WorldWideScience

Sample records for stream-sediment heavy-mineral-concentrate rock

  1. Regional geochemical maps of the Tonopah 1 degree by 2 degrees Quadrangle, Nevada, based on samples of stream sediment and nonmagnetic heavy-mineral concentrate

    Science.gov (United States)

    Nash, J.T.; Siems, D.F.

    1988-01-01

    This report is part of a series of geologic, geochemical, and geophysical maps of the Tonopah 1° x 2° quadrangle, Nevada, prepared during studies of the area for the Conterminous United States Mineral Assessment Program (CUSMAP). Included here are 21 maps showing the distributions of selected elements or combinations of elements. These regional geochemical maps are based on chemical analyses of the minus-60 mesh (0.25 mm) fraction of stream-sediment samples and the nonmagnetic heavy-mineral concentrate derived from stream sediment. Stream sediments were collected at 1,217 sites. Our geochemical studies of mineralized rock samples provide a framework for evaluating the results from stream sediments.

  2. Comparison of hot hydroxylamine hydrochloride and oxalic acid leaching of stream sediment and coated rock samples as anomaly enhancement techniques

    Science.gov (United States)

    Filipek, L.H.; Chao, T.T.; Theobald, P.K.

    1982-01-01

    A hot hydroxylamine hydrochloride (H-Hxl) extraction in 25% acetic acid is compared with the commonly used oxalic acid extraction as a method of anomaly enhancement for Cu and Zn in samples from two very different metal deposits and climatic environments. Results obtained on minus-80-mesh stream sediments from an area near the Magruder massive sulfide deposit in Lincoln County, Georgia, where the climate is humid subtropical, indicate that H-Hxl enhances the anomaly for Cu by a factor of 2 and for Zn by a factor of 1.5, compared to the oxalic method. Analyses of Fe oxide-coated rock samples from outcrops overlying the North Silver Bell porphyry copper deposit near Tucson, Arizona, where the climate is semi-arid to arid, indicate that both techniques effectively outline the zones of hydrothermal alteration. The H-Hxl extraction can also perform well in high-carbonate or high-clay environments, where other workers have suggested that oxalic acid is not very effective. Therefore, the H-Hxl method is recommended for general exploration use. ?? 1982.

  3. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Rock Springs NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1981-01-01

    This report contains data collected by the Los Alamos Scientific Laboratory (LASL) during a regional geochemical survey for uranium in the Rock Springs National Topographic Map Series (NTMS) quadrangle, southwestern Wyoming, as part of the nationwide hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 397 water and 1794 sediment samples were collected from 1830 locations in the Rock Springs quadrangle of southern Wyoming during the summer of 1976. The average uranium concentration of all water samples is 6.57 ppb and the average sediment uranium concentration is 3.64 ppM. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in the appendices. Uranium/thorium ratios for sediment samples are also included. A sample location overlay (Plate I) at 1:250 000 scale for use in conjunction with the Rock Springs NTMS quadrangle sheet (US Geological Survey, 1954) is provided. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting. Sediments were analyzed for uranium and thorium as well as Al, Sb, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sm, Sc, Ag, Na, Sr, Ta, Tb, Sn, T, W, V, Yb, and Zn. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. These analytical methods are described briefly in the appendix. This report is simply a data release and is intended to make the data available to the DOE and to the public as quickly as possible

  4. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    Science.gov (United States)

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado

  5. Computer analysis to the geochemical interpretation of soil and stream sediment data in an area of Southern Uruguay

    International Nuclear Information System (INIS)

    Spangenberg, J.

    2010-01-01

    In southern Uruguay there are several known occurrences of base metal sulphide mineralization within an area of Precambrian volcanic sedimentary rocks. Regional geochemical stream sediment reconnaissance surveys revealed new polymetallic anomalies in the same stratigraphic zone. Geochemical interpretation of multi-element data from a soil and stream sediment survey carried out in one of these anomalous areas is presented.

  6. Natural radioactivity in stream sediments of Oltet River, Romania

    Science.gov (United States)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the features, the mechanical degradation of the rocks overcomes their chemical decomposition. In the middle part of the river as result of almost abrupt passage between mountain and hilly terrains increases and concentration of radionuclides; effect of large quantities of clastic material deposited by torrents. The mechanical migration of resistant uranium, thorium and

  7. Investigating high zircon concentrations in the fine fraction of stream sediments draining the Pan-African Dahomeyan Terrane in Nigeria

    International Nuclear Information System (INIS)

    Key, Roger M.; Johnson, Christopher C.; Horstwood, Matthew S.A.; Lapworth, Dan J.; Knights, Katherine V.; Kemp, Simon J.; Watts, Michael; Gillespie, Martin; Adekanmi, Michael; Arisekola, Tunde

    2012-01-01

    Sixteen hundred stream sediments (<150 μm fraction) collected during regional geochemical surveys in central and SW Nigeria have high median and maximum concentrations of Zr that exceed corresponding Zr concentrations found in stream sediments collected from elsewhere in the World with similar bedrock geology. X-ray diffraction studies on a sub-set of the analysed stream sediments showed that Zr is predominantly found in detrital zircon grains. However, the main proximal source rocks (Pan-African ‘Older Granites’ of Nigeria and their Proterozoic migmatitic gneiss country rocks) are not enriched in zircon (or Zr). Nevertheless, U–Pb LA-ICP-MS dating with cathodoluminescence imaging on detrital zircons, both from stream sediment samples and underlying Pan-African ‘Older Granites’ confirms a local bedrock source for the stream sediment zircons. A combination of tropical/chemical weathering and continuous physical weathering, both by ‘wet season’ flash flooding and ‘dry season’ unidirectional winds are interpreted to have effectively broken down bedrock silicate minerals and removed much of the resultant clay phases, thereby increasing the Zr contents in stream sediments. The strong correlation between winnowing index (Th/Al) and Zr concentration across the study area support this interpretation. Therefore, ‘anomalous’ high values of Zr, as well as other elements concentrated in resistant ‘heavy’ minerals in Nigeria’s streams may not reflect proximal bedrock concentrations of these elements. This conclusion has important implications for using stream sediment chemistry as an exploration tool in Nigeria for primary metal deposits associated with heavy minerals.

  8. Stream-sediment geochemical exploration for uranium in Narigan area Central Iran

    International Nuclear Information System (INIS)

    Yazdi, M.; Khoshnoodi, K.; Kavand, M.; Ashteyani, A. R.

    2009-01-01

    Uranium deposits of Iran occur mainly in the Central Iran zone. Several uranium deposits have been discovered in this zone. The Narigan area is one of the most important uranium mineralized area in this zone. The uranium bearing sequences in this area are contained in the plutonic to volcanic rocks of Narigan which intruded to the Pre-Cambrian pyroclastics rocks. Plutonic and volcanic rocks are granite, rhyolite and volcanoclastic. Diabasic dykes have been intruded to these igneous rocks. The plutonic and volcanic rocks have been covered by Cretaceous limestones which seem to be youngest the rocks in this area. The aim of our project is to develop a regional exploration strategy for uranium in these igneous rocks. A grid-based sampling was planned following the results of the previous geochemical mapping at a scale of 1:100,000, integrated with geophysical data and alteration zones and outcrop of intrusive rocks. The following results are based on geological, and stream geochemical explorations in 1:20000 scale of this area. During this study 121 samples were collected from the stream sediments of <80 mesh for final sampling. Ten percent of the samples were used for checking laboratories errors. The samples were collected according to conventional methods from 30-40 cm depth of stream sediments. Finally, geochemical and radiometric data were combined and the results introduced 3 anomalies in the Narigan area

  9. Hydrogeochemical and stream sediment reconnaissance basic data for Lawton NTMS quadrangle, Oklahoma; Texas

    International Nuclear Information System (INIS)

    1978-01-01

    Field and laboratory data are presented for 703 groundwater and 782 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Groundwater data indicate that the most promising areas for potential uranium mineralization occur in the Lower Permian units surrounding the granite outcrops of the Wichita Mountains. Waters from the Hennessey and Clearfork Groups and the Garber Sandstone contain the highest uranium values. Elements associated with the uranium are arsenic, boron, barium, molybdenum, sodium, selenium, and vandium. Stream sediment data indicate that the promising areas for potential uranium mineralization occur around the Wichita Mountains where stream sediments are derived from the Lower Permian Post Oak Conglomerate, Hennessey Group, and Garber Sandstone and from the Cambrian igneous rocks. Other areas of interest occur (1) in the western part of the quadrangle where the sediments are derived from rocks of the El Reno Group, and (2) along the southern border of the quadrangle where the sediments are derived from the Wichita Group

  10. Multivariate statistical analysis of stream sediments for mineral resources from the Craig NTMS Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Beyth, M.; McInteer, C.; Broxton, D.E.; Bolivar, S.L.; Luke, M.E.

    1980-06-01

    Multivariate statistical analyses were carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Craig quadrangle, Colorado, to support the National Uranium Resource Evaluation and to evaluate strategic or other important commercial mineral resources. A few areas for favorable uranium mineralization are suggested for parts of the Wyoming Basin, Park Range, and Gore Range. Six potential source rocks for uranium are postulated based on factor score mapping. Vanadium in stream sediments is suggested as a pathfinder for carnotite-type mineralization. A probable northwest trend of lead-zinc-copper mineralization associated with Tertiary intrusions is suggested. A few locations are mapped where copper is associated with cobalt. Concentrations of placer sands containing rare earth elements, probably of commercial value, are indicated for parts of the Sand Wash Basin

  11. Uranium Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana

    Energy Technology Data Exchange (ETDEWEB)

    Broxton, D.E.

    1978-02-01

    The Los Alamos Scientific Laboratory conducted a Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana from early August to mid-October of 1976. A total of 1240 water and 1933 sediment samples were collected from 1994 locations at a nominal density of one location per 10 km/sup 2/. The water samples were collected from streams, wells, and springs; sediment samples were taken at streams and springs. All samples were analyzed at Los Alamos for total uranium by fluorometry or delayed-neutron counting. The uranium content of water samples ranges from below the detection limit (less than 0.3 ppB) to 45.30 ppB and has a mean value of 1.40 ppB. The uranium content of the sediment samples ranges between 0.20 and 206.80 ppM and averages 6.12 ppM. The chosen uranium anomaly threshold value was 7 ppB for surface waters (streams), 9 ppB for groundwaters (wells and springs), and 25 ppM for all sediment samples. The study area consists of the following lithologic groups: Precambrian basement complex, Precambrian Belt metasediments, Paleozoic and Mesozoic shelf sediments, Cretaceous and early Tertiary volcanic and plutonic rocks, Laramide orogenic clastic sediments, and middle to late Tertiary volcanic rocks and intermontane basin sediments. Most of the anomalous water and sediment samples with well-developed dispersion trains occur in areas underlain by or adjacent to silicic plutonic rocks of the Idaho and Boulder batholiths. These anomalies may indicate the presence of uraniferous veins and pegmatites similar to those already known to exist in the area. Fewer anomalous water samples occur in areas underlain by Precambrian basement complex and Tertiary basin fill.

  12. Uranium Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1978-02-01

    The Los Alamos Scientific Laboratory conducted a Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana from early August to mid-October of 1976. A total of 1240 water and 1933 sediment samples were collected from 1994 locations at a nominal density of one location per 10 km 2 . The water samples were collected from streams, wells, and springs; sediment samples were taken at streams and springs. All samples were analyzed at Los Alamos for total uranium by fluorometry or delayed-neutron counting. The uranium content of water samples ranges from below the detection limit (less than 0.3 ppB) to 45.30 ppB and has a mean value of 1.40 ppB. The uranium content of the sediment samples ranges between 0.20 and 206.80 ppM and averages 6.12 ppM. The chosen uranium anomaly threshold value was 7 ppB for surface waters (streams), 9 ppB for groundwaters (wells and springs), and 25 ppM for all sediment samples. The study area consists of the following lithologic groups: Precambrian basement complex, Precambrian Belt metasediments, Paleozoic and Mesozoic shelf sediments, Cretaceous and early Tertiary volcanic and plutonic rocks, Laramide orogenic clastic sediments, and middle to late Tertiary volcanic rocks and intermontane basin sediments. Most of the anomalous water and sediment samples with well-developed dispersion trains occur in areas underlain by or adjacent to silicic plutonic rocks of the Idaho and Boulder batholiths. These anomalies may indicate the presence of uraniferous veins and pegmatites similar to those already known to exist in the area. Fewer anomalous water samples occur in areas underlain by Precambrian basement complex and Tertiary basin fill

  13. Stream sediment geochemical surveys for uranium

    International Nuclear Information System (INIS)

    Price, V.; Ferguson, R.B.

    1979-01-01

    Stream sediment is more universally available than ground and surface waters and comprises the bulk of NURE samples. Orientation studies conducted by the Savannah River Laboratory indicate that several mesh sizes can offer nearly equivalent information. Sediment is normally sieved in the field to pass a 420-micrometer screen (US Std. 40 mesh) and that portion of the dried sediment passing a 149-micrometer screen (US Std. 100 mesh) is recovered for analysis. Sampling densities usually vary with survey objectives and types of deposits anticipated. Principal geologic features that can be portrayed at a scale of 1:250,000, such as major tectonic units, plutons, and pegmatite districts, are readily defined using a sampling density of 1 site per 5 square miles (13 km 2 ). More detailed studies designed to define individual deposits require greater sampling density. Analyses for elements known to be associated with uranium in a particular mineral host may be used to estimate the relative proportion of uranium in several forms. For example, uranium may be associated with thorium and cerium in monazite, and with zirconium and hafnium in zircon. Readily leachable uranium may be adsorbed to trapped in oxide coatings on mineral particles. Soluble or mobile uranium may indicate an ore source, whereas uranium in monazite or zircon is not likely to be economically attractive. Various schemes may be used to estimate for form of uranium in a sample. Simple elemental ratios are a useful first approach. Multiple ratios and subtractive formulas empirically designed to account for the presence of particular minerals are more useful. Residuals calculated from computer-derived regression equations or factor scores appear to have the greatest potential for locating uranium anomalies

  14. Quantifying trail erosion and stream sedimentation with sediment tracers

    Science.gov (United States)

    Mark S. Riedel

    2006-01-01

    Abstract--The impacts of forest disturbance and roads on stream sedimentation have been rigorously investigated and documented. While historical research on turbidity and suspended sediments has been thorough, studies of stream bed sedimentation have typically relied on semi-quantitative measures such as embeddedness or marginal pool depth. To directly quantify the...

  15. Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb – Zn Ore Mining. Areas of Ebonyi ... produced both for local consumption and also for food supplies to other .... of deionised water using a pH-meter (Aqualytica. Model pH 17).

  16. Heavy mineral concentration from oil sand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chachula, F.; Erasmus, N. [Titanium Corp. Inc., Regina, SK (Canada)

    2008-07-01

    This presentation described a unique technique to recover heavy minerals contained in the froth treatment tailings produced by oil sand mining extraction operations in Fort McMurray, Alberta. In an effort to process waste material into valuable products, Titanium Corporation is developing technology to recover heavy minerals, primarily zircon, and a portion of bitumen contained in the final stage of bitumen processing. The process technology is being developed to apply to all mined oil sands operations in the Fort McMurray region. In 2004, Titanium Corporation commissioned a pilot research facility at the Saskatchewan Research Council to test dry oil sands tailings. In 2005, a bulk sampling pilot plant was connected to the fresh oil sands tailings pipeline on-site in Fort McMurray, where washed sands containing heavy minerals were processed at a pilot facility. The mineral content in both deposited tailings and fresh pipeline tailings was assessed. Analysis of fresh tailings on a daily basis identified a constant proportion of zircon and higher levels of associated bitumen compared with the material in the deposited tailings. The process flow sheet design was then modified to remove bitumen from the heavy minerals and concentrate the minerals. A newly modified flotation process was shown to be a viable processing route to recover the heavy minerals from froth treatment tailings. 8 refs., 9 tabs., 12 figs.

  17. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons

  18. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    International Nuclear Information System (INIS)

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.; Wolf, D.A.

    1981-01-01

    The purpose of the Date Creek Supplement is to characterize the chemistry of sediment samples representing stream basins in which the Anderson Mine (and related prospects) occur. Once characterized, the chemistry is then used to delineate other areas within the Date Creek Basin where stream sediment chemistry resembles that of the Anderson Mine area. This supplementary report examines more closely the data from sediment samples taken in 239 stream basins collected over a total area of approximately 900 km 2 (350 mi 2 ). Cluster and discriminant analyses are used to characterize the geochemistry of the stream sediment samples collected in the Date Creek Basin. Cluster and discriminant analysis plots are used to delineate areas having a potential for uranium mineralization similar to that of the Anderson Mine

  19. Spectrochemical determination of beryllium and lithium in stream sediments

    International Nuclear Information System (INIS)

    Gallimore, D.L.; Hues, A.D.; Palmer, B.A.; Cox, L.E.; Simi, O.R.; Bieniewski, T.M.; Steinhaus, D.W.

    1979-11-01

    A spectrochemical method was developed to analyze 200 or more samples of stream sediments per day for beryllium and lithium. One part of ground stream sediment is mixed with two parts graphite-SiO 2 buffer, packed into a graphite electrode, and excited in a direct-current arc. The resulting emission goes to a 3.4-m, direct-reading, Ebert spectrograph. A desk-top computer system is used to record and process the signals, and to report the beryllium and lithium concentrations. The limits of detection are 0.2 μg/g for beryllium and 0.5 μg/g for lithium. For analyses of prepared reference materials, the relative standard deviations were 16% for determining 0.2 to 100 μg/g of beryllium and 15% for determining 0.5 to 500 μg/g of lithium. A correction is made for vanadium interference

  20. Hydrogeochemical and stream-sediment reconnaissance program at LLL

    International Nuclear Information System (INIS)

    Tinney, J.F.

    1977-03-01

    The Lawrence Livermore Laboratory (LLL) is conducting a Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR) survey in support of ERDA's National Uranium Resource Evaluation (NURE) program. Included in the LLL portion of this survey are seven western states (Arizona, California, Idaho, Nevada, Oregon, Utah, and Washington). Similar surveys are being carried out in the rest of the continental United States, including Alaska, as part of a systematic nationwide study of the distribution of uranium in surface water, groundwater, and stream sediment. The overall objective is to identify favorable areas for uranium exploration. This paper describes the program being conducted by LLL to complete our portion of the survey by 1981. The topics discussed are geology and sample acquisition, sample preparation and analysis, and data-base management

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Watertown NTMS Quadrangle, South Dakota; Minnesota

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey of the Watertown Quadrangle are reported. Field and laboratory data are presented for 711 groundwater and 603 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that high uranium concentrations are derived predominantly from glacial aquifers of variable water composition located on the Coteau des Prairies. Elements associated with high uranium values in these waters include barium, calcium, copper, iron, magnesium, selenium, sulfate, and total alkalinity. Low uranium values were observed in waters originating from the Cretaceous Dakota sandstone whose water chemistry is characterized by high concentrations of boron, sodium, and chloride. Stream sediment data indicate that high uranium concentrations are scattered across the glacial deposits of the Coteau des Prairies. A major clustering of high uranium values occurs in the eastern portion of the glaciated quadrangle and is associated with high concentrations of selenium, lithium, iron, arsenic, chromium, and vanadium. The sediment data suggest that the drift covering the Watertown Quadrangle is compositionally homogeneous, although subtle geochemical differences were observed as a result of localized contrasts in drift source-rock mineralogy and modification of elemental distributions by contemporaneous and postglacial hydrologic processes

  2. Petrographic and geochemical characteristics of organic matter associated with stream sediments in Trail area British Columbia, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, J.; Goodarzi, F.; Sanei, H.; Stasiuk, L.D. [Environmental Study Group, Geological Survey of Canada-Calgary, 3303 33rd Street NW, Calgary, Alberta (Canada T2A 2A7); Duncan, W. [Teck Cominco Metals Ltd., Trail, British Columbia (Canada V1R 4L8)

    2006-01-03

    Fifty-six samples of stream sediments from 12 creeks in the vicinity of Trail, British Columbia, Canada were examined to determine their origin, characterize their organic matter and their relation to natural/geogenic and anthropogenic sources. The samples were initially screened by Rock-Eval(R) 6 pyrolysis for their TOC, HI, and OI contents and then examined by both reflected (polarized) and fluorescent light microscopy. It was found that organic matter in stream sediments is mostly from natural/biological sources from local vegetation, such as woody tissue, suberin, spores, and pollen, as well as altered natural/biological input from char formed due to forest fires. Anthropogenic organic matter, mostly coke particles, was also found in the stream sediments. The coke particles have anisotropic properties with medium grained texture formed from medium volatile bituminous coal. The occurrence of coke particles is limited to Ryan Creek located close to an area were some small gold, nickel, and lead smelting operations previously occurred. There is no evidence to indicate that the coke particles found in the creek are emitted from the lead and zinc smelter currently in operation in the area. There are no coal-bearing strata in the area that may have a direct input of coal fragments in any of the creeks. (author)

  3. Geochemical mapping using stream sediments in west-central Nigeria: Implications for environmental studies and mineral exploration in West Africa

    International Nuclear Information System (INIS)

    Lapworth, Dan J.; Knights, Katherine V.; Key, Roger M.; Johnson, Christopher C.; Ayoade, Emmanuel; Adekanmi, Michael A.; Arisekola, Tunde M.; Okunlola, Olugbenga A.; Backman, Birgitta; Eklund, Mikael; Everett, Paul A.; Lister, Robert T.; Ridgway, John; Watts, Michael J.; Kemp, Simon J.; Pitfield, Peter E.J.

    2012-01-01

    This paper provides an overview of regional geochemical mapping using stream sediments from central and south-western Nigeria. A total of 1569 stream sediment samples were collected and 54 major and trace elements determined by ICP-MS and Au, Pd and Pt by fire assay. Multivariate statistical techniques (e.g., correlation analysis and principal factor analysis) were used to explore the data, following appropriate data transformation, to understand the data structure, investigate underlying processes controlling spatial geochemical variability and identify element associations. Major geochemical variations are controlled by source geology and provenance, as well as chemical weathering and winnowing processes, more subtle variations are a result of land use and contamination from anthropogenic activity. This work has identified placer deposits of potential economic importance for Au, REE, Ta, Nb, U and Pt, as well as other primary metal deposits. Areas of higher As and Cr (>2 mg/kg and >70 mg/kg respectively) are associated with Mesozoic and younger coastal sediments in SW Nigeria. High stream sediment Zr concentrations (mean >0.2%), from proximal zircons derived from weathering of basement rocks, have important implications for sample preparation and subsequent analysis due to interferences. Associated heavy minerals enriched in high field strength elements, and notably rare earths, may also have important implications for understanding magmatic processes within the basement terrain of West Africa. This study provides important new background/baseline geochemical values for common geological domains in Nigeria (which extend across other parts of West Africa) for assessment of contamination from urban/industrial land use changes and mining activities. Regional stream sediment mapping is also able to provide important new information with applications across a number of sectors including agriculture, health, land use and planning.

  4. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    International Nuclear Information System (INIS)

    Wagoner, J.L.

    1979-02-01

    Wet and dry sediments were collected throughout the 18,500-km 2 arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40 ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data

  5. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis

    Science.gov (United States)

    Afzal, Peyman; Mirzaei, Misagh; Yousefi, Mahyar; Adib, Ahmad; Khalajmasoumi, Masoumeh; Zarifi, Afshar Zia; Foster, Patrick; Yasrebi, Amir Bijan

    2016-07-01

    Recognition of significant geochemical signatures and separation of geochemical anomalies from background are critical issues in interpretation of stream sediment data to define exploration targets. In this paper, we used staged factor analysis in conjunction with the concentration-number (C-N) fractal model to generate exploration targets for prospecting Cr and Fe mineralization in Balvard area, SE Iran. The results show coexistence of derived multi-element geochemical signatures of the deposit-type sought and ultramafic-mafic rocks in the NE and northern parts of the study area indicating significant chromite and iron ore prospects. In this regard, application of staged factor analysis and fractal modeling resulted in recognition of significant multi-element signatures that have a high spatial association with host lithological units of the deposit-type sought, and therefore, the generated targets are reliable for further prospecting of the deposit in the study area.

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Raton NTMS quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Morgan, T.L.; Broxton, D.E.

    1978-10-01

    A total of 824 water and 1340 sediment samples were collected from 1844 sample locations in the Raton NTMS quadrangle and analyzed for uranium. Samples were collected at a nominal density of one per 10 km 2 . Notably high uranium values were found in both water and sediment samples collected from tributaries of Costilla Creek in the Culebra Range. Uranium contents in stream waters from this area range from individual high values of 145.1 and 76.1 to values slightly higher than the background concentrations in adjacent areas. Stream sediments range from 4.1 to 202.2 ppM uranium and average 30 ppM. The Culebra Range is a favorable setting for hard-rock type uranium mineralization. The uraniferous water and sediment samples call attention to this area as a possible exploration target. Numerous groups of ground waters with high uranium concentrations come from locations along the Cimarron and Sierra Grande Arches in the eastern part of the quadrangle. The Cimarron Arch is the locus of the largest group of uraniferous ground waters, with concentrations ranging between 5.2 and 103.3 ppB. Aquifers from which these samples were derived include the Fort Hays and Smoky Hill members of the Niobrara formation, the Pierre shale, and Quaternary surficial deposits. Most of the uraniferous ground waters along the Sierra Grande Arch occur in small, isolated groups that probably represent minor, local sources of uranium. Carbonate complexing of uranium may contribute to the high uranium values seen in these samples. Stream sediment samples with high uranium concentrations (10.1 to 51.4 ppM) were found in several drainages from the western front of the Taos Range. One group of locations providing high-uranium sediments is near known uranium occurrence in the vicinity of Cabresto and Latir Peaks. The western Taos Range is a favorable setting for hard rock uranium mineralization and may also warrant further study

  7. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    International Nuclear Information System (INIS)

    De Bruin, D.

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab

  8. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    Energy Technology Data Exchange (ETDEWEB)

    De Bruin, D

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab.

  9. Stream sediment detailed geochemical survey for Marysvale, Utah

    International Nuclear Information System (INIS)

    Butz, T.R.; Vreeland, J.L.; Bard, C.S.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Marysvale detailed geochemical survey are reported. Field and laboratory data are presented for 397 stream sediment samples and 160 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Stream sediments containing significant amounts of soluble uranium (greater than or equal to 16.93 ppM) occur in numerous areas, the most prevalent being in the western portion of the survey area, within and surrounding the Mount Belknap Caldera. Thorium, beryllium, cerium, manganese, molybdenum, niobium, potassium, yttrium, zinc, and zirconium occur in concentrations greater than or equal to 84th percentile in many sediment samples taken from within and surrounding the Mount Belknap Caldera. The uranium and related variables are associated with highly silicic intrusions and extrusions of the Mount Belknap Volcanics, as well as hydrothermal activity which has occurred in the Marysvale volcanic field

  10. Geochemical provenance of anomalous metal concentrations in stream sediments in the Ashton 1:250,000 quadrangle, Idaho/Montana/Wyoming

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1982-01-01

    Stream-sediment samples from 1500 sites in the Ashton, Idaho/Montana/Wyoming 1:250,000 quadrangle were analyzed for 45 elements. Almost all samples containing anomalous concentrations (exceeding one standard deviation above the mean value of any element) were derived from drainage basins underlain by Quaternary rhyolite, Tertiary andesite or Precambrian gneiss and schist. Aluminum, barium, calcium, cobalt, iron, nickel, magnesium, scandium, sodium, strontium, and vanadium have no andesite provenance. Most anomalous manganese, europium, hafnium, and zirconium values were derived from Precambrian rocks. All other anomalous elemental concentrations are related to Quaternary rhyolite. This study demonstrates that multielemental stream-sediment analyses can be used to infer the provenance of stream sediments. Such data are available for many parts of the country as a result of the National Uranium Resource Evaluation. This study suggests that stream-sediment samples collected in the Rocky Mountains can be used either as pathfinders or as direct indicators to select targets for mineral exploration for a host of metals

  11. Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Butz, T.R.; Dean, N.E.; Bard, C.S.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-05-31

    Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at the surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.

  12. Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming

    International Nuclear Information System (INIS)

    Butz, T.R.; Dean, N.E.; Bard, C.S.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at the surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines

  13. Process recognition in multi-element soil and stream-sediment geochemical data

    Science.gov (United States)

    Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.

    2009-01-01

    Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on

  14. Review of samples of tailings, soils and stream sediment adjacent to and downstream from the Ruth Mine, Inyo County, California

    Science.gov (United States)

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Ruth Mine and mill are located in the western Mojave Desert in Inyo County, California (fig. 1). The mill processed gold-silver (Au-Ag) ores mined from the Ruth Au-Ag deposit, which is adjacent to the mill site. The Ruth Au-Ag deposit is hosted in Mesozoic intrusive rocks and is similar to other Au-Ag deposits in the western Mojave Desert that are associated with Miocene volcanic centers that formed on a basement of Mesozoic granitic rocks (Bateman, 1907; Gardner, 1954; Rytuba, 1996). The volcanic rocks consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions (fig. 2) that were emplaced into Mesozoic silicic intrusive rocks (Troxel and Morton, 1962). The Ruth Mine is on Federal land managed by the U.S. Bureau of Land Management (BLM). Tailings from the mine have been eroded and transported downstream into Homewood Canyon and then into Searles Valley (figs. 3, 4, 5, and 6). The BLM provided recreational facilities at the mine site for day-use hikers and restored and maintained the original mine buildings in collaboration with local citizen groups for use by visitors (fig. 7). The BLM requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure arsenic (As) and other geochemical constituents in soils and tailings at the mine site and in stream sediments downstream from the mine in Homewood Canyon and in Searles Valley (fig. 3). The request was made because initial sampling of the site by BLM staff indicated high concentrations of As in tailings and soils adjacent to the Ruth Mine. This report summarizes data obtained from field sampling of mine tailings and soils adjacent to the Ruth Mine and stream sediments downstream from the mine on June 7, 2009. Our results permit a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  15. Geochemistry of stream sediments, water and U-Th radiation anomaly around Neyshabour Fyrouzeh mine and its environmental impact on people living nearby villages

    International Nuclear Information System (INIS)

    Karimpour, M. H.; Malekzadeh Shafaroudi, A.

    2013-01-01

    Fyrouzeh mine is located about 55 km northwest of Neyshabour in the Province of Khorasan Razavi. The exposed rocks are mainly volcanic and intrusive with intermediate composition and all of them are altered. This mine is the first type of IOCG recognized in Iran with Cu-Au-LREE-U. Besides Cu-Au-U, this area shows As, Mo, Zn and Th anomalies. Geochemical evaluation of stream sediment with regard to environmental concern revealed high Cu anomalies. Rocks show high uranium anomalies (up to 35 ppm) higher than the standard values (1 ppm). Airborne radiometric maps show high U and Th anomalies in a broad area. Ag, Hg and Mn show anomalies within the stream sediments. Cu, Pb, Zn, Ag, Ni, Mn, Sb, Hg, and U content of both drinking and agricultural water are fortunately within the range of standard, only two samples have higher As content (more than 10 ppb). High level of U-Th radiation and contamination of stream sediment with respect to Cu, Hg, Ag, Mn and agricultural water to As are important environmental issues and people health therefore they need to be study.

  16. Hydrogeochemical and stream sediment reconnaissance basic data for Emory Peak NTMS Quadrangle, Texas. Uranium Resource Evaluation Project

    International Nuclear Information System (INIS)

    1978-01-01

    Results of a reconnaissance geochemical survey of the Emory Peak Quadrangle, Texas, are reported. Field and laboratory data are presented for 193 groundwater samples and 491 stream sediment samples. Statistical and areal distributions of uranium and other possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and the pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. In groundwater, uranium concentrations above the 85th percentile outline an area in the northwest portion of the quadrangle which is dominated by tertiary tuffaceous ash beds which disconformably overlie cretaceous units. The relationship between uranium and related variables indicates this area appears to have the best potential for uranium mineralization within the quadrangle. Stream sediment data indicate four areas that appear to be favorable for potential uranium mineralization: the Upper Green Valley-Paradise Valley region, the Terlingua Creek-Solitario region, an area in the vicinity of Big Bend National Park, and an area east of long. 102 0 15' W. In the first three of the preceding areas, soluble uranium is associated with tertiary igneous rocks. In the fourth area, soluble uranium is present in carbonate-dominant cretaceous strata

  17. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.L.

    1979-02-01

    Wet and dry sediments were collected throughout the 18,500-km/sup 2/arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40 ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data.

  18. Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet.

    Science.gov (United States)

    Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan

    2013-12-01

    Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study.

  19. Occurrence of Cr-bearing beryl in stream sediment from Eskişehir, NW Turkey

    Directory of Open Access Journals (Sweden)

    Hülya Erkoyun

    2016-07-01

    Full Text Available Beryl crystals are found within stream sediments transecting schists in the northeast of Eskişehir, western Anatolia. This paper studied the Eskişehir beryl crystals with optical microscopy, scanning electron microscopy (SEM-EDX, infrared spectroscopy (IR and geochemical analyses. Beryl is accompanied by garnet, glaucophane, quartz, epidote, muscovite and chlorite in the stream sediments. The crystals are euhedral emerald (green gem beryl and light bluishgreen aquamarine, with ideal sharp IR bands. Wet chemical analysis of Eskişehir beryl yielded 61.28% SiO2, 15.13% Al2O3, 12.34% BeO, 0.18% Cr2O3, 1.49% MgO, 1.69% Na2O, 0.98% Fe2O3, and 0.008% V2O3, resulting in the formula (Al1.75Cr0.01Mg0.22Fe0.08(Be2.90Si6.00(Na0.32O18. Large Ion Lithophile Elements (LILE (barium, strontium, some transition metals (cobalt, except nickel and High Field Strength Elements (HFSE (niobium, zirconium, and yttrium in stream sediments that are associated with beryl exhibited low content about metamorphic rocks. Beryl formation appears to be controlled by upthrust faults and fractures that juxtaposed them with Cr-bearing ophiolitic units and a regime of metasomatic reactions. Such beryl crystals have also been found in detrital sediments that are derived from the schists.   Presencia de berilios relacionados con Cromo en corrientes sedimentarias de Eskisehir, noroeste de Turquía   Resumen Cristales de berilo fueron encontrados en sedimentos de corrientes que atraviesan en esquistos en el noreste de Eskisehir, al oeste de Anatolia. En este artículo se presentan resultados sobre el estudio de los cristales de berilio de Eskisehir con microscopio electrónico de barrido (SEM-EDX, del inglés Scanning Electron Microscopy, espectroscopia infrarroja y análisis geoquímicos. El berilio estaba acompañado de granate, glaucofana, cuarzo, epidota, moscovita, y clorito en las corrientes sedmientarias. Los cristales son esmeraldas de formas definidas (gema verde de

  20. Tracing the sources of stream sediments by Pb isotopes and trace elements

    International Nuclear Information System (INIS)

    Kyung-Seok Ko; Jae Gon Kim; Kyoochul Ha; Kil Yong Lee

    2012-01-01

    The objective of this research is to trace the sources of stream sediments in a small watershed influenced by anthropogenic and lithogenic origins identified by the spatial distributions and temporal variations of stream sediments using geochemical interpretation of the stable and radiogenic isotopes, major components, and heavy metals data and principal component analysis. To know the effects of both present and past mining, the stream sediments were sampled at the stream tributaries and sediment coring work. The spatial distributions of heavy metals clearly showed the effects of Cu and Pb-Zn mineralization zones at the site. Anthropogenic Pb was elevated at the downstream area by the stream sediments due to an active quarry. The results of principal components analysis also represent the effects of the stream sediments origins, including anthropogenic wastes and the active quarry and lithogenic sediment. Anomalous Cu, indicating the effect of past Guryong mining, was identified at the deep core sediments of 1.80-5.05 m depth. The influence of active quarry was shown in the recently deposited sediments of 210 Pb and stable Pb and Sr isotopes. This study suggests that the chemical studies using radiogenic and stable isotopes and heavy metals and multivariate statistical method are useful tools to discriminate the sources of stream sediments with different origins. (author)

  1. Hydrogeochemical and Stream Sediment Reconnaissance Program in central United States. Semiannual progress report, October 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Arendt, J.W.

