition to the usual ultraviolet divergences. Generalizing the work of Cheng and Tsai, these ambiguities are resolved to all orders in perturbation theory, by defining a gauge that interpolates smoothly between the Feynman gauge and the Coulomb gauge. The extra terms V 1 +V 2 of Christ and Lee are identified with certain two-loop ambiguous terms. However, there still seem to be unsolved problems connected with renormalisation. copyright 1987 Academic Press, Inc
Invariant structures in gauge theories and confinement
International Nuclear Information System (INIS)
Prokhorov, L.V.; Shabanov, S.V.
1991-01-01
The problem of finding all gauge invariants is considered in connection with the problem of confinement. Polylocal gauge tensors are introduced and studied. It is shown (both in physical and pure geometrical approaches) that the path-ordered exponent is the only fundamental bilocal gauge tensor, which means that any irreducible polylocal gauge tensor is built of P-exponents and local tensors (matter fields). The simplest invariant structures in electrodynamics, chromodynamics and a theory with the gauge group SU(2) are considered separately. 23 refs.; 2 figs
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
Gauge Theories in the Twentieth Century
2001-01-01
By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups
Systematics of higher-spin gauge fields
International Nuclear Information System (INIS)
de Wit, B.; Freedman, D.Z.
1980-01-01
Free-field theories for symmetric tensor and tensor-spinor gauge fields have recently been obtained which describe massless particles of arbitrary integer or half-integer spin. An independent discussion of these field theories is given here, based on a hierarchy of generalized Christoffel symbols with simple gauge transformation properties. The necessity of certain constraints on gauge fields and parameters is easily seen. Wave equations and Lagrangians are expressed in terms of the Christoffel symbols, and the independent modes of the system are counted in covariant gauges. Minimal-coupling inconsistency and a combined system of higher-spin boson gauge fields interacting with relativistic particles is discussed
International Nuclear Information System (INIS)
Choi, K.; Kaplan, D.B.; Nelson, A.E.
1993-01-01
Conventional solutions to the strong CP problem all require the existence of global symmetries. However, quantum gravity may destroy global symmetries, making it hard to understand why the electric dipole moment of the neutron (EDMN) is so small. We suggest here that CP is actually a discrete gauge symmetry, and is therefore not violated by quantum gravity. We show that four-dimensional CP can arise as a discrete gauge symmetry in theories with dimensional compactification, if the original number of Minkowski dimensions equals 8k+1, 8k+2 or 8k+3, and if there are certain restrictions on the gauge group; these conditions are met by superstrings. CP may then be broken spontaneously below 10 9 GeV, explaining the observed CP violation in the kaon system without inducing a large EDMN. We discuss the phenomenology of such models, as well as the peculiar properties of cosmic 'SP strings' which could be produced at the compactification scale. Such strings have the curious property that a particle carried around the string is turned into its CP conjugate. A single CP string renders four-dimensional space-time nonorientable. (orig.)
Electromagnetic potentials without gauge transformations
International Nuclear Information System (INIS)
Chubykalo, A; Espinoza, A; Alvarado Flores, R
2011-01-01
In this paper, we show that the use of the Helmholtz theorem enables the derivation of uniquely determined electromagnetic potentials without the necessity of using gauge transformation. We show that the electromagnetic field comprises two components, one of which is characterized by instantaneous action at a distance, whereas the other propagates in retarded form with the velocity of light. In our attempt to show the superiority of the new proposed method to the standard one, we argue that the action-at-a-distance components cannot be considered as a drawback of our method, because the recommended procedure for eliminating the action at a distance in the Coulomb gauge leads to theoretical subtleties that allow us to say that the needed gauge transformation is not guaranteed. One of the theoretical consequences of this new definition is that, in addition to the electric E and magnetic B fields, the electromagnetic potentials are real physical quantities. We show that this property of the electromagnetic potentials in quantum mechanics is also a property of the electromagnetic potentials in classical electrodynamics.
