WorldWideScience

Sample records for streamer biofilm communities

  1. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    Directory of Open Access Journals (Sweden)

    Florence eSchubotz

    2015-02-01

    Full Text Available Streamer biofilm communities (SBC are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae, Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and ‘Bison Pool’, using various 13C-labeled substrates (bicarbonate, formate, acetate and glucose to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10 to 30 times lower uptake across most fatty acids. 13C bicarbonate uptake, signifying the presence of autotrophic communities was only significant at ‘Bison Pool’ and was observed predominantly in non-specific saturated C16, C18, C20 and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at ‘Bison Pool’ and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C uptake into archaeal lipids occurred predominantly with 13C acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being

  2. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    International Nuclear Information System (INIS)

    Kevin Kim, Minyoung; Drescher, Knut; Shun Pak, On; Stone, Howard A; Bassler, Bonnie L

    2014-01-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen. (paper)

  3. Bacterial streamers in curved microchannels

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  4. Biofilms: Community Behavior by Bacteria

    Indian Academy of Sciences (India)

    IAS Admin

    United we stand, divided we fall. This is a ... controls biofilm development, swarming motility and the produc- ... thought that the absence of overt gut flora upsets the balance .... there are several risks of integration which makes this strategy.

  5. In situ ecophysiology of Aigarchaeota from an oxic, hot-spring filamentous 'streamer' community

    Science.gov (United States)

    Beam, J.; Jay, Z.; Tringe, S. G.; Glavina del Rio, T.; Rusch, D.; Schmid, M.; Wagner, M.; Inskeep, W.

    2014-12-01

    The candidate phylum Aigarchaeota contains thermophilic archaea from terrestrial, subsurface, and marine geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, an accurate description of their metabolism, potential ecological interactions, and role in biogeochemical cycling is lacking. Here we report possible ecological interactions and the in situ metabolism of an uncultivated lineage of Aigarchaeota from an oxic, terrestrial hot-spring filamentous 'streamer' community (Octopus Spring, pH = 8; T = 78 - 84 °C, Yellowstone National Park, Wyoming, USA). Fluorescence in situ hybridization (FISH) was combined with detailed genomic and transcriptomic reconstruction to elucidate the ecophysiological role of Aigarchaeota in these streamer communities. This novel population of Aigarchaeota are filamentous (~500 nm diameter by ~10-30 μm length), which is consistent with the morphology predicted by the presence and transcription of a single actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both thermophilic bacteria and archaea. Metabolic reconstruction suggests that this aigarchaeon is an aerobic, chemoorganotroph. A single heme copper oxidase complex was identified in de novo genome assemblies, and was highly transcribed in environmental samples. Potential electron donors include acetate, fatty acids, sugars, peptides, and aromatic compounds. Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this population of Aigarchaeota likely utilizes a broad range of reduced carbon substrates. Potential electron donors for this population may include extracellular polymeric substances produced by other microorganisms in close proximity. Flagellum genes were also highly transcribed, which suggests a potential mechanism for motility and/or cell-cell attachment

  6. Molecular Studies of Filamentous and Biofilm-Forming Hyperthermophilic Communities in Yellowstone National Park

    Science.gov (United States)

    Summons, R. E.; Meyer-Dombard, D. R.; Bradley, A. S.; Dibbell, A. K.; Fredricks, H. F.; Hinrichs, K.; Jahnke, L. L.; Shock, E.; Amend, J. P.

    2005-12-01

    The Aquificales, the most deeply-branching order of Bacteria in the phylogenetic tree of life, comprises eight recognized thermophilic genera, including Aquifex, Hydrogenobacter, and Thermocrinis. The common metabolism for these Bacteria, when grown in culture, is the oxidation of hydrogen with molecular oxygen (Knallgas reaction). Aquificales have been identified by molecular techniques (16S rRNA gene surveys, fluorescent in situ hybridization) in Yellowstone National Park (YNP), sea vent chimneys and fluids, and many other terrestrial and marine locations. In situ, Aquificales can reside as biofilms on vent sinters but they also commonly form filamentous communities, otherwise known as pink streamers, which attach to solid substrates. Initial 16S rRNA gene surveys conducted on streamer communities from Octopus Spring YNP indicated that these were low diversity ecosystems dominated by a few phylotypes including Thermocrinis sp., Thermotoga sp. and one other bacterial clade (Reysenbach et al 1994). Archaea were notable for their absence. In one of the first geobiological studies of pink streamers and vent biofilms in Yellowstone National Park, Jahnke and coworkers (2001) used classical lipidological techniques to compare Aquificales cultures with environmental samples to show that YNP pink filaments were more phylogenetically diverse and physiologically more complex than the early genomic studies indicated. The presence of archaeol, the range and structures of other lipids and a wide dispersion in the carbon isotopic signatures of biomass and individual lipids (-15 to -27%) showed that Archaea were present in pink filament communities and that there was, at least, one additional bacterial group besides the dominant Aquificales component. New molecular studies that comprise analyses of 16S rRNA genes and total lipid extracts by liquid chromatography and mass spectrometry and chemical degradation with gas chromatography and mass spectrometry now show that Crenarchaea

  7. Biofilms.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-07-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Using these bacteria as examples, we discuss the key features of biofilms as well as mechanisms by which extracellular signals trigger biofilm formation.

  8. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  9. Co-existence in multispecies biofilm communities

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng

    of these emergent properties which are relevant to as diverse areas as clinical settings and natural systems. In this thesis, I have attempted to contribute to our knowledge on the multispecies interactions with a special focus on biofilm communities. I was especially interested in how co-existing species affect...... each other and in understanding the key mechanisms and interactions involved. In the introduction of this thesis the most important concepts of multi-species interactions and biofilm development are explained. After this the topic changes to the various ways of examining community interactions...... and production. The analysis was further extended in manuscript 3, in which the effect of social interac-tions on biofilm formation in multispecies co-cultures isolated from a diverse range of environments was examined. The question raised was whether the interspecific interactions of co-existing bacteria...

  10. Streamer Evaporation

    Science.gov (United States)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  11. Biofilm community succession: a neutral perspective.

    Science.gov (United States)

    Woodcock, Stephen; Sloan, William T

    2017-05-22

    Although biofilms represent one of the dominant forms of life in aqueous environments, our understanding of the assembly and development of their microbial communities remains relatively poor. In recent years, several studies have addressed this and have extended the concepts of succession theory in classical ecology into microbial systems. From these datasets, niche-based conceptual models have been developed explaining observed biodiversity patterns and their dynamics. These models have not, however, been formulated mathematically and so remain untested. Here, we further develop spatially resolved neutral community models and demonstrate that these can also explain these patterns and offer alternative explanations of microbial succession. The success of neutral models suggests that stochastic effects alone may have a much greater influence on microbial community succession than previously acknowledged. Furthermore, such models are much more readily parameterised and can be used as the foundation of more complex and realistic models of microbial community succession.

  12. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure

    International Nuclear Information System (INIS)

    Ancion, Pierre-Yves; Lear, Gavin; Dopheide, Andrew; Lewis, Gillian D.

    2013-01-01

    Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota. - Highlights: ► Zn, Cu and Pb concentrations in biofilm and sediments from 23 streams were assessed. ► Bacteria and ciliate protozoa were simultaneously used as biological indicators. ► Zn and Cu were generally enriched in biofilm compared to sediments. ► Metals in biofilm provide a useful assessment of freshwater ecosystem contamination. ► Results highlight the likely ecological importance of biofilm associated metals. - Metal concentrations in stream biofilms provide a good assessment of the effects of trace metal contaminants on freshwater ecosystems.

  13. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  14. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  15. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.

    Science.gov (United States)

    Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li

    2015-03-01

    This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However......, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased...

  17. Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities.

    Science.gov (United States)

    Falghoush, Azeza; Beyenal, Haluk; Besser, Thomas E; Omsland, Anders; Call, Douglas R

    2017-10-01

    Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log ( P baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity ( r 2 > 0.82; P baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics. IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of

  18. Stability of Streamer Chamber

    Science.gov (United States)

    Wada, Toshiaki; Ogawa, Masato; Takahashi, Kaoru; Sugiyama, Tsunetoshi; Kobayashi, Shigeharu; Kohno, Hirobumi

    1982-08-01

    The quality of tracks obtained from a streamer chamber is studied through the measurement of the streamer brightness. The stability of streamer tracks depends on the value of the high voltage applied and its shape. By using a single conical-type spark gap as the pulse shaper, stable brightness of the streamer tracks is attained. The data on the streamer brightness are compared with the result by Bulos et al. and it is found that the brightness is more strongly affected by field parameters than in their result.

  19. Stability of streamer chamber

    International Nuclear Information System (INIS)

    Wada, Toshiaki; Ogawa, Masato; Takahashi, Kaoru; Sugiyama, Tsunetoshi; Kobayashi, Shigeharu; Kohno, Hirobumi.

    1982-01-01

    The quality of tracks obtained from a streamer chamber is studied through the measurement of the streamer brightness. The stability of streamer tracks depends on the value of the high voltage applied and its shape. By using a single conical-type spark gap as the pulse shaper, stable brightness of the streamer tracks is attained. The data on the streamer brightness are compared with the result by Bulos et al. and it is found that the brightness is more strongly affected by field parameters than in their result. (author)

  20. Characterization of Mechanical Properties of Microbial Biofilms

    Science.gov (United States)

    Callison, Elizabeth; Gose, James; Perlin, Marc; Ceccio, Steven

    2017-11-01

    The physical properties of microbial biofilms grown subject to shear flows determine the form and mechanical characteristics of the biofilm structure, and consequently, the turbulent interactions over and through the biofilm. These biofilms - sometimes referred to as slime - are comprised of microbial cells and extracellular polymeric substance (EPS) matrices that surround the multicellular communities. Some of the EPSs take the form of streamers that tend to oscillate in flows, causing increased turbulent mixing and drag. As the presence of EPS governs the compliance and overall stability of the filamentous streamers, investigation of the mechanical properties of biofilms may also inform efforts to understand hydrodynamic performance of fouled systems. In this study, a mixture of four diatom genera was grown under turbulent shear flow on test panels. The mechanical properties and hydrodynamic performance of the biofilm were investigated using rheology and turbulent flow studies in the Skin-Friction Flow Facility at the University of Michigan. The diatoms in the mixture of algae were identified, and the elastic and viscous moduli were determined from small-amplitude oscillations, while a creep test was used to evaluate the biofilm compliance.

  1. The Biofilm Community-Rebels with a Cause.

    Science.gov (United States)

    Aruni, A Wilson; Dou, Yuetan; Mishra, Arunima; Fletcher, Hansel M

    2015-03-01

    Oral Biofilms are one of the most complex and diverse ecosystem developed by successive colonization of more than 600 bacterial taxa. Development starts with the attachment of early colonizers such as Actinomyces species and oral streptococci on the acquired pellicle and tooth enamel. These bacteria not only adhere to tooth surface but also interact with each other and lay foundation for attachment of bridging colonizer such as Fusobacterium nucleatum followed by late colonizers including the red complex species: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola -the founders of periodontal disease. As the biofilm progresses from supragingival sites to subgingival sites, the environment changes from aerobic to anaerobic thus favoring the growth of mainly Gram-negative obligate anaerobes while restricting the growth of the early Gram-positive facultative aerobes. Microbes present at supragingival level are mainly related to gingivitis and root-caries whereas subgingival species advance the destruction of teeth supporting tissues and thus causing periodontitis. This review summarizes our present understanding and recent developments on the characteristic features of supra- and subgingival biofilms, interaction between different genera and species of bacteria constituting these biofilms and draws our attention to the role of some of the recently discovered members of the oral community.

  2. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    Directory of Open Access Journals (Sweden)

    Parro Víctor

    2010-06-01

    Full Text Available Abstract Background Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy. Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers. In the Río Tinto (Spain, brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery and environmental applications (acid mine drainage, bioremediation. The aim of this study was to investigate the physiological differences between the free living (planktonic and the sessile (biofilm associated lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Results Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB, synthesis of cell wall structures (lnt, murA, murB, specific proteases (clpX/clpP, stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL, etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively in the acidic (pH 1.8 water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Conclusions Our results indicate that the

  3. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community.

    Science.gov (United States)

    Moreno-Paz, Mercedes; Gómez, Manuel J; Arcas, Aida; Parro, Víctor

    2010-06-24

    Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy). Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers). In the Río Tinto (Spain), brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum) and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery) and environmental applications (acid mine drainage, bioremediation). The aim of this study was to investigate the physiological differences between the free living (planktonic) and the sessile (biofilm associated) lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB), synthesis of cell wall structures (lnt, murA, murB), specific proteases (clpX/clpP), stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL), etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA) were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively) in the acidic (pH 1.8) water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Our results indicate that the acidophilic filaments are dynamic structures

  4. Functional recovery of biofilm bacterial communities after copper exposure

    International Nuclear Information System (INIS)

    Boivin, Marie-Elene Y.; Massieux, Boris; Breure, Anton M.; Greve, Gerdit D.; Rutgers, Michiel; Admiraal, Wim

    2006-01-01

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 μmol/l copper amended surface water and a reference and subsequently to un-amended surface water. Transitions of bacterial communities were characterised with denaturing gradient gel electrophoresis (DGGE) and community-level physiological profiles (CLPP). Exposure to 6.8 μmol/l copper provoked distinct changes in DGGE profiles of bacterial consortia, which did not reverse upon copper depuration. Exposure to 2.1 and 6.8 μmol/l copper was found to induce marked changes in CLPP of bacterial communities that proved to be reversible during copper depuration. Furthermore, copper exposure induced the development of copper-tolerance, which was partially lost during depuration. It is concluded that bacterial communities exposed to copper contaminated water for a period of 26 days are capable to restore their metabolic attributes after introduction of unpolluted water in aquaria for 28 days. - Genetically different bacterial communities can have similar functions and tolerance to copper

  5. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  6. Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure

    International Nuclear Information System (INIS)

    Tien, Chien-Jung; Lin, Mon-Chu; Chiu, Wan-Hsin; Chen, Colin S.

    2013-01-01

    This study investigated the ability of natural river biofilms from different seasons to degrade the carbamate pesticides methomyl, carbaryl and carbofuran in single and multiple pesticide systems, and the effects of these pesticides on algal and bacterial communities within biofilms. Spring biofilms had the lowest biomass of algae and bacteria but showed the highest methomyl degradation (>99%) and dissipation rates, suggesting that they might contain microorganisms with high methomyl degradation abilities. Degradation of carbofuran (54.1–59.5%) by biofilms in four seasons was similar, but low degradation of carbaryl (0–27.5%) was observed. The coexistence of other pesticides was found to cause certain effects on pesticide degradation and primarily resulted in lower diversity of diatoms and bacteria than when using a single pesticide. The tolerant diatoms and bacteria potentially having the ability to degrade test pesticides were identified. River biofilms could be suitable biomaterials or used to isolate degraders for bioremediating pesticide-contaminated water. -- Highlights: •Natural river biofilms showed high ability to degrade methomyl and carbofuran. •The presence of other pesticides caused certain effects on pesticide degradation. •Carbamate pesticides caused adverse effects on communities of diatoms and bacteria. •The tolerant diatoms and bacteria were found as potential pesticide-degraders. -- Biodegradation of carbamate pesticides by river biofilms

  7. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance

    Directory of Open Access Journals (Sweden)

    Saravanan ePeriasamy

    2015-08-01

    Full Text Available Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl and Pel that play distinct roles in attachment and biofilm formation for monospecies biofilms. Considerably less is known about their role in the development of mixed species biofilm communities. This study has investigated the roles of alginate, Psl and Pel during biofilm formation of P. aeruginosa in a defined and experimentally informative mixed species biofilm community, consisting of P. aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae. Loss of the Psl polysaccharide had the biggest impact on the integration of P. aeruginosa in the mixed species biofilms, where the percent composition of the psl mutant was significantly lower (0.06% than its wild-type parent (2.44%. In contrast, loss of the Pel polysaccharide had no impact on mixed species biofilm development. Loss of alginate or its overproduction resulted in P. aeruginosa representing 8.4% and 18.11%, respectively, of the mixed species biofilm. Dual species biofilms of P. aeruginosa and K. pneumoniae were not affected by loss of alginate, Pel or Psl, while the mucoid P. aeruginosa strain achieved a greater biomass than its parent strain. When P. aeruginosa was grown with P. protegens, loss of the Pel or alginate polysaccharides resulted in biofilms that were not significantly different from biofilms formed by the wild-type PAO1. In contrast, overproduction of alginate resulted in biofilms that were comprised of 35-40% of P. aeruginosa, which was significantly higher than the wild-type (5-20%. Loss of the Psl polysaccharide significantly reduced the percentage composition of P. aeruginosa in dual species biofilms with P. protegens (<1%. Loss of the Psl polysaccharide significantly disrupted the communal stress resistance of the three species biofilms. Thus, the polysaccharide composition of an individual species significantly impacts mixed species biofilm development and the emergent properties of such

  8. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  9. Self-quenching streamers

    International Nuclear Information System (INIS)

    Atac, M.; Tollestrup, A.V.; Potter, D.

    1982-01-01

    Self quenching streamers in drift tubes have been observed both optically and electronically. The streamers of 150-200 μm width extend out from the anode wire to 1.5 to 3 mm at atmospheric pressures. Electronic measurements at a two atomsphere pressure show pulses into a 50 Ω load with a rise time of 5 ns, a decay time of 40 ns, and an amplitude of 30 mV. Details of the experiments are discussed. There was no detectable residue on an anode wire after exposing it to 2x10 9 streamers for a 1 mm section. (orig.)

  10. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across...... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  11. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  12. Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals

    Directory of Open Access Journals (Sweden)

    Jennifer M. Lang

    2016-01-01

    Full Text Available Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We sought to compare the development of epinecrotic (biofilms on Sus scrofa domesticus carcasses and epilithic (biofilms on unglazed ceramic tiles communities in two small streams using bacterial automated ribosomal intergenic spacer analysis. Epinecrotic communities were significantly different from epilithic communities even though environmental factors associated with each stream location also had a significant influence on biofilm structure. All communities at both locations exhibited significant succession suggesting that changing communities throughout time is a general characteristic of stream biofilm communities. The implications resulting from this work are that epinecrotic communities have distinctive shifts at the first and second weeks, and therefore the potential to be used in forensic applications by associating successional changes with submersion time to estimate a PMSI. The influence of environmental factors, however, indicates the lack of a successional pattern with the same organisms and a focus on functional diversity may be more applicable in a forensic context.

  13. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Joe A. Lemire; Marc A. Demeter; Iain George; Howard Ceri; Raymond J. Turner

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  14. Adaptation of copper community tolerance levels after biofilm transplantation in an urban river.

    Science.gov (United States)

    Fechner, Lise C; Versace, François; Gourlay-Francé, Catherine; Tusseau-Vuillemin, Marie-Hélène

    2012-01-15

    The Water Framework Directive requires the development of biological tools which can act as early-warning indicators of a sudden increase (accidental pollution) or decrease (recovery due to prevention) of the chemical status of aquatic systems. River biofilms, which respond quickly to modifications of environmental parameters and also play a key part in the functioning of aquatic ecosystems, are therefore good candidates to monitor an increase or a decrease of water pollution. In the present study, we investigated the biological response of biofilms transplanted either upstream (recovery) or downstream (deterioration of exposure levels) the urban area of Paris (France). Both modifications of Cu community tolerance levels and of global bacterial and eukaryotic community structure using automated ribosomal intergenic spacer analysis (ARISA) fingerprints were examined 15 and 30 days after the transplantation. Cu tolerance levels of the heterotrophic component of biofilms were assessed using a short-term toxicity test based on β-glucosidase (heterotrophic) activity. Cu tolerance increased for biofilms transplanted upstream to downstream Paris (5-fold increase on day 30) and conversely decreased for biofilms transplanted downstream to upstream (8-fold decrease on day 30). ARISA fingerprints revealed that bacterial and eukaryotic community structures of transplanted biofilms were closer to the structures of biofilms from the transplantation sites (or sites with similar contamination levels) than to biofilms from their sites of origin. Statistical analysis of the data confirmed that the key factor explaining biofilm Cu tolerance levels is the sampling site and not the site of origin. It also showed that Cu tolerance levels are related to the global urban contamination (both metals and nutrients). The study shows that biofilms adapt fast to modifications of their surroundings. In particular, community tolerance varies quickly and reflects the new exposure levels only 15

  15. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    Science.gov (United States)

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  16. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  17. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers

    Science.gov (United States)

    Riding, Robert

    2002-01-01

    Thin (mushrooms, and plumes. All can be interpreted as characteristics of attached bacterial communities, i.e., aggregates as microcolonies, originally embedded in a matrix of extracellular polymeric substances; channels as water conduits and/or uncolonized nutrient-poor spaces; external protuberances as localized growths; and plumes as surface streamers. Cryptic habitat favored pristine biofilm preservation by precluding disturbance and overgrowth, and suggests aphotic and anoxic conditions. These examples provide diagnostic morphologic criteria for wider recognition of biofilm in Phanerozoic and older carbonates.

  18. Membrane biofilm communities in full-scale membrane bioreactors are not randomly assembled and consist of a core microbiome

    KAUST Repository

    Matar, Gerald Kamil

    2017-06-21

    Finding efficient biofouling control strategies requires a better understanding of the microbial ecology of membrane biofilm communities in membrane bioreactors (MBRs). Studies that characterized the membrane biofilm communities in lab-and pilot-scale MBRs are numerous, yet similar studies in full-scale MBRs are limited. Also, most of these studies have characterized the mature biofilm communities with very few studies addressing early biofilm communities. In this study, five full-scale MBRs located in Seattle (Washington, U.S.A.) were selected to address two questions concerning membrane biofilm communities (early and mature): (i) Is the assembly of biofilm communities (early and mature) the result of random immigration of species from the source community (i.e. activated sludge)? and (ii) Is there a core membrane biofilm community in full-scale MBRs? Membrane biofilm (early and mature) and activated sludge (AS) samples were collected from the five MBRs, and 16S rRNA gene sequencing was applied to investigate the bacterial communities of AS and membrane biofilms (early and mature). Alpha and beta diversity measures revealed clear differences in the bacterial community structure between the AS and biofilm (early and mature) samples in the five full-scale MBRs. These differences were mainly due to the presence of large number of unique but rare operational taxonomic units (∼13% of total reads in each MBR) in each sample. In contrast, a high percentage (∼87% of total reads in each MBR) of sequence reads was shared between AS and biofilm samples in each MBR, and these shared sequence reads mainly belong to the dominant taxa in these samples. Despite the large fraction of shared sequence reads between AS and biofilm samples, simulated biofilm communities from random sampling of the respective AS community revealed that biofilm communities differed significantly from the random assemblages (P < 0.001 for each MBR), indicating that the biofilm communities (early

  19. Nitrification at different salinities: Biofilm community composition and physiological plasticity.

    Science.gov (United States)

    Gonzalez-Silva, Blanca M; Jonassen, Kjell Rune; Bakke, Ingrid; Østgaard, Kjetill; Vadstein, Olav

    2016-05-15

    This paper describes an experimental study of microbial communities of three moving bed biofilm reactors (MBBR) inoculated with nitrifying cultures originated from environments with different salinity; freshwater, brackish (20‰) and seawater. All reactors were run until they operated at a conversion efficiency of >96%. The microbial communities were profiled using 454-pyrosequencing of 16S rRNA gene amplicons. Statistical analysis was used to investigate the differences in microbial community structure and distribution of the nitrifying populations with different salinity environments. Nonmetric multidimensional scaling analysis (NMDS) and the PERMANOVA test based on Bray-Curtis similarities revealed significantly different community structure in the three reactors. The brackish reactor showed lower diversity index than fresh and seawater reactors. Venn diagram showed that 60 and 78% of the total operational taxonomic units (OTUs) in the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) guild, respectively, were unique OTUs for a given reactor. Similarity Percentages (SIMPER) analysis showed that two-thirds of the total difference in community structure between the reactors was explained by 10 OTUs, indicating that only a small number of OTUs play a numerically dominant role in the nitrification process. Acute toxicity of salt stress on ammonium and nitrite oxidizing activities showed distinctly different patterns, reaching 97% inhibition of the freshwater reactor for ammonium oxidation rate. In the brackish culture, inhibition was only observed at maximal level of salinity, 32‰. In the fully adapted seawater culture, higher activities were observed at 32‰ than at any of the lower salinities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Science.gov (United States)

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  1. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses

  2. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    KAUST Repository

    Lee, O.O.; Wang, Y.; Tian, R.; Zhang, W.; Shek, C.S.; Bougouffa, Salim; Al-Suwailem, A.; Batang, Z.B.; Xu, W.; Wang, G.C.; Zhang, Xixiang; Lafi, F.F.; Bajic, Vladimir B.; Qian, P.-Y.

    2014-01-01

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  3. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    KAUST Repository

    Lee, O.O.

    2014-01-08

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  4. Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond.

    Science.gov (United States)

    Golby, Susanne; Ceri, Howard; Gieg, Lisa M; Chatterjee, Indranil; Marques, Lyriam L R; Turner, Raymond J

    2012-01-01

    Bitumen extraction from the oil sands of Alberta has resulted in millions of cubic meters of waste stored on-site in tailings ponds. Unique microbial ecology is expected in these ponds, which may be key to their bioremediation potential. We considered that direct culturing of microbes from a tailings sample as biofilms could lead to the recovery of microbial communities that provide good representation of the ecology of the tailings. Culturing of mixed species biofilms in vitro using the Calgary Biofilm Device (CBD) under aerobic, microaerobic, and anaerobic growth conditions was successful both with and without the addition of various growth nutrients. Denaturant gradient gel electrophoresis and 16S rRNA gene pyrotag sequencing revealed that unique mixed biofilm communities were recovered under each incubation condition, with the dominant species belonging to Pseudomonas, Thauera, Hydrogenophaga, Rhodoferax, and Acidovorax. This work used an approach that allowed organisms to grow as a biofilm directly from a sample collected of their environment, and the biofilms cultivated in vitro were representative of the endogenous environmental community. For the first time, representative environmental mixed species biofilms have been isolated and grown under laboratory conditions from an oil sands tailings pond environment and a description of their composition is provided.

  5. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    Science.gov (United States)

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6 mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. Copyright © 2015. Published by Elsevier B.V.

  6. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-01-01

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  7. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  8. Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement

    KAUST Repository

    Lee, On On

    2014-01-09

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups. © 2014 Springer Science+Business Media New York.

  9. A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community

    DEFF Research Database (Denmark)

    Herschend, Jakob; Damholt, Zacharias Brimnes Visby; Marquard, Andrea Marion

    2017-01-01

    Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due...... of fermentation and nitrogen pathways in Paenibacillus amylolyticus and Xanthomonas retroflexus may, however, indicate that competition for limited resources also affects community development. Overall our results demonstrate the multitude of pathways involved in biofilm formation in mixed communities....

  10. Interaction between local hydrodynamics and algal community in epilithic biofilm.

    Science.gov (United States)

    Graba, Myriam; Sauvage, Sabine; Moulin, Frédéric Y; Urrea, Gemma; Sabater, Sergi; Sanchez-Pérez, José Miguel

    2013-05-01

    Interactions between epilithic biofilm and local hydrodynamics were investigated in an experimental flume. Epilithic biofilm from a natural river was grown over a 41-day period in three sections with different flow velocities (0.10, 0.25 and 0.40 m s(-1) noted LV, IV and HV respectively). Friction velocities u* and boundary layer parameters were inferred from PIV measurement in the three sections and related to the biofilm structure. The results show that there were no significant differences in Dry Mass and Ash-Free Dry Mass (g m(-2)) at the end of experiment, but velocity is a selective factor in algal composition and the biofilms' morphology differed according to differences in water velocity. A hierarchical agglomerative cluster analysis (Bray-Curtis distances) and an Indicator Species Analysis (IndVal) showed that the indicator taxa were Fragilaria capucina var. mesolepta in the low-velocity (u*. = 0.010-0.012 m s(-1)), Navicula atomus, Navicula capitatoradiata and Nitzschia frustulum in the intermediate-velocity (u*. = 0.023-0.030 m s(-1)) and Amphora pediculus, Cymbella proxima, Fragilaria capucina var. vaucheriae and Surirella angusta in the high-velocity (u*. = 0.033-0.050 m s(-1)) sections. A sloughing test was performed on 40-day-old biofilms in order to study the resistance of epilithic biofilms to higher hydrodynamic regimes. The results showed an inverse relationship between the proportion of detached biomass and the average value of friction velocity during growth. Therefore, water velocity during epilithic biofilm growth conditioned the structure and algal composition of biofilm, as well as its response (ability to resist) to higher shear stresses. This result should be considered in modelling epilithic biofilm dynamics in streams subject to a variable hydrodynamics regime. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    Science.gov (United States)

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  12. Microbial diversity and putative opportunistic pathogens in dishwasher biofilm communities

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Zupančič, Jerneja; Brejnrod, Asker Daniel

    2018-01-01

    impact the abundance of microbial groups, and investigated on the inter- and intra-kingdom interactions that shape these biofilms. The age, the usage frequency and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal composition. Representatives ofCandidaspp. were...... and interactions were vital in the process of biofilm formation, where mixed complexes of the two, bacteria and fungi, could provide a preliminary biogenic structure for the establishment of these biofilms.IMPORTANCEWorldwide demand for household appliances, such as dishwashers and washing machines, is increasing...

  13. Impact of nutrient composition on a degradative biofilm community

    DEFF Research Database (Denmark)

    Møller, Søren; Korber, Darren R.; Wolfaardt, Gideon M.

    1997-01-01

    (Trypticase soy broth), the biofilms underwent an architectural change which included the loss of mound structures and the formation of a more homogeneous biofilm. Neutrally charged fluorescent dextrans, which upon hydration become cationic, were observed to bind to mounds, as well as to the basal cell layer......, in 14-day biofilms. In contrast, polyanionic dextrans bound only to the basal cell layer, indicating that this material incorporated sites with both positive and negative charge. The results from this study indicate that nutrient composition has a significant impact on both the architecture...

  14. Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development.

    Science.gov (United States)

    Hardie, Kim Rachael; Heurlier, Karin

    2008-08-01

    Multicellular bacterial communities (biofilms) abound in nature, and their successful formation and survival is likely to require cell-cell communication--including quorum sensing--to co-ordinate appropriate gene expression. The only mode of quorum sensing that is shared by both Gram-positive and Gram-negative bacteria involves the production of the signalling molecule autoinducer 2 by LuxS. A survey of the current literature reveals that luxS contributes to biofilm development in some bacteria. However, inconsistencies prevent biofilm development being attributed to the production of AI2 in all cases.

  15. De novo biofilm community assembly from tap water source communities favors Nitrotoga over Nitrospira under elevated nitrite surface loading

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen

    -through biofilm system to continuous immigration from a tap water metacommunity while applying different nitrite surface loading rates. After 63 days of operation, we extracted biofilms and analyzed the community composition via Illumina MiSeq targeting the 16S rRNA gene. Previous studies have shown...... that Nitrospira is the dominant nitrite oxidizing genus in low nitrite environments. Hence, we postulated that by elevating the nitrite surface loading we would select for NOB with lower nitrite affinity than Nitrospira. We observed different dominant NOB species under different loading rates. While...... in the metacommunity, Nitrotoga and Nitrospira were found at near equal abundances, in the biofilm community, elevated nitrite loading strongly selected for Nitrotoga over Nitrospira. The biofilms were also significantly different in their alpha-diversity (pdiversity, and the evenness and richness...

  16. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane.

    Science.gov (United States)

    Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan

    2017-11-01

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors (BERs) containing the removable reverse osmosis (RO) coupons, were connected at the end of the DMFs in parallel to analyze the biofilm on the RO membrane by DMF effluents. Filtration performances were evaluated in terms of dissolved organic carbon (DOC) and assimilable organic carbon (AOC). Organic foulants on the RO membrane were also quantified and fractionized. The bacterial community structures in liquid (seawater and effluent) and biofilm (DMF and RO) samples were analyzed using 454-pyrosequencing. The DMF IV fed with the chlorinated seawater demonstrated the highest reductions of DOC including LMW-N as well as AOC among the other DMFs. The DMF IV was also effective in reducing organic foulants on the RO membrane surface. The bacterial community structure was grouped according to the sample phase (i.e., liquid and biofilm samples), sampling location (i.e., DMF and RO samples), and chlorination (chlorinated and non-chlorinated samples). In particular, the biofilm community in the DMF IV differed from the other DMF treatments, suggesting that chlorination exerted as stronger selective pressure than pH adjustment or coagulation on the biofilm community. In the DMF IV, several chemoorganotrophic chlorine-resistant biofilm-forming bacteria such as Hyphomonas, Erythrobacter, and Sphingomonas were predominant, and they may enhance organic carbon degradation efficiency. Diverse halophilic or halotolerant organic degraders were also found in other DMFs (i.e., DMF I, II, and III). Various kinds of dominant biofilm-forming bacteria were also investigated in RO membrane samples; the results provided possible candidates that cause biofouling when DMF process is applied as the pretreatment option for the RO process. Copyright

  17. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane

    KAUST Repository

    Jeong, Sanghyun

    2017-07-25

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors (BERs) containing the removable reverse osmosis (RO) coupons, were connected at the end of the DMFs in parallel to analyze the biofilm on the RO membrane by DMF effluents. Filtration performances were evaluated in terms of dissolved organic carbon (DOC) and assimilable organic carbon (AOC). Organic foulants on the RO membrane were also quantified and fractionized. The bacterial community structures in liquid (seawater and effluent) and biofilm (DMF and RO) samples were analyzed using 454-pyrosequencing. The DMF IV fed with the chlorinated seawater demonstrated the highest reductions of DOC including LMW-N as well as AOC among the other DMFs. The DMF IV was also effective in reducing organic foulants on the RO membrane surface. The bacterial community structure was grouped according to the sample phase (i.e., liquid and biofilm samples), sampling location (i.e., DMF and RO samples), and chlorination (chlorinated and non-chlorinated samples). In particular, the biofilm community in the DMF IV differed from the other DMF treatments, suggesting that chlorination exerted as stronger selective pressure than pH adjustment or coagulation on the biofilm community. In the DMF IV, several chemoorganotrophic chlorine-resistant biofilm-forming bacteria such as Hyphomonas, Erythrobacter, and Sphingomonas were predominant, and they may enhance organic carbon degradation efficiency. Diverse halophilic or halotolerant organic degraders were also found in other DMFs (i.e., DMF I, II, and III). Various kinds of dominant biofilm-forming bacteria were also investigated in RO membrane samples; the results provided possible candidates that cause biofouling when DMF process is applied as the pretreatment option for the RO process.

  18. The multiscale nature of streamers

    International Nuclear Information System (INIS)

    Ebert, U; Montijn, C; Briels, T M P; Hundsdorfer, W; Meulenbroek, B; Rocco, A; Veldhuizen, E M van

    2006-01-01

    Streamers are a generic mode of electric breakdown of large gas volumes. They play a role in the initial stages of sparks and lightning, in technical corona reactors and in high altitude sprite discharges above thunderclouds. Streamers are characterized by a self-generated field enhancement at the head of the growing discharge channel. We briefly review recent streamer experiments and sprite observations. Then we sketch our recent work on computations of growing and branching streamers, we discuss concepts and solutions of analytical model reductions and we review different branching concepts and outline a hierarchy of model reductions

  19. The multiscale nature of streamers

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, U [Centrum voor Wiskunde en Informatica (CWI), PO Box 94079, 1090GB Amsterdam (Netherlands); Faculty of Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands); Montijn, C [Centrum voor Wiskunde en Informatica (CWI), PO Box 94079, 1090GB Amsterdam (Netherlands); Briels, T M P [Faculty of Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands); Hundsdorfer, W [Centrum voor Wiskunde en Informatica (CWI), PO Box 94079, 1090GB Amsterdam (Netherlands); Meulenbroek, B [Centrum voor Wiskunde en Informatica (CWI), PO Box 94079, 1090GB Amsterdam (Netherlands); Rocco, A [Centrum voor Wiskunde en Informatica (CWI), PO Box 94079, 1090GB Amsterdam (Netherlands); University of Oxford, Department of Statistics, 1 South Parks Road, Oxford OX1 3TG (United Kingdom); Veldhuizen, E M van [Faculty of Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands)

    2006-05-15

    Streamers are a generic mode of electric breakdown of large gas volumes. They play a role in the initial stages of sparks and lightning, in technical corona reactors and in high altitude sprite discharges above thunderclouds. Streamers are characterized by a self-generated field enhancement at the head of the growing discharge channel. We briefly review recent streamer experiments and sprite observations. Then we sketch our recent work on computations of growing and branching streamers, we discuss concepts and solutions of analytical model reductions and we review different branching concepts and outline a hierarchy of model reductions.

  20. Effects of organic pollution on biological communities of marine biofilm on hard substrata

    International Nuclear Information System (INIS)

    Sanz-Lázaro, C.; Fodelianakis, S.; Guerrero-Meseguer, L.; Marín, A.; Karakassis, I.

    2015-01-01

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ 13 C and δ 15 N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. - Highlights: • We examined the effect of organic enrichment on assemblages of marine biofilms. • Classical community parameters showed consistent patterns to organic pollution. • Diatom and bacterial assemblages were affected under high level of organic enrichment. • Successional patterns were similar to other communities inhabiting hard substrata. • Assemblage modifications induced by organic pollution may affect ecological functions. - Organic pollution modifies the assemblages of biofilm communities which may affect important ecological functions

  1. The effect of arginine on oral biofilm communities.

    Science.gov (United States)

    Nascimento, M M; Browngardt, C; Xiaohui, X; Klepac-Ceraj, V; Paster, B J; Burne, R A

    2014-02-01

    Alkali production by oral bacteria via the arginine deiminase system (ADS) increases the pH of oral biofilms and reduces the risk for development of carious lesions. This study tested the hypothesis that increased availability of arginine in the oral environment through an exogenous source enhances the ADS activity levels in saliva and dental plaque. Saliva and supra-gingival plaque samples were collected from 19 caries-free (CF) individuals (DMFT = 0) and 19 caries-active (CA) individuals (DMFT ≥ 2) before and after treatment, which comprised the use of a fluoride-free toothpaste containing 1.5% arginine, or a regular fluoride-containing toothpaste twice daily for 4 weeks. ADS activity was measured by quantification of ammonia produced from arginine by oral samples at baseline, after washout period, 4 weeks of treatment, and 2 weeks post-treatment. Higher ADS activity levels were observed in plaque samples from CF compared to those of CA individuals (P = 0.048) at baseline. The use of the arginine toothpaste significantly increased ADS activity in plaque of CA individuals (P = 0.026). The plaque microbial profiles of CA treated with the arginine toothpaste showed a shift in bacterial composition to a healthier community, more similar to that of CF individuals. Thus, an anti-caries effect may be expected from arginine-containing formulations due in large part to the enhancement of ADS activity levels and potential favorable modification to the composition of the oral microbiome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    Science.gov (United States)

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  3. Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation.

    Science.gov (United States)

    Xu, Xiang-Yang; Feng, Li-Juan; Zhu, Liang; Xu, Jing; Ding, Wei; Qi, Han-Ying

    2012-06-01

    The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement via discharging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. The pollutants removal performances became stable in the four reactors after 2 months' operation, with ammonia nitrogen and permanganate index (COD(Mn)) removal efficiencies of 84.41-94.21% and 69.66-76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.

  4. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    Science.gov (United States)

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  5. STABILITY AND CHANGE IN ESTUARINE BIOFILM BACTERIAL COMMUNITY DIVERSITY

    Science.gov (United States)

    Biofilms develop on all surfaces in aquatic environments and are defined as matrix-enclosed microbial populations adherent to each other and/or surfaces (1, 31). A substantial part of the microbial activity in nature is associated with surfaces (12). Surface association (biofou...

  6. Streamers and their applications

    Science.gov (United States)

    Pemen, A. J. M.