    1979-01-01

    Basic data reports were open filed for eight NTMS quadrangles during the reporting period: Sherman, Houston, Ardmore, Emory Peak, Presidio, Enid, Austin, and Lawton. Basic data reports, which have been prepared and are in the process of being open filed, include Wichita, St. Cloud, Ashland, and Clinton. Results indicate that the most favorable areas for the occurrence of uranium mineralization in the open filed quadrangles are as follows: (1) Austin Quadrangle - Whitsett, Catahoula, Oakville, and Fleming Formations (Tertiary). (2) Lawton Quadrangle - Hennessey and Clearfork Groups, Garber Sandstone, and Post Oak Conglomerate (Lower Permian); and El Reno Group (Upper Permian). (3) Emory Peak Quadrangle - Tertiary tuffaceous ash beds and other igneous rocks, carbonate-dominant Cretaceous strata. During the period, approximately 13,886 samples of groundwater and stream sediments were collected by the URE Project. Approximately 20,738 samples were analyzed by the URE Laboratory

  2. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    Science.gov (United States)

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  3. Effectiveness of stream-sediment sampling along the Rio Ojo Caliente, New Mexico

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.

    1977-01-01

    During 1976 a detailed geochemical study was conducted of the water and stream sediments in the tributaries of the Rio Ojo Caliente above the USGS gaging station 4 km below La Madera to determine: (1) the source of the anomaly in the water and (2) why the stream sediment samples did not contain a corresponding anomaly. The low uranium content of the stream sediments from these high uranium waters can be explained by (1) the presence of a ground water source for the uranium and (2) insufficient time for the uranium in the water to be adsorbed onto the sediments. Although a stream sediment anomaly in the streams containing high uranium waters can not be established with a size fraction less than 150 μm, enough uranium has been adsorbed by the fine fraction that a small local anomaly can be outlined using only the fraction size less than 90 μm. Thus, because adsorption appears to be a major control on the uranium in the fine fraction and detrital minerals control the uranium in the coarse fraction, if it is assumed that buried deposits are of prime importance because most surface deposits have been recognized, then sampling should be restricted to the fine fraction (less than 90 μm). Nevertheless, in a case where ground water is the contributing source for uranium, as was shown above by the low anomalous uranium values, even in the fine fraction, stream sediment sampling alone is not an effective technique for detecting uranium anomalies. This emphasizes the necessity of water sampling in conjunction with stream-sediment sampling

  4. FORTRAN computer programs to process Savannah River Laboratory hydrogeochemical and stream-sediment reconnaissance data

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; D'Andrea, R.F. Jr.

    1980-03-01

    FORTRAN computer programs have been written to read, edit, and reformat the hydrogeochemical and stream-sediment reconnaissance data produced by Savannah River Laboratory for the National Uranium Resource Evaluation program. The data are presorted by Savannah River Laboratory into stream sediment, ground water, and stream water for each 1 0 x 2 0 quadrangle. Extraneous information is eliminated, and missing analyses are assigned a specific value (-99999.0). Negative analyses are below the detection limit; the absolute value of a negative analysis is assumed to be the detection limit

  5. Analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Motooka, J.M.; Adrian, B.M.; Church, S.E.; McDougal, C.M.; Fife, J.B.

    1989-01-01

    A U.S. Geological Survey report is presented giving analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska

  6. Environmental Risk Assessment Based on High-Resolution Spatial Maps of Potentially Toxic Elements Sampled on Stream Sediments of Santiago, Cape Verde

    Directory of Open Access Journals (Sweden)

    Marina M. S. Cabral Pinto

    2014-10-01

    Full Text Available Geochemical mapping is the base knowledge to identify the regions of the planet with critical contents of potentially toxic elements from either natural or anthropogenic sources. Sediments, soils and waters are the vehicles which link the inorganic environment to life through the supply of essential macro and micro nutrients. The chemical composition of surface geological materials may cause metabolic changes which may favor the occurrence of endemic diseases in humans. In order to better understand the relationships between environmental geochemistry and public health, we present environmental risk maps of some harmful elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn in the stream sediments of Santiago, Cape Verde, identifying the potentially harmful areas in this island. The Estimated Background Values (EBV of Cd, Co, Cr, Ni and V were found to be above the Canadian guidelines for any type of use of stream sediments and also above the target values of the Dutch and United States guidelines. The Probably Effect Concentrations (PEC, above which harmful effects are likely in sediment dwelling organisms, were found for Cr and Ni. Some associations between the geological formations of the island and the composition of stream sediments were identified and confirmed by descriptive statistics and by Principal Component Analysis (PCA. The EBV spatial distribution of the metals and the results of PCA allowed us to establish relationships between the EBV maps and the geological formations. The first two PCA modes indicate that heavy metals in Santiago stream sediments are mainly originated from weathering of underlying bedrocks. The first metal association (Co, V, Cr, and Mn; first PCA mode consists of elements enriched in basic rocks and compatible elements. The second association of variables (Zn and Cd as opposed to Ni; second PCA mode appears to be strongly controlled by the composition of alkaline volcanic rocks and pyroclastic rocks. So, the

  7. Characterisation of heavy metal-bearing phases in stream sediments of the Meza River Valley, Slovenia, by means of SEM/EDS analysis

    International Nuclear Information System (INIS)

    Miler, M; Gosar, M

    2010-01-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Mez'a River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  8. Characterisation of heavy metal-bearing phases in stream sediments of the Meža River Valley, Slovenia, by means of SEM/EDS analysis

    Science.gov (United States)

    Miler, M.; Gosar, M.

    2010-02-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Meža River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  9. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  10. Hydrogeochemical and stream sediment reconnaissance basic data for Milbank NTMS Quadrangle, Minnesota; North Dakota; South Dakota

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey are reported for the Milbank Quadrangle, Minnesota; North Dakota; South Dakota. Statistical data and areal distributions for uranium and uranium-related variables are presented for 662 groundwater and 319 stream sediment samples. Also included is a brief discussion on location and geologic setting

  11. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Fay, W.M.; Sargent, K.A.; Cook, J.R.

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation

  12. Uranium hydrogeochemical and stream sediment reconnaissance of the Valdez NTMS Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Valdez NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System (GJOIS) at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples.

  13. Hydrogeochemical and stream sediment sampling for uranium in the sandstone environment

    International Nuclear Information System (INIS)

    Wenrich, K.J.

    1985-01-01

    Sandstone terranes commonly host uranium occurrences in the western United States. In addition, because sedimentary terranes, particularly shales and immature, not well cemented sandstone, contribute more sediment and soluble material than do plutonic, volcanic, or metamorphic terranes they are an excellent regime for hydrogeochemical and stream-sediment prospecting. Because of higher conductivity, and hence higher uranium content, of waters draining such environments the sampling need not be as precise nor the analytical detection limit as low as in other terranes to yield a successful survey. Nevertheless, reasonable preparation and care of the samples is recommended: (1) The water samples should be filtered through 0.45 μm membranes and acidified to a pH of less than 1. (2) Because the adsorption of uranium by organic material is so significant it is recommended that the reasonable finest stream-sediment fraction, 4 , conductivity, etc.) are useful in the data reduction towards the elimination of false anomalies. (author)

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Healy NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Healy NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements multivariate statistical analyses have been included

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Seldovia NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Seldovia NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes quadrangle, Alaska, are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and Laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  19. Hydrogeochemical and stream sediment reconnaissance basic data for Dallas NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey of the Dallas Quadrangle, Texas are reported. Field and laboratory data are presented for 284 groundwater and 545 stream sediment samples. Statistical and areal distribution plots of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided. Groundwater produced from the Navarro Group, Neylandville Formation, Marlbrook Marl, and the Glen Rose and Twin Mountains Formations exhibit anomalous uranium (> 9.05 ppB) and specific conductance (> 1871 μmhos/cm) values. The anomalies represent a southern extension of a similar trend observed in the Sherman Quadrangle, K/UR-110. Stream sediments representing the Eagle Ford Group and Woodbine Formation exhibit the highest concentrations of total and hot-acid-soluble uranium and thorium of samples collected in the Dallas Quadrangle. The U/TU value indicates that > 80% of this uranium is present in a soluble form

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, may field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  1. Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Q. Cheng

    2010-10-01

    Full Text Available This contribution introduces a fractal filtering technique newly developed on the basis of a spectral energy density vs. area power-law model in the context of multifractal theory. It can be used to map anisotropic singularities of geochemical landscapes created from geochemical concentration values in various surface media such as soils, stream sediments, tills and water. A geochemical landscape can be converted into a Fourier domain in which the spectral energy density is plotted against the area (in wave number units, and the relationship between the spectrum energy density (S and the area (A enclosed by the above-threshold spectrum energy density can be fitted by power-law models. Mixed geochemical landscape patterns can be fitted with different S-A power-law models in the frequency domain. Fractal filters can be defined according to these different S-A models and used to decompose the geochemical patterns into components with different self-similarities. The fractal filtering method was applied to a geochemical dataset from 7,349 stream sediment samples collected from Gejiu mineral district, which is famous for its word-class tin and copper production. Anomalies in three different scales were decomposed from total values of the trace elements As, Sn, Cu, Zn, Pb, and Cd. These anomalies generally correspond to various geological features and geological processes such as sedimentary rocks, intrusions, fault intersections and mineralization.

  2. Mortandad Canyon: Elemental concentrations in vegetation, streambank soils, and stream sediments - 1979

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Gladney, E.S.

    1997-06-01

    In 1979, stream sediments, streambank soils, and streambank vegetation were sampled at 100 m intervals downstream of the outfall of the TA-50 radioactive liquid waste treatment facility in Mortandad Canyon. Sampling was discontinued at a distance of 3260 m at the location of the sediment traps in the canyon. The purpose of the sampling was to investigate the effect of the residual contaminants in the waste treatment facility effluent on elemental concentrations in various environmental media

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Dickinson NTMS Quadrangle, North Dakota

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dickinson Quadrangle, North Dakota are reported. Field and laboratory data are presented for 544 groundwater and 554 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Interpretation of the groundwater data indicates that scattered localities in the central portion of the quadrangle appear most promising for uranium mineralization. High values of uranium in this area are usually found in waters of the Sentinel Butte and Tongue River Formations. Uranium is believed to be concentrated in the lignite beds of the Fort Union Group, with concentrations increasing with proximity to the pre-Oligocene unconformity. Stream sediment data indicate high uranium values distributed over the central area of the quadrangle. Uranium in stream sediments does not appear to be associated with any particular geologic unit and is perhaps following a structural trend

  4. Hydrogeochemical and stream sediment reconnaissance basic data for Seguin NTMS quadrangle, Texas

    International Nuclear Information System (INIS)

    1978-01-01

    Results of a reconnaissance geochemical survey of the Sequin Quadrangle, Texas are reported. Field and laboratory data are presented for 848 groundwater, 950 stream sediment, and 406 stream water samples. Statistical and areal distributions of uranium and other possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that uranium concentrations above the 85th percentile occur along several northeast-southwest trends paralleling the regional strike of the major formations located within the survey area. The stream sediment data indicate that uranium is associated with heavy and/or resistate minerals in the Carrizo Sand and certain members of the Claiborne Group. Soluble uranium is primarily associated with the Cretaceous Formations, the Whitsett and Catahoula Formations, and sections of the Oakville and Fleming Formations. Stream water data corroborate well with both groundwater and stream sediment data. Anomalous values for uranium and associated pathfinder elements indicate that the Whitsett and Catahoula Formations and sections of the Oakville and Fleming Formations are potentially favorable for uranium mineralization. Anomalous values for certain pathfinder elements also occur in basins draining from the Beaumont Formation and may warrant further investigation

  5. Pesticides in stream sediment and aquatic biota: distribution, trends, and governing factors

    Science.gov (United States)

    Nowell, Lisa H.; Capel, Peter D.

    1999-01-01

    More than 20 years after the ban of DDT and other organochlorine pesticides, pesticides continue to be detected in air, rain, soil, surface water, bed sediment, and aquatic and terrestrial biota throughout the world. Recent research suggests that low levels of some of these pesticides may have the potential to affect the development, reproduction, and behavior of fish and wildlife, and possibly humans. Pesticides in Stream Sediment and Aquatic Biota: Distribution, Trends, and Governing Factors assesses the occurrence and behavior of pesticides in bed sediment and aquatic biota-the two major compartments of the hydrologic system where organochlorine pesticides are most likely to accumulate. This book collects, for the first time, results from several hundred monitoring studies and field experiments, ranging in scope from individual sites to the entire nation. Comprehensive tables provide concise summaries of study locations, pesticides analyzed, and study outcomes. Comprehensive and extensively illustrated, Pesticides in Stream Sediment and Aquatic Biota: Distribution, Trends, and Governing Factors evaluates the sources, environmental fate, geographic distribution, and long-term trends of pesticides in bed sediment and aquatic biota. The book focuses on organochlorine pesticides, but also assesses the potential for currently used pesticides to be found in bed sediment and aquatic biota. Topics covered in depth include the effect of land use on pesticide occurrence, mechanisms of pesticide uptake and accumulation by aquatic biota, and the environmental significance of observed levels of pesticides in stream sediment and aquatic biota.

  6. Hydrogeochemical and stream-sediment survey (NURE). Preliminary report on the Smoke Creek Desert Basin pilot study (Nevada)

    International Nuclear Information System (INIS)

    1976-01-01

    The Lawrence Livermore Laboratory (LLL) is conducting a hydrogeochemical and stream-sediment survey in the seven western states as part of ERDA's National Uranium Resources Evaluation (NURE) Program. The objective of this survey is to develop a geochemical data base for use by the private sector to locate regions of anomalous uranium content. Prior to wide area coverage, several pilot studies are being undertaken to develop and evaluate sampling and analytical techniques. The second through fifth of these studies were conducted in four playa basins in Nevada, selected to represent different regional geology and uranium occurrence. This study in the Smoke Creek Desert Basin, characterizes igneous surface geology with known uranium occurrences. The Smoke Creek Desert Basin is the largest of the four playa basins and contains an areaof about 2700 square kilometers (1003 square miles). The basin is bordered on the east by the Fox Hills and on the north and east by the Granite Ranges which are characterized by granite, pegmatites, and Tertiary rocks very similar to the lithology of the Winnemucca Basin boundary ranges (study UCID-16911-P-2). On the west the Desert is bordered by an area of extensive basalt flow. There is no known uranium occurrence in the area, and metallization of any kind is scarce. This study is applicable to the western igneous portion of the Basin and Range Province which includes southeastern Oregon, western Nevada, and southeastern California. This report contains only analytical data and sample locations

  7. Computer analysis to the geochemical of soil and stream sediments data in an area of Southern Uruguay

    International Nuclear Information System (INIS)

    Spangenberg, J.

    2012-01-01

    This work is about geochemical interpretation of multi-element data from a soil and stream sediment survey carried out in Southern of Uruguay .This zone has several occurrences of metal sulphide mineralization

  8. Data report: Illinois, Indiana, Kentucky, Tennessee, and Ohio. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Sargent, K.A.; Cook, J.R.; Fay, W.M.

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Illinois, Indiana, Kentucky, Tennessee, and Ohio. The following sample types were collected in each state: Illinois - 716 stream sediment, 1046 ground water, 337 stream water; Indiana - 126 stream sediment, 443 ground water, 111 stream water; Kentucky - 4901 stream sediment, 6408 ground water, 3966 stream water; Tennessee - 3309 stream sediment, 3574 ground water, 1584 stream water; Ohio - 1214 stream sediment, 2049 ground water, 1205 stream water. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 248 sediment samples from Tennessee. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation

  9. National Uranium Resource Evaluation Program (NURE): hydrogeochemical and stream sediment reconnaissance in the eastern United States

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V. Jr.

    1976-01-01

    A geochemical reconnaissance of twenty-five eastern states for uranium will be conducted by the Savannah River Laboratory for the U.S. Energy Research and Development Administration. A sound technical basis for the reconnaissance is being developed by intensive studies of sampling, analysis, and data management. Results of three orientation studies in the southern Appalachian Piedmont and Blue Ridge areas indicate that multi-element analysis of -100 mesh (less than 149 μm) stream sediments will provide adequate information for reconnaissance. Stream and groundwater samples also provide useful information but are not considered cost-effective for regional reconnaissance in the areas studied

  10. Collection and preparation of wet and dry stream-sediment samples

    International Nuclear Information System (INIS)

    Puchlik, K.

    1977-03-01

    Lawrence Livermore Laboratory is responsible for the Hydrogeochemistry and Stream Sediment Reconnaissance (HSSR) program for uranium in the seven far western states. The work thus far has concentrated on the arid to semi-arid regions of the West and this paper discusses the collection and preparation of sediment samples in the Basin and Range province. The sample collection and preparation procedures described here may not be applicable to other parts of the far western states or other areas. These procedures also differ somewhat from those used by the other three laboratories involved in the HSSR program

  11. Report on the intercomparison run IAEA-313 Ra-226, Th and U in stream sediment

    International Nuclear Information System (INIS)

    Strachnov, V.; Valkovic, V.; Zeisler, R.; Dekner, R.

    1991-01-01

    This report contains the results of the intercomparison IAEA-313 on the determination of uranium, thorium and Ra-226 in two stream sediments from Indonesia. The participants included 36 laboratories located in 18 countries, and statistical evaluation of their data yield recommended values for these elements. The elements, their recommended values and confidence intervals are: Ra-226, 343 Bq/kg (307-379); Th, 77.1 microg/g (74.8-79.4); U, 18.2 microg/g (17.0-19.3). Tabs

  12. Automated electron microprobe identification of minerals in stream sediments for the national uranium resources evaluation program

    International Nuclear Information System (INIS)

    Mosley, W.C. Jr.

    1979-01-01

    Over 500 stream sediment particles have been analyzed. About 96% have been identified as distinct minerals. Most of the others appeared to be mixtures. Only zinc-bearing gahnite had to be analyzed further for positive identification. Monazite and zircon were the only minerals with concentrations of uranium significantly above the detection limit. The Frantz Isodynamic Magnetic Separator isolated the monazite into the 1.0 fraction. Monazite particles in anomalous sediments contained up to 3.7 wt % uranium. This uranium concentration is unusually high for monazite, which normally has about 0.5 wt % uranium, and may be the cause of the anomaly

  13. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Pecos, Texas. Solitario survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Solitario survey area portion of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 119 groundwater and 520 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are breifly discussed. Groundwaters having concentrations of uranium greater than or equal to 11.5 ppB are observed in the western half of the survey area. These wells generally produce from the Chisos Formation and Buck Hill Volcanic Series or alluvium derived from these units. Lithium, sodium, boron, uranium/specific conductance, uranium/boron, and uranium/sulfate are noted to be most highly associated within the area of anomalously high uranium. The highest potential for uranium mineralization, in view of these groundwater data, lies in the LaVuida and Bandera Mesa areas. Stream sediments containing greater than or equal to 2.57 ppM soluble uranium occur in numerous areas within the survey area. The highest concentrations of uranium occur in sediments derived from the Buck Hill Volcanic Series and Cretaceous limestones. Above background concentrations of arsenic, selenium, molybdenum, nickel, calcium, and strontium were noted to be associated with areas of anomalously high uranium. These elements are most prominently associated with uranium anomalies occurring in Cretaceous limestone

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Arctic NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Arctic NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Nome NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Nome NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and stream water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL, and will not be included in this report

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Cordova NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Cordova NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and stream water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the White Sulfur Springs NTMS quadrangle, Montana

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the White Sulphur Springs NTMS quadrangle, Montana. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through C describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, stream-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Kenai NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Kenai NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  19. Uranium hydrogeochemical and stream sediment reconnaissance of the McCarthy NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the McCarthy NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of stream sediments. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical result. Statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Atlin NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Altin NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Only 6 samples were taken in the Atlin Quadrangle. Appendix A describes the sample media and summarizes the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Information on the field and analytical procedures used by the Los Alamos National laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. Chemical analysis and field data for water samples from this quadrangle were open filed by the DOE Grand Junction Office as GJX-166

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Ashland NTMS Quadrangle, Wisconsin; Michigan; Minnesota

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Ashland Quadrangle, Wisconsin; Michigan; Minnesota are reported. Field and laboratory data are presented for 312 groundwater and 383 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising area for potential uranium mineralization occurs along the Douglas Thrust Fault in northern Douglas County, Wisconsin. The Douglas Fault brings Fond du Lac Formation sediments in contact with Chengwatana volcanics where carbonate-rich water derived from the mafic volcanics enter the arkosic Fond du Lac Formation. Another area of interest surrounds the Bad River Indian Reservation in northern Ashland and Iron Counties. The waters here are produced from red lithic sandstone and are also associated with the Douglas Fault. Water chemistry of these waters appears similar to the waters from the Douglas County area. The stream sediment data are inconclusive because of the extensive cover of glacial deposits. A moderately favorable area is present in a strip along Lake Superior in Douglas County, where sediments are derived from arkoses of the Fond du Lac Formation

  2. Hydrogeochemical and stream sediment reconnaissance basic data for Dodge City NTMS Quadrangle, Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dodge City Quadrangle are reported. Field and laboratory data are presented for 756 groundwater and 321 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising areas for uranium mineralization are as follows: (1) in the north central area of the quadrangle within close proximity to the Arkansas River, mostly from waters of the Ogallala Formation; (2) in the west central area, from groundwater samples of the Dakota and the Ogallala Formations; and (3) between the North Fork of the Cimarron River and the main Cimarron River, mostly in waters from the Ogallala Formation. Associated with the high uranium values are high concentrations for magnesium, strontium, and sulfate. Of the groundwater samples taken 81% were collected from the Ogallala Formation. Stream sediment data indicate high uranium concentrations in scattered samples in the northwestern, central, and southwestern areas of the quadrangle. Most of the samples with high uranium values were collected from the Quaternary alluvium. Associated with the high uranium values are high concentrations of barium, cerium, iron, manganese, titanium, vanadium, yttrium, and zirconium

  3. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Greeley NTMS quadrangle, Colorado

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Greeley NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  4. Hydrogeochemical and stream sediment reconnaissance basic data for Brownsville-McAllen NTMS Quadrangles, Texas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Brownsville-McAllen Quadrangles, Texas are reported. Field and laboratory data are presented for 427 groundwater and 171 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate the most promising area for potential uranium mineralization occurs in the northwestern section of the quadrangles (Jim Hogg, Starr, and Zapata Counties), where waters are derived from the Catahoula Formation. These groundwaters have high concentrations of uranium, uranium associated elements, and low values for specific conductance. Another area with high uranium concentrations is in the southeastern portion of the survey area (Hidalgo, Cameron, and Willacy Counties). Shallow wells <10 m (30 ft) are numerous in this area and high specific conductance values may indicate contamination from extensive fertilization. Stream sediment data for the survey does not indicate an area favorable for uranium mineralization. Anomalous acid soluble uranium values in the southeastern area (Hidalgo, Cameron, and Willacy Counties) can be attributed to phosphate fertilizer contamination. Four samples in the western part of the area (western Starr County) have anomalously high total uranium values and low acid soluble uranium values, indicating the uranium may be contained in resistate minerals

  5. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Farmington Project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Farmington project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 71 groundwater samples, 345 stream sediment samples, and 178 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from <0.20 to 21.77 ppB. The highest values are from groundwaters producing from areas in or near the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations, and the Farmington Canyon Complex. The uranium:boron ratio delineates an anomalous trend associated with the Farmington Canyon Complex. Variables associated with uranium in groundwaters producing from the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations include the uranium:sulfate ratio, boron, barium, potassium, lithium, silicon, chloride, selenium, and vanadium. Soluble uranium concentrations (U-FL) in stream sediments range from 0.99 to 86.41 ppM. Total uranium concentrations (U-NT) range from 1.60 to 92.40 ppM. Thorium concentrations range from <2 to 47 ppM. Anomalous concentrations of these variables are associated with the Farmington Canyon Complex. Variables which are associated with uranium include cerium, sodium, niobium, phosphorus, titanium, and yttrium

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Grand Junction NTMS quadrangle, Colorado/Utah

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Kenai NTMS quadrangle, Colorado/Utah. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Denver NTMS quadrangle, Colorado

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Denver NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through E describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  8. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment pilot survey of Llano area, Texas

    International Nuclear Information System (INIS)

    Nichols, C.E.; Kane, V.E.; Minkin, S.C.; Cagle, G.W.

    1976-01-01

    A pilot geochemical survey of the Llano, Texas, area was conducted during February and March 1976. The purpose of this work was to prepare for a subsequent reconnaissance geochemical survey of uranium in Central Texas. Stream sediment, stream water, well water, and plant ash from five geologic areas were analyzed in the laboratory for approximately 25 parameters. Examples of anomalous values in stream sediment and stream water indicate the usefulness of both sample types in identifying anomalies at a regional reconnaissance-scale station spacing of approximately 5 km (3 mi). Groundwater samples, which generally best indicate the geochemistry of formations at depth in a survey of this type, represent another important tool in detecting uranium mineralization. Anomalies in San Saba County are associated with the Marble Falls-Smithwich Formations and the Strawn Series (Pennsylvanian), the Houy Formation (Devonian and lower Mississippian), and the Hickory Sandstone Member of the Riley Formation (Cambrian). In Burnet County anomalous values are due to the influence of the Valley Spring Formation (Precambrian); and in Blanco County anomalies are found associated with the Riley Formation

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Solomon NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Solomon NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and stream water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Hughes NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Hughes NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  11. Uraniam hydrogeochemical and stream sediment reconnaissance of the Wiseman NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wiseman NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (198a) into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  12. Hydrogeochemical and stream sediment reconnaissance basic data for Lubbock NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    1979-01-01

    Field and laboratory data are presented for 994 groundwater and 602 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Interpretation of the groundwater data indicate that the area which appears most promising for uranium mineralization is located in the southwestern part of the quadrangle, particularly in Crosby, Garza, Lynn, and Lubbock Counties. The waters produced from the Ogallala Formation in this area have high values for arsenic, molybdenum, selenium, and vanadium. Groundwaters from the Dockum Group in Garza County where uranium is associated with selenium, molybdenum, and copper indicate potential for uranium mineralization. Uranium is generally associated with copper, iron, and sulfate in the Permian aquifers reflecting the red bed evaporite lithology of those units. The stream sediment data indicate that the Dockum Group has the highest potential for uranium mineralization, particularly in and around Garza County. Associated elements indicate that uranium may occur in residual minerals or in hydrous manganese oxides. Sediment data also indicate that the Blaine Formation shows limited potential for small red bed copper-uranium deposits

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the thermopolis NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium in the Thermopolis National Topographic Map Series quadrangle, Wyoming. Totals of 920 water and 1821 sediment samples were collected from 1977 locations at an average density of one sample location per 9 km 2 over an 18,000-km 2 area. Water samples were collected from streams, springs, and wells; sediment samples were collected from streams and springs. The uranium contents of water samples range from below the detection limit of 0.02 ppB to 307.98 ppB with a median of 0.56 ppB. Six clusters of anomalous water samples were delineated within the Wind River Basin and are associated predominantly with the Wind River formation. Two clusters of anomalous waters were collected on the southern margin of the Bighorn Basin and are associated with sandstone and shales of Permian through Cretaceous age. The uranium contents of sediment samples range from 0.43 to 94.65 ppM with a median of 2.90 ppM. Most sediment samples with uranium concentrations of greater than 12 ppM are underlain by Precambrian crystalline rocks of the Wind River Range; this area contains the highest uranium values found in sediments from the Thermopolis quadrangle. Other samples containing greater than 12 ppM uranium are found associated with the Wind River and Aycross formations along the northern margin of the Wind River Basin, and one sample was collected from Precambrian granitic terrain of the Owl Creek Mountains

  14. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Rose, A.W.; Smith, A.T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program

  15. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A. W.; Smith, A. T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program.

  16. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    Science.gov (United States)

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  17. Notes on the geochemical survey for uranium in Mindoro Island, Philippines

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Fernandez, L.G.; Villamater, D.T.; Seguis, J.E.; Ibe, M.G.

    1981-03-01

    Geochemical reconnaisance using stream sediment and heavy-mineral concentrates panned from coarse alluvium has been carried out in Mindoro Island, one of the oldest and diverse geologic terrains in the Philippines. A total of 135 selected sampling points situated near accessible areas along the periphery of the island were sampled. The samples were collected at a density of one sample per 53 sq. km. A set minus 80 mesh stream sediment fraction and heavy-mineral concentrates was obtained from each sampling point. Mobile or extractable and total uranium were determined. A large uranium anomaly was delineated over the Carboniferous Mindoro Metamorphics as well as in areas underlain by Early Tertiary sedimentary formations. Another group of anomalies were outlined in the southern part of the island underlain by Jurassic Mansalay Formation and Early to Middle Tertiary sedimentary rocks with associated limestone and coal measures. (author)

  18. Analysis of stream sediment reconnaissance data for mineral resources from the Montrose NTMS Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Beyth, M.; Broxton, D.; McInteer, C.; Averett, W.R.; Stablein, N.K.

    1980-06-01

    Multivariate statistical analysis to support the National Uranium Resource Evaluation and to evaluate strategic and other commercially important mineral resources was carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Montrose quadrangle, Colorado. The analysis suggests that: (1) the southern Colorado Mineral Belt is an area favorable for uranium mineral occurrences; (2) carnotite-type occurrences are likely in the nose of the Gunnison Uplift; (3) uranium mineral occurrences may be present along the western and northern margins of the West Elk crater; (4) a base-metal mineralized area is associated with the Uncompahgre Uplift; and (5) uranium and base metals are associated in some areas, and both are often controlled by faults trending west-northwest and north

  19. A stream sediment orientation programme for Uranium in the Alligator River Province, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Gingrich, J.E.; Foy, M.F.

    1977-01-01

    Sediments samples were collected from streams draining the Koongarra uranium deposit and the small uranium mines in the South Alligator Valley. Determinations for U, Cu and Pb on various size fractions taken from each of these samples indicated that the best results were obtained for U from the minus 200-mesh fraction, but the train from the Koongarra ore deposit was very short. Cu and Pb were not found to be very useful as indicator elements for U. Alpha-track films were used to determine the Rn content of each sample and the ratio of alpha-track film reading to U content was found to define anomalous drainage areas around the mineralization in the Koongarra area. The areas so defined were of sufficient magnitude to be defined in a reconnaissance stream sediment programme

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Valdez NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Valdez NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System (GJOIS) at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  1. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Peco, Texas. Sierra Vieja survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Sierra Vieja survey area of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 29 groundwater and 240 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Highest concentrations of uranium in groundwater predominantly occur in areas marginal to the Rio Grande. These wells and spring produce from Quaternary alluvium or the Vieja Group. High specific conductance is also associated with most of the wells located marginal to the Rio Grande. The specific conductance of wells in other areas with greater than or equal to 11.5 ppB uranium are notably lower. Higher than background concentrations of molybdenum, arsenic, and vanadium are observed with wells containing greater than or equal to 11.5 ppB uranium. Total alkalinity and pH display a variable distribution throughout the survey area. Stream sediment from several areas contain greater than or equal to 2.57 soluble uranium. In areas where these concentrations account for greater than or equal to 83% of the uranium present in the sediment, above background concentrations of sodium, aluminum, barium, potassium, zirconium, cerium, and strontium are detected. The degree to which these elements are associated with favorably high uranium concentrations is related to the relative amounts of volcaniclastic and calcareous sedimentary material incorporated in the sample

  2. Uranium hydrogeochemical and stream sediment reconnaissance of the Nulato NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Znkl, R.J.; Shellel, D.C. Jr.; Langfeldt, S.L.; Hardy, L.C.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Nulato NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  3. Uranium hydrogeochemical and stream-sediment reconnaissance of the Sagavanirktok NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Sagavanirktok NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the Candle NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Candle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  5. Uranium hydrogeochemical and stream-sediment reconnaissance of the Port Alexander NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Port Alexander NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available fom DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  6. Uranium Hydrogeochemical and stream sediment reconnaissance of the Tanacross NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Tanacross NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Ketchikan NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; Minor, M.M.; McInteer, C.; Hansel, J.N.; Broxton, D.E.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the Ketchikan NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  8. Uranium hydrogeochemical and stream-sediment reconnaissance of the Point Lay NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Point Lay NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  9. Uranium hydrogeochemical and stream-sediment reconnaissance of the Unalakleet NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Unalakleet NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information onthe field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  10. Uranium hydrogeochemical and stream sediment reconnaissance Misheguk Mountain NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Misheguk Mountain NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  11. Uranium hydrogeochemical and stream-sediment reconnaissance of the Glasgow NTMS quadrangle, Montana

    International Nuclear Information System (INIS)

    1982-06-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Glasgow NTMS quadrangle, Montana. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through C describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, stream-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  12. Uranium hydrogeochemical and stream-sediment reconnaissance of the Umiat NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Umiat NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Craig NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Craig NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Howard Pass NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Howard Pass NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analysis, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Circle NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Circle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  16. Uranium hydrogeochemical and stream-sediment reconnaissance of the Ruby NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Ruby NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  17. Uranium hydrogeochemical and stream-sediment reconnaissance of the Selawik NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Selawik NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Melozitna NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Melozitna NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  19. Uranium hydrogeochemical and stream sediment reconnaissance of the Beechey Point NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Beechey Point NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANI) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981) and will not be included in this report

  20. Uranium hydrogeochemical and stream-sediment reconnaissance of the Utukok River NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Utukok River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the Beaver NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W.

    1981-11-01

    The report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the Ketchikan NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) protion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  2. Uranium hydrogeochemical and stream sediment reconnaissance of the Nabesne NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Garcia, S.R.; Hanks, D.; George, W.E.; Boliver, S.L.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Nabesna NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981), and will not be included in this report

  3. Uranium hydrogeochemical and stream sediment reconnaissance of the Sterling NTMS quadrangle, Colorado. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Garcia, S.R.; Hanks, D.; George, W.E.; Boliver, S.L.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the Sterling NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the Limon NTMS quadrangle, Colorado. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Minor, M.M.; McInteer, C.; Hansel, J.N.; Broxton, D.E.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Limon NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream water, lake water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information of the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981) and will not be included in this report

  5. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal).