A laboratory evaluation of the influence of weighing gauges performance on extreme events statistics
Colli, Matteo; Lanza, Luca
2014-05-01
The effects of inaccurate ground based rainfall measurements on the information derived from rain records is yet not much documented in the literature. La Barbera et al. (2002) investigated the propagation of the systematic mechanic errors of tipping bucket type rain gauges (TBR) into the most common statistics of rainfall extremes, e.g. in the assessment of the return period T (or the related non-exceedance probability) of short-duration/high intensity events. Colli et al. (2012) and Lanza et al. (2012) extended the analysis to a 22-years long precipitation data set obtained from a virtual weighing type gauge (WG). The artificial WG time series was obtained basing on real precipitation data measured at the meteo-station of the University of Genova and modelling the weighing gauge output as a linear dynamic system. This approximation was previously validated with dedicated laboratory experiments and is based on the evidence that the accuracy of WG measurements under real world/time varying rainfall conditions is mainly affected by the dynamic response of the gauge (as revealed during the last WMO Field Intercomparison of Rainfall Intensity Gauges). The investigation is now completed by analyzing actual measurements performed by two common weighing gauges, the OTT Pluvio2 load-cell gauge and the GEONOR T-200 vibrating-wire gauge, since both these instruments demonstrated very good performance under previous constant flow rate calibration efforts. A laboratory dynamic rainfall generation system has been arranged and validated in order to simulate a number of precipitation events with variable reference intensities. Such artificial events were generated basing on real world rainfall intensity (RI) records obtained from the meteo-station of the University of Genova so that the statistical structure of the time series is preserved. The influence of the WG RI measurements accuracy on the associated extreme events statistics is analyzed by comparing the original intensity
Monthly Mean Precipitation Sums at Russian Arctic Stations, 1966-1990
National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains monthly mean precipitation sums from Russian arctic stations. Precipitation measurements were acquired using a Tretyakov precipitation gauge....
Tensor gauge condition and tensor field decomposition
Zhu, Ben-Chao; Chen, Xiang-Song
2015-10-01
We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.
Adding gauge fields to Kaplan's fermions
International Nuclear Information System (INIS)
Blum, T.; Kaerkkaeinen, L.
1994-01-01
We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U(1) gauge theory we use an inhomogeneous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field. (orig.)
A lattice formulation of chiral gauge theories
International Nuclear Information System (INIS)
Bodwin, G.T.
1995-12-01
The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration
Shallow and Deep Groundwater Contributions to Ephemeral Streamflow Generation
Zimmer, M. A.; McGlynn, B. L.
2016-12-01
Our understanding of streamflow generation processes in low relief, humid landscapes is limited. To address this, we utilized an ephemeral-to-intermittent drainage network in the Piedmont region of the United States to gain new understanding about the drivers of ephemeral streamflow generation, stream-groundwater interactions, and longitudinal expansion and contraction of the stream network. We used hydrometric and chemical data collected within zero through second order catchments to characterize streamflow and overland, shallow soil, and deep subsurface flow across landscape positions. Results showed bi-directionality in stream-groundwater gradients that were dependent on catchment storage state. This led to annual groundwater recharge magnitudes that were similar to annual streamflow. Perched shallow and deep water table contributions shifted dominance with changes in catchment storage state, producing distinct stream hydrograph recession constants. Active channel length versus runoff followed a consistent relationship independent of storage state, but exhibited varying discharge-solute hysteresis directions. Together, our results suggest that temporary streams can act as both important groundwater recharge and discharge locations across the landscape, especially in this region where ephemeral drainage densities are among the highest recorded. Our results also highlight that the internal catchment dynamics that generate temporary streams play an important role in dictating biogeochemical fluxes at the landscape scale.
Response of streamflow to projected climate change scenarios in an ...
Indian Academy of Sciences (India)
Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios foran eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of ArunachalPradesh ...
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
A gauge-invariant reorganization of thermal gauge theory
International Nuclear Information System (INIS)
Su, Nan
2010-01-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m D /T, m f /T and e 2 , where m D and m f are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ∝ 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m D /T and g 2 , where m D is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T ∝ 2 - 3 T c . The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Breault, Robert F.; Campbell, Jean P.
2010-01-01
Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter
Breault, Robert F.; Campbell, Jean P.
2010-01-01
Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter
Breault, Robert F.; Campbell, Jean P.
2010-01-01
Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per
Breault, Robert F.; Campbell, Jean P.
2010-01-01
Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter
Richey, A. S.; Richey, J. E.; Tan, A.; Liu, M.; Adam, J. C.; Sokolov, V.