    2011-10-01

    In this invited lecture we give an overview of our 15 years of experience on streamer plasma research. Efforts are directed to integrating the competence areas of plasma physics, pulsed power technology and chemical processing. The current status is the development of a large scale pulsed corona system for gas treatment. Applications on biogas conditioning, VOC removal, odor abatement and control of traffic emissions have been demonstrated. Detailed research on electrical and chemical processes resulted in a boost of efficiencies. Energy transfer efficiency to the plasma was raised to above 90%. Simultaneous improvement of the plasma chemistry resulted in a highly efficient radical generation: O-radical production up to 50% of the theoretical maximum has been achieved. A major challenge in pulsed power driven streamers is to unravel, understand and ultimately control the complex interactions between the transient plasma, electrical circuits, and process. Even more a challenge is to yield electron energies that fit activation energies of the process. We will discuss our ideas on adjusting pulsed power waveforms and plasma reactor settings to obtain more controlled catalytic processing: the ``Chemical Transistor'' concept.

  7. Progressive biogeochemical transformation of placer gold particles drives compositional changes in associated biofilm communities.

    Science.gov (United States)

    Rea, Maria Angelica; Standish, Christopher D; Shuster, Jeremiah; Bissett, Andrew; Reith, Frank

    2018-05-03

    Biofilms on placer gold (Au)-particle surfaces drive Au solubilization and re-concentration thereby progressively transforming the particles. Gold solubilization induces Au-toxicity; however, Au-detoxifying community members ameliorates Au-toxicity by precipitating soluble Au to metallic Au. We hypothesize that Au-dissolution and re-concentration (precipitation) places selective pressures on associated microbial communities, leading to compositional changes and subsequent Au-particle transformation. We analyzed Au-particles from eight United Kingdom sites using next generation sequencing, electron microscopy and micro-analyses. Gold particles contained biofilms composed of prokaryotic cells and extracellular polymeric substances intermixed with (bio)minerals. Across all sites communities were dominated by Proteobacteria (689, 97% Operational Taxonomic Units, 59.3% of total reads), with β-Proteobacteria being the most abundant. A wide range of Au-morphotypes including nanoparticles, micro-crystals, sheet-like Au and secondary rims, indicated that dissolution and re-precipitation occurred, and from this transformation indices were calculated. Multivariate statistical analyses showed a significant relationship between the extent of Au-particle transformation and biofilm community composition, with putative metal-resistant Au-cycling taxa linked to progressive Au transformation. These included the genera Pseudomonas, Leptothrix and Acinetobacter. Additionally, putative exoelectrogenic genera Rhodoferax and Geobacter were highly abundant. In conclusion, biogeochemical Au-cycling and Au-particle transformation occurred at all sites and exerted a strong influence on biofilm community composition.

  8. Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm.

    Science.gov (United States)

    Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2004-11-01

    We characterized microbial biofilm communities developed over two very closely located but distinct benthic habitats in the Pensacola Bay estuary using two complementary cultivation-independent molecular techniques. Biofilms were grown for 7 days on glass slides held in racks 10 to 15 cm over an oyster reef and an adjacent muddy sand bottom. Total biomass and optical densities of dried biofilms showed dramatic differences for oyster reef versus non-oyster reef biofilms. This study assessed whether the observed spatial variation was reflected in the heterotrophic prokaryotic species composition. Genomic biofilm DNA from both locations was isolated and served as a template to amplify 16S rRNA genes with universal eubacterial primers. Fluorescently labeled PCR products were analyzed by terminal restriction fragment length polymorphism, creating a genetic fingerprint of the composition of the microbial communities. Unlabeled PCR products were cloned in order to construct a clone library of 16S rRNA genes. Amplified ribosomal DNA restriction analysis was used to screen and define ribotypes. Partial sequences from unique ribotypes were compared with existing database entries to identify species and to construct phylogenetic trees representative of community structures. A pronounced difference in species richness and evenness was observed at the two sites. The biofilm community structure from the oyster reef setting had greater evenness and species richness than the one from the muddy sand bottom. The vast majority of the bacteria in the oyster reef biofilm were related to members of the gamma- and delta-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium -Bacteroides cluster, and the phyla Planctomyces and Holophaga-Acidobacterium. The same groups were also present in the biofilm harvested at the muddy sand bottom, with the difference that nearly half of the community consisted of representatives of the Planctomyces phylum. Total species richness was estimated

  9. PO43- dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron.

    Science.gov (United States)

    Tlili, Ahmed; Bérard, Annette; Roulier, Jean-Louis; Volat, Bernadette; Montuelle, Bernard

    2010-06-10

    Pollution-induced community tolerance (PICT) concept is based on the assumption that the toxicant exerts selection pressure on the biological communities when exposure reaches a critical level for a sufficient period of time and therefore sensitive species are eliminated. However, induced tolerance of microbial biofilm communities cannot be attributed solely to the presence of toxicants in rivers but also to various environmental factors, such as amount of nutrients. An experimental study was undertaken to highlight the potential impact of a phosphorus gradient on the sensitivity of periphytic microbial community to Cu and diuron. Biofilms were exposed to real-world levels of chronic environmental contamination of toxicants with a phosphorus gradient. Biofilm sensitivity to Cu and diuron was assessed by performing short-term inhibition tests based on photosynthetic efficiency to target photoautotrophs, extracellular enzyme activity (beta-glucosidase and leucine-aminopeptidase) and substrate-induced respiration activity to target heterotrophs. The impact of P-gradient associated to pollution was evaluated by measuring pesticide concentrations in biofilms, biomass parameters (chla, AFDW), bacterial cell density, photosynthetic efficiency and community structure (using 18S and 16S rDNA gene analysis to target eukaryotes and DGGE and HPLC pigment analysis to target bacteria and photoautotrophs). The obtained results show that depending on the studied toxicant and the used structural or functional parameter, the effect of the phosphorus gradient was variable. This highlights the importance of using a range of parameters that target all the biological communities in the biofilm. The PICT method can be regarded as a good tool for assessing anthropogenic environmental contamination, but it is necessary to dissociate the real impact of toxicants from environmental factors.

  10. Community structure and seasonal dynamics of diatom biofilms and associated grazers in intertidal mudflats

    NARCIS (Netherlands)

    Sahan, E.; Sabbe, K.; Creach, V.; Hernandez-Raquet, G.; Vyverman, W.; Stal, L.J.; Muyzer, G.

    2007-01-01

    The composition and seasonal dynamics of biofilm-associated eukaryotic communities were analysed at the metre and kilometre scale along a salinity gradient in the Westerschelde estuary (The Netherlands), using microscopy and a genetic fingerprinting technique (PCR-DGGE). Microphytobenthic biomass,

  11. Biofilm community diversity after exposure to 0·4% stannous fluoride gels.

    Science.gov (United States)

    Reilly, C; Rasmussen, K; Selberg, T; Stevens, J; Jones, R S

    2014-12-01

    To test the effect of 0·4% stannous fluoride (SnF2 ) glycerine-based gels on specific portions of the bacterial community in both a clinical observational study and in vitro multispecies plaque-derived (MSPD) biofilm model. Potential changes to specific portions of the bacterial community were determined through the Human Oral Microbial Identification Microarray (HOMIM). Both the observational clinical study and the biofilm model showed that short-term use of 0·4% SnF2 gel has little effect on the bacterial community depicted by hierarchical cluster analysis. The amount of plaque accumulation on a subject's teeth, which was measured by plaque index scores, failed to show statistical significant changes over the two baselines or after treatment (P = 0·9928). The in vitro results were similar when examining the effect of 0·4% SnF2 gels on biofilm adherence through a crystal violet assay (P = 0·1157). The bacteria within the dental biofilms showed resilience in maintaining the overall community diversity after exposure to 0·4% SnF2 topical gels. The study supports that the immediate benefits of using 0·4% SnF2 gels in children may be strictly from fluoride ions inhibiting tooth demineralization rather than delivering substantial antimicrobial effects. © 2014 The Society for Applied Microbiology.

  12. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    International Nuclear Information System (INIS)

    Thi Thuy Duong; Morin, Soizic; Herlory, Olivier; Feurtet-Mazel, Agnes; Coste, Michel; Boudou, Alain

    2008-01-01

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems

  13. Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Anahit Penesyan

    2015-03-01

    Full Text Available Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored.

  14. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Thi Thuy Duong [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: duongthuy0712@yahoo.com; Morin, Soizic [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Herlory, Olivier [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France); Feurtet-Mazel, Agnes [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: a.feurtet-mazel@epoc.u-bordeaux1.fr; Coste, Michel [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Boudou, Alain [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)

    2008-10-20

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems.

  15. Bacterial cell numbers and community structures of seawater biofilms depend on the attachment substratum

    KAUST Repository

    Yap, Scott A.

    2018-02-02

    Seawater is increasingly being used as a source for various industrial applications. For such applications, biofilm growth creates various problems including but not limited to pipe biocorrosion. In this study, it is hypothesized that the material type is preferred by certain bacterial populations in the seawater to attach and establish biofilms. By comparing differences in the total cell counts and microbial communities attached to high-density polyethylene (HDPE), polycarbonate, stainless steel (SS316) and titanium, the appropriate material can be used to minimize biofilm growth. All four materials have hydrophilic surfaces, but polycarbonate exhibits higher surface roughness. There were no significant differences in the cell numbers attached to polycarbonate, HDPE and titanium. Instead, there were significantly fewer cells attached to SS316. However, there was a higher relative abundance of genera associated with opportunistic pathogens on SS316. Copy numbers of genes representing Desulfobacteraceae and Desulfobulbaceae, both of which are sulfate-reducing bacteria (SRB), were approximately 10-fold higher in biofilms sampled from SS316. The enrichment of SRB in the biofilm associated with SS316 indicates that this material may be prone to biocorrosion. This study highlights the need for industries to consider the choice of material used in seawater applications to minimize microbial-associated problems.

  16. Bacterial cell numbers and community structures of seawater biofilms depend on the attachment substratum

    KAUST Repository

    Yap, Scott A.; Scarascia, Giantommaso; Hong, Pei-Ying

    2018-01-01

    Seawater is increasingly being used as a source for various industrial applications. For such applications, biofilm growth creates various problems including but not limited to pipe biocorrosion. In this study, it is hypothesized that the material type is preferred by certain bacterial populations in the seawater to attach and establish biofilms. By comparing differences in the total cell counts and microbial communities attached to high-density polyethylene (HDPE), polycarbonate, stainless steel (SS316) and titanium, the appropriate material can be used to minimize biofilm growth. All four materials have hydrophilic surfaces, but polycarbonate exhibits higher surface roughness. There were no significant differences in the cell numbers attached to polycarbonate, HDPE and titanium. Instead, there were significantly fewer cells attached to SS316. However, there was a higher relative abundance of genera associated with opportunistic pathogens on SS316. Copy numbers of genes representing Desulfobacteraceae and Desulfobulbaceae, both of which are sulfate-reducing bacteria (SRB), were approximately 10-fold higher in biofilms sampled from SS316. The enrichment of SRB in the biofilm associated with SS316 indicates that this material may be prone to biocorrosion. This study highlights the need for industries to consider the choice of material used in seawater applications to minimize microbial-associated problems.

  17. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

    Directory of Open Access Journals (Sweden)

    Frank R. Bengelsdorf

    2015-08-01

    Full Text Available Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.

  18. Molecular Analysis of Bacterial Communities in Biofilms of a Drinking Water Clearwell

    Science.gov (United States)

    Zhang, Minglu; Liu, Wenjun; Nie, Xuebiao; Li, Cuiping; Gu, Junnong; Zhang, Can

    2012-01-01

    Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1–R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%–99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6–1.0 mg L−1 of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation. PMID:23059725

  19. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, Peifang; Wang, Chao; Guo, Chuan; Addo, Felix Gyawu; Li, Yi

    2016-10-01

    Submerged macrophytes play important roles in constructed wetlands and natural water bodies, as these organisms remove nutrients and provide large surfaces for biofilms, which are beneficial for nitrogen removal, particularly from submerged macrophyte-dominated water columns. However, information on the responses of biofilms to submerged macrophytes and nitrogen molecules is limited. In the present study, bacterial community structure and denitrifiers were investigated in biofilms on the leaves of four submerged macrophytes and artificial plants exposed to two nitrate concentrations. The biofilm cells were evenly distributed on artificial plants but appeared in microcolonies on the surfaces of submerged macrophytes. Proteobacteria was the most abundant phylum in all samples, accounting for 27.3-64.8% of the high-quality bacterial reads, followed by Chloroflexi (3.7-25.4%), Firmicutes (3.0-20.1%), Acidobacteria (2.7-15.7%), Actinobacteria (2.2-8.7%), Bacteroidetes (0.5-9.7%), and Verrucomicrobia (2.4-5.2%). Cluster analysis showed that bacterial community structure can be significantly different on macrophytes versus from those on artificial plants. Redundancy analysis showed that electrical conductivity and nitrate concentration were positively correlated with Shannon index and operational taxonomic unit (OTU) richness (log10 transformed) but somewhat negatively correlated with microbial density. The relative abundances of five denitrifying genes were positively correlated with nitrate concentration and electrical conductivity but negatively correlated with dissolved oxygen.

  20. A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community

    DEFF Research Database (Denmark)

    Herschend, Jakob; Damholt, Zacharias Brimnes Visby; Marquard, Andrea Marion

    2017-01-01

    Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due to the co......Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due...... to the complexity of these biological systems. Here we apply a meta-proteomics approach to investigate the mechanisms influencing biofilm formation in a model consortium of four bacterial soil isolates; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus...

  1. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  2. Comparative responses of river biofilms at the community level to common organic solvent and herbicide exposure.

    Science.gov (United States)

    Paule, A; Roubeix, V; Swerhone, G D W; Roy, J; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L; Lawrence, J R

    2016-03-01

    Residual pesticides applied to crops migrate from agricultural lands to surface and ground waters. River biofilms are the first aquatic non-target organisms which interact with pesticides. Therefore, ecotoxicological experiments were performed at laboratory scale under controlled conditions to investigate the community-level responses of river biofilms to a chloroacetanilide herbicide (alachlor) and organic solvent (methanol) exposure through the development referenced to control. Triplicate rotating annular bioreactors, inoculated with river water, were used to cultivate river biofilms under the influence of 1 and 10 μg L(-1) of alachlor and 25 mg L(-1) of methanol. For this purpose, functional (thymidine incorporation and carbon utilization spectra) and structural responses of microbial communities were assessed after 5 weeks of development. Structural aspects included biomass (chlorophyll a, confocal laser scanning microscopy) and composition (fluor-conjugated lectin binding, molecular fingerprinting, and diatom species composition). The addition of alachlor resulted in a significant reduction of bacterial biomass at 1 μg L(-1), whereas at 10 μg L(-1), it induced a significant reduction of exopolymer lectin binding, algal, bacterial, and cyanobacterial biomass. However, there were no changes in biofilm thickness or thymidine incorporation. No significant difference between the bacterial community structures of control and alachlor-treated biofilms was revealed by terminal restriction fragment length polymorphism (T-RFLP) analyses. However, the methanol-treated bacterial communities appeared different from control and alachlor-treated communities. Moreover, methanol treatment resulted in an increase of bacterial biomass and thymidine incorporation as well. Changes in dominant lectin binding suggested changes in the exopolymeric substances and community composition. Chlorophyll a and cyanobacterial biomass were also altered by methanol. This study suggested

  3. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria...

  4. Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement

    KAUST Repository

    Lee, On On; Chung, Hong Chun; Yang, Jiangke; Wang, Yong; Dash, Swagatika; Wang, Hao; Qian, Pei-Yuan

    2014-01-01

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members

  5. Land Streamer Surveying Using Multiple Sources

    KAUST Repository

    Mahmoud, Sherif

    2014-12-11

    Various examples are provided for land streamer seismic surveying using multiple sources. In one example, among others, a method includes disposing a land streamer in-line with first and second shot sources. The first shot source is at a first source location adjacent to a proximal end of the land streamer and the second shot source is at a second source location separated by a fixed length corresponding to a length of the land streamer. Shot gathers can be obtained when the shot sources are fired. In another example, a system includes a land streamer including a plurality of receivers, a first shot source located adjacent to the proximal end of the land streamer, and a second shot source located in-line with the land streamer and the first shot source. The second shot source is separated from the first shot source by a fixed overall length corresponding to the land streamer.

  6. Metagenomic Sequencing of Marine Periphyton: Taxonomic and Functional Insights into Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Kemal eSanli

    2015-10-01

    Full Text Available Periphyton communities are complex phototrophic, multispecies biofilms that develop on surfaces in aquatic environments. These communities harbor a large diversity of organisms comprising viruses, bacteria, algae, fungi, protozoans and metazoans. However, thus far the total biodiversity of periphyton has not been described. In this study, we use metagenomics to characterize periphyton communities from the marine environment of the Swedish west coast. Although we found approximately ten times more eukaryotic rRNA marker gene sequences compared to prokaryotic, the whole metagenome-based similarity searches showed that bacteria constitute the most abundant phyla in these biofilms. We show that marine periphyton encompass a range of heterotrophic and phototrophic organisms. Heterotrophic bacteria, including the majority of proteobacterial clades and Bacteroidetes, and eukaryotic macro-invertebrates were found to dominate periphyton. The phototrophic groups comprise Cyanobacteria and the alpha-proteobacterial genus Roseobacter, followed by different micro- and macro-algae. We also assess the metabolic pathways that predispose these communities to an attached lifestyle. Functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances, mainly in the form of complex sugars such as starch and glycogen-like meshes together with chitin. Genes for 278 different transporter proteins were detected in the metagenome, constituting the most abundant protein complexes. Finally, genes encoding enzymes that participate in anaerobic pathways, such as denitrification and methanogenesis, were detected suggesting the presence of anaerobic or low-oxygen micro-zones within the biofilms.

  7. Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections.

    Science.gov (United States)

    Hola, Veronika; Peroutkova, Tereza; Ruzicka, Filip

    2012-07-01

    More than 40% of nosocomial infections are those of the urinary tract, most of these occurring in catheterized patients. Bacterial colonization of the urinary tract and catheters results not only in infection, but also various complications, such as blockage of catheters with crystalline deposits of bacterial origin, generation of gravels and pyelonephritis. The diversity of the biofilm microbial community increases with duration of catheter emplacement. One of the most important pathogens in this regard is Proteus mirabilis. The aims of this study were to identify and assess particular virulence factors present in catheter-associated urinary tract infection (CAUTI) isolates, their correlation and linkages: three types of motility (swarming, swimming and twitching), the ability to swarm over urinary catheters, biofilm production in two types of media, urease production and adherence of bacterial cells to various types of urinary tract catheters. We examined 102 CAUTI isolates and 50 isolates taken from stool samples of healthy people. Among the microorganisms isolated from urinary catheters, significant differences were found in biofilm-forming ability and the swarming motility. In comparison with the control group, the microorganisms isolated from urinary catheters showed a wider spectrum of virulence factors. The virulence factors (twitching motility, swimming motility, swarming over various types of catheters and biofilm formation) were also more intensively expressed. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. The microbial community of a biofilm contact reactor for the treatment of winery wastewater.

    Science.gov (United States)

    de Beer, D M; Botes, M; Cloete, T E

    2018-02-01

    To utilize a three-tiered approach to provide insight into the microbial community structure, the spatial distribution and the metabolic capabilities of organisms of a biofilm in the two towers of a high-rate biological contact reactor treating winery wastewater. Next-generation sequencing indicated that bacteria primarily responsible for the removal of carbohydrates, sugars and alcohol were more abundant in tower 1 than tower 2 while nitrifying and denitrifying bacteria were more abundant in tower 2. Yeast populations differed in each tower. Fluorescent in situ hybridization coupled with confocal microscopy showed distribution of organisms confirming an oxygen gradient across the biofilm depth. The Biolog system (ECO plates) specified the different carbon-metabolizing profiles of the two biofilms. The three-tiered approach confirmed that the addition of a second subunit to the bioreactor, expanded the treatment capacity by augmenting the microbial and metabolic diversity of the system, improving the treatment scope of the system. A three-tiered biofilm analysis provided data required to optimize the design of a bioreactor to provide favourable conditions for the development of a microbial consortium, which has optimal waste removal properties for the treatment requirements at hand. © 2017 The Society for Applied Microbiology.

  9. Treatment of Biofilm Communities: An Update on New Tools from the Nanosized World

    Directory of Open Access Journals (Sweden)

    Federico Bertoglio

    2018-05-01

    Full Text Available Traditionally regarded as single cell organisms, bacteria naturally and preferentially build multicellular communities that enable them to react efficiently to external stimuli in a coordinated fashion and with extremely effective outcomes. These communities are bacterial biofilms, where single cells or microcolonies are embedded in self-built Extracellular Polymeric Substance (EPS, composed of different macromolecules, e.g., polysaccharides, proteins, lipids, and extracellular DNA (eDNA. Despite being the most common form in nature and having many biotechnologically useful applications, biofilm is often regarded as a life-threatening form of bacterial infection. Since this form of bacterial life is intrinsically more resistant to antibiotic treatment and antimicrobial resistance is reaching alarming levels, we will focus our attention on how nanotechnology made new tools available to the medical community for the prevention and treatment of these infections. After a brief excursus on biofilm formation and its main characteristics, different types of nanomaterials developed to prevent or counteract these multicellular forms of bacterial infection will be described. A comparison of different classifications adopted for nanodrugs and a final discussion of challenges and future perspectives are also presented.

  10. Land Streamer Surveying Using Multiple Sources

    KAUST Repository

    Mahmoud, Sherif; Schuster, Gerard T.

    2014-01-01

    are fired. In another example, a system includes a land streamer including a plurality of receivers, a first shot source located adjacent to the proximal end of the land streamer, and a second shot source located in-line with the land streamer and the first

  11. Effect of inhomogeneities on streamer propagation: II. Streamer dynamics in high pressure humid air with bubbles

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    The branching of electric discharge streamers in atmospheric pressure air, dense gases and liquids is a common occurrence whose origins are likely found with many causes, both deterministic and stochastic. One mechanism for streamer branching may be inhomogeneities in the path of a streamer which either divert the streamer (typically a region of lower ionization) or produce a new branch (a region of higher ionization). The propagation and branching of streamers in liquids is likely aided by low density inhomogeneities, bubbles; however, modeling of streamers in liquids is made difficult by the lack of transport coefficients. As a first step towards understanding the propagation and branching of streamers in liquids, we investigated the consequences of random inhomogeneities in the form of low pressure bubbles on the propagation of streamers in high pressure humid air. By virtue of their lower density, bubbles have larger E/N (electric field/gas number density) than the ambient gas with larger rates of ionization. The intersection of a streamer with a bubble will focus the plasma into the bubble by virtue of that higher rate of ionization but the details of the interaction depend on the relative sizes of the bubble and streamer. When a streamer intersects a field of bubbles, the large E/N in the bubble avalanches seed electrons produced by photoionization from the streamer. Each bubble then launches both a negative and positive going streamer that may link with those from adjacent bubbles or the original streamer. The total process then appears as streamer branching.

  12. Effects of organic pollution on biological communities of marine biofilm on hard substrata.

    Science.gov (United States)

    Sanz-Lázaro, C; Fodelianakis, S; Guerrero-Meseguer, L; Marín, A; Karakassis, I

    2015-06-01

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ(13)C and δ(15)N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    Science.gov (United States)

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  14. Three common metal contaminants of urban runoff (Zn, Cu and Pb) accumulate in freshwater biofilm and modify embedded bacterial communities

    International Nuclear Information System (INIS)

    Ancion, Pierre-Yves; Lear, Gavin; Lewis, Gillian D.

    2010-01-01

    We investigated the absorption rates of zinc, copper and lead in freshwater biofilm and assessed whether biofilm bacterial populations are affected by exposure to environmentally relevant concentrations of these metals in flow chamber microcosms. Metals were rapidly accumulated by the biofilm and then retained for at least 14 days after transfer to uncontaminated water. Changes in bacterial populations were assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene clone libraries. Significant differences in bacterial community structure occurred within only three days of exposure to metals and remained detectable at least 14 days after transfer to uncontaminated water. The rapid uptake of stormwater-associated metals and their retention in the biofilm highlight the potential role of biofilms in the transfer of metals to organisms at higher trophic levels. The sensitivity of stream biofilm bacterial populations to metal exposure supports their use as an indicator of stream ecological health. - The rapid accumulation of metals in biofilms and their impact on bacterial communities provide new insights into how these contaminants affect freshwater ecosystems.

  15. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.

    Science.gov (United States)

    Fish, K; Osborn, A M; Boxall, J B

    2017-09-01

    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Testing an hydrogen streamer chamber

    CERN Multimedia

    1975-01-01

    A 2x10 cm gap streamer chamber, 35x55 cm2 in surface, was built and tested at CERN. Good tracks of cosmic rays were obtained up to atmospheric pressure, see F. Rohrbach et al, CERN-LAL (Orsay) Collaboration, Nucl. Instr. Methods 141 (1977) 229. Michel Cathenoz stand on the center.

  17. Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere.

    Directory of Open Access Journals (Sweden)

    Pablo Bogino

    Full Text Available Biofilms are microbial communities that adhere to biotic or abiotic surfaces and are enclosed in a protective matrix of extracellular compounds. An important advantage of the biofilm lifestyle for soil bacteria (rhizobacteria is protection against water deprivation (desiccation or osmotic effect. The rhizosphere is a crucial microhabitat for ecological, interactive, and agricultural production processes. The composition and functions of bacterial biofilms in soil microniches are poorly understood. We studied multibacterial communities established as biofilm-like structures in the rhizosphere of Medicago sativa (alfalfa exposed to 3 experimental conditions of water limitation. The whole biofilm-forming ability (WBFA for rhizospheric communities exposed to desiccation was higher than that of communities exposed to saline or nonstressful conditions. A culture-dependent ribotyping analysis indicated that communities exposed to desiccation or saline conditions were more diverse than those under the nonstressful condition. 16S rRNA gene sequencing of selected strains showed that the rhizospheric communities consisted primarily of members of the Actinobacteria and α- and γ-Proteobacteria, regardless of the water-limiting condition. Our findings contribute to improved understanding of the effects of environmental stress factors on plant-bacteria interaction processes and have potential application to agricultural management practices.

  18. Effect of temperature and colonization of Legionella pneumophila and Vermamoeba vermiformis on bacterial community composition of copper drinking water biofilms.

    Science.gov (United States)

    Buse, Helen Y; Ji, Pan; Gomez-Alvarez, Vicente; Pruden, Amy; Edwards, Marc A; Ashbolt, Nicholas J

    2017-07-01

    It is unclear how the water-based pathogen, Legionella pneumophila (Lp), and associated free-living amoeba (FLA) hosts change or are changed by the microbial composition of drinking water (DW) biofilm communities. Thus, this study characterized the bacterial community structure over a 7-month period within mature (> 600-day-old) copper DW biofilms in reactors simulating premise plumbing and assessed the impact of temperature and introduction of Lp and its FLA host, Vermamoeba vermiformis (Vv), co-cultures (LpVv). Sequence and quantitative PCR (qPCR) analyses indicated a correlation between LpVv introduction and increases in Legionella spp. levels at room temperature (RT), while at 37°C, Lp became the dominant Legionella spp. qPCR analysis suggested Vv presence may not be directly associated with Lp biofilm growth at RT and 37°C, but may contribute to or be associated with non-Lp legionellae persistence at RT. Two-way PERMANOVA and PCoA revealed that temperature was a major driver of microbiome diversity. Biofilm community composition also changed over the seven-month period and could be associated with significant shifts in dissolved oxygen, alkalinity and various metals in the influent DW. Hence, temperature, biofilm age, DW quality and transient intrusions/amplification of pathogens and FLA hosts may significantly impact biofilm microbiomes and modulate pathogen levels over extended periods. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  20. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  1. Biofilm Community Diversity after Exposure to 0.4% Stannous Fluoride Gels

    Science.gov (United States)

    Reilly, Cavan; Rasmussen, Karin; Selberg, Tieg; Stevens, Justin; Jones, Robert S.

    2015-01-01

    Aims To test the effect of %0.4 stannous fluoride (SnF2) glycerin based gels on the bacterial ecology in both a clinical observational study and in vitro polymicobial biofilm model. Methods and Results The influence of stannous fluoride (0.4% SnF2) gels on bacteria was tested in both an observational study in children 6-12 years of age (n=20) and an in vitro biofilm model system. The plaque derived multi-species bacterial biofilm model was based on clinical bacterial strains derived directly from the clinical study. Potential changes in the plaque ecology were determined through the Human Oral Microbial Identification Microarray-HOMIM (n=10). The semiquantitative data resulting from this system were analyzed with cumulative logit models for each bacterial strain and Bonferroni adjustments were employed to correct for multiple hypothesis testing. Both hierarchical biclustering and principal components analysis were used to graphically assess reproducibility within subjects over time. Mixed effects models were used to examine changes in plaque scores and numbers of bacterial strains found in the various conditions. Conclusions Both the observational clinical study and the biofilm model showed that short-term use of 0.4% SnF2 gel has little effect on the bacterial plaque ecology. The amount of plaque accumulation on a subject's teeth, which was measured by plaque index scores failed to show statistical significant changes over the two baselines or after treatment (p=0.9928). The in vitro results were similar when examining the effect of 0.4% SnF2 gels on biofilm adherence through a crystal violet assay (p= 0.1157). Significance and Impact of the Study The bacteria within the dental biofilms showed resilience in maintaining the overall community diversity after exposure to 0.4% Stannous Fluoride Gels. The study supports that the immediate benefits of using these gels each night to manage caries in children may be strictly from fluoride ions inhibiting tooth

  2. Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources.

    Science.gov (United States)

    Li, Weiying; Wang, Feng; Zhang, Junpeng; Qiao, Yu; Xu, Chen; Liu, Yao; Qian, Lin; Li, Wenming; Dong, Bingzhi

    2016-02-15

    The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor.

    Science.gov (United States)

    Liu, Tao; Mao, Yan-Jun; Shi, Yan-Ping; Quan, Xie

    2017-03-01

    Partial nitrification (PN) has been considered as one of the promising processes for pretreatment of ammonium-rich wastewater. In this study, a kind of novel carriers with enhanced hydrophilicity and electrophilicity was implemented in a moving bed biofilm reactor (MBBR) to start up PN process. Results indicated that biofilm formation rate was higher on modified carriers. In comparison with the reactor filled with traditional carriers (start-up period of 21 days), it took only 14 days to start up PN successfully with ammonia removal efficiency and nitrite accumulation rate of 90 and 91%, respectively, in the reactor filled with modified carriers. Evident changes of spatial distributions and community structures had been detected during the start-up. Free-floating cells existed in planktonic sludge, while these microorganisms trended to form flocs in the biofilm. High-throughput pyrosequencing results indicated that Nitrosomonas was the predominant ammonia-oxidizing bacterium (AOB) in the PN system, while Comamonas might also play a vital role for nitrogen oxidation. Additionally, some other bacteria such as Ferruginibacter, Ottowia, Saprospiraceae, and Rhizobacter were selected to establish stable footholds. This study would be potentially significant for better understanding the microbial features and developing efficient strategies accordingly for MBBR-based PN operation.

  4. A prospective study on evaluation of pathogenesis, biofilm formation, antibiotic susceptibility of microbial community in urinary catheter

    Science.gov (United States)

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2015-09-01

    This study is aimed to isolate, detect biofilm formation ability and antibiotic susceptibility of urinary catheter adherent microorganisms from elderly hospitalized patient at the Universiti Kebangsaan Malaysia Medical Center. Microorganisms were isolated from three samples of urinary catheters (UC) surface; one of the acute vascular rejection patient (UCB) and two from benign prostate hyperplasia patients (UCC and UCD). A total of 100 isolates was isolated with 35 from UCB, 38 (UCC) and 28 (UCD). Ninety six were identified as Gram-negative bacilli, one Gram-positive bacilli and three yeasts. Results of biofilm forming on sterile foley catheter showed that all the isolates can form biofilm at different degrees; strong biofilm forming: 32% from the 35 isolates (UCB), 25% out of 38 isolates (UCC), 26% out of 28 isolates (UCD). As for moderate biofilm forming; 3% from UCB, 10% from UCC and 2% from UCD. Weak biofilm forming in UCC (3%). The antibiotic susceptibility for (UCB) isolates showed highly resistant to ampicillin, novobiocin and penicillin 100 (%), kanamycin (97%), tetracycline (94%), chloramphenicol (91%), streptomycin (77%) and showed low level of resistance to gentamycin (17%), while all the isolates from (UCC-D) showed high resistant towards ampicillin and penicillin, novobiocin (94%), tetracycline (61%), streptomycin (53%), gentamycin (50%) and low level of resistance to kanamycin (48%), chloramphenicol (47%). The findings indicate that these isolates can spread within the community on urinary catheters surface and produce strong biofilm, therefore, monitoring antibiotic susceptibility of bacteria isolated in the aggregation is recommended.

  5. Interactions between multiple filaments and bacterial biofilms on the surface of an apple

    Science.gov (United States)

    He, CHENG; Maoyuan, XU; Shuhui, PAN; Xinpei, LU; Dawei, LIU

    2018-04-01

    In this paper, the interactions between two dielectric barrier discharge (DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise. The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.

  6. Use of the MicroRespTM method to assess pollution-induced community tolerance to metals for lotic biofilms

    International Nuclear Information System (INIS)

    Tlili, Ahmed; Marechal, Marjorie; Montuelle, Bernard; Volat, Bernadette; Dorigo, Ursula; Berard, Annette

    2011-01-01

    Understanding the ecological status of aquatic ecosystems and the impact of anthropogenic contamination requires correlating exposure to toxicants with impact on biological communities. Several tools exist for assessing the ecotoxicity of substances, but there is still a need for new tools that are ecologically relevant and easy to use. We have developed a protocol based on the substrate-induced respiration of a river biofilm community, using the MicroResp TM technique, in a pollution-induced community tolerance approach. The results show that MicroResp TM can be used in bioassays to assess the toxicity toward biofilm communities of a wide range of metals (Cu, Zn, Cd, Ag, Ni, Fe, Co, Al and As). Moreover, a community-level physiological profile based on the mineralization of different carbon substrates was established. Finally, the utility of MicroResp TM was confirmed in an in-situ study showing gradient of tolerance to copper correlated to a contamination gradient of this metal in a small river. - A modified MicroResp TM technique as a tool for measuring induced tolerance to heavy metals of a microbial biofilm community. - Research highlights: → MicroResp TM allows to plot dose-response curves with various tested metals. → Induced-tolerance to copper of heterotrophic biofilm community was successfully measured. → No co-tolerance detected between copper, silver and cadmium by using MicroResp TM . → MicroResp TM allows assessment of change in catabolic diversity in microbial community.

  7. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Hotta Yasuaki

    2008-01-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. Results A laboratory-scale two-chamber microbial fuel cell (MFC was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Conclusion Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community.

  8. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.

    Science.gov (United States)

    Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat

    2017-05-01

    Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.

  9. Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyte-rich streams

    DEFF Research Database (Denmark)

    Levi, Peter S.; Starnawski, Piotr; Poulsen, Britta

    2017-01-01

    Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms...... in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte-rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C......:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were...

  10. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.

    2004-01-01

    of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...

  11. Resilience and recovery: The effect of triclosan exposure timing during development, on the structure and function of river biofilm communities

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.R., E-mail: john.lawrence@ec.gc.ca [Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5 (Canada); Topp, E. [Agriculture and Agri-Food Canada, London, ON (Canada); Waiser, M.J.; Tumber, V.; Roy, J.; Swerhone, G.D.W. [Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5 (Canada); Leavitt, P. [University of Regina, Regina, SK (Canada); Paule, A. [Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK (Canada); Korber, D.R. [Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-04-15

    Highlights: • Triclosan negatively affected structure and metabolism of biofilms under all exposure conditions. • Biofilm age, timing and exposure regime alter the effects of triclosan. • Regardless of exposure regime algae and cyanobacteria were the most affected. • Although recovery was evident no community regained the reference condition. • Initial recruitment may be significant in determining community recovery. - Abstract: Triclosan (TCS) is a ubiquitous antibacterial agent found in soaps, scrubs, and consumer products. There is limited information on hazardous effects of TCS in the environment. Here, rotating annular reactors were used to cultivate river biofilm communities exposed to 1.8 μg l{sup −1} TCS with the timing and duration of exposure and recovery during development varied. Two major treatment regimens were employed: (i) biofilm development for 2, 4 or 6 weeks prior to TCS exposure and (ii) exposure of biofilms to TCS for 2, 4 or 6 weeks followed by recovery. Biofilms not exposed to TCS were used as a reference condition. Communities cultivated without and then exposed to TCS all exhibited reductions in algal biomass and significant (p < 0.05) reductions in cyanobacterial biomass. No significant effects were observed on bacterial biomass. CLSM imaging of biofilms at 8 weeks revealed unique endpoints in terms of community architecture. Community composition was altered by any exposure to TCS, as indicated by significant shifts in denaturing gradient gel electrophoresis fingerprints and exopolymer composition relative to the reference. Bacterial, algal and cyanobacterial components initially exposed to TCS were significantly different from those TCS-free at time zero. Pigment analyses suggested that significant changes in composition of algal and cyanobacterial populations occurred with TCS exposure. Bacterial thymidine incorporation rates were reduced by TCS exposure and carbon utilization spectra shifted in terms substrate metabolism

  12. Resilience and recovery: The effect of triclosan exposure timing during development, on the structure and function of river biofilm communities

    International Nuclear Information System (INIS)

    Lawrence, J.R.; Topp, E.; Waiser, M.J.; Tumber, V.; Roy, J.; Swerhone, G.D.W.; Leavitt, P.; Paule, A.; Korber, D.R.

    2015-01-01

    Highlights: • Triclosan negatively affected structure and metabolism of biofilms under all exposure conditions. • Biofilm age, timing and exposure regime alter the effects of triclosan. • Regardless of exposure regime algae and cyanobacteria were the most affected. • Although recovery was evident no community regained the reference condition. • Initial recruitment may be significant in determining community recovery. - Abstract: Triclosan (TCS) is a ubiquitous antibacterial agent found in soaps, scrubs, and consumer products. There is limited information on hazardous effects of TCS in the environment. Here, rotating annular reactors were used to cultivate river biofilm communities exposed to 1.8 μg l −1 TCS with the timing and duration of exposure and recovery during development varied. Two major treatment regimens were employed: (i) biofilm development for 2, 4 or 6 weeks prior to TCS exposure and (ii) exposure of biofilms to TCS for 2, 4 or 6 weeks followed by recovery. Biofilms not exposed to TCS were used as a reference condition. Communities cultivated without and then exposed to TCS all exhibited reductions in algal biomass and significant (p < 0.05) reductions in cyanobacterial biomass. No significant effects were observed on bacterial biomass. CLSM imaging of biofilms at 8 weeks revealed unique endpoints in terms of community architecture. Community composition was altered by any exposure to TCS, as indicated by significant shifts in denaturing gradient gel electrophoresis fingerprints and exopolymer composition relative to the reference. Bacterial, algal and cyanobacterial components initially exposed to TCS were significantly different from those TCS-free at time zero. Pigment analyses suggested that significant changes in composition of algal and cyanobacterial populations occurred with TCS exposure. Bacterial thymidine incorporation rates were reduced by TCS exposure and carbon utilization spectra shifted in terms substrate metabolism

  13. Evolution of streamer groups in nonthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, M., E-mail: mokubo@me.osakafu-u.ac.jp [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan)

    2015-12-15

    Nonthermal plasmas (NTPs) induced by atmospheric nanosecond pulsed corona discharge have been studied for controlling pollution from combustors, such as boilers, incinerators, and diesel engines. In high-speed short-width high-voltage pulsed corona discharge-induced plasmas, primary streamer evolution is followed by secondary streamer evolution. Though this phenomenon is known experimentally, the details of the structures of the streamers and their evolution mechanisms have not been fully clarified. In this letter, we perform quasi two-dimensional numerical analysis of nonequilibrium NTP induced by a nanosecond positive pulsed corona discharge. The continuum fluid equations for two-temperature nonequilibrium NTP are used as governing equations. In this study, 197 gas phase reactions for 25 chemical species and 21 surface reactions on the inner glass wall surface are considered in an air plasma under atmospheric pressure. The simulated behavior of the streamer groups agrees with experimental observations. Soon after the voltage increases on the reactor, primary streamers are formed, which may transit the complete gap, disappearing near the peak voltage. Next, second streamers appear, disappearing at the end of the applied voltage pulse. The streamer wavelength and the distance between the streamers in the axial direction are determined. Moreover, ozone generation is shown to be more significant in the secondary streamer. This simulation will allow better predictions for nanosecond positive pulsed plasma systems.