    Science.gov (United States)

    Antunes, I M H R; Neiva, A M R; Albuquerque, M T D; Carvalho, P C S; Santos, A C T; Cunha, Pedro P

    2018-02-01

    The Alto da Várzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41-186 µS/cm; TDS = 33-172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H 2 (AsO 4 ) - and H(AsO 4 ) 2- . Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH) 3 (CO 3 ) - , Th(OH) 2 (CO 3 ) and Th(OH) 2 (CO 3 ) 2 2- , which increase water Th contents. Uranium occurs predominantly as UO 2 CO 3 , but CaUO 2 (CO 3 ) 3 2- and CaUO 2 (CO 3 ) 3 also occur, decreasing its mobility in water. The waters are contaminated in NO 2 - , Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.

  6. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Cottonwood project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of Cottonwood project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 15 groundwater samples, 79 stream sediment samples, and 85 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from 0.25 to 3.89 ppB. The highest concentrations are from groundwaters from the Little Cottonwood and Ferguson Stocks. Variables that appear to be associated with uranium in groundwater include cobalt, iron, potassium, manganese, nickel, sulfate, and to a lesser extent, molybdenum and strontium. This association is attributed to the Monzonitic Little Cottonwood Stock, granodioritic to granitic and lamprophyric dikes, and known sulfide deposits. Soluble uranium concentrations (U-FL) in stream sediments range from 0.31 to 72.64 ppM. Total uranium concentrations (U-NT) range from 1.80 to 75.20 ppM. Thorium concentrations range from <2 to 48 ppM. Anomalous values for uranium and thorium are concentrated within the area of outcrop of the Little Cottonwood and Ferguson Stocks. Variables which are areally associated with high values of uranium, thorium, and the U-FL:U-NT ratio within the Little Cottonwood Stock are barium, copper, molybdenum, and zinc. High concentrations of these variables are located near sulfide deposits within the Little Cottonwood Stock

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Coleen NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Coleen NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these date are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laborarory and will not be included in this report

  8. Uranium hydrogeochemical and stream-sediment reconnaissance of the Big Delta NTMS quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L. C.; D& #x27; Andrea, Jr., R. F.; Zinkl, R. J.; Shettel, Jr., D. L.; Langfeldt, S. L. [comps.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Big Delta NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  9. Uranium hydrogeochemical and stream-sediment reconnaissance of the Big Delta NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Big Delta NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  10. Hydrogeochemical and stream sediment reconnaissance basic data for Grand Island NTMS Quadrangle, Nebraska/Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Grand Island Quadrangle, Nebraska/Kansas are reported. Statistical data and areal distributions for uranium and uranium-related variables are presented for 564 groundwater and 532 stream sediment samples. Also included is a brief discussion on location and geologic setting. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in shallow wells (0 to 20 m) along or near the Platte and Republican Rivers, which flow west to east along the northern and southern portions of the quadrangle, respectively. Waters containing high concentration of uranium in the northern portion of the quadrangle occur in recent alluvium and nearby glacial deposits. In the southern portion of the quadrangle, waters containing high uranium concentrations occur in Recent alluvium and the Niobrara Chalk in the southeast. Stream sediment data indicate that uranium concentrations above the 85th percentile occur in sediments along the Platte River in the northern portion of the quadrangle and paralleling the Republican River in the southeastern portion. Sediments with high uranium values along the Platte River are derived from glacial and alluvial deposits. High uranium values paralleling the Republican River in the southeast are derived from the Niobrara Chalk, the Carlile Shale, and glacial and alluvial deposits. High U-NT and thorium values, and high values for cerium, niobium, scandium, titanium, vanadium, yttrium, and zirconium suggest the presence of clays and/or residual minerals in the southeast. Sediment derivation and the leaching of possible ash-rich loess and alluvial deposits and/or uranium-rich alkaline evaporite deposits could account for high uranium concentrations in sediment and groundwaters within the quadrangle

  11. Uranium hydrogeochemical and stream-sediment reconnaissance of the Wainwright NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wainwright NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  12. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Pecos, Texas. Tascotal survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Tascotal survey area portion of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 337 groundwater and 611 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 80.0 ppB uranium were detected in three areas largely producing from acidic volcanoclastics in the south central portion of the survey area. High specific conductance and an association of lithium, selenium, and sodium were observed in these areas of anomalously high uranium. High uranium/specific conductance, uranium/boron, and uranium/sulfate ratios are also associated with areas of the highest uranium concentrations. Alkalinities in these areas were noted to be highly variable over short distances within the same hydrologic unit. Stream sediments containing greater than or equal to 2.57 ppM soluble uranium are located in the southwestern and the north and south central portions of the survey area. High U-FL/U-NT and low thorium/U-NT values are observed with sediments derived from acidic volcanics in the southern portions of the survey area. In areas of anomalously high uranium, an association of above background concentrations of thorium, lithium, potassium, beryllium, and zirconium were noted. In view of these data, areas containing the Buck Hill Volcanic Series, the Mitchell Mesa, and Tascotal Formations provide the best possibilities of an economical uranium deposit

  13. Geochemical survey of stream sediments of the Piceance Creek Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, C.D.

    1977-01-01

    A stream sediment survey was conducted in the Piceance Creek Basin to study the spatial distribution of Zn, Mo, Hg, Cd and As for future baseline considerations. The pH and organic matter were also measured. From samples taken at the mouths (junctions) of most of the named creeks in the basin, it is concluded that none of the streams contained sediments with anomalous trace element concentrations with respect to the basin. But it is thought that Mo and possibly As could be potentially toxic because of their abundance and their mobility under the stream sediments' alkaline condition. From a different sampling plan, designed to describe the background variance of five streams (Roan, Black Sulfur, Parachute, Yellow and Piceance Creeks), it was found that most of the variance occurred at distances from 0-10 m within 2 km stream segments 10 km apart for Mo, Hg, Az, and organic matter. When the variance between the five streams was considered, it was found to dominate the variances of the other factors for Mo, Hg, and Zn. This variance between streams is actually thought to represent the variance between the major drainage system in the basin. When comparison is made between the two sampling design results, it is thought that the trace element concentrations of stream junction samples represented the best range of expected values for the entire basin. The expected ranges of the trace elements from the nested design are thought to be reasonable estimates of preliminary baselines for Parachute Creek, Roan Creek and Black Sulfur Creek within the restricted limits of the streams defined in the text. From the experience gained in pursuing this study, it is thought that composite sampling should be considered, where feasible, to reduce the analytical load and to reduce the small scale variance.

  14. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  15. Interpreting stream sediment fingerprints against primary and secondary source signatures in agricultural catchments

    Science.gov (United States)

    Blake, Will H.; Haley, Steve; Smith, Hugh G.; Taylor, Alex; Goddard, Rupert; Lewin, Sean; Fraser, David

    2013-04-01

    Many sediment fingerprinting studies adopt a black box approach to source apportionment whereby the properties of downstream sediment are compared quantitatively to the geochemical fingerprints of potential catchment sources without consideration of potential signature development or modification during transit. Working within a source-pathway-receptor framework, this study aimed to undertake sediment source apportionment within 6 subcatchments of an agricultural river basin with specific attention to the potential role of contaminants (vehicle emissions and mine waste) in development of stream sediment signatures. Fallout radionuclide (FRN) and geochemical fingerprinting methods were adopted independently to establish source signatures for primary sediment sources of surface and subsurface soil materials under various land uses plus reworked mine and 'secondary' soil material deposited, in transit, along road networks. FRN data demonstrated expected variability between surface soil (137Cs = 14 ± 3 Bq kg-1; 210Pbxs = 40 ± 7 Bq kg-1) and channel bank materials (137Cs = 3 ± 1 Bq kg-1; 210Pbxs = 24 ± 5 Bq kg-1) but road transported soil material was considerably elevated in 210Pbxs (up to 673 ± 51 Bq kg-1) due to sediment interaction with pluvial surface water within the road network. Geochemical discrimination between surface and subsurface soil materials was dominated by alkaline earth and alkali metals e.g. Ba, Rb, Ca, K, Mg which are sensitive to weathering processes in soil. Magnetic susceptibility and heavy metals were important discriminators of road transported material which demonstrated transformation of the signatures of material transported via the road network. Numerical unmixing of stream sediment indicated that alongside channel bank erosion, road transported material was an important component in some systems in accord with FRN evidence. While mining spoil also ranked as a significant source in an affected catchment, perhaps related to legacy

  16. Seasonal Changes in Microbial Community Structure in Freshwater Stream Sediment in a North Carolina River Basin

    Directory of Open Access Journals (Sweden)

    John P. Bucci

    2014-01-01

    Full Text Available This study examined seasonal differences in microbial community structure in the sediment of three streams in North Carolina’s Neuse River Basin. Microbes that reside in sediment are at the base of the food chain and have a profound influence on the health of freshwater stream environments. Terminal-Restriction Fragment Length Polymorphism (T-RFLP, molecular fingerprint analysis of 16S rRNA genes was used to examine the diversity of bacterial species in stream sediment. Sediment was sampled in both wet and dry seasons from an agricultural (Bear, mixed urban (Crabtree and forested (Marks Creek, and the microbiota examined. Gamma, Alpha and Beta proteobacteria were prevalent species of microbial taxa represented among all sites. Actinobacteria was the next most prevalent species observed, with greater occurrence in dry compared to the wet season. Discernable clustering was observed of Marks and Bear Creek samples collected during the wetter period (September–April, which corresponded with a period of higher precipitation and cooler surface water temperatures. Although not statistically significant, microbial community structure appeared different between season (ANOSIM, R = 0.60; p < 0.10. Principal components analysis confirmed this pattern and showed that the bacterial groups were separated by wet and dry seasonal periods. These results suggest seasonal differences among the microbial community structure in sediment of freshwater streams and that these communities may respond to changes in precipitation during wetter periods.

  17. Uranium hydrogeochemical and stream-sediment reconnaissance of the Teshekpuk NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Teshekpuk NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. Sample collection: an overview of the Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1979-01-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnaissance program is conducted by four national laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most samples are collected at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multi-element analytical data, which can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  19. National Uranium Resource Evaluation Program: the Hydrogeochemical Stream Sediment Reconnaissance Program at LLNL

    International Nuclear Information System (INIS)

    Higgins, G.H.

    1980-08-01

    From early 1975 to mid 1979, Lawrence Livermore National Laboratory (LLNL) participated in the Hydrogeochemical Stream Sediment Reconnaissance (HSSR), part of the National Uranium Resource Evaluation (NURE) program sponsored by the Department of Energy (DOE). The Laboratory was initially responsible for collecting, analyzing, and evaluating sediment and water samples from approximately 200,000 sites in seven western states. Eventually, however, the NURE program redefined its sampling priorities, objectives, schedules, and budgets, with the increasingly obvious result that LLNL objectives and methodologies were not compatible with those of the NURE program office, and the LLNL geochemical studies were not relevant to the program goal. The LLNL portion of the HSSR program was consequently terminated, and all work was suspended by June 1979. Of the 38,000 sites sampled, 30,000 were analyzed by instrumental neutron activation analyses (INAA), delayed neutron counting (DNC), optical emission spectroscopy (OES), and automated chloride-sulfate analyses (SC). Data from about 13,000 sites have been formally reported. From each site, analyses were published of about 30 of the 60 elements observed. Uranium mineralization has been identified at several places which were previously not recognized as potential uranium source areas, and a number of other geochemical anomalies were discovered

  20. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnaissance program is conducted by four Department of Energy laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  1. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-07-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnasissance program is conducted by four Department of Energy Laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. Each laboratory was assigned a geographic region of the United States. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  2. Orientation study of northern Arkansas. National Uranium Resource Evaluation program. Hydrogeochemical and stream-sediment reconnaissance

    International Nuclear Information System (INIS)

    Steele, K.F.

    1982-08-01

    Samples of ground water, stream water, and sediment were collected at 335 sites for an orientation study of northern Arkansas. Each stream site consisted of both sediment and stream water (if available), and each sediment sample was sieved to produce four size fractions for analysis. The orientation area included all or parts of Benton, Carroll, Madison, and Washington Counties. Several black shales, including the Chattanooga Shale, crop out in this area, and the Sylamore Sandstone Member has local radiation anomalies. The following analyses were performed for all water samples (both ground water and stream water): pH, conductivity, total alkalinity, temperature, nitrate, ammonia, phosphate and sulfate. Additional water was collected, filtered, and reacted with a resin that was then analyzed by neutron activation analysis for U, Br, Cl, F, Mn, Na, Al, and Dy. In addition, ground water samples were analyzed for He. The stream sediments were analyzed by neutron activation for U, Th, Hf, Ce, Fe, Mn, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu

  3. Automated energy-dispersive x-ray determination of trace elements in stream sediments

    International Nuclear Information System (INIS)

    Hansel, J.M.; Martell, C.J.

    1977-01-01

    Nickel, copper, tungsten, lead, bismuth, niobium, silver, cadmium, and tin are determined in stream sediments using a computer-controlled energy-dispersive x-ray fluorescence system. The system consists of an automatic 20-position sample changer, a silicon lithium-drifted detector, a pulsed molybdenum transmission-target x-ray tube, a multichannel analyzer, and a minicomputer. Samples are analyzed as minus 325-mesh powders. A computer program positions the samples, unfolds overlapping peaks, determines peak intensities for each element, and calculates the ratio of the intensity of each peak to that of the molybdenum Kα Compton peak. Concentrations of each element are then calculated using equations obtained by analyzing prepared standards. Detection limits range from 5 ppM for silver, cadmium, lead, and bismuth to 20 ppM for niobium. The relative standard is 10 percent or less at the 100-ppM level and 20 percent at the 20-ppM level. Samples can be analyzed at the rate of sixty per day

  4. Comparison of total and cold-extractable uranium in stream sediments of the southwestern Karoo supergroup, South Africa

    International Nuclear Information System (INIS)

    Jakob, W.R.O.; Smit, M.C.B.; Murphy, G.C.

    1979-01-01

    In order to evaluate the usefullness of cold-extractable uranium as a tool of uranium prospecting in stream sediments of the southwestern Karoo, South Africa, ten orientation studies were conducted near known mineralisation jointly by the Atomic Energy Board and the Geological Survey of South Africa. These indicate that the topography determines the nature of the dispersion. In areas of moderate to high relief the total uranium content of the stream sediment gives dispersion trains up to about 500 m from the mineralisation, and peak-to-background ratios of about 3. The use of cold-extractable uranium doubles the length of the dispersion, and peak-to-background ratios are greater than 10 and may be as high as 35. In areas of low relief, the total uranium content of the sediment gives low anomalies, with short dispersion downstream. Cold-extractable uranium gives anomalies 500-1 000 m from the mineralisation. This is interpreted to be due to the longer residence time of the clay minerals in the stream. In order to test the applicability of cold-extractable uranium on a regional scale, 720 samples were collected at a density of one sample per square kilometre. Statistical treatment of the data shows the U content of the stream sediments, to be log-normally distributed. For cold-extractable uranium, polymodal distributions, apparently representing background and anomalous samples, can be separated with a high rate of success, and meaningful threshold values can be assigned. This is not the case for the total uranium content of the stream sediments [af

  5. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary.

    Science.gov (United States)

    Kim, Haryun; Bae, Hee-Sung; Reddy, K Ramesh; Ogram, Andrew

    2016-12-01

    River tributaries are ecologically important environments that function as sinks of inorganic nitrogen. To gain greater insight into the nitrogen cycle (N-cycle) in these environments, the distributions and activities of microbial populations involved in the N-cycle were studied in riparian and stream sediments of the Santa Fe River (SFR) tributaries located in northern Florida, USA. Riparian sediments were characterized by much higher organic matter content, and extracellular enzyme activities, including cellobiohydrolase, β-d-glucosidase, and phenol oxidase than stream sediments. Compared with stream sediments, riparian sediments exhibited significantly higher activities of nitrification, denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation; correspondingly, with higher copies of amoA (a biomarker for enumerating nitrifiers), nirS and nirK (for denitrifiers), and nrfA (for DNRA bacteria). Among N-cycle processes, denitrification showed the highest activities and the highest concentrations of the corresponding gene (nirK and nirS) copy numbers. In riparian sediments, substantial nitrification activities (6.3 mg-N kg soil -1 d -1 average) and numbers of amoA copies (7.3 × 10 7  copies g soil -1 average) were observed, and nitrification rates correlate with denitrification rates. The guild structures of denitrifiers and nitrifiers in riparian sediments differed significantly from those found in stream sediments, as revealed by analysis of nirS and archaeal amoA sequences. This study shows that riparian sediments serve as sinks for inorganic nitrogen loads from non-point sources of agricultural runoff, with nitrification and denitrification associated with elevated levels of carbon and nitrogen contents and extracellular enzyme activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. One hundred prime references on hydrogeochemical and stream sediment surveying for uranium as internationally practiced, including 60 annotated references

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Bolivar, S.L.

    1981-04-01

    The United States Department of Energy (DOE), formerly the US ERDA, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). This program is part of the US National Uranium Resource Evaluation, designed to provide an improved estimate for the availability and economics of nuclear fuel resources and make available to industry information for use in exploration and development of uranium resources. The Los Alamos National Laboratory is responsible for completing the HSSR in Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in the state of Alaska. This report contains a compilation of 100 prime references on uranium hydrogeochemical and stream sediment reconnaissance as internationally practiced prior to 1977. The major emphasis in selection of these references was directed toward constructing a HSSR program with the purpose of identifying uranium in the Los Alamos National Laboratory area of responsibility. The context of the annotated abstracts are the authors' concept of what the respective article contains relative to uranium geochemistry and hydrogeochemical and stream sediment surveying. Consequently, in many cases, significant portions of the original articles are not discussed. The text consists of two parts. Part I contains 100 prime references, alphabetically arranged. Part II contains 60 select annotated abstracts, listed in chronological order

  7. Knoxville 10 x 20 NTMS area, North Carolina, South Carolina, and Tennessee: data release. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Baucom, E.I.; Ferguson, R.B.

    1979-05-01

    Stream sediment and stream water samples were collected from small streams at 1430 sites or at a nominal density of one site per 14 square kilometers (five square miles) in rural areas. Ground water samples were collected at 791 sites or at a nominal density of one site per 25 square kilometers (ten square miles). Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) well depth, (3) elemental analyses (U, Br, Cl, F, Mg, Mn, Na, and V). Supplementary data include site descriptors (well age, frequency of use of well, etc.) and tabulated analytical data for Al and Dy. Key data from stream sediment sites include (1) water quality measurements (pH, conductivity, and alkalinity), and (2) important elemental analyses (U, Th, Hf, Al, Ce, Fe, Mn, Na, Sc, Ti, and V). Supplementary data from stream sediment sites include sample site descriptors (stream characteristics, vegetation, etc.) and additional elemental analyses

  8. Geochemical radioactive investigation of beach sands and stream sediments, using heavy minerals, trace elements and radon measurements, (Qerdaha sheet of the Syrian coast)

    International Nuclear Information System (INIS)

    Jubeli, Y.; Kattaa, B.; Al-Hilal, M.

    2000-05-01

    Reconnaissance geochemical radiometric survey of stream sediments resulting from the weathering of outcropped rocks in and around the study area was performed. This survey included heavy mineral sampling, trace and radioelements and radon measurements to evaluate the radioactivity of the source rocks and to understand the nature and distribution of the heavy minerals and trace elements in the study area. Several techniques were used to achieve these objectives. The results of heavy mineral geochemical survey show that the abundant minerals are iron oxides (magnetite, hematite, goehtite and limonite) pyroxene and olivine; less abundant minerals are apatite, ilmenite, garnet, barite, siderite and gloconite, while rare minerals are zircon and rutile. Amphibole is reported as an abundant mineral in sand dunes and is less abundant in samples located in the northern part of the study area. The amphibole seems to be derived from the ophiolitic complex north of the study area. Grain size analysis of heavy minerals revealed that the concentration of economic minerals such as zircon rutile and ilmenite increases with the decrease of the grain size. The microscopic study showed fragments and fossils of foraminifere mostly impregnated with heavy metals such as iron and manganese resulting from diagenetic metasomatism and replacement processes of. Fish teeth (< 2 mm) and oolite of iron were also noticed in most of the samples. The morphology of heavy mineral grains shows that most of the grains are angular to subangular suggesting that they were transported for short distance from their source rocks. Normally, phosphate pellets, gloconite and iron ooids are not considered since their original morphological features show clear roundness that attributed to their sedimentological origin, not to transportation factor. The source rock of most of the heavy mineral assemblage is the basalt. Apatite and gloconite are derived from the phosphorite and phosphatized limestone encountered

  9. Coal-tar-based sealcoated pavement: A major PAH source to urban stream sediments

    International Nuclear Information System (INIS)

    Witter, Amy E.; Nguyen, Minh H.; Baidar, Sunil; Sak, Peter B.

    2014-01-01

    We used land-use analysis, PAH concentrations and assemblages, and multivariate statistics to identify sediment PAH sources in a small (∼1303 km 2 ) urbanizing watershed located in South-Central, Pennsylvania, USA. A geographic information system (GIS) was employed to quantify land-use features that may serve as PAH sources. Urban PAH concentrations were three times higher than rural levels, and were significantly and highly correlated with combined residential/commercial/industrial land use. Principal components analysis (PCA) was used to group sediments with similar PAH assemblages, and correlation analysis compared PAH sediment assemblages to common PAH sources. The strongest correlations were observed between rural sediments (n = 7) and coke-oven emissions sources (r = 0.69–0.78, n = 5), and between urban sediments (n = 22) and coal-tar-based sealcoat dust (r = 0.94, n = 47) suggesting that coal-tar-based sealcoat is an important urban PAH source in this watershed linked to residential and commercial/industrial land use. -- Highlights: • Total PAH concentrations were measured at 35 sites along an urbanizing land-use gradient. • PAH concentrations increased with increasing urban land-use. • Urban land-use metrics were measured at three spatial scales using GIS. • PAH assemblages indicate coal-tar-based sealcoat is a major urban PAH source. • PAH assemblages indicate coke-oven emissions are an important rural PAH source. -- Coal-tar-based sealcoated pavement is a major PAH source to urban freshwater stream sediments in south-central Pennsylvania, USA

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Livengood NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1981-11-01

    This report presents results of a hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Livengood NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-water and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  11. Johnson City 10 x 20 NTMS area, Kentucky, North Carolina, Tennessee, and Virginia: data report (abbreviated). National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Fay, W.M.

    1980-10-01

    Results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Johnson City 1 0 x 2 0 quadrangle are presented. Surface sediment samples were collected at 959 sites. Ground water samples were collected at 1099 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Data from ground water sites include: (1) water chemistry measurements (pH, conductivity, and alkalinity); (2) physical measurements where applicable (water temperature, well description, etc.); and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include: (1) stream water chemistry measurements; and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are given. Areal distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included on the microfiche. The Johnson City Quadrangle is underlain by Precambrian cyrstalline rocks in the southeastern corner of the quadrangle and by Paleozoic sediments in the remainder of the quadrangle. The highest uranium concentrations in sediments (up to 22 ppM) are in samples from the Precambrian crystalline rock areas. These samples also have high thorium concentrations suggesting that most of the uranium is in resistate minerals such as monazite. The U/Th ratios in sediment samples are generaly low with the higher values (up to 2.07) mostly within the lower Paleozoic sediments, particularly the Copper Ridge Dolomite. The uranium concentration in ground water is also highest in the lower Paleozoic sediments

  12. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Rieuwerts, J.S., E-mail: jrieuwerts@plymouth.ac.uk [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Mighanetara, K.; Braungardt, C.B. [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Rollinson, G.K. [Camborne School of Mines, CEMPS, University of Exeter, Tremough Campus, Penryn, Cornwall TR10 9EZ (United Kingdom); Pirrie, D. [Helford Geoscience LLP, Menallack Farm, Treverva, Penryn, Cornwall TR10 9BP (United Kingdom); Azizi, F. [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2014-02-01

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1–5 orders of magnitude, with a maximum concentration in mine wastes of 1.8 × 10{sup 5} mg kg{sup −1} As and concentrations in stream sediments of up to 2.5 × 10{sup 4} mg kg{sup −1} As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. - Highlights: • Stream sediments in a former mining area remain polluted with up to 25 g As per kg. • The main arsenic mineral in adjacent mine wastes appears to be scorodite. • Low solubility scorodite was inversely correlated with potentially mobile As. • Combining

  13. Get In and Get Out: Assessing Stream Sediment Loading from Short Duration Forest Harvest Operations and Rapid Haul Road Decommissioning.

    Science.gov (United States)

    Corrigan, A.; Silins, U.; Stone, M.

    2016-12-01

    Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.

  14. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK

    International Nuclear Information System (INIS)

    Rieuwerts, J.S.; Mighanetara, K.; Braungardt, C.B.; Rollinson, G.K.; Pirrie, D.; Azizi, F.

    2014-01-01

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1–5 orders of magnitude, with a maximum concentration in mine wastes of 1.8 × 10 5 mg kg −1 As and concentrations in stream sediments of up to 2.5 × 10 4 mg kg −1 As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. - Highlights: • Stream sediments in a former mining area remain polluted with up to 25 g As per kg. • The main arsenic mineral in adjacent mine wastes appears to be scorodite. • Low solubility scorodite was inversely correlated with potentially mobile As. • Combining mineralogical and

  15. Characterization of a stream sediment matrix material for sampling behavior in order to use it as a CRM

    International Nuclear Information System (INIS)

    Huang Donghui; Xiao Caijin; Ni Bangfa; Tian Weizhi; Zhang Yuanxun; Wang Pingsheng; Liu Cunxiong; Zhang Guiying

    2010-01-01

    Sampling behavior of multielements in a stream sediment matrix was studied with sample sizes in a range of 9 orders of magnitude by a combination of INAA, PIXE and SR-XRF. For accurately weighable sample sizes (>1 mg), sampling uncertainties for 16 elements are better than 1% by INAA. For sample sizes that cannot be accurately weighed (<1 mg), PIXE and SR-XRF were used and the effective sample sizes were estimated. Sampling uncertainties for seven elements are better than 1% at sample sizes of tenth mg level, and that for three elements are better than 10% on ng levels.

  16. Hydrogeochemical and stream sediment reconnaissance program in central United States. Semiannual progress report, October 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Arendt, J.W.

    1979-01-01

    Basic data reports were open filed for eight NTMS quadrangles during the reporting period: Sherman, Houston, Ardmore, Emory Peak, Presidio, Enig, Austin, and Lawton. Basic data reports, which have been prepared and are in the process of being open filed, include Wichita, St. Cloud, Ashland, and Clinton. Results indicate that the most favorable areas for the occurrence of uranium mineralization in the open filed quadrangles reported are as follows: Austin Quadrangle, Lawton Quadrangle, Emory Peak Quadrangle. During the period, approximately 13,886 samples of groundwater and stream sediments were collected by the URE Project. Approximately 20,738 samples were analyzed by the URE Laboratory

  17. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Fairweather NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Fairweather NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in macine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. Data report: Pennsylvania, New Jersey, and New York. National uranium resource evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.; Fay, W.M.; Sargent, K.A.

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Pennsylvania, New Jersey, and New York. Ground water samples were collected at 5734 sites in Pennsylvania, 1038 sites in New Jersey, and 4829 sites in New York. Stream sediment samples were collected at 4499 sites in Pennsylvania, 628 sites in New Jersey, and 5696 sites in New York. Stream water samples were collected at 4401 sites in Pennsylvania, 382 sites in New Jersey, and 5047 sites in New York. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 6947 sediment samples. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation

  19. A stream sediment geochemical survey of the Ganga River headwaters in the Garhwal Himalaya

    Science.gov (United States)

    Mukherjee, P.K.; Purohit, K.K.; Saini, N.K.; Khanna, P.P.; Rathi, M.S.; Grosz, A.E.

    2007-01-01

    This study models geochemical and adjunct geologic data to define provinces that are favorable for radioactive-mineral exploration. A multi-element bed-sediment geochemical survey of streams was carried out in the headwaters region of the Ganga River in northern India. Overall median values for uranium and thorium (3.6 and 13.8 ppm; maxima of 4.8 and 19.0 ppm and minima of 3.1 and 12.3 ppm respectively) exceed average upper crustal abundances (2.8 and 10.7 ppm) for these radioactive elements. Anomalously high values reach up to 8.3 and 30.1 ppm in thrust zone rocks, and 11.4 and 22.5 ppm in porphyroids. At their maxima, these abundances are nearly four- and three-fold (respectively) enriched in comparison to average crustal abundances for these rock types. Deformed, metamorphosed and sheared rocks are characteristic of the main central thrust zone (MCTZ). These intensively mylonitized rocks override and juxtapose porphyritic (PH) and proterozoic metasedimentary rock sequences (PMS) to the south. Granitoid rocks, the major protoliths for mylonites, as well as metamorphosed rocks in the MCT zone are naturally enriched in radioelements; high values associated with sheared and mylonitized zones are coincident with reports of radioelement mineralization and with anomalous radon concentrations in soils. The radioelement abundance as well as REE abundance shows a northward enrichment trend consistent with increasing grade of metamorphism indicating deformation-induced remobilization of these elements. U and Th illustrate good correlation with REEs but not with Zr. This implies that zircon is not a principal carrier of U and Th within the granitoid-dominant thrust zone and that other radioelement-rich secondary minerals are present in considerable amounts. Thus, the relatively flat, less fractionated, HREE trend is also not entirely controlled by zircon. The spatial correlation of geologic boundary zones (faults, sheared zones) with geochemical and with geophysical (Rn

  20. In-Stream Sediment Dynamics for predicted environmental concentration calculations of plant protection products in the FOCUSSW Scenarios

    Science.gov (United States)

    Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard

    2016-04-01

    The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by

  1. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Data Summary Tables, United States: Volume 2

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across states. Hawaii is missing from all tables since no sampling was done in that state. The following section briefly outlines the approach used by ISP in preparing these data tables. The third section contains the summary tables organized by sample type (water and sediment) and displaying elements within states and states within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  2. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North Region: Volume 7

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  3. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South East Region: Volume 5

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  4. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South West Region: Volume 9

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  5. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, East Region: Volume 4

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  6. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid West Region: Volume 8

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  7. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North West Region: Volume 11

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  8. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, West Region: Volume 10

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  9. Savannah River Laboratory semiannual report, April-September 1979. Hydrogeochemical and stream sediment reconnaissance: National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    1979-10-01

    This report summarizes the accomplishments, status, and program of the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. SRL has accepted responsibility for Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of 1,500,000 square miles in 30 eastern and 7 far-western states. The report is a progress report covering the period April 1979 through September 1979. SRL efforts in the following areas are discussed: reconnaissance and detailed studies in geological programs; management, analysis, and interpretation of analytical and field data; reporting of HSSR results; sample preparation methods; and neutron activation analysis and other analytical techniques. Appendix A to the report summarizes the SRL-NURE production of the April 1979-September 1979 period and the program plans for the first half of FY-1980. Page-scale maps are included that show the status of completed sampling, analysis, and data reports placed on open file

  10. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid East Region: Volume 6

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  11. Uranium hydrogeochemical and stream-sediment reconnaissance of the Teller NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-06-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Teller NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  12. Uranium Hydrogeochemical and Stream-Sediment Reconnaissance of the Bendeleben NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bendeleben NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting program of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  13. Uranium hydrogeochemical and stream-sediment reconnaissance of the Noatak NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Noatak NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. 16 figures, 12 tables

  14. Uranium hydrogeochemical and stream-sediment reconnaissance of the Charley River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Charley River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  15. National Uranium Resource Evaluation: uranium hydrogeochemical and stream-sediment reconnaissance of the Shishmaref NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Shishmaref NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Kateel River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kateel River NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  17. National Uranium Resource Evaluation: uranium hydrogeochemical and stream-sediment reconnaissance of the Wolf Point NTMS Quadrangle, Montana

    International Nuclear Information System (INIS)

    1982-06-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wolf Point NTMS quadrangle, Montana. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. National Uranium Resource Evaluation: uranium hydrogeochemical and stream-sediment reconnaissance of the Shungnak NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Shungnak NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  19. Uranium hydrogeochemical and stream sediment reconnaissance of the Clovis NTMS Quadrangle, New Mexico. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Clovis NTMS Quadrangle, New Mexico. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through E describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses.Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  20. Uranium hydrogeochemical and stream-sediment reconnaissance of the Black River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Black River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  1. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Lookout Ridge NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; Garcia, S.R.; Hanks, D.; George, W.E.; Bolivar, S.L.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the lookout Ridge NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  2. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Harrison Bay NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Minor, M.M.; McInteer, C.; Hansel, J.N.; Broxton, D.E.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Harrison Bay NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  3. Uranium Hydrogeochemical and Stream-Sediment Reconnaissance of the Seward NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, D.L.; Hardy, L.D.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR) of the Seward NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  4. Uranium hydrogeochemical and stream-sediment reconnaissance of the Ophir NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Ophir NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. 14 figures, 10 tables

  5. Uranium hydrogeochemical and stream-sediment reconnaissance of the Kantishna River NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kantishna River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  6. Uranium hydrogeochemical and stream-sediment reconnaissance of the Tanana NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Tanana NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendix A describes the sample medium and summarizes the analytical results for that medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting program of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will be included in this report

  7. Uranium hydrogeochemical and stream-sediment reconnaissance of the Eagle NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Eagle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Durango NTMS quadrangle, Colorado

    International Nuclear Information System (INIS)

    Dawson, H.E.; Weaver, T.A.

    1979-01-01

    During the spring and summer of 1976, 1518 water and 1604 waterborne sediment samples were collected from 1804 locations in the Durango NTMS quadrangle, Colorado. The samples obtained from this 19 940-km 2 area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppB to 25.7 ppB, with a mean value of 0.84 ppB. The concentrations in sediments ranged from 1.0 ppM to 71.6 ppM, with a mean value of 4.2 ppM. Study of total water and total sediment populations indicated that both are actually mixtures of several populations. Consequently, samples were chosen for discussion on the basis of their having conspicuously high uranium concentrations relative to surrounding background values. Thirty-four water samples (approximately 2.2% of the total water population) had uranium concentrations above 5.00 ppB, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3% of the total sediment population) had uranium concentrations above 12.0 ppM. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and Mesozoic strate and Tertiary volcanics. The uranium concentrations in sediment samples from areas of Precambrian rock were especially high and these areas may warrant further, more detailed investigations

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Bozeman NTMS quadrangle, Montana

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1978-11-01

    A total of 1251 water and 1536 sediment samples were collected from 1586 locations over a 17 400-km 2 area at a nominal density of one location per 10 km 2 . Samples were collected predominantly from surface streams although 38 ground water locations were also sampled. The uranium concentrations in waters sampled range from below the detection limit of 0.20 ppB to 41.35 ppB, with a mean concentration of 1.17 ppB. Waters with anomalous uranium concentrations as defined were found in tributaries of the Boulder River which drain Precambrian rocks in the Beartooth Mountains and in tributaries of the Three Forks basin which are underlain predominantly by Tertiary-Quaternary sediments. The two areas appearing most favorable for future exploration on the basis of water data are in the Three Forks basin in the vicinity of the Madison plateau and in a district about 20 km due west of Three Forks. Sediment samples from the quadrangle were found to have uranium concentrations that range from 0.90 ppM to 94.30 ppM, with a mean concentration of 3.71 ppM. The majority of anomalous sediment samples were collected from areas underlain by Precambrian rocks. Based on the data from sediments, the areas appearing most favorable for future exploration include the tributaries of the Boulder River in the Beartooth Mountains, the northern part of the Madison Range, and the Tobacco Root Mountains just north of Virginia City. The uranium concentrations in the sediments from these areas are probably associated with uraniferous siliceous veins or pegmatites

  10. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    International Nuclear Information System (INIS)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives

  11. Uranium hydrogeochemical and stream sediment reconnaissance in the San Juan Mountains, Southwest Colorado

    International Nuclear Information System (INIS)

    Maxwell, J.C.