2015-12-01
Central Asia presents a perfect case study to understand the dynamic, and often conflicting, linkages between food, energy, and water in natural systems. The destruction of the Aral Sea is a well-known environmental disaster, largely driven by increased irrigation demand on the rivers that feed the endorheic sea. Continued reliance on these rivers, the Amu Darya and Syr Darya, often place available water resources at odds between hydropower demands upstream and irrigation requirements downstream. A combination of tools is required to understand these linkages and how they may change in the future as a function of climate change and population growth. In addition, the region is geopolitically complex as the former Soviet basin states develop management strategies to sustainably manage shared resources. This complexity increases the importance of relying upon publically available information sources and tools. Preliminary work has shown potential for the Variable Infiltration Capacity (VIC) model to recreate the natural water balance in the Amu Darya and Syr Darya basins by comparing results to total terrestrial water storage changes observed from NASA's Gravity Recovery and Climate Experiment (GRACE) satellite mission. Modeled streamflow is well correlated to observed streamflow at upstream gauges prior to the large-scale expansion of irrigation and hydropower. However, current modeled results are unable to capture the human influence of water use on downstream flow. This study examines the utility of a crop simulation model, CropSyst, to represent irrigation demand and GRACE to improve modeled streamflow estimates in the Amu Darya and Syr Darya basins. Specifically we determine crop water demand with CropSyst utilizing available data on irrigation schemes and cropping patterns. We determine how this demand can be met either by surface water, modeled by VIC with a reservoir operation scheme, and/or by groundwater derived from GRACE. Finally, we assess how the
Characteristics and changes of streamflow on the Tibetan Plateau: A review
Directory of Open Access Journals (Sweden)
Lan Cuo
2014-11-01
New hydrological insights for the region: Streamflow follows the monthly patterns of precipitation and temperature in that all peak in May–September. Streamflow changes are affected by climate change and human activities depending on the basins. Streamflow is precipitation dominated in the northern, eastern and southeastern basins. In the central and western basin either melt water or groundwater, or both contributes significantly to streamflow. Human activities have altered streamflow in the lower reaches of the eastern, northern and western basins. Long-term trends in streamflow vary with basins. Outstanding research issues include: (1 What are the linkages between streamflow and climate systems? (2 What are the basin-wide hydrological processes? And (3 What are the cryospheric change impacts on hydrological processes and water balance?
2010-10-01
... § 52.01-110 Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure... 46 Shipping 2 2010-10-01 2010-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST...
Falk, Sarah E.; Anderholm, Scott K.; Hafich, Katya A.
2013-01-01
, Horse Lake Creek, and Willow Creek watersheds, which are underlain mostly by Cretaceous-aged marine shale, was compositionally similar and had large concentrations of sulfate relative to the other streams in the study area, though the water from the Navajo River had lower specific-conductance values than did the water from Horse Lake Creek above Heron Reservoir and Willow Creek above Azotea Creek. Generally, surface-water quality varied with streamflow conditions throughout the year. Streamflow in spring and summer is generally a mixture of base flow (the component of streamflow derived from groundwater discharged to the stream channel) diluted with runoff from snowmelt and precipitation events, whereas streamflow in fall and winter is generally solely base flow. Major- and trace-element concentrations in the streams sampled were lower than U.S. Environmental Protection Agency primary and secondary drinking-water standards and New Mexico Environment Department surface-water standards for the streams. In general, years with increased annual discharge, compared to years with decreased annual discharge, had a smaller percentage of discharge in March, a larger percentage of discharge in June, an interval of discharge derived from snowmelt runoff that occurred later in the year, and a larger discharge in June. Additionally, years with increased annual discharge generally had a longer duration of runoff, and the streamflow indicators occurred at dates later in the year than the years with less snowmelt runoff. Additionally, the seasonal distribution of streamflow was more strongly controlled by the change in the amount of annual discharge than by changes in streamflow over time. The variation of streamflow conditions over time at one streamflow-gaging station in the study area, Navajo River at Banded Peak Ranch, was not significantly monotonic over the period of record with a Kendall’s tau of 0.0426 and with a p-value of 0.5938 for 1937 to 2009 (a trend was considered
Unitary Representations of Gauge Groups
Huerfano, Ruth Stella
I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
Koltun, G.F.