  14. Evolution of streamer groups in nonthermal plasma

    Science.gov (United States)

    Okubo, M.

    2015-12-01

    Nonthermal plasmas (NTPs) induced by atmospheric nanosecond pulsed corona discharge have been studied for controlling pollution from combustors, such as boilers, incinerators, and diesel engines. In high-speed short-width high-voltage pulsed corona discharge-induced plasmas, primary streamer evolution is followed by secondary streamer evolution. Though this phenomenon is known experimentally, the details of the structures of the streamers and their evolution mechanisms have not been fully clarified. In this letter, we perform quasi two-dimensional numerical analysis of nonequilibrium NTP induced by a nanosecond positive pulsed corona discharge. The continuum fluid equations for two-temperature nonequilibrium NTP are used as governing equations. In this study, 197 gas phase reactions for 25 chemical species and 21 surface reactions on the inner glass wall surface are considered in an air plasma under atmospheric pressure. The simulated behavior of the streamer groups agrees with experimental observations. Soon after the voltage increases on the reactor, primary streamers are formed, which may transit the complete gap, disappearing near the peak voltage. Next, second streamers appear, disappearing at the end of the applied voltage pulse. The streamer wavelength and the distance between the streamers in the axial direction are determined. Moreover, ozone generation is shown to be more significant in the secondary streamer. This simulation will allow better predictions for nanosecond positive pulsed plasma systems.

  15. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...... (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  16. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China.

    Science.gov (United States)

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan

    2017-01-01

    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  17. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyungmi; Okabe, Satoshi [Hokkaido Univ., Sapporo (Japan). Dept. of Urban and Environmental Engineering

    2009-07-15

    A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. (orig.)

  18. Experimental investigations on the physics of streamers

    NARCIS (Netherlands)

    Nijdam, S.

    2011-01-01

    Streamers are rapidly extending ionized fingers that can appear in gasses, liquids and solids. They are generated by high electric fields but can penetrate into areas where the background electric field is below the ionization threshold. Streamers occur in nature as a precursor to sparks and

  19. Pulsed positive corona streamer propagation and branching

    International Nuclear Information System (INIS)

    Veldhuizen, E.M. van; Rutgers, W.R.

    2002-01-01

    The propagation and branching of pulsed positive corona streamers in a short gap is observed with high resolution in space and time. The appearance of the pre-breakdown phenomena can be controlled by the electrode configuration, the gas composition and the impedance of the pulsed power circuit. In a point-wire gap the positive corona shows much more branching than in the parallel plane gap with a protrusion. In air, the branching is more pronounced than in argon. The pulsed power circuit appears to operate in two modes, either as an inductive circuit creating a lower number of thick streamers or as a resistive circuit giving a higher number of thin streamers. A possible cause for branching is electrostatic repulsion of two parts of the streamer head. The electric field at the streamer head is limited, the maximum values found are ∼170 kV cm -1 in air and ∼100 kV cm -1 in argon. At these maximum field strengths, the electrons have 5-10 eV energy, so the ionization is dominated by two-step processes. Differences between argon and ambient air in the field strength at which streamers propagate are ascribed to the difference in de-excitation processes in noble and molecular gases. The fact that the pulsed power circuit can control the streamer structure is important for applications, but this effect must also be taken into account in fundamental studies of streamer propagation and branching. (author)

  20. Pulsed positive corona streamer propagation and branching

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E.M. van [Department of Physics, Technische Universiteit Eindhoven, Eindhoven (Netherlands)]. E-mail: e.m.v.veldhuizen@tue.nl; Rutgers, W.R. [Department of Physics, Technische Universiteit Eindhoven, Eindhoven (Netherlands)

    2002-09-07

    The propagation and branching of pulsed positive corona streamers in a short gap is observed with high resolution in space and time. The appearance of the pre-breakdown phenomena can be controlled by the electrode configuration, the gas composition and the impedance of the pulsed power circuit. In a point-wire gap the positive corona shows much more branching than in the parallel plane gap with a protrusion. In air, the branching is more pronounced than in argon. The pulsed power circuit appears to operate in two modes, either as an inductive circuit creating a lower number of thick streamers or as a resistive circuit giving a higher number of thin streamers. A possible cause for branching is electrostatic repulsion of two parts of the streamer head. The electric field at the streamer head is limited, the maximum values found are {approx}170 kV cm{sup -1} in air and {approx}100 kV cm{sup -1} in argon. At these maximum field strengths, the electrons have 5-10 eV energy, so the ionization is dominated by two-step processes. Differences between argon and ambient air in the field strength at which streamers propagate are ascribed to the difference in de-excitation processes in noble and molecular gases. The fact that the pulsed power circuit can control the streamer structure is important for applications, but this effect must also be taken into account in fundamental studies of streamer propagation and branching. (author)

  1. Fast imaging of streamer propagation

    International Nuclear Information System (INIS)

    Veldhuizen, E.M. van; Baede, A.H.F.M.; Hayashi, D.; Rutgers, W.R.

    2001-01-01

    Recently measurement methods are becoming available to study the corona discharge in more detail. One of the most promising methods is laser-induced fluorescence to determine radical density. Recent improvements in CCD cameras makes it now possible to improve measurements of the discharge structure to a resolution of 1 ns in time and 10 μm in space. This paper shows the first results of the spontaneous emission of a point-to-plane corona discharge in air using such a camera. It clearly indicates that the 2-D approach for streamer propagation under these conditions is insufficient

  2. Fast imaging of streamer propagation

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E.M. van; Baede, A.H.F.M.; Hayashi, D.; Rutgers, W.R. [Eindhoven Univ. of Technology (Netherlands). Dept. of Applied Physics

    2001-07-01

    Recently measurement methods are becoming available to study the corona discharge in more detail. One of the most promising methods is laser-induced fluorescence to determine radical density. Recent improvements in CCD cameras makes it now possible to improve measurements of the discharge structure to a resolution of 1 ns in time and 10 {mu}m in space. This paper shows the first results of the spontaneous emission of a point-to-plane corona discharge in air using such a camera. It clearly indicates that the 2-D approach for streamer propagation under these conditions is insufficient.

  3. 2,4-D and Glyphosate affect aquatic biofilm accrual, gross primary production, and community respiration

    Directory of Open Access Journals (Sweden)

    Lawton E. Shaw

    2016-10-01

    Full Text Available 2,4-Dichlorophenoxyacetic acid (2,4-D and glyphosate are widely used agricultural herbicides commonly found in surface waters near cultivated land. Field experiments were conducted to determine the effects of 2,4-D and glyphosate on biofilms in a pond next to agricultural land in Athabasca, Alberta. Contaminant-exposure substrates (CES consisted of GF/C glass fiber or a cellulose filter paper substrates placed on specimen jars filled with agar that contained low levels of nitrogen and phosphorus, and different concentrations (15, 9.0, 1.5 mM of either 2,4-D or glyphosate. Nutrients and herbicide diffused freely through the agar to the substrate surface. CES arrays were deployed 15 cm below the water surface for 22 days, after which biofilms were collected and biomass (chlorophyll a, autotroph gross primary production (GPP, and heterotroph community respiration (CR were measured. 2,4-D (15 mM caused significant decreases in rates of biomass accrual (−22%, GPP (−34%, and CR(−63%. Glyphosate (15 mM also caused significant decreases in rates of biomass accrual (−50%, GPP (−67%, and CR (−47%. For the contaminant concentrations used, mean flux rates are estimated to be between 50–700 ng cm−2 min−1.

  4. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    Science.gov (United States)

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  5. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    Science.gov (United States)

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  6. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    Science.gov (United States)

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  7. Magnetic field influence on the selfquenching streamer discharge

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Korytov, A.V.

    1987-01-01

    The influence of the magnetic field on the selfquenching streamer discharge characteristics is investigated. In the field about 10 kGs streamer charge is decreased several per cent (change of charge is due to amplitude decreasing of signal). In the transition region from limited-proportional to streamer mode magnetic field results in increasing of probability of avalanche developing into a streamer

  8. Dps promotes survival of nontypeable Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo.

    Science.gov (United States)

    Pang, Bing; Hong, Wenzhou; Kock, Nancy D; Swords, W Edward

    2012-01-01

    Nontypeable Haemophilus influenzae (NTHi) is a common airway commensal and opportunistic pathogen that persists within surface-attached biofilm communities. In this study, we tested the hypothesis that bacterial stress-responses are activated within biofilms. Transcripts for several factors associated with bacterial resistance to environmental stress were increased in biofilm cultures as compared to planktonic cultures. Among these, a homolog of the DNA-binding protein from starved cells (dps) was chosen for further study. An isogenic NTHi 86-028NP dps mutant was generated and tested for resistance to environmental stress, revealing a significant survival defects in high-iron conditions, which was mediated by oxidative stress and was restored by genetic complementation. As expected, NTHi 86-028NP dps had a general stress-response defect, exhibiting decreased resistance to many types of environmental stress. While no differences were observed in density and structure of NTHi 86-028NP and NTHi 86-028NP dps biofilms, bacterial survival was decreased in NTHi 86-028NP dps biofilms as compared to the parental strain. The role of dps persistence in vivo was tested in animal infection studies. NTHi 86-028NP dps had decreased resistance to clearance after pulmonary infection of elastase-treated mice as compared to NTHi 86-028NP, whereas minimal differences were observed in clearance from mock-treated mice. Similarly, lower numbers of NTHi 86-028NP dps were recovered from middle-ear effusions and bullar homogenates in the chinchilla model for otitis media (OM). Therefore, we conclude that Dps promotes bacterial survival within NTHi biofilm communities both in vitro and in chronic infections in vivo.

  9. Dps promotes survival of nontypeable Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo

    Directory of Open Access Journals (Sweden)

    Bing ePang

    2012-05-01

    Full Text Available Nontypeable Haemophilus influenzae (NTHi is a common airway commensal and opportunistic pathogen that persists within surface-attached biofilm communities. In this study, we tested the hypothesis that bacterial stress-responses are activated within biofilms. Transcripts for several factors associated with bacterial resistance to environmental stress were increased in biofilm cultures as compared to planktonic cultures. Among these, a homolog of the DNA-binding protein from starved cells (dps was chosen for further study. An isogenic NTHi 86-028NP dps mutant was generated and tested for resistance to environmental stress, revealing a significant survival defects in high-iron conditions, which was mediated by oxidative stress and was restored by genetic complementation. As expected, NTHi 86-028NP dps had a general stress-response defect, exhibiting decreased resistance to many types of environmental stress. While no differences were observed in density and structure of NTHi 86-028NP and NTHi 86-028NP dps biofilms, bacterial survival was decreased in NTHi 86-028NP dps biofilms as compared to the parental strain. The role of dps persistence in vivo was tested in animal infection studies. NTHi 86-028NP dps had decreased resistance to clearance after pulmonary infection of elastase-treated mice as compared to NTHi 86-028NP, whereas minimal differences were observed in clearance from mock-treated mice. Similarly, lower numbers of NTHi 86-028NP dps were recovered from middle-ear effusions and bullar homogenates in the chinchilla model for otitis media. Therefore, we conclude that Dps promotes bacterial survival within NTHi biofilm communities both in vitro and in chronic infections in vivo.

  10. Diameter-speed relation of sprite streamers

    International Nuclear Information System (INIS)

    Kanmae, T; Stenbaek-Nielsen, H C; McHarg, M G; Haaland, R K

    2012-01-01

    Propagation and splitting of sprite streamers has been observed at high temporal and spatial resolution using two intensified high-speed CMOS cameras recording at 10 000 and 16 000 frames per second. Concurrent video recordings from a remote site provided data for triangulation allowing us to determine accurate altitude scales for the sprites. Diameters and speeds of the sprite streamers were measured from the high-speed images, and the diameters were scaled to the reduced diameters based on the triangulated locations. The sprite streamers with larger reduced diameter move faster than those with smaller diameter; the relation between the reduced diameter and speed is roughly linear. The reduced diameters at ≈65-70 km altitude are larger than streamer diameters measured at ground pressure in laboratory discharges indicating a deviation from the similarity law possibly due to the effects of the photoionization and an expansion of the streamer head along its propagation over a long distance. The reduced diameter and speed of the sprite streamers agree well with the diameter-velocity relation proposed by Naidis (2009 Phys. Rev. E 79 057401), and the peak electric field of the sprite streamers is estimated to be approximately 3-5 times the breakdown threshold field. (paper)

  11. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  12. Effect of UV on De-NOx performance and microbial community of a hybrid catalytic membrane biofilm reactor

    Science.gov (United States)

    Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan

    2018-02-01

    The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.

  13. Streamers in water and other dielectric liquids

    International Nuclear Information System (INIS)

    Kolb, J F; Joshi, R P; Xiao, S; Schoenbach, K H

    2008-01-01

    Experimental results on the inception and propagation of streamers in water generated under the application of high electric fields are reviewed. Characteristic parameters, such as breakdown voltage, polarity of the applied voltage, propagation velocities and other phenomenological features, are compared with similar phenomena in other dielectric liquids and in gases. Consequently, parameters that are expected to influence the development of streamers in water are discussed with respect to the analogous well-established models and theories for the related mechanisms in gases. Most of the data support the notion that an initial low-density nucleation site or gas-filled bubble assists the initiation of a streamer. Details of this theory are laid out explaining the observed differences in the breakdown originating from the anode versus the cathode locations. The mechanisms can also be applied to streamer propagation, although some observations cannot be satisfactorily explained.

  14. Next-Generation Pyrosequencing Analysis of Microbial Biofilm Communities on Granular Activated Carbon in Treatment of Oil Sands Process-Affected Water

    Science.gov (United States)

    Islam, M. Shahinoor; Zhang, Yanyan; McPhedran, Kerry N.

    2015-01-01

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. PMID:25841014

  15. Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water.

    Science.gov (United States)

    Islam, M Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-06-15

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Community analysis of dental plaque and endotracheal tube biofilms from mechanically ventilated patients.

    Science.gov (United States)

    Marino, Poala J; Wise, Matt P; Smith, Ann; Marchesi, Julian R; Riggio, Marcello P; Lewis, Michael A O; Williams, David W

    2017-06-01

    Mechanically ventilated patients are at risk for developing ventilator-associated pneumonia, and it has been reported that dental plaque provides a reservoir of respiratory pathogens that may aspirate to the lungs and endotracheal tube (ETT) biofilms. For the first time, metataxonomics was used to simultaneously characterize the microbiome of dental plaque, ETTs, and non-directed bronchial lavages (NBLs) in mechanically ventilated patients to determine similarities in respective microbial communities and therefore likely associations. Bacterial 16S rRNA gene sequences from 34 samples of dental plaque, NBLs, and ETTs from 12 adult mechanically ventilated patients were analyzed. No significant differences in the microbial communities of these samples were evident. Detected bacteria were primarily oral species (e.g., Fusobacterium nucleatum, Streptococcus salivarius, Prevotella melaninogenica) with respiratory pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcuspneumoniae, and Haemophilus influenzae) also in high abundance. The high similarity between the microbiomes of dental plaque, NBLs, and ETTs suggests that the oral cavity is indeed an important site involved in microbial aspiration to the lower airway and ETT. As such, maintenance of good oral hygiene is likely to be highly important in limiting aspiration of bacteria in this vulnerable patient group. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Biofilm scrubbing for restoration—algae community composition and succession in artificial streams

    Directory of Open Access Journals (Sweden)

    Magdalena Mayr

    2016-09-01

    Full Text Available Photoautotrophic biofilms play a pivotal role in self-purification of rivers. We took advantage of the biofilm’s cleaning capacity by applying artificial stream mesocosms, called algae turf scrubberTM (ATS, to reduce the nutrient load of a highly eutrophicated backwater in Vienna (Austria. Since purification strongly depends on benthic algae on the ATS, we focused on the algae community composition and succession. Estimation of coverage, photographic documentation for micromapping, species identification and pigment analyses were carried out. Already one week after exposition, 20–30 different taxa were recorded, suggesting a rapid colonization of the substrate. In total around 200 taxa were identified, mainly belonging to Chlorophyta, Bacillariophyceae and Cyanoprokaryota. Nonmetric multidimensional scaling implied that season and succession strongly influenced species composition on the ATS and a minimum turnover of 0.28 indicates a development towards a more stable community at the end of experiments. We measured maximum biomass production of ~250 g m−2 in June and August and during a period of 5 months nearly 19 kg ha−1 phosphorus could be removed. ATS systems proved to retain nutrients and produce algae biomass in an environmentally friendly and cost effective way and thus support restoration of highly eutrophicated water bodies.

  18. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    Science.gov (United States)

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  19. Track photographing in 8-m streamer chamber

    International Nuclear Information System (INIS)

    Anisimova, N.Z.; Davidenko, V.A.; Kantserov, V.A.; Rybakov, V.G.; Somov, S.V.

    1981-01-01

    A system for obtaining data from a streamer chamber intended for measuring muon polarization is described. An optical scheme for photographing of tracks in the chamber is given. The photographing process is complicated at the expense of large dimensions and module structure of the chamber as well as due to insufficient for direct photographing brightness of streamers. The system described was tested during a long time in a physical experiment. More than 100 thousand photos have been taken by its means [ru

  20. Co-Culture with Listeria monocytogenes within a Dual-Species Biofilm Community Strongly Increases Resistance of Pseudomonas putida to Benzalkonium Chloride

    Science.gov (United States)

    Giaouris, Efstathios; Chorianopoulos, Nikos; Doulgeraki, Agapi; Nychas, George-John

    2013-01-01

    Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS), as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC) used in inadequate (sub-lethal) concentration (50 ppm). The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species) did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90%) of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE) analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation. PMID:24130873

  1. Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride.

    Directory of Open Access Journals (Sweden)

    Efstathios Giaouris

    Full Text Available Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS, as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC used in inadequate (sub-lethal concentration (50 ppm. The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90% of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation.

  2. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment.

    Science.gov (United States)

    Inkinen, J; Jayaprakash, B; Ahonen, M; Pitkänen, T; Mäkinen, R; Pursiainen, A; Santo Domingo, J W; Salonen, H; Elk, M; Keinänen-Toivola, M M

    2018-02-01

    To study the stability of biofilms and water quality in pilot scale drinking water copper and PEX pipes in changing conditions (extra disinfection, magnetic water treatment, MWT). Next-generation sequencing (NGS) of 16S ribosomal RNA genes (rDNA) to describe total bacterial community and ribosomal RNA (rRNA) to describe active bacterial members in addition to traditional microbiological methods were applied. Biofilms from control copper and PEX pipes shared same most abundant bacteria (Methylobacterium spp., Sphingomonas spp., Zymomonas spp.) and average species diversities (Shannon 3·8-4·2) in rDNA and rRNA libraries, whereas few of the taxa differed by their abundance such as lower total Mycobacterium spp. occurrence in copper (disinfection (total chlorine increase from c. 0·5 to 1 mg l -1 ) affected total and active population in biofilms seen as decrease in many bacterial species and diversity (Shannon 2·7, P disinfected copper and PEX samples formed separate clusters in unweighted non-metric multidimensional scaling plot (rRNA) similarly to MWT-treated biofilms of copper (but not PEX) pipes that instead showed higher species diversity (Shannon 4·8, P < 0·05 interaction). Minor chlorine dose addition increased selection pressure and many species were sensitive to chlorination. Pipe material seemed to affect mycobacteria occurrence, and bacterial communities with MWT in copper but not in PEX pipes. This study using rRNA showed that chlorination affects especially active fraction of bacterial communities. Copper and PEX differed by the occurrence of some bacterial members despite similar community profiles. © 2017 The Society for Applied Microbiology.

  3. Thermophilic prokaryotic communities inhabiting the biofilm and well water of a thermal karst system located in Budapest (Hungary).

    Science.gov (United States)

    Anda, Dóra; Makk, Judit; Krett, Gergely; Jurecska, Laura; Márialigeti, Károly; Mádl-Szőnyi, Judit; Borsodi, Andrea K

    2015-07-01

    In this study, scanning electron microscopy (SEM) and 16S rRNA gene-based phylogenetic approach were applied to reveal the morphological structure and genetic diversity of thermophilic prokaryotic communities of a thermal karst well located in Budapest (Hungary). Bacterial and archaeal diversity of the well water (73.7 °C) and the biofilm developed on the inner surface of an outflow pipeline of the well were studied by molecular cloning method. According to the SEM images calcium carbonate minerals serve as a surface for colonization of bacterial aggregates. The vast majority of the bacterial and archaeal clones showed the highest sequence similarities to chemolithoautotrophic species. The bacterial clone libraries were dominated by sulfur oxidizer Thiobacillus (Betaproteobacteria) in the water and Sulfurihydrogenibium (Aquificae) in the biofilm. A relatively high proportion of molecular clones represented genera Thermus and Bellilinea in the biofilm library. The most abundant phylotypes both in water and biofilm archaeal clone libraries were closely related to thermophilic ammonia oxidizer Nitrosocaldus and Nitrososphaera but phylotypes belonging to methanogens were also detected. The results show that in addition to the bacterial sulfur and hydrogen oxidation, mainly archaeal ammonia oxidation may play a decisive role in the studied thermal karst system.

  4. Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors.

    Science.gov (United States)

    Ontiveros-Valencia, Aura; Tang, Youneng; Zhao, He-Ping; Friese, David; Overstreet, Ryan; Smith, Jennifer; Evans, Patrick; Rittmann, Bruce E; Krajmalnik-Brown, Rosa

    2014-07-01

    We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO3(-)) and perchlorate (ClO4(-)) in contaminated groundwater. The groundwater also contained oxygen (O2) and sulfate (SO4(2-)), which became important electron sinks that affected the NO3(-) and ClO4(-) removal rates. Using pyrosequencing, we elucidated how important phylotypes of each "primary" microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO4(2-) reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the "primary" groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.

  5. Role of Fusobacterium nucleatum and Coaggregation in Anaerobe Survival in Planktonic and Biofilm Oral Microbial Communities during Aeration

    Science.gov (United States)

    Bradshaw, David J.; Marsh, Philip D.; Watson, G. Keith; Allison, Clive

    1998-01-01

    Coaggregation is a well-characterized phenomenon by which specific pairs of oral bacteria interact physically. The aim of this study was to examine the patterns of coaggregation between obligately anaerobic and oxygen-tolerant species that coexist in a model oral microbial community. Obligate anaerobes other than Fusobacterium nucleatum coaggregated only poorly with oxygen-tolerant species. In contrast, F. nucleatum was able to coaggregate not only with both oxygen-tolerant and other obligately anaerobic species but also with otherwise-noncoaggregating obligate anaerobe–oxygen-tolerant species pairs. The effects of the presence or absence of F. nucleatum on anaerobe survival in both the biofilm and planktonic phases of a complex community of oral bacteria grown in an aerated (gas phase, 200 ml of 5% CO2 in air · min−1) chemostat system were then investigated. In the presence of F. nucleatum, anaerobes persisted in high numbers (>107 · ml−1 in the planktonic phase and >107 · cm−2 in 4-day biofilms). In an equivalent culture in the absence of F. nucleatum, the numbers of black-pigmented anaerobes (Porphyromonas gingivalis and Prevotella nigrescens) were significantly reduced (P ≤ 0.001) in both the planktonic phase and in 4-day biofilms, while the numbers of facultatively anaerobic bacteria increased in these communities. Coaggregation-mediated interactions between F. nucleatum and other species facilitated the survival of obligate anaerobes in aerated environments. PMID:9746571

  6. Streamer knotwilg branching: sudden transition in morphology of positive streamers in high-purity nitrogen

    International Nuclear Information System (INIS)

    Heijmans, L C J; Clevis, T T J; Nijdam, S; Van Veldhuizen, E M; Ebert, U

    2015-01-01

    We describe a peculiar branching phenomenon in positive repetitive streamer discharges in high purity nitrogen. We name it knotwilg branching after the Dutch word for a pollard willow tree. In a knotwilg branching a thick streamer suddenly splits into many thin streamers. Under some conditions this happens for all streamers in a discharge at about the same distance from the high-voltage electrode tip. At this distance, the thick streamers suddenly bend sharply and appear to propagate over a virtual surface surrounding the high-voltage electrode, rather than following the background electric field lines. From these bent thick streamers many, much thinner, streamers emerge that roughly follow the background electric field lines, creating the characteristic knotwilg branching. We have only found this particular morphology in high purity nitrogen at pressures in the range 50 to 200 mbar and for pulse repetition rates above 1 Hz; the experiments were performed for an electrode distance of 16 cm and for fast voltage pulses of 20 or 30 kV. These observations clearly disagree with common knowledge on streamer propagation. We have analyzed the data of several tens of thousands of discharges to clarify the phenomena. We also present some thoughts on how the ionization of the previous discharges could concentrate into some pre-ionization region near the needle electrode and create the knotwilg morphology, but we present no final explanation. (paper)

  7. An Atlantic streamer in stratospheric ozone observations and SD-WACCM simulation data

    Science.gov (United States)

    Hocke, Klemens; Schranz, Franziska; Maillard Barras, Eliane; Moreira, Lorena; Kämpfer, Niklaus

    2017-03-01

    Observation and simulation of individual ozone streamers are important for the description and understanding of non-linear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above central Europe on 4 December 2015. The GROund-based Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude (8.3 hPa) from 1 to 4 December. A similar ozone increase is simulated by the Specified Dynamics Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude (8.3 hPa) from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and timing of an ozone streamer (large-scale tongue-like structure) extending from the subtropics in northern America over the Atlantic to central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m s-1 inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the northern midlatitude winter stratosphere.

  8. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...

  9. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration.

    Science.gov (United States)

    Douterelo, I; Sharpe, R; Boxall, J

    2014-07-01

    To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. © 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  10. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration

    Science.gov (United States)

    Douterelo, I; Sharpe, R; Boxall, J

    2014-01-01

    Aims To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Methods and Results Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Conclusions Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. Significance and Importance of the Study This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. PMID:24712449

  11. Molecular Characterisation and Co-cultivation of Bacterial Biofilm Communities Associated with the Mat-Forming Diatom Didymosphenia geminata.

    Science.gov (United States)

    Brandes, Josephin; Kuhajek, Jeanne M; Goodwin, Eric; Wood, Susanna A

    2016-10-01

    Didymosphenia geminata (Lyngbye) M. Schmidt is a stalked freshwater diatom that is expanding its range globally. In some rivers, D. geminata forms thick and expansive polysaccharide-dominated mats. Like other stalked diatoms, D. geminata cells attach to the substratum with a pad of adhesive extracellular polymeric substance. Research on D. geminata and other diatoms suggests that bacterial biofilm composition may contribute to successful attachment. The aim of this study was to investigate the composition and role of bacterial biofilm communities in D. geminata attachment and survival. Bacterial biofilms were collected at four sites in the main stem of a river (containing D. geminata) and in four tributaries (free of D. geminata). Samples were characterised using automated rRNA intergenic spacer analysis and high-throughput sequencing (HTS). Mat-associated bacteria were isolated and their effect on the early establishment of D. geminata cells assessed using co-culturing experiments. ARISA and HTS data showed differences in bacterial communities between samples with and without D. geminata at two of the four sites. Samples with D. geminata had a higher relative abundance of Sphingobacteria (p geminata reduced survival (p geminata. Attachment was enhanced by Micrococcus sp. and Pseudomonas sp. (p geminata, and may partly explain observed distribution patterns.

  12. Radio Frequency Electromagnetic Radiation From Streamer Collisions.

    Science.gov (United States)

    Luque, Alejandro

    2017-10-16

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  13. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane

    KAUST Repository

    Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan

    2017-01-01

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors

  14. Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach.

    Science.gov (United States)

    Pesce, Stéphane; Lissalde, Sophie; Lavieille, Delphine; Margoum, Christelle; Mazzella, Nicolas; Roubeix, Vincent; Montuelle, Bernard

    2010-09-15

    This study assessed the single and joint acute toxicity of diuron and two of its metabolites (DCPMU and 3,4-DCA) on natural phototrophic biofilms using a PICT approach with photosynthesis bioassays. River biofilm communities were collected at three sampling stations exhibiting increasing concentrations of diuron, DCPMU and 3,4-DCA from upstream to downstream. Applied individually, the parent compound was more toxic than its metabolites, with DCPMU being more toxic than 3,4-DCA which only inhibited photosynthesis at very high concentrations (EC25 at about 5 mg/l). Sensitivity of biofilm communities to diuron and DCPMU decreased from upstream to downstream, revealing tolerance induction in contaminated sections of the river, as expected from the PICT concept. Nevertheless, PICT was not applicable for 3,4-DCA, which similarly affected upstream, intermediate and downstream biofilm communities. Chemical mixtures of diuron and DCPMU demonstrated additive effects whereas combinations with 3,4-DCA enhanced the observed effects. Our results reveal that the individual and combined presence of diuron and DCPMU in lotic ecosystems can have both short-term effects (as shown with bioassays) and long-term effects (as shown through the PICT approach) on phototrophic biofilms, whereas environmental concentrations of 3,4-DCA may not affect biofilm photosynthetic activity. 2010 Elsevier B.V. All rights reserved.

  15. ADS and CDS streamer generation as function of pulsed parameters

    NARCIS (Netherlands)

    Winands, G.J.J.; Liu, Z.; Heesch, van E.J.M.; Pemen, A.J.M.; Yan, K.

    2008-01-01

    Streamer plasmas can be used to remove pollutants from gases. As a result of the complex mechanisms involved during streamer initiation and propagation, the related knowledge is incomplete. During the last few years, extensive research was performed to determine typical streamer properties (such as

  16. Saffman-Taylor streamers: Mutual finger interaction in spark formation

    NARCIS (Netherlands)

    Luque, A.; Brau, F.; Ebert, U.

    2008-01-01

    Bunches of streamers form the early stages of sparks and lightning but theory presently concentrates on single streamers or on coarse approximations of whole breakdown trees. Here a periodic array of interacting streamer discharges in a strong homogeneous electric field is studied in density or

  17. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  18. Proceedings of workshop on streamer chamber

    International Nuclear Information System (INIS)

    Itoh, Hidihiko; Takahashi, Kaoru; Hirose, Tachishige; Masaike, Akira

    1978-08-01

    For high accuracy observation of multiple-body reactions, a vertex detector of high efficiency is essential. A bubble chamber, though excellent for tracks detection, is problematic in statistics accuracy. The vertex detector with a wire chamber, while better in this respect, difficult in multiple-particle detection etc. The workshop has had several meetings on a streamer chamber as a detector combining features of both bubble chamber and counter, with emphasis on tracks observation in avalanche mode and recordings not using films. Contents are on streamer chamber gas, analytical photography, data processing, simulation program, etc. (Mori, K.)

  19. Stereo-photography of streamers in air

    International Nuclear Information System (INIS)

    Nijdam, S.; Moerman, J. S.; Briels, T. M. P.; Veldhuizen, E. M. van; Ebert, U.

    2008-01-01

    Standard photographs of streamer discharges show a two-dimensional projection. Here, we present stereophotographic images that resolve their three-dimensional structure. We describe the stereoscopic setup and evaluation, and we present results for positive streamer discharges in air at 0.2-1 bar in a point-plane geometry with a gap distance of 14 cm and a voltage pulse of 47 kV. In this case, an approximately Gaussian distribution of branching angles of 43 deg. ±12 deg. is found; these angles do not significantly depend on the distance from the needle or on the gas pressure

  20. Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify

    Energy Technology Data Exchange (ETDEWEB)

    Boulêtreau, Stéphanie, E-mail: stephanie.bouletreau@univ-tlse3.fr [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Lyautey, Emilie [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Dubois, Sophie [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France); Compin, Arthur [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Delattre, Cécile; Touron-Bodilis, Aurélie [EDF Recherche et Développement, LNHE (Laboratoire National d' Hydraulique et Environnement), 6 quai Watier, F-78401 Chatou (France); Mastrorillo, Sylvain [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Garabetian, Frédéric [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France)

    2014-01-01

    Microbial denitrification is the main nitrogen removing process in freshwater ecosystems. The aim of this study was to show whether and how water warming (+ 2.5 °C) drives bacterial diversity and structuring and how bacterial diversity affects denitrification enzymatic activity in phototrophic river biofilms (PRB). We used water warming associated to the immediate thermal release of a nuclear power plant cooling circuit to produce natural PRB assemblages on glass slides while testing 2 temperatures (mean temperature of 17 °C versus 19.5 °C). PRB were sampled at 2 sampling times during PRB accretion (6 and 21 days) in both temperatures. Bacterial community composition was assessed using ARISA. Denitrifier community abundance and denitrification gene mRNA levels were estimated by q-PCR and qRT-PCR, respectively, of 5 genes encoding catalytic subunits of the denitrification key enzymes. Denitrification enzyme activity (DEA) was measured by the acetylene-block assay at 20 °C. A mean water warming of 2.5 °C was sufficient to produce contrasted total bacterial and denitrifier communities and, therefore, to affect DEA. Indirect temperature effect on DEA may have varied between sampling time, increasing by up to 10 the denitrification rate of 6-day-old PRB and decreasing by up to 5 the denitrification rate of 21-day-old PRB. The present results suggest that indirect effects of warming through changes in bacterial community composition, coupled to the strong direct effect of temperature on DEA already demonstrated in PRB, could modulate dissolved nitrogen removal by denitrification in rivers and streams. - Highlights: •We produced river biofilms in 2 mean temperature conditions: 17 vs 19.5 °C. •We compared their denitrifiers' structuring and functioning in 6d- and 21d-old biofilms. •A difference of 2.5 °C produced contrasted denitrifier communities. •The indirect temperature effect on denitrification activity shifted between biofilm age.

  1. Do biofilm communities respond to the chemical signatures of fracking? A test involving streams in North-central Arkansas.

    Science.gov (United States)

    Johnson, Wilson H; Douglas, Marlis R; Lewis, Jeffrey A; Stuecker, Tara N; Carbonero, Franck G; Austin, Bradley J; Evans-White, Michelle A; Entrekin, Sally A; Douglas, Michael E

    2017-02-03

    Unconventional natural gas (UNG) extraction (fracking) is ongoing in 29 North American shale basins (20 states), with ~6000 wells found within the Fayetteville shale (north-central Arkansas). If the chemical signature of fracking is detectable in streams, it can be employed to bookmark potential impacts. We evaluated benthic biofilm community composition as a proxy for stream chemistry so as to segregate anthropogenic signatures in eight Arkansas River catchments. In doing so, we tested the hypothesis that fracking characteristics in study streams are statistically distinguishable from those produced by agriculture or urbanization. Four tributary catchments had UNG-wells significantly more dense and near to our sampling sites and were grouped as 'potentially-impacted catchment zones' (PICZ). Four others were characterized by significantly larger forested area with greater slope and elevation but reduced pasture, and were classified as 'minimally-impacted' (MICZ). Overall, 46 bacterial phyla/141 classes were identified, with 24 phyla (52%) and 54 classes (38%) across all samples. PICZ-sites were ecologically more variable than MICZ-sites, with significantly greater nutrient levels (total nitrogen, total phosphorous), and elevated Cyanobacteria as bioindicators that tracked these conditions. PICZ-sites also exhibited elevated conductance (a correlate of increased ion concentration) and depressed salt-intolerant Spartobacteria, suggesting the presence of brine as a fracking effect. Biofilm communities at PICZ-sites were significantly less variable than those at MICZ-sites. Study streams differed by Group according to morphology, land use, and water chemistry but not in biofilm community structure. Those at PICZ-sites covaried according to anthropogenic impact, and were qualitatively similar to communities found at sites disturbed by fracking. The hypothesis that fracking signatures in study streams are distinguishable from those produced by other anthropogenic effects

  2. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  3. Stochastic and deterministic causes of streamer branching in liquid dielectrics

    International Nuclear Information System (INIS)

    Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl

    2013-01-01

    Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching

  4. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  5. Community Response to a Heavy Precipitation Event in High Temperature, Chemosynthetic Biofilms and Sediments

    Science.gov (United States)

    Meyer-Dombard, D. R.; Loiacono, S. T.; Shock, E.

    2012-12-01

    Coordinated analysis of the "Bison Pool" (BP) Environmental Genome and a complementary contextual geochemical dataset of ~75 parameters revealed biogeochemical cycling and metabolic and microbial community shifts in a Yellowstone National Park hot spring ecosystem (1). The >22m outflow of BP is a gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of nutrients. Microbial life at BP transitions from a 92°C chemosynthetic community in the BP source pool to a 56°C photosynthetic mat community. Metagenomic data at BP showed the potential for both heterotrophic and autotrophic carbon metabolism (rTCA and acetyl-CoA cycles) in the highest temperature, chemosynthetic regions (1). This region of the outflow is dominated by Aquificales and Pyrococcus relatives, with smaller contributions of heterotrophic Bacteria. Following a 2h heavy precipitation event we observed an influx of exogenous organic material into the source pool supplied from the meadow surrounding the BP area. We sampled biomass and fluid at several locations within the outflow immediately following the event, and on several occasions for the next eight days. Elemental analysis and carbon and nitrogen isotopic analyses were conducted on biomass and sediment, and dissolved organic and inorganic carbon content and δ13C of fluids were analyzed. DNA and RNA were extracted, and following RT-PCR, nitrogen cycle functional gene expression was evaluated. Previous work at BP has shown that chemosynthetic biomass may carry isotopic signatures of fractionation during carbon fixation, via the acetyl-CoA and rTCA cycles (2). However, the addition of exogenous organic carbon during the rain event had an immediate and dramatic effect on the sediments and biofilms in the chemosynthetic zone of the outflow. Dissolved organic carbon was the highest measured in six years. Chemosynthetic biomass responded by incorporating the organic carbon. Carbon isotopic signatures in chemosynthetic

  6. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  7. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  8. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  9. Benzene degradation in a denitrifying biofilm reactor : activity and microbial community composition

    NARCIS (Netherlands)

    van der Waals, Marcelle J.; Atashgahi, Siavash; da Rocha, Ulisses Nunes; van der Zaan, Bas M.; Smidt, Hauke; Gerritse, Jan

    2017-01-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than

  10. Establishment and Early Succession of Bacterial Communities in Monochloramine-Treated Drinking Water Biofilms

    Science.gov (United States)

    Monochloramine is increasingly used as a drinking water disinfectant because it forms lower levels of regulated disinfection by-products. While its use has been shown to increase nitrifying bacteria, little is known about the bacterial succession within biofilms in monochloramin...

  11. In Situ Ecophysiology of Microbial Biofilm Communities Analyzed by CMEIAS Computer-Assisted Microscopy at Single-Cell Resolution

    Directory of Open Access Journals (Sweden)

    Youssef G. Yanni

    2013-06-01

    Full Text Available This paper describes the utility of CMEIAS (Center for Microbial Ecology Image Analysis System computer-assisted microscopy to extract data from accurately segmented images that provide 63 different insights into the ecophysiology of microbial populations and communities within biofilms and other habitats. Topics include quantitative assessments of: (i morphological diversity as an indicator of impacts that substratum physicochemistries have on biofilm community structure and dominance-rarity relationships among populations; (ii morphotype-specific distributions of biovolume body size that relate microbial allometric scaling, metabolic activity and growth physiology; (iii fractal geometry of optimal cellular positioning for efficient utilization of allocated nutrient resources; (iv morphotype-specific stress responses to starvation, environmental disturbance and bacteriovory predation; (v patterns of spatial distribution indicating positive and negative cell–cell interactions affecting their colonization behavior; and (vi significant methodological improvements to increase the accuracy of color-discriminated ecophysiology, e.g., differentiation of cell viability based on cell membrane integrity, cellular respiratory activity, phylogenetically differentiated substrate utilization, and N-acyl homoserine lactone-mediated cell–cell communication by bacteria while colonizing plant roots. The intensity of these ecophysiological attributes commonly varies at the individual cell level, emphasizing the importance of analyzing them at single-cell resolution and the proper spatial scale at which they occur in situ.

  12. Molecular Characterization of the Bacterial Community in Biofilms for Degradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Films in Seawater.