    1977-02-01

    From 1995 sites in the San Juan Mountains area, 1706 water and 1982 sediment samples were collected during June--July 1976 and analyzed for uranium. The area includes the southern third of the Colorado mineral belt which has yielded rich ores of gold, silver, copper, lead, zinc, and molybdenum. The broadly domed mountains are capped by 2500 m of Tertiary volcanics, deeply eroded to expose a Precambrian crystalline core. Adjacent plateaus underlain by Mesozoic sedimentary rocks were included in the reconnaissance. Average value of uranium in water samples from mountains was less than 0.5 ppB, from plateaus was 1 to 2 ppB, from Mancos shale areas exceeded 2 ppB. Anomalous sediment samples, 40 ppM uranium, came from near Storm King Mountain and upper Vallecito Creek. Other anomalous areas, including the Lake City mining district, were well defined by 4 to 30 ppM uranium in sediment and 3 to 30 ppB uranium in water. Anomalous areas not previously reported indicate favorable areas for future exploration

  12. Uranium hydrogeochemical and stream sediment reconnaissance in the San Juan Mountains, Southwest Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, J.C.

    1977-02-01

    From 1995 sites in the San Juan Mountains area, 1706 water and 1982 sediment samples were collected during June--July 1976 and analyzed for uranium. The area includes the southern third of the Colorado mineral belt which has yielded rich ores of gold, silver, copper, lead, zinc, and molybdenum. The broadly domed mountains are capped by 2500 m of Tertiary volcanics, deeply eroded to expose a Precambrian crystalline core. Adjacent plateaus underlain by Mesozoic sedimentary rocks were included in the reconnaissance. Average value of uranium in water samples from mountains was less than 0.5 ppB, from plateaus was 1 to 2 ppB, from Mancos shale areas exceeded 2 ppB. Anomalous sediment samples, 40 ppM uranium, came from near Storm King Mountain and upper Vallecito Creek. Other anomalous areas, including the Lake City mining district, were well defined by 4 to 30 ppM uranium in sediment and 3 to 30 ppB uranium in water. Anomalous areas not previously reported indicate favorable areas for future exploration.

  13. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives.

  14. Results of uranium hydrogeochemical and stream sediment reconnaissance of the San Juan area, southwestern Colorado

    International Nuclear Information System (INIS)

    Maxwell, J.C.

    1977-01-01

    During June-July 1976, 1706 water samples and 1982 sediment samples were collected from 1995 sites in the San Juan Mountains area and analyzed for uranium. The area includes the southern third of the Colorado mineral belt which has yielded rich ores of gold, silver, copper, lead, zinc, and molybdenum. The broadly domed mountains are capped by 2500 m of Tertiary volcanics, deeply eroded to expose a Precambrian crystalline core. Adjacent plateaus underlain by Mesozoic sedimentary rocks were included in the reconnaissance. Average value of uranium in water samples from mountains was less than 0.5 ppb, from plateaus was 1 to 2 ppb, and from Mancos shale areas exceeded 2 ppb. Anomalous sediment samples, 40 ppM uranium, came from near Storm King Mountain and upper Vallecito Creek. Other anomalous areas, including the Lake City mining district, were well defined by 4 to 30 ppM uranium in sediment and 3 to 30 ppB uranium in water. Above-average concentrations of uranium not previously reported indicate areas favorable for detailed exploration

  15. Hydrogeochemical and stream sediment reconnaissance basic data report for Winnemucca NTMS Quadrangle, Nevada

    International Nuclear Information System (INIS)

    Puchlik, K.P.

    1978-05-01

    Results are presented of the geochemical reconnaissance sampling in the Winnemucca 1 0 x 2 0 quadrangle of the National Topographic Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km 2 arid to semi-arid area and water samples at available streams, springs and wells. Results of neutron activation analyses are presented of uranium and trace elements and other measurements made in the field and laboratory in tabular hardcopy and microfiche format. The report includes 5 full-size overlays for use with the Winnemucca NTMS 1:250,000 quadrangle. Water sampling sites, water-sample uranium and thorium concentrations, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are given and the 12 known uranium occurrences are described. The results indicate that the uranium geochemistry of the area is diverse. High concentrations (greater than 5 ppM) of uranium in sediments are associated mainly with rhyolitic ash falls and flows and silicic intrusives. In defining areas of interest the ratio of relatively insoluble thorium to uranium was considered. The anomalies as defined are then the sediment samples containing low Th/U and high uranium concentrations. These areas consist mainly of fluvial-lacustrine units. Most known uranium occurrences were also identified by this technique. The main Humboldt River shows an irregular increase in uranium concentration downstream which may be related to agricultural modification of the stream flow. U/Cl ratios were used to evaluate the effects of evaporative concentration. Of interest are spring and tributary waters containing high U/Cl and high uranium values. These waters mainly drain acid intrusives, silicic volcanic rocks and related sediments. One such area is the Shoshone and Cortez Mountains

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Denver and Greeley NTMS Quadrangles, Colorado

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Broxton, D.E.; Olsen, C.E.

    1978-03-01

    Although this report covers two National Topographic Map Series 2 0 quadrangles, the data for each quadrangle are presented separately. Evaluation of the data by quadrangle resulted in the delineation of areas in which water and/or sediment uranium concentrations are notably higher than surrounding background concentrations. The major clusters of anomalous water samples were found in areas of the Denver Basin underlain by the Pierre, Laramie, Fox Hills, Denver, and Arapahoe formations. Most of the anomalous sediment samples were collected in areas of the Front Range underlain by Precambrian crystalline rocks, particularly granites of the Silver Plume-Sherman group. Many of the anomalous sediment samples are from sites located near fault zones. The data in this report are also presented by geologic/physiographic province because background uranium concentrations in Front Range samples differ significantly from those in the Denver Basin. Denver Basin waters have higher mean uranium concentrations (mean 14.4 ppB) than Front Range waters (mean 3.3 ppB). Conversely, Front Range sediments are more uraniferous (mean 14.7 ppM) than those in the Denver Basin (mean 6.1 ppM). These differences in background uranium concentrations between Front Range and Denver Basin samples can be attributed to differences in regional geology, physiography, and (in the case of water) the ratio of surface water to ground water sites sampled. There is a significant northward increase in uranium concentrations in water samples from the Denver Basin. The higher uranium concentrations in water samples from the northern part of the basin are probably due to leaching of uraniferous strata in the Pierre and Laramie formations which crop out in that area

  17. The outlier sample effects on multivariate statistical data processing geochemical stream sediment survey (Moghangegh region, North West of Iran)

    International Nuclear Information System (INIS)

    Ghanbari, Y.; Habibnia, A.; Memar, A.

    2009-01-01

    In geochemical stream sediment surveys in Moghangegh Region in north west of Iran, sheet 1:50,000, 152 samples were collected and after the analyze and processing of data, it revealed that Yb, Sc, Ni, Li, Eu, Cd, Co, as contents in one sample is far higher than other samples. After detecting this sample as an outlier sample, the effect of this sample on multivariate statistical data processing for destructive effects of outlier sample in geochemical exploration was investigated. Pearson and Spear man correlation coefficient methods and cluster analysis were used for multivariate studies and the scatter plot of some elements together the regression profiles are given in case of 152 and 151 samples and the results are compared. After investigation of multivariate statistical data processing results, it was realized that results of existence of outlier samples may appear as the following relations between elements: - true relation between two elements, which have no outlier frequency in the outlier sample. - false relation between two elements which one of them has outlier frequency in the outlier sample. - complete false relation between two elements which both have outlier frequency in the outlier sample

  18. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Wyoming portions of the Driggs, Preston, and Ogden NTMS Quadrangles

    International Nuclear Information System (INIS)

    Broxton, D.E.; Nunes, H.P.

    1978-04-01

    This report describes work done in the Wyoming portions of the Driggs and Preston, Wyoming/Idaho, and the Ogden, Wyoming/Utah, National Topographic Map Series (NTMS) quadrangles (1 : 250,000 scale) by the Los Alamos Scientific Laboratory (LASL) as part of the nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The HSSR is designed to identify areas having higher than normal concentrations of uranium in ground waters, surface waters, and water-transported sediments. During the fall of 1976, 1108 water samples and 1956 sediment samples were taken from 1999 locations by a private contractor within the Wyoming portion of Driggs, Preston, and Ogden quadrangles. An additional 108 water samples and 128 sediment samples were collected in the Grand Teton National Park during the fall of 1977 by staff members from the LASL. All of the samples were collected and treated according to standard specifications described in Appendix A. Uranium concentrations were determined at the LASL using standard analytical methods and procedures, also described briefly in Appendix A. Appendixes B-I through B-III and C-I through C-III are listings of all field and analytical data for the water and sediment samples, respectively. Appendixes D-I and D-II provide keys to codes used in the data listings. Statistical data describing the mean, range, and standard deviations of uranium concentrations are summarized by quadrangle and sample source-type in Tables I through III

  19. Hydrogeochemical and stream sediment reconnaissance of the National Uranium Resource Evaluation Program. Progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, T.A.; Bunker, M.E.; Hansel, J.M. Jr.

    1978-10-01

    The modifications to the Los Alamos Scientific Laboratory (LASL) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, necessary to incorporate the expansion and revision of the overall HSSR program as required by the Department of Energy, have been completed. To date, approximately 57% of the total area assigned to the LASL in the Rocky Mountain region and Alaska has been sampled and plans are well under way to sample an additional 28% during FY 78. Contracts have been let to complete the sampling of the LASL area in the lower states and bids to sample an additional 33% of Alaska are being evaluated. Twenty reports (2 in press and 18 in preparation) are presently scheduled to be open filed within six months, reporting uranium data only for 18 complete quadrangles and multielement data for 11 complete quadrangles. In addition, data releases are being prepared to open file the uranium data from portions of 13 quadrangles that are now outside the LASL reporting boundary but which had been sampled by the LASL prior to the establishment of the new boundary in October 1977. By the end of the quarter, all multielement analysis systems were operational. Water samples from 7780 locations and sediment samples from 4170 locations were analyzed for uranium. Samples from approximately 6500 locations were analyzed by one or more of the multielement methods.

  20. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts.

    Science.gov (United States)

    Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel

    2014-10-01

    Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.

  1. Field procedures for the uranium hydrogeochemical and stream sediment reconnaissance as used by the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Aamodt, P.L.

    1978-04-01

    This manual of field procedures is prepared to aid personnel involved in the field sampling of natural waters and waterborne sediment for the Los Alamos Scientific Laboratory (LASL) as part of the US Department of Energy (DOE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the National Uranium Resource Evaluation (NURE) program. It presents the procedural guidelines to be followed by all contractors, contractor employees, and others who collect, treat, or otherwise handle samples taken for the LASL as part of the HSSR program. Part I relates to all sampling in the conterminous states of the US for which the LASL is responsible to the DOE for carrying out the HSSR work. Part II describes procedures to be followed for HSSR work, using helicopter support, in the state of Alaska. The objective of the manual is to insure that consistent techniques are used throughout the survey. If any procedure is unclear or cannot be followed, telephone collect to Group G-5, LASL, (505) 667-7590, for further instructions. No variations in the specific procedures should be made without prior approval of the LASL

  2. Uranium hydrogeochemical and stream sediment reconnasissance of the Trinidad NTMS Quadrangle, Colorado, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1980-05-01

    Uranium and other elemental data resulting from the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Trinidad National Topographic Map Series (NTMS) quadrangle, Colorado, by the Los Alamos Scientific Laboratory (LASL) are reported herein. This study was conducted as part of the United States Department of Energy's National Uranium Resource Evaluation (NURE), which is designed to provide improved estimates of the availability and economics of nuclear fuel resources and to make available to industry information for use in exploration and development of uranium resources. The HSSR data will ultimately be integrated with other NURE data (e.g., airborne radiometric surveys and geological investigations) to complete the entire NURE program. This report is a supplement to the HSSR uranium evaluation report for the Trinidad quadrange (Morris et al, 1978), which presented the field and uranium data for the 1060 water and 1240 sediment samples collected from 1768 locations in the quadrangle. The earlier report contains an evaluation of the uranium concentrations of the samples as well as descriptions of the geology, hydrology, climate, and uranium occurrences of the quadrange. This supplement presents the sediment field and uranium data again and the analyses of 42 other elements in the sediments. All uranium samples were redetermined by delayed-neutron counting (DNC) when the sediment samples were analyzed for 31 elements by neutron activation. For 99.6% of the sediment samples analyzed, the differences between the uranium contents first determined (Morris et al, 1978) and the analyses reported herein are less than 10%

  3. Hydrogeochemical and stream sediment reconnaissance of the National Uranium Resource Evaluation Program. Progress report, January--March 1978

    International Nuclear Information System (INIS)

    Weaver, T.A.; Bunker, M.E.; Hansel, J.M. Jr.

    1978-10-01

    The modifications to the Los Alamos Scientific Laboratory (LASL) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, necessary to incorporate the expansion and revision of the overall HSSR program as required by the Department of Energy, have been completed. To date, approximately 57% of the total area assigned to the LASL in the Rocky Mountain region and Alaska has been sampled and plans are well under way to sample an additional 28% during FY 78. Contracts have been let to complete the sampling of the LASL area in the lower states and bids to sample an additional 33% of Alaska are being evaluated. Twenty reports (2 in press and 18 in preparation) are presently scheduled to be open filed within six months, reporting uranium data only for 18 complete quadrangles and multielement data for 11 complete quadrangles. In addition, data releases are being prepared to open file the uranium data from portions of 13 quadrangles that are now outside the LASL reporting boundary but which had been sampled by the LASL prior to the establishment of the new boundary in October 1977. By the end of the quarter, all multielement analysis systems were operational. Water samples from 7780 locations and sediment samples from 4170 locations were analyzed for uranium. Samples from approximately 6500 locations were analyzed by one or more of the multielement methods

  4. Death Valley 10 x 20 NTMS area, California and Nevada. Data report: National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-04-01

    Results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Death Valley 1 0 x 2 0 quadrangle are presented. Stream sediment samples were collected from small streams at 649 sites or at a nominal density of one site per 20 square kilometers. Ground water samples were collected at 62 sites or at a nominal density of one site per 220 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water and surface water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) scintillometer readings, and (3) elemental analyses (U, Br, Cl, F, He, Mn, Na, and V). Supplementary data include site descriptors, tabulated analytical data for Al, Dy, and Mg, and histograms and cumulative frequency plots for all elements. Key data from stream sediment sites include (1) water quality measurements (2) important elemental analyses, (U, Th, Hf, Ce, Fe, Mn, Sc, Na, Ti, and V), and (3) scintillometer readings. Supplementary data from stream sediment sites include sample site descriptors (stream characteristics, vegetation, etc.), additional elemental analyses (Dy, Eu, La, Lu, Sm, and Yb), and histograms and cumulative frequency plots for all elements

  5. Albany 10 x 20 NTMS area Connecticut, New Hampshire, Massachusetts, New York and Vermont: supplemental data report. National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-03-01

    This data report presents supplemental analytical results for 1328 stream sediment samples that were collected as part of the SRL-NURE reconnaissance in the National Topographic Map Series (NTMS) Albany 1 0 x 2 0 quadrangle. Results are reported for 23 Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn). Analyses are tabulated and displayed graphically on microfiche. Field data and neutron activation analysis were open-filed in DPST-79-146-10 [GJBX-140(79)

  6. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe Mn oxyhydroxides: Fractionation, speciation, and controls over REE + Y patterns in the surface environment

    Science.gov (United States)

    Leybourne, Matthew I.; Johannesson, Karen H.

    2008-12-01

    We have collected ˜500 stream waters and associated bed-load sediments over an ˜400 km 2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into "dissolved" (primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO 2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.

  7. National uranium resource evaluation program. Hydrogeochemical and stream sediment reconnaissance basic data for Oklahoma City NTMS Quadrangle, Oklahoma. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1978-01-01

    Field and laboratory data are presented for 812 groundwater samples and 847 stream sediment samples. Statistical and areal distributions of uranium and other possibly uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on the results from groundwater sampling, the most promising formations for potential uranium mineralization in the quadrangle are the Permian Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog Creek, Chickasha, Duncan, and Cedar Hills Formations. These units are characterized by relatively high average concentrations of uranium, conductivity, arsenic, calcium, lithium, molybdenum, and sulfate. In addition, groundwaters from the Pennsylvanian Oscar Formation are characterized by values above the 85th percentile for uranium, conductivity, the uranium/sulfate ratio, arsenic, and vanadium. Results of stream sediment sampling indicate that the most promising formations for potential uranium mineralization include the same Permian Formation as indicated by groundwater sampling (Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog-Creek, Chickasha, Duncan, and Cedar Hill Formations) in an area where these formations crop out north of the North Canadian River. Stream sediment samples from this area are characterized by concentrations above the 85th percentile for uranium, thorium, arsenic, lithium, manganese, and vanadium

  8. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Pribram, Czech Republic

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Molek, Michael; Grygar, Tomas; Zeman, Josef

    2006-01-01

    Stream sediments from the mining and smelting district of Pribram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg -1 , 26 039 mg Zn kg -1 , 316.4 mg Cd kg -1 , 256.9 mg Cu kg -1 ). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF > 40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting ( 206 Pb/ 207 Pb = 1.16), while the role of secondary smelting (car battery processing) is negligible. - Pb isotopes properly complete traditional investigations of metal sources and dispersal in contaminated stream sediments

  9. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1981-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. Water and sediment samples are collected at a nominal density of one sample location per 10 km/sup 2/ except for lake areas of Alaska where the density is one sample location per 23 km/sup 2/. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting with a 20 parts per billion lower limit of detection, which is well below the range of uranium concentrations in natural sediment samples. Elemental concentrations in sediments are also determined by neutron activation analysis for 31 elements by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. The multielement analyses provide valuable data for studies concerning pathfinder elements, environmental pollution, elemental distributions, dispersion halos, and economic ore deposits other than uranium. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km/sup 2/.

  10. Hydrogeochemical and stream sediment reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) 1973-1984. Technical history

    International Nuclear Information System (INIS)

    1985-01-01

    The Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) generated a database of interest to scientists and other professional personnel in the academic, business, industrial, and governmental communities. NURE was a program of the Department of Energy Grand Junction Office (GJO) to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. The HSSR program provided for the collection of water and sediment samples located on the 1 0 x 2 0 National Topographic Map Series (NTMS) quadrangle grid across the conterminous United States and Alaska and the analysis of these samples for uranium as well as for a number of additional elements. Although the initial purpose of the program was to provide information regarding uranium resources, the information recorded about other elements and general field or site characteristics has made this database potentially valuable for describing the geochemistry of a location and addressing other issues such as water quality. The purpose of this Technical History is to summarize in one report those aspects of the HSSR program that are likely to be important in helping users assess the database and make informed judgements about its application to specific research questions. The history begins with an overview of the NURE Program and its components. Following a general description of the goals, objectives, and key features of the HSSR program, the implementation of the program at each of the four federal laboratories is presented in four separate chapters. These typically cover such topics as sample collection, sample analysis, and data management. 80 refs., 5 figs., 9 tabs

  11. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. The reconnaissance data will be combined with data from airborne radiometric surveys and geological and geophysical investigations to provide an improved estimate for the economics and availability of nuclear fuel resources in the United States and to make information available to industry for use in the exploration and development of uranium resources. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting and a 20 parts per billion lower limit of detection. Elemental concentrations in sediments are also determined by neutron activation analysis, x-ray fluorescence, and by arc-source emission spectrography. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km 2 . The philosophy, sampling methodology, analytical techniques, and progress of the reconnaissance are described in several published pilot study, reconnaissance, and technical reports. The Los Alamos program was designed to maximize the identification of uranium in terrains of varied geography, geology, and climate

  12. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1981-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. Water and sediment samples are collected at a nominal density of one sample location per 10 km 2 except for lake areas of Alaska where the density is one sample location per 23 km 2 . Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting with a 20 parts per billion lower limit of detection, which is well below the range of uranium concentrations in natural sediment samples. Elemental concentrations in sediments are also determined by neutron activation analysis for 31 elements by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. The multielement analyses provide valuable data for studies concerning pathfinder elements, environmental pollution, elemental distributions, dispersion halos, and economic ore deposits other than uranium. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km 2

  13. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Introduction to Data Files, United States: Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    One product of the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, a component of the National Uranium Resource Evaluation (NURE), is a data-base of interest to scientists and professionals in the academic, business, industrial, and governmental communities. This database contains individual records for water and sediment samples taken during the reconnaissance survey of the entire United States, excluding Hawaii. The purpose of this report is to describe the NURE HSSR data by highlighting its key characteristics and providing user guides to the data. A companion report, ''A Technical History of the NURE HSSR Program,'' summarizes those aspects of the HSSR Program which are likely to be important in helping users understand the database. Each record on the database contains varying information on general field or site characteristics and analytical results for elemental concentrations in the sample; the database is potentially valuable for describing the geochemistry of specified locations and addressing issues or questions in other areas such as water quality, geoexploration, and hydrologic studies. This report is organized in twelve volumes. This first volume presents a brief history of the NURE HSSR program, a description of the data files produced by ISP, a Users' Dictionary for the Analysis File and graphs showing the distribution of elemental concentrations for sediments at the US level. Volumes 2 through 12 are comprised of Data Summary Tables displaying the percentile distribution of the elemental concentrations on the file. Volume 2 contains data for the individual states. Volumes 3 through 12 contain data for the 1 0 x 2 0 quadrangles, organized into eleven regional files; the data for the two regional files for Alaska (North and South) are bound together as Volume 12

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Gillette NTMS quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; George, W.E.; Minor, M.M.; Simi, O.R.; Talcott, C.L.; Hensley, W.K.; Cheadle, J.M. III.

    1980-08-01

    During 1976 and 1977, 752 water and 843 sediment samples were collected from 1419 locations within the 17 700-km 2 area of the Gillette quadrangle, Wyoming. Water samples were collected primarily from wells, and also from springs, ponds, and streams; sediment samples were collected primarily from stream channels, and also from springs and ponds. Each water sample was analyzed for uranium and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 to 212.20 ppB and have a median of 1.10 ppB. The highest background uranium concentrations, as well as the highest individual uranium values, are in areas where favorable host units for uranium mineralization crop out. These units are the Wasatch and Fort Union formations in the Powder River Basin and the Inyan Kara group in the Black Hills. Uranium concentrations in sediment samples range from 0.64 to 29.83 ppM and have a median of 3.24 ppM. Background uranium concentrations are strongly controlled by the exposed geologic unit, and range from 4 to 8 ppM for the Cretaceous Colorado group to 1 to 3 ppM for the Triassic and Paleozoic units exposed in the Black Hills. Several areas where the Wasatch and Fort Union formations are exposed exhibit uranium concentrations in sediment samples that are slightly, but distinctly, above background values for these units. All of these areas are also associated with notably high uranium concentrations in water samples. Because epigenetic uranium mineralization in economically important areas can exhibit a similar geochemical signature, these areas within the Gillette quadrangle should be further examined for the possible presence of uranium mineralization

  15. Roanoke 10 x 20 NTMS area, Virginia. Data report (abbreviated): National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-12-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series Roanoke 1 0 x 2 0 quadrangle. Surface sediment samples were collected at 1235 sites. Ground water samples were collected at 767 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, etc.), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included. Key data from stream water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Al, Br, Cl, Dy, F, Mg, Mn, Na, and V). Uranium concentrations in the sediments range from 0.50 to 83.50 ppM with a mean of 6.67 ppM. A cluster of high log (U/Th + Hf) ratios appear in the southeastern portion of the quadrangle. Uranium, thorium, and the rare earth elements show a striking correlation with the geology of the area

  16. Development of data enhancement and display techniques for stream-sediment data collected in the national uranium resource evaluation program of the United States Department of Energy

    International Nuclear Information System (INIS)

    Koch, G.S. Jr.; Howarth, R.J.; Carpenter, R.H.; Schuenemeyer, J.H.

    1979-08-01

    The objective of this study was to combine statistical, mapping, and geological techniques in order to evaluate and appropriately display geochemical data for the identification of uranium associated halos utilizing the NURE hydrogeochemical and stream sediment reconnaissance data base. A set of computer-based procedures implemented in a time-sharing interactive mode on a Control Data Corporation Cyber 70 and 174 computer was developed. Techniques of data analysis are developed. Results of the data analysis for the Southeastern area, Seguin quadrangle, and Pueblo quadrangle are presented. Conclusions are drawn and recommendations are stated

  17. Geochemical Characterization of Mine Waste, Mine Drainage, and Stream Sediments at the Pike Hill Copper Mine Superfund Site, Orange County, Vermont

    Science.gov (United States)

    Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Kiah, Richard G.; Deacon, Jeffrey R.; Adams, Monique; Anthony, Michael W.; Briggs, Paul H.; Jackson, John C.

    2006-01-01

    The Pike Hill Copper Mine Superfund Site in the Vermont copper belt consists of the abandoned Smith, Eureka, and Union mines, all of which exploited Besshi-type massive sulfide deposits. The site was listed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004 due to aquatic ecosystem impacts. This study was intended to be a precursor to a formal remedial investigation by the USEPA, and it focused on the characterization of mine waste, mine drainage, and stream sediments. A related study investigated the effects of the mine drainage on downstream surface waters. The potential for mine waste and drainage to have an adverse impact on aquatic ecosystems, on drinking- water supplies, and to human health was assessed on the basis of mineralogy, chemical concentrations, acid generation, and potential for metals to be leached from mine waste and soils. The results were compared to those from analyses of other Vermont copper belt Superfund sites, the Elizabeth Mine and Ely Copper Mine, to evaluate if the waste material at the Pike Hill Copper Mine was sufficiently similar to that of the other mine sites that USEPA can streamline the evaluation of remediation technologies. Mine-waste samples consisted of oxidized and unoxidized sulfidic ore and waste rock, and flotation-mill tailings. These samples contained as much as 16 weight percent sulfides that included chalcopyrite, pyrite, pyrrhotite, and sphalerite. During oxidation, sulfides weather and may release potentially toxic trace elements and may produce acid. In addition, soluble efflorescent sulfate salts were identified at the mines; during rain events, the dissolution of these salts contributes acid and metals to receiving waters. Mine waste contained concentrations of cadmium, copper, and iron that exceeded USEPA Preliminary Remediation Goals. The concentrations of selenium in mine waste were higher than the average composition of eastern United States soils. Most mine waste was

  18. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  19. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-31

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.

  20. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this

  1. Toward an understanding of "Legacy P" - phosphorus sorption mechanisms in stream sediments as influenced by organic matter

    Science.gov (United States)

    Audette, Yuki; O'Halloran, Ivan P.; Nowell, Peter M.; Congreves, Katelyn; Voroney, R. Paul

    2017-04-01

    -P minerals, even under neutral to alkaline conditions. Thus, where OM-Fe-P forms predominate, we predict a high risk of SRP release from sediments when water chemistry changes. In addition, OM may inhibit the transformation of labile Ca-P forms to more stable Ca-P minerals. Loading of OM affects the development of hypoxia in aquatic systems, and the accumulation of OM can promote the release of both SRP and dissolved organic C to downstream environments. This study provides evidence that the presence of OM in stream sediments influences P sorption mechanisms and is critical in understanding P biogeochemistry in freshwater environments.

  2. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    Science.gov (United States)

    Robinson, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to

  3. Lead, Zn, and Cd in slags, stream sediments, and soils in an abandoned Zn smelting region, southwest of China, and Pb and S isotopes as source tracers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuangen; Li, Sun; Bi, Xiangyang; Wu, Pan; Liu, Taozhe; Li, Feili; Liu, Congqiang [Chinese Academy of Sciences, Guiyang City (China). Inst. of Geochemistry

    2010-12-15

    Smelting activity produced tons of slags with large quantities of highly toxic metals, resulting in contamination in adjacent soils and sediments as well. This study investigated the fractionation and sources of metals Pb, Zn, and Cd in polluted soils and sediments in a region with once prosperous Zn smelting activities in southwestern China. Soils with varying land uses were of a special concern due to their connection to the food chain. Obtained data would offer a valuable reference to the development of land-use management strategy in this region. In total, 130 soils and 22 stream sediments were sampled in the studied region. After air-dried and passed through a 2 mm sieve, soils and sediments were subjected to a three-step sequential extraction for the fractionation of Pb, Zn, and Cd. Besides, 66 slags were sampled, and acid-digested for the determination of total Pb, Zn, and Cd. Soils/sediments with extremely high Pb, Zn, and Cd concentrations were selected for observation and analysis using a scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. Stable lead and sulphur isotope techniques were applied for source tracing of metals in soils and sediments. Data were pooled for analysis of variance together with a post-hoc multiple comparison procedure. High concentrations of Pb ({proportional_to}46,219 mg kg{sup -1} with medians of 846 mg kg{sup -1} in soil, 7,415 mg kg{sup -1} in sediment, and 8,543 mg kg{sup -1} in slag), Zn ({proportional_to}57, 178 mg kg{sup -1} with medians of 1,085 mg kg{sup -1} in soil, 15,678 mg kg{sup -1} in sediment, and 14,548 mg kg{sup -1} in slag), and Cd ({proportional_to}312 mg kg{sup -1} with medians of 29.6 mg kg{sup -1} in soil, 47.1 mg kg{sup -1} in sediment, and 47.9 mg kg{sup -1} in slag) were measured. Soils with no cultivation had greater concentrations of Pb (16,686 mg kg{sup -1} in median), Zn (13,587 mg kg{sup -1} in median), and Cd (44.1 mg kg{sup -1} in median) than those with cultivation. Al

  4. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Scranton 10 x 20 NTMS area: New Jersey, New York, and Pennsylvania. Preliminary basic data report. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Tones, P.L.

    1978-11-01

    Stream sediment and stream water samples were collected from small streams at 980 sites for a nominal density of one site per 18 square kilometers in rural areas. Ground water samples were collected at 1251 sites for a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water and surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included

  6. Savannah River Laboratory Hydrogeochemical and Stream Sediment Reconnaissance. Preliminary raw data release: Spartanburg 10 x 20 NTMS area, North Carolina and South Carolina. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Heffner, J.D.; Ferguson, R.B.

    1977-12-01

    Preliminary results are presented of stream sediment and ground water reconnaissance in the Spartanburg National Topographic Map Series (NTMS) 1 0 x 2 0 quadrangle. Stream sediment samples were collected from small streams at 1202 sites for a nominal density of one site per 13 square kilometers (five square miles) in rural areas. Ground water samples were collected at 771 sites for a nominal density of one site per 25 square kilometers (ten square miles). Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Key data are presented in page-sized hard copy. Supplementary data are on microfiche. Key data from stream sites include (1) water quality measurements (pH, conductivity, and alkalinity), (2) elements that may be related to potential uranium and thorium mineralization in this area (U, Th, Hf, Ce, and Dy), and (3) elements useful for geologic classification of the sample area (Ti, V, Fe, Mn, A, and Sc). Supplementary data from stream sites include sample site descriptors (stream characteristics, vegetation, stream width, etc.) and additional elemental analyses that may be useful (F, Eu, Sm, La, Yb, and Lu). Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Na, Cl, Mg, Al, Mn, Br, V, and F). Supplementary data include site descriptors, information about the collection of the samples (well age, well depth, frequency of use of well, etc.), and analytical data for dyprosium

  7. Savannah River Laboratory hydrogeochemical and stream sediment reconnaissance. Preliminary raw data release, Charlotte 10 x 20 NTMS area, North Carolina and South Carolina. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Heffner, J.D.; Ferguson, R.B.

    1978-01-01

    This report presents preliminary results of stream sediment and ground water reconnaissance in the Charlotte National Topographic Map Series (NTMS) 1 0 x 2 0 quadrangle. Stream sediment samples were collected from small streams at 1254 sites for a nominal density of one site per 13 square kilometers (five square miles) in rural areas. Ground water samples were collected at 759 sites for a nominal density of one site per 25 square kilometers (ten squre miles). Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Key data are presented in page-sized hard copy. Supplementary data are on microfiche. Key data from stream sites include (1) water quality measurements (pH, conductivity, and alkalinity), (2) elements that may be related to potential uranium and thorium mineralization in this area (U, Th, Hf, Ce, and Dy), and (3) elements useful for geologic classification of the sample area (Ti, V, Fe, Mn, Al, and Sc). Supplementary data from stream sites include sample site descriptors (stream characteristics, vegetation, stream width, etc.) and additional elemental analyses that may be useful (F, Eu, Sm, La, Yb, and Lu). Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Na, Cl, Mg, Al, Mn, Br, V, and F). Supplementary data include site descriptors, information about the collection of the samples (well age, well depth, frequency of use of well, etc.), and analytical data for dysprosium

  8. Testing the effects of in-stream sediment sources and sinks on simulated watershed sediment yield using the coupled U.S. Army Corps of Engineers GSSHA Model and SEDLIB Sediment Transport Library

    Science.gov (United States)

    Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.

    2017-12-01

    The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.

  9. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  10. Radio nuclides in mineral rocks and beach sand minerals in south east coast, Odisha

    International Nuclear Information System (INIS)

    Vidya Sagar, D.; Sahoo, S.K.; Essakki, Chinna; Tripathy, S.K.; Ravi, P.M.; Tripathi, R.M.; Mohanty, D.

    2014-01-01

    The primordial and metamorphic mineral rocks of the Eastern Ghats host minerals such as rutile, ilmenite, Silmenite, zircon, garnet and monazite in quartz matrix. The weathered material is transported down to the sea by run-off through Rivers and deposited back in coastal beach as heavy mineral concentrates. The minerals are mined by M/S Indian Rare Earths Ltd at the Chatrapur plant in Odisha coast to separate the individual minerals. Some of these minerals have low level radioactivity and may pose external and internal radiation hazard. The present paper deals with natural Thorium and Uranium in the source rocks with those observed in the coastal deposits. The study correlates the nuclide activity ratios in environmental samples in an attempt to understand the ecology of the natural radio nuclides of 238 U, 232 Th, 40 K and 226 Ra in environmental context. Further work is in progress to understand the geological process associated with the migration and reconcentration of natural radio-nuclides in the natural high background radiation areas

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the Dixon Entrance NTMS and Prince Rupert D-6 quadrangles, Alaska, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; Hensley, W.K.; Hanks, D.E.