2015-01-01
Between July 2013 and June 2014, the U.S. Geological Survey (USGS) made 10 streamflow measurements on the Ohio River about 1.5 miles (mi) downstream from the Hannibal Lock and Dam (near Hannibal, Ohio) and 11 streamflow measurements near the USGS Sardis gage (station number 03114306) located approximately 2.4 mi upstream from Sardis, Ohio. The measurement results were used to assess the accuracy of modeled or computed instantaneous streamflow time series created and supplied by the USGS, U.S. Army Corps of Engineers (USACE), and National Weather Service (NWS) for the Ohio River at Hannibal Lock and Dam and (or) at the USGS streamgage. Hydraulic or hydrologic models were used to create the modeled time series; index-velocity methods or gate-opening ratings coupled with hydropower operation data were used to create the computed time series. The time step of the various instantaneous streamflow time series ranged from 15 minutes to 24 hours (once-daily values at 12:00 Coordinated Universal Time [UTC]). The 15-minute time-series data, computed by the USGS for the Sardis gage, also were downsampled to 1-hour and 24-hour time steps to permit more direct comparisons with other streamflow time series.
Gauge invariant fractional electromagnetic fields
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
International Nuclear Information System (INIS)
Jacob, Maurice
1976-01-01
The charm is a new elementary constituent introduced in the SU(4) framework to explain the properties of the psi particles; its introduction definites the essential properties of the four quarks, u, d, s, c in the SU(4) framework. The discovery of charmed particles (two mesons four quarks u,d,s,c in the SU(4) framework. The discovery of charmed particles (two mesons and one baryons) confirms a series of previsions that derive from the introduction of gauge theories: weak neutral currents, W meson, unification of weak interactions and electrodynamics. Beyonds charm the introduction of colored quarks and gluon exchanges gives to strong interactions the simplicity of electrodynamics [fr
Lima, Aranildo R.; Hsieh, William W.; Cannon, Alex J.
2017-12-01
In situations where new data arrive continually, online learning algorithms are computationally much less costly than batch learning ones in maintaining the model up-to-date. The extreme learning machine (ELM), a single hidden layer artificial neural network with random weights in the hidden layer, is solved by linear least squares, and has an online learning version, the online sequential ELM (OSELM). As more data become available during online learning, information on the longer time scale becomes available, so ideally the model complexity should be allowed to change, but the number of hidden nodes (HN) remains fixed in OSELM. A variable complexity VC-OSELM algorithm is proposed to dynamically add or remove HN in the OSELM, allowing the model complexity to vary automatically as online learning proceeds. The performance of VC-OSELM was compared with OSELM in daily streamflow predictions at two hydrological stations in British Columbia, Canada, with VC-OSELM significantly outperforming OSELM in mean absolute error, root mean squared error and Nash-Sutcliffe efficiency at both stations.
Puechberty, Rachel; Bechon, Pierre-Marie; Le Coz, Jérôme; Renard, Benjamin
2015-04-01
The French national hydrological services (NHS) manage the production of streamflow time series throughout the national territory. The hydrological data are made available to end-users through different web applications and the national hydrological archive (Banque Hydro). Providing end-users with qualitative and quantitative information on the uncertainty of the hydrological data is key to allow them drawing relevant conclusions and making appropriate decisions. Due to technical and organisational issues that are specific to the field of hydrometry, quantifying the uncertainty of hydrological measurements is still challenging and not yet standardized. The French NHS have made progress on building a consistent strategy to assess the uncertainty of their streamflow data. The strategy consists of addressing the uncertainties produced and propagated at each step of the data production with uncertainty analysis tools that are compatible with each other and compliant with international uncertainty guidance and standards. Beyond the necessary research and methodological developments, operational software tools and procedures are absolutely necessary to the data management and uncertainty analysis by field hydrologists. A first challenge is to assess, and if possible reduce, the uncertainty of streamgauging data, i.e. direct stage-discharge measurements. Interlaboratory experiments proved to be a very efficient way to empirically measure the uncertainty of a given streamgauging technique in given measurement conditions. The Q+ method (Le Coz et al., 2012) was developed to improve the uncertainty propagation method proposed in the ISO748 standard for velocity-area gaugings. Both empirical or computed (with Q+) uncertainty values can now be assigned in BAREME, which is the software used by the French NHS for managing streamgauging measurements. A second pivotal step is to quantify the uncertainty related to stage-discharge rating curves and their application to water level
Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.
2017-12-01
Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.
Gauge field condensation in geometric quantum chromodynamics
International Nuclear Information System (INIS)
Guendelman, E.I.