    Science.gov (United States)

    Morohoshi, Tomohiro; Ogata, Kento; Okura, Tetsuo; Sato, Shunsuke

    2018-03-29

    Microplastics are fragmented pieces of plastic in marine environments, and have become a serious environmental issue. However, the dynamics of the biodegradation of plastic in marine environments have not yet been elucidated in detail. Polyhydroxyalkanoates (PHAs) are biodegradable polymers that are synthesized by a wide range of microorganisms. One of the PHA derivatives, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) has flexible material properties and a low melting temperature. After an incubation in seawater samples, a significant amount of biofilms were observed on the surfaces of PHBH films, and some PHBH films were mostly or partially degraded. In the biofilms that formed on the surfaces of unbroken PHBH films, the most dominant operational taxonomic units (OTUs) showed high similarity with the genus Glaciecola in the family Alteromonadaceae. On the other hand, the dominant OTUs in the biofilms that formed on the surfaces of broken PHBH films were assigned to the families Rhodobacteraceae, Rhodospirillaceae, and Oceanospirillaceae, and the genus Glaciecola mostly disappeared. The bacterial community in the biofilms on PHBH films was assumed to have dynamically changed according to the progression of degradation. Approximately 50 colonies were isolated from the biofilm samples that formed on the PHBH films and their PHBH-degrading activities were assessed. Two out of three PHBH-degrading isolates showed high similarities to Glaciecola lipolytica and Aestuariibacter halophilus in the family Alteromonadaceae. These results suggest that bacterial strains belonging to the family Alteromonadaceae function as the principal PHBH-degrading bacteria in these biofilms.

  13. Electron acceleration during streamer collisions in air

    DEFF Research Database (Denmark)

    Köhn, Christoph; Chanrion, Olivier; Neubert, Torsten

    2017-01-01

    charge fields, with a Monte Carlo scheme accounting for collisions and ionization. We present the electron density, the electric field, and the velocity distribution as functions of space and time. Assuming a background electric field 1.5 times the breakdown field, we find that the electron density......High-voltage laboratory experiments show that discharges in air, generated over a gap of one meter with maximal voltage of 1 MV, may produce X-rays with photon energies up to 1 MeV. It has been suggested that the photons are bremsstrahlung from electrons accelerated by the impulsive, enhanced field...... during collisions of negative and a positive streamers. To explore this process, we have conducted the first self-consistent particle simulations of streamer encounters. Our simulation model is a 2-D, cylindrically symmetric, particle-in-cell code tracing the electron dynamics and solving the space...

  14. Streamer model for high voltage water switches

    International Nuclear Information System (INIS)

    Sazama, F.J.; Kenyon, V.L. III

    1979-01-01

    An electrical switch model for high voltage water switches has been developed which predicts streamer-switching effects that correlate well with water-switch data from Casino over the past four years and with switch data from recent Aurora/AMP experiments. Preclosure rounding and postclosure resistive damping of pulseforming line voltage waveforms are explained in terms of spatially-extensive, capacitive-coupling of the conducting streamers as they propagate across the gap and in terms of time-dependent streamer resistance and inductance. The arc resistance of the Casino water switch and of a gas switch under test on Casino was determined by computer fit to be 0.5 +- 0.1 ohms and 0.3 +- 0.06 ohms respectively, during the time of peak current in the power pulse. Energy lost in the water switch during the first pulse is 18% of that stored in the pulseforming line while similar energy lost in the gas switch is 11%. The model is described, computer transient analyses are compared with observed water and gas switch data and the results - switch resistance, inductance and energy loss during the primary power pulse - are presented

  15. Antifouling Coatings Influence both Abundance and Community Structure of Colonizing Biofilms: a Case Study in the Northwestern Mediterranean Sea

    Science.gov (United States)

    Camps, Mercedes; Barani, Aude; Gregori, Gérald; Bouchez, Agnès; Le Berre, Brigitte; Bressy, Christine; Blache, Yves

    2014-01-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copolymer coatings [SPC], including four commercial ones) were quantitatively studied, after 1 month of immersion in summer in the Toulon Bay (Northwestern Mediterranean Sea, France), by using flow cytometry (FCM), microscopy, and denaturing gradient gel electrophoresis. FCM was used after a pretreatment to separate cells from the biofilm matrix, in order to determine densities of heterotrophic bacteria, picocyanobacteria, and pico- and nanoeukaryotes on these coatings. Among diatoms, the only microphytobenthic class identified by microscopy, Licmophora, Navicula, and Nitzschia were determined to be the dominant taxa. Overall, biocide-free coatings showed higher densities than all other coatings, except for one biocidal coating, whatever the group of microorganisms. Heterotrophic bacteria always showed the highest densities, and diatoms showed the lowest, but the relative abundances of these groups varied depending on the coating. In particular, the copper-free SPC failed to prevent diatom settlement, whereas the pyrithione-free SPC exhibited high picocyanobacterial density. These results highlight the interest in FCM for antifouling coating assessment as well as specific selection among microbial communities by antifouling coatings. PMID:24907329

  16. Streamer properties and associated x-rays in perturbed air

    Science.gov (United States)

    Köhn, C.; Chanrion, O.; Babich, L. P.; Neubert, T.

    2018-01-01

    Streamers are ionization waves in electric discharges. One of the key ingredients of streamer propagation is an ambient gas that serves as a source of free electrons. Here, we explore the dependence of streamer dynamics on different spatial distributions of ambient air molecules. We vary the spatial profile of air parallel and perpendicular to the ambient electric field. We consider local sinusoidal perturbations of 5%-100%, as induced from discharge shock waves. We use a cylindrically symmetric particle-in-cell code to simulate the evolution of bidirectional streamers and compare the electron density, electric field, streamer velocity and electron energy of streamers in uniform air and in perturbed air. In all considered cases, the motion is driven along in decreasing air density and damped along increasing air density. Perturbations of at most 5%-10% change the velocity differences by up to approximately 40%. Perturbations perpendicular to the electric field additionally squeeze or branch streamers. Air variations can thus partly explain the difference of velocities and morphologies of streamer discharges. In cases with large perturbations, electrons gain energies of up to 30 keV compared to 100 eV in uniformly distributed air. For such perturbations parallel to the ambient electric field, we see the spontaneous initiation of a negative streamer; for perpendicular perturbations, x-rays with energies of up to 20 keV are emitted within 0.17 ns.

  17. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  18. Biofilms in wounds

    DEFF Research Database (Denmark)

    Cooper, R A; Bjarnsholt, Thomas; Alhede, M

    2014-01-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth...... extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery...... of biofilms in chronic wounds has provided new insight into the reasons why. Increased tolerance of biofilms to antimicrobial agents explains the limited efficacy of antimicrobial agents in chronic wounds and illustrates the need to develop new management strategies. This review aims to explain the nature...

  19. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures.

    Science.gov (United States)

    Cai, Wei; Li, Yi; Niu, Lihua; Zhang, Wenlong; Wang, Chao; Wang, Peifang; Meng, Fangang

    2017-10-15

    The composition and distribution characteristics of bacterial communities in biofilms attached to hydraulic concrete structure (HCS) surfaces were investigated for the first time in four reservoirs in the middle and lower reaches of the Yangtze River Basin using 16S rRNA Miseq sequencing. High microbial diversity was found in HCS biofilms, and notable differences were observed in different types of HCS. Proteobacteria, Cyanobacteria and Chloroflexi were the predominant phyla, with respective relative abundances of 35.3%, 25.4% and 13.0%. The three most abundant genera were Leptolyngbya, Anaerolineaceae and Polynucleobacter. The phyla Beta-proteobacteria and Firmicutes and genus Lyngbya were predominant in CGP, whereas the phyla Cyanobacteria and Chloroflexi and genera Leptolyngbya, Anaerolinea and Polynucleobacter survived better in land walls and bank slopes. Dissolved oxygen, ammonia nitrogen and temperature were characterized as the main factors driving the bacterial community composition. The most abundant groups of metabolic functions were also identified as ammonia oxidizers, sulphate reducers, and dehalogenators. Additionally, functional groups related to biocorrosion were found to account for the largest proportion (14.0% of total sequences) in gate piers, followed by those in land walls (11.5%) and bank slopes (10.2%). Concrete gate piers were at the greatest risk of biocorrosion with the most abundant negative bacterial groups, especially for sulphate reducers. Thus, it should be paid high attention to the biocorrosion prevention of concrete gate piers. Overall, this study contributed to the optimization of microbial control and the improvement of the safety management for water conservation structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Extremely far from equilibrium: the multiscale dynamics of streamers

    Science.gov (United States)

    Ebert, Ute

    2012-10-01

    Streamers can emerge when high voltages are applied to gases. At their tips, the electric field is strongly enhanced, and electron energies locally reach distributions very far from equilibrium, with long tails at high energies. These exotic electron energies create radiation and chemical excitations at very low energy input, as the gas stays cold while the ionization front passes. Applications are multiple: highly efficient O* radical production in air for disinfection, combustion gas cleaning, plasma assisted combustion, plasma bullets in medicine etc. In that sense, streamers can be considered as very efficient converters of pulsed electric into chemical energy, in particular, if the electric circuits are optimized for the application. Streamers are also ubiquitous in nature, e.g., in the streamer corona of lightning leaders, in sprite discharges high above the clouds; and streamers also seem to contribute to generating gamma-ray flashes and even to electron-positron beams in active thunderstorms. Unravelling the intrinsic mechanisms of streamers is challenging: they can move with up to one tenth of the speed of light, and they have an intricate nonlinear structure with a hierarchy of scales. I will review how theory and experiment deal with these structures, and I will discuss the basic differences between positive and negative streamers, electron acceleration at streamer tips and the consecutive radiation and chemical reactions, the propagation mechanism of positive streamers in different gases, streamer velocities and diameters varying over at least two orders of magnitude, streamer branching and interaction, and their three-dimensional tree structure. Both theory and experiment work with a patchwork of methods, and geophysics can provide movies that cannot be taken in the lab. I will sketch the state and outline open questions.

  1. Optical Emissions of Sprite Streamers in Weak Electric Fields

    Science.gov (United States)

    Liu, N.; Pasko, V. P.

    2004-12-01

    Sprites commonly consist of large numbers of needle-shaped filaments of ionization [e.g., Gerken and Inan, JASTP, 65, 567, 2003] and typically initiate at altitudes 70-75 km in a form of upward and downward propagating streamers [Stanley et al., GRL, 26, 3201, 1999; Stenbaek-Nielsen et al., GRL, 27, 3829, 2000; McHarg et al., JGR, 107, 1364, 2002; Moudry et al., JASTP, 65, 509, 2003]. The strong electric fields E exceeding the conventional breakdown threshold field Ek are needed for initiation of sprite streamers from single electron avalanches and recent modeling studies indicate that streamers propagating in fields E>Ek experience strong acceleration and expansion in good agreement with the above cited observations [Liu and Pasko, JGR, 109, A04301, 2004]. The initiated streamers are capable of propagating in fields substantially lower than Ek [Allen and Ghaffar, J. Phys. D: Appl. Phys., 28, 331, 1995] and it is expected that a significant part of sprite optical output comes from regions with EEk). Additionally, the values of electric fields inside of the streamer channel are always well below Ek and since the excitation coefficients for optical emissions are very sensitive to the driving electric field magnitude most of the optical luminosity of streamers in this case arises from streamer tips, indicating that observed streamer filaments in many cases may be produced by time averaging of optical luminosity coming from localized regions around streamer tips as streamers move through an instrument's field of view. We will discuss pressure dependent differences of optical emissions at different sprite altitudes, and important similarities between observed sprite streamers and recent time resolved (van Veldhuizen et al., IEEE Trans. Plasma Sci., 30, 162, 2002; Yi and Williams, J. Phys. D. Appl. Phys., 35, 205, 2002].

  2. Biofilm forming ability of Sphingomonas paucimobilis isolated from community drinking water systems on plumbing materials used in water distribution.

    Science.gov (United States)

    Gulati, Parul; Ghosh, Moushumi

    2017-10-01

    Sphingomonas paucimobilis, an oligotroph, is well recognized for its potential for biofilm formation. The present study explored the biofilm forming ability of a strain isolated from municipal drinking water on plumbing materials. The intensity of biofilm formation of this strain on different plumbing materials was examined by using 1 × 1 cm 2 pieces of six different pipe materials, i.e. polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), aluminium (Al), copper (Cu) and rubber (R) and observing by staining with the chemical chromophore, Calcofluor. To understand whether biofilm formation occurs under flow through conditions, a laboratory-scale simulated distribution system, comprised of the above materials was fabricated. Biofilm samples were collected from the designed system at different biofilm ages (10, 40 and 90 hours old) and enumerated. The results indicated that the biofilm formation occurred on all plumbing materials with Cu and R as exceptions. The intensity of biofilm formation was found to be maximum on PVC followed by PP and PE. We also demonstrated the chemical chromophore (Calcofluor) successfully for rapid and easy visual detection of biofilms, validated by scanning electron microscope (SEM) analysis of the plumbing materials. Chlorination has little effect in preventing biofilm development.

  3. Parallel sparse direct solvers for Poisson's equation in streamer discharges

    NARCIS (Netherlands)

    M. Nool (Margreet); M. Genseberger (Menno); U. M. Ebert (Ute)

    2017-01-01

    textabstractThe aim of this paper is to examine whether a hybrid approach of parallel computing, a combination of the message passing model (MPI) with the threads model (OpenMP) can deliver good performance in streamer discharge simulations. Since one of the bottlenecks of almost all streamer

  4. Photoionization in negative streamers : fast computations and two propagation modes

    NARCIS (Netherlands)

    Luque, A.; Ebert, U.M.; Montijn, C.; Hundsdorfer, W.

    2007-01-01

    Streamer discharges play a central role in electric breakdown of matter in pulsed electric fields, both in nature and in technology. Reliable and fast computations of the minimal model for negative streamers in simple gases such as nitrogen have recently been developed. However, photoionization was

  5. Streamer head structure: role of ionization and photoionization

    International Nuclear Information System (INIS)

    Nudnova, M M; Starikovskii, A Yu

    2008-01-01

    Results from experiments and numerical modelling of streamer propagation are presented. The 2D hydrodynamic numerical description of the pulsed discharge based on the local ionization and photoionization models adequately describes the streamer shape and dynamics over a wide range of pressures and voltages. This work presents a method for imaging the instantaneous emission distribution in the streamer head. A method for restoring the electrodynamic radius of the streamer head was developed on the basis of the streamer head images that were obtained with subnanosecond exposure time. The electrodynamic radius has been determined as the distance between the maxima of the electric field at the position where the streamer head transforms into the streamer channel. The dependence of the electrodynamic radius on voltage and pressure has been determined. We show that a 2D numerical model using hydrodynamic approximation predicts the streamer characteristics with an accuracy of about 15% in the 0.5-1 atmosphere pressure range and up to 40% in the 0.2-0.3 atmosphere pressure range for a voltage of U from 20 kV up to 40 kV in the 30 and 40 mm discharge gap.

  6. Influences of the pulsed power supply on corona streamer appearance

    NARCIS (Netherlands)

    Veldhuizen, van E.M.; Briels, T.M.P.; Grabowski, L.R.; Pemen, A.J.M.; Ebert, U.M.

    2005-01-01

    Pulsed positive corona streamers in air are studied by images obtained with an intensified CCD camera. Using a switched capacitor power supply, thin streamers are observed that branch. A power supply consisting of a 4-stage transmission line transformer gives pulses of much higher current to the

  7. Streamer discharges can move perpendicularly to the electric field

    NARCIS (Netherlands)

    Nijdam, S.; Takahashi, E.; Teunissen, J.; Ebert, U.

    2014-01-01

    Streamer discharges are a primary mode of electric breakdown in thunderstorms and high voltage technology; they are generally believed to grow along electric field lines. However, we here give experimental and numerical evidence that streamers can propagate nearly perpendicularly to the background

  8. Structure of positive streamers inside gaseous bubbles immersed in liquids

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    Electric discharges and streamers in liquids typically proceed through vapour phase channels produced by the streamer or in gaseous bubbles. The bubbles can originate by enthalpy changes produced by the discharge or can be artificially injected into the liquid. Experiments on streamers in bubbles immersed in liquids have shown that the discharge propagates either along the surface of the bubble or through the volume of the bubble as in conventional streamer propagation in air. In this paper we report on results of a computational investigation of streamer propagation through bubbles immersed in liquids. We found that the dielectric constant of the liquid in large part determines the path the streamer takes. Streamers in bubbles immersed in a liquid with a high permittivity preferentially propagate along the surface of the bubble. Liquids with low permittivity can result in the streamer propagating along the axis of the bubble. The permittivity at which this transition occurs is a function of the applied voltage, size of the bubble and the conductivity of the liquid. (fast track communication)

  9. Quenching gases for limited-streamer operation

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, P

    1986-04-01

    Charge spectra and efficiencies of the limited-streamer mode are presented as a function of quencher fraction and high voltage for several gas mixes. The goal was to find a working gas of low hydrocarbon content in order to relieve safety concerns about the flammability of the large gas volume contained in the hadron calorimeter of the OPAL detector at LEP. No suitable low-hydrocarbon quenching mix is found. The charge spectra from these quenchers develop secondary peaks and long tails as full efficiency is approached, leading to catastrophic breakdown near the onset of full efficiency.

  10. Quenching gases for limited-streamer operation

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, P

    1986-04-01

    Charge spectra and efficiencies of the limited-streamer mode are presented as a function of quencher fraction and high voltage for several gas mixes. The goal was to find a working gas of low hydrocarbon content in order to relieve safety concerns about the flammability of the large gas volume contained in the hadron calorimeter of the OPAL detector at LEP. No suitable low-hydrocarbon quenching mix is found. The charge spectra from these quenchers develop secondary peaks and long tails as full efficiency is approached, leading to catastrophic breakdown near the onset of full efficiency. (orig.).

  11. Biofilm in endodontics: A review

    Science.gov (United States)

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  12. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these synergistic...

  13. Discriminating activated sludge flocs from biofilm microbial communities in a novel pilot-scale reciprocation MBR using high-throughput 16S rRNA gene sequencing.

    Science.gov (United States)

    De Sotto, Ryan; Ho, Jaeho; Lee, Woonyoung; Bae, Sungwoo

    2018-03-29

    Membrane bioreactors (MBRs) are a well-established filtration technology that has become a popular solution for treating wastewater. One of the drawbacks of MBRs, however, is the formation of biofilm on the surface of membrane modules. The occurrence of biofilms leads to biofouling, which eventually compromises water quality and damages the membranes. To prevent this, it is vital to understand the mechanism of biofilm formation on membrane surfaces. In this pilot-scale study, a novel reciprocation membrane bioreactor was operated for a period of 8 months and fed with domestic wastewater from an aerobic tank of a local WWTP. Water quality parameters were monitored and the microbial composition of the attached biofilm and suspended aggregates was evaluated in this reciprocating MBR configuration. The abundance of nitrifiers and composition of microbial communities from biofilm and suspended solids samples were investigated using qPCR and high throughput 16S amplicon sequencing. Removal efficiencies of 29%, 16%, and 15% of chemical oxygen demand, total phosphorus and total nitrogen from the influent were observed after the MBR process with average effluent concentrations of 16 mg/L, 4.6 mg/L, and 5.8 mg/L respectively. This suggests that the energy-efficient MBR, apart from reducing the total energy consumption, was able to maintain effluent concentrations that are within regulatory standards for discharge. Molecular analysis showed the presence of amoA Bacteria and 16S Nitrospira genes with the occurrence of nitrification. Candidatus Accumulibacter, a genus with organisms that can accumulate phosphorus, was found to be present in both groups which explains why phosphorus removal was observed in the system. High-throughput 16S rRNA amplicon sequencing revealed the genus Saprospira to be the most abundant species from the total OTUs of both the membrane tank and biofilm samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina -like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm

    DEFF Research Database (Denmark)

    Foesel, Bärbel U.; Gieseke, Armin; Schwermer, Carsten

    2008-01-01

    Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a re......Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated...

  15. Kinetics of a plasma streamer ionization front

    Science.gov (United States)

    Taccogna, Francesco; Pellegrini, Fabrizio

    2018-02-01

    A streamer is a non-linear and non-local gas breakdown mode. Its large-scale coherent structures, such as the ionization front, are the final results of a hierarchical cascade starting from the single particle dynamics. Therefore, this phenomenon covers, by definition, different space and time scales. In this study, we have reproduced the ionization front formation and development by means of a particle-based numerical methodology. The physical system investigated concerns of a high-voltage ns-pulsed surface dielectric barrier discharge. Different reduced electric field regimes ranging from 50 to 500 Td have been considered for two gases: pure atomic Ar and molecular N2. Results have shown the detailed structure of the negative streamer: the leading edge, the head, the interior and the tail. Its dynamical evolution and the front propagation velocity have been calculated for the different cases. Finally, the deviation of the electron energy distribution function from equilibrium behavior has been pointed out as a result of a fast and very localized phenomenon.

  16. Linking community tolerance and structure with low metallic contamination: a field study on 13 biofilms sampled across the Seine river basin.

    Science.gov (United States)

    Fechner, Lise C; Gourlay-Francé, Catherine; Tusseau-Vuillemin, Marie-Hélène

    2014-03-15

    It is difficult to assess the biological consequences of diffuse water contamination by micropollutants which are present in rivers at low, even sublethal levels. River biofilms, which respond quickly to changes of environmental parameters, are good candidates to acquire knowledge on the response of aquatic organisms to diffuse chemical contamination in the field. The study was designed as an attempt to link biofilm metal tolerance and metallic contamination in a field survey covering 13 different sampling sites in the Seine river basin (north of France) with low contamination levels. Cd and Zn tolerance of heterotrophic communities was assessed using a short-term toxicity test based on β-glucosidase activity. Metal tolerance levels varied between sites but there was no obvious correlation between tolerance and corresponding water contamination levels for Cd and Zn. Indeed, metallic contamination at the sampling sites remained subtle when compared to water quality standards (only two sampling sites had either Zn or both Cu and Zn concentrations exceeding the Environmental Quality Standards set by the EU Water Framework Directive). Yet, multivariate analysis of the data using Partial Least Squares Regression revealed that both metallic and environmental parameters were important variables explaining the variability of metal tolerance levels. Automated Ribosomal Intergenic Spacer Analysis (ARISA) was also performed on both bacterial and eukaryotic biofilm communities from the 13 sampling sites. Multivariate analysis of ARISA fingerprints revealed that biofilms with similar tolerance levels have similar ARISA profiles. Those results confirm that river biofilms are potential indicators of low, diffuse contamination levels of aquatic systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Runaway electrons from a ‘beam-bulk’ model of streamer: application to TGFs

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Bonaventura, Z.; Cinar, Deniz

    2014-01-01

    -energy electrons and ions. For a negative streamer discharge, we show how electrons are accelerated in the large electric field in the tip of the streamer and travel ahead of the streamer where they ionize the gas. In comparison to the results obtained with a classical fluid model for a negative streamer, the beam...

  18. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various...... surfaces in food processing. Biofilms of common foodborne pathogens are reviewed. The issue of persistent and nonpersistent microbial contamination in food processing is also discussed. It has been shown that biofilms can be difficult to remove and can thus cause severe disinfection and cleaning problems...... in food factories. In the prevention of biofilm formation microbial control in process lines should both limit the number of microbes on surfaces and reduce microbial activity in the process. Thus the hygienic design of process equipment and process lines is important in improving the process hygiene...

  19. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple

    International Nuclear Information System (INIS)

    Cheng, He; Liu, Xin; Lu, Xinpei; Liu, Dawei

    2016-01-01

    The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6–7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

  20. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, He; Liu, Xin; Lu, Xinpei [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Dawei, E-mail: ldw636@msn.com [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an (China)

    2016-07-15

    The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6–7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

  1. Modeling of a new electron-streamer acceleration mechanism

    Science.gov (United States)

    Ihaddadene, K. M. A.; Dwyer, J. R.; Liu, N.; Celestin, S. J.

    2017-12-01

    Lightning stepped leaders and laboratory spark discharges in air are known to produce X-rays [e.g., Dwyer et al., Geophys. Res. lett., 32, L20809, 2005; Kochkin et al., J. Phys. D: Appl. Phys., 45, 425202, 2012]. However, the processes behind the production of these X-rays are still not very well understood. During discharges, encounters between streamers of different polarities are very common. For example, during the formation of a new leader step, the negative streamer zone around the tip of a negative leader and the positive streamers initiated from the posiive part of a bidirectional space leader strongly interact. In laboratory experiments, when streamers are approaching a sharp electrode, streamers with the opposite polarity are initiated from the electrode and collide with the former streamers. Recently, the encounter between negative and positive streamers has been proposed as a plausible mechanism for the production of X-rays by spark discharges [Cooray et la., JASTP, 71, 1890, 2009; Kochkin et al., J. Phys. D: Appl. Phys., 45, 425202, 2012], but modeling results have shown later that the increase of the electric field involved in this process, which is above the conventional breakdown threshold field, is accompanied by a strong increase of the electron density. The resulting increase in the conductivity, in turn, causes this electric field to collapse over a few tens of picoseconds, preventing the electrons reaching high energies and producing significant X-ray emissions [e.g., Ihaddadene and Celestin, Geophys. Res. Lett., 45, 5644, 2015]. In this work, we will present simulation results of a new electron acceleration mechanism for producing runaway electron energies above hundred keV. The mechanism couples multiple single streamers and streamer head-on collisions, similar to a laboratory discharge, and is suitable for explaining the high-energy X-rays produced by discharges in air and by lightning stepped leaders.

  2. Bacterial Biofilm Communities and Coral Larvae Settlement at Different Levels of Anthropogenic Impact in the Spermonde Archipelago, Indonesia

    Directory of Open Access Journals (Sweden)

    Pia Kegler

    2017-08-01

    Full Text Available Populations on small islands surrounded by coral reefs often heavily depend on the services provided by these reefs. The health and recovery of reefs are strongly influenced by recruitment of coral larvae. Their settlement relies on cues such as those emitted from bacterial communities forming biofilms on reef surfaces. Environmental conditions can change these bacterial community compositions (BCC and may in turn affect settlement of coral larvae. At three small inhabited islands in the Spermonde Archipelago, Indonesia, with different distance from the mainland, BCC and coral recruitment were investigated on artificial ceramic tiles after 2–8 weeks exposure time and on natural reef substrate. Water parameters showed a clear separation between inshore and near-shore/mid-shelf sites, with distinct benthic communities at all three sites. No coral recruitment was observed at the inshore site with highest natural and anthropogenic stressors. At the other two sites coral recruitment occurred on natural surfaces (recruits per 100 cm2: 0.73 ± 1.75 near-shore, 0.90 ± 1.97 mid-shelf, but there was no significant difference between the two sites. On artificial substrates coral recruitment differed between these two sites, with tile orientation and with exposure time of the tiles in the reef. The most abundant bacteria on both substrates were Gammaproteobacteria, Alphaproteobacteria, and Cyanobacteria. BCC was strongly correlated with water quality and significant differences in BCC between the inshore site and near-shore/mid-shelf were found. On artificial substrates there was a significant difference in BCC also with exposure time in the reef. Our study highlights the value of taking both BCC and coral recruitment into account, in addition to the environmental conditions, when considering the recovery potential of coral reefs.

  3. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm

  4. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    Science.gov (United States)

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales.

  5. Streamer properties and associated x-rays in perturbed air

    DEFF Research Database (Denmark)

    Köhn, C; Chanrion, O; Babich, L P

    2018-01-01

    Streamers are ionization waves in electric discharges. One of the key ingredients of streamerpropagation is an ambient gas that serves as a source of free electrons. Here, we explore thedependence of streamer dynamics on different spatial distributions of ambient air molecules. We varythe spatial...... profile of air parallel and perpendicular to the ambient electric field. We consider localsinusoidal perturbations of 5%–100%, as induced from discharge shock waves. We use acylindrically symmetric particle-in-cell code to simulate the evolution of bidirectional streamers andcompare the electron density...

  6. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness.

    Science.gov (United States)

    Lee, Keehoon; Yoon, Sang Sun

    2017-06-28

    A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species ( i.e. , multispecies biofilms) are discussed in detail.

  7. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  8. New Technologies for Studying Biofilms

    Science.gov (United States)

    FRANKLIN, MICHAEL J.; CHANG, CONNIE; AKIYAMA, TATSUYA; BOTHNER, BRIAN

    2016-01-01

    Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329

  9. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    Science.gov (United States)

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  10. Limited streamer chamber testing and quality evaluation in ASTRA

    International Nuclear Information System (INIS)

    Anzivino, G.; Bianco, S.; Casaccia, R.

    1991-01-01

    Limited streamer chambers are extensively used for high-energy and nuclear physics experiments in accelerator and underground laboratories. The tracking system of LVD, an underground experiment to study muons and nutrino astronomy, will use roughly 15000 limited streamer chambers and 100000 external pickup strips with digital readout electronics. In the article the different aspects of chamber operation that serve to establish a testing procedure and to define acceptance criteria for selecting reliable and long-life devices, are discussed. The procedures and the results obtained from a long-term test to evaluate streamer chamber quality, based upon a sample of 2900 items, are described. The selection tests and the long-term observations have been performed in the ASTRA laboratory, established at the Laboratori Nazionali di Frascati to carry out quality control procedures for streamer chambers on a large scale and in a controlled environment

  11. Insights into the diversity of eukaryotes in acid mine drainage biofilm communities.

    Science.gov (United States)

    Baker, Brett J; Tyson, Gene W; Goosherst, Lindsey; Banfield, Jillian F

    2009-04-01

    Microscopic eukaryotes are known to have important ecosystem functions, but their diversity in most environments remains vastly unexplored. Here we analyzed an 18S rRNA gene library from a subsurface iron- and sulfur-oxidizing microbial community growing in highly acidic (pH morphological characterization. Results revealed that the populations vary significantly with the habitat and no group is ubiquitous. Surprisingly, many of the eukaryotic lineages (with the exception of the APC) are closely related to neutrophiles, suggesting that they recently adapted to this extreme environment. Molecular analyses presented here confirm that the number of eukaryotic species associated with the acid mine drainage (AMD) communities is low. This finding is consistent with previous results showing a limited diversity of archaea, bacteria, and viruses in AMD environments and suggests that the environmental pressures and interplay between the members of these communities limit species diversity at all trophic levels.

  12. Avalanche and streamer mode operation of resistive plate chambers

    International Nuclear Information System (INIS)

    Cardarelli, R.; Makeev, V.; Santonico, R.

    1996-01-01

    A resistive plate chamber was operated at voltages increasing in steps of 200 V over a 3 kV interval and the transition between the avalanche and streamer modes was studied. The avalanche amplitude was observed to be exponentially dependent on the operating voltage up to a value, characteristic of the gas, where the avalanche saturation occurs and delayed streamer signals start to appear. Signal waveforms, charge and timing distributions are reported. (orig.)

  13. The dynamics of streamer formation and its growth mechanism

    International Nuclear Information System (INIS)

    Zalikhanov, B.Zh.

    2004-01-01

    We report the results of experimental studies of physical processes responsible for the transformation of the electron avalanche to the streamer and its growth towards the cathode. The new experimental data on the mechanism of formation and the structure of the streamer allow a more concrete understanding of the pattern of evolution of long spark discharges, including the lightning, and the interrelation of basic processes in such discharges. (author)

  14. Effect of nitrate on activity and community structure of a sulfidogenic wastewater biofilm

    DEFF Research Database (Denmark)

    Kofoed, Michael Vedel Wegener; Mohanakrishnan, Janani; Schramm, Andreas

    (dsrB), and periplasmic nitrate reductase(napA). Addition of nitrate did not inhibit sulfide production although sulfate reduction and dsrB expression were suppressed, suggesting that sulfide production occurred from the reduction of other sulfur compounds. Nitrate induced a community-shift of SRB from Desulfobacter...

  15. Experimental evolution in biofilm populations

    Science.gov (United States)

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  16. Mechanisms important to later stages of streamer system development

    Science.gov (United States)

    Lehtinen, N. G.; Carlson, B.; Kochkin, P.; Østgaard, N.

    2017-12-01

    Typical streamer modeling focuses on the propagation of the streamer head and thus neglects processes such as electron detachment, electron energy relaxation, and thermalization of the electron energy distribution. These mechanisms, however, may become important at later stages of streamer system development, in particular following streamer collisions. We present a model of a later-stage streamer system development which includes these processes. A linear analysis suggests that these processes under some conditions can lead to new effects, such as excitation of waves similar to striations in the positive column of a glow discharge. Such instabilities do not occur if these mechanisms are neglected under the same conditions, although previous modeling suggested existence of wave-like phenomena during the streamer propagation [Luque et al, 2016, doi:10.1002/2015JA022234]. In the sea-level pressure air, the obtained striation-like waves may manifest as very high frequency range (>10 MHz) oscillations in plasma parameters and may have been detected in the electrode current and electromagnetic radiation measurements during laboratory spark experiments. We discuss whether the longitudinal electric field in such waves can efficiently transfer energy to charged particles, because such a process may play a role in production of x-rays.

  17. Reconnection and merging of positive streamers in air

    Energy Technology Data Exchange (ETDEWEB)

    Nijdam, S; Geurts, C G C; Van Veldhuizen, E M; Ebert, U, E-mail: s.nijdam@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2009-02-21

    Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p{center_dot}d = 50 {mu}m bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.

  18. Reconnection and merging of positive streamers in air

    International Nuclear Information System (INIS)

    Nijdam, S; Geurts, C G C; Van Veldhuizen, E M; Ebert, U

    2009-01-01

    Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p·d = 50 μm bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.

  19. Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections

    Science.gov (United States)

    Although the source of drinking water used in hospitals is commonly, biofilms on water pipelines are refuge to bacteria that survive different disinfection strategies. Drinking water (DW) biofilms are well known to harbor opportunistic pathogens, however, these biofilm communitie...

  20. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized...... as being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections...... such as diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well...

  1. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2011-01-01

    every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi......Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually......-species biofilm formation will facilitate the development of methods for combating bacterial biofilms in clinical, environmental, industrial, and agricultural areas. The most recent advances in the understanding of multi-species biofilms are summarized and discussed in the review....

  2. Candida Biofilms: Development, Architecture, and Resistance

    Science.gov (United States)

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  3. Conductive properties of methanogenic biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Liu, Hong

    2018-02-01

    Extracellular electron transfer between syntrophic partners needs to be efficiently maintained in methanogenic environments. Direct extracellular electron transfer via electrical current is an alternative to indirect hydrogen transfer but requires construction of conductive extracellular structures. Conductive mechanisms and relationship between conductivity and the community composition in mixed-species methanogenic biofilms are not well understood. The present study investigated conductive behaviors of methanogenic biofilms and examined the correlation between biofilm conductivity and community composition between different anaerobic biofilms enriched from the same inoculum. Highest conductivity observed in methanogenic biofilms was 71.8±4.0μS/cm. Peak-manner response of conductivity upon changes over a range of electrochemical potentials suggests that electron transfer in methanogenic biofilms occurs through redox driven super-exchange. The strong correlation observed between biofilm conductivity and Geobacter spp. in the metabolically diverse anaerobic communities suggests that the efficiency of DEET may provide pressure for microbial communities to select for species that can produce electrical conduits. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Propagation of a plasma streamer in catalyst pores

    Science.gov (United States)

    Zhang, Quan-Zhi; Bogaerts, Annemie

    2018-03-01

    Although plasma catalysis is gaining increasing interest for various environmental applications, the underlying mechanisms are still far from understood. For instance, it is not yet clear whether and how plasma streamers can propagate in catalyst pores, and what is the minimum pore size to make this happen. As this is crucial information to ensure good plasma-catalyst interaction, we study here the mechanism of plasma streamer propagation in a catalyst pore, by means of a two-dimensional particle-in-cell/Monte Carlo collision model, for various pore diameters in the nm-range to μm-range. The so-called Debye length is an important criterion for plasma penetration into catalyst pores, i.e. a plasma streamer can penetrate into pores when their diameter is larger than the Debye length. The Debye length is typically in the order of a few 100 nm up to 1 μm at the conditions under study, depending on electron density and temperature in the plasma streamer. For pores in the range of ∼50 nm, plasma can thus only penetrate to some extent and at very short times, i.e. at the beginning of a micro-discharge, before the actual plasma streamer reaches the catalyst surface and a sheath is formed in front of the surface. We can make plasma streamers penetrate into smaller pores (down to ca. 500 nm at the conditions under study) by increasing the applied voltage, which yields a higher plasma density, and thus reduces the Debye length. Our simulations also reveal that the plasma streamers induce surface charging of the catalyst pore sidewalls, causing discharge enhancement inside the pore, depending on pore diameter and depth.

  5. Modeling the plasma chemistry of stratospheric Blue Jet streamers

    Science.gov (United States)

    Winkler, Holger; Notholt, Justus

    2014-05-01

    Stratospheric Blue Jets (SBJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. The currently most accepted theory associates SBJs to the development of the streamer zone of a leader. The streamers emitted from the leader can travel for a few tens of kilometers predominantly in the vertical direction (Raizer et al., 2007). The strong electric fields at the streamer tips cause ionisation, dissociation, and excitation, and give rise to chemical perturbations. While in recent years the effects of electric discharges occurring in the mesosphere (sprites) have been investigated in a number of model studies, there are only a few studies on the impact of SBJs. However, chemical perturbations due to SBJs are of interest as they might influence the stratospheric ozone layer. We present results of detailed plasma chemistry simulations of SBJ streamers for both day-time and night-time conditions. Any effects of the subsequent leader are not considered. The model accounts for more than 500 reactions and calculates the evolution of the 88 species under the influence of the breakdown electric fields at the streamer tip. As the SBJ dynamics is outside the scope of this study, the streamer parameters are prescribed. For this purpose, electric field parameters based on Raizer et al. (2007) are used. The model is applied to the typical SBJ altitude range 15-40 km. The simulations indicate that SBJ streamers cause significant chemical perturbations. In particular, the liberation of atomic oxygen during the discharge leads to a formation of ozone. At the same time, reactive nitrogen and hydrogen radicals are produced which will cause catalytic ozone destruction. Reference: Raizer et al. (2007), J. Atmos. Solar-Terr. Phys., 69 (8), 925-938.

  6. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    Science.gov (United States)

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  7. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  8. Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France

    International Nuclear Information System (INIS)

    Morin, S.; Duong, T.T.; Dabrin, A.; Coynel, A.; Herlory, O.; Baudrimont, M.; Delmas, F.; Durrieu, G.; Schaefer, J.; Winterton, P.; Blanc, G.; Coste, M.

    2008-01-01

    In a metal-polluted stream in the Riou Mort watershed in SW France, periphytic biofilm was analyzed for diatom cell densities and taxonomic composition, dry weight and metal bio-accumulation (cadmium and zinc). Periphytic diatom communities were affected by the metal but displayed induced tolerance, seen through structural impact (dominance of small, adnate species) as well as morphological abnormalities particularly in the genera Ulnaria and Fragilaria. Species assemblages were characterized by taxa known to occur in metal-polluted environments, and shifts in the community structure expressed seasonal patterns: high numbers of Eolimna minima, Nitzschia palea and Pinnularia parvulissima were recorded in Summer and Autumn, whereas the species Surirella brebissonii, Achnanthidium minutissimum, Navicula lanceolata and Surirella angusta were dominant in Winter and Spring. Commonly used indices such as the Shannon diversity index and Specific Pollution Sensitivity Index reflected the level of pollution and suggest seasonal periodicity, the lowest diversities being observed in Summer. - Periphytic biofilm diatom communities are suitable indicators for the bioassay of elevated levels of metals in contaminated river water

  9. Modeling of plasma chemistry in a corona streamer pulse series in air

    International Nuclear Information System (INIS)

    Nowakowska, H.; Stanco, J.; Dors, M.; Mizeraczyk, J.