    1980-09-01

    During August 1978, sediment and water samples were collected from 203 lakes, streams, and springs in the Dixon Entrance and Prince Rupert D-6 quadrangles, Alaska. Variations in concentrations of all 43 elements among the five sieve fractions at each location are generally less than analytical uncertainty. Therefore, elemental analyses are generally comparable for a wide range in sieve fractions for sediment sample locations in southeastern Alaska. However, at some few locations, several elemental concentrations increase with finer mesh size; for uranium, such an increase may be associated with mineralization. Waterborne sediment samples collected from the center of a stream yield analyses essentially identical to those collected from the adjacent bank for most elements. Chlorine concentrations are generally higher in bank sediments, probably as a result of concentration of halogens in the vegetation that stabilizes the bank. At a few locations, concentrations of the ferrous elements, particularly Mn and Co, differ notably between the stream center and bank: such behavior is characteristic of mineralized areas. Concentrations of the ferrous elements, particularly Mn and Co, are strikingly enriched in the stream sediments compared either to lake sediments or to crustal abundances. This suggests that this area might be a favorable location for strategic resources of these elements. Uranium concentrations in all 950 sediment samples of all sieve fractions range from 0.54 to 22.80 ppM, with a median of 2.70 ppM

  12. Detailed uranium hydrogeochemical and stream sediment reconnaissance data release for the eastern portion of the Montrose NTMS Quadrangle, Colorado, including concentrations of forty-five additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1981-01-01

    In September and October 1979, the Los Alamos Scientific Laboratory (LASL) conducted a detailed geochemical survey for uranium primarily in the Sawatch Range in the eastern part of the Montrose National Topographic Map Series (NTMS) quadrangle, Colorado, as part of the National Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 1034 water and 2087 sediment samples were collected from streams and springs from 2088 locations within a 5420-km 2 area. Statistical data for uranium concentrations in water and sediment samples are presented. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in appendices. Uranium/thorium ratios for sediment samples are also included. This report contains uranium analyses for water samples and multielement analyses for sediment samples. Sediments were analyzed for uranium and thorium as well as Al, Sb, As, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sm, Sc, Se, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, Zn, and Zr. All elemental analyses were performed at the LASL. Water samples were analyzed for uranium by fluorometry. Sediments were analyzed for uranium by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Descriptions of procedures as analytical precisions and detection limits are given in the appendix

  13. Supplement to hydrogeochemical and stream-sediment reconnaissance basic data reports K/UR-445 through K/UR-457 [GJBX-165(82) through GJBX-177(82)]. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Program was to provide information to be used in accomplishing the overall National Uranium Resource Evaluation (NURE) Program objectives. This was accomplished by a reconnaissance of surface water, groundwater, stream sediment, and lake sediment. The survey was conducted by Los Alamos National Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. The samples in the reports were collected by SRL and analyzed by the Uranium Resource Evaluation Project in Oak Ridge, Tennessee. Laboratory analyses were completed in August 1982. The following quadrangles located in the states of California, Nevada, Oregon, Arizona, Maine, Washington, and South Carolina are covered in this report: Adel, Bangor, Bath, Boise, Challis, Caliente, Death Valley, Elko, Ely, Fresno, Hailey, Idaho Falls, Jordan Valley, Lund, Mariposa, Phoenix, San Luis Obispo, Sacramento, Santa Cruz, Twin Falls, and Vya

  14. Application of NURE data to the study of crystalline rocks in the Wyoming uranium province

    International Nuclear Information System (INIS)

    Rush, S.M.; Anderson, J.R.; Bennett, J.E.

    1983-03-01

    The Wyoming uranium province study is a part of the National Uranium Resource Evaluation (NURE) program conducted by Bendix Field Engineering Corporation for the US Department of Energy. The ultimate objective of the entire project is the integration of NURE and other data sources to develop a model for a uranium province centered in Wyoming. This paper presents results of the first phase of the Wyoming uranium province study, which comprises characterization of the crystalline rocks of the study area using NURE hydrogeochemical and stream-sediment data, aerial radiometric and magnetic data, and new data generated for zircons from intrusive rocks in the study area. The results of this study indicate that the stream-sediment, aerial radiometric, aerial magnetic, and zircon data are useful in characterization of the crystalline rocks of the uranium province. The methods used in this project can be applied in two ways toward the recognition of a uranium province: (1) to locate major uranium deposits and occurrences, and (2) to generally identify different crystalline rock types, particularly those that could represent significant uranium source rocks. 14 figures, 8 tables

  15. Boston 10 x 20 NTMS area, Massachusetts, and New Hampshire. Data report (abbreviated): National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-01-01

    Results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Boston 1 0 x 2 0 quadrangle are presented. Surface sediment samples were collected at 669 sites. Ground water samples were collected at 303 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, etc.), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included on the microfiche. Key data from stream water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Al, Br, Ci, Dy, F, Mg, Mn, Na, and V). The maximum uranium concentration in the sediments of the Boston quadrangle was 82.1 ppM. The mean of the logarithms of the uranium concentrations in sediments was 0.68, which corresponds to 4.8 ppM uranium. A cluster of samples with uranium values greater than 40 ppM and which have low thorium concentrations occurs in Essex County, Massachusetts

  16. Lake Champlain 10 x 20 NTMS area New York, Vermont, and New Hampshire: data report (abbreviated). National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-03-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Lake Champlain 1 0 x 2 0 quadrangle. Surface sediment samples were collected at 1196 sites. Ground-water samples were collected at 619 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, for uranium and 8 other elements in ground water, and for uranium and 9 other elements in surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Data from ground-water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, etc.), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. A real distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included. Key data from stream water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Al, Br, Cl, Dy, F, Mg, Mg, Na, and V). Uranium concentrations in the sediments range from 0.30 to 43.40 ppM with a mean of 3.03 ppM. A cluster of high log (U/Th+Hf) ratios appear in the southeastern portion of the quadrangle. The U x 1000/conductivity ratio in surface water is high in this same area

  17. Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology.

    Science.gov (United States)

    Ferreira, Antonio; Daraktchieva, Zornitza; Beamish, David; Kirkwood, Charles; Lister, T Robert; Cave, Mark; Wragg, Joanna; Lee, Kathryn

    2018-01-01

    Predictive mapping of indoor radon potential often requires the use of additional datasets. A range of geological, geochemical and geophysical data may be considered, either individually or in combination. The present work is an evaluation of how much of the indoor radon variation in south west England can be explained by four different datasets: a) the geology (G), b) the airborne gamma-ray spectroscopy (AGR), c) the geochemistry of topsoil (TSG) and d) the geochemistry of stream sediments (SSG). The study area was chosen since it provides a large (197,464) indoor radon dataset in association with the above information. Geology provides information on the distribution of the materials that may contribute to radon release while the latter three items provide more direct observations on the distributions of the radionuclide elements uranium (U), thorium (Th) and potassium (K). In addition, (c) and (d) provide multi-element assessments of geochemistry which are also included in this study. The effectiveness of datasets for predicting the existing indoor radon data is assessed through the level (the higher the better) of explained variation (% of variance or ANOVA) obtained from the tested models. A multiple linear regression using a compositional data (CODA) approach is carried out to obtain the required measure of determination for each analysis. Results show that, amongst the four tested datasets, the soil geochemistry (TSG, i.e. including all the available 41 elements, 10 major - Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti - plus 31 trace) provides the highest explained variation of indoor radon (about 40%); more than double the value provided by U alone (ca. 15%), or the sub composition U, Th, K (ca. 16%) from the same TSG data. The remaining three datasets provide values ranging from about 27% to 32.5%. The enhanced prediction of the AGR model relative to the U, Th, K in soils suggests that the AGR signal captures more than just the U, Th and K content in the soil. The

  18. Radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico with annotated bibliography

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1982-01-01

    From an extensive literature search and field examination of 96 nonsandstone radioactive occurrences, the author compiled an annotated bibliography of over 600 citations and a list of 327 radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico. The citations are indexed by individual radioactive occurrence, geographic area, county, fluorspar deposits and occurrences, geochemical analyses, and geologic maps. In addition, the geology, mineralization, and uranium and thorium potential of 41 geographic areas in New Mexico containing known radioactive occurrences in veins and igneous and metamorphic rocks or that contain host rocks considered favorable for uranium or thorium mineralization are summarized. A list of aerial-radiometric, magnetic, hydrogeochemical, and stream-sediment survey reports is included

  19. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  20. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    OpenAIRE

    Idrus, Arifudin; Nur, I; Warmada, I. W; Fadlin, Fadlin

    2011-01-01

    DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency), Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This pa...

  1. Little Rock and El Dorado 10 x 20 NTMS quadrangles and adjacent areas, Arkansas: data report (abbreviated)

    International Nuclear Information System (INIS)

    Steel, K.F.; Cook, J.R.

    1981-07-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series Little Rock 1 0 x 2 0 quadrangle (Cleveland, Dallas, and Howard Counties do not have stream sediment analyses); the El Dorado 1 0 x 2 0 quadrangle (only Clark County has stream sediment analyses); the western part (Lonoke and Jefferson Counties) of Helena 1 0 x 2 0 quadrangle; the southern part (Franklin, Logan, Yell, Perry, Faulkner, and Lonoke Counties) of Russellville 1 0 x 2 0 quadrangle; and the southwestern corner (Ashley County) of the Greenwood 1 0 x 2 0 quadrangle. Stream samples were collected at 943 sites in the Little Rock quadrangle, 806 sites in the El Dorado quadrangle, 121 sites in the Helena area, 292 sites in the Russellville area, and 77 in the Greenwood area. Ground water samples were collected at 1211 sites in the Little Rock quadrangle, 1369 sites in the El Dorado quadrangle, 186 sites in the Helena area, 470 sites in the Russellville area, and 138 sites in the Greenwood area. Stream sediment and stream water samples were collected from small streams at nominal density of one site per 21 square kilometers in rural areas. Ground water samples were collected at a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Uranium concentrations in the sediments ranged from less than 0.1 ppM to 23.5 ppM with a mean of 1.7 ppM. The ground water uranium mean concentration is 0.113 ppB, and the uranium concentrations range from less than 0.002 ppB to 15.875 ppB. High ground water uranium values in the Ouachita Mountain region of the Little Rock quadrangle appear to be associated with Ordovician black shale units

  2. Baseline geochemical data for stream sediment and surface water samples from Panther Creek, the Middle Fork of the Salmon River, and the Main Salmon River from North Fork to Corn Creek, collected prior to the severe wildfires of 2000 in central Idaho

    Science.gov (United States)

    Eppinger, Robert G.; Briggs, Paul H.; Brown, Zoe Ann; Crock, James G.; Meier, Allen; Theodorakos, Peter M.; Wilson, Stephen A.

    2001-01-01

    In 1996, the U.S. Geological Survey conducted a reconnaissance baseline geochemical study in central Idaho. The purpose of the baseline study was to establish a 'geochemical snapshot' of the area, as a datum for monitoring future change in the geochemical landscape, whether natural or human-induced. This report presents the methology, analytical results, and sample descriptions for water, sediment, and heavy-mineral concentrate samples collected during this geochemical investigation. In the summer of 2000, the Clear Creek, Little Pistol, and Shellrock wildfires swept across much of the area that was sampled. Thus, these data represent a pre-fire baseline geochemical dataset. A 2001 post- fire study is planned and will involve re-sampling of the pre-fire baseline sites, to allow for pre- and post-fire comparison.

  3. Scranton 1/sup 0/ x 2/sup 0/ NTMS area: New Jersey, New York, and Pennsylvania. Preliminary basic data report. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, R.B.; Tones, P.L.

    1978-11-01

    Stream sediment and stream water samples were collected from small streams at 980 sites for a nominal density of one site per 18 square kilometers in rural areas. Ground water samples were collected at 1251 sites for a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water and surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included.

  4. Savannah River Laboratory hydrogeochemical and stream sediment reconnaissance. Preliminary raw data release: Greenville 10 x 20 NTMS area Georgia, North Carolina, and South Carolina. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.

    1978-03-01

    Preliminary results of stream sediment and ground water reconnaissance in the Greenville National Topographic Map Series (NTMS) 1 0 x 2 0 quadrangle are presented. Stream sediment samples were collected from small streams at 1413 sites for a nominal density of one site per 13 square kilometers in rural areas. Ground water samples were collected at 731 sites for a nominal density of one site per 25 square kilometers. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Key data are presented in page-sized hard copy. Supplementary data are on microfiche. Key data from stream sites include (1) water quality measurements (pH, conductivity, and alkalinity), (2) elements that may be related to potential uranium and thorium mineralization in this area (U, Th, Hf, Ce, and Dy) and (3) elements useful for geologic classification of the sample area (Ti, V, Fe, Mn, Al, and Sc). Supplementary data from stream sites include sample site descriptors (stream characteristics, vegetation, stream width, etc.) and additional elemental analyses that may be useful (F, Eu, Sm, La, Yb, and Lu). Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Na, Cl, Mg, Al, Mn, Br, V, and F). Supplementary data include site descriptors, information about the collection of the samples (well age, well depth, frequency of use of well, etc.), and analytical data for dysprosium

  5. Rock Art

    Science.gov (United States)

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  6. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the McGrath and Talkeetna NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Jacobsen, S.I.; Hill, D.E.

    1979-04-01

    During the summer of 1977, 1268 water and 1206 sediment samples were collected from 1292 lakes and streams throughout the two quadrangles in south-central Alaska. Each of the water samples was analyzed for uranium and 12 other elements and each of the sediment samples for uranium, thorium, and 41 other elements. Uranium concentrations in water samples range from below 0.02 ppB to 19.64 ppB. In general, lake waters contain somewhat less uranium than stream waters, and the highest concentrations in both sample types were found in or near the Alaska Range. Uranium concentrations in sediment samples range from 0.10 ppM to 172.40 ppM. The highest concentrations are found in samples collected in the Alaska Range near areas of felsic igneous rocks. Sediment samples having high thorium concentrations also come from areas underlain by felsic igneous rocks in the Alaska Range. The following areas were found to be most favorable for significant uranium mineralization: (1) the Windy Fork stock on the southeastern boundary of the McGrath quadrangle; (2) an area in the northwest corner of the Talkeetna quadrangle near the Mespelt prospects; (3) the Hidden River drainage in the northeast corner of the Talkeetna quadrangle; (4) an area near Chelatna Lake in the center of the Talkeetna quadrangle; (5) the Kichatna River drainage, near the western border of the Talkeetna quadrangle; and (6) an area near the Mount Estelle pluton in the extreme southwest corner of the Talkeetna quadrangle

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Lime Hills and Tyonek NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Jacobsen, S.I.; Aamodt, P.L.; Sharp, R.R. Jr.

    1979-01-01

    The U contents of the 671 waters from the Lime Hills quadrangle range from below 0.02 ppB to a high of 11.29 ppB. U contents of the 667 sediments from this quadrangle range from a low of 0.1 ppM to a high of 94.9 ppM. Both waters and sediments containing relatively high U concentrations are found to cluster in association with plutonic rocks in the Alaska Range, and particularly so in the vicinity of the Tired Pup batholith and Mount Estelle pluton. The U contents of 575 waters from the Tyonek quadrangle range from below the detection limit to 13.13 ppB. Relatively high U concentrations in waters were found to cluster near the Mount Estelle pluton and undifferentiated igneous, metasedimentary, and volcanic rocks in the Alaska Range and in Pleistocene deposits along the Castle Mountain fault. Uranium contents in 502 sediments from the Tyonek quadrangle range from 0.1 to 58 ppM. Most sediment samples having high U concentrations are from locations near the Mount Estelle pluton and Styx River batholith in the Alaska Range. Data for samples collected in the Alaska Range and the two flanking lowlands were also examined separately. Water samples from all source types in the Alaska Range had a higher mean U concentration (0.85 ppB) than those from the Western Lowland (0.34 ppB) or the Susitna Lowland (0.51 ppB). The mean U concentrations for lake water samples from the Alaska Range and the lowland areas are similar. Sediment samples from streams and lakes in the Alaska Range have a markedly higher mean U concentration (7.00 ppM) than sediment samples from either the Western Lowland (2.46 ppM) or the Susitna Lowland area

  9. Uranium prospect inventory on general prospection stage at Sigli sector Aceh

    International Nuclear Information System (INIS)

    Soetopo, Bambang; Sutriyono, Agus; Sajiyo

    2002-01-01

    This study based on the considering of the existence of reductive sedimentary rock and acid igneous rocks. The rocks could be favorable for uranium accumulation and source rocks respectively. The aim of this study is to understand the uranium geology, radiometric and geochemical anomalies distribution and it to delineate the prospective area to uranium accumulation. Method of this study field geological observations, radiometric measurements, stream sediment and heavy mineral concentrate sampling, mineralogical and geochemical laboratory analysis. Litho logically, the area composed of slate (Early Yurassic), schist and phyllite (Triassic) and meta calcareous marl (Cretaceous). Those rocks un conformably overly by black siltstone and sandstone (Eocene) conglomerate sandstone (Late Oligocene-Early Miocene) siltstone (Middle Miocene). Some intrusions have been identified as biotite granodiorite (Cretaceous) porphyritic granodiorite (Eocene) and Olivine basalt (Middle Miocene-late Miocene). The rock have been faulted by dextral strike slip fault NW-SE, thrust fault NW-SE, sinistral; strike slip fault NE-SW, and normal faults WNW-ESE. Radioactivity value of rocks range between 40-100 cps SPP2NF and it contains is range about 0.36-150.84 ppm U. The geochemical prospect area has been defined at the area of 93.186 km 2

  10. Lawrence Livermore Laboratory hydrogeochemical and stream sediment reconnaissance. Raw data report: Winnemucca Dry Lake Basin orientation study, Lovelock and Reno 10 x 20 NTMS area, Nevada

    International Nuclear Information System (INIS)

    Puchlik, K.P.; Holder, B.E.; Smith, C.F.

    1978-01-01

    This report presents the results of the Winnemucca Dry Lake Basin, Nevada, orientation study in the Lovelock and Reno 1 0 x 2 0 quadrangles of the National Topographic Map Series (NTMS). Wet, dry, and playa sediment samples were collected throughout the 597 km 2 semi-arid, closed basin. Water samples were collected at the few available streams and springs. In addition to neutron activation analysis for uranium and 15 to 20 trace elements on all samples, field and laboratory measurements were made on water samples. Analytical data and field measurements are presented in tabular hardcopy and fiche format. Eight full-size overlays for use with the Lovelock and Reno NTMS 1:250,000 quadrangles are included. Water sample site locations, water sample uranium concentration, sediment sample site locations, and sediment sample total uranium concentration are shown on the separate overlays. A general description of the area and the rock type distribution is presented. Some of the data in this report have been issued previously in ''Preliminary Report on the Winnemucca Dry Lake Basin Pilot Study,'' GJBX-41(76), August 1976

  11. Recreating Rocks

    DEFF Research Database (Denmark)

    Posth, Nicole R

    2008-01-01

    Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers.......Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers....

  12. Uranium hydrogeochemical and stream sediment reconnaissance data from the area of the Noatak and portions of the Baird Mountains and Ambler River Quadrangles, Alaska

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Hill, D.E.; Sharp, R.R. Jr.

    1978-05-01

    During August 1976, a total of 876 natural waters and 861 bottom sediments were collected at a nominal density of one location each 23 km 2 from streams and small lakes throughout the Noatak NTMS quadrangle, the southern two-thirds of the Baird Mountains NTMS quadrangle, and in the southwest corner of the Ambler River NTMS quadrangle. These samples were collected as part of the National Uranium Resource Evaluation program in Alaska being conducted by the Los Alamos Scientific Laboratory (LASL). The field collection and treatment of the samples were performed following strict LASL specifications. Total uranium was measured in the waters by fluorometry and in the sediments by delayed-neutron counting, using stringent quality assurance controls at the LASL. The uranium contents of the waters ranged from below the detection limit of 0.02 parts per billion (ppB) to a high of 8.38 ppB, and the uranium contents of the sediments ranged from a low of 0.3 parts per million (ppM) to a high of 34.0 ppM. In general, the locations of waters containing relatively high uranium contents were found to occur in clusters, and particularly in the headwaters of streams draining the southern slopes of the Baird Mountains. Few sediments contained relatively high uranium contents. These usually occurred singly at isolated locations scattered throughout the area. No obvious association exists between the location of high-uranium waters and sediments anywhere in the study area. The geology, mineralogy, and hydrology of this area is only generally described in the literature; therefore, it is difficult to correlate these data with particular aspects of the physical environment where individual samples were collected. However, the data do indicate that certain areas underlaid by Paleozoic sedimentary rocks and granitic intrusives within the Baird Mountains and a quartz-pebble conglomerate in the Waring Mountains may warrant more detailed field investigations

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the vernal NTMS quadrangle, Utah/Colorado, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Purson, J.D.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a geochemical reconnaissance for uranium in the Vernal NTMS quadrangle, Utah/Colorado, in the summers of 1977 and 1978. Totals of 422 water and 1552 sediment samples were collected from 1652 locations. These samples were collected at an average density of one sample location per 11 km 2 over an 18,800 km 2 area. Water samples were collected from streams and springs. Only those samples containing >10 ppB uranium for waters and >8 ppM uranium for sediments are discussed; however, all field and analytical data are included in the appendixes. The uranium concentrations in waters range from below the detection limit of 0.01 ppB to 108.04 ppB, with a mean uranium concentration for all water types of 3.11 ppB. Three clusters of samples containing relatively high uranium values are defined; they are associated with the Duchesne River formation, the Mancos shale, or the Uinta Mountain group and Browns Park formations. A few of the samples having the highest uranium values are associated with host rocks favorable for significant uranium mineralization. Sediments collected in this study have uranium concentrations that range between 0.70 ppM and 56.70 ppM, with a mean of 3.46 ppM. The majority of sediment samples with relatively high uranium concentrations were collected from one area in the Sand Wash basin in the northeastern corner of the quadrangle and are associated with the Wasatch formation. None of the water clusters define areas of significant interest; however, the area having high uranium values in sediments is worthy of further study

  14. Art Rocks with Rock Art!

    Science.gov (United States)

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  15. Stream-sediment geochemistry in mining-impacted streams: Prichard, Eagle, and Beaver creeks, northern Coeur d'Alene Mining District, northern Idaho

    Science.gov (United States)

    Box, Stephen E.; Wallis, John C.; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    the mine portals and their associated mine-waste rock dumps, volumetrically larger inputs of metal-enriched materials were contributed by the ore-concentration millsites and their associated, more finely ground, more metal rich mill-tailings impoundments.

  16. Rock Physics

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2017-01-01

    Rock physics is the discipline linking petrophysical properties as derived from borehole data to surface based geophysical exploration data. It can involve interpretation of both elastic wave propagation and electrical conductivity, but in this chapter focus is on elasticity. Rock physics is based...... on continuum mechanics, and the theory of elasticity developed for statics becomes the key to petrophysical interpretation of velocity of elastic waves. In practice, rock physics involves interpretation of well logs including vertical seismic profiling (VSP) and analysis of core samples. The results...

  17. Rocking pneumonia

    OpenAIRE

    Rijkers, Ger T.; Rodriguez Gomez, Maria

    2017-01-01

    Ever since Chuck Berry coined the term “rocking pneumonia” in his 1956 song “Roll over Beethoven”, pneumonia has been mentioned frequently in modern blues and rock songs. We analyzed the lyrics of these songs to examine how various elements of pneumonia have been represented in popular music, specifically the cause of pneumonia, the risk groups, comorbidity (such as the boogie woogie flu), the clinical symptoms, and treatment and outcome. Up to this day, songwriters suggest that pneumonia is ...

  18. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky

    2014-03-01

    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  19. Intellektuaalne rock

    Index Scriptorium Estoniae

    2007-01-01

    Briti laulja-helilooja ja näitleja Toyah Willcox ning Bill Rieflin ansamblist R.E.M. ja Pat Mastelotto King Krimsonist esinevad koos ansamblitega The Humans ja Tuner 25. okt. Tallinnas Rock Cafés ja 27. okt Tartu Jaani kirikus

  20. Igneous Rocks

    Science.gov (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  1. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    International Nuclear Information System (INIS)

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leads to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits

  2. Stream sediment sampling and analysis. Final report

    International Nuclear Information System (INIS)

    Means, J.L.; Voris, P.V.; Headington, G.L.

    1986-04-01

    The objectives were to sample and analyze sediments from upstream and downstream locations (relative to the Goodyear Atomic plant site) of three streams for selected pollutants. The three streams sampled were the Scioto River, Big Beaver Creek, and Big Run Creek. Sediment samples were analyzed for EPA's 129 priority pollutants (Clean Water Act) as well as isotopic uranium ( 234 U, 235 U, and 238 U) and technetium-99

  3. White Rock

    Science.gov (United States)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  4. Rock stresses (Grimsel rock laboratory)

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, S.; Braeuer, V.; Gloeggler, W.

    1989-01-01

    On the research and development project 'Rock Stress Measurements' the BGR has developed and tested several test devices and methods at GTS for use in boreholes at a depth of 200 m and has carried out rock mechanical and engineering geological investigations for the evaluation and interpretation of the stress measurements. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on hollow cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure and vertical stresses which agree well with the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are generally lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (orig./HP) [de

  5. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  6. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  7. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  8. Rollerjaw Rock Crusher

    Science.gov (United States)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  9. Uranium favorability of tertiary rocks in the Badger Flats, Elkhorn Thrust Area, Park and Teller Counties, Colorado

    International Nuclear Information System (INIS)

    Young, P.; Mickle, D.G.

    1976-10-01

    Uranium potential of Tertiary rocks in the Badger Flats--Elkhorn Thrust area of central Colorado is closely related to a widespread late Eocene erosion surface. Most uranium deposits in the area are in the Eocene Echo Park Alluvium and Oligocene Tallahassee Creek Conglomerate, which were deposited in paleodrainage channels on or above this surface. Arkosic detritus within the channels and overlying tuffaceous sedimentary rocks of the Antero and Florissant Formations of Oligocene age and silicic tuffs within the volcanic units provide abundant sources of uranium that could be concentrated in the channels where carbonaceous debris facilitates a reducing environment. Anomalous soil, water, and stream-sediment samples near the Elkhorn Thrust and in Antero basin overlie buried channels or are offset from them along structural trends; therefore, uranium-bearing ground water may have moved upward from buried uranium deposits along faults. The area covered by rocks younger than the late Eocene erosion surface, specifically the trends of mapped or inferred paleochannels filled with Echo Park Alluvium and Tallahassee Creek Conglomerate, and the Antero Formation are favorable for the occurrence of uranium deposits

  10. Geochemical Data for Samples Collected in 2007 Near the Concealed Pebble Porphyry Cu-Au-Mo Deposit, Southwest Alaska

    Science.gov (United States)

    Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.

    2008-01-01

    relatively subdued topographic relief with an elevation of around 300 m (1000 ft). This portion of Alaska is part of the subarctic regime mountains division, Yukon intermontane plateaus-tayga-meadow province ecoregion, as defined by Bailey (U.S. Forest Service, 2007). Between June 28th and July 12th, 2007, scientists from the USGS collected soil, water, stream sediment, vegetation, heavy-mineral concentrate, till, and rock samples from the deposit area. This report contains analytical results for soil, water, stream sediment, and vegetation samples. Analyses for the heavy-mineral concentrate, till, and rock samples are still in progress. The sampling was undertaken during relatively dry and stable weather conditions. Only minor scattered rain showers occurred during the sampling period, so surface conditions were largely unaffected by weather. The predominant sample media collected were soils and surface waters. Soil and water (mostly from ponds and springs, some from small creeks) samples were collected along a single 7.8 km-long (4.8 mi) east-west traverse across the Pebble East and Pebble West zones and from more distal background areas around Koktuli and Kaskanak Mountains. Sample sites are shown on figure 2 and plate 1, and locality coordinates are provided in the accompanying Access and Excel files named FieldSite. Water samples were analyzed by USGS laboratories with one subset analyzed by Activation Laboratories (Actlabs), as indicated below. Soils and stream sediments were analyzed for their total content by SGS Minerals Services under a contract with the USGS. Soil samples were also leached by selected partial-extraction leaching procedures and then analyzed by several commercial laboratories, as described below. Vegetation samples were analyzed as indicated below.

  11. Rocks Can Wow? Yes, Rocks Can Wow!

    Science.gov (United States)

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  12. Rock slope design guide.

    Science.gov (United States)

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  13. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  14. The Rock Cycle

    Science.gov (United States)

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  15. Rock History and Culture

    OpenAIRE

    Gonzalez, Éric

    2013-01-01

    Two ambitious works written by French-speaking scholars tackle rock music as a research object, from different but complementary perspectives. Both are a definite must-read for anyone interested in the contextualisation of rock music in western popular culture. In Une histoire musicale du rock (i.e. A Musical History of Rock), rock music is approached from the point of view of the people – musicians and industry – behind the music. Christophe Pirenne endeavours to examine that field from a m...

  16. Geochemical characterization of the siliciclastic rocks of Chitravati ...

    Indian Academy of Sciences (India)

    59

    The high ICV value (~1) reflects that the sediments were. 316. 1. 2. 3. 4. 5. 6 ..... mineralogical changes in Holocene soil and stream sediment: a case study in the Wet. 536 ..... Geological mapping of the Gandikota hill range in Cuddapah. 640.

  17. Rock Cycle Roulette.

    Science.gov (United States)

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  18. Rock engineering in Finland

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Contains a large collection of short articles concerned with tunnels and underground caverns and their construction and use. The articles are grouped under the following headings: use of the subsurface space; water supply; waste water services; energy management (includes articles on power stations, district heating and oil storage and an article on coal storage); multipurpose tunnels; waste disposal; transport; shelters; sporting and recreational amenities located in rock caverns; storage facilities; industrial, laboratory, and service facilities; rock foundations; tourism and culture; utilization of rock masses; research on the disposal of nuclear waste; training and research in the field of rock engineering; site investigation techniques; design of structures in rock; construction; the environment and occupational safety; modern equipment technology; underground space in Helsinki.

  19. Eos Chaos Rocks

    Science.gov (United States)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region. Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  20. Rock properties data base

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1991-03-01

    As mining companies proceed deeper and into areas whose stability is threatened by high and complex stress fields, the science of rock mechanics becomes invaluable in designing underground mine strata control programs. CANMET's Mining Research Laboratories division has compiled a summary of pre- and post-failure mechanical properties of rock types which were tested to provide design data. The 'Rock Properties Data Base' presents the results of these tests, and includes many rock types typical of Canadian mine environments. The data base also contains 'm' and 's' values determined using Hoek and Brown's failure criteria for both pre- and post-failure conditions. 7 refs., 3 tabs., 9 figs., 1 append.

  1. Eclogite facies rocks

    National Research Council Canada - National Science Library

    Carswell, D. A

    1990-01-01

    ... of eclogite evolution and genesis. The authors present a thorough treatment of the stability relations and geochemistry of these rocks, their intimate association with continental plate collision zones and suture zones...

  2. Rock kinoekraanil / Katrin Rajasaare

    Index Scriptorium Estoniae

    Rajasaare, Katrin

    2008-01-01

    7.-11. juulini kinos Sõprus toimuval filminädalal "Rock On Screen" ekraanile jõudvatest rockmuusikuid portreteerivatest filmidest "Lou Reed's Berlin", "The Future Is Unwritten: Joe Strummer", "Control: Joy Division", "Hurriganes", "Shlaager"

  3. Eclogite facies rocks

    National Research Council Canada - National Science Library

    Carswell, D. A

    1990-01-01

    .... This is the first volume to provide a coherent and comprehensive review of the conditions necessary for the formation of eclogites and eclogite facies rocks and assemblages, and a detailed account...

  4. Solid as a rock

    International Nuclear Information System (INIS)

    Pincus, H.J.

    1984-01-01

    Recent technologic developments have required a more comprehensive approach to the behavior of rock mass or rock substance plus discontinuities than was adequate previously. This work considers the inherent problems in such operations as the storage of hot or cold fluids in caverns and aquifers, underground storage of nuclear waste, underground recovery of heat from hydrocarbon fuels, tertiary recovery of oil by thermal methods, rapid excavation of large openings at shallow to great depths and in hostile environments, and retrofitting of large structures built on or in rock. The standardization of methods for determining rock properties is essential to all of the activities described, for use not only in design and construction but also in site selection and post-construction monitoring. Development of such standards is seen as a multidisciplinary effort

  5. Rock Equity Holdings, LLC

    Science.gov (United States)

    The EPA is providing notice of an Administrative Penalty Assessment in the form of an Expedited Storm Water Settlement Agreement against Rock Equity Holdings, LLC, for alleged violations at The Cove at Kettlestone/98th Street Reconstruction located at 3015

  6. Pop & rock / Berk Vaher

    Index Scriptorium Estoniae

    Vaher, Berk, 1975-

    2001-01-01

    Uute heliplaatide Redman "Malpractice", Brian Eno & Peter Schwalm "Popstars", Clawfinger "A Whole Lot of Nothing", Dario G "In Full Color", MLTR e. Michael Learns To Rock "Blue Night" lühitutvustused

  7. Basic rocks in Finland

    International Nuclear Information System (INIS)

    Piirainen, T.; Gehoer, S.; Iljina, M.; Kaerki, A.; Paakkola, J.; Vuollo, J.

    1992-10-01

    Basic igneous rocks, containing less than 52% SiO 2 , constitute an important part of the Finnish Archaean and Proterozoic crust. In the Archaean crust exist two units which contain the majority of the basic rocks. The Arcaean basic rocks are metavolcanics and situated in the Greenstone Belts of Eastern Finland. They are divided into two units. The greenstones of the lower one are tholeiites, komatiites and basaltic komatiites. The upper consists of bimodal series of volcanics and the basic rocks of which are Fe-tholeiites, basaltic komatiites and komatiites. Proterozoic basic rocks are divided into seven groups according to their ages. The Proterozoic igneous activity started by the volominous basic magmatism 2.44 Ga ago. During this stage formed the layered intrusions and related dykes in the Northern Finland. 2.2 Ga old basic rocks are situated at the margins of Karelian formations. 2.1 Ga aged Fe-tholeiitic magmatic activity is widespread in Eastern and Northern Finland. The basic rocks of 1.97 Ga age group are met within the Karelian Schist Belts as obducted ophiolite complexes but they occur also as tholeiitic diabase dykes cutting the Karelian schists and Archean basement. The intrusions and the volcanics of the 1.9 Ga old basic igneous activity are mostly encountered around the Granitoid Complex of Central Finland. Subjotnian, 1.6 Ga aged tholeiitic diabases are situated around the Rapakivi massifs of Southern Finland, and postjotnian, 1.2 Ga diabases in Western Finland where they form dykes cutting Svecofennian rocks

  8. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  9. BLANCO MOUNTAIN AND BLACK CANYON ROADLESS AREAS, CALIFORNIA.