1991-09-01
In odd number of dimensions, it is possible to construct general covariant gauge theories, where the metric is not an independent variable, but local function of the gauge fields. Starting from standardly defined gauge theory, upon functional integration of some variables, we could end up with such moodels. For models with SU(2) and SU(3) symmetry in three dimensions, gauge field condensation take place in the vacuum, which is nevertheless homogeneous and isotropic up to a gauge transformation, provided the space is flat. Introducing Higgs fields that spontaneously break the gauge symmetry, we get a breakdown of the homogenity and isotropy of the vacuum. Finally, we discuss how some of this ideas can be generalized to four and other even dimensions. (author)
Tracking gauge symmetry factorizability on intervals
International Nuclear Information System (INIS)
Ngoc-Khanh Tran
2006-01-01
We track the gauge symmetry breaking pattern by boundary conditions on fifth and higher-dimensional intervals. It is found that, with Dirichlet-Neumann boundary conditions, the Kaluza-Klein decomposition in five-dimension for arbitrary gauge group can always be factorized into that for separate subsets of at most two gauge symmetries, and so is completely solvable. Accordingly, we present a simple and systematic geometric method to unambiguously identify the gauge breaking/mixing content by general set of Dirichlet-Neumann boundary conditions. We then formulate a limit theorem on gauge symmetry factorizability to recapitulate this interesting feature. Albeit the breaking/mixing, a particularly simple check of orthogonality and normalization of fields' modes in effective 4-dim picture is explicitly obtained. An interesting chained-mixing of gauge symmetries in higher dimensions by Dirichlet-Neumann boundary conditions is also explicitly constructed. This study has direct applications to higgsless/GUT model building
Noncommutative induced gauge theories on Moyal spaces
International Nuclear Information System (INIS)
Wallet, J-C
2008-01-01
Noncommutative field theories on Moyal spaces can be conveniently handled within a framework of noncommutative geometry. Several renormalisable matter field theories that are now identified are briefly reviewed. The construction of renormalisable gauge theories on these noncommutative Moyal spaces, which remains so far a challenging problem, is then closely examined. The computation in 4-D of the one-loop effective gauge theory generated from the integration over a scalar field appearing in a renormalisable theory minimally coupled to an external gauge potential is presented. The gauge invariant effective action is found to involve, beyond the expected noncommutative version of the pure Yang-Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic term, which for the noncommutative ψ 4 -theory on Moyal space ensures renormalisability. A class of possible candidates for renormalisable gauge theory actions defined on Moyal space is presented and discussed
Hidden QCD in Chiral Gauge Theories
DEFF Research Database (Denmark)
Ryttov, Thomas; Sannino, Francesco
2005-01-01
The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...
Factorization in QCD in Feynman gauge
International Nuclear Information System (INIS)
Tucci, R.R.
1985-01-01
We present a mass divergence power counting technique for QCD in the Feynman gauge. For the process γ/sup */ → qq, we find the leading regions of integration and show that single diagrams are at worst logarithmically divergent. Using the Weyl representation facilities the γ matrix manipulations necessary for power counting and adds much physical insight. We prove Ward type identities which are needed in the proof of factorization of the Drill Yan process. Previous treatments prove them only for an axial gauge, and the proofs are diagrammatic in nature. We, on the other hand, establish the identities for the Feynman gauge and through symmetry considerations at the Lagrangian level. The strategy is to first derive exact results in a background field gauge and then to show that to leading order in the mass divergences the background field gauge results can be used in the Feynman gauge
Gauge coupling unification in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Lee, H.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics
2006-11-15
We compute the one-loop gauge couplings in six-dimensional non-Abelian gauge theories on the T{sup 2}/Z{sub 2} orbifold with general GUT breaking boundary conditions. For concreteness, we apply the obtained general formulae to the gauge coupling running in a 6D SO(10) orbifold GUT where the GUT group is broken down to the standard model gauge group up to an extra U(1). We find that the one-loop corrections depend on the parity matrices encoding the orbifold boundary conditions as well as the volume and shape moduli of extra dimensions. When the U(1) is broken by the VEV of bulk singlets, the accompanying extra color triplets also affect the unification of the gauge couplings. In this case, the B-L breaking scale is closely linked to the compactification scales for maintaining a success of the gauge coupling unification. (orig.)