    2002-01-01

    The aim of this study is to analyse the chemistry in air treated by a series of corona discharge streamers. Attention is focused on the conversion of ozone and nitrogen oxides. In the model it is assumed that the streamer head of relatively small geometrical dimensions propagates from the anode to the cathode, leaving the streamer channel behind. Any elemental gas volume in the streamer path is subjected first to the conditions of the streamer head, and next to those of the streamer channel. The kinetics of plasma-chemical processes occurring in the gas is modeled numerically for a single streamer and a series of streamers. The temporal evolution of 25 chemical compounds initially present or produced in air is calculated. (author)

  10. Particle-in-cell modeling of streamer branching in CO2 gas

    KAUST Repository

    Levko, Dmitry

    2017-07-07

    The mechanism of streamer branching remains one of the unsolved problems of low-temperature plasma physics. The understanding of this phenomenon requires very high-fidelity models that include, for instance, the kinetic description of electrons. In this paper, we use a two-dimensional particle-in-cell Monte Carlo collisional model to study the branching of anode-directed streamers propagating through short cathode-anode gap filled with atmospheric-pressure CO2 gas. We observe three key phenomena leading to the streamer branching at the considered conditions: flattening of the streamer head, the decrease of the streamer head thickness, and the generation at the streamer head of electrons having the energy larger than 50 eV. For the conditions of our studies, the non-homogeneous distribution of such energetic electrons at the streamer head is probably the primary mechanism responsible for the streamer branching.

  11. A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms

    NARCIS (Netherlands)

    Molhoek, E.M.; van Dijk, A.; Veldhuizen, E.J.A.; Haagsman, H.P.; Bikker, F.J.

    2011-01-01

    Staphylococcus epidermidis is a major cause of nosocomial infections owing to its ability to form biofilms on the surface of medical devices. Biofilms are surface-adhered bacterial communities. In mature biofilms these communities are encased in an extracellular matrix composed of bacterial

  12. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate.

    Science.gov (United States)

    Wang, Xiaoling; Wang, Guoqing; Hao, Mudong

    2015-01-01

    Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  13. Quantification of diatoms in biofilms: Standardisation of methods

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    of the difficulty in sampling and enumeration. Scraping or brushing are the traditional methods used for removal of diatoms from biofilms developed on solid substrata. The method of removal is the most critical step in enumerating the biofilm diatom community...

  14. Dental biofilm: ecological interactions in health and disease

    NARCIS (Netherlands)

    Marsh, P.D.; Zaura, E.

    Background: The oral microbiome is diverse and exists as multispecies microbial communities on oral surfaces in structurally and functionally organized biofilms. Aim: To describe the network of microbial interactions (both synergistic and antagonistic) occurring within these biofilms and assess

  15. Bacteriophage-antibiotic synergism to control planktonic and biofilm ...

    African Journals Online (AJOL)

    Amina Amal Mahmoud Nouraldin

    2015-07-11

    Jul 11, 2015 ... mote resistance to antimicrobial agents, and its occurrence during the infectious ... Biofilm is a structured community of bacterial cells adher- ent to an inert or ..... biofilms with bacteriophages and chlorine. Biotechnol Bioeng.

  16. On increasing the efficiency of a streamer semiconductor laser

    International Nuclear Information System (INIS)

    Rusakov, K I; Parashchuk, V V

    2007-01-01

    The influence of intense electric and optical fields produced by a streamer discharge in wide-gap semiconductors on their spectroscopic properties is studied. The effect is manifested in the reversible change of the luminescence parameters of the active medium. Methods are proposed for increasing the service life and efficiency of a streamer laser in limiting regimes, which are based on the use of semiconductor protective layers of a certain crystallographic orientation and a crystal microrelief with the size of elements of the order of the wavelength of light. Streamer emission was observed and studied in new promising Eu:CaGa 2 S 4 and Eu:Ca 4 Ga 2 S 7 materials. (lasers)

  17. Reversal film development for streamer chamber track photographs

    International Nuclear Information System (INIS)

    Bahr, J.

    1982-01-01

    It is the aim of this work to create a method of photographic development specially adapted to streamer image recording, i.e., with high sensitivity, only two signal levels, low dependence of the track signal on image intensity having a great jitter and noise suppression. The method has to be suitable for machine development of high speed films. A reversal photographic development was used to realize these demands, whereby strong fogging in the first step negative development and a solving process for silver bromide after blackening are specially introduced process stages. This results in a step-function shaped characteristic curve with small transition region having only two signal levels, i. e., independence of streamer image density, good resolution, fine grain, suppression of flares and low noise in the signal of the clear streamer images

  18. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO4(2-) reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100-mu-m) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured...

  19. Biofilm responses to marine fish farm wastes

    International Nuclear Information System (INIS)

    Sanz-Lazaro, Carlos; Navarrete-Mier, Francisco; Marin, Arnaldo

    2011-01-01

    The changes in the biofilm community due to organic matter enrichment, eutrophication and metal contamination derived from fish farming were studied. The biofilm biomass, polysaccharide content, trophic niche and element accumulation were quantified along an environmental gradient of fish farm wastes in two seasons. Biofilm structure and trophic diversity was influenced by seasonality as well as by the fish farm waste load. Fish farming enhanced the accumulation of organic carbon, nutrients, selenium and metals by the biofilm community. The accumulation pattern of these elements was similar regardless of the structure and trophic niche of the community. This suggests that the biofilm communities can be considered a reliable tool for assessing dissolved aquaculture wastes. Due to the ubiquity of biofilms and its wide range of consumers, its role as a sink of dissolved wastes may have important implications for the transfer of aquaculture wastes to higher trophic levels in coastal systems. - Research highlights: → Biofilms can act as a trophic pathway of fish farm dissolved wastes. → Biofilms are reliable tools for monitoring fish farm dissolved wastes. → The influence of the fish farm dissolved wastes can be detected 120-350 m from farm. - Under the influence of fish farming biofilm accumulates organic carbon, nutrients, selenium and metals, regardless of the structure and trophic niche of the community.

  20. Biofilm responses to marine fish farm wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Lazaro, Carlos, E-mail: carsanz@um.es [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100 Murcia (Spain); Navarrete-Mier, Francisco; Marin, Arnaldo [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100 Murcia (Spain)

    2011-03-15

    The changes in the biofilm community due to organic matter enrichment, eutrophication and metal contamination derived from fish farming were studied. The biofilm biomass, polysaccharide content, trophic niche and element accumulation were quantified along an environmental gradient of fish farm wastes in two seasons. Biofilm structure and trophic diversity was influenced by seasonality as well as by the fish farm waste load. Fish farming enhanced the accumulation of organic carbon, nutrients, selenium and metals by the biofilm community. The accumulation pattern of these elements was similar regardless of the structure and trophic niche of the community. This suggests that the biofilm communities can be considered a reliable tool for assessing dissolved aquaculture wastes. Due to the ubiquity of biofilms and its wide range of consumers, its role as a sink of dissolved wastes may have important implications for the transfer of aquaculture wastes to higher trophic levels in coastal systems. - Research highlights: > Biofilms can act as a trophic pathway of fish farm dissolved wastes. > Biofilms are reliable tools for monitoring fish farm dissolved wastes. > The influence of the fish farm dissolved wastes can be detected 120-350 m from farm. - Under the influence of fish farming biofilm accumulates organic carbon, nutrients, selenium and metals, regardless of the structure and trophic niche of the community.

  1. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  2. Use of a streamer chamber for low energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Van Bibber, K.; Pang, W.; Avery, M.; Bloemhof, E.

    1979-10-01

    A small streamer chamber has been implemented for low energy heavy ion reaction studies at the LBL 88-inch cyclotron. The response of the chamber to light and heavy ions below 35 MeV/nucleon has been examined. The limited sensitivity of light output as a function of ionization works to advantage in recording a wide variety of tracks in the same photograph whose energy loss may vary considerably. Furthermore, as gas targets are attractive for several reasons, we have investigated the suitability of Ar and Xe for use in streamer chambers.

  3. Use of a streamer chamber for low energy nuclear physics

    International Nuclear Information System (INIS)

    Van Bibber, K.; Pang, W.; Avery, M.; Bloemhof, E.

    1979-10-01

    A small streamer chamber has been implemented for low energy heavy ion reaction studies at the LBL 88-inch cyclotron. The response of the chamber to light and heavy ions below 35 MeV/nucleon has been examined. The limited sensitivity of light output as a function of ionization works to advantage in recording a wide variety of tracks in the same photograph whose energy loss may vary considerably. Furthermore, as gas targets are attractive for several reasons, we have investigated the suitability of Ar and Xe for use in streamer chambers

  4. Self-quenching streamer discharge in a wire chamber

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Kruglov, V.V.; Khazins, D.M.

    1982-01-01

    A summary is given of the investigation of a new mode of operation of a wire chamber involving a self-quenching streamer discharge. The history of the question is briefly discussed. The main characteristics of the self-quenching mode and the influence of the composition and pressure of the gas mixture and the geometrical parameters of the chamber on the characteristics are described. The mechanism of a self-quenching streamer discharge is analyzed. Detectors working in this mode are described, and the prospects for its future use are discussed

  5. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  6. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  7. Pulsed and streamer discharges in air above breakdown electric field

    NARCIS (Netherlands)

    A.B. Sun (Anbang); H.J. Teunissen (Jannis); U. M. Ebert (Ute)

    2013-01-01

    htmlabstractA 3D particle model is developed to investigate the streamer formation in electric fields above the breakdown threshold, in atmospheric air (1bar, 300 Kelvin). Adaptive particle management, adaptive mesh refinement and parallel computing techniques are used in the code. Photoionization

  8. Hexagon and stripe patterns in dielectric barrier streamer discharge

    International Nuclear Information System (INIS)

    Dong Lifang; He Yafeng; Yin Zengqian; Chai Zhifang

    2004-01-01

    We present a specially designed dielectric barrier discharge (DBD) system for the study of pattern formation. Hexagon and stripe patterns have been observed in a streamer discharge in a DBD for the first time. The phase diagram of pattern types as a function of applied voltage is given

  9. Multisource waveform inversion of marine streamer data using normalized wavefield

    KAUST Repository

    Choi, Yun Seok

    2013-09-01

    Multisource full-waveform inversion based on the L1- and L2-norm objective functions cannot be applied to marine streamer data because it does not take into account the unmatched acquisition geometries between the observed and modeled data. To apply multisource full-waveform inversion to marine streamer data, we construct the L1- and L2-norm objective functions using the normalized wavefield. The new residual seismograms obtained from the L1- and L2-norms using the normalized wavefield mitigate the problem of unmatched acquisition geometries, which enables multisource full-waveform inversion to work with marine streamer data. In the new approaches using the normalized wavefield, we used the back-propagation algorithm based on the adjoint-state technique to efficiently calculate the gradients of the objective functions. Numerical examples showed that multisource full-waveform inversion using the normalized wavefield yields much better convergence for marine streamer data than conventional approaches. © 2013 Society of Exploration Geophysicists.

  10. Branching of positive discharge streamers in air at varying pressures

    NARCIS (Netherlands)

    Briels, T.M.P.; Veldhuizen, van E.M.; Ebert, U.M.

    2005-01-01

    The formation of positive streamers in a 17-mm gap in air is studied at pressures varying in the range from 1010 to 100 mbar. An intensified charge coupled device camera is used to image the discharge. At high pressures, the discharge shows many branches, while at low pressure, fewer branches arise.

  11. Pseudo-spectral 3D simulations of streamers

    NARCIS (Netherlands)

    A. Luque (Alejandro); U. M. Ebert (Ute); C. Montijn (Carolynne-Sireeh); W. Hundsdorfer (Willem); J. Schmidt; M. Simek; S. Pekarek; V. Prukner

    2007-01-01

    textabstractA three-dimensional code for the simulation of streamers is introduced. The code is based on a fluid model for oxygen-nitrogen mixtures that includes drift, diffusion and attachement of electrons and creation of new charge carriers through impact ionization and photo-ionization. The

  12. KELVIN-HELMHOLTZ INSTABILITY OF A CORONAL STREAMER

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L.; Gan, W. Q. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China); Inhester, B., E-mail: lfeng@pmo.ac.cn [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str.2, D-37191 Katlenburg-Lindau (Germany)

    2013-09-10

    Shear-flow-driven instability can play an important role in energy transfer processes in coronal plasma. We present for the first time the observation of a kink-like oscillation of a streamer that is probably caused by the streaming kink-mode Kelvin-Helmholtz instability (KHI). The wave-like behavior of the streamer was observed by the Large Angle and Spectrometric Coronagraph Experiment C2 and C3 on board the SOlar and Heliospheric Observatory. The observed wave had a period of about 70-80 minutes, and its wavelength increased from 2 R{sub Sun} to 3 R{sub Sun} in about 1.5 hr. The phase speeds of its crests and troughs decreased from 406 {+-} 20 to 356 {+-} 31 km s{sup -1} during the event. Within the same heliocentric range, the wave amplitude also appeared to increase with time. We attribute the phenomena to the MHD KHI, which occurs at a neutral sheet in a fluid wake. The free energy driving the instability is supplied by the sheared flow and sheared magnetic field across the streamer plane. The plasma properties of the local environment of the streamer were estimated from the phase speed and instability threshold criteria.

  13. Positive streamer initiation from raindrops in thundercloud fields

    DEFF Research Database (Denmark)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2016-01-01

    required for the streamer formation is larger than the measured thunderstorm fields. Therefore, the results of simulations suggest that second mechanisms must operate to amplify the local field. Such mechanisms could be electric field space variations via collective effects of many hydrometeors or runaway...

  14. Nongeometrically converted shear waves in marine streamer data

    NARCIS (Netherlands)

    Drijkoningen, G.G.; El Allouche, N.; Thorbecke, J.W.; Bada, G.

    2012-01-01

    Under certain circumstances, marine streamer data contain nongeometrical shear body wave arrivals that can be used for imaging. These shear waves are generated via an evanescent compressional wave in the water and convert to propagating shear waves at the water bottom. They are called

  15. Multisource waveform inversion of marine streamer data using normalized wavefield

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2013-01-01

    Multisource full-waveform inversion based on the L1- and L2-norm objective functions cannot be applied to marine streamer data because it does not take into account the unmatched acquisition geometries between the observed and modeled data. To apply

  16. Particle based 3D modeling of positive streamer inception

    NARCIS (Netherlands)

    H.J. Teunissen (Jannis)

    2012-01-01

    htmlabstractIn this report we present a particle based 3D model for the study of streamer inception near positive electrodes in air. The particle code is of the PIC-MCC type and an electrode is included using the charge simulation method. An algorithm for the adaptive creation of super-particles is

  17. Self-organization of bacterial communities against environmental pH variation: Controlled chemotactic motility arranges cell population structures in biofilms.

    Science.gov (United States)

    Tasaki, Sohei; Nakayama, Madoka; Shoji, Wataru

    2017-01-01

    As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched 'volcano-like' to round and front-elevated 'crater-like'. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms.

  18. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    Science.gov (United States)

    Stewart, Elizabeth J.; Ganesan, Mahesh; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism. PMID:26272750

  19. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  20. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz; Bojsen, Rasmus Kenneth; Gro Rejkjær Sørensen, Laura

    2014-01-01

    Biofilm-forming microorganisms switch between two forms: free-living planktonic and sessile multicellular. Sessile communities of yeast biofilms in liquid medium provide a primitive example of multicellularity and are clinically important because biofilms tend to have other growth characteristics...

  1. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...

  2. Exploiting social evolution in biofilms

    DEFF Research Database (Denmark)

    Boyle, Kerry E; Heilmann, Silja; van Ditmarsch, Dave

    2013-01-01

    Bacteria are highly social organisms that communicate via signaling molecules, move collectively over surfaces and make biofilm communities. Nonetheless, our main line of defense against pathogenic bacteria consists of antibiotics-drugs that target individual-level traits of bacterial cells...... and thus, regrettably, select for resistance against their own action. A possible solution lies in targeting the mechanisms by which bacteria interact with each other within biofilms. The emerging field of microbial social evolution combines molecular microbiology with evolutionary theory to dissect...... the molecular mechanisms and the evolutionary pressures underpinning bacterial sociality. This exciting new research can ultimately lead to new therapies against biofilm infections that exploit evolutionary cheating or the trade-off between biofilm formation and dispersal....

  3. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    Science.gov (United States)

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2018-04-15

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event

  4. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    The coexistence of hugely diverse microbes in most environments highlights the intricate interactions in microbial communities, which are central to their properties, such as productivity, stability and the resilience to disturbance. Biofilm, in environmental habitats, is such a spatially...... multispecies biofilm models, oral microbial community, also known as “dental plaque” is thoroughly investigated as a focal point to describe the interspecies interactions [1]. However, owing to the lack of a reliable high throughput and quantitative approach for exploring the interplay between multiple...... bacterial species, the study to elucidate the impact of interaction networks on the multispecies biofilms in natural ecosystems, especially in soil, is still at an early stage. The diverse patterns of interactions within the mixed communities as well as the predatorprey relationship between protozoa...

  5. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    Energy Technology Data Exchange (ETDEWEB)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Winands, G J J [Department of Electrical Engineering, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: e.m.v.veldhuizen@tue.nl, E-mail: ebert@cwi.nl

    2008-12-07

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v {approx} 10{sup 5} m s{sup -1}. For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10{sup 6} m s{sup -1}; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d{sup 2} mm{sup -1} ns{sup -1} for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  6. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    International Nuclear Information System (INIS)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U; Winands, G J J

    2008-01-01

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v ∼ 10 5 m s -1 . For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10 6 m s -1 ; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d 2 mm -1 ns -1 for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  7. Microbial biofilms: biosurfactants as antibiofilm agents.

    Science.gov (United States)

    Banat, Ibrahim M; De Rienzo, Mayri A Díaz; Quinn, Gerry A

    2014-12-01

    Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.

  8. Biofilm inhibitors that target amyloid proteins.

    Science.gov (United States)

    Romero, Diego; Sanabria-Valentín, Edgardo; Vlamakis, Hera; Kolter, Roberto

    2013-01-24

    Bacteria establish stable communities, known as biofilms, that are resistant to antimicrobials. Biofilm robustness is due to the presence of an extracellular matrix, which for several species-among them Bacillus subtilis-includes amyloid-like protein fibers. In this work, we show that B. subtilis biofilms can be a simple and reliable tool for screening of molecules with antiamyloid activity. We identified two molecules, AA-861 and parthenolide, which efficiently inhibited biofilms by preventing the formation of amyloid-like fibers. Parthenolide also disrupted pre-established biofilms. These molecules also impeded the formation of biofilms of other bacterial species that secrete amyloid proteins, such as Bacillus cereus and Escherichia coli. Furthermore, the identified molecules decreased the conversion of the yeast protein New1 to the prion state in a heterologous host, indicating the broad range of activity of the molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of Different Disinfection Protocols on Microbial and Biofilm Contamination of Dental Unit Waterlines in Community Dental Practices

    Directory of Open Access Journals (Sweden)

    Laura Dallolio

    2014-02-01

    Full Text Available Output water from dental unit waterlines (DUWLs may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02% and stabilized chlorine dioxide (0.22%, respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions.

  10. Effect of different disinfection protocols on microbial and biofilm contamination of dental unit waterlines in community dental practices.

    Science.gov (United States)

    Dallolio, Laura; Scuderi, Amalia; Rini, Maria S; Valente, Sabrina; Farruggia, Patrizia; Sabattini, Maria A Bucci; Pasquinelli, Gianandrea; Acacci, Anna; Roncarati, Greta; Leoni, Erica

    2014-02-18

    Output water from dental unit waterlines (DUWLs) may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02%) and stabilized chlorine dioxide (0.22%), respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions.

  11. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang

    2011-01-01

    Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several d...... polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.......Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several...... distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural...

  12. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  13. Controlling branching in streamer discharge by laser background ionization

    International Nuclear Information System (INIS)

    Takahashi, E; Kato, S; Furutani, H; Sasaki, A; Kishimoto, Y

    2011-01-01

    Irradiation with a KrF laser controlled the positive streamer branching in atmospheric argon gas. This laser irradiation changed the amount of background ionization before the streamer discharge. Measuring the ionization current allowed us to evaluate the initial electron density formed by the KrF laser. We observed characteristic feather-like branching structure and found that it was only suppressed in the irradiated region. The threshold of ionization density which can influence the branching was evaluated to be 5 x 10 5 cm -3 . The relationship between the size of avalanche head and mean distance between initial electrons explained this suppression behaviour. These experimental results support that the feather-like structure originates from the branching model of Loeb-Meek, a probabilistic merging of individual avalanches.

  14. Double streamer phenomena in atmospheric pressure low frequency corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Time-resolved images of an atmospheric pressure corona discharge, generated at 50 kHz in a single pin electrode source, show unique positive and negative corona discharge features: a streamer for the positive period and a glow for the negative period. However, unlike in previous reports of dc pulse and low frequency corona discharges, multistreamers were observed at the initial time stage of the positive corona. A possible physical mechanism for the multistreamers is suggested.

  15. Ionizing potential waves and high-voltage breakdown streamers.

    Science.gov (United States)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  16. Two-dimensional simulation of positive and negative streamers in air

    International Nuclear Information System (INIS)

    Babaeva, N.Yu.; Naidis, G.V.

    1998-01-01

    The paper deals with 2D numerical simulation of positive and negative streamers in air at atmospheric pressure. The dynamics of an axially symmetric streamer based on a charged sphere is described by a coupled system of equations for the electric field and the density of charged particles. The results of simulation show that the production rate of radicals in short sphere-plane gaps depends only weakly on the discharge conditions, that the streamer velocity in uniform field depends linearly on the streamer length, and the field corresponding to the negative streamer propagation with a constant velocity is 2-3 times greater than that obtained with a positive streamer. (J.U.)

  17. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wooseong Kim

    Full Text Available Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.

  18. A Slow Streamer Blowout at the Sun and Ulysses

    Science.gov (United States)

    Seuss, S. T.; Bemporad, A.; Poletto, G.

    2004-01-01

    On 10 June 2000 a streamer on the southeast limb slowly disappeared from LASCO/C2 over approximately 10 hours. A small CME was reported in C2. A substantial interplanetary CME (ICME) was later detected at Ulysses, which was at quadrature with the Sun and SOHO at the time. This detection illustrates the properties of an ICME for a known solar source and demonstrates that the identification can be done even beyond 3 AU. Slow streamer blowouts such as this have long been known but are little studied. We report on the SOHO observation of a coronal mass ejection (CME) on the solar limb and the subsequent in situ detection at Ulysses, which was near quadrature at the time, above the location of the CME. SOHO-Ulysses quadrature was 13 June, when Ulysses was 3.36 AU from the Sun and 58.2 degrees south of the equator off the east limb. The slow streamer blowout was on 10 June, when the SOHO-Sun-Ulysses angle was 87 degrees.

  19. A nautical study of towed marine seismic streamer cable configurations

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Egil

    1996-12-31

    This study concerns marine seismic surveying and especially the towed in-sea hardware which is dominated by recording cables (streamers) that are extremely long compared to their diameter, neutrally buoyant and depth controlled. The present work aims to examine the operations from a nautical viewpoint, and the final objective is to propose improvements to the overall efficiency of marine seismic operations. Full-scale data were gathered from seismic vessels in order to identify which physical parameters affect the dynamic motion of the towing vessel and its in-sea hardware. Experimental test programmes have been carried out, and data bases with the hydrodynamic characteristics of the test equipment have been established at speeds comparable to those used in seismic operations. A basic analysis tool to provide dynamic simulations of a seismic streamer cable has been developed by tailoring the computer program system Riflex, and the validation and accuracy of this modified Riflex system are evaluated by performing uncertainty analyses of measurements and computations. Unexpected, low-frequency depth motions in towed seismic streamer cables occasionally take place when seismic data are being acquired. The phenomenon is analysed and discussed. 99 refs., 116 figs., 5 tabs.

  20. A nautical study of towed marine seismic streamer cable configurations

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Egil

    1997-12-31

    This study concerns marine seismic surveying and especially the towed in-sea hardware which is dominated by recording cables (streamers) that are extremely long compared to their diameter, neutrally buoyant and depth controlled. The present work aims to examine the operations from a nautical viewpoint, and the final objective is to propose improvements to the overall efficiency of marine seismic operations. Full-scale data were gathered from seismic vessels in order to identify which physical parameters affect the dynamic motion of the towing vessel and its in-sea hardware. Experimental test programmes have been carried out, and data bases with the hydrodynamic characteristics of the test equipment have been established at speeds comparable to those used in seismic operations. A basic analysis tool to provide dynamic simulations of a seismic streamer cable has been developed by tailoring the computer program system Riflex, and the validation and accuracy of this modified Riflex system are evaluated by performing uncertainty analyses of measurements and computations. Unexpected, low-frequency depth motions in towed seismic streamer cables occasionally take place when seismic data are being acquired. The phenomenon is analysed and discussed. 99 refs., 116 figs., 5 tabs.

  1. Probing photo-ionization: simulations of positive streamers in varying N2:O2 mixtures

    OpenAIRE

    Wormeester, G; Pancheshnyi, S; Luque, A A; Nijdam, S Sander; Ebert, UM Ute

    2010-01-01

    htmlabstractPhoto-ionization is the accepted mechanism for the propagation of positive streamers in air though the parameters are not very well known; the efficiency of this mechanism largely depends on the presence of both nitrogen and oxygen. But experiments show that streamer propagation is amazingly robust against changes of the gas composition; even for pure nitrogen with impurity levels below 1 ppm streamers propagate essentially with the same velocity as in air, but their minimal diame...

  2. Numerical modeling of positive streamer in air in nonuniform fields: Efficiency of radicals production

    International Nuclear Information System (INIS)

    Kulikovsky, A.A.

    2001-01-01

    The efficiency of streamer corona depends on a number of factors such as geometry of electrodes, voltage pulse parameters, gas pressure etc. In a past 5 years a two-dimensional models of streamer in nonuniform fields in air have been developed. These models allow to simulate streamer dynamics and generation of species and to investigate the influence of external parameters on species production. In this work the influence of Laplacian field on efficiency of radicals generation is investigated

  3. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    DEFF Research Database (Denmark)

    Köhn, Christoph; Chanrion, Olivier; Neubert, Torsten

    2017-01-01

    Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that posit...

  4. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.; Vrouwenvelder, Johannes S.; Paulitsch-Fuchs, Astrid H.; Zwijnenburg, Arie; Kruithof, Joop C.; Flemming, Hans Curt

    2013-01-01

    resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric

  5. 2d axisymmetric "beam-bulk" modelling of the generation of runaway electrons by streamers.

    Science.gov (United States)

    Chanrion, Olivier; Bonaventura, Zdenek; Bourdon, Anne; Neubert, Torsten

    2017-04-01

    We present results from a 2d axisymmetric numerical model of streamers based on a "beam-bulk" approach which describes cold electrons with a fluid model and high energy electrons with a particle model. The interest is motivated by the generation of runaway electrons by streamers which may participate in the recently observed TGFs and which challenge the modelling. Runaway electrons are known to be generated from streamers when the electric field in its negative tip is of sufficient magnitude. After overtaking the streamer tip, runaways can affect the streamer propagation ahead and may produce high energy photons through the bremsstrahlung process. In conventional model of streamers, the evolution of the streamer discharge is mostly governed by cold electrons. By including runaway electrons, we model their production, their impact on the discharge propagation and can address their role in TGFs. Results of streamer propagation in leader electric field show that the runaway electrons accelerate the streamers, reduce the electric field in its tip and enlarge its radius by pre-ionizing the gas ahead. We observed that if we increase the electric field, the discharge is getting more diffuse, with a pattern driven by the increase in runaway induced ionisation.

  6. A novel pulsed corona discharge reactor based on surface streamers for diesel exhaust remediation

    Energy Technology Data Exchange (ETDEWEB)

    Malik, M.A.; Schoenbach, K.H. [Old Dominion Univ., Norfolk, VA (United States). Frank Reidy Research Center for Bioelectrics

    2010-07-01

    Modelling of surface streamers along insulating surfaces to determine the dielectric strength of insulators in high voltage systems has shown that surface streamers consist of a positive streamer head followed by quasi-neutral plasma in the channel behind and surrounded by a layer of positive charges. This paper described a novel pulsed corona discharge reactor which utilized such surface streamers along insulating surfaces. The electrodes were comprised of a stainless steel wire anode of 150 mm in diameter stretched along the surface of a glass sheet and two parallel aluminum strips as cathodes. An eight-stage Marx bank, was used to produce the surface streamers in nitrogen-oxygen mixtures at atmospheric pressure. The paper described the experimental study with particular reference to the schematics of a surface streamer plasma reactor and the dimensions of discharge spaces of three reactors. The purpose of the study was to find the optimum conditions for energy yield and effective destruction of nitrogen oxides from diesel engine exhaust. It was concluded that surface streamers generate a more diffuse plasma. Energy costs for production of ozone or nitrogen dioxide that require reactions with bulk gas molecules were nearly the same in surface streamer discharges as in volume streamer discharges. 12 refs., 1 tab., 7 figs.

  7. Evaluation of pulsed streamer corona experiments to determine the O* radical yield

    International Nuclear Information System (INIS)

    Van Heesch, E J M; Winands, G J J; Pemen, A J M

    2008-01-01

    The production of O* radicals in air by a pulsed streamer plasma is studied by integration of a large set of precise experimental data and the chemical kinetics of ozone production. The measured data comprise ozone production, plasma energy, streamer volume, streamer length, streamer velocity, humidity and gas-flow rate. Instead of entering input parameters into a kinetic model to calculate the end products the opposite strategy is followed. Since the amount of end-products (ozone) is known from the measurements the model had to be applied in the reverse direction to determine the input parameters, i.e. the O* radical concentration.

  8. Evaluation of pulsed streamer corona experiments to determine the O* radical yield

    Science.gov (United States)

    van Heesch, E. J. M.; Winands, G. J. J.; Pemen, A. J. M.

    2008-12-01

    The production of O* radicals in air by a pulsed streamer plasma is studied by integration of a large set of precise experimental data and the chemical kinetics of ozone production. The measured data comprise ozone production, plasma energy, streamer volume, streamer length, streamer velocity, humidity and gas-flow rate. Instead of entering input parameters into a kinetic model to calculate the end products the opposite strategy is followed. Since the amount of end-products (ozone) is known from the measurements the model had to be applied in the reverse direction to determine the input parameters, i.e. the O* radical concentration.

  9. Probing photo-ionization: experiments on positive streamers in pure gases and mixtures

    International Nuclear Information System (INIS)

    Nijdam, S; Van de Wetering, F M J H; Blanc, R; Van Veldhuizen, E M; Ebert, U

    2010-01-01

    Positive streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the nitrogen : oxygen ratio. Therefore we study streamers in nitrogen with 20%, 0.2% and 0.01% oxygen and in pure nitrogen as well as in pure oxygen and argon. Our new experimental set-up guarantees contamination of the pure gases to be well below 1 ppm. Streamers in oxygen are difficult to measure as they emit considerably less light in the sensitivity range of our fast ICCD camera than the other gases. Streamers in pure nitrogen and in all nitrogen-oxygen mixtures look generally similar, but become somewhat thinner and branch more with decreasing oxygen content. In pure nitrogen the streamers can branch so much that they resemble feathers. This feature is even more pronounced in pure argon, with approximately 10 2 hair tips cm -3 in the feathers at 200 mbar; this density can be interpreted as the free electron density creating avalanches towards the streamer stem. It is remarkable that the streamer velocity is essentially the same for similar voltage and pressure in all nitrogen-oxygen mixtures as well as in pure nitrogen, while the oxygen concentration and therefore the photo-ionization lengths vary by more than five orders of magnitude. Streamers in argon have essentially the same velocity as well. The physical similarity of streamers at different pressures is confirmed in all gases; the minimal diameters are smaller than in earlier measurements.

  10. Probing photo-ionization: experiments on positive streamers in pure gases and mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nijdam, S; Van de Wetering, F M J H; Blanc, R; Van Veldhuizen, E M; Ebert, U, E-mail: s.nijdam@tue.n [Eindhoven University of Technology, Department Applied Physics, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2010-04-14

    Positive streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the nitrogen : oxygen ratio. Therefore we study streamers in nitrogen with 20%, 0.2% and 0.01% oxygen and in pure nitrogen as well as in pure oxygen and argon. Our new experimental set-up guarantees contamination of the pure gases to be well below 1 ppm. Streamers in oxygen are difficult to measure as they emit considerably less light in the sensitivity range of our fast ICCD camera than the other gases. Streamers in pure nitrogen and in all nitrogen-oxygen mixtures look generally similar, but become somewhat thinner and branch more with decreasing oxygen content. In pure nitrogen the streamers can branch so much that they resemble feathers. This feature is even more pronounced in pure argon, with approximately 10{sup 2} hair tips cm{sup -3} in the feathers at 200 mbar; this density can be interpreted as the free electron density creating avalanches towards the streamer stem. It is remarkable that the streamer velocity is essentially the same for similar voltage and pressure in all nitrogen-oxygen mixtures as well as in pure nitrogen, while the oxygen concentration and therefore the photo-ionization lengths vary by more than five orders of magnitude. Streamers in argon have essentially the same velocity as well. The physical similarity of streamers at different pressures is confirmed in all gases; the minimal diameters are smaller than in earlier measurements.

  11. High-resolution seismic reflection surveying with a land streamer

    Science.gov (United States)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  12. Long term effects of cerium dioxide nanoparticles on the nitrogen removal, micro-environment and community dynamics of a sequencing batch biofilm reactor.

    Science.gov (United States)

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; Miao, Lingzhan; You, Guoxiang; Lv, Bowen; Yang, Yangyang; Zhang, Fei

    2017-12-01

    The influences of cerium dioxide nanoparticles (CeO 2 NPs) on nitrogen removal in biofilm were investigated. Prolonged exposure (75d) to 0.1mg/L CeO 2 NPs caused no inhibitory effects on nitrogen removal, while continuous addition of 10mg/L CeO 2 NPs decreased the treatment efficiency to 53%. With the progressive concentration of CeO 2 NPs addition, the removal efficiency could nearly stabilize at 67% even with the continues spike of 10mg/L. The micro-profiles of dissolved oxygen, pH, and oxidation reduction potential suggested the developed protection mechanisms of microbes to progressive CeO 2 NPs exposure led to the less influence of microenvironment, denitrification bacteria and enzyme activity than those with continuous ones. Furthermore, high throughput sequencing illustrated the drastic shifted communities with gradual CeO 2 NPs spiking was responsible for the adaption and protective mechanisms. The present study demonstrated the acclimated microbial community was able to survive CeO 2 NPs addition more readily than those non-acclimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Focus on the physics of biofilms

    International Nuclear Information System (INIS)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-01-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments. (editorial)

  14. Unravelling the core microbiome of biofilms in cooling tower systems.

    Science.gov (United States)

    Di Gregorio, L; Tandoi, V; Congestri, R; Rossetti, S; Di Pippo, F

    2017-11-01

    In this study, next generation sequencing and catalyzed reporter deposition fluorescence in situ hybridization, combined with confocal microscopy, were used to provide insights into the biodiversity and structure of biofilms collected from four full-scale European cooling systems. Water samples were also analyzed to evaluate the impact of suspended microbes on biofilm formation. A common core microbiome, containing members of the families Sphingomonadaceae, Comamonadaceae and Hyphomicrobiaceae, was found in all four biofilms, despite the water of each coming from different sources (river and groundwater). This suggests that selection of the pioneer community was influenced by abiotic factors (temperature, pH) and tolerances to biocides. Members of the Sphingomonadaceae were assumed to play a key role in initial biofilm formation. Subsequent biofilm development was driven primarily by light availability, since biofilms were dominated by phototrophs in the two studied 'open' systems. Their interactions with other microbial populations then shaped the structure of the mature biofilm communities analyzed.

  15. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Directory of Open Access Journals (Sweden)

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  16. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  17. Sticking together: building a biofilm the Bacillus subtilis way.

    Science.gov (United States)

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2013-03-01

    Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.

  18. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function

    DEFF Research Database (Denmark)

    Hentzer, Morten; Teitzel, G.M.; Balzer, G.J.

    2001-01-01

    -resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development...... on an abiotic surface. Biofilms formed by an alginate- overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion...

  19. Biofilm function and variability in a hydrothermal ecosystem: insights from environmental genomes

    Science.gov (United States)

    Meyer-Dombard, D. R.; Raymond, J.; Shock, E. L.

    2007-12-01

    The ability to adapt to variable environmental conditions is key to survival for all organisms, but may be especially crucial to microorganisms in extreme environments such as hydrothermal systems. Streamer biofilm communities (SBCs) made up of thermophilic chemotrophic microorganisms are common in alkaline-chloride geothermal environments worldwide, but the in situ physiochemical growth parameters and requirements of SBCs are largely unknown [1]. Hot springs in Yellowstone National Park's alkaline geyser basins support SBC growth. However, despite the relative geochemical homogeneity of source pools and widespread ecosystem suitability in these regions (as indicated by energetic profiling [2]), SBCs are not ubiquitous in these ecosystems. The ability of hydrothermal systems to support the growth of SBCs, the relationship between these geochemically driven environments and the microbes that live there, and the function of individuals in these communities are aspects that are adressed here by applying environmental genomics. Analysis of 16S rRNA and total membrane lipid extracts have revealed that community composition of SBCs in "Bison Pool" varies as a function of changing environmental conditions along the outflow channel. In addition, a significant crenarchaeal component was discovered in the "Bison Pool" SBCs. In general, the SBC bacterial diversity triples while the archaeal component varies little (from 3 to 2 genera) in a 5-10°C gradient with distance from the source. While these SBCs are low in overall diversity, the majority of the taxa identified represent uncultured groups of Bacteria and Archaea. As a result, the community function of these taxa and their role in the formation of the biofilms is unknown. However, recent genomic analysis from environmental DNA affords insight into the roles of specific organisms within SBCs at "Bison Pool," and integration of these data with an extensive corresponding geochemical dataset may indicate shifting community

  20. Temperature and pressure effects on the properties of positive streamers in air

    NARCIS (Netherlands)

    Huiskamp, T.; Heesch, van E.J.M.; Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Pemen, A.J.M.

    2012-01-01

    In this paper we present experimental results on how the properties of positive, pulsed streamers in air depend on E/n (E is the applied electric field and n is the gas density). Streamers are generated in a wire-cylinder reactor at constant voltage (so constant E). The density is changed either by

  1. Study on the streamer inception characteristics under positive lightning impulse voltage

    Directory of Open Access Journals (Sweden)

    Zezhong Wang

    2017-11-01

    Full Text Available The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  2. Experiments on how photo- and background ionization affect positive streamers: oxygen concentration, repetition and radioactivity

    NARCIS (Netherlands)

    Nijdam, S.; Veldhuizen, van E.M.; Ebert, U.

    2011-01-01

    Positive streamers in air and other oxygen-nitrogen mixtures are generally believed to propagate against the electron drift direction due to photo-ionization. Photo-ionization is the non-local ionization of O2-molecules by UV radiation from excited N2-molecules. This facilitates the streamer

  3. Evaluation of a charged coupled device camera for streamer chamber applications

    International Nuclear Information System (INIS)

    Holmgren, D.; Wallick, W.; Kenyon, R.; Lubatti, H.J.

    1978-01-01

    The response of a charged coupled device to a Ne light source is studied and compared to the Kodak SO-143 film commonly used for streamer chamber applications. It is found that the CCD-202 cooled to -10 0 C is considerably more sensitive than the film. A test of a CCD-based measurement system observing a streamer chamber is described. 3 refs

  4. SYMPATHETIC FILAMENT ERUPTIONS FROM A BIPOLAR HELMET STREAMER IN THE SUN

    International Nuclear Information System (INIS)

    Yang Jiayan; Jiang Yunchun; Zheng Ruisheng; Bi Yi; Hong Junchao; Yang Bo

    2012-01-01

    On 2005 August 5, two solar filaments erupted successively from different confined arcades underlying a common overarching multiple-arcade bipolar helmet streamer. We present detailed observations of these two events and identify them as sympathetic filament eruptions. The first (F1) is a small active-region filament located near the outskirts of the streamer arcade. It underwent a nonradial eruption, initially moving in the interior of the streamer arcade and resulting in an over-and-out coronal mass ejection. The second filament (F2), a larger quiescent one far away from F1, was clearly disturbed during the F1 eruption. It then underwent a very slow eruption and finally disappeared completely and permanently. Because two belt-shaped diffuse dimmings formed along the footprints of the streamer arcade in the first eruption and persisted throughout the complete disappearance of F2, the eruption series are interpreted as sympathetic: the simple expansion of the common streamer arcade forced by the F1 eruption weakened magnetic flux overlying F2 and thus led to its slow eruption, with the dimming formation indicating their physical connection. Our observations suggest that multiple-arcade bipolar helmet-streamer configurations are appropriate to producing sympathetic eruptions. Combined with the recent observations of unipolar-streamer sympathetic events, it appears that a multiple-arcade unipolar or bipolar helmet streamer can serve as a common magnetic configuration for sympathetic eruptions.