    Science.gov (United States)

    Diggles, Michael F.; Rains, Richard L.

    1984-01-01

    The mineral survey of the Blanco Mountain and Black Canyon Roadless Areas, California indicated that areas of probable and substantiated mineral-resource potential exist only in the Black Canyon Roadless Area. Gold with moderate amounts of lead, silver, zinc, and tungsten, occurs in vein deposits and in tactite. The nature of the geological terrain indicates little likelihood for the occurrence of energy resources in the roadless areas. Detailed geologic mapping might better define the extent of gold mineralization. Detailed stream-sediment sampling and analysis of heavy-mineral concentrations could better define tungsten resource potential.

  10. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency, Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana secondary placer gold. A field study indicates that the Langkowala (Bombana placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.

  11. Transporting radioactive rock

    International Nuclear Information System (INIS)

    Pearce, G.

    1990-01-01

    The case is made for exempting geological specimens from the IAEA Regulations for Safer Transport of Radioactive Materials. It is pointed out that many mineral collectors in Devon and Cornwall may be unwittingly infringing these regulations by taking naturally radioactive rocks and specimens containing uranium ores. Even if these collectors are aware that these rocks are radioactive, and many are not, few have the necessary equipment to monitor the activity levels. If the transport regulations were to be enforced alarm could be generated and the regulations devalued in case of an accident. The danger from a spill of rock specimens is negligible compared with an accident involving industrial or medical radioactive substances yet would require similar special treatment. (UK)

  12. Geotechnical properties of rock

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1995-12-31

    The manual is a compilation of the geotechnical properties of many types of rock that are typical of Canadian mining environments. Included are values for density, porosity, compressive and shear wave velocity, uniaxial compressive strength, Young`s modulus, and Poisson`s ratio. The data base contains material constants that were determined using the Hoek and Brown failure criteria for both before and after failure conditions. 76 data sheets of rock properties in Canadian mines are included. 7 refs., 85 figs., 3 tabs.

  13. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    Franklin, J.A.; Dusseault, M.B.

    1991-01-01

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  14. Smart Rocking Armour Units

    OpenAIRE

    Hofland, B.; Arefin, Syed Shamsil; van der Lem, Cock; van gent, Marcel

    2018-01-01

    This paper describes a method to measure the rocking motion of lab-scale armour units. Sensors as found in mobile phones are used. These sensors, data-storage and battery are all embedded in the model units, such that they can be applied without wires attached to them. The technique is applied to double-layer units in order to compare the results to the existing knowledge for this type of armour layers. In contrast to previous research, the gyroscope reading is used to determine the (rocking)...

  15. Rock Hellsinki, Marketing Research

    OpenAIRE

    Todd, Roosa; Jalkanen, Katariina

    2013-01-01

    This paper is a qualitative research about rock and heavy metal music tourism in the capital city of Finland, Helsinki. As Helsinki can be considered the city of contrasts, the silent nature city mixed with urban activities, it is important to also use the potential of the loud rock and heavy metal music contrasting the silence. Finland is known abroad for bands such as HIM, Nightwish, Korpiklaani and Children of Bodom so it would make sense to utilize these in the tourism sector as well. The...

  16. A Rock Retrospective.

    Science.gov (United States)

    O'Grady, Terence J.

    1979-01-01

    The author offers an analysis of musical techniques found in the major rock trends of the 1960s. An annotated list of selected readings and a subject-indexed list of selected recordings are appended. This article is part of a theme issue on popular music. (Editor/SJL)

  17. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  18. Fluids in metamorphic rocks

    NARCIS (Netherlands)

    Touret, J.L.R.

    2001-01-01

    Basic principles for the study of fluid inclusions in metamorphic rocks are reviewed and illustrated. A major problem relates to the number of inclusions, possibly formed on a wide range of P-T conditions, having also suffered, in most cases, extensive changes after initial trapping. The

  19. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  20. Northeast Church Rock Mine

    Science.gov (United States)

    Northeast Church Rock Mine, a former uranium mine 17 miles northeast of Gallup, NM in the Pinedale Chapter of the Navajo Nation. EPA is working with NNEPA to oversee cleanup work by United Nuclear Corporation, a company owned by General Electric (GE).

  1. Smart Rocking Armour Units

    NARCIS (Netherlands)

    Hofland, B.; Arefin, Syed Shamsil; van der Lem, Cock; van gent, Marcel

    2018-01-01

    This paper describes a method to measure the rocking motion of lab-scale armour units. Sensors as found in mobile phones are used. These sensors, data-storage and battery are all embedded in the model units, such that they can be applied without wires attached to them. The technique is applied to

  2. Teaching the Rock Cycle with Ease.

    Science.gov (United States)

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  3. For Those About to Rock : Naislaulajat rock-genressä

    OpenAIRE

    Herranen, Linda

    2015-01-01

    For those about to rock – naislaulajat rock-genressä antaa lukijalleen kokonaisvaltaisen käsityksen naisista rock-genressä: rockin historiasta, sukupuolittuneisuudesta, seksismistä, suomalaisten naislaulajien menestyksestä. Työn aineisto on koottu aihepiirin kirjallisuudesta ja alalla toimiville naislaulajille teetettyjen kyselyiden tuloksista. Lisäksi avaan omia kokemuksiani ja ajatuksiani, jotta näkökulma naisista rock-genressä tulisi esille mahdollisimman monipuolisesti. Ajatus aihees...

  4. Comparison of disposal concepts for rock salt and hard rock

    International Nuclear Information System (INIS)

    Papp, R.

    1998-01-01

    The study was carried out in the period 1994-1996. The goals were to prepare a draft on spent fuel disposal in hard rock and additionally a comparison with existing disposal concepts for rock salt. A cask for direct disposal of spent fuel and a repository for hard rock including a safeguards concept were conceptually designed. The results of the study confirm, that the early German decision to employ rock salt was reasonable. (orig.)

  5. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  6. Range sections as rock models for intensity rock scene segmentation

    CSIR Research Space (South Africa)

    Mkwelo, S

    2007-11-01

    Full Text Available This paper presents another approach to segmenting a scene of rocks on a conveyor belt for the purposes of measuring rock size. Rock size estimation instruments are used to monitor, optimize and control milling and crushing in the mining industry...

  7. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  8. Critical issues in soft rocks

    OpenAIRE

    Milton Assis Kanji

    2014-01-01

    This paper discusses several efforts made to study and investigate soft rocks, as well as their physico-mechanical characteristics recognized up to now, the problems in their sampling and testing, and the possibility of its reproduction through artificially made soft rocks. The problems in utilizing current and widespread classification systems to some types of weak rocks are also discussed, as well as other problems related to them. Some examples of engineering works in soft rock or in soft ...

  9. Isotope shifting capacity of rock

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1980-01-01

    Any oxygen isotope shifted rock volume exactly defines a past throughput of water. An expression is derived that relates the throughput of an open system to the isotope shift of reservoir rock and present-day output. The small isotope shift of Ngawha reservoir rock and the small, high delta oxygen-18 output are best accounted for by a magmatic water source

  10. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  11. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  12. Rock solidification method

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Funakoshi, Toshio; Inagaki, Yuzo; Hashimoto, Yasuhide.

    1985-01-01

    Purpose: To convert radioactive wastes into the final state for storage (artificial rocks) in a short period of time. Method: Radioactive burnable wastes such as spent papers, cloths and oils and activated carbons are burnt into ashes in a burning furnace, while radioactive liquid wastes such as liquid wastes of boric acid, exhausted cleaning water and decontaminating liquid wastes are powderized in a drying furnace or calcining furnace. These powders are joined with silicates as such as white clay, silica and glass powder and a liquid alkali such as NaOH or Ca(OH) 2 and transferred to a solidifying vessel. Then, the vessel is set to a hydrothermal reactor, heated and pressurized, then taken out about 20 min after and tightly sealed. In this way, radioactive wastes are converted through the hydrothermal reactions into aqueous rock stable for a long period of time to obtain solidification products insoluble to water and with an extremely low leaching rate. (Ikeda, J.)

  13. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  14. Rock and mineral magnetism

    CERN Document Server

    O’Reilly, W

    1984-01-01

    The past two decades have witnessed a revolution in the earth sciences. The quantitative, instrument-based measurements and physical models of. geophysics, together with advances in technology, have radically transformed the way in which the Earth, and especially its crust, is described. The study of the magnetism of the rocks of the Earth's crust has played a major part in this transformation. Rocks, or more specifically their constituent magnetic minerals, can be regarded as a measuring instrument provided by nature, which can be employed in the service of the earth sciences. Thus magnetic minerals are a recording magnetometer; a goniometer or protractor, recording the directions of flows, fields and forces; a clock; a recording thermometer; a position recorder; astrain gauge; an instrument for geo­ logical surveying; a tracer in climatology and hydrology; a tool in petrology. No instrument is linear, or free from noise and systematic errors, and the performance of nature's instrument must be assessed and ...

  15. Aram Chaos Rocks

    Science.gov (United States)

    2005-01-01

    8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location. Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  16. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  17. Physical modeling of rock

    International Nuclear Information System (INIS)

    Cheney, J.A.

    1981-01-01

    The problems of statisfying similarity between a physical model and the prototype in rock wherein fissures and cracks place a role in physical behavior is explored. The need for models of large physical dimensions is explained but also testing of models of the same prototype over a wide range of scales is needed to ascertain the influence of lack of similitude of particular parameters between prototype and model. A large capacity centrifuge would be useful in that respect

  18. Rock disposal problems identified

    Energy Technology Data Exchange (ETDEWEB)

    Knox, R

    1978-06-01

    Mathematical models are the only way of examining the return of radioactivity from nuclear waste to the environment over long periods of time. Work in Britain has helped identify areas where more basic data is required, but initial results look very promising for final disposal of high level waste in hard rock repositories. A report by the National Radiological Protection Board of a recent study, is examined.

  19. Rock pushing and sampling under rocks on Mars

    Science.gov (United States)

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  20. The Rock Characterization Facility

    International Nuclear Information System (INIS)

    Holmes, J.

    1994-01-01

    In 1989, UK Nirex began a programme of surface-based characterization of the geology and hydrogeology of a site at Sellafield to evaluate its suitability to host a deep repository for radioactive waste. The next major stage in site characterization will be the construction and operation of a Rock Characterization Facility (RCF). It will be designed to provide rock characterization information and scope for model validation to permit firmer assessment of long-term safety. It will also provide information needed to decide the detailed location, design and orientation of a repository and to inform repository construction methods. A three-phase programme is planned for the RCF. During each phase, testwork will steadily improve our geological, hydrogeological and geotechnical understanding of the site. The first phase will involve sinking two shafts. That will be preceded by the establishment of a network of monitoring boreholes to ensure that the impact of shaft sinking can be measured. This will provide valuable data for model validation. In phase two, initial galleries will be excavated, probably at a depth of 650 m below Ordnance datum, which will host a comprehensive suite of experiments. These galleries will be extended in phase three to permit access to most of the rock volume that would host the repository. (Author)

  1. Rock in Rio: forever young

    Directory of Open Access Journals (Sweden)

    Ricardo Ferreira Freitas

    2014-12-01

    Full Text Available The purpose of this article is to discuss the role of Rock in Rio: The Musical, as herald of megafestival Rock in Rio. Driven by the success that musicals have reached in Brazil, we believe that the design of this spectacle of music, dance and staging renews the brand of the rock festival, once it adds the force of young and healthy bodies to its concept. Moreover, the musical provides Rock in Rio with some distance from the controversal trilogy of sex, drugs and rock and roll, a strong mark of past festivals around the world. Thus, the musical expands the possibilities of growth for the brand.

  2. Development of artificial soft rock

    International Nuclear Information System (INIS)

    Kishi, Kiyoshi

    1995-01-01

    When foundation base rocks are deeper than the level of installing structures or there exist weathered rocks and crushed rocks in a part of base rocks, often sound artificial base rocks are made by substituting the part with concrete. But in the construction of Kashiwazaki Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc., the foundation base rocks consist of mudstone, and the stiffness of concrete is large as compared with the surrounding base rocks. As the quality of the substituting material, the nearly same stiffness as that of the surrounding soft rocks and long term stability are suitable, and the excellent workability and economical efficiency are required, therefore, artificial soft rocks were developed. As the substituting material, the soil mortar that can obtain the physical property values in stable form, which are similar to those of Nishiyama mudstone, was selected. The mechanism of its hardening and the long term stability, and the manufacturing plant are reported. As for its application to the base rocks of Kashiwazaki Kariwa Nuclear Power Station, the verification test at the site and the application to the base rocks for No. 7 plant reactor building and other places are described. (K.I.)

  3. Hydrological characteristics of Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial to evaluate the hydrogeological characteristics of rock in Japan in order to assess the performance of geosphere. This report summarizes the hydrogeological characteristics of various rock types obtained from broad literature surveys and the fields experiments at the Kamaishi mine in northern Japan and at the Tono mine in central Japan. It is found that the hydraulic conductivity of rock mass ranges from 10 -9 m/s to 10 -8 m/s, whereas the hydraulic conductivity of fault zone ranges from 10 -9 m/s to 10 -3 m/s. It is also found that the hydraulic conductivity tends to decrease with depth. Therefore, the hydraulic conductivity of rock mass at the depth of a repository will be smaller than above values. From the investigations at outcrops and galleries throughout the country, fractures are observed as potential pathways in all rock types. All kinds of crystalline rocks and pre-Neogene sedimentary rocks are classified as fractured media where fracture flow is dominant. Among these rocks, granitic rock is considered the archetype fractured media. On the other hand, andesite, tuff and Neogene sedimentary rocks are considered as intermediate between fractured media and porous media where flow in fractures as well as in rock matrix are significant. (author)

  4. Grinding into Soft, Powdery Rock

    Science.gov (United States)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars. Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements. In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  5. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  6. Heavy mineral survey for uranium in the Philippines

    International Nuclear Information System (INIS)

    Tauchid, M.; Santos, G. Jr.; Hernandez, E.; Bernido, C.

    1983-01-01

    A reconnaissance geochemical survey for uranium was carried out in the island of Samar in the Philippines covering an area of about 13,000 km 2 . The survey represents the first practical demonstration in the country of the use of geochemical techniques to outline large possibly interesting areas within a short period and with modest monetary expenditure. The survey entailed the systematic collection of 1530 heavy mineral concentrates, stream sediments and water samples, and the measurement of radioactivity at 510 stations along the major drainage system of Samar. The average sampling density was 1/20-25 km 2 . All solid samples were analysed for U, Cu, Pb, Zn, Mn, Ag, Co and Ni. Uranium, radon, conductivity and pH were measured in most of the water samples collected. More than 9000 chemical determinations were made. Results of the survey clearly point to the usefulness of heavy mineral sampling at the low density level of observation. The non-magnetic fraction of the heavy mineral concentrates outlined strong and well defined areas of interest for most of the elements analysed. Stream sediment sampling at this sampling density indicated weaker, less clearly defined anomalies. Uranium and radon analyses performed on stream water samples and ground scintillometer readings provided invaluable complementary information relevant to the evaluation of the island's uranium potential. (author)

  7. Rock stress investigations

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, St.; Braeuer, V.; Gloeggler, W.

    1989-04-01

    On the research project 'Rock Stress Mesurements' the BGR has developed and tested several methods for use in boreholes at a depth of 200 m. Indirect stress measurements using overcoring methods with BGR-probes and CSIR-triaxial cells as well as direct stress measurements using the hydraulic-fracturing method were made. To determine in-situ rock deformation behavior borehole deformation tests, using a BGR-dilatometer, were performed. Two types of the BGR-probe were applied: a four-component-probe to determine horizontal stresses and a five-component-probe to determine a quasi three-dimensional stress field. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on low cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (author) 4 tabs., 76 figs., 31 refs

  8. Role of hydrous iron oxide formation in attenuation and diel cycling of dissolved trace metals in a stream affected by acid rock drainage

    Science.gov (United States)

    Parker, S.R.; Gammons, C.H.; Jones, Clain A.; Nimick, D.A.

    2007-01-01

    Mining-impacted streams have been shown to undergo diel (24-h) fluctuations in concentrations of major and trace elements. Fisher Creek in south-central Montana, USA receives acid rock drainage (ARD) from natural and mining-related sources. A previous diel field study found substantial changes in dissolved metal concentrations at three sites with differing pH regimes during a 24-h period in August 2002. The current work discusses follow-up field sampling of Fisher Creek as well as field and laboratory experiments that examine in greater detail the underlying processes involved in the observed diel concentration changes. The field experiments employed in-stream chambers that were either transparent or opaque to light, filled with stream water and sediment (cobbles coated with hydrous Fe and Al oxides), and placed in the stream to maintain the same temperature. Three sets of laboratory experiments were performed: (1) equilibration of a Cu(II) and Zn(II) containing solution with Fisher Creek stream sediment at pH 6.9 and different temperatures; (2) titration of Fisher Creek water from pH 3.1 to 7 under four different isothermal conditions; and (3) analysis of the effects of temperature on the interaction of an Fe(II) containing solution with Fisher Creek stream sediment under non-oxidizing conditions. Results of these studies are consistent with a model in which Cu, Fe(II), and to a lesser extent Zn, are adsorbed or co-precipitated with hydrous Fe and Al oxides as the pH of Fisher Creek increases from 5.3 to 7.0. The extent of metal attenuation is strongly temperature-dependent, being more pronounced in warm vs. cold water. Furthermore, the sorption/co-precipitation process is shown to be irreversible; once the Cu, Zn, and Fe(II) are removed from solution in warm water, a decrease in temperature does not release the metals back to the water column. ?? 2006 Springer Science+Business Media B.V.

  9. A smart rock

    Science.gov (United States)

    Pressel, Phil

    2014-12-01

    This project was to design and build a protective weapon for a group of associations that believed in aliens and UFO's. They collected enough contributions from societies and individuals to be able to sponsor and totally fund the design, fabrication and testing of this equipment. The location of this facility is classified. It also eventually was redesigned by the Quartus Engineering Company for use at a major amusement park as a "shoot at targets facility." The challenge of this project was to design a "smart rock," namely an infrared bullet (the size of a gallon can of paint) that could be shot from the ground to intercept a UFO or any incoming suspicious item heading towards the earth. Some of the challenges to design this weapon were to feed cryogenic helium at 5 degrees Kelvin from an inair environment through a unique rotary coupling and air-vacuum seal while spinning the bullet at 1500 rpm and maintain its dynamic stability (wobble) about its spin axis to less than 10 micro-radians (2 arc seconds) while it operated in a vacuum. Precision optics monitored the dynamic motion of the "smart rock."

  10. Rock critics as 'Mouldy Modernists'

    Directory of Open Access Journals (Sweden)

    Becky Shepherd

    2011-08-01

    Full Text Available Contemporary rock criticism appears to be firmly tied to the past. The specialist music press valorise rock music of the 1960s and 1970s, and new emerging artists are championed for their ‘retro’ sounding music by journalists who compare the sound of these new artists with those included in the established ‘canon’ of rock music. This article examines the narrative tropes of authenticity and nostalgia that frame the retrospective focus of this contemporary rock writing, and most significantly, the maintenance of the rock canon within contemporary popular culture. The article concludes by suggesting that while contemporary rock criticism is predominately characterised by nostalgia, this nostalgia is not simply a passive romanticism of the past. Rather, this nostalgia fuels a process of active recontextualisation within contemporary popular culture.

  11. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  12. Rocks under pressure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-01

    Physicists have used nuclear magnetic resonance to investigate the destructive effects of the crystallization of salt. Salt-weathering is one of the main causes of rock disintegration in nature, particularly in deserts, polar regions and along coastlines. However, it is also a very widespread cause of damage to man-made constructions. Bridges, for example, are attacked by de-icing salts, and cities such as Bahrain, Abu Dhabi and Adelaide are affected by rising damp from high ground-water levels. Indeed, many examples of cultural heritage, including the Islamic sites of Bokhara and Petra in Jordan and the Sphinx in Egypt, may ultimately be destroyed due to the effects of salt-weathering. Now Lourens Rijniers and colleagues at Eindhoven University in the Netherlands have developed a way to observe the solubility of various salts inside porous materials directly (Phys. Rev. Lett. 94 075503). (U.K.)

  13. Rock the Globe

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    Created in 2005, the Swiss rock band "Wind of Change" is now candidate for the Eurovision Song Contest 2011 with a new song " Night & Light " with the music video filmed at CERN.   With over 20 gigs under their belt and two albums already released, the five members of the band (Alex Büchi, vocals; Arthur Spierer, drums; David Gantner, bass; Romain Mage and Yannick Gaudy, guitar) continue to excite audiences. For their latest composition "Night & Light", the group filmed their music video in the Globe of Science and Innovation. Winning the Eurovision contest would be a springboard in their artistic career for these young musicians. The selection results will be available December 11, 2010.      

  14. Electrochemistry of lunar rocks

    Science.gov (United States)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  15. Rock Art in Kurdistan Iran

    Directory of Open Access Journals (Sweden)

    Jamal Lahafian

    2013-12-01

    Full Text Available Kurdistan, with great potential and prehistoric resources, has numerous petroglyphs in different areas of the province. During the last 14 years of extensive field study, more than 30 sites of rock art have been identified and introduced by the author. In this article, we summarize these rock art areas in Iranian Kurdistan.

  16. Rockin' around the Rock Cycle

    Science.gov (United States)

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  17. 'Mister Badger' Pushing Mars Rock

    Science.gov (United States)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  18. Rock suitability classification RSC 2012

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, T. (ed.) [McEwen Consulting, Leicester (United Kingdom); Kapyaho, A. [Geological Survey of Finland, Espoo (Finland); Hella, P. [Saanio and Riekkola, Helsinki (Finland); Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.

    2012-12-15

    This report presents Posiva's Rock Suitability Classification (RSC) system, developed for locating suitable rock volumes for repository design and construction. The RSC system comprises both the revised rock suitability criteria and the procedure for the suitability classification during the construction of the repository. The aim of the classification is to avoid such features of the host rock that may be detrimental to the favourable conditions within the repository, either initially or in the long term. This report also discusses the implications of applying the RSC system for the fulfilment of the regulatory requirements concerning the host rock as a natural barrier and the site's overall suitability for hosting a final repository of spent nuclear fuel.

  19. Rock suitability classification RSC 2012

    International Nuclear Information System (INIS)

    McEwen, T.; Kapyaho, A.; Hella, P.; Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.

    2012-12-01

    This report presents Posiva's Rock Suitability Classification (RSC) system, developed for locating suitable rock volumes for repository design and construction. The RSC system comprises both the revised rock suitability criteria and the procedure for the suitability classification during the construction of the repository. The aim of the classification is to avoid such features of the host rock that may be detrimental to the favourable conditions within the repository, either initially or in the long term. This report also discusses the implications of applying the RSC system for the fulfilment of the regulatory requirements concerning the host rock as a natural barrier and the site's overall suitability for hosting a final repository of spent nuclear fuel

  20. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  1. ROCK inhibitors in ocular disease

    Directory of Open Access Journals (Sweden)

    Eva Halasz

    2016-12-01

    Full Text Available Rho kinases (ROCKs have a crucial role in actin-cytoskeletal reorganization and thus are involved in broad aspects of cell motility, from smooth muscle contraction to neurite outgrowth. The first marketed ROCK inhibitor, called fasudil, has been used safely for treatment of cerebral vasospasm since 1995 in Japan. During the succeeding decades ROCK inhibitors have been applied in many pathological conditions from central nervous system disorders to cardiovascular disease as potential therapeutic agents or experimental tools to help understand the underlying (pathomechanisms. In 2014, a fasudil derivate named ripasudil was accepted for clinical use in glaucoma and ocular hypertension. Since ROCK kinases are widely expressed in ocular tissues, they have been implicated in the pathology of many ocular conditions such as corneal dysfunction, glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, and retinal detachment. This paper aims to provide an overview of the most recent status/application of ROCK inhibitors in the field of eye disease.

  2. They will rock you!

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    On 30 September, CERN will be the venue for one of the most prestigious events of the year: the concert for the Bosons&More event, the Organization’s celebration of the remarkable performance of the LHC and all its technical systems, as well as the recent fundamental discoveries. Topping the bill will be the Orchestre de la Suisse Romande, the CERN Choir, the Zürcher Sing-Akademie and the Alan Parsons Live Project rock group, who have joined forces to create an unforgettable evening’s entertainment.   The Orchestre de la Suisse Romande, directed by Maestro Neeme Järvi, artistic and musical director of the OSR. (Image: Grégory Maillot). >>> From the Orchestre de la Suisse Romande… Henk Swinnen, General Manager of the Orchestre de la Suisse Romande (OSR), answers some questions for the CERN Bulletin, just a few days before the event. How did this project come about? When CERN invited us to take part in the B...

  3. Rock salt constitutive modeling

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1980-01-01

    The Serata model is the best operational model available today because it incorporates: (1) a yield function to demarcate between viscoelastic and viscoplastic behavior of rock salt; (2) a pressure and temperature dependence for yield stresses; and (3) a standard linear solid, which can be readily extended into the non-linear regime, to represent creep behavior. Its only deficiencies appear to be the lack of secondary creep behavior (a free dashpot) and some unsettling arbitrariness about the Poisson's ratio (ν → 0.5) argument for viscoplasticity. The Sandia/WIPP model will have good primary and secondary creep capability, but lacks the viscoplastic behavior. In some cases, estimated inelastic strains may be underpredicted. If a creep acceleration mechanism associated with brine inclusions is observed, this model may require extensive revision. Most of the other models available (SAI, RE-SPEC, etc.) are only useful for short-term calculations, because they employ temporal power law (t/sup n/) primary creep representations. These models are unsatisfactory because they cannot represent dual mechanisms with differing characteristic times. An approach based upon combined creep and plasticity is recommended in order to remove the remaining deficiency in the Serata model. DOE/Sandia/WIPP should be encouraged to move aggressively in this regard

  4. Research into basic rocks types

    International Nuclear Information System (INIS)

    1993-06-01

    Teollisuuden Voima Oy (TVO) has carried out research into basic rock types in Finland. The research programme has been implemented in parallel with the preliminary site investigations for radioactive waste disposal in 1991-1993. The program contained two main objectives: firstly, to study the properties of the basic rock types and compare those with the other rock types under the investigation; secondly, to carry out an inventory of rock formations consisting of basic rock types and suitable in question for final disposal. A study of environmental factors important to know regarding the final disposal was made of formations identified. In total 159 formations exceeding the size of 4 km 2 were identified in the inventory. Of these formations 97 were intrusive igneous rock types and 62 originally extrusive volcanic rock types. Deposits consisting of ore minerals, industrial minerals or building stones related to these formations were studied. Environmental factors like natural resources, protected areas or potential for restrictions in land use were also studied

  5. Modeling the Rock Glacier Cycle

    Science.gov (United States)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  6. Multiverso: Rock'n'Astronomy

    Science.gov (United States)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  7. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  8. Test procedures for salt rock

    International Nuclear Information System (INIS)

    Dusseault, M.B.

    1985-01-01

    Potash mining, salt mining, design of solution caverns in salt rocks, disposal of waste in salt repositories, and the use of granular halite backfill in underground salt rock mines are all mining activities which are practised or contemplated for the near future. Whatever the purpose, the need for high quality design parameters is evident. The authors have been testing salt rocks in the laboratory in a number of configurations for some time. Great care has been given to the quality of sample preparation and test methodology. This paper describes the methods, presents the elements of equipment design, and shows some typical results

  9. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  10. Beach rock from Goa Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.; Wagle, B.G.

    constituents of beach rock found along Goa coast is dealt with in detail. While discussing the various views on its origin, it is emphasized that the process of cementation is chiefly controlled by ground water evaporation, inorganic precipitation and optimum...

  11. The Chronology of Rock Art

    Indian Academy of Sciences (India)

    Such phases are tentatively ascribed to different archaeological cultures on the basis of the contextual availability, stylistic similarities and so on. Ethnographic analogies are also attempted in the dating of rock art .

  12. Chemical methods of rock analysis

    National Research Council Canada - National Science Library

    Jeffery, P. G; Hutchison, D

    1981-01-01

    A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...

  13. Heat production in granitic rocks

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Jakobsen, Kiki

    2017-01-01

    Granitic rocks play special role in the dynamics and evolution of the Earth and its thermal regime. First, their compositional variability, reflected in the distribution of concentrations of radiogenic elements, provides constraints on global differentiation processes and large scale planetary...... evolution, where emplacement of granites is considered a particularly important process for the formation of continental crust. Second, heat production by radioactive decay is among the main heat sources in the Earth. Therefore knowledge of heat production in granitic rocks is pivotal for thermal modelling...... of the continental lithosphere, given that most radiogenic elements are concentrated in granitic rocks of the upper continental crust whereas heat production in rocks of the lower crust and lithospheric mantle is negligible. We present and analyze a new global database GRANITE2017 (with about 500 entries...

  14. Defending dreamer’s rock

    OpenAIRE

    Beck, Günter U.

    2007-01-01

    Defending dreamer’s rock : Geschichte, Geschichtsbewusstsein und Geschichtskultur im Native drama der USA und Kanadas. - Trier : WVT Wiss. Verl. Trier, 2007. - 445 S. - (CDE - Studies ; 14). - Zugl.: Augsburg, Univ., Diss., 2006

  15. Predicting rock bursts in mines

    Science.gov (United States)

    Spall, H.

    1979-01-01

    In terms of lives lost, rock bursts in underground mines can be as hazardous as earthquakes on the surface. So it is not surprising that fo the last 40 years the U.S Bureau of Mines has been using seismic methods for detecting areas in underground mines where there is a high differential stress which could lead to structural instability of the rock mass being excavated.

  16. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  17. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  18. Metallogenetic characterization of granitoid rocks through geochemical prospection: the Lagoa Real example related to uranium mineralization in Bahia state, Brazil; Caracterizacao metalogenetica de corpos gratinoides atraves de prospeccao geoquimica: o exemplo da suite intrusiva Lagoa Real relacionada a mineralizacoes de uranio no Estado da Bahia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.E., E-mail: cprmsa@bahianet.com.br [Servico Geologico do Brasil (GEREMI/SUREG/SA/CPRM), Salvador, BA (Brazil)

    2011-07-01

    Within a broad metallogenetic evaluation program carried out by CPRM - Geological Survey of Brazil in covenant with the CBPM - Companhia Baiana de Pesquisa Mineral in the central part of the Sao Francisco Craton, the Lagoa Real granitoid rocks was one of the selected targets. The work included geochemical exploration supplemented by follow-in survey and integrated 1:200.000 scale geochemical cartography. The Lagoa Real granitoid was recognized with composition ranging from monzogranitic to alcaligranitic type. The geochemical surveying led to the definition of the metallogenetic specialization of the granitoid rock, with characteristic geochemical and mineralogic associations. These associations are related to uranium mineralization. The genetic model using stream sediment and pan concentrate data, show similarity with the metallogenetic model of zonal partitioning proposed by Routhier (1963), for plutonogenic lode deposits with potential for Sn, W, Nb, Be, REE, Au, and U. In this work emphasis is given to the importance of the integrated use of different prospective methods toward the evaluation of granitoid systems, particularly the combination of geochemical surveying methods with results for a better understanding of the geologic and metallogenetic settings. (author)

  19. Evaluation of Rock Bolt Support for Polish Hard Rock Mines

    Science.gov (United States)

    Skrzypkowski, Krzysztof

    2018-03-01

    The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead "Olkusz - Pomorzany" mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt "Olkusz - 20A" is able to overcome the load.The second purpose of the study was to obtain load - displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.

  20. Seismic response of rock joints and jointed rock mass

    International Nuclear Information System (INIS)

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs

  1. Investigation of Alaska's uranium potential. Part 1. Reconnaissance program, West-Central Alaska and Copper River basin. Part 2. Uranium and thorium in granitic and alkaline rocks in Western Alaska

    International Nuclear Information System (INIS)

    Eakins, G.R.; Jones, B.K.; Forbes, R.B.

    1977-02-01

    A 6-week reconnaissance program was conducted in west-central Alaska and in the Copper River basin--Chitina River valley area to aid in determining the uranium potential of the state. Division personnel also submitted samples from the Healy, Eagle, and Charley River quadrangles. Collected were 916 stream-sediment samples and 427 bedrock samples for uranium, thorium, and potassium oxide determinations, and 565 water samples for uranium analyses. A statistical analysis of the determinations was made using a computer at the University of Alaska. Thresholds, anomalies, and U:Th ratios were calculated for eight separate regions. Anomalous values of the U, Th, and K 2 O, and radiometric measurements are discussed. A combination of all uranium exploration techniques is needed to locate potential uranium deposits in Alaska. Correlations between aerial and ground radiometric surveys and geochemical surveys were often lacking, indicating that each method may or may not be effective, depending on local conditions. One hundred and eight rock samples were selected from traverses across five plutons in western Alaska and analyzed for uranium, thorium, and potassium. The highest uranium concentrations detected were 86 and 92 ppM from a mineralized dike intrusion zone in the Selawik Lake Complex. Analysis of individual plutons yields strong correlations between mineralogy and radioactivity. The mineralogical variable that correlates with uranium or thorium varies from one pluton to the next. Based on these correlations, mineralogical guidelines are offered for the selection of uranium enriched variants in four of the five plutons

  2. 30 CFR 57.3461 - Rock bursts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  3. Current status of crushed rock and whole rock column studies

    International Nuclear Information System (INIS)

    Vine, E.N.; Daniels, W.R.; Rundberg, R.S.; Thompson, J.L.

    1980-01-01

    Measurements on a large number of crushed rock columns of tuff, granite, and argillite are discussed. The isotopes 85 Sr, 137 Cs, 133 Ba, 141 Ce, 152 Eu, /sup 95m/Tc, and 233 U were used. Flow rates were varied from approx. 30 to approx. 30000 m/y. Other parameters studied include isotope concentration and atmosphere. The sorption ratios calculated were compared with batch sorption ratios on the same samples. Methods of studying the movement of radionuclides through whole rock cores are described. The problems associated with sealing the cores to prevent leaking along the exterior surface and one possible solution are discussed. The strontium sorption ratio obtained by elution of one solid tuff core is compared with the batch and crushed rock column sorption ratios

  4. Rock Pore Structure as Main Reason of Rock Deterioration

    Directory of Open Access Journals (Sweden)

    Ondrášik Martin

    2014-03-01

    Full Text Available Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite.