Recursive relations for a quiver gauge theory
International Nuclear Information System (INIS)
Park, Jaemo; Sim, Woojoo
2006-01-01
We study the recursive relations for a quiver gauge theory with the gauge group SU(N 1 ) x SU(N 2 ) with bifundamental fermions transforming as (N 1 , N-bar 2 ). We work out the recursive relation for the amplitudes involving a pair of quark and antiquark and gluons of each gauge group. We realize directly in the recursive relations the invariance under the order preserving permutations of the gluons of the first and the second gauge group. We check the proposed relations for MHV, 6-point and 7-point amplitudes and find the agreements with the known results and the known relations with the single gauge group amplitudes. The proposed recursive relation is much more efficient in calculating the amplitudes than using the known relations with the amplitudes of the single gauge group
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Lattices gauge theories in terms of knots
International Nuclear Information System (INIS)
Vecernyes, P.
1989-01-01
Cluster expansion is developed in lattice gauge theories with finite gauge groups in d≥3 dimensions where the clusters are connected (d - 2)-dimensional surfaces which can branch along (d - 3)-cells. The interaction between them has a knot theoretical interpretation. It can be many body linking or knotting self-interaction. For small enough gauge coupling g the authors prove analyticity of the correlation functions in the variable exp(-1/g 2
Renormalization of gauge theories of weak interactions
International Nuclear Information System (INIS)
Lee, B.W.
1973-01-01
The renormalizability of spontaneously broken gauge theories is discussed. A brief outline of the motivation for such an investigation is given, and the manner in which the renormalizability of such theories is proven is described. The renormalizability question of the unbroken gauge theory is considered, and the formulation of a renormalizable perturbation theory of Higgs phenomena (spontaneously broken gauge theories) is considered. (U.S.)
The New Flavor of Higgsed Gauge Mediation
Craig, Nathaniel; McCullough, Matthew; Thaler, Jesse
2012-01-01
Recent LHC bounds on squark masses combined with naturalness and flavor considerations motivate non-trivial sfermion mass spectra in the supersymmetric Standard Model. These can arise if supersymmetry breaking is communicated to the visible sector via new extended gauge symmetries. Such extended symmetries must be spontaneously broken, or confined, complicating the calculation of soft masses. We develop a new formalism for calculating perturbative gauge-mediated two-loop soft masses for gauge...
Problem of ''global color'' in gauge theories
International Nuclear Information System (INIS)
Horvathy, P.A.; Rawnsley, J.H.; UER de Mathematique, Universite de Provence, Marseille, France)
1986-01-01
The problem of ''global color'' (which arose recently in monopole theory) is generalized to arbitrary gauge theories: a subgroup K of the ''unbroken'' gauge group G is implementable iff the gauge bundle reduces to the centralizer of K in G. Equivalent implementations correspond to equivalent reductions. Such an action is an internal symmetry for a given configuration iff the Yang-Mills field reduces also. The case of monopoles is worked out in detail
Probing anomalous gauge boson couplings at LEP
International Nuclear Information System (INIS)
Dawson, S.; Valencia, G.
1994-01-01
We bound anomalous gauge boson couplings using LEP data for the Z → bar ∫∫ partial widths. We use an effective field theory formalism to compute the one-loop corrections resulting from non-standard model three and four gauge boson vertices. We find that measurements at LEP constrain the three gauge boson couplings at a level comparable to that obtainable at LEPII
Gauge-fixing ambiguity and monopole number
International Nuclear Information System (INIS)
Hioki, S.; Miyamura, O.
1991-01-01
Gauge-fixing ambiguities of lattice SU(2) QCD are studied in the maximally abelian and unitary gauges. In the former, we find local maxima of a gauge-fixing function which may correspond to Gribov copies. There is a definite anti-correlation between the number of monopoles and the value of the function. Errors of measured quantities coming from the ambiguity are found to be less than inherent dispersion in the ensemble average. No ambiguity is found in the unitary gauges. (orig.)
Duffin-Kemmer formulation of gauge theories
International Nuclear Information System (INIS)
Okubo, S.; Tosa, Y.