  5. Circuit dependence of the diameter of pulsed positive streamers in air

    Energy Technology Data Exchange (ETDEWEB)

    Briels, T M P [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600MB Eindhoven (Netherlands); Kos, J [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600MB Eindhoven (Netherlands); Veldhuizen, E M van [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600MB Eindhoven (Netherlands); Ebert, U [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600MB Eindhoven (Netherlands)

    2006-12-21

    The diameter and branching structure of positive streamers in ambient air are investigated with a fast iCCD camera. We use different pulsed power circuits and find that they generate different spatial streamer structures. The electrodes have a point-plane geometry and a distance of 40 or 80 mm, and the peak voltages over the discharge gap are up to 60 kV. Depending on circuit and peak voltage, we observe streamers with diameters varying gradually between 0.2 and 2.5 mm. The streamer velocity increases with the diameter, ranging from 0.07 to 1.5 mm ns{sup -1}, while the current density within the streamers stays almost constant. The thicker streamers extend much further before they branch than the thinner ones. The pulsed power supplies are a switched capacitor supply with an internal resistance of 1 k{omega} and a transmission line transformer supply with an impedance of 200 {omega}; additional resistors change the impedance as well as the voltage rise time in the case of the capacitor supply. We observe that short rise times and low impedance create thick streamers close to the pointed electrode, while a longer rise time as well as a higher impedance create thinner streamers at the same peak voltage over the discharge.

  6. Circuit dependence of the diameter of pulsed positive streamers in air

    International Nuclear Information System (INIS)

    Briels, T M P; Kos, J; Veldhuizen, E M van; Ebert, U

    2006-01-01

    The diameter and branching structure of positive streamers in ambient air are investigated with a fast iCCD camera. We use different pulsed power circuits and find that they generate different spatial streamer structures. The electrodes have a point-plane geometry and a distance of 40 or 80 mm, and the peak voltages over the discharge gap are up to 60 kV. Depending on circuit and peak voltage, we observe streamers with diameters varying gradually between 0.2 and 2.5 mm. The streamer velocity increases with the diameter, ranging from 0.07 to 1.5 mm ns -1 , while the current density within the streamers stays almost constant. The thicker streamers extend much further before they branch than the thinner ones. The pulsed power supplies are a switched capacitor supply with an internal resistance of 1 kΩ and a transmission line transformer supply with an impedance of 200 Ω; additional resistors change the impedance as well as the voltage rise time in the case of the capacitor supply. We observe that short rise times and low impedance create thick streamers close to the pointed electrode, while a longer rise time as well as a higher impedance create thinner streamers at the same peak voltage over the discharge

  7. Positive streamers in air and nitrogen of varying density: experiments on similarity laws

    International Nuclear Information System (INIS)

    Briels, T M P; Van Veldhuizen, E M; Ebert, U

    2008-01-01

    Positive streamers in ambient air at pressures from 0.013 to 1 bar are investigated experimentally. The voltage applied to the anode needle ranges from 5 to 45 kV, the discharge gap from 1 to 16 cm. Using a 'slow' voltage rise time of 100-180 ns, the streamers are intentionally kept thin. For each pressure p, we find a minimal diameter d min . To test whether streamers at different pressures are similar, the minimal streamer diameter d min is multiplied by its pressure p; we find this product to be well approximated by p · d min = 0.20 ± 0.02 mm bar over two decades of air pressure at room temperature. The value also fits diameters of sprite discharges above thunderclouds at an altitude of 80 km when extrapolated to room temperature (as air density rather than pressure determines the physical behaviour). The minimal velocity of streamers in our measurements is approximately 0.1 mm ns -1 = 10 5 m s -1 . The same minimal velocity has been reported for tendrils in sprites. We also investigate the size of the initial ionization cloud at the electrode tip from which the streamers emerge, and the streamer length between branching events. The same quantities are also measured in nitrogen with a purity of approximately 99.9%. We characterize the essential differences with streamers in air and find a minimal diameter of p · d min = 0.12 ± 0.02 mm bar in our nitrogen.

  8. Study on the streamer inception characteristics under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2017-11-01

    The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  9. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about...... the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...

  10. Optical diagnostics of streamer discharges in atmospheric gases

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan

    2014-01-01

    Roč. 47, č. 46 (2014), s. 463001-463001 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GAP205/12/1709 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431201 Program:M Institutional support: RVO:61389021 Keywords : streamer * optical diagnostics * laser-induced fluorescence * LIF * TALIF * red-sprite Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.721, year: 2014 http://iopscience.iop.org/0022-3727/47/46/463001/pdf/0022-3727_47_46_463001.pdf

  11. CCD camera system for use with a streamer chamber

    International Nuclear Information System (INIS)

    Angius, S.A.; Au, R.; Crawley, G.C.; Djalali, C.; Fox, R.; Maier, M.; Ogilvie, C.A.; Molen, A. van der; Westfall, G.D.; Tickle, R.S.

    1988-01-01

    A system based on three charge-coupled-device (CCD) cameras is described here. It has been used to acquire images from a streamer chamber and consists of three identical subsystems, one for each camera. Each subsystem contains an optical lens, CCD camera head, camera controller, an interface between the CCD and a microprocessor, and a link to a minicomputer for data recording and on-line analysis. Image analysis techniques have been developed to enhance the quality of the particle tracks. Some steps have been made to automatically identify tracks and reconstruct the event. (orig.)

  12. Pulsed Streamer Discharge Characteristics of Ozone Production in Dry Air

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Sakugawa, T.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 波平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    Experimental investigation of HV short pulsed streamer discharges in dry air-fed ozonizers under various operating conditions are reported. Ozone concentration, energy input and ozone production yield (efficiency) were measured at various voltages (14 to 37 kV), pulse repetition rates (25 to 400 pulses per second, pps), flow rates (1.5 to 3.0 1/min) and different gap spacings (10 to 20 mm) at a pressure of 1.01×105 Pa in dry air. A spiral copper wire (1 mm in diameter) made to a cylindrical c...

  13. Biofilm retention on surfaces with variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter

    2011-01-01

    Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher’s shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel...

  14. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  15. Differential growth of wrinkled biofilms

    Science.gov (United States)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  16. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.

    Science.gov (United States)

    Risse-Buhl, Ute; Anlanger, Christine; Kalla, Katalin; Neu, Thomas R; Noss, Christian; Lorke, Andreas; Weitere, Markus

    2017-12-15

    Previous laboratory and on-site experiments have highlighted the importance of hydrodynamics in shaping biofilm composition and architecture. In how far responses to hydrodynamics can be found in natural flows under the complex interplay of environmental factors is still unknown. In this study we investigated the effect of near streambed turbulence in terms of turbulent kinetic energy (TKE) on the composition and architecture of biofilms matured in two mountainous streams differing in dissolved nutrient concentrations. Over both streams, TKE significantly explained 7% and 8% of the variability in biofilm composition and architecture, respectively. However, effects were more pronounced in the nutrient richer stream, where TKE significantly explained 12% and 3% of the variability in biofilm composition and architecture, respectively. While at lower nutrient concentrations seasonally varying factors such as stoichiometry of dissolved nutrients (N/P ratio) and light were more important and explained 41% and 6% of the variability in biofilm composition and architecture, respectively. Specific biofilm features such as elongated ripples and streamers, which were observed in response to the uniform and unidirectional flow in experimental settings, were not observed. Microbial biovolume and surface area covered by the biofilm canopy increased with TKE, while biofilm thickness and porosity where not affected or decreased. These findings indicate that under natural flows where near bed flow velocities and turbulence intensities fluctuate with time and space, biofilms became more compact. They spread uniformly on the mineral surface as a film of densely packed coccoid cells appearing like cobblestone pavement. The compact growth of biofilms seemed to be advantageous for resisting hydrodynamic shear forces in order to avoid displacement. Thus, near streambed turbulence can be considered as important factor shaping the composition and architecture of biofilms grown under natural

  17. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics

    Science.gov (United States)

    Rocco, Christopher J.; Davey, Mary Ellen; Bakaletz, Lauren O.; Goodman, Steven D.

    2016-01-01

    SUMMARY Bacteria that persist in the oral cavity exist within complex biofilm communities. A hallmark of biofilms is the presence of an extracellular polymeric substance (EPS), which consists of polysaccharides, extracellular DNA (eDNA), and proteins, including the DNABII family of proteins. The removal of DNABII proteins from a biofilm results in the loss of structural integrity of the eDNA and the collapse of the biofilm structure. We examined the role of DNABII proteins in the biofilm structure of the periodontal pathogen Porphyromonas gingivalis and the oral commensal Streptococcus gordonii. Co-aggregation with oral streptococci is thought to facilitate the establishment of P. gingivalis within the biofilm community. We demonstrate that DNABII proteins are present in the EPS of both S. gordonii and P. gingivalis biofilms, and that these biofilms can be disrupted through the addition of antisera derived against their respective DNABII proteins. We provide evidence that both eDNA and DNABII proteins are limiting in S. gordonii but not in P. gingivalis biofilms. In addition, these proteins are capable of complementing one another functionally. We also found that while antisera derived against most DNABII proteins are capable of binding a wide variety of DNABII proteins, the P. gingivalis DNABII proteins are antigenically distinct. The presence of DNABII proteins in the EPS of these biofilms and the antigenic uniqueness of the P. gingivalis proteins provide an opportunity to develop therapies that are targeted to remove P. gingivalis and biofilms that contain P. gingivalis from the oral cavity. PMID:26988714

  18. Biophysics of biofilm infection.

    Science.gov (United States)

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Fully kinetic particle simulations of high pressure streamer propagation

    Science.gov (United States)

    Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert

    2012-10-01

    Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].

  20. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    Science.gov (United States)

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  1. Crenarchaeal biofilm formation under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Andrea Koerdt

    Full Text Available BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

  2. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry.

    Science.gov (United States)

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.

  3. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown...... that extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  4. Bacterial signaling ecology and potential applications during aquatic biofilm construction.

    Science.gov (United States)

    Vega, Leticia M; Alvarez, Pedro J; McLean, Robert J C

    2014-07-01

    In their natural environment, bacteria and other microorganisms typically grow as surface-adherent biofilm communities. Cell signal processes, including quorum signaling, are now recognized as being intimately involved in the development and function of biofilms. In contrast to their planktonic (unattached) counterparts, bacteria within biofilms are notoriously resistant to many traditional antimicrobial agents and so represent a major challenge in industry and medicine. Although biofilms impact many human activities, they actually represent an ancient mode of bacterial growth as shown in the fossil record. Consequently, many aquatic organisms have evolved strategies involving signal manipulation to control or co-exist with biofilms. Here, we review the chemical ecology of biofilms and propose mechanisms whereby signal manipulation can be used to promote or control biofilms.

  5. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and legionella pneumophila colonization

    Science.gov (United States)

    Legionella pneumophila, the medically important species within the genus Legionella, is a concern in engineered water systems. Its ability to amplify within free-living amoebae is well documented, but its interactions/ecology within the microbial community of drinking water biofi...

  6. Effect of Changing Treatment Disinfectants on the Microbiology of Distributed Water and Pipe Biofilm Communities using Conventional and Metagenomic Approaches

    Science.gov (United States)

    The purpose of this research was to add to our knowledge of chlorine and monochloramine disinfectants, with regards to effects on the microbial communities in distribution systems. A whole metagenome-based approach using sophisticated molecular tools (e.g., next generation sequen...

  7. Bursting the bubble on bacterial biofilms

    DEFF Research Database (Denmark)

    Crusz, Shanika A; Popat, Roman; Rybtke, Morten Theil

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly...... of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and reliable...... methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities....

  8. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  9. Incorporation of Listeria monocytogenes strains in raw milk biofilms.

    Science.gov (United States)

    Weiler, Christiane; Ifland, Andrea; Naumann, Annette; Kleta, Sylvia; Noll, Matthias

    2013-02-01

    Biofilms develop successively on devices of milk production without sufficient cleaning and originate from the microbial community of raw milk. The established biofilm matrices enable incorporation of pathogens like Listeria monocytogenes, which can cause a continuous contamination of food processing plants. L. monocytogenes is frequently found in raw milk and non-pasteurized raw milk products and as part of a biofilm community in milk meters and bulk milk tanks. The aim of this study was to analyze whether different L. monocytogenes strains are interacting with the microbial community of raw milk in terms of biofilm formation in the same manner, and to identify at which stage of biofilm formation a selected L. monocytogenes strain settles best. Bacterial community structure and composition of biofilms were analyzed by a cloning and sequencing approach and terminal restriction fragment length polymorphism analysis (T-RFLP) based on the bacterial 16S rRNA gene. The chemical composition of biofilms was analyzed by Fourier transform infrared spectroscopy (FTIR), while settled L. monocytogenes cells were quantified by fluorescence in situ hybridization (FISH). Addition of individual L. monocytogenes strains to raw milk caused significant shifts in the biofilm biomass, in the chemical as well as in the bacterial community composition. Biofilm formation and attachment of L. monocytogenes cells were not serotype but strain specific. However, the added L. monocytogenes strains were not abundant since mainly members of the genera Citrobacter and Lactococcus dominated the bacterial biofilm community. Overall, added L. monocytogenes strains led to a highly competitive interaction with the raw milk community and triggered alterations in biofilm formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Role of Fusobacterium nucleatum and Coaggregation in Anaerobe Survival in Planktonic and Biofilm Oral Microbial Communities during Aeration

    OpenAIRE

    Bradshaw, David J.; Marsh, Philip D.; Watson, G. Keith; Allison, Clive

    1998-01-01

    Coaggregation is a well-characterized phenomenon by which specific pairs of oral bacteria interact physically. The aim of this study was to examine the patterns of coaggregation between obligately anaerobic and oxygen-tolerant species that coexist in a model oral microbial community. Obligate anaerobes other than Fusobacterium nucleatum coaggregated only poorly with oxygen-tolerant species. In contrast, F. nucleatum was able to coaggregate not only with both oxygen-tolerant and other obligate...

  11. Effect of electric field configuration on streamer and partial discharge phenomena in a hydrocarbon insulating liquid under AC stress

    International Nuclear Information System (INIS)

    Liu, Z; Liu, Q; Wang, Z D

    2016-01-01

    This paper concerns pre-breakdown phenomena, including streamer characteristics from a fundamental perspective and partial discharge (PD) measurements from an industrial perspective, in a hydrocarbon insulating liquid. The aim was to investigate the possible changes of the liquid’s streamer and PD characteristics and their correlations when the uniformity of the AC electric field varies. In the experiments, a plane-to-plane electrode system incorporating a needle protrusion was used in addition to a needle-to-plane electrode system. When the applied electric field became more uniform, fewer radial branches occurred and streamer propagation towards the ground electrode was enhanced. The transition from streamer propagation dominated breakdown in divergent fields to streamer initiation dominated breakdown in uniform fields was evidenced. Relationships between streamer and PD characteristics were established, which were found to be electric field dependent. PD of the same apparent charge would indicate longer streamers if the electric field is more uniform. (paper)

  12. An adaptive grid refinement strategy for the simulation of negative streamers

    International Nuclear Information System (INIS)

    Montijn, C.; Hundsdorfer, W.; Ebert, U.

    2006-01-01

    The evolution of negative streamers during electric breakdown of a non-attaching gas can be described by a two-fluid model for electrons and positive ions. It consists of continuity equations for the charged particles including drift, diffusion and reaction in the local electric field, coupled to the Poisson equation for the electric potential. The model generates field enhancement and steep propagating ionization fronts at the tip of growing ionized filaments. An adaptive grid refinement method for the simulation of these structures is presented. It uses finite volume spatial discretizations and explicit time stepping, which allows the decoupling of the grids for the continuity equations from those for the Poisson equation. Standard refinement methods in which the refinement criterion is based on local error monitors fail due to the pulled character of the streamer front that propagates into a linearly unstable state. We present a refinement method which deals with all these features. Tests on one-dimensional streamer fronts as well as on three-dimensional streamers with cylindrical symmetry (hence effectively 2D for numerical purposes) are carried out successfully. Results on fine grids are presented, they show that such an adaptive grid method is needed to capture the streamer characteristics well. This refinement strategy enables us to adequately compute negative streamers in pure gases in the parameter regime where a physical instability appears: branching streamers

  13. Surface streamer propagations on an alumina bead: experimental observation and numerical modeling

    Science.gov (United States)

    Kang, Woo Seok; Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Lee, Jin Young; Kim, Dae-Woong; Hur, Min; Song, Young-Hoon

    2018-01-01

    A surface streamer in a simplified packed-bed reactor has been studied both experimentally (through time-resolved ICCD imaging) and theoretically (through two-dimensional numerical modeling). The propagation of streamers on an alumina spherical bead without catalytic coating shows three distinct phases—the generation and propagation of a primary streamer (PS) with a moderate velocity and electric field, fast PS acceleration with an enhanced electric field, and slow secondary streamer (SS) propagation. The velocity of the streamer is less than that of propagation in a gaseous media. The electric field and velocity at the streamer front are maximized when a PS propagates during the interval from the midpoint of the bead to the bottom electrode. The SS exhibits a much lower velocity and electric field compared with the PS. The PS velocity is affected by an external applied voltage, especially when it approaches the ground electrode. However, that of the SS remains constant regardless of the voltage change. The simulation shows that the PS exhibits a high electric field mainly created by the space charge induced by electrons, whereas the SS relies on ion movement with electron decay in a charge-filled thin streamer body.

  14. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    Science.gov (United States)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  15. Dependence of streamer density on electric field strength on positive electrode

    Science.gov (United States)

    Koki, Nakamura; Takahumi, Okuyama; Wang, Douyan; Takao, N.; Hidenori, Akiyama; Kumamoto University Collaboration

    2015-09-01

    Pulsed streamer discharge plasma, a type of non-thermal plasma, is known as generation method of reactive radicals and ozone and treatment of exhausted gas. From our previous research, the distance between electrodes has been considered a very important parameter for applications using pulsed streamer discharge. However, how the distance between electrodes affects the pulsed discharge hasn't been clarified. In this research, the propagation process of pulsed streamer discharge in a wire-plate electrode was observed using an ICCD camera for 4 electrodes having different distance between electrodes. The distance between electrodes was changeable at 45 mm, 40 mm, 35 mm, and 30 mm. The results show that, when the distance between electrodes was shortened, applied voltage with a pulse duration of 100 ns decreased from 80 to 60.3 kV. Conversely, discharge current increased from 149 to 190 A. Streamer head velocity became faster. On the other hand, Streamer head density at onset time of streamer head propagation didn't change. This is considered due to the electric field strength of streamer head at that time, in result, it was about 14 kV/mm under each distance between electrodes.

  16. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions

    Directory of Open Access Journals (Sweden)

    O. Roger Anderson

    2016-08-01

    Full Text Available Marine and estuarine microbial biofilms are ubiquitously distributed worldwide and are increasingly of interest in basic and applied sciences because of their unique structural and functional features that make them remarkably different from the biota in the plankton. This is a review of some current scientific knowledge of naturally occurring microbial marine and estuarine biofilms including prokaryotic and microeukaryotic biota, but excluding research specifically on engineering and applied aspects of biofilms such as biofouling. Because the microbial communities including bacteria and protists are integral to the fundamental ecological and biogeochemical processes that support biofilm communities, particular attention is given to the structural and ecological aspects of microbial biofilm formation, succession, and maturation, as well as the dynamics of the interactions of the microbiota in biofilms. The intent is to highlight current state of scientific knowledge and possible avenues of future productive research, especially focusing on the ecological and biogeochemical dimensions.

  17. Probing background ionization: positive streamers with varying pulse repetition rate and with a radioactive admixture

    International Nuclear Information System (INIS)

    Nijdam, S; Van Veldhuizen, E M; Ebert, U; Wormeester, G

    2011-01-01

    Positive streamers need a source of free electrons ahead of them to propagate. A streamer can supply these electrons by itself through photo-ionization, or the electrons can be present due to external background ionization. Here we investigate the effects of background ionization on streamer propagation and morphology by changing the gas composition and the repetition rate of the voltage pulses, and by adding a small amount of radioactive 85 Kr. We find that the general morphology of a positive streamer discharge in high-purity nitrogen depends on background ionization: at lower background ionization levels the streamers branch more and have a more feather-like appearance. This is observed both when varying the repetition rate and when adding 85 Kr, though side branches are longer with the radioactive admixture. But velocities and minimal diameters of streamers are virtually independent of the background ionization level. In air, the inception cloud breaks up into streamers at a smaller radius when the repetition rate and therefore the background ionization level is higher. When measuring the effects of the pulse repetition rate and of the radioactive admixture on the discharge morphology, we found that our estimates of background ionization levels are consistent with these observations; this gives confidence in the estimates. Streamer channels generally do not follow the paths of previous discharge channels for repetition rates of up to 10 Hz. We estimate the effect of recombination and diffusion of ions and free electrons from the previous discharge and conclude that the old trail has largely disappeared at the moment of the next voltage pulse; therefore the next streamers indeed cannot follow the old trail.

  18. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  19. Biofilm Formation As a Response to Ecological Competition.

    Directory of Open Access Journals (Sweden)

    Nuno M Oliveira

    2015-07-01

    Full Text Available Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them.

  20. A study of the self-quenched streamer mode using a nitrogen laser

    International Nuclear Information System (INIS)

    An Jigang; Anderson, K.J.; Merritt, F.S.; Oreglia, M.; Pilcher, J.E.; Possoz, A.; Schappert, W.; Chicago Univ., IL

    1988-01-01

    The characteristics and mechanism of the self-quenched streamer mode have been explored using laser induced ionization. Both the size of the streamer signal and the transformation from proportional to streamer mode depend on high voltage and the primary ionization density. Two nearby tracks influence each other mainly by space charge effects. The zone of influence depends on relative drift time of the tracks but is less than 3 mm along the anode. The influence is less with argon-free strong quenching gas mixtures. (orig.)

  1. A large streamer chamber muon tracking detector in a high-flux fixed-target application

    CERN Document Server

    Adams, D; Adeva, B; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garabatos, C; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Golutvin, I A; Gómez-Tato, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiryushin, Yu T; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Lau, K; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Sanders, D; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Tzamouranis, Yu; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zamiatin, N I; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    Arrays of limited streamer tubes of the Iarocci type were deployed in our experiment at CERN as part of a forward muon detector system with provisions for the beam to pass through the center of each panel in the array. A total of sixteen 4 m x 4 m panels were assembled with inductive readout strips on both sides of each panel. An active feedback system was deployed to regulate the high voltage to the streamer tubes to insure a constant efficiency for minimum ionizing particles. The arrays were operated in this environment for over five years of data taking. Streamer tube track-reconstruction efficiencies and tube replacement rates are reported.

  2. Influence of CeO2 NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen

    International Nuclear Information System (INIS)

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; You, Guoxiang; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang

    2016-01-01

    The effects of CeO 2 nanoparticles (CeO 2 NPs) on a sequencing batch biofilm reactor (SBBR) with established biological phosphorus (P) removal were investigated from the processes of anaerobic P release and aerobic P uptake. At low concentration (0.1 mg/L), no significant impact was observed on total phosphorus (TP) removal after operating for 8 h. However, at a concentration of 20 mg/L, TP removal efficiency decreased from 83.68% to 55.88% and 16.76% when the CeO 2 NPs were added at the beginning of the anaerobic and aerobic periods, respectively. Further studies illustrated that the inhibition of the specific P release rate was caused by the reversible states of Ce 3+ and Ce 4+ , which inhibited the activity of exopolyphosphatase (PPX) and transformation of poly-β-hydoxyalkanoates (PHA) and glycogen, as well as the uptake of volatile fatty acids (VFAs). The decrease in the specific P uptake rate was mainly attributed to the significantly suppressed energy generation and decreased abundance of Burkholderia caused by excess reactive oxygen species. The removal of chemical oxygen demand (COD) was not influenced by CeO 2 NPs under aerobic conditions, due to the increased abundance of Acetobacter and Acidocella after exposure. The inhibitory effects of CeO 2 NPs with molecular oxygen were reduced after anaerobic exposure due to the enhanced particle size and the presence of Ce 3+ . - Highlights: • CeO 2 NPs (20 mg/L) had a notable toxicity effect on P removal in SBBR system. • The deteriorated SPRR was caused by the inhibited key enzyme activity (PPX). • The decreased SPUR was caused by the bacterial community shifts. • Ce ions converting and excess ROS generation are related toxicity mechanisms.

  3. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    Science.gov (United States)

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  4. Vacuum surface flashover and high pressure gas streamers

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N.

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation

  5. Diagnostics and modeling of high pressure streamer induced discharges

    International Nuclear Information System (INIS)

    Marode, E.; Dessante, P.; Deschamps, N.; Deniset, C.

    2001-01-01

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  6. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Science.gov (United States)

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (pbiofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  7. Biofilms in Infections of the Eye

    Directory of Open Access Journals (Sweden)

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  8. Comparative study of isolates from community-acquired and catheter-associated urinary tract infections with reference to biofilm-producing property, antibiotic sensitivity and multi-drug resistance.

    Science.gov (United States)

    Bardoloi, Vishwajeet; Yogeesha Babu, K V

    2017-07-01

    Urinary tract infection (UTI) can be community-acquired (Com-UTI) or catheter-associated (CAUTI) and may be associated with biofilm-producing organisms. A comparative analysis of biofilm-producing property (BPP), antibiotic-sensitivity and multi-drug resistance (MDR) and their relation with the BPP of isolates from Com-UTI and CAUTI has not yet been performed and necessitated this study. (1) isolation of bacteria from CAUTI and Com-UTI and identification of their BPP, antibiotic-sensitivity and MDR status; (2) comparison of the isolates from CAUTI and Com-UTI as regards BPP, MDR status and their relation with BPP. isolates from 100 cases each of Com-UTI and CAUTI were subjected to Congo redagar (CRA) and Safranin tube tests. Antibiotic susceptibility was investigated using the disc diffusion method. Both groups were compared regarding BPP, drug sensitivity and MDR status. Statistical analyses were performed using χ2 and Fisher's exact tests. 76.19 % of isolates from Com-UTI and 60.72 % from CAUTI had BPP (P=0.0252; significant). The Safranin tube test detected more isolates with BPP than the CRA test. MDR is greater in CAUTI than Com-UTI (83.33 % versus 64.76 %; P=0.0039; significant). MDR is greater in isolates with BPP in both Com-UTI and CAUTI (76.47 and 62.35 %; non-significant). BPP was found in both Com-UTI and CAUTI. When used together, the Safranin tube test and the CRA test increased the sensitivity of detecting BPP. MDR was higher in CAUTI than Com-UTI. MDR and BPP are not interrelated or associated, especially in settings where it is not certain that isolates were obtained from a well-formed biofilm. However, this does not rule out a higher incidence or prevalence of MDR in isolates with BPP taken directly from the biofilms.

  9. Pseudomonas aeruginosa Biofilm Infections

    DEFF Research Database (Denmark)

    Rybtke, Morten; Hultqvist, Louise Dahl; Givskov, Michael

    2015-01-01

    Studies of biopsies from infectious sites, explanted tissue and medical devises have provided evidence that biofilms are the underlying cause of a variety of tissue-associated and implant-associated recalcitrant human infections. With a need for novel anti-biofilm treatment strategies, research...... in biofilm infection microbiology, biofilm formation mechanisms and biofilm-associated antimicrobial tolerance has become an important area in microbiology. Substantial knowledge about biofilm formation mechanisms, biofilm-associated antimicrobial tolerance and immune evasion mechanisms has been obtained...... through work with biofilms grown in in vitro experimental setups, and the relevance of this information in the context of chronic infections is being investigated by the use of animal models of infection. Because our current in vitro experimental setups and animal models have limitations, new advanced...

  10. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2015-01-01

    Full Text Available Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick’s first law, and Monod’s kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  11. Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen—nitrogen mixtures

    International Nuclear Information System (INIS)

    Sima Wen-Xia; Peng Qing-Jun; Yang Qing; Yuan Tao; Shi Jian

    2013-01-01

    Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures. (physics of gases, plasmas, and electric discharges)

  12. Fractal multiplication of electron avalanches and streamers: new mechanism of electrical breakdown?

    International Nuclear Information System (INIS)

    Ficker, T

    2007-01-01

    Long-lasting problems concerning peculiar statistical behaviour of high populated electron avalanches have been analysed. These avalanches are precursors of streamer breakdown in gases. The present streamer theory fails in explaining severe systematic deviations from the Furry statistics that is believed to be a governing statistical law. Such a deviated behaviour of high populated avalanches seems to be a consequence of a special pre-breakdown mechanism that is rather different from that known so far in discharge physics. This analysis tends towards formulating a modified theoretical concept supplementing the streamer theory by a new statistical view of pre-streamer states. The correctness of the concept is corroborated by a series of experiments

  13. Computational Studies of Positive and Negative Streamers in Bubbles Suspended in Distilled Water

    KAUST Repository

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.

    2017-01-01

    We perform computational studies of nanosecond streamers generated in helium bubbles immersed in distilled water under high pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description

  14. Application of multi-source waveform inversion to marine streamer data using the global correlation norm

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2012-01-01

    Conventional multi-source waveform inversion using an objective function based on the least-square misfit cannot be applied to marine streamer acquisition data because of inconsistent acquisition geometries between observed and modelled data

  15. Multi-source waveform inversion of marine streamer data using the normalized wavefield

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2012-01-01

    Even though the encoded multi-source approach dramatically reduces the computational cost of waveform inversion, it is generally not applicable to marine streamer data. This is because the simultaneous-sources modeled data cannot be muted to comply

  16. Particle-in-cell modeling of streamer branching in CO2 gas

    KAUST Repository

    Levko, Dmitry; Pachuilo, Michael; Raja, Laxminarayan L

    2017-01-01

    The mechanism of streamer branching remains one of the unsolved problems of low-temperature plasma physics. The understanding of this phenomenon requires very high-fidelity models that include, for instance, the kinetic description of electrons

  17. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...

  18. A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm

    NARCIS (Netherlands)

    Swartjes, Jan J. T. M.; Das, Theerthankar; Sharifi, Shahriar; Subbiahdoss, Guruprakash; Sharma, Prashant K.; Krom, Bastiaan P.; Busscher, Henk J.; van der Mei, Henny C.

    2013-01-01

    Biofilms are detrimental in many industrial and biomedical applications and prevention of biofilm formation has been a prime challenge for decades. Biofilms consist of communities of adhering bacteria, supported and protected by extracellular-polymeric-substances (EPS), the so-called house of

  19. The protective layer of biofilm : A repellent function for a new class of amphiphilic proteins

    NARCIS (Netherlands)

    Kovacs, Akos T.; van Gestel, Jordi; Kuipers, Oscar P.

    Bacteria can survive harsh conditions when growing in complex communities of cells known as biofilms. The matrix of the biofilm presents a scaffold where cells are attached to each other and to the surface. The biofilm matrix is also a protective barrier that confers tolerance against various

  20. Enhanced biofilm formation in dual-species culture of Listeria monocytogenes and Ralstonia insidiosa

    Science.gov (United States)

    In the environment, many microorganisms coexist in communities as biofilms. The objective of this study was to investigate the interactions between Listeria monocytogenes and Ralstonia insidiosa in dual species biofilms. Biofilm development was measured using crystal violet in 96-well microtiter pla...

  1. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms

    NARCIS (Netherlands)

    van Gestel, Jordi; Weissing, Franz J.; Kuipers, Oscar P.; Kovacs, Akos T.

    2014-01-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These

  2. Species-independent attraction to biofilms through electrical signaling

    Science.gov (United States)

    Humphries, Jacqueline; Xiong, Liyang; Liu, Jintao; Prindle, Arthur; Yuan, Fang; Arjes, Heidi A.; Tsimring, Lev; Süel, Gürol M.

    2017-01-01

    Summary Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically-mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior, but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PMID:28086091

  3. New approaches to combat Porphyromonas gingivalis biofilms

    Science.gov (United States)

    Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    ABSTRACT In nature, bacteria predominantly reside in structured, surface-attached communities embedded in a self-produced, extracellular matrix. These so-called biofilms play an important role in the development and pathogenesis of many infections, as they are difficult to eradicate due to their resistance to antimicrobials and host defense mechanisms. This review focusses on the biofilm-forming periodontal bacterium Porphyromonas gingivalis. Current knowledge on the virulence mechanisms underlying P. gingivalis biofilm formation is presented. In addition, oral infectious diseases in which P. gingivalis plays a key role are described, and an overview of conventional and new therapies for combating P. gingivalis biofilms is given. More insight into this intriguing pathogen might direct the development of better strategies to combat oral infections. PMID:28473880

  4. Auroral streamers: characteristics of associated precipitation,convection and field-aligned currents

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2004-01-01

    Full Text Available During the long-duration steady convection activity on 11 December 1998, the development of a few dozen auroral streamers was monitored by Polar UVI instrument in the dark northern nightside ionosphere. On many occasions the DMSP spacecraft crossed the streamer-conjugate regions over the sunlit southern auroral oval, permitting the investigation of the characteristics of ion and electron precipitation, ionospheric convection and field-aligned currents associated with the streamers. We confirm the conjugacy of streamer-associated precipitation, as well as their association with ionospheric plasma streams having a substantial equatorward convection component. The observations display two basic types of streamer-associated precipitation. In its polewardmost half, the streamer-associated (field-aligned accelerated electron precipitation coincides with the strong (≥2–7μA/m2 upward field-aligned currents on the westward flank of the convection stream, sometimes accompanied by enhanced proton precipitation in the adjacent region. In the equatorward portion of the streamer, the enhanced precipitation includes both electrons and protons, often without indication of field-aligned acceleration. Most of these characteristics are consistent with the model describing the generation of the streamer by the narrow plasma bubbles (bursty bulk flows which are contained on dipolarized field lines in the plasma sheet, although the mapping is strongly distorted which makes it difficult to quantitatively interprete the ionospheric image. The convective streams in the ionosphere, when well-resolved, had the maximal convection speeds ∼0.5–1km/s, total field-aligned currents of a few tenths of MA, thicknesses of a few hundreds km and a potential drop of a few kV across the stream. However, this might represent only a small part of the associated flux transport in the equatorial plasma sheet.

    Key words. Ionosphere (electric fiels and

  5. Application of CA and NN for event recognition in experiments DISTO and STREAMER

    International Nuclear Information System (INIS)

    Bussa, M.P.; Ivanov, V.V.; Kisel, I.V.; Pontecorvo, G.B.

    1997-01-01

    An algorithm for charged particle recognition and event identification applying a cellular automaton (CA) model and a multi-layer neural network (NN) has been developed for the DISTO experiment under way at Saturne (Saclay, France). A further development of the model will be applied for particle recognition in the Dubna Streamer Chamber Spectrometer (DSCS) for studying pion-nucleus absorption (experiments DISTO and STREAMER). (orig.)

  6. Method of detection of transition radiation by wire chambers operating in self-quenching streamer mode

    International Nuclear Information System (INIS)

    Akopdzhanov, G.A.; Bityukov, S.I.; Dzhelyadin, R.I.; Zaitsev, A.M.; Lapin, V.V.; Saraikin, A.I.

    1984-01-01

    A method for detecting X-ray transition radiation against the background of the signal from relativistic charged particles is suggested that is based on the use of peculiarities of the development of self-queenching streamer mode. The self-qunching streamer discharge in the Xe + isobutane mixture is experimentally registered. The effect of separation of signals from the relativistic particle and from soft X-ray, is obtained

  7. Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows

    Science.gov (United States)

    Gallardo-Lacourt, Bea; Nishimura, Y.; Lyons, L. R.; Mishin, E. V.; Ruohoniemi, J. M.; Donovan, E. F.; Angelopoulos, V.; Nishitani, N.

    2017-12-01

    Subauroral polarization streams (SAPS) often show large, rapid enhancements above their slowly varying component. We present simultaneous observations from ground-based all-sky imagers and flows from the Super Dual Auroral Radar Network radars to investigate the relationship between auroral phenomena and flow enhancement. We first identified auroral streamers approaching the equatorward boundary of the auroral oval to examine how often the subauroral flow increased. We also performed the reverse query starting with subauroral flow enhancements and then evaluated the auroral conditions. In the forward study, 98% of the streamers approaching the equatorward boundary were associated with SAPS flow enhancements reaching 700 m/s and typically hundreds of m/s above background speeds. The reverse study reveals that flow enhancements associated with streamers (60%) and enhanced larger-scale convection (37%) contribute to SAPS flow enhancements. The strong correlation of auroral streamers with rapid evolution (approximately minutes) of SAPS flows suggests that transient fast earthward plasma sheet flows can often lead to westward SAPS flow enhancements in the subauroral region and that such enhancements are far more common than only during substorms because of the much more frequent occurrences of streamers under various geomagnetic conditions. We also found a strong correlation between flow duration and streamer duration and a weak correlation between SAPS flow velocity and streamer intensity. This result suggests that intense flow bursts in the plasma sheet (which correlate with intense streamers) are associated with intense SAPS ionospheric flows perhaps by enhancing the ring current pressure and localized pressure gradients when they are able to penetrate close enough to Earth.

  8. A streamer tube detector for operation at high rates in the CPLEAR experiment at CERN

    International Nuclear Information System (INIS)

    Bennet, J.M.; Carroll, M.; Cawley, E.L.; Dodgson, M.; Fry, J.R.; Gabathuler, E.; Gamet, R.; Harrison, P.; Harrison, P.F.; Haselden, A.R.; Hayman, P.J.; King, D.; Maley, P.D.; Sacks, L.E.; Sanders, P.M.

    1996-01-01

    The design and instrumentation of a streamer tube detector for operation in the high rate environment of the CPLEAR experiment at CERN is described. A study of gas mixtures for use in the streamer tube is discussed. The final mixture of 46% argon, 50% isobutane, 4% methylal and 0.01% freon produces an axial resolution of 1.5 cm with an efficiency of 98% per layer. (orig.)

  9. Streamer Motives and User-Generated Content on Social Live-Streaming Services

    OpenAIRE

    Friedlander, Mathilde B.

    2017-01-01

    Three most popular information services, Periscope, Ustream, and YouNow, vicarious for all Social Live-Streaming Services (SLSSs), are investigated to analyze their streamers' motivations and the user-generated content. Additionally, we collected demographic data (gender and age). More than 7,500 streams by users from the U.S., Germany, and Japan were observed. Main streamer motivations on SLSSs are boredom, socializing, the need to reach a specific group, the need to communicate, and fun. Im...

  10. Positive streamers in air and nitrogen of varying density: experiments on similarity laws

    Energy Technology Data Exchange (ETDEWEB)

    Briels, T M P; Van Veldhuizen, E M; Ebert, U [Department of Applied Physics, Technische Universiteit Eindhoven, P O Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: ebert@cwi.nl, E-mail: e.m.v.veldhuizen@tue.nl

    2008-12-07

    Positive streamers in ambient air at pressures from 0.013 to 1 bar are investigated experimentally. The voltage applied to the anode needle ranges from 5 to 45 kV, the discharge gap from 1 to 16 cm. Using a 'slow' voltage rise time of 100-180 ns, the streamers are intentionally kept thin. For each pressure p, we find a minimal diameter d{sub min}. To test whether streamers at different pressures are similar, the minimal streamer diameter d{sub min} is multiplied by its pressure p; we find this product to be well approximated by p {center_dot} d{sub min} = 0.20 {+-} 0.02 mm bar over two decades of air pressure at room temperature. The value also fits diameters of sprite discharges above thunderclouds at an altitude of 80 km when extrapolated to room temperature (as air density rather than pressure determines the physical behaviour). The minimal velocity of streamers in our measurements is approximately 0.1 mm ns{sup -1} = 10{sup 5} m s{sup -1}. The same minimal velocity has been reported for tendrils in sprites. We also investigate the size of the initial ionization cloud at the electrode tip from which the streamers emerge, and the streamer length between branching events. The same quantities are also measured in nitrogen with a purity of approximately 99.9%. We characterize the essential differences with streamers in air and find a minimal diameter of p {center_dot} d{sub min} = 0.12 {+-} 0.02 mm bar in our nitrogen.