  5. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  6. Hot dry rock heat mining

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1992-01-01

    Geothermal energy utilizing fluids from natural sources is currently exploited on a commercial scale at sites around the world. A much greater geothermal resource exists, however, in the form of hot rock at depth which is essentially dry. This hot dry rock (HDR) resource is found almost everywhere, but the depth at which usefully high temperatures are reached varies from place to place. The technology to mine the thermal energy from HDR has been under development for a number of years. Using techniques adapted from the petroleum industry, water is pumped at high pressure down an injection well to a region of usefully hot rock. The pressure forces open natural joints to form a reservoir consisting of a small amount of water dispensed in a large volume of hot rock. This reservoir is tapped by second well located at some distance from the first, and the heated water is brought to the surface where its thermal energy is extracted. The same water is then recirculated to mine more heat. Economic studies have indicated that it may be possible to produce electricity at competitive prices today in regions where hot rock is found relatively close to the surface

  7. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  8. Uranium endowments in phosphate rock

    International Nuclear Information System (INIS)

    Ulrich, Andrea E.; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-01-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured

  9. Uranium deposits in granitic rocks

    International Nuclear Information System (INIS)

    Nishimori, R.K.; Ragland, P.C.; Rogers, J.J.W.; Greenberg, J.K.

    1977-01-01

    This report is a review of published data bearing on the geology and origin of uranium deposits in granitic, pegmatitic and migmatitic rocks with the aim of assisting in the development of predictive criteria for the search for similar deposits in the U.S. Efforts were concentrated on the so-called ''porphyry'' uranium deposits. Two types of uranium deposits are primarily considered: deposits in pegmatites and alaskites in gneiss terrains, and disseminations of uranium in high-level granites. In Chapter 1 of this report, the general data on the distribution of uranium in igneous and metamorphic rocks are reviewed. Chapter 2 contains some comments on the classification of uranium deposits associated with igneous rocks and a summary of the main features of the geology of uranium deposits in granites. General concepts of the behavior of uranium in granites during crustal evolution are reviewed in Chapter 3. Also included is a discussion of the relationship of uranium mineralization in granites to the general evolution of mobile belts, plus the influence of magmatic and post-magmatic processes on the distribution of uranium in igneous rocks and related ore deposits. Chapter 4 relates the results of experimental studies on the crystallization of granites to some of the geologic features of uranium deposits in pegmatites and alaskites in high-grade metamorphic terrains. Potential or favorable areas for igneous uranium deposits in the U.S.A. are delineated in Chapter 5. Data on the geology of specific uranium deposits in granitic rocks are contained in Appendix 1. A compilation of igneous rock formations containing greater than 10 ppM uranium is included in Appendix 2. Appendix 3 is a report on the results of a visit to the Roessing area. Appendix 4 is a report on a field excursion to eastern Canada

  10. Uranium endowments in phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Andrea E., E-mail: andrea.ulrich@env.ethz.ch [Institute for Environmental Decisions (IED), Natural and Social Science Interface, ETH Zurich Universitässtrasse 22, 8092 Zurich (Switzerland); Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland); Schnug, Ewald, E-mail: e.schnug@tu-braunschweig.de [Department of Life Sciences, Technical University of Braunschweig, Pockelsstraße 14, D-38106 Braunschweig (Germany); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Institute of Energy Technology, Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland); Frossard, Emmanuel, E-mail: emmanuel.frossard@usys.ethz.ch [Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland)

    2014-04-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured.

  11. Evaluation of Rock Joint Coefficients

    Science.gov (United States)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    A computer method for evaluation of rock joint coefficients is described and several applications are presented. The method is based on two absolute numerical indicators that are formed by means of the Fourier replicas of rock joint profiles. The first indicator quantifies the vertical depth of profiles and the second indicator classifies wavy character of profiles. The absolute indicators have replaced the formerly used relative indicators that showed some artificial behavior in some cases. This contribution is focused on practical computations testing the functionality of the newly introduced indicators.

  12. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  13. Rock mechanics studies for SMES

    International Nuclear Information System (INIS)

    Haimson, B.C.

    1981-01-01

    Superconducting magnetic energy storage (SMES) systems capable of storing thousands of MWh develop tremendous magnetically induced forces when charged. To prevent rutpure of the magnets these forces must be confined. Bedrock offers a practical and relatively inexpensive magnet containment structure. This paper examines the need for rock mechanics research in connection with the construction and use of SMES rock caverns; the unique problems related to housing superconducting magnets in bedrock; site investigations of granite, quartzite and dolomite deposits in Wisconsin; and cavern design requirements to assure cavern stability and limited deformation under the expected mechanical leads. Recommendations are made for siting SMES caverns

  14. Source rock potential of middle cretaceous rocks in Southwestern Montana

    Science.gov (United States)

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  15. Soft Rock Yields Clues to Mars' Past

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 This image taken by the Mars Exploration Rover Spirit shows the rock outcrop dubbed 'Clovis.' The rock was discovered to be softer than other rocks studied so far at Gusev Crater after the rover easily ground a hole into it with its rock abrasion tool. Spirit's solar panels can be seen in the foreground. This image was taken by the rover's navigation camera on sol 205 (July 31, 2004). Elemental Trio Found in 'Clovis' Figure 1 above shows that the interior of the rock dubbed 'Clovis' contains higher concentrations of sulfur, bromine and chlorine than basaltic, or volcanic, rocks studied so far at Gusev Crater. The data were taken by the Mars Exploration Rover Spirit's alpha particle X-ray spectrometer after the rover dug into Clovis with its rock abrasion tool. The findings might indicate that this rock was chemically altered, and that fluids once flowed through the rock depositing these elements.

  16. Review on the prevailing methods for the prediction of potential rock burst / rock spalling in tunnels

    OpenAIRE

    Panthi, Krishna Kanta

    2017-01-01

    Rock burst / rock spalling is among the prevailing stability challenges, which can be met while tunneling through hard rock mass. Especially, this is very relevant for the mountainous country like Norway where hard rock is dominating and many road, railway and hydropower tunnels have to be aligned deep into the mountain with steep valley slope topography. Tunnels passing beneath deep rock cover (overburden), in general, are subjected to high in-situ stresses. If the rock mass is relatively un...

  17. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  18. Los abuelos de nuestro rock

    Directory of Open Access Journals (Sweden)

    Jacobo Celnik

    2016-12-01

    Full Text Available Los Yetis. Una bomba atómica a go go. La historia de los abuelos de nuestro rock. Diego Londoño; Pulso & Letra Editores, Instituto para el Desarrollo de Antioquia, Instituto de Cultura y Patrimonio de Antioquia, 2014, 98 págs., fotografías.

  19. Gas migration in argillaceous rock

    International Nuclear Information System (INIS)

    Alonso, E. E.; Olivella, S.

    2007-01-01

    The intrinsic gas permeability of fractured argillaceous rocks depends on the current structure of micro-cracks and fissures of the rock. They are a consequence of the initial state and the subsequent deformations induced by stress and gas pressure changes. Stresses are also coupled with fluid pressures and, therefore, gas flow and mechanical behaviour are intensely coupled. Laboratory experiments, aimed at determining intrinsic permeability, show the relevant effect of volumetric deformations induced by isotropic, as well as deviatoric stress changes. The relevance, in practice, of the flow-mechanical coupling is illustrated by means of some results obtained during the performance of the drift scale test (DST) in fractured tuff in the Yucca Mountain facility. The technique of embedding discontinuities in continuum thermo-hydro-mechanical elements is capable of reproducing observed features of gas flow migration in clayey rocks. An example is described. It is believed that the developed approach provides a powerful computational procedure to handle complex gas phenomena in clayey rocks. (author)

  20. Radioactivities (dose rates) of rocks in Japan

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Minato, Susumu

    1995-01-01

    The radioactive distribution (radiation doses) of major rocks in Japan was monitored to clarify the factors influencing terrestrial gamma-ray absorbed dose rates. The rock samples were reduced to powder and analyzed by well-type NaI(Tl) scintillation detector and pulse height analyzer. Terrestrial gamma-ray dose rates were estimated in terms of gamma radiation dose rate 1 m above the ground. The radioactivity concentration was highest in acidic rock which contains much SiO 2 among igneous rock, followed by neutral rock, basic rock, and ultrabasic rock. The radioactive concentration was 30-40% lower in acidic and clastic rocks than those of the world average concentration. Higher radioactive concentration was observed in soils than the parent rocks of sedimentary rock and metamorphic rock. The gamma radiation dose rate was in proportion to the radioactive concentration of the rocks. To clarify the radioactive effect in the change course of rocks into soils, comparative measurement of outcrop and soil radioactive concentrations is important. (S.Y.)

  1. Analysis of volcano rocks by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Dekan, J.

    2012-01-01

    In this work we have analysed the basalt rock from Mount Ba tur volcano situated on the Island of Bali in Indonesia.We compared our results with composition of basalt rocks from some other places on the Earth. (authors)

  2. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  3. Rock Slope Design Criteria : Executive Summary Report

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...

  4. Rock glaciers, Central Andes, Argentina, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Primary rock glaciers are fed by avalanche chutes. At the El Salto rock glacier, surveys have been undertaken in order to determine the creep rate. Between 1981 and...

  5. Channelling of flow through fractures in rock

    International Nuclear Information System (INIS)

    Bourke, P.J.

    1987-05-01

    A method of mapping the channelling of flow in rock fractures formed by contacts between rock faces and of measuring the effective apertures of channels has been developed. Some typical results are given. (author)

  6. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Komarova, G.V.; Kondrat'eva, I.A.; Zelenova, O.I.

    1980-01-01

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  7. Analysis of volcano rock from Canary islands

    International Nuclear Information System (INIS)

    Sitek, J.; Sedlackova, K.; Dekan, J.

    2013-01-01

    In this work we have analyzed the basalt rock from Lanzarote, which is the easternmost island of the Canary Islands lying in the Atlantic Ocean and has a volcanic origin. It was born through fiery eruptions and has solidified lava streams as well as extravagant rock formations. We compared our results with composition of basalt rocks from some other places on the Earth. Different iron oxides created on the volcanic rocks during their weathering on the Earth surface has been also analyzed. (authors)

  8. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  9. Rock Music's Place in the Library.

    Science.gov (United States)

    Politis, John

    1983-01-01

    Discussion of the importance of rock music as an expression of aural culture includes its history, rock music today, and the development of a rock music collection in the library (placement of collection and books which aid in developing a collection of permanent value). Three references are included. (EJS)

  10. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  11. Rock Art: Connecting to the Past.

    Science.gov (United States)

    Knipe, Marianne

    2001-01-01

    Presents an activity for fourth-grade students in which they learn about ancient art and create their own authentic-looking rock sculptures with pictograms, or painted images. Explains how the students create their own rocks and then paint a pictograph on the rocks with brown paint. (CMK)

  12. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  13. Kimberley rock art dating project

    International Nuclear Information System (INIS)

    Walsh, G.L.; Morwood, M.

    1997-01-01

    The art's additional value, unequalled by traditionally recognised artefacts, is its permanent pictorial documentation presenting a 'window' into the otherwise intangible elements of perceptions, vision and mind of pre-historic cultures. Unfortunately it's potential in establishing Kimberley archaeological 'big picture' still remains largely unrecognised. Some of findings of the Kimberley Rock Art Dating Project, using AMS and optical stimulated luminescence (OSL) dating techniques, are outlined. It is estimated that these findings will encourage involvement by a greater diversity of specialist disciplines to tie findings into levels of this art sequence as a primary reference point. The sequence represents a sound basis for selecting specific defined images for targeting detailed studies by a range of dating technique. This effectively removes the undesirable ad hoc sampling of 'apparently old paintings'; a process which must unavoidably remain the case with researchers working on most global bodies of rock art

  14. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2002-03-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene

  15. Radionuclide fixation mechanisms in rocks

    International Nuclear Information System (INIS)

    Nakashima, S.

    1991-01-01

    In the safety evaluation of the radioactive waste disposal in geological environment, the mass balance equation for radionuclide migration is given. The sorption of radionuclides by geological formations is conventionally represented by the retardation of the radionuclides as compared with water movement. In order to quantify the sorption of radionuclides by rocks and sediments, the distribution ratio is used. In order to study quantitatively the long term behavior of waste radionuclides in geological environment, besides the distribution ratio concept in short term, slower radionuclide retention reaction involving mineral transformation should be considered. The development of microspectroscopic method for long term reaction path modeling, the behavior of iron during granite and water interaction, the reduction precipitation of radionuclides, radionuclide migration pathways, and the representative scheme of radionuclide migration and fixation in rocks are discussed. (K.I.)

  16. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  17. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  18. Mineral and rock chemistry of Mata da Corda Kamafugitic Rocks (Minas Gerais State, Brazil)

    International Nuclear Information System (INIS)

    Albuquerque Sgarbi, Patricia B. de; Valenca, Joel G.

    1995-01-01

    The volcanic rocks of the Mata da Corda Formation (Upper Cretaceous) in Minas Gerais, Brazil, are mafic potassic to ultra potassic rocks of kamafugitic affinity containing essentially clinopyroxenes, perovskite, magnetite and occasionally olivine, phlogopite, melilite pseudomorphs and apatite. The felsic phases are kalsilite and/or leucite pseudomorphs. The rocks are classified as mafitites, leucitites and kalsilitites. The analysis of the available data of the rocks studied, based on the relevant aspects of the main proposals for the classification of alkaline mafic to ultramafic potassic rocks leads to the conclusion that Sahama's (1974) proposal to divide potassium rich alkaline rocks in two large families is the one to which the Mata da Corda rocks adapt best. According to this and the data in the literature on the mineralogy and mineral and rock chemistries of the other similar occurrences, these rocks may be interpreted as alkaline potassic to ultra potassic rocks of hamafugitic affinity. 11 figs., 5 tabs

  19. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2003-02-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene

  20. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  1. Source rock hydrocarbons. Present status

    International Nuclear Information System (INIS)

    Vially, R.; Maisonnier, G.; Rouaud, T.

    2013-01-01

    This report first presents the characteristics of conventional oil and gas system, and the classification of liquid and gaseous non conventional hydrocarbons, with the peculiar case of coal-bed methane. The authors then describe how source rock hydrocarbons are produced: production of shale oils and gases (horizontal drilling, hydraulic fracturing, exploitation) and of coal-bed methane and coal mine methane. In the next part, they address and discuss the environmental impact of source rock hydrocarbon production: installation footprint, water resource management, drilling fluids, fracturing fluids composition, toxicity and recycling, air pollution, induced seismicity, pollutions from other exploitation and production activities. They propose an overview of the exploitation and production of source rock gas, coal-bed gas and other non conventional gases in the world. They describe the current development and discuss their economic impacts: world oil context and trends in the USA, in Canada and other countries, impacts on the North American market, on the world oil industry, on refining industries, on the world oil balance. They analyse the economic impacts of non conventional gases: development potential, stakes for the world gas trade, consequence for gas prices, development opportunities for oil companies and for the transport sector, impact on CO 2 emissions, macro-economic impact in the case of the USA

  2. A Review on the British Rock Music

    OpenAIRE

    Hutapea, Alfian Hadi Pranata

    2011-01-01

    Music has an important role in people’s life. In people’s daily, music is often hearing of course and in people’s customs and traditions music is also be used. Music has many genres, one of them is rock music. Many people like rock music especially youngman because rock music has given a message in a song through enthusiasm expression. Rock music has many subgenres and each of subgenres have a distinctive feature. The developing of rock music is very wide in the world, especially in Great Bri...

  3. The physical principles of rock magnetism

    CERN Document Server

    Stacey, Frank

    1974-01-01

    Developments in Solid Earth Geophysics 5: The Physical Principles of Rock Magnetism explores the physical principles of rock magnetism, with emphasis on the properties of finely divided magnetic materials. It discusses the origin and stability of rock magnetizations, the role of remanent magnetism in interpreting magnetic surveys, magnetic anisotropy as an indicator of rock fabric, and the relationship between piezomagnetic changes and seismic activity. Organized into 13 chapters, this volume discusses the properties of solids, magnetite and hematite grains, and rocks with magnetite grains

  4. Effects of explosions in hard rocks

    International Nuclear Information System (INIS)

    Heuze, F.E.; Walton, O.R.; Maddix, D.M.; Shaffer, R.J.; Butkovich, T.R.

    1993-01-01

    This work relates to explosions in hard rocks (ex: basalt, granite, limestone...). Hard rock masses typically have a blocky structure created by the existence of geologic discontinuities such as bedding contacts, faults, and joints. At very high pressure - hundreds of kilobars and above - these discontinuities do not act separately, and the rock appears to be an equivalent continuous medium. At stress of a few tens of kilobars and below, the geologic discontinuities control the kinematics of the rock masses. Hence, the simulation of rock dynamics, anywhere but in the very-near source region, should account for those kinematics

  5. Lead isotope analyses of standard rock samples

    International Nuclear Information System (INIS)

    Koide, Yoshiyuki; Nakamura, Eizo

    1990-01-01

    New results on lead isotope compositions of standard rock samples and their analytical procedures are reported. Bromide form anion exchange chromatography technique was adopted for the chemical separation lead from rock samples. The lead contamination during whole analytical procedure was low enough to determine lead isotope composition of common natural rocks. Silica-gel activator method was applied for emission of lead ions in the mass spectrometer. Using the data reduction of 'unfractionated ratios', we obtained good reproducibility, precision and accuracy on lead isotope compositions of NBS SRM. Here we present new reliable lead isotope compositions of GSJ standard rock samples and USGS standard rock, BCR-1. (author)

  6. Diffusion in the matrix of granitic rock

    International Nuclear Information System (INIS)

    Birgersson, L.; Neretnieks, I.

    1982-07-01

    A migration experiment in the rock matrix is presented. The experiment has been carried out in undisturbed rock, that is rock under its natural stress environment. Since the experiment was performed at the 360 m-level (in the Stripa mine), the rock had nearly the same conditions as the rock surrounding a nuclear waste storage. The results show that all three tracers (Uranine, Cr-EDTA and I - ) have passed the disturbed zone from the injection hole and migrated into undisturbed rock. At the distance of 11 cm from the injection hole 5-10 percent of the injection concentration was found. The results also indicate that the tracer have passed through fissure filling material. These results indicate that it is possible for tracers (and therefore radionuclides) to migrate from a fissure, through fissure filling material, and into the undisturbed rock matrix. (Authors)

  7. Carbonate rock depositional models: A microfacies approach

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  8. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  9. Hydraulic testing in crystalline rock

    International Nuclear Information System (INIS)

    Almen, K.E.; Andersson, J.E.; Carlsson, L.; Hansson, K.; Larsson, N.A.

    1986-12-01

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10 -14 m/s to 1x10 -6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  10. Big Bang Day : Physics Rocks

    CERN Multimedia

    Brian Cox; John Barrowman; Eddie Izzard

    2008-01-01

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  11. ROCKS & MINERALS DETERMINATION AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150204 Abaydulla Alimjan(Department of Chemistry and Environmental Sciences,Kashgar Teachers College,Kashgar 844006,China);Cheng Chunying Non-Metallic Element Composition Analysis of Non-Ferrous Metal Ores from Oytagh Town,Xinjiang(Rock and Mineral Analysis,ISSN0254-5357,CN11-2131/TD,33(1),2014,p.44-50,5illus.,4tables,28refs.)Key words:nonferrous metals ore,nonmetals,chemical analysis,thermogravimetric analysis Anions in non-ferrous ore materials

  12. Rock Goes to School on Screen: A Model for Teaching Non-"Learned" Musics Derived from the Films "School of Rock" (2003) and "Rock School" (2005)

    Science.gov (United States)

    Webb, Michael

    2007-01-01

    What can be learned from two films with "rock" and "school" in their titles, about rock in school and about music and schooling more broadly? "School of Rock" (2003), a "family comedy," and "Rock School" (2005), a documentary, provoke a range of questions, ideological and otherwise, surrounding the inclusion of rock in formal instructional…

  13. Radon exhalation from granitic rocks

    International Nuclear Information System (INIS)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina; Denyak, Valeriy

    2017-01-01

    Naturally occurring radionuclides such as radon ( 222 Rn), its decay products and other elements from the radioactive series of uranium ( 238 U and 235 U) and thorium ( 232 Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ( 222 Rn), thoron ( 220 Rn), radium ( 226 Ra), thorium ( 232 Th) and potassium ( 40 K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the 222 Rn and 220 Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The 222 Rn and 220 Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m 3 to 2087±19 Bq/m 3 , which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  14. Hydraulic gradients in rock aquifers

    International Nuclear Information System (INIS)

    Dahlblom, P.

    1992-05-01

    This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)

  15. Laboratory characterization of rock joints

    International Nuclear Information System (INIS)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A.

    1994-05-01

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed

  16. Aespoe hard rock laboratory Sweden

    International Nuclear Information System (INIS)

    1992-01-01

    The aim of the new Aespoe hard rock laboratory is to demonstrate state of the art of technology and evaluation methods before the start of actual construction work on the planned deep repository for spent nuclear fuel. The nine country OECD/NEA project in the Stripa mine in Sweden has been an excellent example of high quality international research co-operation. In Sweden the new Aespoe hard rock laboratory will gradually take over and finalize this work. SKB very much appreciates the continued international participation in Aespoe which is of great value for the quality efficiency, and confidence in this kind of work. We have invited a number of leading experts to this first international seminar to summarize the current state of a number of key questions. The contributions show the great progress that has taken place during the years. The results show that there is a solid scientific basis for using this knowledge on site specific preparation and work on actual repositories. (au)

  17. Proceedings of the 3. Canada-US rock mechanics symposium and 20. Canadian rock mechanics symposium : rock engineering 2009 : rock engineering in difficult conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This conference provided a forum for geologists, mining operators and engineers to discuss the application of rock mechanics in engineering designs. Members of the scientific and engineering communities discussed challenges and interdisciplinary elements involved in rock engineering. New geological models and methods of characterizing rock masses and ground conditions in underground engineering projects were discussed along with excavation and mining methods. Papers presented at the conference discussed the role of rock mechanics in forensic engineering. Geophysics, geomechanics, and risk-based approaches to rock engineering designs were reviewed. Issues related to high pressure and high flow water conditions were discussed, and new rock physics models designed to enhance hydrocarbon recovery were presented. The conference featured 84 presentations, of which 9 have been catalogued separately for inclusion in this database. tabs., figs.

  18. Chemical buffering capacity of clay rock

    International Nuclear Information System (INIS)

    Beaucaire, C.; Pearson, F.J.; Gautschi, A.

    2004-01-01

    The long-term performance of a nuclear waste repository is strongly dependent on the chemical properties of the host rock. The host rock establishes the chemical environment that determines such important performance attributes as radionuclide solubilities from the waste and the transport rates from the repository to the accessible environment. Clay-rich rocks are especially favourable host rocks because they provide a strong buffering capacity to resist chemical changes prompted either internally, by reactions of the waste itself and emplacement materials, or externally, by changes in the hydrologic systems surrounding the host rock. This paper will focus on three aspects of the stability of clay-rich host rocks: their ability to provide pCO 2 and redox buffering, and to resist chemical changes imposed by changes in regional hydrology and hydro-chemistry. (authors)

  19. Radiation transport in statistically inhomogeneous rocks

    International Nuclear Information System (INIS)

    Lukhminskij, B.E.

    1975-01-01

    A study has been made of radiation transfer in statistically inhomogeneous rocks. Account has been taken of the statistical character of rock composition through randomization of density. Formulas are summarized for sigma-distribution, homogeneous density, the Simpson and Cauchy distributions. Consideration is given to the statistics of mean square ranges in a medium, simulated by the jump Markov random function. A quantitative criterion of rock heterogeneity is proposed

  20. Response of rocks to large stresses

    International Nuclear Information System (INIS)

    Schock, R.N.

    1976-01-01

    To predict the dimensions and characteristics of impact- and explosion-induced craters, one must know the equation of state of the rocks in which the crater is formed. Recent experimental data shed light upon inelastic processes that influence the stress/strain behavior of rocks. We examine these data with a view to developing models that could be used in predicting cratering phenomena. New data is presented on the volume behavior of two dissimilar rocks subjected to tensile stresses

  1. Rock breaking methods to replace blasting

    Science.gov (United States)

    Zhou, Huisheng; Xie, Xinghua; Feng, Yuqing

    2018-03-01

    The method of breaking rock by blasting has a high efficiency and the cost is relatively low, but the associated vibration, flyrock, production of toxic gases since the 1970’s, the Western developed countries began to study the safety of breaking rock. This paper introduces different methods and their progress to safely break rock. Ideally, safe rock breaking would have little vibration, no fly stone, and no toxic gases, which can be widely used in municipal engineering, road excavation, high-risk mining, quarrying and complex environment.

  2. Hopi and Anasazi Alignments and Rock Art

    Science.gov (United States)

    Bates, Bryan C.

    The interaction of light and shadow on ancestral Puebloan rock art, or rock art demarcating sunrise/set horizon points that align with culturally significant dates, has long been assumed to be evidence of "intentional construct" for marking time or event by the native creator. However, anthropological rock art research requires the scientific control of cultural time, element orientation and placement, structure, and association with other rock art elements. The evaluation of five exemplars challenges the oft-held assumption that "if the interaction occurs, it therefore supports intentional construct" and thereby conveys meaning to the native culture.

  3. Professional users handbook for rock bolting

    Energy Technology Data Exchange (ETDEWEB)

    Stillborg, B.

    1986-01-01

    The paper is a practical handbook which reviews the basic principles of rock bolting and sets out the design considerations used for most types of rockbolts in current use. It discusses the characteristics of these bolts and gives information on installation procedures and the observations and measurement of rockbolt performance. Rockbolting is considered under the following chapter headings: review of typical rockbolt systems; rockbolt installation; testing of rockbolts; design considerations; design of rock reinforcement; monitoring; cost of rock bolting; and Atlas Lopco auxillary equipment for rock bolting. 45 refs.

  4. Tunnel Design by Rock Mass Classifications

    Science.gov (United States)

    1990-01-01

    Engineering," revised second edition, Institution of Mining and Metallurgy, London, 1977, pp 113-115 and 150-192. 42. Selmer - Olsen , R., and Broch, E...to wall when a)/03 > 10, re- stability) ................ 10-5 0.66-0.33 0.5-2.0 duce oc and ot to L. Mild rock burst (massive 0.6 cc and 0.6 on rock ...5-2.5 0.33-0.16 5-10 where: 0 c = uncon-fined compression M. Heavy rock burst (massive strength, at = rock

  5. Igneous rocks formed by hypervelocity impact

    Science.gov (United States)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not

  6. Regulation of ROCK Activity in Cancer

    Science.gov (United States)

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  7. Remarks on some rock neutron parameters

    International Nuclear Information System (INIS)

    Czubek, J.A.

    1983-01-01

    A method to calculate the thermal neutron parameters (absorption cross-section, diffusion coefficient and diffusion length) of rocks is given. It is based on a proper energy averaging of cross-sections for all rock matrix and rock saturating liquid constituents. Special emphasis is given to the presence of hydrogen. The diffusion lengths in different lithologies in the function of the variable rock porosity have been calculated. An influence of the thermal neutron spectrum on the shape of the porosity calibration curves for the dual spacing neutron method is shown. This influence has been estimated on two porosity units, on average. (author)

  8. Sorption of radionuclides on hard rocks

    International Nuclear Information System (INIS)

    Berry, J.A.; Bourke, P.J.; Green, A.; Littleboy, A.K.

    1987-09-01

    Methods for measuring sorption on hard rocks, particularly of strontium, caesium, neptunium and americium on Darley Dale sandstone and Welsh slate have been investigated. The methods tried included batch tests with crushed rock and tests of simultaneous diffusion and convection with sorption on intact rock. High pressures (800m H 2 O) were used in the convective tests to pump water quickly through the rock samples and to measure high sorptivities in times shorter than those needed in the diffusive methods with intact samples. (author)

  9. Hydrogeomechanics for rock engineering: coupling subsurface hydrogeomechanical assessement and hydrogeotechnical mapping on fracturated rock masses

    OpenAIRE

    Meirinhos, João Miguel de Freitas

    2015-01-01

    The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock e...

  10. Abiogenic methanogenesis in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lollar, B.S.; Frape, S.K. (Univ. of Waterloo, Ontario (Canada)); Weise, S.M. (Institut fuer Hydrologie (G.S.F), Neuherberg (Germany)); Fritz, P. (UFZ, Umweltforschungszentrum, Leipzig-Halle (Germany)); Macko, S.A. (Univ. of Virginia, Charlottesville, VA (United States)); Welhan, J.A. (Idaho State Univ., Pacatello, ID (United States))

    1993-12-01

    Isotopically anomalous CH[sub 4]-rich gas deposits are found in mining sites on both the Canadian and Fennoscandian shields. With [delta][sup 13]C[sub CH4] values from -22.4 to -48.5% and [delta]D[sub CH4] values from -133 to -372%, these methane deposits cannot be accounted for by conventional processes for bacterial or thermogenic methanogenesis. Compositionally the gases are similar to other CH[sub 4]-rich gas occurrences found in Canadian and Fennoscandian shield rocks. However, the isotopically anomalous gases of this study are characterized by unexpectedly high concentrations of H[sub 2] gas, ranging from several volume percent up to 30 vol%. The H[sub 2] gases are consistently depleted in the heavy isotope, with [delta]D[sub H[sub 2

  11. An investigation of rock fall and pore water pressure using LIDAR in Highway 63 rock cuts.

    Science.gov (United States)

    2014-07-01

    The purpose of this research work is compare LIDAR scanning measurements of rock fall with the natural changes in groundwater level to determining the effect of water pressures (levels) on rock fall. To collect the information of rock cut volume chan...

  12. Computational Models of Rock Failure

    Science.gov (United States)

    May, Dave A.; Spiegelman, Marc

    2017-04-01

    Practitioners in computational geodynamics, as per many other branches of applied science, typically do not analyse the underlying PDE's being solved in order to establish the existence or uniqueness of solutions. Rather, such proofs are left to the mathematicians, and all too frequently these results lag far behind (in time) the applied research being conducted, are often unintelligible to the non-specialist, are buried in journals applied scientists simply do not read, or simply have not been proven. As practitioners, we are by definition pragmatic. Thus, rather than first analysing our PDE's, we first attempt to find approximate solutions by throwing all our computational methods and machinery at the given problem and hoping for the best. Typically this approach leads to a satisfactory outcome. Usually it is only if the numerical solutions "look odd" that we start delving deeper into the math. In this presentation I summarise our findings in relation to using pressure dependent (Drucker-Prager type) flow laws in a simplified model of continental extension in which the material is assumed to be an incompressible, highly viscous fluid. Such assumptions represent the current mainstream adopted in computational studies of mantle and lithosphere deformation within our community. In short, we conclude that for the parameter range of cohesion and friction angle relevant to studying rocks, the incompressibility constraint combined with a Drucker-Prager flow law can result in problems which have no solution. This is proven by a 1D analytic model and convincingly demonstrated by 2D numerical simulations. To date, we do not have a robust "fix" for this fundamental problem. The intent of this submission is to highlight the importance of simple analytic models, highlight some of the dangers / risks of interpreting numerical solutions without understanding the properties of the PDE we solved, and lastly to stimulate discussions to develop an improved computational model of

  13. Hydraulic conductivity of rock fractures

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs

  14. Radon exhalation from granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Del Claro, Flávia; Paschuk, Sergei A.; Corrêa, Janine N.; Mazer, Wellington; Narloch, Danielle Cristine; Martin, Aline Cristina [Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: flaviadelclaro@gmail.com, E-mail: spaschuk@gmail.com, E-mail: janine_nicolosi@hotmail.com, E-mail: denyak@gmail.com [Instituto de Pesquisa Pelé Pequeno Príncipe (IPPP), Curitiba, PR (Brazil)

    2017-07-01

    Naturally occurring radionuclides such as radon ({sup 222}Rn), its decay products and other elements from the radioactive series of uranium ({sup 238}U and {sup 235}U) and thorium ({sup 232}Th) are an important source of human exposure to natural radioactivity. The worldwide evaluation of health radiobiological effects and risks from population exposure to natural radionuclides is a growing concern. About 50% of personal radiation annual dose is related to radionuclides such as radon ({sup 222}Rn), thoron ({sup 220}Rn), radium ({sup 226}Ra), thorium ({sup 232}Th) and potassium ({sup 40}K), which are present in modern materials commonly used in construction of dwellings and buildings. The radioactivity of marbles and granites is of big concern since under certain conditions the radioactivity levels of these materials can be hazardous to the population and require the implementation of mitigation procedures. Present survey of the {sup 222}Rn and {sup 220}Rn activity concentration liberated in the air was performed using commercialized Brazilian granite rocks at national market as well as exported to other countries. The {sup 222}Rn and {sup 220}Rn measurements were performed using the AlphaGUARD instant monitor and RAD7 detector, respectively. This study was performed at the Applied Nuclear Physics Laboratory of the Federal University of Technology – Paraná (UTFPR). Obtained results of radon concentration activity in air exhaled studied samples of granites varied from 3±1 Bq/m{sup 3} to 2087±19 Bq/m{sup 3}, which shows that some samples of granitic rocks represent rather elevated health risk the population. (author)

  15. The History of Rock Art Research

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The History of Rock Art Research. Rock art in South India was discovered as early as 1891.The earliest discovery of petroglyphs on the Koppagallu hill in Bellary district was made by Fred Fawcett (1892) who with the assistance of H.T.Knox and Robert Sewell ...

  16. Using Rock Music To Teach History.

    Science.gov (United States)

    Hoffman, Paul Dennis

    1985-01-01

    A secondary history teacher describes how he uses rock and roll music to help students study and interpret modern American history. Besides being a lot of fun to teach, a rock unit makes students realize that even contemporary music has a place in history. (RM)

  17. A guide for rock identification. 4. ed.

    International Nuclear Information System (INIS)

    Pape, H.

    1981-01-01

    The book is based on a practical course for students of geology, mineralogy, geography, and constructional engineering. It will also help interested laymen to identify rocks. Tables are presented which guide the reader in his analysis, so that he will quickly arrive at the name of a rock, the group to which it belongs, and some information on its characteristics and origin. (orig.) [de

  18. Rock Cycle. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  19. Phosphine from rocks: mechanically driven phosphate reduction?

    Science.gov (United States)

    Glindemann, Dietmar; Edwards, Marc; Morgenstern, Peter

    2005-11-01

    Natural rock and mineral samples released trace amounts of phosphine during dissolution in mineral acid. An order of magnitude more phosphine (average 1982 ng PH3 kg rock and maximum 6673 ng PH3/kg rock) is released from pulverized rock samples (basalt, gneiss, granite, clay, quartzitic pebbles, or marble). Phosphine was correlated to hardness and mechanical pulverization energy of the rocks. The yield of PH3 ranged from 0 to 0.01% of the total P content of the dissolved rock. Strong circumstantial evidence was gathered for reduction of phosphate in the rock via mechanochemical or "tribochemical" weathering at quartz and calcite/marble inclusions. Artificial reproduction of this mechanism by rubbing quartz rods coated with apatite-phosphate to the point of visible triboluminescence, led to detection of more than 70 000 ng/kg PH3 in the apatite. This reaction pathway may be considered a mechano-chemical analogue of phosphate reduction from lightning or electrical discharges and may contribute to phosphine production via tectonic forces and processing of rocks.

  20. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  1. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  2. Finding the right rocks on Mars

    Science.gov (United States)

    Hargraves, R. B.; Knudsen, J. M.; Madsen, M. B.; Bertelsen, P.