1979-01-01
Gauge theories, including the Yang-Mills theory as well as Einstein's general relativity, are reformulated in first-order differential forms. In this generalized Duffin-Kemmer formalism, gauge theories take very simple forms with only cubic interactions. Moreover, every local gauge transformation, e.g., that of Yang and Mills or Einstein, etc., has an essentially similar form. Other examples comprise a gauge theory akin to the Sugawara theory of currents and the nonlinear realization of chiral symmetry. The octonion algebra is found possibly relevant to the discussion of the Yang-Mills theory
International Nuclear Information System (INIS)
Okun, Lev B
2010-01-01
V A Fock, in 1926, was the first to have the idea of an Abelian gradient transformation and to discover that the electromagnetic interaction of charged particles has a gradient invariance in the framework of quantum mechanics. These transformation and invariance were respectively named Eichtransformation and Eichinvarianz by H Weyl in 1929 (the German verb zu eichen means to gauge). The first non-Abelian gauge theory was suggested by O Klein in 1938; and in 1954, C N Yang and R L Mills rediscovered the non-Abelian gauge symmetry. Gauge invariance is the underlying principle of the current Standard Model of strong and electroweak interactions. (from the history of physics)
Gauge transformations with fractional winding numbers
International Nuclear Information System (INIS)
Abouelsaood, A.
1996-01-01
The role which gauge transformations of noninteger winding numbers might play in non-Abelian gauge theories is studied. The phase factor acquired by the semiclassical physical states in an arbitrary background gauge field when they undergo a gauge transformation of an arbitrary real winding number is calculated in the path integral formalism assuming that a θFF term added to the Lagrangian plays the same role as in the case of integer winding numbers. Requiring that these states provide a representation of the group of open-quote open-quote large close-quote close-quote gauge transformations, a condition on the allowed backgrounds is obtained. It is shown that this representability condition is only satisfied in the monopole sector of a spontaneously broken gauge theory, but not in the vacuum sector of an unbroken or a spontaneously broken non-Abelian gauge theory. It is further shown that the recent proof of the vanishing of the θ parameter when gauge transformations of arbitrary fractional winding numbers are allowed breaks down in precisely those cases where the representability condition is obeyed because certain gauge transformations needed for the proof, and whose existence is assumed, are either spontaneously broken or cannot be globally defined as a result of a topological obstruction. copyright 1996 The American Physical Society
Current status of nucleonic gauges in Portugal
International Nuclear Information System (INIS)
Salgado, J.; Carvalho, F.G.; Manteigas, J.; Oliveira, C.; Goncalves, I.F.; Neves, J.; Cruz, C.
2000-01-01
The nucleonic gauges are largely used in Portugal industry, despite the fact that design and manufacturing of prototypes of nucleonic gauges is rather limited. The modernization of some industrial sectors (cement, paper and civil engineering) has enhanced applications of nucleonic gauges and has created local capability but new legislation tends to restrict further spread of them. The Institute of Nuclear Technology is the only applied research institution developing nucleonic gauges for moisture, thickness and density, and elemental analysis, as well as providing assistance in calibration, safe operation and maintenance of them. (author)
Gauge Coupling Unification with Partly Composite Matter
International Nuclear Information System (INIS)
Gherghetta, Tony
2005-01-01
It is shown how gauge coupling unification can occur in models with partly composite matter. The particle states which are composite only contribute small logarithmns to the running of gauge couplings, while the elementary states contribute the usual large logarithmns. This introduces a new differential running contribution to the gauge couplings from partly composite SU(5) matter multiplets. In particular, for partly supersymmetric models, the incomplete SU(5) elementary matter multiplets restore gauge coupling unification even though the usual elementary gaugino and Higgsino contributions need not be present
Regularization of the light-cone gauge gluon propagator singularities using sub-gauge conditions
Energy Technology Data Exchange (ETDEWEB)
Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E. [Department of Physics, The Ohio State University,191 W Woodruff Ave, Columbus, OH 43210 (United States)
2015-12-21
Perturbative QCD calculations in the light-cone gauge have long suffered from the ambiguity associated with the regularization of the poles in the gluon propagator. In this work we study sub-gauge conditions within the light-cone gauge corresponding to several known ways of regulating the gluon propagator. Using the functional integral calculation of the gluon propagator, we rederive the known sub-gauge conditions for the θ-function gauges and identify the sub-gauge condition for the principal value (PV) regularization of the gluon propagator’s light-cone poles. The obtained sub-gauge condition for the PV case is further verified by a sample calculation of the classical Yang-Mills field of two collinear ultrarelativistic point color charges. Our method does not allow one to construct a sub-gauge condition corresponding to the well-known Mandelstam-Leibbrandt prescription for regulating the gluon propagator poles.
Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.
2015-01-01
This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...
Electromagnetic velocity gauge: use of multiple gauges, time response, and flow perturbations
International Nuclear Information System (INIS)
Erickson, L.M.; Johnson, C.B.; Parker, N.L.; Vantine, H.C.; Weingart, R.C.; Lee, R.S.
1981-01-01
We have developed an in-situ electromagnetic velocity (EMV) gauge system for use in multiple-gauge studies of initiating and detonating explosives. We have also investigated the risetime of the gauge and the manner in which it perturbs a reactive flow. We report on the special precautions that are necessary in multiple gauge experiments to reduce lead spreading, simplify target fabrication problems and minimize cross talk through the conducting explosive. Agreement between measured stress records and calculations from multiple velocity gauge data give us confidence that our velocity gauges are recording properly. We have used laser velocity interferometry to measure the gauge risetime in polymethyl methacrylate (PMMA). To resolve the difference in the two methods, we have examined hydrodynamic and material rate effects. In addition, we considered the effects of shock tilt, electronic response and magntic diffusion on the gauge's response time
Seasonal Patterns of Gastrointestinal Illness and Streamflow along the Ohio River
Directory of Open Access Journals (Sweden)
Elena N. Naumova
2012-05-01
Full Text Available Waterborne gastrointestinal (GI illnesses demonstrate seasonal increases associated with water quality and meteorological characteristics. However, few studies have been conducted on the association of hydrological parameters, such as streamflow, and seasonality of GI illnesses. Streamflow is correlated with biological contamination and can be used as proxy for drinking water contamination. We compare seasonal patterns of GI illnesses in the elderly (65 years and older along the Ohio River for a 14-year period (1991–2004 to seasonal patterns of streamflow. Focusing on six counties in close proximity to the river, we compiled weekly time series of hospitalizations for GI illnesses and streamflow data. Seasonal patterns were explored using Poisson annual harmonic regression with and without adjustment for streamflow. GI illnesses demonstrated significant seasonal patterns with peak timing preceding peak timing of streamflow for all six counties. Seasonal patterns of illness remain consistent after adjusting for streamflow. This study found that the time of peak GI illness precedes the peak of streamflow, suggesting either an indirect relationship or a more direct path whereby pathogens enter water supplies prior to the peak in streamflow. Such findings call for interdisciplinary research to better understand associations among streamflow, pathogen loading, and rates of gastrointestinal illnesses.
Increasing influence of air temperature on upper Colorado River streamflow
Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.
2016-01-01
This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.
Development of channel inspection and gauging apparatus for 235 MWe PHWRs
International Nuclear Information System (INIS)
Parulkar, S.K.; Taneja, R.; Taliyan, S.S.; Singh, Manjit; Govindarajan, G.
1992-01-01
Channel inspection and gauging apparatus is being developed to enable in-service channel inspection and gauging. Phase I apparatus to measure annular gap between pressure tube and calandria tube in a dry channel has been developed. The apparatus consists of a gauging head and a drive mechanism. The gauging head utilities an eddy current probe to measure the annular gap between pressure tube and calandria tube and an ultrasonic sensor to measure the wall thickness of the pressure tube. The output signal of the eddy current probe needs to be corrected for the effect of pressure tube wall thickness variation. This paper gives the details of the above apparatus. The results of calibration tests at mock-up station are presented. The paper outlines the program for the phase-wise development of Channel Inspection and Gauging Apparatus for use in heavy water filled channels without their isolation from PHT and draining. The final apparatus will have the facilities for ultrasonic flaw detection, ultrasonic gauging to measure pressure tube diameter and wall thickness, an inclinometer to measure slope and sag of pressure tube and eddy current probe for the measurement of annular gap between pressure tube and calandria tube. (author). 6 figs
Extended pure Yang-Mills gauge theories with scalar and tensor gauge fields
International Nuclear Information System (INIS)
Gabrielli, E.
1991-01-01
The usual abelian gauge theory is extended to an interacting Yang-Mills-like theory containing vector, scalar and tensor gauge fields. These gauge fields are seen as components along the Clifford algebra basis of a gauge vector-spinorial field. Scalar fields φ naturally coupled to vector and tensor fields have been found, leading to a natural φ 4 coupling in the lagrangian. The full expression of the lagrangian for the euclidean version of the theory is given. (orig.)