  11. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  12. The impact of manganese on biofilm development of Bacillus subtilis

    NARCIS (Netherlands)

    Mhatre, Eisha; Troszok, Agnieszka; Gallegos-Monterrosa, Ramses; Lindstädt, Stefanie; Hölscher, Theresa; Kuipers, Oscar P.; Kovács, Ákos T.

    2016-01-01

    Bacterial biofilms are dynamic and structurally complex communities, involving cell-to-cell interactions. In recent years, various environmental signals were identified that induce the complex biofilm development of the Gram-positive bacterium Bacillus subtilis. These signaling molecules are often

  13. Preparation of water-soluble carbon nanotubes using a pulsed streamer discharge in water

    International Nuclear Information System (INIS)

    Imasaka, Kiminobu; Suehiro, Junya; Kanatake, Yusuke; Kato, Yuki; Hara, Masanori

    2006-01-01

    A novel technique for the preparation of water-soluble carbon nanotubes was demonstrated using a pulsed streamer discharge generated in water. The technique involved chemical reactions between radicals generated by the pulsed streamer discharge and carbon nanotubes. The pulsed streamer-treated carbon nanotubes were homogeneously dispersed and well solubilized in water for a month or longer. The mechanism of solubilization of carbon nanotubes by the pulsed streamer discharge is discussed based on FTIR spectroscopy and optical emission spectra measurements. FTIR spectroscopy revealed that -OH groups, which are known to impart a hydrophilic nature to carbon material, were introduced on the carbon nanotube surface. Optical emission spectra from the pulsed streamer plasma showed that highly oxidative O * and H * radicals were generated in water. These results suggest that the functionalization of the carbon nanotube surface by -OH group can be attributed to the O * and H * radicals. An advantage of the proposed method is that there is no need for any chemical agents or additives for solubilization. Chemical agents for solubilization are generated from the water itself by the electrochemical reactions induced by the pulsed streamer discharge

  14. Spectral analysis of the light emitted from streamers in chlorinated alkane and alkene liquids

    International Nuclear Information System (INIS)

    Ingebrigtsen, S; Bonifaci, N; Denat, A; Lesaint, O

    2008-01-01

    We have studied the time-averaged optical emission from fast positive and negative non-breakdown streamers under pulsed divergent field conditions in five chlorocarbon liquids, namely, dichloromethane, 1,2-dichloroethane, tetrachloromethane, trichloroethene and tetrachloroethene. We have accumulated light emitted from the first 10-15 μm trail of a few thousand streamers. We have also briefly studied single breakdown arcs in tetrachloromethane. Atomic lines of hydrogen, chlorine and carbon as well as excited states of C 2 radicals (Swan bands) have been observed, with sufficient resolution for evaluating line and band-shapes. The characteristic broadening, shift and asymmetry of atomic lines varied significantly between the liquids. Differences between the two streamer polarities were comparatively small. Densities of electrons and neutrals in the illuminated phase have been deduced from broadening of atomic lines, atomic excitation temperatures from absolute line intensities and rotational and vibrational temperatures from the Swan bands. The gas densities of the propagating streamers were generally very high (∼10% of critical) and with a high degree of ionization (∼1 per mille ). Dichloromethane and 1,2-dichloroethane produced re-illuminating streamers with densities close to atmospheric conditions, in agreement with a rapid pressure relaxation. Rotational temperatures were high and in the range 2 x 10 3 -6 x 10 3 K for the different liquids. Results can be interpreted to suggest a partial local thermodynamic equilibrium in the streamer plasmas.

  15. Analyses of electron runaway in front of the negative streamer channel

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, T.; Chanrion, O.

    2017-08-01

    X-ray and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper, which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit streamer length as a function of the streamer velocity and predict that, once a streamer is formed with the electric field capable of producing REs ahead of the streamer front, the ionization induced by the REs is capable of creating an ionized channel that allows for self-sustained propagation of the RE-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the preionization in front of the channel via REs will lead to the ionization wave propagation self-consistent with RE generation.

  16. Computational Studies of Positive and Negative Streamers in Bubbles Suspended in Distilled Water

    KAUST Repository

    Sharma, Ashish

    2017-01-05

    We perform computational studies of nanosecond streamers generated in helium bubbles immersed in distilled water under high pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the chemical kinetics of the discharge. We apply positive and negative trigger voltages much higher than the breakdown voltage and study the dynamic characteristics of the resulting discharge. We observe that, for high positive trigger voltages, the streamer moves along the surface of the gas bubble during the initial stages of the discharge. We also find a considerable difference in the evolution of the streamer discharge for positive and negative trigger voltages with more uniform volumetric distribution of species in the streamer channel for negative trigger voltages due to formation of multiple streamers. We also observe that the presence of water vapor does not influence the breakdown voltage of the discharge but greatly affects the composition of dominant species in the trail of the streamer channel.

  17. Flow Analysis of a Rising Crude Oil Micro-Droplet Affected by Attached Microbial Streamers

    Science.gov (United States)

    Amaro, Matthew; White, Andrew; Jalali, Maryam; Sheng, Jian

    2017-11-01

    Microfluidic experiments show bacteria flowing past a pinned crude oil droplet produce microbial aggregates and streamers on the oil-water interface. High speed DIC microscopy at 1000 fps for 1 sec with a sampling interval of 10 min captures the evolving flow and bacterial motility as well as adhesion, aggregation and streamer events. With bacteria as tracers, velocity measurements are acquired with in-house PIV-assisted PTV software. Flow fields with spatial resolution 2.5 μm are measured around an O(100) μm drop in a 700 ×700 μm window. Full budgets of the 2D Navier-Stokes equation are faithfully resolved to determine pressure gradients by performing the balance over a control volume enclosing the droplet. Pressure gradients are integrated over the border of the control region to obtain pressure profiles at the leading and trailing edges. A momentum balance can be used to determine the drag induced by the drop and any attached streamers. Cases with and without streamers and their differing flow features are presented. Additionally streamers produce nonzero curl in the pressure gradient field providing a tool for identifying the position of otherwise invisible streamers. Ongoing experiments and future applications of the tools presented here will be discussed. Funded by GoMRI, NSF, ARO.

  18. Sticking together: building a biofilm the Bacillus subtilis way

    Science.gov (United States)

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2014-01-01

    Preface Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long-served as a robust model organism to examine the molecular mechanisms of biofilm formation and a number of studies have revealed that this process is subject to a number of integrated regulatory pathways. In this Review, we focus on the molecular mechanisms controlling biofilm assembly and briefly summarize the current state of knowledge regarding their disassembly. We also discuss recent progress that has expanded our understanding of biofilm formation on plant roots, which are a natural habitat for this soil bacterium. PMID:23353768

  19. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  20. Inhibition of Staphylococcus epidermidis Biofilm by Trimethylsilane Plasma Coating

    Science.gov (United States)

    Ma, Yibao; Jones, John E.; Ritts, Andrew C.; Yu, Qingsong

    2012-01-01

    Biofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction. Staphylococcus epidermidis infections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreased S. epidermidis biofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms. PMID:22964248

  1. Agriculturally important microbial biofilms: Present status and future prospects.

    Science.gov (United States)

    Velmourougane, Kulandaivelu; Prasanna, Radha; Saxena, Anil Kumar

    2017-07-01

    Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sexual Biofilm Formation in Candida tropicalis Opaque Cells

    Science.gov (United States)

    Jones, Stephen K.; Hirakawa, Matthew P.; Bennett, Richard J.

    2014-01-01

    Summary Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signaling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signaling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation. PMID:24612417

  3. Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms

    Science.gov (United States)

    Kesel, Sara; Grumbein, Stefan; Gümperlein, Ina; Tallawi, Marwa; Marel, Anna-Kristina

    2016-01-01

    Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain, B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms. PMID:26873313

  4. Development and maturation of Escherichia coli K-12 biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Haagensen, J.A.J.; Schembri, Mark

    2003-01-01

    The development and maturation of E. coli biofilms in flow-chambers was investigated. We found that the presence of transfer constitutive IncF plasmids induced biofilm development forming structures resembling those reported for Pseudomonas aeruginosa . The development occurred in a step...... occurred in conjugation pilus proficient plasmid-carrying strains. The final shapes of the expanding structures in the mature biofilm seem to be determined by the pilus configuration, as various mutants affected in the processing and activity of the transfer pili displayed differently structured biofilms....... We further provide evidence that flagella, type 1 fimbriae, curli and Ag43 are all dispensable for the observed biofilm maturation. In addition, our results indicate that cell-to-cell signalling mediated by autoinducer 2 (AI-2) is not required for differentiation of E. coli within a biofilm community...

  5. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  6. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Jo, W.; Yang, Y.; Park, S.

    2007-01-01

    Biofilms are complex microbial communities that are resistant against attacks by bacteriophages and removal by drugs and chemicals. In this study, biofilms of Escherichia coli O157:H7, a bacterial pathogen, were investigated using atomic force microscopy (AFM) in terms of the dynamic transition of morphology and surface properties of bacterial cells over the development of biofilms. The physical and topographical properties of biofilms are different, depending on nutrient availability. Compared to biofilms formed in a high nutrient medium, biofilms form faster and a higher number of bacterial cells were recovered on glass surface in a low nutrient medium. We demonstrate that AFM can obtain high-resolution images and the elastic information about biofilms. As E. coli biofilm becomes mature, the magnitude of the force between a tip and the surface of the biofilm gets stronger, suggesting that extracellular polymeric substances (EPSs), sticky components of biofilms, accumulate over the surface of cells upon the initial attachment of bacterial cells to surfaces

  7. Microbial Biofilm as a Smart Material

    DEFF Research Database (Denmark)

    Garde, Christian; Welch, Martin; Ferkinghoff-Borg, Jesper

    2015-01-01

    Microbial biofilm colonies will in many cases form a smart material capable of responding to external threats dependent on their size and internal state. The microbial community accordingly switches between passive, protective, or attack modes of action. In order to decide which strategy to employ......, it is essential for the biofilm community to be able to sense its own size. The sensor designed to perform this task is termed a quorum sensor, since it only permits collective behaviour once a sufficiently large assembly of microbes have been established. The generic quorum sensor construct involves two genes...

  8. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces

    Science.gov (United States)

    Janjaroen, Dao; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Mogenroth, Eberhard; Boppart, Stephen A.; Liu, Wen-Tso; Nguyen, Thanh H.

    2013-01-01

    Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells. PMID:23497979

  9. In vitro characterization of biofilms formed by Kingella kingae.

    Science.gov (United States)

    Kaplan, J B; Sampathkumar, V; Bendaoud, M; Giannakakis, A K; Lally, E T; Balashova, N V

    2017-08-01

    The Gram-negative bacterium Kingella kingae is part of the normal oropharyngeal mucosal flora of children biofilm formation has been coupled with pharyngeal colonization, osteoarticular infections, and infective endocarditis, no studies have investigated biofilm formation in K. kingae. In this study we measured biofilm formation by 79 K. kingae clinical isolates using a 96-well microtiter plate crystal violet binding assay. We found that 37 of 79 strains (47%) formed biofilms. All strains that formed biofilms produced corroding colonies on agar. Biofilm formation was inhibited by proteinase K and DNase I. DNase I also caused the detachment of pre-formed K. kingae biofilm colonies. A mutant strain carrying a deletion of the pilus gene cluster pilA1pilA2fimB did not produce corroding colonies on agar, autoaggregate in broth, or form biofilms. Biofilm forming strains have higher levels of pilA1 expression. The extracellular components of biofilms contained 490 μg cm -2 of protein, 0.68 μg cm -2 of DNA, and 0.4 μg cm -2 of total carbohydrates. We concluded that biofilm formation is common among K. kingae clinical isolates, and that biofilm formation is dependent on the production of proteinaceous pili and extracellular DNA. Biofilm development may have relevance to the colonization, transmission, and pathogenesis of this bacterium. Extracellular DNA production by K. kingae may facilitate horizontal gene transfer within the oral microbial community. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action

    Science.gov (United States)

    Roy, Ranita; Tiwari, Monalisa; Donelli, Gianfranco; Tiwari, Vishvanath

    2018-01-01

    ABSTRACT Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby

  11. Properties of self-quenching streamer (SQS) tubes

    International Nuclear Information System (INIS)

    Koori, N.; Nohtomi, A.; Hashimoto, M.; Yoshioka, K.; Kumabe, I.

    1989-01-01

    The self-quenching streamer (SQS) mode of gas counters have been widely used for measuring high energy particles. The authors have very recently found that all the rare gas (He, Ne, Ar and Xe) mixtures with quenching gas of CH 4 , C 2 H 6 , C 3 H 8 , iso-C 4 H 10 or CO 2 can be used as gas mixtures for the SQS mode except Ne- and He-mixtures with CH 4 or CO 2 . Further studies on the properties of this mode are needed for its application to monitoring devices. Properties of a self-quenching tube are discussed here from this point of view. Gas multiplication properties, pulse shape of current signals, and dead zone are measured under several gas pressures equal to or less than one atomospheric pressure. Either the SQS or GM mode can be obtained by changing the gas pressure with a cylindrical gas counter. The operation mode of the counter may be correctly determined from the dead zone measurement. The measurements show that the SQS and GM modes are exclusive, even though SQS's can be simultaneously formed with a GM discharge. The counting rate capability of the SQS mode is higher than that of the GM mode by about one order of magnitude. Thus, SQS tubes are suitable for use in high flux radiation fields. (N.K.)

  12. Rare-gas dependence of the self-quenching streamer

    International Nuclear Information System (INIS)

    Yoshioka, K.; Hashimoto, M.; Koori, N.; Kumabe, I.; Ohgaki, H.; Matoba, M.

    1989-01-01

    The self-quenching streamer (SQS) mode is understood these days as one of the basic modes of gas counter operation. In the present work, the SQS transition is clearly observed for Ar-, Kr- and Xe-mixtures with CH 4 , C 2 H 6 , C 3 H 8 , isoC 4 H 10 and CO 2 , and for He- and Ne-mixtures with C 2 H 6 , C 3 H 8 and isoC 4 H 10 . For He- and Ne-mixtures with CH 4 or CO 2 , the GM discharge is developed instead of the SQS transition. The avalanche size at the transition voltage decreases, in the order of He-, Ne-, Ar-, Kr- and Xe-mixtures, except for He-mixtures with CH 4 or CO 2 . The mechanisms of the SQS transition proposed by Atac et al. and Zhang have disadvantages in explaining all these results. If the photo-ionization is assumed as in Atac's mechanism, energetic photons whose yield is sufficiently large are needed for the SQS transition. The interaction between metastable states of rare gases proposed by Zhang may be energetically capable of producing electrons for the transition; effects of quenching gas in mixtures cannot be explained by this mechanism. Further investigation is necessary for microscopic processes occurring in the avalanche development. More detailed information is required on the atomic reaction cross sections of photo-ionization, radiative recombination, etc. (N.K.)

  13. Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity

    International Nuclear Information System (INIS)

    Duong, Thi Thuy; Morin, Soizic; Coste, Michel; Herlory, Olivier; Feurtet-Mazel, Agnes; Boudou, Alain

    2010-01-01

    A study was undertaken to examine cadmium accumulation in freshwater biofilm, its effects on biofilm development and on diatom community structure in laboratory experimental conditions. A suspension of a biofilm originated from the Riou-Mort River (South West France) was inoculated into three experimental units containing clean glass substrates under laboratory conditions. Settling and already developed biofilms were exposed to a Cd concentration of 100 μg L -1 . Metal accumulation (total and intracellular metal content) in biofilms, dry weight and ash-free dry mass, diatom cell density and diatom community composition were analyzed. Both total and intracellular Cd accumulated by the biofilm throughout the experiment increased with duration of metal exposure. Biofilms in the course of maturation were showed higher Cd content and less effective development than settled biofilms. However diatom communities in younger biofilms exposed to Cd increased their tolerance to Cd by a highly significant development of Nitzschia palea. In contrast, Cd exposure had different effect in installed biofilm and taxonomic composition. These results indicate that mature biofilm may limit Cd accumulation into its architecture and protect diatom communities from the effects of metals.

  14. Biofilm growth program and architecture revealed by single-cell live imaging

    Science.gov (United States)

    Yan, Jing; Sabass, Benedikt; Stone, Howard; Wingreen, Ned; Bassler, Bonnie

    Biofilms are surface-associated bacterial communities. Little is known about biofilm structure at the level of individual cells. We image living, growing Vibrio cholerae biofilms from founder cells to ten thousand cells at single-cell resolution, and discover the forces underpinning the architectural evolution of the biofilm. Mutagenesis, matrix labeling, and simulations demonstrate that surface-adhesion-mediated compression causes V. cholerae biofilms to transition from a two-dimensional branched morphology to a dense, ordered three-dimensional cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture, and this growth pattern is controlled by a single gene. Competition analyses reveal the advantages of the dense growth mode in providing the biofilm with superior mechanical properties. We will further present continuum theory to model the three-dimensional growth of biofilms at the solid-liquid interface as well as solid-air interface.

  15. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  16. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  17. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  18. Quantification of biofilm structures by the novel computer program COMSTAT.

    Science.gov (United States)

    Heydorn, A; Nielsen, A T; Hentzer, M; Sternberg, C; Givskov, M; Ersbøll, B K; Molin, S

    2000-10-01

    The structural organization of four microbial communities was analysed by a novel computer program, COMSTAT, which comprises ten features for quantifying three-dimensional biofilm image stacks. Monospecies biofilms of each of the four bacteria, Pseudomonas: putida, P. aureofaciens, P. fluorescens and P. aeruginosa, tagged with the green fluorescent protein (GFP) were grown in flow chambers with a defined minimal medium as substrate. Analysis by the COMSTAT program of four variables describing biofilm structure - mean thickness, roughness, substratum coverage and surface to volume ratio - showed that the four Pseudomonas: strains represent different modes of biofilm growth. P. putida had a unique developmental pattern starting with single cells on the substratum growing into micro-colonies, which were eventually succeeded by long filaments and elongated cell clusters. P. aeruginosa colonized the entire substratum, and formed flat, uniform biofilms. P. aureofaciens resembled P. aeruginosa, but had a stronger tendency to form micro-colonies. Finally, the biofilm structures of P. fluorescens had a phenotype intermediate between those of P. putida and P. aureofaciens. Analysis of biofilms of P. aureofaciens growing on 0.03 mM, 0.1 mM or 0.5 mM citrate minimal media showed that mean biofilm thickness increased with increasing citrate concentration. Moreover, biofilm roughness increased with lower citrate concentrations, whereas surface to volume ratio increased with higher citrate concentrations.

  19. Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture.

    Science.gov (United States)

    Heacock-Kang, Yun; Sun, Zhenxin; Zarzycki-Siek, Jan; McMillan, Ian A; Norris, Michael H; Bluhm, Andrew P; Cabanas, Darlene; Fogen, Dawson; Vo, Hung; Donachie, Stuart P; Borlee, Bradley R; Sibley, Christopher D; Lewenza, Shawn; Schurr, Michael J; Schweizer, Herbert P; Hoang, Tung T

    2017-12-01

    Bacterial cooperative associations and dynamics in biofilm microenvironments are of special interest in recent years. Knowledge of localized gene-expression and corresponding bacterial behaviors within the biofilm architecture at a global scale has been limited, due to a lack of robust technology to study limited number of cells in stratified layers of biofilms. With our recent pioneering developments in single bacterial cell transcriptomic analysis technology, we generated herein an unprecedented spatial transcriptome map of the mature in vitro Pseudomonas aeruginosa biofilm model, revealing contemporaneous yet altered bacterial behaviors at different layers within the biofilm architecture (i.e., surface, middle and interior of the biofilm). Many genes encoding unknown functions were highly expressed at the biofilm-solid interphase, exposing a critical gap in the knowledge of their activities that may be unique to this interior niche. Several genes of unknown functions are critical for biofilm formation. The in vivo importance of these unknown proteins was validated in invertebrate (fruit fly) and vertebrate (mouse) models. We envisage the future value of this report to the community, in aiding the further pathophysiological understanding of P. aeruginosa biofilms. Our approach will open doors to the study of bacterial functional genomics of different species in numerous settings. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  20. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    Science.gov (United States)

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  1. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid

    Directory of Open Access Journals (Sweden)

    Cláudia N. H. Marques

    2015-11-01

    Full Text Available Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation.

  2. Multi-source waveform inversion of marine streamer data using the normalized wavefield

    KAUST Repository

    Choi, Yun Seok

    2012-01-01

    Even though the encoded multi-source approach dramatically reduces the computational cost of waveform inversion, it is generally not applicable to marine streamer data. This is because the simultaneous-sources modeled data cannot be muted to comply with the configuration of the marine streamer data, which causes differences in the number of stacked-traces, or energy levels, between the modeled and observed data. Since the conventional L2 norm does not account for the difference in energy levels, multi-source inversion based on the conventional L2 norm does not work for marine streamer data. In this study, we propose the L2, approximated L2, and L1 norm using the normalized wavefields for the multi-source waveform inversion of marine streamer data. Since the normalized wavefields mitigate the different energy levels between the observed and modeled wavefields, the multi-source waveform inversion using the normalized wavefields can be applied to marine streamer data. We obtain the gradient of the objective functions using the back-propagation algorithm. To conclude, the gradient of the L2 norm using the normalized wavefields is exactly the same as that of the global correlation norm. In the numerical examples, the new objective functions using the normalized wavefields generate successful results whereas conventional L2 norm does not.

  3. Electron densities and energies of a guided argon streamer in argon and air environments

    International Nuclear Information System (INIS)

    Hübner, S; Hofmann, S; Van Veldhuizen, E M; Bruggeman, P J

    2013-01-01

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial n e -overshoot with a maximum of 7 × 10 19  m −3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found. (paper)

  4. Numerical simulation for production of O and N radicals in an atmospheric-pressure streamer discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2012-01-01

    A streamer discharge model is developed to analyse the characteristics of a pulsed positive streamer discharge in point-to-plane electrodes filled with oxygen-nitrogen mixed gas at room temperature and atmospheric pressure. In this paper we study the mechanisms of O and N radical production in an atmospheric-pressure streamer discharge. To confirm the validity of the simulation model, the discharge emission of light and the discharge current are compared with experimental data at several voltages in gas mixtures with 2-20% oxygen concentrations. The calculated streak picture and the axial distribution of streamer luminous intensity are in good agreement with our previous experimental results. After demonstrating the reliability of the model, we performed a numerical study on radical production by the streamer discharge. The experimentally obtained axial distributions of oxygen radical production in O 2 (20%)/N 2 and nitrogen radical production in O 2 (2%)/N 2 are successfully reproduced in our simulation. For the production of nitrogen radicals, two-step dissociation through the vibrationally excited states is predominant. (paper)

  5. Biofilms on Hospital Shower Hoses: Characterization and ...

    Science.gov (United States)

    Although the source of drinking water used in hospitals is commonly, biofilms on water pipelines are refuge to bacteria that survive different disinfection strategies. Drinking water (DW) biofilms are well known to harbor opportunistic pathogens, however, these biofilm communities remain poorly characterized by culture-independent approaches that circumvent the limitations of conventional monitoring efforts. Hence, the frequency of pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative, but directly impact public health. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both culture-dependent and culture-independent techniques. Two different sequence-based methods were used to characterize the bacterial fractions: 16S rRNA gene sequencing of bacterial cultures and next generation sequencing of metagenomes. Based on the metagenomic data, we found that Mycobacterium-like species was the abundant bacterial taxa that overlapped among the five samples. We also recovered the draft genome of a novel Mycobacterium species, closely related to opportunistic pathogenic nontuberculous mycobacteria, M. rhodesiae and M. tusciae, in addition to other, less abundant species. In contrast, the cultured fraction was mostly affiliated to Proteobacteria, such as members of the Sphingomonas, Blastomonas and Porph

  6. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    Science.gov (United States)

    Chao, Yashuan; Marks, Laura R.; Pettigrew, Melinda M.; Hakansson, Anders P.

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  7. The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Zhang, Lianbo; Chiang, Wen-Chi; Gao, Qingguo

    2012-01-01

    Bacteria form complex surface-attached biofilm communities in nature. Biofilm cells differentiate into subpopulations which display tolerance towards antimicrobial agents. However, the signal transduction pathways regulating subpopulation differentiation in biofilms are largely unelucidated. In t....... In the present study, we show that the catabolite repression control protein Crc regulates the metabolic state of Pseudomonas aeruginosa cells in biofilms, and plays an important role in the development of antimicrobial-tolerant subpopulations in P. aeruginosa biofilms....

  8. Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.

    2018-05-01

    Since the threshold electric field required for breakdown of air is much higher than the maximum field strength measured in thunderstorm clouds, the problem of lightning initiation still remains unsolved. According to the popular hypothesis, lightning can be initiated by a streamer discharge in the field enhanced near a hydrometeor. To verify the adequacy of this hypothesis, the development of a positive streamer propagating along the thunderstorm electric field in the vicinity of an ice needle at an air pressure corresponding to an altitude of 5 km (which is typical of the lightning initiation conditions) was simulated numerically. The hydrometeor dimensions are determined at which streamers can be initiated at different strengths of the thunderstorm electric field.

  9. Influence of gas mixture and primary ionization on the performance of limit streamer mode tubes

    International Nuclear Information System (INIS)

    An Jigang; Anderson, K.J.; Merritt, F.S.; Oreglia, M.; Pilcher, J.E.; Possoz, A.; Schappert, W.; Chicago Univ., IL

    1988-01-01

    We report a study of the dependence of limited streamer mode operation on gas composition. Results are given for the plateau onset voltage, plateau length, charge versus voltage, charge spectra and pulse width for various fractions of (Ar, CO 2 , pentane) and (Ar, isobutane). In addition, a series of argon-free strong quenching gas mixtures has been studied which have very attractive characteristics. Chamber lifetime tests for these are also reported. As part of a study of the nature of the limited streamer mode mechanism, the response to X-rays and minimum ionizing particles are compared and differences noted. The character of the primary ionization is found to have a clear effect on the chamber response even in the streamer region. (orig.)

  10. Possibilities to improve sensitivity and rendering of detail of streamer chamber track photographs

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, J

    1975-01-01

    Streamer chambers are increasingly used as effective particle detectors in the field of experimental elementary particle physics. The photographic recording of high energy events in streamer chambers is limited by performance of current photographic silver-halide layers. Similar limiting problems occur in other fields as well, e.g., in astronomy, x-ray medicine and photogrammetry; therefore methods have been developed to increase sensitivity and improve the information transfer of the emulsion. In this paper these methods have been classified and summarized under the aspect of their application to streamer image recording. Proposals for further investigations are given. Especially the applicability of these methods, their possibility of combination to large film lengths should be investigated The detective quantum efficiency (DQE) is proposed as criterion to estimate and compare the different methods.

  11. A PIC-MCC code for simulation of streamer propagation in air

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Neubert, Torsten

    2008-01-01

    A particle code has been developed to study the distribution and acceleration of electrons in electric discharges in air. The code can follow the evolution of a discharge from the initial stage of a single free electron in a background electric field to the formation of an electron avalanche...... and its transition into a streamer. The code is in 2D axi-symmetric coordinates, allowing quasi 3D simulations during the initial stages of streamer formation. This is important for realistic simulations of problems where space charge fields are essential such as in streamer formation. The charged...... particles are followed in a Cartesian mesh and the electric field is updated with Poisson's equation from the charged particle densities. Collisional processes between electrons and air molecules are simulated with a Monte Carlo technique, according to cross section probabilities. The code also includes...

  12. Simulation of subnanosecond streamers in atmospheric-pressure air: Effects of polarity of applied voltage pulse

    Energy Technology Data Exchange (ETDEWEB)

    Babaeva, N. Yu.; Naidis, G. V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation)

    2016-08-15

    Results of simulation of subnanosecond streamer propagation in corona gap configuration, obtained in the framework of 2D fluid model, are presented. Effects related with the polarity of a voltage pulse applied to the stressed electrode are discussed. It is argued that these effects (dependence of the discharge current and propagation velocity on the polarity of applied voltage) observed in experiments can be attributed to the difference in initial (preceding the streamer formation) distributions of charged species inside the gap. This difference can be caused by preionization (at negative polarity) of the gas inside the discharge gap by runaway electrons. Calculated streamers have large widths (up to 1 cm) and move with velocities in the range of 10{sup 9}–10{sup 10 }cm s{sup −1}, similar to experimental data.

  13. Studies of the stability and sistematics of operation of the DELPHI plastic streamer tubes

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Bilenky, M.S.; Bonyushkin, Yu.Ye.; Korrytov, A.V.

    1989-01-01

    The influeNce of gas pressure and temperature, slight changes in a gas mixture, self-sustaining discharge, aging, different deviations in the detector geometry on the operation of the DELPHI plastic streamer tubes is studied. The contribution of these factors to the DELPHI hadron calorimeter energy resolution is estimated. The major influence is found to be due to atmospheric pressure fluctuations (∼ ±1% streamer charge change per ±1 Torr). The question of the choice of a gas mixture is studied as well. Maximal streamer charge is shown to be independent of component concentrations in the Ar:CO 2 :i-C 4 H 10 ) or C 5 H 12 ) gas mixtures. 23 refs.; 21 figs.; 1 tab

  14. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  15. MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yuhong, E-mail: yfan@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2017-07-20

    Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β . As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.

  16. Experimental Study on Branch and Diffuse Type of Streamers in Leader Restrike of Long Air Gap Discharge

    International Nuclear Information System (INIS)

    Chen She; Zeng Rong; Zhuang Chijie; Zhou Xuan; Ding Yujian

    2016-01-01

    One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m 3 in our experiment. (paper)

  17. Diffuse urban pollution increases metal tolerance of natural heterotrophic biofilms

    International Nuclear Information System (INIS)

    Fechner, Lise C.; Gourlay-Francé, Catherine; Bourgeault, Adeline; Tusseau-Vuillemin, Marie-Hélène

    2012-01-01

    This study is a first attempt to investigate the impact of urban contamination on metal tolerance of heterotrophic river biofilms using a short-term test based on β-glucosidase activity. Tolerance levels to Cu, Cd, Zn, Ni and Pb were evaluated for biofilms collected at three sites along an urban gradient in the Seine river (France). Metallic pollution increased along the river, but concentrations remained low compared to environmental quality standards. Biofilm metal tolerance increased downstream from the urban area. Multivariate analysis confirmed the correlation between tolerance and contamination and between multi-metallic and physico-chemical gradients. Therefore, tolerance levels have to be interpreted in relation to the whole chemical and physical characteristics and not solely metal exposure. We conclude that community tolerance is a sensitive biological response to urban pressure and that mixtures of contaminants at levels lower than quality standards might have a significant impact on periphytic communities. - Highlights: ► A new short-term test based on β-glucosidase activity to assess biofilm metal tolerance. ► Cd, Cu, Ni, Pb and Zn tolerance of natural biofilms collected along an urban gradient. ► Metal tolerance levels increase upstream to downstream the river. ► Community tolerance increases at environmental quality standard exposure concentrations. ► Biofilm tolerance is a sensitive biological response to diffuse urban pollution. - Metal concentrations below environmental quality standards increase tolerance levels of natural, hetetrophic biofilms downstream from an urban area.

  18. Bacillus cereus growth and biofilm formation: the impact of substratum, iron sources, and transcriptional regulator Sigma 54

    NARCIS (Netherlands)

    Hayrapetyan, Hasmik

    2017-01-01

    Biofilms are surface-associated communities of microbial cells embedded in a matrix of extracellular polymers. It is generally accepted that the biofilm growth mode represents the most common lifestyle of microorganisms. Next to beneficial biofilms used in biotechnology applications, undesired

  19. Time characteristics of a self quenching streamer in the coexistence region

    International Nuclear Information System (INIS)

    Han Jiaxiang; Li Cheng; Xu Zizong; Chen Honfang

    1994-01-01

    Experimental studies on the time correlation between electrical signals in the primary avalanche and optical signals which are emitted in the avalanches of the limited proportional mode and the self quenching streamer (SQS) mode have demonstrated that there exists a weak optical emission which is almost simultaneous with the limited proportional avalanche, that a streamer pulse in the SQS mode has a few nanoseconds delay relative to the primary avalanche, and that the spread of the delay (FWHM) is also a few nanoseconds. ((orig.))

  20. The differences between storms driven by helmet streamer CIRs and storms driven by pseudostreamer CIRs

    OpenAIRE

    Borovsky, Joseph E.; Denton, Michael

    2013-01-01

    A corotating interaction region (CIR) is formed when fast coronal hole origin solar wind overtakes slow solar wind and forms a region of compressed plasma and magnetic field. The slow wind upstream of the coronal hole fast wind can be either of helmet streamer origin or pseudostreamer origin. For a collection of 125 CIR-driven geomagnetic storms, the slow wind ahead of each CIR is examined; for those storm not containing ejecta, each CIR is categorized as a helmet streamer CIR (74 of the 125 ...

  1. Some properties of the streamer tube system of the charm neutrino detector

    International Nuclear Information System (INIS)

    Bergsma, F.; Dorenbosch, J.; Jonker, M.

    1982-01-01

    The fine-grain and low-density neutrino calorimeter of the CHARM Collaboration has been designed to measure the energy and the direction of particle showers. To further improve the spatial resolution the calorimeter has been upgraded by adding 20,000 aluminium tubes, working in the limited streamer mode. Each subunit is now equipped with crossed wire planes. Results of a new energy calibration of the upgraded detector using electron and pion beams from 5 to 140 GeV/c, and on the angular and spatial resolution are presented. The use of the streamer tube system to discriminate between electromagnetic and hadronic showers is discussed

  2. High-voltage test and training of plastic streamer tubes for the DELPHI hadron calorimeter

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Cellar, S.; Khomenko, B.A.; Korytov, A.V.; Kulinich, P.A.; Micelmacher, G.V.; Sedykh, Yu.V.; Toledo, R.

    1987-01-01

    The results of high-voltage test and training of plastic streamer tubes of the DELPHI hadron calorimeter are presented. The testing technique is considered in detail. The equipment for high-voltage training consists of a mini-computer, CAMAC-electronics, a controllable high-voltage supply and a digital ampermeter. The experimental results shows that high-voltage training of streamer tubes improves their characteristics. The value of dark current decreased up to 1 μA. The operational voltage range increased by a value more than 300 V

  3. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation......X alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  4. Biofilms in churches built in grottoes

    International Nuclear Information System (INIS)

    Cennamo, Paola; Montuori, Naomi; Trojsi, Giorgio; Fatigati, Giancarlo; Moretti, Aldo

    2016-01-01

    We investigated microorganisms dwelling on rocks, walls and paintings in two votive chapels built in grottoes in the Region of Campania, Italy. One grotto was near the coast in an area with a Mediterranean climate, and the other grotto was inland on a mountain in an area with a cold continental climate. Color and distribution of biofilms in various areas of the grottoes were examined. Microbial components of biofilms were identified by light and electron microscopy and by molecular techniques (DNA analyses and Automatic rRNA Intergenic Spacer Analysis). Biofilms were also analyzed by X-ray diffraction to detect inorganic constituents deriving from rocks in the grottoes and walls of the churches and by X-ray fluorescence to detect the elements that made up the pigments of the mural paintings; optical cross sections were used to observe their relationships with substrata. Species of eubacteria, cyanobacteria and green algae were identified. Some of these species occurred in both grottoes, while others were exclusive to only one of the grottoes. The diversity of species, their common or exclusive occurrence in the grottoes, the relationships among microbial communities and the differences in color and distribution of biofilms were discussed on the basis of the different climatic factors affecting the two grottoes and the different inorganic components of substrata. - Highlights: • Biofilms concur to the degradation of cultural heritage. • Microorganisms cause esthetic and structural damage in votive churches. • Biofilm features vary on different substrata, as limestone, plaster and paintings. • Features of biofilms mainly depend on environmental conditions. • Molecular biology techniques are indispensable in the study of biodegradation.

  5. Biofilms in churches built in grottoes

    Energy Technology Data Exchange (ETDEWEB)

    Cennamo, Paola, E-mail: paola.cennamo@unisob.na.it [Facoltà di Lettere, Università degli Studi Suor Orsola Benincasa di Napoli, Via Santa Caterina da Siena 37, 80135 Naples (Italy); Montuori, Naomi [Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Foria 223, 80139 Naples (Italy); Trojsi, Giorgio; Fatigati, Giancarlo [Facoltà di Lettere, Università degli Studi Suor Orsola Benincasa di Napoli, Via Santa Caterina da Siena 37, 80135 Naples (Italy); Moretti, Aldo [Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Foria 223, 80139 Naples (Italy)

    2016-02-01

    We investigated microorganisms dwelling on rocks, walls and paintings in two votive chapels built in grottoes in the Region of Campania, Italy. One grotto was near the coast in an area with a Mediterranean climate, and the other grotto was inland on a mountain in an area with a cold continental climate. Color and distribution of biofilms in various areas of the grottoes were examined. Microbial components of biofilms were identified by light and electron microscopy and by molecular techniques (DNA analyses and Automatic rRNA Intergenic Spacer Analysis). Biofilms were also analyzed by X-ray diffraction to detect inorganic constituents deriving from rocks in the grottoes and walls of the churches and by X-ray fluorescence to detect the elements that made up the pigments of the mural paintings; optical cross sections were used to observe their relationships with substrata. Species of eubacteria, cyanobacteria and green algae were identified. Some of these species occurred in both grottoes, while others were exclusive to only one of the grottoes. The diversity of species, their common or exclusive occurrence in the grottoes, the relationships among microbial communities and the differences in color and distribution of biofilms were discussed on the basis of the different climatic factors affecting the two grottoes and the different inorganic components of substrata. - Highlights: • Biofilms concur to the degradation of cultural heritage. • Microorganisms cause esthetic and structural damage in votive churches. • Biofilm features vary on different substrata, as limestone, plaster and paintings. • Features of biofilms mainly depend on environmental conditions. • Molecular biology techniques are indispensable in the study of biodegradation.

  6. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  7. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization

    Directory of Open Access Journals (Sweden)

    Wenzheng Liu

    2016-08-01

    Full Text Available Interspecies interactions are essential for the persistence and development of any kind of complex community, and microbial biofilms are no exception. Multispecies biofilms are structured and spatially defined communities that have received much attention due to their omnipresence in natural environments. Species residing in these complex bacterial communities usually interact both intra- and interspecifically. Such interactions are considered to not only be fundamental in shaping overall biomass and the spatial distribution of cells residing in multispecies biofilms, but also to result in coordinated regulation of gene expression in the different species present. These communal interactions often lead to emergent properties in biofilms, such as enhanced tolerance against antibiotics, host immune responses and other stresses, which have been shown to provide benefits to all biofilm members not only the enabling sub-populations. However, the specific molecular mechanisms of cellular processes affecting spatial organization, and vice versa, are poorly understood and very complex to unravel. Therefore, detailed description of the spatial organization of individual bacterial cells in multispecies communities can be an alternative strategy to reveal the nature of interspecies interactions of constituent species. Closing the gap between visual observation and biological processes may become crucial for resolving biofilm related problems, which is of utmost importance to environmental, industrial, and clinical implications. This review briefly presents the state of the art of studying interspecies interactions and spatial organization of multispecies communities, aiming to support theoretical and practical arguments for further advancement of this field.

  8. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance to antimicr......It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the genes altered...... in expression have no current defined function. These genes, as well as those induced by stresses relevant to biofilm growth such as oxygen and nutrient limitation, may be important factors that trigger enhanced resistance mechanisms of sessile communities to antibiotics and hydrodynamic shear forces....

  9. Diagnosis and understanding of chronic biofilm infections

    DEFF Research Database (Denmark)

    Thomsen, Trine Rolighed

    2016-01-01

    Title: Diagnosis and understanding of chronic biofilm infections. Name: Trine Rolighed Thomsen Aalborg University and Danish Technological Institute, Denmark Recent evidence suggests that the microbial community, its spatial distribution and activity play an important role in the prolongation......, anaerobic or unculturable bacteria living in biofilms. Thus, diagnosis of chronic infections is challenged by lack of appropriate sampling strategies and by limitations in microbiological testing methods. The purpose of this study was to improve sampling and diagnosis of chronic infections, especially...... considering the biofilm issue. Systematic and optimized sampling of various specimen types was performed. Extended culture, optimized DNA extraction, quantitative PCR, cloning, next generation sequencing and PNA FISH were applied on different types of specimens for optimized diagnosis. For further...

  10. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant.

    Science.gov (United States)

    Dranguet, P; Cosio, C; Le Faucheur, S; Hug Peter, D; Loizeau, J-L; Ungureanu, V-Gh; Slaveykova, V I

    2017-05-24

    Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na + , Ca 2+ , Cl - and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO 3 - , SO 4 2- , DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.

  11. [The bacterial biofilm and the possibilities of chemical plaque control. Literature review].

    Science.gov (United States)

    Gera, István

    2008-06-01

    Most microorganisms in the oral cavity attach to surfaces and form matrix-embedded biofilms. Biofilms are structured and spatially organized, composed of consortia of interacting microorganisms. The properties of the mass of biofilm are different from that of the simple sum of the component species. The older the plaque (biofilm) is the more structurally organized and become more resistant to environmental attacks. The bacterial community favors the growth of obligatory anaerobic microorganisms. The most effective means of the elimination of matured biofilm is the mechanical disruption of the interbacterial protective matrix and removal of bacterial colonies. The antiseptic agents are primarily effective in the prevention of biofilm formation and anticipation of the maturation of the bacterial plaque. Bacteria in matured biofilms are less susceptible to antimicrobial agents because several physical and biological factors protect the bacterial consortia. To kill bacteria in a matured, well organized biofilm, significantly higher concentration and longer exposition are required. Antiseptic mouthrinses in a conventional dose and time can only reach the superficial bacteria while the bacteria in the depth of the biofilm remains intact. Therefore, the efficacy of any antiseptic mouthwash depends not just on its microbicidal properties demonstrated in vitro, but also on its ability to penetrate the organized biofilm on the teeth. Recent studies have demonstrated that both bisbiguanid compounds and essential oils are capable of penetrating the biofilm, and reduce established plaque and gingivitis. The essential oils showed high penetrability and were more effective on organized biofilm than stannous fluorides or triclosan copolymer antiplaque agents.

  12. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies.

    Science.gov (United States)

    Kanwar, Indulata; Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Oral diseases like dental caries and periodontal disease are directly associated with the capability of bacteria to form biofilm. Periodontal diseases have been associated to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Biofilm is a complex bacterial community that is highly resistant to antibiotics and human immunity. Biofilm communities are the causative agents of biological developments such as dental caries, periodontitis, peri-implantitis and causing periodontal tissue breakdown. The review recapitulates the latest advancements in treatment of clinical biofilm infections and scientific investigations, while these novel anti-biofilm strategies are still in nascent phases of development, efforts dedicated to these technologies could ultimately lead to anti-biofilm therapies that are superior to the current antibiotic treatment. This paper provides a review of the literature focusing on the studies on biofilm in the oral cavity, formation of dental plaque biofilm, drug resistance of bacterial biofilm and the antibiofilm approaches as biofilm preventive agents in dentistry, and their mechanism of biofilm inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Bacillus subtilis biofilm induction by plant polysaccharides.

    Science.gov (United States)

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  14. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan

    Directory of Open Access Journals (Sweden)

    Prem K. Raghupathi

    2018-01-01

    enhance overall community fitness under stressful conditions such as grazing. These emerging inter- and intra-species interactions could play a vital role in biofilm dynamics in natural environments like soil or aquatic systems.

  15. Removal of Foodborne Pathogen Biofilms by Acidic Electrolyzed Water

    Directory of Open Access Journals (Sweden)

    Qiao Han

    2017-06-01

    Full Text Available Biofilms, which are complex microbial communities embedded in the protective extracellular polymeric substances (EPS, are difficult to remove in food production facilities. In this study, the use of acidic electrolyzed water (AEW to remove foodborne pathogen biofilms was evaluated. We used a green fluorescent protein-tagged Escherichia coli for monitoring the efficiency of AEW for removing biofilms, where under the optimal treatment conditions, the fluorescent signal of cells in the biofilm disappeared rapidly and the population of biofilm cells was reduced by more than 67%. Additionally, AEW triggered EPS disruption, as indicated by the deformation of the carbohydrate C-O-C bond and deformation of the aromatic rings in the amino acids tyrosine and phenylalanine. These deformations were identified by EPS chemical analysis and Raman spectroscopic analysis. Scanning electron microscopy (SEM images confirmed that the breakup and detachment of biofilm were enhanced after AEW treatment. Further, AEW also eradicated biofilms formed by both Gram-negative bacteria (Vibrio parahaemolyticus and Gram-positive bacteria (Listeria monocytogenes and was observed to inactivate the detached cells which are a potential source of secondary pollution. This study demonstrates that AEW could be a reliable foodborne pathogen biofilm disrupter and an eco-friendly alternative to sanitizers traditionally used in the food industry.

  16. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    Science.gov (United States)

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  17. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice.

    Directory of Open Access Journals (Sweden)

    Matt S Conover

    2011-02-01

    Full Text Available Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA. In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.

  18. Treatment of Oral Biofilms by a D-Enantiomeric Peptide.

    Science.gov (United States)

    Zhang, Tian; Wang, Zhejun; Hancock, Robert E W; de la Fuente-Núñez, César; Haapasalo, Markus

    2016-01-01

    Almost all dental diseases are caused by biofilms that consist of multispecies communities. DJK-5, which is a short D-enantiomeric, protease-resistant peptide with broad-spectrum anti-biofilm activity, was tested for its effect on oral multispecies biofilms. Peptide DJK-5 at 10 μg/mL effectively prevented the growth of these microbes in culture media in a time-dependent manner. In addition to the prevention of growth, peptide DJK-5 completely killed both Streptococcus mutans and Enterococcus faecalis suspended from biofilms after 30 minutes of incubation in liquid culture media. DJK-5 also led to the effective killing of microbes in plaque biofilm. The proportion of bacterial cells killed by 10 μg/mL of DJK-5 was similar after 1 and 3 days, both exceeding 85%. DJK-5 was able to significantly prevent biofilm formation over 3 days (P = 0.000). After 72 hours of exposure, DJK-5 significantly reduced and almost completely prevented plaque biofilm production by more than 90% of biovolume compared to untreated controls (P = 0.000). The proportion of dead biofilm bacteria at the 10 μg/mL DJK-5 concentration was similar for 1- and 3-day-old biofilms, whereby >86% of the bacteria were killed. DJK-5 was also able to kill >79% and >85% of bacteria, respectively, after one-time and three brief treatments of 3-day-old biofilms. The combination of DJK-5 and chlorhexidine showed the best bacterial killing among all treatments, with ~83% and >88% of bacterial cells killed after 1 and 3 minutes, respectively. No significant difference was found in the percentage of biofilm killing amongst three donor plaque samples after DJK-5 treatment. In particular, DJK-5 showed strong performance in inhibiting biofilm development and eradicating pre-formed oral biofilms compared to L-enantiomeric peptide 1018. DJK-5 was very effective against oral biofilms when used alone or combined with chlorhexidine, and may be a promising agent for use in oral anti-biofilm strategies in the future.

  19. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L-1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4-83.5% and 86.3-95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination.

  20. Electrons in the solar corona. Pt. 3. Coronal streamers analysis from balloon-borne coronagraph

    Energy Technology Data Exchange (ETDEWEB)

    Dollfus, A; Mouradian, Z [Observatoire de Paris, Section de Meudon, 92 (France)

    1981-03-01

    During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5 Rsub(sun) during 5 hr, with an externally occulted coronagraph. Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s/sup -1/; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces. Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 x 10/sup 6/ K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 Rsub(sun). Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere.

  1. Numerical simulations and conformal analysis of growing and branching negative discharge streamers

    NARCIS (Netherlands)

    Montijn, C.; Meulenbroek, B.; Ebert, U.; Hundsdorfer, W.

    2005-01-01

    The dynamics of an anode-directed streamer can be described by advection-diffusion equations for the charged particles, including a local field-dependent impact ionization term, and coupled to the Poisson equation for the electric field. We present the results of new simulations that use a local

  2. Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. Planar fronts

    NARCIS (Netherlands)

    C. Li (Chao); U. M. Ebert (Ute); W. Hundsdorfer (Willem)

    2010-01-01

    textabstractStreamers are the first stage of sparks and lightning; they grow due to a strongly enhanced electric field at their tips: this field is created by a thin curved space charge layer. These multiple scales are already challenging when the electrons are approximated by densities. However,

  3. Experimental Investigation of Pulsed Nanosecond Streamer Discharges for CO2 Reforming

    Science.gov (United States)

    Pachuilo, Michael; Levko, Dima; Raja, Laxminarayan; Varghese, Philip

    2016-09-01

    Rapid global industrialization has led to an increase in atmospheric greenhouse gases, specifically carbon dioxide levels. Plasmas present a great potential for efficient reforming of greenhouse gases. There are several plasma discharges which have been reported for reforming process: dielectric barrier discharges (DBD), microwave discharges, and glide-arcs. Microwave discharges have CO2 conversion energy efficiency of up to 40% at atmospheric conditions, while glide-arcs have 43% and DBD 2-10%. In our study, we analyze a single nanosecond pulsed cathode directed streamer discharge in CO2 at atmospheric pressure and temperature. We have conducted time resolved imaging with spectral bandpass filters of a streamer discharge with an applied negative polarity pulse. The image sequences have been correlated to the applied voltage and current pulses. From the spectral filters we can determine where spatially and temporally excited species are formed. In this talk we report on spectroscopic studies of the discharge and estimate plasma properties such as temperature and density of excited species and electrons. Furthermore, we report on the effects of pulse polarity as well as anodic streamer discharges on the CO2 conversion efficiency. Finally, we will focus on the effects of vibrational excitation on carbon dioxide reforming efficiency for streamer discharges. Our experimental results will be compared with an accompanying plasma computational model studies.

  4. Numerical simulation of positive streamer development in thundercloud field enhanced near raindrops

    DEFF Research Database (Denmark)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2016-01-01

    As the threshold field strength for the breakdown in air significantly exceeds the maximum measured thundercloud strength 3 kV/cm/atm, the problem of lightning initiation remains unclear. According to the popular idea, lightning can be initiated from streamer discharges developed in the enhanced...

  5. Pseudo-spectral 3D simulations of streamers with adaptively refined grids

    NARCIS (Netherlands)

    Luque, A.; Ebert, U.; Montijn, C.; Hundsdorfer, W.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    A three-dimensional code for the simulation of streamers is introduced. The code is based on a fluid model for oxygen-nitrogen mixtures that includes drift, diffusion and attachement of electrons and creation of new charge carriers through impact ionization and photo-ionization. The electric field

  6. Simulating streamer discharges in 3D with the parallel adaptive Afivo framework

    NARCIS (Netherlands)

    H.J. Teunissen (Jannis); U. M. Ebert (Ute)

    2017-01-01

    htmlabstractWe present an open-source plasma fluid code for 2D, cylindrical and 3D simulations of streamer discharges, based on the Afivo framework that features adaptive mesh refinement, geometric multigrid methods for Poisson's equation, and OpenMP parallelism. We describe the numerical

  7. TEMPERATURE AND EXTREME-ULTRAVIOLET INTENSITY IN A CORONAL PROMINENCE CAVITY AND STREAMER

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, T. A. [NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States); Gibson, S. E.; Schmit, D. J. [HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Science, Space Research Building, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143 (United States); Tripathi, D. [Inter-University Centre for Astronomy and Astrophysics, Post Bag-4, Ganeshkhind, Pune University Campus, Pune 411 007 (India)

    2012-09-20

    We analyze the temperature and EUV line emission of a coronal cavity and surrounding streamer in terms of a morphological forward model. We use a series of iron line ratios observed with the Hinode Extreme-ultraviolet Imaging Spectrograph (EIS) on 2007 August 9 to constrain temperature as a function of altitude in a morphological forward model of the streamer and cavity. We also compare model predictions to the EIS EUV line intensities and polarized brightness (pB) data from the Mauna Loa Solar Observatory (MLSO) Mark 4 K-coronameter. This work builds on earlier analysis using the same model to determine geometry of and density in the same cavity and streamer. The fit to the data with altitude-dependent temperature profiles indicates that both the streamer and cavity have temperatures in the range 1.4-1.7 MK. However, the cavity exhibits substantial substructure such that the altitude-dependent temperature profile is not sufficient to completely model conditions in the cavity. Coronal prominence cavities are structured by magnetism so clues to this structure are to be found in their plasma properties. These temperature substructures are likely related to structures in the cavity magnetic field. Furthermore, we find that the model overestimates the EUV line intensities by a factor of 4-10, without overestimating pB. We discuss this difference in terms of filling factors and uncertainties in density diagnostics and elemental abundances.

  8. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Buntat, Z; Harry, J E; Smith, I R [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)

    2003-07-07

    This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

  9. Loeb's and streamer-based mechanism for negative corona current pulses

    International Nuclear Information System (INIS)

    Vagnerova, L.; Skalny, J.D.; Cermak, M.

    1998-01-01

    The negative point-to-plane corona discharge in electronegative gaseous mixtures is studied experimentally and the basic mechanisms controlling the corona phenomena are discussed. The typical shapes of the current pulse waveforms observed in experiments with the nitrogen-freon mixtures are explained in terms of the theory by Loeb and of the positive-streamer-based model. (J.U.)

  10. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  11. Application of multi-source waveform inversion to marine streamer data using the global correlation norm

    KAUST Repository

    Choi, Yun Seok

    2012-05-02

    Conventional multi-source waveform inversion using an objective function based on the least-square misfit cannot be applied to marine streamer acquisition data because of inconsistent acquisition geometries between observed and modelled data. To apply the multi-source waveform inversion to marine streamer data, we use the global correlation between observed and modelled data as an alternative objective function. The new residual seismogram derived from the global correlation norm attenuates modelled data not supported by the configuration of observed data and thus, can be applied to multi-source waveform inversion of marine streamer data. We also show that the global correlation norm is theoretically the same as the least-square norm of the normalized wavefield. To efficiently calculate the gradient, our method employs a back-propagation algorithm similar to reverse-time migration based on the adjoint-state of the wave equation. In numerical examples, the multi-source waveform inversion using the global correlation norm results in better inversion results for marine streamer acquisition data than the conventional approach. © 2012 European Association of Geoscientists & Engineers.

  12. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

    CERN Document Server

    Buntat, Z; Smith, I R

    2003-01-01

    This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

  13. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

    International Nuclear Information System (INIS)

    Buntat, Z; Harry, J E; Smith, I R

    2003-01-01

    This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings

  14. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

    Science.gov (United States)

    Buntat, Z.; Harry, J. E.; Smith, I. R.

    2003-07-01

    This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

  15. Positive streamers in air of varying density : experiments on the scaling of the excitation density

    NARCIS (Netherlands)

    Dubrovin, D.; Nijdam, S.; Clevis, T.T.J.; Heijmans, L.C.J.; Ebert, U.; Yair, Y.; Price, C.

    2015-01-01

    Streamers are rapidly extending ionized finger-like structures that dominate the initial breakdown of large gas volumes in the presence of a sufficiently strong electric field. Their macroscopic parameters are described by simple scaling relations, where the densities of electrons and of excited

  16. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    Science.gov (United States)

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  17. The Effect of Predators on Cholera Biofilms: If it Lyses, We Can Smash It

    Science.gov (United States)

    Kalziqi, Arben; Bernardy, Eryn; Thomas, Jacob; Ratcliff, Will; Hammer, Brian; Yunker, Peter

    Many microbes form biofilms--dense clumps of cells and proteins--on surfaces. Biofilms are complex communities that facilitate the study of biological competition (e.g., two types of microbes may compete to form a biofilm in the same location) and interesting physics (e.g., the source of a biofilm's rigidity). Vibrio cholerae can produce biofilms which have a network-like structure--however, cholera can be genetically engineered to kill other cholera with different genotypes, which leaves behind a structureless ``slime'' rather than such a biofilm. Through mechanical creep testing of both predator-prey and non-predator populations, we found that the predator-prey population responds viscously and decreases in height with repeated compression, whereas the non-predator population responds elastically and maintains its original height. The current work suggests that cell lysis after killing disrupts biofilm formation, preventing microbial colonies from forming rigid networks.

  18. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  19. Observations of electric discharge streamer propagation and capillary oscillations on the surface of air bubbles in water

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, B S; Foster, J E [Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States); Babaeva, N Yu; Kushner, Mark J [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2011-03-02

    The propagation of electric discharge streamers inside bubbles in liquids is of interest for the remediation of toxins in water and plasma-based surgical instruments. The manner of streamer propagation has an important influence on the production of reactive species that are critical to these applications. Streamer propagation along the surface of electrode-attached bubbles of air in water, previously predicted by numerical simulations, has been experimentally imaged using a fast frame-rate camera. The successive pulsing of the streamer discharge inside the bubbles produced oscillations along the air-water interface. Subsequent streamers were observed to closely follow surface distortions induced by such oscillations. The oscillations likely arise from the non-uniform perturbation of the bubble driven by the electric field of the streamer and were found to be consistent with Kelvin's equation for capillary oscillations. For a narrow range of applied voltage pulse frequencies, the oscillation amplitude increased over several pulse periods indicating, potentially, resonant behaviour. We also observed coupling between bubbles wherein oscillations in a second bubble without an internal discharge were induced by the presence of a streamer in a fixed bubble. (fast track communication)

  20. Correlative Imaging of Structural and Elemental Composition of Bacterial Biofilms

    International Nuclear Information System (INIS)

    Yang, Y; Heine, R; Xu, F; Helfen, L; Baumbach, T; Suhonen, H; Rosenhahn, A; Gorniak, T; Kirchen, S; Schwartz, T

    2013-01-01

    Synchrotron-based phase contrast tomography (holotomography) and scanning hard X-ray fluorescence microscopy (SXFM) are combined to characterize the three-dimensional (3D) structural and corresponding elemental distribution of bacterial biofilms of Pseudomonas aeruginosa. Samples were fixed without contrast agents or microtomal sectioning. Within an intact microbial community single bacteria are clearly resolved, and their morphology can be directly visualized together with the elemental content. Such 3D set of complementary information at cellular level is essential for gaining a deeper understanding of biofilm evolution aiming to develop potential strategies on biofilm growth control and prevention

  1. Radially and temporally resolved electric field of positive streamers in air and modelling of the induced plasma chemistry

    Science.gov (United States)

    Hoder, T.; Šimek, M.; Bonaventura, Z.; Prukner, V.; Gordillo-Vázquez, F. J.

    2016-08-01

    The initial stages of transient luminous events (TLEs) occurring in the upper atmosphere of the Earth are, in a certain pressure range, controlled by the streamer mechanism. This paper presents the results of the first laboratory experiments to study the TLE streamer phenomena under conditions close to those of the upper atmosphere. Spectrally and highly spatiotemporally resolved emissions originating from radiative states {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) (second positive system) and \\text{N}2+≤ft({{\\text{B}}2}Σu+\\right) (first negative system) have been recorded from the positive streamer discharge. Periodic ionizing events were generated in a barrier discharge arrangement at a pressure of 4 torr of synthetic air, i.e. simulating the pressure conditions at altitudes of ≃37 km. Employing Abel inversion on the radially scanned streamer emission and a 2D fitting procedure, access was obtained to the local spectral signatures within the over 106  m s-1 fast propagating streamers. The reduced electric field strength distribution within the streamer head was determined from the ratio of the \\text{N}2+/{{\\text{N}}2} band intensities with peak values up to 500 Td and overall duration of about 10 ns. The 2D profiles of the streamer head electric fields were used as an experimentally obtained input for kinetic simulations of the streamer-induced air plasma chemistry. The radial and temporal computed distribution of the ground vibrational levels of the radiative states involved in the radiative transitions analyzed (337.1 nm and 391.5 nm), atomic oxygen, nitrogen, nitric oxide and ozone concentrations are vizualized and discussed in comparison with available models of the streamer phase of Blue Jet discharges in the stratosphere.

  2. Radio-Frequency Emissions from Streamer Collisions: Implications for High-Energy Processes.

    Science.gov (United States)

    Luque, A.

    2017-12-01

    The production of energetic particles in a discharge corona is possibly linked to the collision of streamers of opposite polarities [Cooray et al. (2009), Kochkin et al. (2012), Østgaard et al. (2016)]. There is also experimental evidence linking it to radio-frequency emissions in the UHF frequency range (300 MHz-3 GHz) [Montanyà et al. (2015), Petersen and Beasley (2014)]. Here we investigate these two links by modeling the radio-frequency emissions emanating from an encounter between two counter-propagating streamers. Our numerical model combines self-consistently a conservative, high-order Finite-Volume scheme for electron transport with a Finite-Difference Time-Domain (FDTD) method for electromagnetic propagation. We also include the most relevant reactions for streamer propagation: impact ionization, dissociative attachment and photo-ionization. Our implementation benefits from massive parallelization by running on a General-Purpose Graphical Processing Unit (GPGPU). With this code we found that streamer encounters emit electromagnetic waves predominantly in the UHF range, supporting the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges. References Cooray, V., et al., J. Atm. Sol.-Terr. Phys., 71, 1890, doi:10.1016/j.jastp.2009.07.010 (2009). Kochkin, P. O., et al., J. Phys. D, 45, 425202, doi: 10.1088/0022-3727/45/42/425202 (2012). Montanyà, J., et al., J. Atm. Sol.-Terr. Phys., 136, 94, doi:10.1016/j.jastp.2015.06.009, (2015). Østgaard, N., et al., J. Geophys. Res. (Atmos.), 121, 2939, doi:10.1002/2015JD024394 (2016). Petersen, D., and W. Beasley, Atmospheric Research, 135, 314, doi:10.1016/j.atmosres.2013.02.006 (2014).

  3. Temperature and EUV Intensity in a Coronal Prominence Cavity and Streamer

    Science.gov (United States)

    Kucera, T. A.; Gibson, S.E.; Schmit, D. J.; Landi, E.; Tripathi, D.

    2012-01-01

    We analyze the temperature and EUV line emission of a coronal cavity and surrounding streamer in terms of a morphological forward model. We use a series of iron line ratios observed with the Hinode Extreme-ultraviolet Imaging Spectrograph (EIS) on 2007 Aug. 9 to constrain temperature as a function of altitude in a morphological forward model of the streamer and cavity. We also compare model prediction of the EIS EUV line intensities and polarized brightness (pB) data from the Mauna Loa Solar Observatory (MLSO) MK4. This work builds on earlier analysis using the same model to determine geometry of and density in the same cavity and streamer. The fit to the data with altitude dependent temperature profiles indicates that both the streamer and cavity have temperatures in the range 1.4-1.7 MK. However, the cavity exhibits substantial substructure such that the altitude dependent temperature profile is not sufficient to completely model conditions in the cavity. Coronal prominence cavities are structured by magnetism so clues to this structure are to be found in their plasma properties. These temperature substructures are likely related to structures in the cavity magnetic field. Furthermore, we find that the model overestimates the line intensities by a factor of 4-10, while overestimating pB data by no more than a factor of 1.4. One possible explanation for this is that there may be a significant amount of material at temperatures outside of the range log T(K) approximately equals 5.8 - 6.7 in both the cavity and the streamer.

  4. 3D streamers simulation in a pin to plane configuration using massively parallel computing

    Science.gov (United States)

    Plewa, J.-M.; Eichwald, O.; Ducasse, O.; Dessante, P.; Jacobs, C.; Renon, N.; Yousfi, M.

    2018-03-01

    This paper concerns the 3D simulation of corona discharge using high performance computing (HPC) managed with the message passing interface (MPI) library. In the field of finite volume methods applied on non-adaptive mesh grids and in the case of a specific 3D dynamic benchmark test devoted to streamer studies, the great efficiency of the iterative R&B SOR and BiCGSTAB methods versus the direct MUMPS method was clearly demonstrated in solving the Poisson equation using HPC resources. The optimization of the parallelization and the resulting scalability was undertaken as a function of the HPC architecture for a number of mesh cells ranging from 8 to 512 million and a number of cores ranging from 20 to 1600. The R&B SOR method remains at least about four times faster than the BiCGSTAB method and requires significantly less memory for all tested situations. The R&B SOR method was then implemented in a 3D MPI parallelized code that solves the classical first order model of an atmospheric pressure corona discharge in air. The 3D code capabilities were tested by following the development of one, two and four coplanar streamers generated by initial plasma spots for 6 ns. The preliminary results obtained allowed us to follow in detail the formation of the tree structure of a corona discharge and the effects of the mutual interactions between the streamers in terms of streamer velocity, trajectory and diameter. The computing time for 64 million of mesh cells distributed over 1000 cores using the MPI procedures is about 30 min ns-1, regardless of the number of streamers.

  5. Laboratory experiments cannot be utilized to justify the action of early streamer emission terminals

    International Nuclear Information System (INIS)

    Becerra, Marley; Cooray, Vernon

    2008-01-01

    The early emission of streamers in laboratory long air gaps under switching impulses has been observed to reduce the time of initiation of leader positive discharges. This fact has been arbitrarily extrapolated by the manufacturers of early streamer emission devices to the case of upward connecting leaders initiated under natural lightning conditions, in support of those non-conventional terminals that claim to perform better than Franklin lightning rods. In order to discuss the physical basis and validity of these claims, a self-consistent model based on the physics of leader discharges is used to simulate the performance of lightning rods in the laboratory and under natural lightning conditions. It is theoretically shown that the initiation of early streamers can indeed lead to the early initiation of self-propagating positive leaders in laboratory long air gaps under switching voltages. However, this is not the case for positive connecting leaders initiated from the same lightning rod under the influence of the electric field produced by a downward moving stepped leader. The time evolution of the development of positive leaders under natural conditions is different from the case in the laboratory, where the leader inception condition is closely dependent upon the initiation of the first streamer burst. Our study shows that the claimed similarity between the performance of lightning rods under switching electric fields applied in the laboratory and under the electric field produced by a descending stepped leader is not justified. Thus, the use of existing laboratory results to validate the performance of the early streamer lightning rods under natural conditions is not justified

  6. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    Science.gov (United States)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  7. Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes

    International Nuclear Information System (INIS)

    Li, Shuai; Zhang, Shenghua; Ye, Chengsong; Lin, Wenfang; Zhang, Menglu; Chen, Lihua; Li, Jinmei; Yu, Xin

    2017-01-01

    Antibiotics are heavily used in Chinese mariculture, but only a small portion of the added antibiotics are absorbed by living creatures. Biofilm processes are universally used in mariculture wastewater treatment. In this study, removal of antibiotics (norfloxacin, rifampicin, and oxytetracycline) from wastewater by moving bed biofilm reactors (MBBRs) and the influence of antibiotics on reactor biofilm were investigated. The results demonstrated that there was no significant effect of sub-μg/L–sub-mg/L concentrations of antibiotics on TOC removal. Moreover, the relative abundance of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in MBBR biofilm increased because of selective pressure of antibiotics. In addition, antibiotics decreased the diversity of the biofilm bacterial community and altered bacterial community structure. These findings provide an empirical basis for the development of appropriate practices for mariculture, and suggest that disinfection and advanced oxidation should be applied to eliminate antibiotics, ARGs, and ARB from mariculture wastewater. - Highlights: • The removal of antibiotics by Moving Bed Biofilm Reactors (MBBR) was investigated. • Biofilm process such as MBBR had little effect on the removal of the antibiotics. • The antibiotics decreased the diversity of biofilm bacterial community and altered bacterial community structure. • Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes.

  8. Stream biofilm responses to flow intermittency: from cells to ecosystems

    OpenAIRE

    Sergi eSabater; Sergi eSabater; Xisca eTimoner; Carles eBorrego; Carles eBorrego; Vicenç eAcuña

    2016-01-01

    Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are eminently microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms) accordingly change their physical structure and community composition. Biofilms experience large decreases on cell densities and biomass, both of bacteria a...

  9. Stream Biofilm Responses to Flow Intermittency: From Cells to Ecosystems

    OpenAIRE

    Sabater, Sergi; Timoner, Xisca; Borrego, Carles; Acuña, Vicenç

    2016-01-01

    Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are mainly microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms) accordingly change their physical structure and community composition. Biofilms experience large decreases in cell densities and biomass, both of bacteria and ...

  10. Interactions of bacteria with diatoms: Influence on natural marine biofilms.

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; DeCosta, P.M.; Anil, A.C.; Sawant, S.S.

    therein). In fact, biofilms are considered a reservoir and source of dissemination for V. cholerae (Shikuma & Hadfield 2010). Nutrient concentrations in the surrounding waters also affect the progression of the biofilm community (Qian et al. 2007... to render diatom monocultures near axenic (Patil & Anil 2005c). The following diluents were used – Aged Sea Water (ASW; unenriched control), ASW+streptomycin (ASW+S), ASW+chloramphenicol (ASW+C), f/2 medium (Guillard and Ryther, 1962) prepared in ASW [f...

  11. Nanostructured coatings for controlling bacterial biofilms and antibiotic resistance

    OpenAIRE

    Ivanova, Kristina Dimitrova

    2017-01-01

    The accelerated emergence of drug resistant bacteria is one of the most serious problems in healthcare and the difficulties in finding new antibiotics make it even more challenging. To overcome the action of antibiotics bacteria develop effective resistance mechanisms including the formation of biofilms. Biofilms are bacterial communities of cells embedded in a self-produced polymeric matrix commonly found on medical devices such as indwelling catheters. When pathogens adopt this mode of grow...

  12. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  13. Impact of early colonizers on in vitro subgingival biofilm formation.

    Directory of Open Access Journals (Sweden)

    Thomas W Ammann

    Full Text Available The aim of this study was to investigate the impact of early colonizing species on the structure and the composition of the bacterial community developing in a subgingival 10-species biofilm model system. The model included Streptococcus oralis, Streptococcus anginosus, Actinomycesoris, Fusobacterium nucleatum subsp. nucleatum, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Based on literature, we considered Streptococcus oralis, Streptococcus anginosus, and Actinomyces oris as early colonizers and examined their role in the biofilms by either a delayed addition to the consortium, or by not inoculating at all the biofilms with these species. We quantitatively evaluated the resulting biofilms by real-time quantitative PCR and further compared the structures using confocal laser scanning microscopy following fluorescence in situ hybridisation. The absence of the early colonizers did not hinder biofilm formation. The biofilms reached the same total counts and developed to normal thickness. However, quantitative shifts in the abundances of individual species were observed. In the absence of streptococci, the overall biofilm structure appeared looser and more dispersed. Moreover, besides a significant increase of P. intermedia and a decrease of P. gingivalis , P. intermedia appeared to form filamented long chains that resembled streptococci. A. oris, although growing to significantly higher abundance in absence of streptococci, did not have a visible impact on the biofilms. Hence, in the absence of the early colonizers, there is a pronounced effect on P. intermedia and P. gingivalis that may cause distinct shifts in the structure of the biofilm. Streptococci possibly facilitate the establishment of P. gingivalis into subgingival biofilms, while in their absence P. intermedia became more dominant and forms elongated chains.

  14. [Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism].

    Science.gov (United States)

    Romanova, Iu M; Gintsburg, A L

    2011-01-01

    Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.

  15. Haemophilus parainfluenzae Strain ATCC 33392 Forms Biofilms In Vitro and during Experimental Otitis Media Infections.

    Science.gov (United States)

    Pang, Bing; Swords, W Edward

    2017-09-01

    Haemophilus parainfluenzae is a nutritionally fastidious, Gram-negative bacterium with an oropharyngeal/nasopharyngeal carriage niche that is associated with a range of opportunistic infections, including infectious endocarditis and otitis media (OM). These infections are often chronic/recurrent in nature and typically involve bacterial persistence within biofilm communities that are highly resistant to host clearance. This study addresses the primary hypothesis that H. parainfluenzae forms biofilm communities that are important determinants of persistence in vivo The results from in vitro biofilm studies confirmed that H. parainfluenzae formed biofilm communities within which the polymeric matrix was mainly composed of extracellular DNA and proteins. Using a chinchilla OM infection model, we demonstrated that H. parainfluenzae formed surface-associated biofilm communities containing bacterial and host components that included neutrophil extracellular trap (NET) structures and that the bacteria mainly persisted in these biofilm communities. We also used this model to examine the possible interaction between H. parainfluenzae and its close relative Haemophilus influenzae , which is also commonly carried within the same host environments and can cause OM. The results showed that coinfection with H. influenzae promoted clearance of H. parainfluenzae from biofilm communities during OM infection. The underlying mechanisms for bacterial persistence and biofilm formation by H. parainfluenzae and knowledge about the survival defects of H. parainfluenzae during coinfection with H. influenzae are topics for future work. Copyright © 2017 American Society for Microbiology.

  16. Bacteriophages and Biofilms

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2014-06-01

    Full Text Available Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  17. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    Science.gov (United States)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  18. Identification of Genes Involved in Polysaccharide-Independent Staphylococcus aureus Biofilm Formation

    Science.gov (United States)

    Boles, Blaise R.; Thoendel, Matthew; Roth, Aleeza J.; Horswill, Alexander R.

    2010-01-01

    Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor α2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA) isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development. PMID:20418950

  19. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation.

    Directory of Open Access Journals (Sweden)

    Blaise R Boles

    2010-04-01

    Full Text Available Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor alpha(2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development.

  20. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Directory of Open Access Journals (Sweden)

    Stephanie M Amato

    Full Text Available Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  1. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Science.gov (United States)

    Amato, Stephanie M; Brynildsen, Mark P

    2014-01-01

    Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  2. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

    Science.gov (United States)

    Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2017-08-23

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.

  3. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion

    OpenAIRE

    Yan, Jing; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2017-01-01

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmot...

  4. Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae

    DEFF Research Database (Denmark)

    Matz, Carsten; Moreno, Ana Maria; Alhede, Morten

    2008-01-01

    Bacteria and protozoa coexist in a wide range of biofilm communities of natural, technical and medical importance. Generally, this interaction is characterized by the extensive grazing activity of protozoa on bacterial prey populations. We hypothesized that the close spatial coexistence in biofilms...... suggest that conserved virulence pathways and specifically the T3SS play a central role in bacteria- protozoa interactions in biofilms and may be instrumental for the environmental persistence and evolution of opportunistic bacterial pathogens....

  5. Unravelling the mechanisms of bacterial interactions in model communities

    DEFF Research Database (Denmark)

    Herschend, Jakob

    Microbial communities, such as microbial biofilms, are dynamic structural communities. The architecture and function of these communities is shaped by the interaction with the surrounding environment and by the interactions between community members. In most natural and man-made environments......, and that bacteria in different niches have different potential for interacting. Understanding the development of microbial communities is indispensable as microbial communities, such as biofilms, are highly associated with chronic infections, colonization of catheters and implants. Biofilms have also been...

  6. Biofilms and mechanics: a review of experimental techniques and findings

    International Nuclear Information System (INIS)

    Gordon, Vernita D; Davis-Fields, Megan; Kovach, Kristin; Rodesney, Christopher A

    2017-01-01

    Biofilms are developmentally-dynamic communities of sessile microbes that adhere to each other and, often, to other structures in their environment. The cohesive mechanical forces binding microbes to each other confer mechanical and structural stability on the biofilm and give rise to biofilm viscoelasticity. The adhesive mechanical forces binding microbes to other structures in their environment can promote biofilm initiation and mechanosensing that leads to changes in biological activity. Thus, physical mechanics is intrinsic to characteristics that distinguish biofilms from free-swimming or free-floating microbes in liquid culture. However, very little is known about the specifics of what mechanical traits characterize different types of biofilms at different stages of development. Even less is known about how mechanical inputs impact microbial biology and how microbes can adjust their mechanical coupling to, and interaction with, their environment. These knowledge gaps arise, in part, from the challenges associated with experimental measurements of microbial and biofilm biomechanics. Here, we review extant experimental techniques and their most-salient findings to date. At the end of this review we indicate areas where significant advances in the state-of-the art are heading. (topical review)

  7. Biofilms and mechanics: a review of experimental techniques and findings

    Science.gov (United States)

    Gordon, Vernita D.; Davis-Fields, Megan; Kovach, Kristin; Rodesney, Christopher A.

    2017-06-01

    Biofilms are developmentally-dynamic communities of sessile microbes that adhere to each other and, often, to other structures in their environment. The cohesive mechanical forces binding microbes to each other confer mechanical and structural stability on the biofilm and give rise to biofilm viscoelasticity. The adhesive mechanical forces binding microbes to other structures in their environment can promote biofilm initiation and mechanosensing that leads to changes in biological activity. Thus, physical mechanics is intrinsic to characteristics that distinguish biofilms from free-swimming or free-floating microbes in liquid culture. However, very little is known about the specifics of what mechanical traits characterize different types of biofilms at different stages of development. Even less is known about how mechanical inputs impact microbial biology and how microbes can adjust their mechanical coupling to, and interaction with, their environment. These knowledge gaps arise, in part, from the challenges associated with experimental measurements of microbial and biofilm biomechanics. Here, we review extant experimental techniques and their most-salient findings to date. At the end of this review we indicate areas where significant advances in the state-of-the art are heading.

  8. Transported biofilms and their influence on subsequent macrofouling colonization.

    Science.gov (United States)

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  9. Stepwise expansion of a surface dielectric barrier discharge as a result of alternation in formation of streamers and leaders

    International Nuclear Information System (INIS)

    Akishev, Yu; Aponin, G; Balakirev, A; Grushin, M; Petryakov, A; Karal'nik, V; Trushkin, N

    2013-01-01

    Spatial–temporal development of the plasma sheet structure in a surface dielectric barrier discharge (SDBD) powered with a single long pulse of negative polarity is traced. Ambient air and Ar at atmospheric pressure are used as plasma-forming gases. It is found that current regimes and spatial structures occurring at the development of a long-pulsed discharge differ cardinally as compared with those of a short-pulsed SDBD. In the case of long-pulsed SDBDs, the expansion of the barrier area covered by the plasma sheet and seeded with a surface negative charge occurs in a stepwise manner due to cyclic alternation (one after another) in generation of surface streamers and formation of hot surface leaders from the streamers due to streamer–leader transitions. Leaders, in their turn, initiate new streamers, which serve again as precursors for next-step leader formation, and so on. However, the crucial role in surface charge deposition is played not by streamers and leaders but by a diffusive plasma sheet (DPS), which slowly extends from the sides of streamers and leaders. The expansion of the DPS occurs due to the ionization wave propagating from the sides of the streamers and leaders. The difference in spatial structures of a single long-pulsed and a steady-state sin SDBD is studied. In high-frequency sin SDBDs at negative half-cycle there are only leaders and DPS, but there are no streamers. The reason is that there is no necessity for the formation of leaders due to streamer–leader transitions—leaders are formed at the previous cycle and do not decay strongly till the beginning of the next cycle, and they recover themselves without streamers. (paper)

  10. Escherichia coli biofilms have an organized and complex extracellular matrix structure.

    Science.gov (United States)

    Hung, Chia; Zhou, Yizhou; Pinkner, Jerome S; Dodson, Karen W; Crowley, Jan R; Heuser, John; Chapman, Matthew R; Hadjifrangiskou, Maria; Henderson, Jeffrey P; Hultgren, Scott J

    2013-09-10

    Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. Bacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed by Escherichia coli.

  11. Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms.

    Science.gov (United States)

    Mlynek, Kevin D; Callahan, Mary T; Shimkevitch, Anton V; Farmer, Jackson T; Endres, Jennifer L; Marchand, Mélodie; Bayles, Kenneth W; Horswill, Alexander R; Kaplan, Jeffrey B

    2016-05-01

    Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Adenoid Reservoir for Pathogenic Biofilm Bacteria▿

    Science.gov (United States)

    Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.

    2011-01-01

    Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211