    Locating a rock on the surface of Mars that bears unambiguous evidence of the existence—prior or present—of life on that planet is, understandably, the “Holy Grail” of NASAs sample return missions. Remote recognition of such a rock on Mars will not be easy. We do know, however, that present in the Martian crust—especially in the “Southern highlands”—is rock carrying strong natural remanent magnetization (NRM). Characterization of such magnetized rock has profound implications for adding to our knowledge about the origin and early evolution of the Martian interior, lithosphere, atmosphere, and possibly even Martian life forms [Ward and Brownlee, 2000]. Moreover, it should be possible to recognize such rocks by use of a simple magnetic compass mounted on a Rover.

  3. First Grinding of a Rock on Mars

    Science.gov (United States)

    2004-01-01

    The round, shallow depression in this image resulted from history's first grinding of a rock on Mars. The rock abrasion tool on NASA's Spirit rover ground off the surface of a patch 45.5 millimeters (1.8 inches) in diameter on a rock called Adirondack during Spirit's 34th sol on Mars, Feb. 6, 2004. The hole is 2.65 millimeters (0.1 inch) deep, exposing fresh interior material of the rock for close inspection with the rover's microscopic imager and two spectrometers on the robotic arm. This image was taken by Spirit's panoramic camera, providing a quick visual check of the success of the grinding. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

  4. Disc cutter wear and rock texture in hard rock TBM tunneling

    International Nuclear Information System (INIS)

    Koizumi, Yu; Tsusaka, Kimikazu; Tanimoto, Chikaosa; Nakagawa, Shigeo; Fujita, Naoya

    2008-01-01

    Disc cutter wear in TBM tunneling is caused by initial fragmentation of a solid rock face (the primary fragmentation) and fragmentation of residual rock pieces between a cutterhead and the face (the secondary fragmentation). In two projects through sedimentary and granitic rocks, the authors investigated the relationships between the rate of cutter wear caused by the primary fragmentation, point load index and the grain size and contents of abrasive minerals. As a result, it was found that the tensile strength and the mineral contents of rocks significantly influenced the cutter wear in both projects and thus it is necessary to take into account of rock type. (author)

  5. Fragment Size Distribution of Blasted Rock Mass

    Science.gov (United States)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  6. Permanganate diffusion and reaction in sedimentary rocks.

    Science.gov (United States)

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Measurements of thermal properties of rocks

    International Nuclear Information System (INIS)

    Kumada, Toshiaki

    2001-02-01

    The report concerns the measurement of thermal conductivity and specific heat of supplied sedimental rock B and Funyu rock. The method of measurement of these properties was done with the method which was developed at 1997 and improved much in its accuracy by the present author et al. The porosity of sedimental rock B is 0.55, which is deduced from the density of rock (the porosity deduced from the difference between dry and water filled conditions is 0.42) and the shape and size of pores in rock are much different. Its thermal conductivity is 0.238 W/mK in dry and 1.152 W/mK in water filled conditions respectively, while the thermal conductivity of bentonite is 0.238 W/mK in dry and 1.152 W/mK in water saturated conditions. The difference of thermal conductivity between dry and water saturated conditions is little difference in sedimental rock B and bentonite at same porosity. The porosity of Funyu rock is 0.26 and the shape and size of pores in the rock are uniform. Its thermal conductivity is 0.914 W/mK in dry and 1.405 W/mK in water saturated conditions, while the thermal conductivity of bentonite is 0.606 W/mK in dry and 1.591 W/mK in water saturated conditions respectively. The correlation estimating thermal conductivity of rocks was derived based on Fricke correlation by presuming rocks as a suspension. (author)

  8. Rock stars for the day

    CERN Multimedia

    Stefania Pandolfi

    2015-01-01

    After a two-year hiatus, the CERN Hardronic Festival is back! On 8 August, ten CERN MusiClub bands will take to the stage for the popular event. As usual, the non-stop show will take place on the terrace of Restaurant 3 and will run until after midnight.   The Canettes Blues Band, part of the CERN MusiClub, performing live on the Music In The Park stage at the Montreux Jazz Festival, on 18 July 2013. A large range of musical styles will entertain the audience: from Irish folk, via 70s/80s/90s rock, to pop, blues and R&B. Alongside the music there will be activities for kids and food and drink stands. This year, the income from food sales will be donated to charity. The spirit that has characterised the festival ever since the first event in 1989 is that of a staff party. Any band who volunteers to play also helps to organise the event and set up the stage. “This is a really good thing because a festival that has been growing for many years requires a considerable amount of har...

  9. Tracer transport in fractured rocks

    International Nuclear Information System (INIS)

    Tsang, C.F.; Tsang, Y.W.; Hale, F.V.

    1988-07-01

    Recent interest in the safety of toxic waste underground disposal and nuclear waste geologic repositories has motivated many studies of tracer transport in fractured media. Fractures occur in most geologic formations and introduce a high degree of heterogeneity. Within each fracture, the aperture is not constant in value but strongly varying. Thus for such media, tracer tends to flow through preferred flowpaths or channels within the fractures. Along each of these channels, the aperture is also strongly varying. A detailed analysis is carried out on a 2D single fracture with variable apertures and the flow through channels is demonstrated. The channels defined this way are not rigidly set pathways for tracer transport, but are the preferred flow paths in the sense of stream-tubes in the potential theory. It is shown that such variable-aperture channels can be characterized by an aperture probability distribution function, and not by the exact deterministic geometric locations. We also demonstrate that the 2D tracer transport in a fracture can be calculated by a model of a system of 1D channels characterized by this distribution function only. Due to the channeling character of tracer transport in fractured rock, random point measurements of tracer breakthrough curves may give results with a wide spread in value due to statistical fluctuations. The present paper suggests that such a wide spread can probably be greatly reduced by making line/areal (or multiple) measurements covering a few spatial correlation lengths. 13 refs., 11 figs., 1 tab

  10. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  11. Heating effects in Rio Blanco rock

    International Nuclear Information System (INIS)

    Taylor, R.W.; Bowen, D.W.; Rossler, P.E.

    1975-01-01

    Samples of ''sandstone'' from near the site of the upper Rio Blanco nuclear explosion were heated in the laboratory at temperatures between 600 and 900 0 C. The composition and amount of noncondensable (dry) gas released were measured and compared to the amount and composition of gas found underground following the explosion. The gas released from the rock heated in the laboratory contained approximately 80 percent CO 2 and 10 percent H 2 ; the balance was CO and CH 4 . With increasing temperature, the amounts of CO 2 , CO, and H 2 released increased. The composition of gas released by heating Rio Blanco rock in the laboratory is similar to the composition of gas found after the nuclear explosion except that it contains less natural gas (CH 4 , C 2 H 6 . . .). The amount of noncondensable gas released by heating the rock increases from approximately 0.1 mole/kg of rock at 600 0 C to 0.9 mole/kg at 900 0 C. Over 90 percent of the volatile components of the rock are released in less than 10 h at 900 0 C. A comparison of the amount of gas released by heating rock in the laboratory to the amount of gas released by the heat of the Rio Blanco nuclear explosion suggests that the explosion released the volatile material from about 0.42 mg of rock per joule of explosive energy (1700 to 1800 tonnes per kt). (auth)

  12. Discussion on the origin of sedimentary rock resistivity

    International Nuclear Information System (INIS)

    Dong Gangjian

    2012-01-01

    Conduction current way of sedimentary rock sedimentary rock is caused by the internal structure of sedimentary rock sedimentary rock pore resistance depends on the salinity of pore water and clay content and distribution. Resistivity of sedimentary rock sedimentary rock major factor in mineral composition, water resistance, oil resistance. and sedimentary structures. In practice, we should give full attention to the difference between lithology and physical properties. (author)

  13. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and

  14. Look! It's Rock'n'roll!

    DEFF Research Database (Denmark)

    Lindelof, Anja

    2007-01-01

    , and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- Anja Mølle Lindelof. (2007). Look! it's rock'n'roll! how television participated in shaping the visual genre conventions of popular music...... to personal names, capitalization, and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- Anja Mølle Lindelof. "Look! It's Rock'n'roll! How television participated in shaping the visual genre....... Pay special attention to personal names, capitalization, and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- TY - JOUR T1 - Look! It's Rock'n'roll! How television participated in shaping...

  15. Permeability Evolution and Rock Brittle Failure

    OpenAIRE

    Sun Qiang; Xue Lei; Zhu Shuyun

    2015-01-01

    This paper reports an experimental study of the evolution of permeability during rock brittle failure and a theoretical analysis of rock critical stress level. It is assumed that the rock is a strain-softening medium whose strength can be described by Weibull’s distribution. Based on the two-dimensional renormalization group theory, it is found that the stress level λ c (the ratio of the stress at the critical point to the peak stress) depends mainly on the homogeneity index or shape paramete...

  16. Deep fracturation of granitic rock mass

    International Nuclear Information System (INIS)

    Bles, J.L.; Blanchin, R.; Bonijoly, D.; Dutartre, P.; Feybesse, J.L.; Gros, Y.; Landry, J.; Martin, P.

    1986-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground, in various feasibility studies dealing with radioactive wastes disposal. The Mont Blanc road tunnel, the EDF Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater [fr

  17. Radon and rock bursts in deep mines

    International Nuclear Information System (INIS)

    Bulashevich, Yu.P.; Utkin, V.I.; Yurkov, A.K.; Nikolaev, V.V.

    1996-01-01

    Variation fields of radon concentration in time to ascertain stress-strain state of the North Ural bauxite mines have been studied. It is shown that dynamic changes in the stress-strain state of the rocks prior to the rock burst bring about variations in radon concentration in the observation wells. Depending on mutual positioning of the observation points and the rock burst epicenter, the above-mentioned variations differ in principle, reduction of radon concentration in the near zone and its increase in the far zone are observed [ru

  18. Laboratory measurements of rock thermal properties

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.

    The thermal properties of rocks are key elements in understanding and modelling the temperature field of the subsurface. Thermal conductivity and thermal diffusivity can be measured in the laboratory if rock samples can be provided. We have introduced improvements to the divided bar and needle...... probe methods to be able to measure both thermal conductivity and thermal diffusivity. The improvements we implement include, for both methods, a combination of fast numerical finite element forward modelling and a Markov Chain Monte Carlo inversion scheme for estimating rock thermal parameters...

  19. Acoustics in rock and pop music halls

    DEFF Research Database (Denmark)

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues...... in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers. Correlations between the objective and subjective results lead, among others, to a recommendation for reverberation time as a function of hall volume. Since the bass...

  20. Lead isotopes in archaean plutonic rocks

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1978-01-01

    Archaean intrusive rocks have initial Pb isotopic compositions which show a varied and complex history for the source regions of the rocks. Even the oldest rocks from Greenland indicate heterogenous U and Pb distribution prior to 3800 m.y. ago. Source regions with μ values less than 7 must have played a significant role in the early history of the earth. By late Archaean time U/Pb ratios of source regions had increased substantially. Data from Australia and North America show distinct regional differences, both within and between continents. (Auth.)

  1. Heat production / host rock compatibility; Waermeentwicklung / Gesteinsvertraeglichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Meleshyn, A.; Weyand, T.; Bracke, G.; Kull, H.; Wieczorek, K.

    2016-05-15

    For the final high-level radioactive waste repository potential host rock formations are either rock salt or clays (Kristallin). Heat generating waste (decay heat of the radioactive materials) can be absorbed by the host rock. The effect of temperature increase on the thermal conductivity, the thermal expansion and the mechanical properties of salt, Kristallin, clays and argilliferous geotechnical barriers are described. Further issues of the report are the mineralogical behavior, phase transformations, hydrochemistry, microbial processes, gas formation, thermochemical processes and gas ingress. Recommendations for further research are summarized.

  2. Rapid formation of rock armour for soil - rock fragment mixture during simulated rainfall

    Science.gov (United States)

    Poultney, E.; McGrath, G. S.; Hinz, C.

    2009-04-01

    Preventing erosion is an important issue in disturbed semi-arid and arid landscapes. This is in particular of highest importance for mining companies while undertaking land rehabilitation. An onsite investigation of the impact of surface rock fragments on erosion was conducted at Telfer goldmine in the Great Sandy Desert, Western Australia. The study site is a waste rock dump designed to mimic the concave slope of a natural mesa to both discourage erosion and blend in with its natural surroundings. Four treatments were used to construct the slope: two are topsoil mixed with rock fragments, and two are unmixed topsoil. A field study investigating erosion rills, particle size distribution, rock fragment coverage surface roughness and vegetation was carried out to determine changes down and across slope. The treatments constructed by mixing topsoil and rock fragments are more stable and show rock fragment distributions that more closely resemble patterns found on natural mesas surrounding Telfer. A controlled study using trays of topsoil mixed with rock fragment volumes of 50%, 60%, 70% and 80% were used to investigate how varying mixtures of rock fragments and topsoil erode using rainfall intensities between 20 and 100 mm h-1. Two runs of 25 minutes each were used to assess the temporal evolution of rock armouring. Surface coverage results converged for the 50%, 60% and 70% mixtures after the first run to coverage of about 90%, suggesting that fine sediment proportion does not affect rate and degree of rock armouring.

  3. Sliding rocks on Racetrack Playa, Death Valley National Park: first observation of rocks in motion.

    Directory of Open Access Journals (Sweden)

    Richard D Norris

    Full Text Available The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved > 60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, "windowpane" ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of -4-5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2-5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice.

  4. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  5. Biogenic Cracks in Porous Rock

    Science.gov (United States)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  6. Wing rock suppression using forebody vortex control

    Science.gov (United States)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  7. RELIABILITY OF TRANSPORTATION SYSTEMS OF ROCK HAPS

    Directory of Open Access Journals (Sweden)

    A. Stepanov

    2009-01-01

    Full Text Available The ways of increasing of exploitation reliability of dump trucks with the aim of increasing of effectiveness of exploitation of transportation systems of rock heaps at coal mines.

  8. Rock bed heat accumulators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  9. Cretaceous rocks of the Western Interior basin

    International Nuclear Information System (INIS)

    Molenaar, C.M.; Rice, D.D.

    1988-01-01

    The Cretaceous rocks of the conterminous United States are discussed in this chapter. Depositional facies and lithology are reviewed along with economic resources. The economic resources include coal, hydrocarbons, and uranium

  10. Mechanical dispersion in fractured crystalline rock systems

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report compiles and evaluates the hydrogeologic parameters describing the flow of groundwater and transport of solutes in fractured crystalline rocks. This report describes the processes of mechanical dispersion in fractured crystalline rocks, and compiles and evaluates the dispersion parameters determined from both laboratory and field tracer experiments. The compiled data show that extrapolation of the reliable test results performed over intermediate scales (10's of m and 10's to 100's of hours) to larger spatial and temporal scales required for performance assessment of a nuclear waste repository in crystalline rock is not justified. The reliable measures of longitudinal dispersivity of fractured crystalline rock are found to range between 0.4 and 7.8 m

  11. Dating oxalate minerals in rock surface deposits

    International Nuclear Information System (INIS)

    Watchman, A.

    2001-01-01

    Oxalate minerals are found associated with rocks, mineral coatings, micro-organisms, plants and animals. They are important in archaeology because they have been found intimately associated with organic binders in prehistoric paints. Oxalate minerals also accumulate in the coatings on rock shelter walls and fallen ceiling slabs where they form the natural backing supports for painting and opaque laminates covering engravings. Though the relationship between anthropogenic activity in a rock shelter and oxalate formation is often uncertain, the radiocarbon age of the oxalate may provide the only means for determining the antiquity of a rock painting or engraving. This paper examines the history of dating oxalate minerals at archaeological sites and provides insights into achieving reliable age estimates. (author). 37 refs., 1 fig., 2 tabs

  12. ROCK GLACIERS IN THE KOLYMA HIGHLAND

    Directory of Open Access Journals (Sweden)

    A. A. Galanin

    2012-01-01

    Full Text Available Based on remote mapping and field studies inGrand Rapids, Tumansky,Hasynsky,Del-Urechen Ridges as well as Dukchinsky and Kilgansky Mountain Massifs there were identified about 1160 landforms which morphologically are similar to the rock glaciers or they develop in close association with them. Besides tongue-shaped cirque rock glaciers originated due to ablation, a large number of lobate-shaped slope-associated rock glaciers were recognized. Significant quantity of such forms are developing within the active neotectonic areas, in zones of seismic-tectonic badland and in association with active earthquakes-controlling faults. Multiplication of regional data on volcanic-ash-chronology, lichenometry, Schmidt Hammer Test, pollen spectra and single radiocarbon data, most of the active rock glaciers were preliminary attributed to the Late Holocene.

  13. Rock glaciers, Prealps, Vaud, Switzerland, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The investigated area forms part of the western lobe of the Prealps (Swiss Prealps). The 25 identified fossil rock glaciers are found mainly in the Prealpes medianes...

  14. Mechanical properties of rock at high temperatures

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Abe, Tohru; Wakabayashi, Naruki; Ishida, Tsuyoshi.

    1997-01-01

    The laboratory tests have been performed in order to investigate the effects of temperature up to 300degC and pressure up to 30 MPa on the mechanical properties of three types of rocks, Inada granite, Sanjoume andesite and Oya tuff. The experimental results indicated that the significant differences in temperature dependence of mechanical properties exist between the three rocks, because of the difference of the factors which determine the mechanical properties of the rocks. The effect of temperature on the mechanical properties for the rocks is lower than that of pressure and water content. Temperature dependence of the mechanical properties is reduced by increase in pressure in the range of pressure and temperature investigated in this paper. (author)

  15. Pore-scale analysis of electrical properties in thinly bedded rock using digital rock physics

    International Nuclear Information System (INIS)

    Sun, Jianmeng; Zhao, Jianpeng; Liu, Xuefeng; Chen, Hui; Jiang, LiMing; Zhang, JinYan

    2014-01-01

    We investigated the electrical properties of laminated rock consist of macro-porous layers and micro-porous layers based on digital rock technology. Due to the bedding effect and anisotropy, traditional Archie equations cannot well describe the electrical behavior of laminated rock. The RI-Sw curve of laminated rock shows a nonlinear relationship. The RI-Sw curve can be divided into two linear segments with different saturation exponent. Laminated sand-shale sequences and laminated sands of different porosity or grain size will yield macroscopic electrical anisotropy. Numerical simulation and theoretical analysis lead to the conclusion that electrical anisotropy coefficient of laminated rock is a strong function of water saturation. The function curve can be divided into three segments by the turning point. Therefore, the electrical behavior of laminated rock should be considered in oil exploration and development. (paper)

  16. Evaluation of dynamic characteristics of hard rock based on numerical simulations of in situ rock tests

    International Nuclear Information System (INIS)

    Yamagami, Yuya; Ikusada, Koji; Jiang, Yujing

    2009-01-01

    In situ rock tests of hard rock of conglomerate in which discontinuities in high angle are dominant were conducted. In this study, in order to confirm the validity of the test results and the test condition, and in order to elucidate the deformation behaviour and the mechanism of shear strength of the rock mass, the numerical simulations of the in situ rock tests by using distinct element method were performed. As a result, it was clarified that the behaviour of the rock mass strongly depends on both geometrical distribution of discontinuities and those mechanical properties. It is thought that a series of evaluation processes showed in this study contribute to improve the reliability of the dynamic characteristic evaluation of the rock mass. (author)

  17. ONKALO rock mechanics model (RMM). Version 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, T.; Merjama, S.; Moenkkoenen, H. [WSP Finland, Helsinki (Finland)

    2014-07-15

    The Rock Mechanics Model of the ONKALO rock volume includes the most important rock mechanics features and parameters at the Olkiluoto site. The main objective of the model is to be a tool to predict rock properties, rock quality and hence provide an estimate for the rock stability of the potential repository at Olkiluoto. The model includes a database of rock mechanics raw data and a block model in which the rock mechanics parameters are estimated through block volumes based on spatial rock mechanics raw data. In this version 2.3, special emphasis was placed on refining the estimation of the block model. The model was divided into rock mechanics domains which were used as constraints during the block model estimation. During the modelling process, a display profile and toolbar were developed for the GEOVIA Surpac software to improve visualisation and access to the rock mechanics data for the Olkiluoto area. (orig.)

  18. Relating rock avalanche morphology to emplacement processes

    Science.gov (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  19. Remarks on some rock neutron parameters

    International Nuclear Information System (INIS)

    Czubek, J.A.

    1984-01-01

    A method to calculate the thermal neutron parameters of rocks is given in the paper. It is based on a proper energy averaging of cross-sections for all rock matrix and rock saturating liquid constituents. The diffusion lengths in different lithologies in function of the variable rock porosity have been calculated. An influence of the thermal neutron spectrum on the shape of the porosity calibration curves for the dual spacing neutron method is shown. Magmatic rocks as a possible source of geothermal energy are now becoming a target of neutron loggings for the porosity determination. Here the knowledge of the slowing-down lengths is of great importance in the problem of the estimation of the calibration curves. A semi-analytical approach to get this parameter is given in the paper. It was found, as far as concerns the slowing-down of fast neutrons, that all magmatic rocks behave as sandstone with, however, different content of bound water in the rock matrix and different rock matrix density. Some neutron methods are based on the detection of epithermal neutrons. For theoretical considerations it is important to know the physical meaning of the registered signal. From the discussion of experimental data reported in the literature it seems that it is the slowing-down density that is the physical quantity being measured. This conclusion has a very important practical implication - the porosity calibration curves depend upon the slowing-down length alone and are independent of the slowing-down cross-section for epithermal neutrons

  20. Digital Rock Studies of Tight Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-07

    This technical report summarizes some recently developed approaches to studies of rock properties at a pore scale. Digital rock approach is complementary to laboratory and field studies. It can be especially helpful in situations where experimental data are uncertain, or are difficult or impossible to obtain. Digitized binary images of the pore geometries of natural rocks obtained by different imaging techniques are the input data. Computer-generated models of natural rocks can be used instead of images in a case where microtomography data are unavailable, or the resolution of the tools is insufficient to adequately characterize the features of interest. Simulations of creeping viscous flow in pores produce estimates of Darcy permeability. Maximal Inscribed Spheres calculations estimate two-phase fluid distribution in capillary equilibrium. A combination of both produce relative permeability curves. Computer-generated rock models were employed to study two-phase properties of fractured rocks, or tight sands with slit-like pores, too narrow to be characterized with micro-tomography. Various scenarios can simulate different fluid displacement mechanisms, from piston-like drainage to liquid dropout at the dew point. A finite differences discretization of Stokes equation is developed to simulate flow in the pore space of natural rocks. The numerical schemes are capable to handle both no-slip and slippage flows. An upscaling procedure estimates the permeability by subsampling a large data set. Capillary equilibrium and capillary pressure curves are efficiently estimated with the method of maximal inscribed spheres both an arbitrary contact angle. The algorithms can handle gigobytes of data on a desktop workstation. Customized QuickHull algorithms model natural rocks. Capillary pressure curves evaluated from computer-generated images mimic those obtained for microtomography data.

  1. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-03-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments were made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapidly-pulsed scanning electron beam was designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods

  2. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-01-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments have been made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapid-pulsed scanning electron-beam has been designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods. (author)

  3. The Dalradian rocks of Scotland: an introduction

    OpenAIRE

    Stephenson, David; Mendum, John R.; Fettes, Douglas J.; Leslie, A. Graham

    2013-01-01

    The Dalradian Supergroup and its basement rocks, together with younger plutons, underpin most of the Grampian Highlands and the islands of the Inner Hebrides between the Highland Boundary and Great Glen faults. The Dalradian is a mid-Neoproterozoic to early-Ordovician sequence of largely clastic metasedimentary rocks, with some volcanic units, which were deformed and metamorphosed to varying degrees during the Early Palaeozoic Caledonian Orogeny. Sedimentation of the lower parts of the Da...

  4. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  5. Rock Moved by Mars Lander Arm

    Science.gov (United States)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  6. Preliminary rock mechanics laboratory: Investigation plan

    International Nuclear Information System (INIS)

    Oschman, K.P.; Hummeldorf, R.G.; Hume, H.R.; Karakouzian, M.; Vakili, J.E.

    1987-01-01

    This document presents the rationale for rock mechanics laboratory testing (including the supporting analysis and numerical modeling) planned for the site characterization of a nuclear waste repository in salt. This plan first identifies what information is required for regulatory and design purposes, and then presents the rationale for the testing that satisfies the required information needs. A preliminary estimate of the minimum sampling requirements for rock laboratory testing during site characterization is also presented. Periodic revision of this document is planned

  7. Nuclear power in rock. Principal report

    International Nuclear Information System (INIS)

    1977-06-01

    In September 1975 the Swedish Government directed the Swedish State Power Board to study the question of rock-siting nuclear power plants. The study accounted for in this report aims at clarifying the advantages and disadvantages of siting a nuclear power plant in rock, compared to siting on ground level, considering reactor safety, war protection and sabotage. The need for nuclear power production during war situations and the closing down of nuclear power plants after terminated operation are also dealt with. (author)

  8. Underground large scale test facility for rocks

    International Nuclear Information System (INIS)

    Sundaram, P.N.

    1981-01-01

    This brief note discusses two advantages of locating the facility for testing rock specimens of large dimensions in an underground space. Such an environment can be made to contribute part of the enormous axial load and stiffness requirements needed to get complete stress-strain behavior. The high pressure vessel may also be located below the floor level since the lateral confinement afforded by the rock mass may help to reduce the thickness of the vessel

  9. Method of degassifying a massive of rock

    Energy Technology Data Exchange (ETDEWEB)

    Levin, M M; Krivosheev, V O; Preobrazhenskaia, E I; Talapkerov, A Sh; Taushkin, G T

    1979-05-30

    This invention concerns the mining industry, chiefly the coal industry, and can be used for the degasification of coal layers and interfering rock. The method of preliminary extraction of gas with underground development of burning minerals, including the pumping of gas through a collector, carried in the plane of the degasifying layer, discharged from rock pressure by means of extracting the lower lying layer, is known. However, the given method does not make it possible to degasify the interfering rock. Another method, consisting of the fact that from the mining development in the lateral rock, chambers are made, from which a group of wells are bored, and the latter are united with the gas removing system, is well known. This method has the inadequacy that the well of each chamber is connected to the gas removing system of the pipelines, and this leads to an increase in the price of the method. A new system is presented for the degasification of the massive of rock which is presented in an illustration...... The advantage of the suggested method consists of the fact that material outlays are reduced for the unification of each chamber with the gas removing pipeline, and besides this, the wells, connecting the chambers are drains for the surrounding rock, which increases the effectiveness of the degasification.

  10. The Rock that Hit New York

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keksis, August Lawrence [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-03

    On January 12, 1975, a rock seemed to fall from the sky over New York State’s Schoharie County hitting the tractor of a local farmer, who was “preparing his fields for spring planting.” As the farmer later described the event to a reporter from the UFO INVESTIGATOR, the object glanced off the tractor, fell to the ground, and melted its way through a patch of ice that was two and one half inches thick. The farmer, Leonard Tillapaugh, called the county sheriff, Harvey Stoddard, who recovered the rock, noting that it “was still warm.” Why and how a sample of the rock came to Los Alamos is not known. However, it captivated a wide Laboratory audience, was subjected to rigorous testing and evaluation. Los Alamos used the scientific method in the manner promoted by Hynek. Did Los Alamos solve the mystery of the rock’s origin? Not definitively. Although the exact origin could not be determined, it was shown conclusively that the rock was not from outer space. With that said, the saga of Rock that hit New York came to an end. Nothing more was said or written about it. The principals involved have long since passed from the scene. The NICAP ceased operations in 1980. And, the rock, itself, has disappeared.

  11. Investigation of the porosity of rocks

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Siitari-Kauppi, M.

    1990-06-01

    Methods for characterizing the nature of rock porosity in conjunction with diffusion experiments, are amongst the primary tools used in repository-site selection investigations. At this time no experimental method, alone, is capable of giving an unambiguous picture of the narrow-aperture pore space in crystalline rock. Methods giving information on overall properties must be complemented by those having high spatial resolution; then the lateral distribution of porosity within the matrix and its association with particular mineral phases or features, such as microfissures, fissure fillings, weathered or altered mineral phases etc, and the identification of diffusion pathways in inhomogeneous rock matrices can be determined. Nonsorbing, nonelectrolytic tracers should be used when one wants to determine rock-typical properties of the internal porosity without interference of interactions with surfaces. Preliminary information on a new method fulfilling these criteria is given. Impregnating rock samples with methylmethacrylate labeled with carbon-14 which, after impregnation, was polymerized by gamma radiation, gave specimens that made preparation of sections suitable for quantification by autoradiographic methods easy. Diffusion experiments can be conducted so that labeled MMA diffuses out of rock specimens into inactive free, MMA. Additional information may be gained by leaching PMMA fractions of lower molecular weight from the matrix

  12. Rock burst prevention at steep seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, G D

    1988-09-01

    At steep shield longwalls one method of preventing rock bursts is to avoid sharp angles during working. Stress in coal and rock body that appears when steep seams are worked where rock bursts occur at corners of set-up entries is discussed. The dynamic interaction between gas and rock pressure is assessed. Maintains that in order to avoid rock bursts at these places it is necessary to turn the protruding coal wall by 20-30 degrees towards the coal body to divert the action of shift forces. At the same time the face should also be inclined (by 10-15 degrees) to move the zones of increased stress away from the corner into the coal and rock body. Stress at workings with round cross-sections is 3-4 times lower than at square cross-sections. Recommendations are given that concern shearer loader operation (semi-spherical shape of the face), borehole drilling and water injection. Initial distance of 10-15 m between boreholes is suggested. 3 refs.

  13. Radionuclide migration in crystalline rock fractures

    International Nuclear Information System (INIS)

    Hoelttae, P.

    2002-01-01

    Crystalline rock has been considered as a host medium for the repository of high radioactive spent nuclear fuel in Finland. The geosphere will act as an ultimate barrier retarding the migration of radionuclides to the biosphere if they are released through the technical barriers. Radionuclide transport is assumed to take place along watercarrying fractures, and retardation will occur both in the fracture and within the rock matrix. To be able to predict the transport and retardation of radionuclides in rock fractures and rock matrices, it is essential to understand the different phenomena involved. Matrix diffusion has been indicated to be an important mechanism, which will retard the transport of radionuclides in rock fractures. Both dispersion and matrix diffusion are processes, which can have similar influences on solute breakthrough curves in fractured crystalline rock. In this work, the migration of radionuclides in crystalline rock fractures was studied by means of laboratory scale column methods. The purpose of the research was to gain a better understanding of various phenomena - particularly matrix diffusion - affecting the transport and retardation behaviour of radionuclides in fracture flow. Interaction between radionuclides and the rock matrix was measured in order to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of underground repositories for spent nuclear fuel. Rock samples of mica gneiss and of unaltered, moderately altered and strongly altered tonalite represented different rock features and porosities offering the possibility to determine experimental boundary limit values for parameters describing both the transport and retardation of radionuclides and rock matrix properties. The dominant matrix diffusion behaviour was demonstrated in porous ceramic column and gas diffusion experiments. Demonstration of the effects of matrix diffusion in crystalline rock fracture succeeded for the

  14. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios

    Science.gov (United States)

    Dannhaus, N.; Wittmann, H.; Krám, P.; Christl, M.; von Blanckenburg, F.

    2018-02-01

    Quantifying rates of weathering and erosion of mafic rocks is essential for estimating changes to the oceans alkalinity budget that plays a significant role in regulating atmospheric CO2 levels. In this study, we present catchment-wide rates of weathering, erosion, and denudation measured with cosmogenic nuclides in mafic and ultramafic rock. We use the ratio of the meteoric cosmogenic nuclide 10Be, deposited from the atmosphere onto the weathering zone, to stable 9Be, a trace metal released by silicate weathering. We tested this approach in stream sediment and water from three upland forested catchments in the north-west Czech Republic. The catchments are underlain by felsic (granite), mafic (amphibolite) and ultramafic (serpentinite) lithologies. Due to acid rain deposition in the 20th century, the waters in the granite catchment exhibit acidic pH, whereas waters in the mafic catchments exhibit neutral to alkaline pH values due to their acid buffering capability. The atmospheric depositional 10Be flux is estimated to be balanced with the streams' dissolved and particulate meteoric 10Be export flux to within a factor of two. We suggest a correlation method to derive bedrock Be concentrations, required as an input parameter, which are highly heterogeneous in these small catchments. Derived Earth surface metrics comprise (1) Denudation rates calculated from the 10Be/9Be ratio of the "reactive" Be (meaning sorbed to mineral surfaces) range between 110 and 185 t km-2 y-1 (40 and 70 mm ky-1). These rates are similar to denudation rates we obtained from in situ-cosmogenic 10Be in quartz minerals present in the bedrock or in quartz veins in the felsic and the mafic catchment. (2) The degree of weathering, calculated from the fraction of 9Be released from primary minerals as a new proxy, is about 40-50% in the mafic catchments, and 10% in the granitic catchment. Lastly, (3) erosion rates were calculated from 10Be concentrations in river sediment and corrected for sorting

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Rawlins NTMS quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Weaver, T.A.; Morris, W.A.; Trexler, P.K.

    1978-04-01

    During the spring and winter of 1976 and January and June of 1977, 570 natural water and 1281 waterborne sediment samples were collected from 1369 locations in the Rawlins, Wyoming, NTMS quadrangle. The samples obtained from this 18 700-km 2 area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 parts per billion (ppB) to 448 ppB, with a mean value of 6 ppB. The concentrations in sediments ranged from 1.2 parts per million (ppM) to 60.4 ppM, with a mean value of 4.1 ppM. Based on simple statistical analyses of these data, arbitrary anomaly thresholds were set at 50 ppB for water samples and 9 ppM for sediment samples. Eleven water and 44 sediment samples were considered anomalous; 1 anomalous water and 25 anomalous sediments could be associated with four of the five major uranium occurrences in the quadrangle. Only the Ketchum Buttes area did not show up in the data. Twelve minor reported occurrences could not be identified by the data. Eleven anomalous samples (8 waters and 3 sediments) and 13 near-anomalous samples (10 waters and 3 sediments) outline a broad area in the northeast corner of the quadrangle (corresponding to the drainage area of the Medicine Bow River) where two airborne radiometric anomalies were discovered in an earlier study. This area, and perhaps others, may warrant further, more detailed geological, geophysical, and geochemical investigations

  16. Hydrogeochemical and stream sediment reconnaissance basic data for Nabesna Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1236 water samples from the Nebesna Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  17. Hydrogeochemical and stream sediment reconnaissance basic data for Preston Quadrangle, Wyoming; Idaho

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 410 water samples and 702 sediment samples from the Preston Quadrangle, Wyoming; Idaho. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-70(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  18. Hydrogeochemical and stream sediment reconnaissance basic data for Aztec Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 331 water samples and 1693 sediment samples from the Aztec Quadrangle, New Mexico. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-129(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  19. Hydrogeochemical and stream sediment reconnaissance basic data for Harrison Bay quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 328 water samples from the Harrison Bay Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  20. Hydrogeochemical and stream sediment reconnaissance basic data for Meade River quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 515 water samples from the Meade River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee