WorldWideScience

Sample records for stream transport model

  1. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    Pandey, Pramod K; Soupir, Michelle L; Ikenberry, Charles

    2014-01-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  2. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  3. Residence-time framework for modeling multicomponent reactive transport in stream hyporheic zones

    Science.gov (United States)

    Painter, S. L.; Coon, E. T.; Brooks, S. C.

    2017-12-01

    Process-based models for transport and transformation of nutrients and contaminants in streams require tractable representations of solute exchange between the stream channel and biogeochemically active hyporheic zones. Residence-time based formulations provide an alternative to detailed three-dimensional simulations and have had good success in representing hyporheic exchange of non-reacting solutes. We extend the residence-time formulation for hyporheic transport to accommodate general multicomponent reactive transport. To that end, the integro-differential form of previous residence time models is replaced by an equivalent formulation based on a one-dimensional advection dispersion equation along the channel coupled at each channel location to a one-dimensional transport model in Lagrangian travel-time form. With the channel discretized for numerical solution, the associated Lagrangian model becomes a subgrid model representing an ensemble of streamlines that are diverted into the hyporheic zone before returning to the channel. In contrast to the previous integro-differential forms of the residence-time based models, the hyporheic flowpaths have semi-explicit spatial representation (parameterized by travel time), thus allowing coupling to general biogeochemical models. The approach has been implemented as a stream-corridor subgrid model in the open-source integrated surface/subsurface modeling software ATS. We use bedform-driven flow coupled to a biogeochemical model with explicit microbial biomass dynamics as an example to show that the subgrid representation is able to represent redox zonation in sediments and resulting effects on metal biogeochemical dynamics in a tractable manner that can be scaled to reach scales.

  4. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  5. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  6. Pollutant transport in natural streams

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hayes, D.W.

    1975-01-01

    A mathematical model has been developed to estimate the downstream effect of chemical and radioactive pollutant releases to tributary streams and rivers. The one-dimensional dispersion model was employed along with a dead zone model to describe stream transport behavior. Options are provided for sorption/desorption, ion exchange, and particle deposition in the river. The model equations are solved numerically by the LODIPS computer code. The solution method was verified by application to actual and simulated releases of radionuclides and other chemical pollutants. (U.S.)

  7. Time-dependent 2-stream particle transport

    International Nuclear Information System (INIS)

    Corngold, Noel

    2015-01-01

    Highlights: • We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. • After reviewing some classical problems in homogeneous media we discuss transport in materials with whose density may vary. • There we achieve a significant contraction of the underlying Telegrapher’s equation. • We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.” - Abstract: We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. After reviewing some classical problems in homogeneous media we discuss transport in materials whose density may vary. There we achieve a significant contraction of the underlying Telegrapher’s equation. We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.”

  8. Sediment transport simulation in an armoured stream

    Science.gov (United States)

    Milhous, Robert T.; Bradley, Jeffrey B.; Loeffler, Cindy L.

    1986-01-01

    Improved methods of calculating bed material stability and transport must be developed for a gravel bed stream having an armoured surface in order to use the HEC-6 model to examine channel change. Good possibilities exist for use of a two layer model based on the Schoklitsch and the Einstein-Brown transport equations. In Einstein-Brown the D35 of the armour is used for stabilities and the D50 of the bed (sub-surface) is used for transport. Data on the armour and sub-surface size distribution needs to be obtained as part of a bed material study in a gravel bed river; a "shovel" sample is not adequate. The Meyer-Peter, Muller equation should not be applied to a gravel bed stream with an armoured surface to estimate the initiation of transport or for calculation of transport at low effective bed shear stress.

  9. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  10. Numerical modelling of suspended radioactive sediment transport in a stream using matlab

    International Nuclear Information System (INIS)

    Sarpong, Linda

    2017-07-01

    The use of materials that contain radioactive substances has gained grounds in Ghana due to numerous benefits derived from them. These radioactive materials can be found in the areas of medicine, agriculture and industries such as mining. Though there are strict measures to ensure such material do not find its way into the environment, improper management of the waste poses a threat to the environment. To be able to understand the impact the radioactive material has on the environment, mathematical models play a very relevant role in tracking the level of pollution in any medium. This thesis was concerned with the numerical modelling for the transport of the radioactive solute material that suspends in a stream using Matlab at different velocities as a result of flooding or an accident for research purposes. The modelling was done by using partial differential equations describing relevant physical processes evolution which includes water level, dissolved and suspended substances concentration and velocities. The equation system basis are the mass conservation and momentum laws, state equation and state transport equations. The implicit finite difference scheme was used to evaluate the transport equation, Advection-Dispersion Equation (ADE) with respect to time and space. Solution algorithms for Matlab programming were developed and implemented for generating results for analysis. The results obtained showed that the model was able to simulate accurately the various levels of suspended radioactive sediment concentration changes in the flowing stream longitudinally. (au)

  11. Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review

    Science.gov (United States)

    Caruso, B.S.; Cox, T.J.; Runkel, Robert L.; Velleux, M.L.; Bencala, Kenneth E.; Nordstrom, D. Kirk; Julien, P.Y.; Butler, B.A.; Alpers, Charles N.; Marion, A.; Smith, Kathleen S.

    2008-01-01

    Metals pollution in surface waters from point and non-point sources (NPS) is a widespread problem in the United States and worldwide (Lofts et al., 2007; USEPA, 2007). In the western United States, metals associated with acid mine drainage (AMD) from hardrock mines in mountainous areas impact aquatic ecosystems and human health (USEPA, 1997a; Caruso and Ward, 1998; Church et al., 2007). Metals fate and transport modelling in streams and watersheds is sometimes needed for assessment and restoration of surface waters, including mining-impacted streams (Runkel and Kimball, 2002; Caruso, 2003; Velleux et al., 2006). The Water Quality Analysis Simulation Program (WASP; Wool et al., 2001), developed by the US Environmental Protection Agency (USEPA), is an example of a model used for such analyses. Other approaches exist and appropriate model selection depends on site characteristics, data availability and modelling objectives. However, there are a wide range of assumptions, input parameters, data requirements and gaps, and calibration and validation issues that must be addressed by model developers, users and decision makers. Despite substantial work on model development, their successful application has been more limited because they are not often used by decision makers for stream and watershed assessment and restoration. Bringing together scientists, model developers, users and decision makers should stimulate the development of appropriate models and improve the applicability of their results. To address these issues, the USEPA Office of Research and Development and Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) hosted a workshop in Denver, Colorado on February 13–14, 2007. The workshop brought together approximately 35 experts from government, academia and consulting to address the state of the art for modelling metals fate and transport, knowledge gaps and future directions in metals modelling. It focused on modelling metals in high

  12. About the theory of congested transport streams

    OpenAIRE

    Valeriy GUK

    2009-01-01

    Talked about a theory, based on integrity of continuous motion of a transport stream. Placing of car and its speed is in a stream - second. Principle of application of the generalized methods of design and new descriptions of the states of transport streams opens up. Travelling and transport potentials are set, and also external capacity of the system a «transport stream» is an exergy, that allows to make differential equation and decide the applied tasks of organization of travelling motion....

  13. MaSTiS, microorganism and solute transport in streams, model documentation and user manual

    Science.gov (United States)

    In-stream fate and transport of solutes and microorganisms need to be understood to evaluate suitability of waters for agricultural, recreational, and household uses and eventually minimize surface water contamination. Concerns over safety of this water resulted in development of predictive models f...

  14. Application of SPARROW modeling to understanding contaminant fate and transport from uplands to streams

    Science.gov (United States)

    Ator, Scott; Garcia, Ana Maria.

    2016-01-01

    Understanding spatial variability in contaminant fate and transport is critical to efficient regional water-quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.

  15. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    Science.gov (United States)

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  16. Simulating pesticide transport from a sloped tropical soil to an adjacent stream.

    Science.gov (United States)

    Kahl, G; Ingwersen, J; Totrakool, S; Pansombat, K; Thavornyutikarn, P; Streck, T

    2010-01-01

    Preferential flow from stream banks is an important component of pesticide transport in the mountainous areas of northern Thailand. Models can help evaluate and interpret field data and help identify the most important transport processes. We developed a simple model to simulate the loss of pesticides from a sloped litchi (Litchi chinensis Sonn.) orchard to an adjacent stream. The water regime was modeled with a two-domain reservoir model, which accounts for rapid preferential flow simultaneously with slow flow processes in the soil matrix. Preferential flow is triggered when the topsoil matrix is saturated or the infiltration capacity exceeded. In addition, close to matrix saturation, rainfall events induce water release to the fractures and lead to desorption of pesticides from fracture walls and outflow to the stream. Pesticides undergo first order degradation and equilibrium sorption to soil matrix and fracture walls. The model was able to reproduce the dynamics of the discharge reasonably well (model efficiency [EF] = 0.56). The cumulative pesticide mass (EF = 0.91) and the pesticide concentration in the stream were slightly underestimated, but the deviation from measurement data is acceptable. Shape and timing of the simulated concentration peaks occurred in the same pattern as observed data. While the effect of surface runoff and preferential interflow on pesticide mass transport could not be absolutely clarified, according to our simulations, most concentration peaks in the stream are caused by preferential interflow pointing to the important role of this flow path in the hilly areas of northern Thailand.

  17. A regional modeling framework of phosphorus sources and transport in streams of the southeastern United States

    Science.gov (United States)

    Garcia, Ana Maria.; Hoos, Anne B.; Terziotti, Silvia

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p < 0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables – soil organic matter and soil pH – are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity.

  18. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand

    Directory of Open Access Journals (Sweden)

    M. A. Gusyev

    2013-03-01

    Full Text Available Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the western Lake Taupo catchment, New Zealand. Tritium has a known pulse-shaped input to groundwater systems due to the bomb tritium in the early 1960s and, with its radioactive half-life of 12.32 yr, allows for the determination of the groundwater age. In the transport model, the tritium input (measured in rainfall passes through the groundwater system, and the simulated tritium concentrations are matched to the measured tritium concentrations in the river and stream outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori catchments from 2000–2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model for the simulated bomb-peak tritium concentrations. In order to incorporate small surface water features in detail, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream baseflow observations. Then, the transient tritium transport MT3DMS model was matched to the measured tritium concentrations in streams and rivers, which are the natural discharge of the groundwater system. The tritium concentrations in the rivers and streams correspond to the residence time of the water in the groundwater system (groundwater age and mixing of water with different age. The transport model output showed a good agreement with the measured tritium values. Finally, the tritium-calibrated MT3DMS model is applied to simulate groundwater ages, which are used to obtain groundwater age distributions with mean residence times (MRTs in streams and rivers for the five catchments. The effect of regional and local hydrogeology on the simulated groundwater ages is investigated by demonstrating groundwater ages

  19. CHNTRN: a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1983-09-01

    This report presents the development of a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network. A particular feature of the model is its capability to deal with the network system that may consist of any number of joined and branched streams/rivers of comparable size. The model employs a numerical method - an integrated compartment method (ICM) - which greatly facilitates the setup of the matrix equation for the discrete field approximating the corresponding continuous field. Most of the possible boundary conditions that may be anticipated in real-world problems are considered. These include junctions, prescribed concentration, prescribed dispersive flux, and prescribed total flux. The model is applied to two case studies: (1) a single river and (2) a five-segment river in a watershed. Results indicate that the model can realistically simulate the behavior of the sediment and chemical variations in a stream/river network. 11 references, 10 figures, 3 tables.

  20. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  1. Testing the effects of in-stream sediment sources and sinks on simulated watershed sediment yield using the coupled U.S. Army Corps of Engineers GSSHA Model and SEDLIB Sediment Transport Library

    Science.gov (United States)

    Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.

    2017-12-01

    The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.

  2. In-stream contaminant interaction and transport

    International Nuclear Information System (INIS)

    Whelan, G.

    1983-07-01

    In order to assess contaminant exposure levels in biotic and abiotic pathways from waste-disposal sites, a comprehensive Multimedia Contaminant Environmental Exposure Assessment (MCEA) methodology using several mathematical models is being developed. Prior to a full development of the proposed methodology, a scaled-down version involving terrestrial plants, overland, and in-stream compartments was applied to an actual shallow land waste-disposal site. The purpose was to evaluate and demonstrate the attributes of the methodology. The in-stream component of the abbreviated methodology as it relates to Mortandad Canyon in Los Alamos, New Mexico is discussed herein. A two-year period was simulated consisting of six major runoff events which possessed a variety of distributions and magnitudes. The in-stream component of the methodology was composed of two models integrated to simulate the migration of radionuclides: DKWAV and TODAM. DKWAV is an unsteady, one-dimensional, second-order, explicit, finite difference, channel flow code which simulates the hydrodynamics in dendritric river systems and includes point and/or continuous lateral inflow and channel seepage. TODAM is an unsteady, one-dimensional, finite element, sediment-contaminant transport code which simulates the migration and fate of sediment and radionuclides in their dissolved and particulate phases by solving the general advection/diffusion equation with sink and source terms

  3. Transport and fate of nitrate in headwater agricultural streams in Illinois.

    Science.gov (United States)

    Royer, Todd V; Tank, Jennifer L; David, Mark B

    2004-01-01

    Nitrogen inputs to the Gulf of Mexico have increased during recent decades and agricultural regions in the upper Midwest, such as those in Illinois, are a major source of N to the Mississippi River. How strongly denitrification affects the transport of nitrate (NO(3)-N) in Illinois streams has not been directly assessed. We used the nutrient spiraling model to assess the role of in-stream denitrification in affecting the concentration and downstream transport of NO(3)-N in five headwater streams in agricultural areas of east-central Illinois. Denitrification in stream sediments was measured approximately monthly from April 2001 through January 2002. Denitrification rates tended to be high (up to 15 mg N m(-2) h(-1)), but the concentration of NO(3)-N in the streams was also high (>7 mg N L(-1)). Uptake velocities for NO(3)-N (uptake rate/concentration) were lower than reported for undisturbed streams, indicating that denitrification was not an efficient N sink relative to the concentration of NO(3)-N in the water column. Denitrification uptake lengths (the average distance NO(3)-N travels before being denitrified) were long and indicated that denitrification in the streambed did not affect the transport of NO(3)-N. Loss rates for NO(3)-N in the streams were <5% d(-1) except during periods of low discharge and low NO(3)-N concentration, which occurred only in late summer and early autumn. Annually, most NO(3)-N in these headwater sites appeared to be exported to downstream water bodies rather than denitrified, suggesting previous estimates of N losses through in-stream denitrification may have been overestimated.

  4. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  5. Uncertanity Analysis in Parameter Estimation of Coupled Bacteria-Sediment Fate and Transport in Streams

    Science.gov (United States)

    Massoudieh, A.; Le, T.; Pachepsky, Y. A.

    2014-12-01

    E. coli is widely used as an fecal indicator bacteria in streams. It has been shown that the interaction between sediments and the bacteria is an important factor in determining its fate and transport in water bodies. In this presentation parameter estimation and uncertainty analysis of a mechanistic model of bacteria-sediment interaction respectively using a hybrid genetic algorithm and Makov-Chain Monte Carlo (MCMC) approach will be presented. The physically-based model considers the advective-dispersive transport of sediments as well as both free-floating and sediment-associated bacteria in the water column and also the fate and transport of bacteria in the bed sediments in a small stream. The bed sediments are treated as a distributed system which allows modeling the evolution of the vertical distribution of bacteria as a result of sedimentation and resuspension, diffusion and bioturbation in the sediments. One-dimensional St. Venant's equation is used to model flow in the stream. The model is applied to sediment and E. coli concentration data collected during a high flow event in a small stream historically receiving agricultural runoff. Measured total suspended sediments and total E. coli concentrations in the water column at three sections of the stream are used for the parameter estimation. The data on the initial distribution of E. coli in the sediments was available and was used as the initial conditions. The MCMC method is used to estimate the joint probability distribution of model parameters including sediment deposition and erosion rates, critical shear stress for deposition and erosion, attachment and detachment rate constants of E. coli to/from sediments and also the effective diffusion coefficients of E. coli in the bed sediments. The uncertainties associated with the estimated parameters are quantified via the MCMC approach and the correlation between the posterior distribution of parameters have been used to assess the model adequacy and

  6. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    Science.gov (United States)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  7. Model for radionuclide transport in running waters

    International Nuclear Information System (INIS)

    Jonsson, Karin; Elert, Mark

    2005-11-01

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  8. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  9. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    Science.gov (United States)

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by

  10. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    Science.gov (United States)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  11. A national optimisation model for energy wood streams; Energiapuuvirtojen valtakunnallinen optimointimalli

    Energy Technology Data Exchange (ETDEWEB)

    Iikkanen, P.; Keskinen, S.; Korpilahti, A.; Raesaenen, T.; Sirkiae, A.

    2011-07-01

    In 2010 a total of 12,5 terawatt hours of forest energy was used in Finland's heat and power plants. According to studies by Metsaeteho and Poeyry, use of energy wood will nearly double to 21.6 terawatt hours by 2020. There are also plans to use energy wood as a raw material for biofuel plants. The techno-ecological supply potential of energy wood in 2020 is estimated at 42.9 terawatt hours. Energy wood has been transported almost entirely by road. The situation is changing, however, because growing demand for energy wood will expand raw wood procurement areas and lengthen transport distances. A cost-effective transport system therefore also requires the use of rail and waterway transports. In Finland, however, there is almost a complete absence of the terminals required for the use of rail and waterway transports; where energy wood is chipped, temporarily stored and loaded onto railway wagons and vessels for further transport. A national optimisation model for energy wood has been developed to serve transport system planning in particular. The linear optimisation model optimises, on a national level, goods streams between supply points and usage points based on forest energy procurement costs. The model simultaneously covers deliveries of forest chips, stumps and small-sized thinning wood. The procurement costs used in the optimisation include the costs of the energy wood's roadside price, chipping, transport and terminal handling. The transport system described in the optimisation model consists of wood supply points (2007 municipality precision), wood usage points, railway terminals and the connections between them along the main road and rail network. Elements required for the examination of waterway transports can also be easily added to the model. The optimisation model can be used to examine, for example, the effects of changes of energy wood demand and supply as well as transport costs on energy wood goods streams, the relative use of different

  12. Stream instability countermeasures applied at Kansas Department of Transportation highway structures.

    Science.gov (United States)

    2008-11-01

    This project considered stream instability countermeasures used by the Kansas Department of Transportation (KDOT) to protect the highway infrastructure at stream crossings from changes due to the dynamic nature of streams. Site visits were made to 13...

  13. Toward a transport-based analysis of nutrient spiraling and uptake in streams

    Science.gov (United States)

    Runkel, Robert L.

    2007-01-01

    Nutrient addition experiments are designed to study the cycling of nutrients in stream ecosystems where hydrologic and nonhydrologic processes determine nutrient fate. Because of the importance of hydrologic processes in stream ecosystems, a conceptual model known as nutrient spiraling is frequently employed. A central part of the nutrient spiraling approach is the determination of uptake length (SW), the average distance traveled by dissolved nutrients in the water column before uptake. Although the nutrient spiraling concept has been an invaluable tool in stream ecology, the current practice of estimating uptake length from steady-state nutrient data using linear regression (called here the "SW approach") presents a number of limitations. These limitations are identified by comparing the exponential SW equation with analytical solutions of a stream solute transport model. This comparison indicates that (1) SW, is an aggregate measure of uptake that does not distinguish between main channel and storage zone processes, (2) SW, is an integrated measure of numerous hydrologie and nonhydrologic processes-this process integration may lead to difficulties in interpretation when comparing estimates of SW, and (3) estimates of uptake velocity and areal uptake rate (Vf and U) based on S W, are not independent of system hydrology. Given these findings, a transport-based approach to nutrient spiraling is presented for steady-state and time-series data sets. The transport-based approach for time-series data sets is suggested for future research on nutrient uptake as it provides a number of benefits, including the ability to (1) separately quantify main channel and storage zone uptake, (2) quantify specific hydrologic and nonhydrologic processes using various model parameters (process separation), (3) estimate uptake velocities and areal uptake rates that are independent of hydrologic effects, and (4) use short-term, non-plateau nutrient additions such that the effects of

  14. Turbulent particle transport in streams: can exponential settling be reconciled with fluid mechanics?

    Science.gov (United States)

    McNair, James N; Newbold, J Denis

    2012-05-07

    Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Sediment transport and channel morphology of small, forested streams.

    Science.gov (United States)

    Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant

    2005-01-01

    This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...

  16. Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels

    Science.gov (United States)

    Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.

    2014-03-01

    Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.

  17. Plasma stream transport method (2) Use of charge exchange plasma source

    International Nuclear Information System (INIS)

    Tsuchimoto, T.

    1978-01-01

    The plasma stream transport method using a single plasma source has limitations for practical film deposition. Using a charge exchange phenomenon, a new plasma source is devised and tested by the plasma stream transport machine. Metals, silicon dioxide, and nitride films are deposited by this system. The mechanism of deposition under relatively high vacuum surrounding a silicon wafer is discussed as is the effect of radical atoms

  18. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    Science.gov (United States)

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  19. Three-Dimensional Numerical Modelling of Flow and Sediment Transport for Field Scale Application of Stream Barbs at Sawmill Creek, Ottawa

    Science.gov (United States)

    Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.

    2009-05-01

    towards the centre of the channel, away from the outside bank. Sawmill Creek has the added complexity of having predominately clay bed and banks. The erosional behaviour of cohesive sediments such as clay is difficult to model correctly, due to the complex site-specific physio- chemical properties of clay particles. Following the construction of the proposed barbs at our field test site this summer (2009), and data collection the following spring and summer, we hope to advance the current knowledge of cohesive sediment transport processes in a complicated three-dimensional turbulent flow field. For the present modelling effort, erodibility of the consolidated clay bed and bank material was estimated based on establishing an entrainment threshold at near-bankfull conditions. The focus of this research is on (i) the unique site conditions and environmental protection requirements, (ii) design methodology, and (iii) results of the numerical simulation. The three-dimensional numerical model was capable of reproducing the expected distribution of secondary flow in a channel bend, the unique three- dimensional flow field resulting from a series of submerged structures and the associated patterns of soil erosion and deposition. The numerical modelling also demonstrated to be a useful tool for optimizing barb design for stream bank protection at the proposed field test site. Modelling results confirmed that in the vicinity of the barbs, the addition of the proposed barb layout achieved substantial reduction in erosion (up to 98 %), bed shear stress (up to 59 %) and streamwise velocity (up to 51 %).

  20. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  1. Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

    Science.gov (United States)

    Ford, William I.; Fox, James F.; Pollock, Erik

    2017-08-01

    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

  2. Solute transport in streams of varying morphology inferred from a high resolution network of potentiometric wireless chloride sensors

    Science.gov (United States)

    Klaus, Julian; Smettem, Keith; Pfister, Laurent; Harris, Nick

    2017-04-01

    There is ongoing interest in understanding and quantifying the travel times and dispersion of solutes moving through stream environments, including the hyporheic zone and/or in-channel dead zones where retention affects biogeochemical cycling processes that are critical to stream ecosystem functioning. Modelling these transport and retention processes requires acquisition of tracer data from injection experiments where the concentrations are recorded downstream. Such experiments are often time consuming and costly, which may be the reason many modelling studies of chemical transport have tended to rely on relatively few well documented field case studies. This leads to the need of fast and cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds at various locations in the stream environment. To tackle this challenge we present data from several tracer experiments carried out in the Attert river catchment in Luxembourg employing low-cost (in the order of a euro per sensor) potentiometric chloride sensors in a distributed array. We injected NaCl under various baseflow conditions in streams of different morphologies and observed solute transport at various distances and locations. This data is used to benchmark the sensors to data obtained from more expensive electrical conductivity meters. Furthermore, the data allowed spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  3. Predictive Modeling of Transient Storage and Nutrient Uptake: Implications for Stream Restoration

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-12-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO-3)(NO3-) uptake rates inferred using the nutrient spiraling model underestimated the total NO-3NO3- mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO-3NO3- mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  4. Stream II-V5: Revision Of Stream II-V4 To Account For The Effects Of Rainfall Events

    International Nuclear Information System (INIS)

    Chen, K.

    2010-01-01

    STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.

  5. Coupled Spatio-Temporal Patterns of Solute Transport, Metabolism and Nutrient Uptake in Streams

    Science.gov (United States)

    Kurz, M. J.; Schmidt, C.

    2017-12-01

    Slower flow velocities and longer residence times within stream transient storage (TS) zones facilitate interaction between solutes and microbial communities, potentially increasing local rates of metabolic activity. Multiple factors, including channel morphology and substrate, variable hydrology, and seasonal changes in biological and physical parameters, result in changes in the solute transport dynamics and reactivity of TS zones over time and space. These changes would be expected to, in turn, influence rates of whole-stream ecosystem functions such as metabolism and nutrient uptake. However, the linkages between solute transport and ecosystem functioning within TS zones, and the contribution of TS zones to whole-stream functioning, are not always so straight forward. This may be due, in part, to methodological challenges. In this study we investigated the influence of stream channel hydro-morphology and substrate type on reach (103 m) and sub-reach (102 m) scale TS and ecosystem functioning. Patterns in solute transport, metabolism and nitrate uptake were tracked from April through October in two contrasting upland streams using several methods. The two streams, located in the Harz Mountains, Germany, are characterized by differing size (0.02 vs. 0.3 m3/s), dominant stream channel substrate (bedrock vs. alluvium) and sub-reach morphology (predominance of pools, riffles and glides). Solute transport parameters and respiration rates at the reach and sub-reach scale were estimated monthly from coupled pulse injections of the reactive tracer resazurin (Raz) and conservative tracers uranine and salt. Raz, a weakly fluorescent dye, irreversibly transforms to resorufin (Rru) under mildly reducing conditions, providing a proxy for aerobic respiration. Daily rates of primary productivity, respiration and nitrate retention at the reach scale were estimated using the diel cycles in dissolved oxygen and nitrate concentrations measured by in-situ sensors. Preliminary

  6. Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams

    International Nuclear Information System (INIS)

    Jin Li; Whitehead, Paul; Siegel, Donald I.; Findlay, Stuart

    2011-01-01

    A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time. - Highlights: → A new Integrated Catchment Model (INCA-Cl) is developed to simulate salinity. → Road salt application is important in controlling stream chloride concentration. → INCA-Cl can be used to manage and forecast the input and transport of chloride to the rivers. - A newly developed integrated catchment model for salinity can be used to manage and forecast the inputs and transport of chloride to streams.

  7. Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams

    Energy Technology Data Exchange (ETDEWEB)

    Jin Li, E-mail: li.jin@ouce.ox.ac.uk [Earth Sciences Department, Syracuse University, Syracuse, NY 13210 (United States); School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY (United Kingdom); Whitehead, Paul [School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY (United Kingdom); Siegel, Donald I. [Earth Sciences Department, Syracuse University, Syracuse, NY 13210 (United States); Findlay, Stuart [Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545 (United States)

    2011-05-15

    A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time. - Highlights: > A new Integrated Catchment Model (INCA-Cl) is developed to simulate salinity. > Road salt application is important in controlling stream chloride concentration. > INCA-Cl can be used to manage and forecast the input and transport of chloride to the rivers. - A newly developed integrated catchment model for salinity can be used to manage and forecast the inputs and transport of chloride to streams.

  8. The effect of bedload transport rates on bedform and planform morphological development in a laboratory meandering stream under varying flow conditions

    Science.gov (United States)

    Sullivan, C.; Good, R. G. R.; Binns, A. D.

    2017-12-01

    Sediment transport processes in streams provides valuable insight into the temporal evolution of planform and bedform geometry. The majority of previous experimental research in the literature has focused on bedload transport and corresponding bedform development in rectangular, confined channels, which does not consider planform adjustment processes in streams. In contrast, research conducted with laboratory streams having movable banks can investigate planform development in addition to bedform development, which is more representative of natural streams. The goal of this research is to explore the relationship between bedload transport rates and the morphological adjustments in meandering streams. To accomplish this, a series of experimental runs were conducted in a 5.6 m by 1.9 m river basin flume at the University of Guelph to analyze the bedload impacts on bed formations and planform adjustments in response to varying flow conditions. In total, three experimental runs were conducted: two runs using steady state conditions and one run using unsteady flow conditions in the form of a symmetrical hydrograph implementing quasi steady state flow. The runs were performed in a series of time-steps in order to monitor the evolution of the stream morphology and the bedload transport rates. Structure from motion (SfM) was utilized to capture the channel morphology after each time-step, and Agisoft PhotoScan software was used to produce digital elevation models to analyze the morphological evolution of the channel with time. Bedload transport rates were quantified using a sediment catch at the end of the flume. Although total flow volumes were similar for each run, the morphological evolution and bedload transport rates in each run varied. The observed bedload transport rates from the flume are compared with existing bedload transport formulas to assess their accuracy with respect to sediment transport in unconfined meandering channels. The measured sediment transport

  9. Application of HEC-RAS water quality model to estimate contaminant spreading in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Halaj, Peter; Bárek, Viliam; Halajová, Anna Báreková; Halajová, Denisa [Slovak University of Agriculture in Nitra, Nitra (Slovakia)

    2013-07-01

    The paper presents study of some aspects of HEC-RAS water quality model connected to simulation of contaminant transport in small stream. Authors mainly focused on one of the key tasks in process of pollutant transport modelling in streams - determination of the dispersion characteristics represented by longitudinal dispersion coefficient D. Different theoretical and empirical formulas have been proposed for D value determination and they have revealed that the coefficient is variable parameter that depends on hydraulic and morphometric characteristics of the stream reaches. Authors compare the results of several methods of coefficient D assessment, assuming experimental data obtained by tracer studies and compare them with results optimized by HEC-RAS water quality model. The analyses of tracer study and computation outputs allow us to outline the important aspects of longitudinal dispersion coefficient set up in process of the HEC-RAS model use. Key words: longitudinal dispersion coefficient, HEC-RAS, water quality modeling.

  10. An initial SPARROW model of land use and in-stream controls on total organic carbon in streams of the conterminous United States

    Science.gov (United States)

    Shih, Jhih-Shyang; Alexander, Richard B.; Smith, Richard A.; Boyer, Elizabeth W.; Shwarz, Grogory E.; Chung, Susie

    2010-01-01

    Watersheds play many important roles in the carbon cycle: (1) they are a site for both terrestrial and aquatic carbon dioxide (CO2) removal through photosynthesis; (2) they transport living and decomposing organic carbon in streams and groundwater; and (3) they store organic carbon for widely varying lengths of time as a function of many biogeochemical factors. Using the U.S. Geological Survey (USGS) Spatially Referenced Regression on Watershed Attributes (SPARROW) model, along with long-term monitoring data on total organic carbon (TOC), this research quantitatively estimates the sources, transport, and fate of the long-term mean annual load of TOC in streams of the conterminous United States. The model simulations use surrogate measures of the major terrestrial and aquatic sources of organic carbon to estimate the long-term mean annual load of TOC in streams. The estimated carbon sources in the model are associated with four land uses (urban, cultivated, forest, and wetlands) and autochthonous fixation of carbon (stream photosynthesis). Stream photosynthesis is determined by reach-level application of an empirical model of stream chlorophyll based on total phosphorus concentration, and a mechanistic model of photosynthetic rate based on chlorophyll, average daily solar irradiance, water column light attenuation, and reach dimensions. It was found that the estimate of in-stream photosynthesis is a major contributor to the mean annual TOC load per unit of drainage area (that is, yield) in large streams, with a median share of about 60 percent of the total mean annual carbon load in streams with mean flows above 500 cubic feet per second. The interquartile range of the model predictions of TOC from in-stream photosynthesis is from 0.1 to 0.4 grams (g) carbon (C) per square meter (m-2) per day (day-1) for the approximately 62,000 stream reaches in the continental United States, which compares favorably with the reported literature range for net carbon fixation by

  11. Controls on stream network branching angles, tested using landscape evolution models

    Science.gov (United States)

    Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.

    2016-04-01

    Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349

  12. Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream

    Science.gov (United States)

    Eaton, B. C.; Hassan, M. A.; Davidson, S. L.

    2012-12-01

    In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive

  13. Vulnerable transportation and utility assets near actively migrating streams in Indiana

    Science.gov (United States)

    Sperl, Benjamin J.

    2017-11-02

    An investigation was completed by the U.S. Geological Survey in cooperation with the Indiana Office of Community and Rural Affairs that found 1,132 transportation and utility assets in Indiana are vulnerable to fluvial erosion hazards due to close proximity to actively migrating streams. Locations of transportation assets (bridges, roadways, and railroad lines) and selected utility assets (high-capacity overhead power-transmission lines, underground pipelines, water treatment facilities, and in-channel dams) were determined using aerial imagery hosted by the Google Earth platform. Identified assets were aggregated by stream reach, county, and class. Accompanying the report is a polyline shapefile of the stream reaches documented by Robinson. The shapefile, derived from line work in the National Hydrography Dataset and attributed with channel migration rates, is released with complete Federal Geographic Data Committee metadata. The data presented in this report are intended to help stakeholders and others identify high-risk areas where transportation and utility assets may be threatened by fluvial erosion hazards thus warranting consideration for mitigation strategies.

  14. Scaling and predicting solute transport processes in streams

    Science.gov (United States)

    R. González-Pinzón; R. Haggerty; M. Dentz

    2013-01-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in...

  15. Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2018-02-01

    Within this work, acoustic streaming in an air-filled cylindrical resonator with walls supporting a temperature gradient is studied by means of numerical simulations. A set of equations based on successive approximations is derived from the Navier-Stokes equations. The equations take into account the acoustic-streaming-driven convective heat transport; as time-averaged secondary-field quantities are directly calculated, the equations are much easier to integrate than the original fluid-dynamics equations. The model equations are implemented and integrated employing commercial software COMSOL Multiphysics. Numerical calculations are conducted for the case of a resonator with a wall-temperature gradient corresponding to the action of a thermoacoustic effect. It is shown that due to the convective heat transport, the streaming profile is considerably distorted even in the case of weak wall-temperature gradients. The numerical results are consistent with available experimental data.

  16. Modelling phosphorus transport and its response to climate change at upper stream of Poyang Lake-the largest fresh water lake in China

    Science.gov (United States)

    Jiang, Sanyuan; Zhang, Qi

    2017-04-01

    Phosphorus losses from excessive fertilizer application and improper land exploitation were found to be the limiting factor for freshwater quality deterioration and eutrophication. Phosphorus transport from uplands to river is related to hydrological, soil erosion and sediment transport processes, which is impacted by several physiographic and meteorological factors. The objective of this study was to investigate the spatiotemporal variation of phosphorus losses and response to climate change at a typical upstream tributary (Le'An river) of Poyang Lake. To this end, a process-oriented hydrological and nutrient transport model HYPE (Hydrological Predictions for the Environment) was set up for discharge and phosphorus transport simulation at Le'An catchment. Parameter ESTimator (PEST) was combined with HYPE model for parameter sensitivity analysis and optimisation. In runoff modelling, potential evapotranspiration rate of the dominant land use (forest) is most sensitive; parameters of surface runoff rate and percolation capacity for the red soil are also very sensitive. In phosphorus transport modelling, the exponent of equation for soil erosion processes induced by surface runoff is most sensitive, coefficient of adsorption/desorption processes for red soil is also very sensitive. Flow dynamics and water balance were simulated well at all sites for the whole period (1978-1986) with NSE≥0.80 and PBIAS≤14.53%. The optimized hydrological parameter set were transferable for the independent period (2009-2010) with NSE≥0.90 and highest PBIAS of -7.44% in stream flow simulation. Seasonal dynamics and balance of stream water TP (Total Phosphorus ) concentrations were captured satisfactorily indicated by NSE≥0.53 and highest PBIAS of 16.67%. In annual scale, most phosphorus is transported via surface runoff during heavy storm flow events, which may account for about 70% of annual TP loads. Based on future climate change analysis under three different emission

  17. Transport of RFID tracers in a glacierized Andean stream (Estero Morales, Chile)

    Science.gov (United States)

    Rainato, Riccardo; Toro, Matteo; Mao, Luca; Fraccarollo, Luigi; Brardinoni, Francesco; Aristide Lenzi, Mario

    2015-04-01

    A proper quantification of bedload transport is crucial in order to improve the knowledge on the morphology and dynamics of river systems. Unfortunately, bedload surveys in mountain streams are notoriously difficult. Also, equations for predicting the transport capacity often overestimate the actual bedload rates, and field measurement are still rare. An alternative to direct bedload sampling during floods is the use of tracers, which allow to obtain precious data on sediment dynamic and transport due to different conditions of hydraulic forcing, especially in mountain streams. In this work, the results obtained by the employment of passive RFID tracers in a steep Andean channel are presented. The study site is the Estero Morales, a high-gradient stream located in the Metropolitan Region (central Chile). The channel bed exhibits boulder-cascade, step-pool and plane bed morphologies while the average slope is of about 9.5%. The basin (27 km2) hosts the San Francisco glacier (1.8 km2) that strongly affects the hydrological regime. In particular during the melt period (December-March) the glacier ensures daily discharge fluctuations with highly variable associated bedload transport rates. Overall, 429 RFID tracers were installed in the Estero Morales and the displacements over a reach of approximately 700 m were monitored through 15 surveys, performed between January and March 2014. The recovery rate ranges between 19% and 97%. Tracers travel distance were paired to the peaks of stream power per unit area (ω, in W/m2) that occurred during the study period. Due to the wide range of flow magnitude observed, the values of stream power were grouped in three classes: low (650-750 W/m2), moderate (750-800 W/m2), and high (800-900 W/m2). Despite the different conditions of hydraulic forcing, moderate and low classes show mean displacement very similar, equal to 33 m and 24 m, respectively. In either cases a size selective transport was observed. On the other hand, the high

  18. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  19. Documentation of a daily mean stream temperature module—An enhancement to the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Sanders, Michael J.; Markstrom, Steven L.; Regan, R. Steven; Atkinson, R. Dwight

    2017-09-15

    A module for simulation of daily mean water temperature in a network of stream segments has been developed as an enhancement to the U.S. Geological Survey Precipitation Runoff Modeling System (PRMS). This new module is based on the U.S. Fish and Wildlife Service Stream Network Temperature model, a mechanistic, one-dimensional heat transport model. The new module is integrated in PRMS. Stream-water temperature simulation is activated by selection of the appropriate input flags in the PRMS Control File and by providing the necessary additional inputs in standard PRMS input files.This report includes a comprehensive discussion of the methods relevant to the stream temperature calculations and detailed instructions for model input preparation.

  20. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach

    Science.gov (United States)

    Norman, Laura M.; Sankey, Joel B.; Dean, David; Caster, Joshua J.; DeLong, Stephen B.; Henderson-DeLong, Whitney; Pelletier, Jon D.

    2017-01-01

    Rock-detention structures are used as restoration treatments to engineer ephemeral stream channels of southeast Arizona, USA, to reduce streamflow velocity, limit erosion, retain sediment, and promote surface-water infiltration. Structures are intended to aggrade incised stream channels, yet little quantified evidence of efficacy is available. The goal of this 3-year study was to characterize the geomorphic impacts of rock-detention structures used as a restoration strategy and develop a methodology to predict the associated changes. We studied reaches of two ephemeral streams with different watershed management histories: one where thousands of loose-rock check dams were installed 30 years prior to our study, and one with structures constructed at the beginning of our study. The methods used included runoff, sediment transport, and geomorphic modelling and repeat terrestrial laser scanner (TLS) surveys to map landscape change. Where discharge data were not available, event-based runoff was estimated using KINEROS2, a one-dimensional kinematic-wave runoff and erosion model. Discharge measurements and estimates were used as input to a two-dimensional unsteady flow-and-sedimentation model (Nays2DH) that combined a gridded flow, transport, and bed and bank simulation with geomorphic change. Through comparison of consecutive DEMs, the potential to substitute uncalibrated models to analyze stream restoration is introduced. We demonstrate a new approach to assess hydraulics and associated patterns of aggradation and degradation resulting from the construction of check-dams and other transverse structures. Notably, we find that stream restoration using rock-detention structures is effective across vastly different timescales.

  1. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    Science.gov (United States)

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-01-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado’s Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%–450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  2. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    Science.gov (United States)

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-05-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado's Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%-450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  3. Coupling fine particle and bedload transport in gravel-bedded streams

    Science.gov (United States)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  4. Potential interaction between transport and stream networks over the lowland rivers in Eastern India.

    Science.gov (United States)

    Roy, Suvendu; Sahu, Abhay Sankar

    2017-07-15

    Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. REVISED STREAM CODE AND WASP5 BENCHMARK

    International Nuclear Information System (INIS)

    Chen, K

    2005-01-01

    STREAM is an emergency response code that predicts downstream pollutant concentrations for releases from the SRS area to the Savannah River. The STREAM code uses an algebraic equation to approximate the solution of the one dimensional advective transport differential equation. This approach generates spurious oscillations in the concentration profile when modeling long duration releases. To improve the capability of the STREAM code to model long-term releases, its calculation module was replaced by the WASP5 code. WASP5 is a US EPA water quality analysis program that simulates one-dimensional pollutant transport through surface water. Test cases were performed to compare the revised version of STREAM with the existing version. For continuous releases, results predicted by the revised STREAM code agree with physical expectations. The WASP5 code was benchmarked with the US EPA 1990 and 1991 dye tracer studies, in which the transport of the dye was measured from its release at the New Savannah Bluff Lock and Dam downstream to Savannah. The peak concentrations predicted by the WASP5 agreed with the measurements within ±20.0%. The transport times of the dye concentration peak predicted by the WASP5 agreed with the measurements within ±3.6%. These benchmarking results demonstrate that STREAM should be capable of accurately modeling releases from SRS outfalls

  6. Modelling stream aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW

    Science.gov (United States)

    Osman, Yassin Z.; Bruen, Michael P.

    2002-07-01

    Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.

  7. Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments

    Science.gov (United States)

    Magin, Katrin; Somlai-Haase, Celia; Schäfer, Ralf B.; Lorke, Andreas

    2017-11-01

    Inland waters play an important role in regional to global-scale carbon cycling by transporting, processing and emitting substantial amounts of carbon, which originate mainly from their catchments. In this study, we analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from the catchments in a temperate stream network. The analysis included more than 200 catchment areas in southwest Germany, ranging in size from 0.8 to 889 km2 for which CO2 evasion from stream surfaces and downstream transport with stream discharge were estimated from water quality monitoring data, while NPP in the catchments was obtained from a global data set based on remote sensing. We found that on average 13.9 g C m-2 yr-1 (corresponding to 2.7 % of terrestrial NPP) are exported from the catchments by streams and rivers, in which both CO2 evasion and downstream transport contributed about equally to this flux. The average carbon fluxes in the catchments of the study area resembled global and large-scale zonal mean values in many respects, including NPP, stream evasion and the carbon export per catchment area in the fluvial network. A review of existing studies on aquatic-terrestrial coupling in the carbon cycle suggests that the carbon export per catchment area varies in a relatively narrow range, despite a broad range of different spatial scales and hydrological characteristics of the study regions.

  8. Energy from streaming current and potential

    NARCIS (Netherlands)

    Olthuis, Wouter; Schippers, Bob; Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    It is investigated how much energy can be delivered by a streaming current source. A streaming current and subsequent streaming potential originate when double layer charge is transported by hydrodynamic flow. Theory and a network model of such a source is presented and initial experimental results

  9. Radionuclide transport in running waters, sensitivity analysis of bed-load, channel geometry and model discretisation

    International Nuclear Information System (INIS)

    Jonsson, Karin; Elert, Mark

    2006-08-01

    In this report, further investigations of the model concept for radionuclide transport in stream, developed in the SKB report TR-05-03 is presented. Especially three issues have been the focus of the model investigations. The first issue was to investigate the influence of assumed channel geometry on the simulation results. The second issue was to reconsider the applicability of the equation for the bed-load transport in the stream model, and finally the last issue was to investigate how the model discretisation will influence the simulation results. The simulations showed that there were relatively small differences in results when applying different cross-sections in the model. The inclusion of the exact shape of the cross-section in the model is therefore not crucial, however, if cross-sectional data exist, the overall shape of the cross-section should be used in the model formulation. This could e.g. be accomplished by using measured values of the stream width and depth in the middle of the stream and by assuming a triangular shape. The bed-load transport was in this study determined for different sediment characteristics which can be used as an order of magnitude estimation if no exact determinations of the bed-load are available. The difference in the calculated bed-load transport for the different materials was, however, found to be limited. The investigation of model discretisation showed that a fine model discretisation to account for numerical effects is probably not important for the performed simulations. However, it can be necessary for being able to account for different conditions along a stream. For example, the application of mean slopes instead of individual values in the different stream reaches can result in very different predicted concentrations

  10. Instantaneous sediment transport model for asymmetric oscillatory sheet flow.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available On the basis of advanced concentration and velocity profiles above a mobile seabed, an instantaneous analytical model is derived for sediment transport in asymmetric oscillatory flow. The applied concentration profile is obtained from the classical exponential law based on mass conservation, and asymmetric velocity profile is developed following the turbulent boundary layer theory and the asymmetric wave theory. The proposed model includes two parts: the basic part that consists of erosion depth and free stream velocity, and can be simplified to the total Shields parameter power 3/2 in accordance with the classical empirical models, and the extra vital part that consists of phase-lead, boundary layer thickness and erosion depth. The effects of suspended sediment, phase-lag and asymmetric boundary layer development are considered particularly in the model. The observed instantaneous transport rate proportional to different velocity exponents due to phase-lag is unified and summarised by the proposed model. Both instantaneous and half period empirical formulas are compared with the developed model, using extensive data on a wide range of flow and sediment conditions. The synchronous variation in instantaneous transport rate with free stream velocity and its decrement caused by increased sediment size are predicted correctly. Net transport rates, especially offshore transport rates with large phase-lag under velocity skewed flows, which existing instantaneous type formulas failed to predict, are predicted correctly in both direction and magnitude by the proposed model. Net sediment transport rates are affected not only by suspended sediment and phase-lag, but also by the boundary layer difference between onshore and offshore.

  11. InSTREAM: the individual-based stream trout research and environmental assessment model

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  12. Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA

    Science.gov (United States)

    Vogel, J.R.; Linard, J.I.

    2011-01-01

    The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.

  13. Nitrapyrin in streams: The first study documenting off-field transport of a nitrogen stabilizer compound

    Science.gov (United States)

    Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.

    2016-01-01

    Nitrapyrin is a bactericide that is co-applied with fertilizer to prevent nitrification and enhance corn yields. While there have been studies of the environmental fate of nitrapyrin, there is no documentation of its off-field transport to streams. In 2016, 59 water samples from 11 streams across Iowa were analyzed for nitrapyrin and its degradate, 6-chloropicolinic acid (6-CPA), along with three widely used herbicides, acetochlor, atrazine, and metolachlor. Nitrapyrin was detected in seven streams (39% of water samples) with concentrations ranging from 12 to 240 ng/L; 6-CPA was never detected. The herbicides were ubiquitously detected (100% of samples, 28–16000 ng/L). Higher nitrapyrin concentrations in streams were associated with rainfall events following spring fertilizer applications. Nitrapyrin persisted in streams for up to 5 weeks. These results highlight the need for more research focused on the environmental fate and transport of nitrapyrin and the potential toxicity this compound could have on nontarget organisms.

  14. New Three-Dimensional Neutron Transport Calculation Capability in STREAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Youqi [Xi' an Jiaotong University, Xi' an (China); Choi, Sooyoung; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    The method of characteristics (MOC) is one of the best choices for its powerful capability in the geometry modeling. To reduce the large computational burden in 3D MOC, the 2D/1D schemes were proposed and have achieved great success in the past 10 years. However, such methods have some instability problems during the iterations when the neutron leakage for axial direction is large. Therefore, full 3D MOC methods were developed. A lot of efforts have been devoted to reduce the computational costs. However, it still requires too much memory storage and computational time for the practical modeling of a commercial size reactor core. Recently, a new approach for the 3D MOC calculation without transverse integration has been implemented in the STREAM code. In this approach, the angular flux is expressed as a basis function expansion form of only axial variable z. A new approach based on the axial expansion and 2D MOC sweeping to solve the 3D neutron transport equation is implemented in the STREAM code. This approach avoids using the transverse integration in the traditional 2D/1D scheme of MOC calculation. By converting the 3D equation into the 2D form of angular flux expansion coefficients, it also avoids the complex 3D ray tracing. Current numerical tests using two benchmarks show good accuracy of the new method.

  15. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    Science.gov (United States)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  16. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides ( 137 Cs, 90 Sr, 239 240 Pu, and 3 H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay

  17. Modeling and analysis of transport in the mammary glands

    Science.gov (United States)

    Quezada, Ana; Vafai, Kambiz

    2014-08-01

    The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues.

  18. Bed-material entrainment and associated transportation infrastructure problems in streams of the Edwards Plateau, central Texas

    Science.gov (United States)

    Heitmuller, Franklin T.; Asquith, William H.

    2008-01-01

    The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.

  19. Rotenone persistence model for montane streams

    Science.gov (United States)

    Brown, Peter J.; Zale, Alexander V.

    2012-01-01

    The efficient and effective use of rotenone is hindered by its unknown persistence in streams. Environmental conditions degrade rotenone, but current label instructions suggest fortifying the chemical along a stream based on linear distance or travel time rather than environmental conditions. Our objective was to develop models that use measurements of environmental conditions to predict rotenone persistence in streams. Detailed measurements of ultraviolet radiation, water temperature, dissolved oxygen, total dissolved solids (TDS), conductivity, pH, oxidation–reduction potential (ORP), substrate composition, amount of organic matter, channel slope, and travel time were made along stream segments located between rotenone treatment stations and cages containing bioassay fish in six streams. The amount of fine organic matter, biofilm, sand, gravel, cobble, rubble, small boulders, slope, pH, TDS, ORP, light reaching the stream, energy dissipated, discharge, and cumulative travel time were each significantly correlated with fish death. By using logistic regression, measurements of environmental conditions were paired with the responses of bioassay fish to develop a model that predicted the persistence of rotenone toxicity in streams. This model was validated with data from two additional stream treatment reaches. Rotenone persistence was predicted by a model that used travel time, rubble, and ORP. When this model predicts a probability of less than 0.95, those who apply rotenone can expect incomplete eradication and should plan on fortifying rotenone concentrations. The significance of travel time has been previously identified and is currently used to predict rotenone persistence. However, rubble substrate, which may be associated with the degradation of rotenone by adsorption and volatilization in turbulent environments, was not previously considered.

  20. Using Nitrate Isotopes to Distinguish Pathways along which Unprocessed Atmospheric Nitrate is Transported through Forests to Streams

    Science.gov (United States)

    Sebestyen, S. D.

    2013-12-01

    Evaluation of natural abundance oxygen and nitrogen isotopes in nitrate has revealed that atmospheric deposition of nitrate to forests sometimes has direct effects on the timing and magnitude of stream nitrate concentrations. Large amounts of unprocessed atmospheric nitrate have sometimes been found in streams during snowmelt and stormflow events. Despite increasing evidence that unprocessed atmospheric nitrate may be transported without biological processing to streams at various times and multiple locations, little has been reported about specific hydrological processes. I synthesized research findings from a number of studies in which nitrate isotopes have been measured over the past decade. Unprocessed nitrate may predominate in surficial soil waters after rainfall and snowmelt events relative to nitrate that originated from nitrification. Although transport to deep groundwater may be important in the most nitrogen saturated catchments, the transport of unprocessed atmospheric nitrate along shallow subsurface flowpaths is likely more important in many moderately N-polluted ecosystems, which predominate in the northeastern USA where most of my study sites are located. The presence of unprocessed atmospheric nitrate in surficial soils was linked to stream nitrate concentrations when large amounts of unprocessed nitrate were occasionally routed along lateral, shallow subsurface flowpaths during stormflow events. During these events, water tables rose to saturate shallow-depth soils. When catchments were drying or dryer, atmospheric nitrate was completely consumed by biological processing as flowpaths shifted from lateral to vertical transport through soils. The source areas of unprocessed atmospheric nitrate were usually limited to soils that were adjacent to streams, with little to no near-surface saturation and transport of unprocessed nitrate from more distal hillslope positions. The occasional large amounts of unprocessed atmospheric nitrate in soil water

  1. Modeling and analysis of transport in the mammary glands

    International Nuclear Information System (INIS)

    Quezada, Ana; Vafai, Kambiz

    2014-01-01

    The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues. (paper)

  2. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    While the free-streaming of particles in the kinetic theory drive the system out of equi- ... For collisions at RHIC and LHC, a transport model may involve four main com- ...... Further, there are many important conceptual issues such as imple-.

  3. Application of SELECT and SWAT models to simulate source load, fate, and transport of fecal bacteria in watersheds.

    Science.gov (United States)

    Ranatunga, T.

    2017-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads from SELECT model were input to the SWAT model, and simulate the bacteria transport through the land and in-stream. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on regional land use, population and household forecast (up to 2040). Based on the reductions required to meet the water quality standards in-stream, the corresponding required source load reductions were estimated.

  4. Transport of bedload sediment and channel morphology of a southeast Alaska stream.

    Science.gov (United States)

    Margaret A. Estep; Robert L. Beschta

    1985-01-01

    During 1980-81, transport of bedload sediment and channel morphology were determined at Trap Bay Creek, a third-order stream that drains a 13.5-square kilometer watershed on Chichagof island in southeast Alaska. Bedload sediment was sampled for 10 storms: peak flows ranged from 0.6 to 19.0 cubic meters per second, and transport rates ranged from 4 to 4400 kilograms per...

  5. Multiscale Models for the Two-Stream Instability

    Science.gov (United States)

    Joseph, Ilon; Dimits, Andris; Banks, Jeffrey; Berger, Richard; Brunner, Stephan; Chapman, Thomas

    2017-10-01

    Interpenetrating streams of plasma found in many important scenarios in nature and in the laboratory can develop kinetic two-stream instabilities that exchange momentum and energy between the streams. A quasilinear model for the electrostatic two-stream instability is under development as a component of a multiscale model that couples fluid simulations to kinetic theory. Parameters of the model will be validated with comparison to full kinetic simulations using LOKI and efficient strategies for numerical solution of the quasilinear model and for coupling to the fluid model will be discussed. Extending the kinetic models into the collisional regime requires an efficient treatment of the collision operator. Useful reductions of the collision operator relative to the full multi-species Landau-Fokker-Plank operator are being explored. These are further motivated both by careful consideration of the parameter orderings relevant to two-stream scenarios and by the particular 2D+2V phase space used in the LOKI code. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 17- ERD-081.

  6. Impact of meander geometry and stream flow events on residence times and solute transport in the intra-meander flow

    Science.gov (United States)

    Nasir Mahmood, Muhammad; Schmidt, Christian; Trauth, Nico

    2017-04-01

    Stream morphological features, in combination with hydrological variability play a key role in water and solute exchange across surface and subsurface waters. Meanders are prominent morphological features within stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange within the intra-meander region. This hyporheic flow is characterized by considerably prolonged flow paths and residence times (RT) compared to smaller scales of hyporheic exchange. In this study we examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady state and transient flow conditions. We developed a number of artificial meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander. Three dimensional steady state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region. The meandering stream was implemented in the model by adjusting the top layers of the modelling domain to the streambed elevation and assigning linearly decreasing head boundary conditions to the streambed cells. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. The transient stream discharge was simulated for a number of discharge events of variable duration and peak height using the surface water model HEC-RAS. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. A solute concentration source was added in the

  7. Retention and Migration of Fine Organic Particles within an Agricultural Stream: Toenepi, Waikato, New Zealand

    Science.gov (United States)

    Drummond, J. D.; Davies-Colley, R.; Stott, R.; Sukias, J.; Nagels, J.; Sharp, A.; Packman, A. I.

    2013-12-01

    Fine organic particle dynamics are important to stream biogeochemistry, ecology, and transport of contaminant microbes. These particles migrate downstream through a series of deposition and resuspension events, which results in a wide range of residence times. This retention influences biogeochemical processing and in-stream stores of contaminant microbes that may mobilize during flood events and present a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into organic particle dynamics in streams, with a campaign of experiments and modeling. The results should improve understanding of nutrient (C, N, P) spiraling and fine sediment movement in streams, and have particular application to microbial hazards. We directly measure microbial transport by including the indicator organism, E. coli, as a tracer, which is compared to a fluorescent inert particle tracer and conservative solute to gain insight on both microbial ecology and waterborne disease transmission. We developed a stochastic model to describe the transport and retention of fine suspended particles in rivers, including advective delivery of particles to the streambed, transport through porewaters, and reversible filtration within the streambed. Because fine particles are only episodically transported in streams, with intervening periods at rest in the bed, this transport process violates conventional advection-dispersion assumptions. Instead we adopt a stochastic mobile-immobile model formulation to describe fine particle transport. We apply this model to measurements of particle transport from multiple tracer experiments in an agricultural stream in the Waikato dairy region of New Zealand, and use the model to improve interpretation of baseflow particle dynamics. Our results show the importance of the benthic and hyporheic regions and in-stream vegetation as a reservoir for fine organic particles in streams.

  8. River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply

    Science.gov (United States)

    Sklar, Leonard; Dietrich, William E.

    The simplicity and apparent mechanistic basis of the stream power river incision law have led to its wide use in empirical and theoretical studies. Here we identify constraints on its calibration and application, and present a mechanistic theory for the effects of sediment supply on incision rates which spotlights additional limitations on the applicability of the stream power law. On channels steeper than about 20%, incision is probably dominated by episodic debris flows, and on sufficiently gentle slopes, sediment may bury the bedrock and prevent erosion. These two limits bound the application of the stream power law and strongly constrain the possible combination of parameters in the law. In order to avoid infinite slopes at the drainage divide in numerical models of river profiles using the stream power law it is commonly assumed that the first grid cell is unchanneled. We show, however, that the size of the grid may strongly influence the calculated equilibrium relief. Analysis of slope-drainage area relationships for a river network in a Northern California watershed using digital elevation data and review of data previously reported by Hack reveal that non-equilibrium profiles may produce well defined slope-area relationships (as expected in equilibrium channels), but large differences between tributaries may point to disequilibrium conditions. To explore the role of variations in sediment supply and transport capacity in bedrock incision we introduce a mechanistic model for abrasion of bedrock by saltating bedload. The model predicts that incision rates reach a maximum at intermediate levels of sediment supply and transport capacity. Incision rates decline away from the maximum with either decreasing supply (due to a shortage of tools) or increasing supply (due to gradual bed alluviation), and with either decreasing transport capacity (due to less energetic particle movement) or increasing transport capacity (due less frequent particle impacts per unit bed

  9. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng; Masseglia, Florent; Zhang, Xiangliang

    2012-01-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  10. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng

    2012-09-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users\\' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users\\' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  11. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  12. Questioning the Faith - Models and Prediction in Stream Restoration (Invited)

    Science.gov (United States)

    Wilcock, P.

    2013-12-01

    River management and restoration demand prediction at and beyond our present ability. Management questions, framed appropriately, can motivate fundamental advances in science, although the connection between research and application is not always easy, useful, or robust. Why is that? This presentation considers the connection between models and management, a connection that requires critical and creative thought on both sides. Essential challenges for managers include clearly defining project objectives and accommodating uncertainty in any model prediction. Essential challenges for the research community include matching the appropriate model to project duration, space, funding, information, and social constraints and clearly presenting answers that are actually useful to managers. Better models do not lead to better management decisions or better designs if the predictions are not relevant to and accepted by managers. In fact, any prediction may be irrelevant if the need for prediction is not recognized. The predictive target must be developed in an active dialog between managers and modelers. This relationship, like any other, can take time to develop. For example, large segments of stream restoration practice have remained resistant to models and prediction because the foundational tenet - that channels built to a certain template will be able to transport the supplied sediment with the available flow - has no essential physical connection between cause and effect. Stream restoration practice can be steered in a predictive direction in which project objectives are defined as predictable attributes and testable hypotheses. If stream restoration design is defined in terms of the desired performance of the channel (static or dynamic, sediment surplus or deficit), then channel properties that provide these attributes can be predicted and a basis exists for testing approximations, models, and predictions.

  13. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  14. Foundations for Streaming Model Transformations by Complex Event Processing.

    Science.gov (United States)

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  15. Predicting Hyporheic Exchange of Water and Solutes in Streams on the Basis of a Priori Estimates of Stream Physical Characteristics

    Science.gov (United States)

    Stone, S. H.; Harvey, J.; Packman, A.; Worman, A.

    2005-12-01

    It is very important to accurately model solute transport in rivers in order to analyze contaminant transport, water quality, and a variety of ecological processes. The purpose of this research is to determine the physical characteristics of a stream or river that are sufficient to predict hyporheic exchange and downstream solute transport. In the fall of 2004, we conducted a bromide tracer injection and made physical measurements in Sugar Creek, a small agricultural stream in northwestern Indiana. As is typical for small mid-western agricultural streams, Sugar Creek has been ditched and straightened, and subsequent downcutting through glacial sediments and slumpage of bank sediments composed of finer grain sizes has created a stream of intermediate complexity. In order to relate the observed solute transport to more basic physical characteristics of the stream, we determined the bathymetry of Sugar Creek over a wide range of scales (centimeters to decameters), and measured velocity profiles, the water elevation surface profile, hydraulic conductivity via in situ measurements, and bed sediment grain size distributions throughout the study reach. Our most detailed topographic measurements revealed fine scale bed variations with wavelengths on the order of ten centimeters, while surveying of the entire study reach characterized large scale meanders with wavelengths on the order of five meters. The distribution of wavelengths influences the driving forces that cause solute to enter the bed and banks. Hydraulic conductivity determines the resistance to flow of stream water through the (meander) stream banks and streambed. We used a scaling approach to relate the geometric and hydrogeologic characteristics of the stream to solute transport and also applied a new analytical solution for the subsurface flows resulting from topographic variations over a wide range of spatial scales. These models captured the main features of the observed solute transport. The greatest

  16. Modelling the fate of six common pharmaceuticals in a small stream: quantification of attenuation and retention in different stream-specific environments

    Science.gov (United States)

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-04-01

    Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.

  17. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    Science.gov (United States)

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  18. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    Science.gov (United States)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  19. Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature

    Science.gov (United States)

    Eckels, David E.; Hass, William J.

    1989-05-30

    A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

  20. Reactive transport modeling of nitrogen in Seine River sediments

    Science.gov (United States)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  1. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  2. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    Science.gov (United States)

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  3. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005

    Science.gov (United States)

    Steeb, Nicolas; Rickenmann, Dieter; Badoux, Alexandre; Rickli, Christian; Waldner, Peter

    2017-02-01

    The extreme flood event that occurred in August 2005 was the most costly (documented) natural hazard event in the history of Switzerland. The flood was accompanied by the mobilization of > 69,000 m3 of large wood (LW) throughout the affected area. As recognized afterward, wood played an important role in exacerbating the damages, mainly because of log jams at bridges and weirs. The present study aimed at assessing the risk posed by wood in various catchments by investigating the amount and spatial variability of recruited and transported LW. Data regarding LW quantities were obtained by field surveys, remote sensing techniques (LiDAR), and GIS analysis and was subsequently translated into a conceptual model of wood transport mass balance. Detailed wood budgets and transport diagrams were established for four study catchments of Swiss mountain streams, showing the spatial variability of LW recruitment and deposition. Despite some uncertainties with regard to parameter assumptions, the sum of reconstructed wood input and observed deposition volumes agree reasonably well. Mass wasting such as landslides and debris flows were the dominant recruitment processes in headwater streams. In contrast, LW recruitment from lateral bank erosion became significant in the lower part of mountain streams where the catchment reached a size of about 100 km2. According to our analysis, 88% of the reconstructed total wood input was fresh, i.e., coming from living trees that were recruited from adjacent areas during the event. This implies an average deadwood contribution of 12%, most of which was estimated to have been in-channel deadwood entrained during the flood event.

  4. Interactive collision detection for deformable models using streaming AABBs.

    Science.gov (United States)

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB

  5. Delay in catchment nitrogen load to streams following restrictions on fertilizer application

    DEFF Research Database (Denmark)

    Vervloet, Lidwien S. C.; Binning, Philip John; Borgesen, Christen D.

    2018-01-01

    A MIKE SHE hydrological-solute transport model including nitrate reduction is employed to evaluate the delayed response in nitrogen loads in catchment streams following the implementation of nitrogen mitigation measures since the 1980s. The nitrate transport lag times between the root zone...... and the streams for the period 1950-2011 were simulated for two catchments in Denmark and compared with observational data. Results include nitrogen concentration and mass discharge to streams. By automated baseflow separation, stream discharge was separated into baseflow and drain flow components...

  6. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems.

    Science.gov (United States)

    Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko

    2016-01-01

    A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.

  7. Arsenic transport in groundwater, surface water, and the hyporheic zone of a mine-influenced stream-aquifer system

    OpenAIRE

    Brown, Brendan

    2005-01-01

    We investigated the transport of dissolved arsenic in groundwater, surface water and the hyporheic zone in a stream-aquifer system influenced by an abandoned arsenopyrite mine. Mine tailing piles consisting of a host of arsenic-bearing minerals including arsenopyrite and scorodite remain adjacent to the stream and represent a continuous source of arsenic. Arsenic loads from the stream, springs, and groundwater were quantified at the study reach on nine dates from January to August 2005 and ...

  8. Model analysis of riparian buffer effectiveness for reducing nutrient inputs to streams in agricultural landscapes

    Science.gov (United States)

    McKane, R. B.; M, S.; F, P.; Kwiatkowski, B. L.; Rastetter, E. B.

    2006-12-01

    Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality, process-based simulation models are essential for understanding and forecasting how changes in human activities across complex landscapes impact the transport of nutrients and contaminants to surface waters. To address this need, we developed a broadly applicable, process-based watershed simulator that links a spatially-explicit hydrologic model and a terrestrial biogeochemistry model (MEL). See Stieglitz et al. and Pan et al., this meeting, for details on the design and verification of this simulator. Here we apply the watershed simulator to a generalized agricultural setting to demonstrate its potential for informing policy and management decisions concerning water quality. This demonstration specifically explores the effectiveness of riparian buffers for reducing the transport of nitrogenous fertilizers from agricultural fields to streams. The interaction of hydrologic and biogeochemical processes represented in our simulator allows several important questions to be addressed. (1) For a range of upland fertilization rates, to what extent do riparian buffers reduce nitrogen inputs to streams? (2) How does buffer effectiveness change over time as the plant-soil system approaches N-saturation? (3) How can buffers be managed to increase their effectiveness, e.g., through periodic harvest and replanting? The model results illustrate that, while the answers to these questions depend to some extent on site factors (climatic regime, soil properties and vegetation type), in all cases riparian buffers have a limited capacity to reduce nitrogen inputs to streams where fertilization rates approach those typically used for intensive agriculture (e.g., 200 kg N per ha per year for corn in the U

  9. Modeling of immision from power plants using stream-diffusion model

    International Nuclear Information System (INIS)

    Kanevce, Lj.; Kanevce, G.; Markoski, A.

    1996-01-01

    Analyses of simple empirical and integral immision models, comparing with complex three dimensional differential models is given. Complex differential models needs huge computer power, so they can't be useful for practical engineering calculations. In this paper immision modeling, using stream-diffusion approach is presented. Process of dispersion is divided into two parts. First part is called stream part, it's near the source of the pollutants, and it's presented with defected turbulent jet in wind field. This part finished when the velocity of stream (jet) becomes equal with wind speed. Boundary conditions in the end of the first part, are initial for the second, called diffusion part, which is modeling with tri dimensional diffusion equation. Gradient of temperature, wind speed profile and coefficient of diffusion in this model must not be constants, they can change with the height. Presented model is much simpler than the complete meteorological differential models which calculates whole fields of meteorological parameters. Also, it is more complex and gives more valuable results for dispersion of pollutants from widely used integral and empirical models

  10. A spatially referenced regression model (SPARROW) for suspended sediment in streams of the conterminous U.S.

    Science.gov (United States)

    Schwarz, Gregory E.; Smith, Richard A.; Alexander, Richard B.; Gray, John R.

    2001-01-01

    little direct evidence is available concerning the fate of sediment. The common practice of quantifying sediment fate with a sediment delivery ratio, estimated from a simple empirical relation with upstream basin area, does not articulate the relative importance of individual storage sites within a basin (Wolman, 1977). Rates of sediment deposition in reservoirs and flood plains can be determined from empirical measurements, but only a limited number of sites have been monitored, and net rates of deposition or loss from other potential sinks and sources is largely unknown (Stallard, 1998). In particular, little is known about how much sediment loss from fields ultimately makes its way to stream channels, and how much sediment is subsequently stored in or lost from the streambed (Meade and Parker, 1985, Trimble and Crosson, 2000).This paper reports on recent progress made to address empirically the question of sediment fate and transport on a national scale. The model presented here is based on the SPAtially Referenced Regression On Watershed attributes (SPARROW) methodology, first used to estimate the distribution of nutrients in streams and rivers of the United States, and subsequently shown to describe land and stream processes affecting the delivery of nutrients (Smith and others, 1997, Alexander and others, 2000, Preston and Brakebill, 1999). The model makes use of numerous spatial datasets, available at the national level, to explain long-term sediment water-quality conditions in major streams and rivers throughout the United States. Sediment sources are identified using sediment erosion rates from the National Resources Inventory (NRI) (Natural Resources Conservation Service, 2000) and apportioned over the landscape according to 30- meter resolution land-use information from the National Land Cover Data set (NLCD) (U.S. Geological Survey, 2000a). More than 76,000 reservoirs from the National Inventory of Dams (NID) (U.S. Army Corps of Engineers, 1996) are

  11. Ultrasound-driven Viscous Streaming, Modelled via Momentum Injection

    Directory of Open Access Journals (Sweden)

    James PACKER

    2008-12-01

    Full Text Available Microfluidic devices can use steady streaming caused by the ultrasonic oscillation of one or many gas bubbles in a liquid to drive small scale flow. Such streaming flows are difficult to evaluate, as analytic solutions are not available for any but the simplest cases, and direct computational fluid dynamics models are unsatisfactory due to the large difference in flow velocity between the steady streaming and the leading order oscillatory motion. We develop a numerical technique which uses a two-stage multiscale computational fluid dynamics approach to find the streaming flow as a steady problem, and validate this model against experimental results.

  12. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  13. Reverse stream flow routing by using Muskingum models

    Indian Academy of Sciences (India)

    Reverse stream flow routing is a procedure that determines the upstream hydrograph given the downstream hydrograph. This paper presents the development of methodology for Muskingum models parameter estimation for reverse stream flow routing. The standard application of the Muskingum models involves calibration ...

  14. The role of headwater streams in downstream water quality

    Science.gov (United States)

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  15. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  16. A stream temperature model for the Peace-Athabasca River basin

    Science.gov (United States)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  17. Assessing the Importance of Cross-Stream Transport in Bedload Flux Estimates from Migrating Dunes: Colorado River, Grand Canyon National Park

    Science.gov (United States)

    Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.

    2017-12-01

    Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially

  18. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  19. Development and testing of an in-stream phosphorus cycling model for the soil and water assessment tool.

    Science.gov (United States)

    White, Michael J; Storm, Daniel E; Mittelstet, Aaron; Busteed, Philip R; Haggard, Brian E; Rossi, Colleen

    2014-01-01

    The Soil and Water Assessment Tool is widely used to predict the fate and transport of phosphorus (P) from the landscape through streams and rivers. The current in-stream P submodel may not be suitable for many stream systems, particularly those dominated by attached algae and those affected by point sources. In this research, we developed an alternative submodel based on the equilibrium P concentration concept coupled with a particulate scour and deposition model. This submodel was integrated with the SWAT model and applied to the Illinois River Watershed in Oklahoma, a basin influenced by waste water treatment plant discharges and extensive poultry litter application. The model was calibrated and validated using measured data. Highly variable in-stream P concentrations and equilibrium P concentration values were predicted spatially and temporally. The model also predicted the gradual storage of P in streambed sediments and the resuspension of this P during periodic high-flow flushing events. Waste water treatment plants were predicted to have a profound effect on P dynamics in the Illinois River due to their constant discharge even under base flow conditions. A better understanding of P dynamics in stream systems using the revised submodel may lead to the development of more effective mitigation strategies to control the impact of P from point and nonpoint sources. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Modeling E. coli Release And Transport In A Creek During Artificial High-Flow Events

    Science.gov (United States)

    Yakirevich, A.; Pachepsky, Y. A.; Gish, T. J.; Cho, K.; Shelton, D. R.; Kuznetsov, M. Y.

    2012-12-01

    In-stream fate and transport of E. coli, is a leading indicator of microbial contamination of natural waters, and so needs to be understood to eventually minimize surface water contamination by microbial organisms. The objective of this work was to simulate E. coli release and transport from soil sediment in a creek bed both during and after high water flow events. The artificial high-water flow events were created by releasing 60-80 m3 of city water on a tarp-covered stream bank at a rate of 60 L/s in four equal allotments in July of 2008, 2009 and 2010. The small first-order creek used in this study is part of the Beaver Dam Creek Tributary and is located at the USDA Optimizing Production inputs for Economic and Environmental Enhancement (OPE3) research site, in Beltsville, Maryland. In 2009 and 2010 a conservative tracer difluorobenzoic acid (DFBA) was added to the released water. Specifically, water flow rates, E. coli and DFBA concentrations as well as water turbidity were monitored with automated samplers at the ends of the three in-stream weirs reaching a total length of 630 m. Sediment particle size distributions and the streambed E. coli concentrations were measured along a creek before and after experiment. The observed DFBA breakthrough curves (BTCs) exhibited long tails after the water pulse and tracer peaks indicating that transient storage might be an important element of the in-stream transport process. Turbidity and E. coli BTCs also exhibited long tails indicative of transient storage and low rates of settling caused by re-entrainment. Typically, turbidity peaked prior to E. coli and returned to lower base-line levels more rapidly. A one-dimensional model was applied to simulate water flow, E. coli and DFBA transport during these experiments. The Saint-Venant equations were used to calculate water depth and discharge while a stream solute transport model accounted for advection-dispersion, lateral inflow/outflow, exchange with the transient storage

  1. Resonance self-shielding methodology of new neutron transport code STREAM

    International Nuclear Information System (INIS)

    Choi, Sooyoung; Lee, Hyunsuk; Lee, Deokjung; Hong, Ser Gi

    2015-01-01

    This paper reports on the development and verification of three new resonance self-shielding methods. The verifications were performed using the new neutron transport code, STREAM. The new methodologies encompass the extension of energy range for resonance treatment, the development of optimum rational approximation, and the application of resonance treatment to isotopes in the cladding region. (1) The extended resonance energy range treatment has been developed to treat the resonances below 4 eV of three resonance isotopes and shows significant improvements in the accuracy of effective cross sections (XSs) in that energy range. (2) The optimum rational approximation can eliminate the geometric limitations of the conventional approach of equivalence theory and can also improve the accuracy of fuel escape probability. (3) The cladding resonance treatment method makes it possible to treat resonances in cladding material which have not been treated explicitly in the conventional methods. These three new methods have been implemented in the new lattice physics code STREAM and the improvement in the accuracy of effective XSs is demonstrated through detailed verification calculations. (author)

  2. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  3. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  4. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  5. Transport logistics in pollen tubes.

    Science.gov (United States)

    Chebli, Youssef; Kroeger, Jens; Geitmann, Anja

    2013-07-01

    Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and organelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma membrane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.

  6. A spatially referenced regression model (SPARROW) for suspended sediment in streams of the Conterminous U.S.

    Science.gov (United States)

    Schwarz, Gregory E.; Smith, Richard A.; Alexander, Richard B.; Gray, John R.

    2001-01-01

    ). Conversely, relatively little direct evidence is available concerning the fate of sediment. The common practice of quantifying sediment fate with a sediment deliv ery ratio, estimated from a simple empirical relation with upstream basin area, does not artic ulate the relative importance of individual storage sites within a basin (Wolman, 1977). Rates of sediment deposition in reservoirs and flood plains can be determined from empirical measurement s , but only a limited number of sites have been monitored, and net rates of deposition or loss from other potential sinks and sources is largely unknown (Stallard, 1998). In particular, little is known about how much sediment loss from fields ultimately makes its way to stream channels, and how much sediment is subsequently stored in or lost from th e streambed (Meade and Parker, 1985, Trimble and Crosson, 2000). This paper reports on recent progress made to a ddress empirically the question of sediment fate and transport on a national scale. The model pres ented here is based on the SPAtially Referenced Regression On Watershed attr ibutes (SPARROW) methodology, fi rst used to estimate the distribution of nutrients in str eams and rivers of the United Stat es, and subsequently shown to describe land and stream processes affecting the delivery of nutrients (Smith and others, 1997, Alexander and others, 2000, Preston and Brakeb ill, 1999). The model makes use of numerous spatial datasets, available at the national level, to explain long-term sediment water-quality conditions in major streams and rivers throughou t the United States. Sediment sources are identified using sediment erosion rates from the National Resources I nventory (NRI) (Natural Resources Conservation Service, 2000) and apportioned over the landscape according to 30- meter resolution land-use information from th e National Land Cover Data set (NLCD) (U.S. Geological Survey, 2000a). More than 76,000 reservoirs from the National Inventory of Dams (NID) (U.S. Army

  7. Calculation of bedload transport in Swiss mountain rivers using the model sedFlow: proof of concept

    Directory of Open Access Journals (Sweden)

    F. U. M. Heimann

    2015-01-01

    Full Text Available Fully validated numerical models specifically designed for simulating bedload transport dynamics in mountain streams are rare. In this study, the recently developed modelling tool sedFlow has been applied to simulate bedload transport in the Swiss mountain rivers Kleine Emme and Brenno. It is shown that sedFlow can be used to successfully reproduce observations from historic bedload transport events with plausible parameter set-ups, meaning that calibration parameters are only varied within ranges of uncertainty that have been pre-determined either by previous research or by field observations in the simulated study reaches. In the Brenno river, the spatial distribution of total transport volumes has been reproduced with a Nash–Sutcliffe goodness of fit of 0.733; this relatively low value is partially due to anthropogenic extraction of sediment that was not considered. In the Kleine Emme river, the spatial distribution of total transport volumes has been reproduced with a goodness of fit of 0.949. The simulation results shed light on the difficulties that arise with traditional flow-resistance estimation methods when macro-roughness is present. In addition, our results demonstrate that greatly simplified hydraulic routing schemes, such as kinematic wave or uniform discharge approaches, are probably sufficient for a good representation of bedload transport processes in reach-scale simulations of steep mountain streams. The influence of different parameters on simulation results is semi-quantitatively evaluated in a simple sensitivity study. This proof-of-concept study demonstrates the usefulness of sedFlow for a range of practical applications in alpine mountain streams.

  8. Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model.

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Jeong, Jaehak; Pachepsky, Yakov A

    2018-02-15

    The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management. The objective of this work was to develop a process-based model for simulating the fate and transport of manure-borne bacteria on land and in streams with the APEX model. The bacteria model utilizes manure erosion rates to estimate the amount of edge-of-field bacteria export. Bacteria survival in manure is simulated as a two-stage process separately for each manure application event. In-stream microbial fate and transport processes include bacteria release from streambeds due to sediment resuspension during high flow events, active release from the streambed sediment during low flow periods, bacteria settling with sediment, and survival. Default parameter values were selected from published databases and evaluated based on field observations. The APEX model with the newly developed microbial fate and transport module was applied to simulate fate and transport of the fecal indicator bacterium Escherichia coli in the Toenepi watershed, New Zealand that was monitored for seven years. The stream network of the watershed ran through grazing lands with daily bovine waste deposition. Results show that the APEX with the bacteria module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water as affected by various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Published by Elsevier B.V.

  9. Application of the three-dimensional transport code to analysis of the neutron streaming experiment

    International Nuclear Information System (INIS)

    Chatani, K.; Slater, C.O.

    1990-01-01

    The neutron streaming through an experimental mock-up of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway was recalculated with a three-dimensional discrete ordinates code. The experiment was conducted at the Tower Shielding Facility at Oak Ridge National Laboratory in 1976 and 1977. The measurement of the neutron flux, using Bonner ball detectors, indicated nine orders of attenuation in the empty pipeway, which contained two 90-deg bends and was surrounded by concrete walls. The measurement data were originally analyzed using the DOT3.5 two-dimensional discrete ordinates radiation transport code. However, the results did not agree with measurement data at the bend because of the difficulties in modeling the three-dimensional configurations using two-dimensional methods. The two-dimensional calculations used a three-step procedure in which each of the three legs making the two 90-deg bends was a separate calculation. The experiment was recently analyzed with the TORT three-dimensional discrete ordinates radiation transport code, not only to compare the calculational results with the experimental results, but also to compare with results obtained from analyses in Japan using DOT3.5, MORSE, and ENSEMBLE, which is a three-dimensional discrete ordinates radiation transport code developed in Japan

  10. Influence of particle sorting in transport of sediment-associated contaminants

    International Nuclear Information System (INIS)

    Lane, L.J.; Hakonson, T.E.

    1982-01-01

    Hydrologic and sediment transport models are developed to route the flow of water and sediment (by particle size classes) in alluvial stream channels. A simplified infiltration model is used to compute runoff from upland areas and flow is routed in ephemeral stream channels to account for infiltration or transmission losses in the channel alluvium. Hydraulic calculations, based on the normal flow assumption and an approximating hydrograph, are used to compute sediment transport by particle size classes. Contaminants associated with sediment particles are routed in the stream channels to predict contaminatant transport by particle size classes. An empirical adjustment factor, the enrichment ratio, is shown to be a function of the particle size distribution of stream bed sediments, contaminant concentrations by particle size, differential sediment transport rates, and the magnitude of the runoff event causing transport of sediment and contaminants. This analysis and an example application in a liquid effluent-receiving area illustrate the significance of particle sorting in transport of sediment associated contaminants

  11. Ambient groundwater flow diminishes nitrogen cycling in streams

    Science.gov (United States)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  12. Interactions of solutes and streambed sediment: 1. An experimental analysis of cation and anion transport in a mountain stream

    Science.gov (United States)

    Bencala, Kenneth E.; Kennedy, Vance C.; Zellweger, Gary W.; Jackman, Alan P.; Avanzino, Ronald J.

    1984-01-01

    An experimental injection was performed to study the transport of stream water solutes under conditions of significant interaction with streambed sediments in a mountain pool-and-riffle stream. Experiments were conducted in Little Lost Man Creek, Humboldt County, California, in a period of low flow duringwhich only a part of the bank-full channel held active surface flow. The injection of chloride and several trace cations lasted 20 days. In this report we discuss the results of the first 24 hours of the injection and survey the results of the first 10 days. Solute-streambed interactions of two types were observed. First, the physical transport of the conservative tracer, chloride, was affected by intergravel flow and stagnant watt, zones created by the bed relief. Second, the transport of the cations (strontium, potassium, and lithium) was appreciably modified by sorption onto streambed sediment. In the stream the readily observable consequence of the solute-streambed interactions was an attenuation of the dissolved concentration of each of the tracers. The attenuation in the stream channel occurred concurrently with the storage of tracers in the streambed via both physical and chemical processes. All tracers were subsequently present in shallow wells dug several meters from the wetted part of the channel. Sediment samples collected approximately 3 weeks after the start of the injection contained increased concentrations of the injected cations.

  13. Effects of turbulent hyporheic mixing on reach-scale solute transport

    Science.gov (United States)

    Roche, K. R.; Li, A.; Packman, A. I.

    2017-12-01

    Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of

  14. Chemical Transport Models on Accelerator Architectures

    Science.gov (United States)

    Linford, J.; Sandu, A.

    2008-12-01

    Heterogeneous multicore chipsets with many layers of polymorphic parallelism are becoming increasingly common in high-performance computing systems. Homogeneous co-processors with many streaming processors also offer unprecedented peak floating-point performance. Effective use of parallelism in these new chipsets is paramount. We present optimization techniques for 3D chemical transport models to take full advantage of emerging Cell Broadband Engine and graphical processing unit (GPU) technology. Our techniques achieve 2.15x the per-node performance of an IBM BlueGene/P on the Cell Broadband Engine, and a strongly-scalable 1.75x the per-node performance of an IBM BlueGene/P on an NVIDIA GeForce 8600.

  15. Continental-scale transport of sediments by the Baltic Ice Stream elucidated by coupled grain size and Nd provenance analyses

    Science.gov (United States)

    Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.

    2018-05-01

    We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.

  16. Longitudinal structure in temperate stream fish communities: evaluating conceptual models with temporal data

    Science.gov (United States)

    Roberts, James H.; Hitt, Nathaniel P.

    2010-01-01

    Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.

  17. Variable selection for modelling effects of eutrophication on stream and river ecosystems

    NARCIS (Netherlands)

    Nijboer, R.C.; Verdonschot, P.F.M.

    2004-01-01

    Models are needed for forecasting the effects of eutrophication on stream and river ecosystems. Most of the current models do not include differences in local stream characteristics and effects on the biota. To define the most important variables that should be used in a stream eutrophication model,

  18. Modelling of stormwater infiltration for stream restoration. Beder (Aarhus) case study

    DEFF Research Database (Denmark)

    Locatelli, Luca; Bockhorn, Britta; Klint, K. E.

    to assess the impact of stormwater runoff infiltration on (1) the water balance; (2) stream flow of the local stream Hovedgrøften; and (3) the risk of polluting the primary aquifer. The hydrogeological model was developed in a deterministic groundwater model (MIKE SHE) which was coupled dynamically...... carried out by developing a hydrogeological model of the Beder area in Aarhus, Denmark. The model area is characterized by the presence of a secondary unconfined aquifer that partly contributes baseflow to the local streams and partly to recharge to the underlying primary aquifer. The model was applied...... to a hydrodynamic 1-D river model (MIKE 11). Geological data based on spear mapping, geophysical data and lithology from local boreholes were used to set up the geological model. Groundwater observation and stream flow measurements were used for model calibration and validation.Different scenarios were analyzed...

  19. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  20. Modeling transient streaming potentials in falling-head permeameter tests.

    Science.gov (United States)

    Malama, Bwalya; Revil, André

    2014-01-01

    We present transient streaming potential data collected during falling-head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl ) of the sand samples. A semi-empirical model based on the falling-head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl . The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling-head permeameter tests can be used to estimate both K and Cl . They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications. © 2013, National Ground Water Association.

  1. Multi-scale modelling and numerical simulation of electronic kinetic transport

    International Nuclear Information System (INIS)

    Duclous, R.

    2009-11-01

    This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms

  2. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  3. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    Science.gov (United States)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an

  4. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    Science.gov (United States)

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  5. Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis

    Science.gov (United States)

    Jones, Christopher S.; Wang, Bo; Schilling, Keith E.; Chan, Kung-sik

    2017-06-01

    Agricultural landscapes often leak inorganic nitrogen to the stream network, usually in the form of nitrate-nitrite (NOx-N), degrading downstream water quality on both the local and regional scales. While the spatial distribution of nitrate sources has been delineated in many watersheds, less is known about the complicated temporal dynamics that drive stream NOx-N because traditional methods of stream grab sampling are often conducted at a low frequency. Deployment of accurate real-time, continuous measurement devices that have been developed in recent years enables high-frequency sampling that provides detailed information on the concentration-discharge relation and the timing of NOx-N delivery to streams. We aggregated 15-min interval NOx-N and discharge data over a nine-year period into daily averages and then used robust statistical methods to identify how the discharge regime within an artificially-drained agricultural watershed reflected catchment hydrology and NOx-N delivery pathways. We then quantified how transport and supply limitations varied from year-to-year and how dependence of these limitations varied with climate, especially drought. Our results show NOx-N concentrations increased linearly with discharge up to an average "turning point" of 1.42 mm of area-normalized discharge, after which concentrations decline with increasing discharge. We estimate transport and supply limitations to govern 57 and 43 percent, respectively, of the NOx-N flux over the nine-year period. Drought effects on the NOx-N flux linger for multiple years and this is reflected in a greater tendency toward supply limitations in the three years following drought. How the turning point varies with climate may aid in prediction of NOx-N loading in future climate regimes.

  6. Numerical simulations in the Mala Nitra stream by 1D model

    Directory of Open Access Journals (Sweden)

    Lenka Szomorová

    2015-06-01

    Full Text Available The development of the computer technologies enables us to solve the ecological problems in water management practice very efficiently. Hydrodynamical models which simulating transport of pollution in surface water are very demanding on input data and calculation time, but on the other side, they are able to simulate detailed effect of dispersion in surface waters. The paper deals with 1-dimensional numerical model HEC-RAS and its response on various values of dispersion coefficient. This parameter is one of the most important input data for simulation of pollution spreading in streams. Getting fair value, however, is in practice very difficult. One option is the most accurate simulation of tracer experiments carried out on the ground on the natural surface flow. For the pilot application was selected flow Small Nitra. Of longitudinal dispersion coefficient in the flow, or the flow of a similar nature (with and limit the rate of flow, were in the range 0.05 to 2.5 m2 · s–1. The next task was carrying out the model sensitivity analysis, which means to evaluate input data influences, especially longitudinal dispersion coefficient, on outputs computed by 1-dimensional simulation model HEC-RAS. Sensitivity analysis model HEC-RAS also showed its adequate response to changes of the input parameter. Given the present results it can be stated that the HEC-RAS model responds to changes in the values of the longitudinal dispersion coefficient appropriately. HEC-RAS model has demonstrated its applicability to simulation of pollution in streams, and therefore is an appropriate tool for decision making related to the quality of water resources.

  7. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    Science.gov (United States)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and

  8. Stream Control Transmission Protocol as a Transport for SIP: a case study

    Directory of Open Access Journals (Sweden)

    Giuseppe De Marco

    2004-06-01

    Full Text Available The dominant signalling protocol both in future wireless and wired networks will be the Session Initiation Protocol (SIP, as pointed out in the 3G IP-based mobile networks specifications, entailing a fully Internet integrated network. The use of SIP in the IP Multimedia Subsytem (IMS of Release 5 involves the development of servers capable to handle a large number of call requests. The signaling traffic associated to such requests could explode, if an intelligent congestion control were not introduced. Stream Control Transmission Protocol (SCTP was born to support transport of SS7 signaling messages. However, many of the SCTP features are also useful for transport of SIP messages, as: congestion control mechanism, good separation among independent messages, multihoming. Indeed, adoption of SCTP as transport of SIP signaling might prove useful in some situations where usual transport protocols, like TCP and UDP, suffer performance degradation. In this paper, we analyse the general framework wherein SIP operates and we discuss the benefits of using SCTP as a transport for SIP, toward fair sharing of network resources. This study is carried on in the context of the implementation of an high-performance SIP Proxy Server. We also present some preliminar results of an implementation of SIP over SCTP/UDP in a real LAN environment.

  9. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  10. Human and veterinary pharmaceutical abundance and transport in a rural central Indiana stream influenced by confined animal feeding operations (CAFOs).

    Science.gov (United States)

    Bernot, Melody J; Smith, Lora; Frey, Jeff

    2013-02-15

    Previous research has documented the ubiquity of human and veterinary pharmaceuticals and personal care products (PPCPs) in freshwater, though their persistence and transport is relatively unknown. The objective of this study was to quantify the abundance and transport of human and veterinary PPCPs in a rural, central Indiana stream influenced by confined animal feeding operations (CAFOs). Research objectives also aimed to identify mechanisms controlling abundance and transport. PPCP concentrations and stream physicochemical characteristics were measured monthly over one year at multiple sites along a 60 km reach. Overall, human PPCPs were more abundant and measured at higher concentrations than veterinary pharmaceuticals. Veterinary pharmaceutical concentrations (lincomycin, sulfamethazine) were greatest in stream reaches adjacent to CAFOs. No distinct spatial variation was observed for human PPCPs. However, caffeine and paraxanthine had significant temporal variation with higher concentrations in winter. In contrast, DEET had higher concentrations in summer. Pharmaceutical load (μg/s) ranged fromcaffeine are transported farther than triclosan though had lower loss velocities (loss relative to abundance). Loss rate of PPCPs was an order of magnitude lower than nitrate-N loss rate. Human PPCPs were more abundant than veterinary pharmaceuticals in this rural watershed influenced by CAFOs. Further, concentrations had significant temporal and spatial variation highlighting differential sources and fates. Thus, mechanisms driving PPCP retention and transport need to be identified to aid management of these emerging contaminants. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Recurrent and Dynamic Models for Predicting Streaming Video Quality of Experience.

    Science.gov (United States)

    Bampis, Christos G; Li, Zhi; Katsavounidis, Ioannis; Bovik, Alan C

    2018-07-01

    Streaming video services represent a very large fraction of global bandwidth consumption. Due to the exploding demands of mobile video streaming services, coupled with limited bandwidth availability, video streams are often transmitted through unreliable, low-bandwidth networks. This unavoidably leads to two types of major streaming-related impairments: compression artifacts and/or rebuffering events. In streaming video applications, the end-user is a human observer; hence being able to predict the subjective Quality of Experience (QoE) associated with streamed videos could lead to the creation of perceptually optimized resource allocation strategies driving higher quality video streaming services. We propose a variety of recurrent dynamic neural networks that conduct continuous-time subjective QoE prediction. By formulating the problem as one of time-series forecasting, we train a variety of recurrent neural networks and non-linear autoregressive models to predict QoE using several recently developed subjective QoE databases. These models combine multiple, diverse neural network inputs, such as predicted video quality scores, rebuffering measurements, and data related to memory and its effects on human behavioral responses, using them to predict QoE on video streams impaired by both compression artifacts and rebuffering events. Instead of finding a single time-series prediction model, we propose and evaluate ways of aggregating different models into a forecasting ensemble that delivers improved results with reduced forecasting variance. We also deploy appropriate new evaluation metrics for comparing time-series predictions in streaming applications. Our experimental results demonstrate improved prediction performance that approaches human performance. An implementation of this work can be found at https://github.com/christosbampis/NARX_QoE_release.

  12. Application of two-stream model to solar radiation of rice canopy

    International Nuclear Information System (INIS)

    Kawakata, T.

    2005-01-01

    The amount of solar radiation absorbed by a crop canopy is correlated with crop production, and thus it is necessary to estimate both transmission and reflection around the canopy for crop growth models. The 'forward and backward streams' representation of radiation has been refined to account for both transmission and reflection in the crop canopy. However, this model has not been applied to a rice canopy through the growing period. The purpose of this study is to examine whether the two-stream model is applicable to the rice canopy, and to investigate the parameters of the model. The values for both transmittance below the rice canopy and reflectance above it that were derived from the two-stream model represent the observed values throughout the growing period. The inclination factor of leaves (F), which is used in the two-stream model, was almost equivalent to the extinction coefficient of transmittance in the case of the rice canopy

  13. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Andreas [Université Libre de Bruxelles, Service de Physique Statistique et des Plasmas, CP 231, B-1050 Brussels (Belgium); Wiengarten, Tobias; Fichtner, Horst [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Effenberger, Frederic [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Kühl, Patrick; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel, D-24098 Kiel (Germany); Raath, Jan-Louis; Potgieter, Marius S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-03-01

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.

  14. The role of geology in sediment supply and bedload transport patterns in coarse-grained streams

    Science.gov (United States)

    Sandra E. Ryan

    2007-01-01

    This paper compares gross differences in rates of bedload sediment moved at bankfull discharges in 19 channels on national forests in the Middle and Southern Rocky Mountains. Each stream has its own "bedload signal," in that the rate and size of materials transported at bankfull discharge largely reflect the nature of flow and sediment particular to that...

  15. Modelling freight transport

    NARCIS (Netherlands)

    Tavasszy, L.A.; Jong, G. de

    2014-01-01

    Freight Transport Modelling is a unique new reference book that provides insight into the state-of-the-art of freight modelling. Focusing on models used to support public transport policy analysis, Freight Transport Modelling systematically introduces the latest freight transport modelling

  16. Models of Tidally Induced Gas Filaments in the Magellanic Stream

    Science.gov (United States)

    Pardy, Stephen A.; D’Onghia, Elena; Fox, Andrew J.

    2018-04-01

    The Magellanic Stream and Leading Arm of H I that stretches from the Large and Small Magellanic Clouds (LMC and SMC) and over 200° of the Southern sky is thought to be formed from multiple encounters between the LMC and SMC. In this scenario, most of the gas in the Stream and Leading Arm is stripped from the SMC, yet recent observations have shown a bifurcation of the Trailing Arm that reveals LMC origins for some of the gas. Absorption measurements in the Stream also reveal an order of magnitude more gas than in current tidal models. We present hydrodynamical simulations of the multiple encounters between the LMC and SMC at their first pass around the Milky Way, assuming that the Clouds were more extended and gas-rich in the past. Our models create filamentary structures of gas in the Trailing Stream from both the LMC and SMC. While the SMC trailing filament matches the observed Stream location, the LMC filament is offset. In addition, the total observed mass of the Stream in these models is underestimated by a factor of four when the ionized component is accounted for. Our results suggest that there should also be gas stripped from both the LMC and SMC in the Leading Arm, mirroring the bifurcation in the Trailing Stream. This prediction is consistent with recent measurements of spatial variation in chemical abundances in the Leading Arm, which show that gas from multiple sources is present, although its nature is still uncertain.

  17. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.

    Science.gov (United States)

    Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M

    2013-01-01

    Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water

  18. STREAM II-V7: Revision for STREAM II-V6 to include outflow from all Savannah River Site tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Maze, Grace M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    STREAM II is the aqueous transport model of the Weather Information Display (WIND) emergency response system at Savannah River Site. It is used to calculate transport in the event of a chemical or radiological spill into the waterways on the Savannah River Site. Improvements were made to the code (STREAM II V7) to include flow from all site tributaries to the Savannah River total flow and utilize a 4 digit year input. The predicted downstream concentrations using V7 were generally on the same order of magnitude as V6 with slightly lower concentrations and quicker arrival times when all onsite stream flows are contributing to the Savannah River flow. The downstream arrival time at the Savannah River Water Plant ranges from no change to an increase of 8.77%, with minimum changes typically in March/April and maximum changes typically in October/November. The downstream concentrations are generally no more than 15% lower using V7 with the maximum percent change in January through April and minimum changes in June/July.

  19. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module

  20. Flume Experiments on the Influence of Salmon Spawning Density on Grain Stability and Bedload Transport in Gravel-bed Streams

    Science.gov (United States)

    Buxton, T. H.

    2015-12-01

    Salmon spawning in streams involves the female salmon digging a pit in the bed where she deposits eggs for fertilization before covering them with gravel excavated from the next pit upstream. Sequences of pit excavation and filling winnow fines, loosen sediment, and move bed material into a tailspill mound resembling the shape of a dune. Research suggests salmonid nests (redds) destabilize streambeds by reducing friction between loosened grains and converging flow that elevates shear stress on redd topography. However, bed stability may be enhanced by form drag from redds in clusters that lower shear stress on the granular bed, but this effect will vary with the proportion of the bed surface that is occupied by redds (P). I used simulated redds and water-worked ("unspawned") beds in a laboratory flume to evaluate these competing influences on grain stability and bedload transport rates with P=0.12, 0.34, and 0.41. Results indicate that competence (largest-grain) and reference transport rate estimates of critical conditions for particle entrainment inversely relate to P. Bedload transport increased as exponential functions of P and excess boundary shear stress. Therefore, redd form drag did not overcome the destabilizing effects of spawning. Instead, grain mobility and bedload transport increased with P because larger areas of the bed were composed of relatively loose, unstable grains and redd topography that experienced elevated shear stress. Consequently, the presence of redds in fish-bearing streams likely reduces the effects of sedimentation from landscape disturbance on stream habitats that salmon use for reproduction.

  1. Computing Diameter in the Streaming and Sliding-Window Models (Preprint)

    National Research Council Canada - National Science Library

    Feigenbaum, Joan; Kannan, Sampath; Zhang, Jian

    2002-01-01

    We investigate the diameter problem in the streaming and sliding-window models. We show that, for a stream of n points or a sliding window of size n, any exact algorithm for diameter requires Omega(n) bits of space...

  2. A multiclass vehicular dynamic traffic flow model for main roads and dedicated lanes/roads of multimodal transport network

    Energy Technology Data Exchange (ETDEWEB)

    Sossoe, K.S., E-mail: kwami.sossoe@irt-systemx.fr [TECHNOLOGICAL RESEARCH INSTITUTE SYSTEMX (France); Lebacque, J-P., E-mail: jean-patrick.lebacque@ifsttar.fr [UPE/IFSTTAR-COSYS-GRETTIA (France)

    2015-03-10

    We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap scheme is introduced to numerically approximate the model’s flow equations.

  3. Qualitatively Modeling solute fate and transport across scales in an agricultural catchment with diverse lithology

    Science.gov (United States)

    Wayman, C. R.; Russo, T. A.; Li, L.; Forsythe, B.; Hoagland, B.

    2017-12-01

    As part of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) project, we have collected geochemical and hydrological data from several subcatchments and four monitoring sites on the main stem of Shaver's Creek, in Huntingon county, Pennsylvania. One subcatchment (0.43 km2) is under agricultural land use, and the monitoring locations on the larger Shaver's Creek (up to 163 km2) drain watersheds with 0 to 25% agricultural area. These two scales of investigation, coupled with advances made across the SSHCZO on multiple lithologies allow us to extrapolate from the subcatchment to the larger watershed. We use geochemical surface and groundwater data to estimate the solute and water transport regimes within the catchment, and to show how lithology and land use are major controls on ground and surface water quality. One area of investigation includes the transport of nutrients between interflow and regional groundwater, and how that connectivity may be reflected in local surface waters. Water and nutrient (Nitrogen) isotopes, will be used to better understand the relative contributions of local and regional groundwater and interflow fluxes into nearby streams. Following initial qualitative modeling, multiple hydrologic and nutrient transport models (e.g. SWAT and CYCLES/PIHM) will be evaluated from the subcatchment to large watershed scales. We will evaluate the ability to simulate the contributions of regional groundwater versus local groundwater, and also impacts of agricultural land management on surface water quality. Improving estimations of groundwater contributions to stream discharge will provide insight into how much agricultural development can impact stream quality and nutrient loading.

  4. Volume Transport Stream Function Calculated from World Ocean Atlas 2013 (WOA13-VTSF) and Climatological Wind (NCEI Accession 0138646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of calculated annual and monthly mean ocean volume transport stream function on 1 degree resolution using the WOA13 (T, S) and corresponding...

  5. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  6. Simulating temporal variations of nitrogen losses in river networks with a dynamic transport model unravels the coupled effects of hydrological and biogeochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Alexander, Richard [U.S. Geological Survey; Bohlke, John [U.S. Geological Survey; Boyer, Elizabeth [Pennsylvania State University; Harvey, Judson [U.S. Geological Survey; Seitzinger, Sybil [Rutgers University; Tobias, Craig [University of North Carolina, Wilmington; Tonitto, Christina [Cornell University; Wollheim, Wilfred [University of New Hampshire

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  7. Analysis of hydraulic characteristics for stream diversion in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jin; Jun, Kye-Won [Chungbuk National University, Cheongju(Korea)

    2001-10-31

    This study is the analysis of hydraulic characteristics for stream diversion reach by numerical model test. Through it we can provide the basis data in flood, and in grasping stream flow characteristics. Analysis of hydraulic characteristics in Seoknam stream were implemented by using computer model HEC-RAS(one-dimensional model) and RMA2(two-dimensional finite element model). As a result we became to know that RMA2 to simulate left, main channel, right in stream is more effective method in analysing flow in channel bends, steep slope, complex bed form effect stream flow characteristics, than HEC-RAS. (author). 13 refs., 3 tabs., 5 figs.

  8. Subglacial hydrology and the formation of ice streams.

    Science.gov (United States)

    Kyrke-Smith, T M; Katz, R F; Fowler, A C

    2014-01-08

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice-water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.

  9. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    Science.gov (United States)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of

  10. Discrete element modelling of bedload transport

    Science.gov (United States)

    Loyer, A.; Frey, P.

    2011-12-01

    Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth

  11. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    Science.gov (United States)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  12. Hydrogeomorphic linkages of sediment transport in headwater streams, Maybeso Experimental Forest, southeast Alaska

    Science.gov (United States)

    Gomi, Takashi; Sidle, Roy C.; Swanston, Douglas N.

    2004-03-01

    Hydrogemorphic linkages related to sediment transport in headwater streams following basin wide clear-cut logging on Prince of Wales Island, southeast Alaska, were investigated. Landslides and debris flows transported sediment and woody debris in headwater tributaries in 1961, 1979, and 1993. Widespread landsliding in 1961 and 1993 was triggered by rainstorms with recurrence intervals (24 h precipitation) of 7.0 years and 4.2 years respectively. Occurrence, distribution, and downstream effects of these mass movements were controlled by landform characteristics such as channel gradient and valley configuration. Landslides and channelized debris flows created exposed bedrock reaches, log jams, fans, and abandoned channels. The terminus of the deposits did not enter main channels because debris flows spread and thinned on the unconfined bottom of the U-shaped glaciated valley. Chronic sediment input to channels included surface erosion of exposed till (rain splash, sheet erosion, and freeze-thaw action) and bank failures. Bedload sediment transport in a channel impacted by 1993 landslides and debris flows was two to ten times greater and relatively finer compared with bedload transport in a young alder riparian channel that had last experienced a landslide and debris flow in 1961. Sediment transport and storage were influenced by regeneration of riparian vegetation, storage behind recruited woody debris, development of a streambed armour layer, and the decoupling of hillslopes and channels. Both spatial and temporal variations of sediment movement and riparian condition are important factors in understanding material transport within headwaters and through channel networks.

  13. Vlasov modelling of parallel transport in a tokamak scrape-off layer

    International Nuclear Information System (INIS)

    Manfredi, G; Hirstoaga, S; Devaux, S

    2011-01-01

    A one-dimensional Vlasov-Poisson model is used to describe the parallel transport in a tokamak scrape-off layer. Thanks to a recently developed 'asymptotic-preserving' numerical scheme, it is possible to lift numerical constraints on the time step and grid spacing, which are no longer limited by, respectively, the electron plasma period and Debye length. The Vlasov approach provides a good velocity-space resolution even in regions of low density. The model is applied to the study of parallel transport during edge-localized modes, with particular emphasis on the particles and energy fluxes on the divertor plates. The numerical results are compared with analytical estimates based on a free-streaming model, with good general agreement. An interesting feature is the observation of an early electron energy flux, due to suprathermal electrons escaping the ions' attraction. In contrast, the long-time evolution is essentially quasi-neutral and dominated by the ion dynamics.

  14. Vlasov modelling of parallel transport in a tokamak scrape-off layer

    Energy Technology Data Exchange (ETDEWEB)

    Manfredi, G [Institut de Physique et Chimie des Materiaux, CNRS and Universite de Strasbourg, BP 43, F-67034 Strasbourg (France); Hirstoaga, S [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France); Devaux, S, E-mail: Giovanni.Manfredi@ipcms.u-strasbg.f, E-mail: hirstoaga@math.unistra.f, E-mail: Stephane.Devaux@ccfe.ac.u [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2011-01-15

    A one-dimensional Vlasov-Poisson model is used to describe the parallel transport in a tokamak scrape-off layer. Thanks to a recently developed 'asymptotic-preserving' numerical scheme, it is possible to lift numerical constraints on the time step and grid spacing, which are no longer limited by, respectively, the electron plasma period and Debye length. The Vlasov approach provides a good velocity-space resolution even in regions of low density. The model is applied to the study of parallel transport during edge-localized modes, with particular emphasis on the particles and energy fluxes on the divertor plates. The numerical results are compared with analytical estimates based on a free-streaming model, with good general agreement. An interesting feature is the observation of an early electron energy flux, due to suprathermal electrons escaping the ions' attraction. In contrast, the long-time evolution is essentially quasi-neutral and dominated by the ion dynamics.

  15. Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate

    Science.gov (United States)

    Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail

    2017-01-01

    Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource

  16. A model for evaluating stream temperature response to climate change in Wisconsin

    Science.gov (United States)

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Expected climatic changes in air temperature and precipitation patterns across the State of Wisconsin may alter future stream temperature and flow regimes. As a consequence of flow and temperature changes, the composition and distribution of fish species assemblages are expected to change. In an effort to gain a better understanding of how climatic changes may affect stream temperature, an approach was developed to predict and project daily summertime stream temperature under current and future climate conditions for 94,341 stream kilometers across Wisconsin. The approach uses a combination of static landscape characteristics and dynamic time-series climatic variables as input for an Artificial Neural Network (ANN) Model integrated with a Soil-Water-Balance (SWB) Model. Future climate scenarios are based on output from downscaled General Circulation Models (GCMs). The SWB model provided a means to estimate the temporal variability in groundwater recharge and provided a mechanism to evaluate the effect of changing air temperature and precipitation on groundwater recharge and soil moisture. The Integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) Model was used to simulate daily summertime stream temperature under current (1990–2008) climate and explained 76 percent of the variation in the daily mean based on validation at 67 independent sites. Results were summarized as July mean water temperature, and individual stream segments were classified by thermal class (cold, cold transition, warm transition, and warm) for comparison of current (1990–2008) with future climate conditions.

  17. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  18. A bipartite fitness model for online music streaming services

    Science.gov (United States)

    Pongnumkul, Suchit; Motohashi, Kazuyuki

    2018-01-01

    This paper proposes an evolution model and an analysis of the behavior of music consumers on online music streaming services. While previous studies have observed power-law degree distributions of usage in online music streaming services, the underlying behavior of users has not been well understood. Users and songs can be described using a bipartite network where an edge exists between a user node and a song node when the user has listened that song. The growth mechanism of bipartite networks has been used to understand the evolution of online bipartite networks Zhang et al. (2013). Existing bipartite models are based on a preferential attachment mechanism László Barabási and Albert (1999) in which the probability that a user listens to a song is proportional to its current popularity. This mechanism does not allow for two types of real world phenomena. First, a newly released song with high quality sometimes quickly gains popularity. Second, the popularity of songs normally decreases as time goes by. Therefore, this paper proposes a new model that is more suitable for online music services by adding fitness and aging functions to the song nodes of the bipartite network proposed by Zhang et al. (2013). Theoretical analyses are performed for the degree distribution of songs. Empirical data from an online streaming service, Last.fm, are used to confirm the degree distribution of the object nodes. Simulation results show improvements from a previous model. Finally, to illustrate the application of the proposed model, a simplified royalty cost model for online music services is used to demonstrate how the changes in the proposed parameters can affect the costs for online music streaming providers. Managerial implications are also discussed.

  19. Net currents in the wave bottom boundary layer: on waveshape streaming and progressive wave streaming

    NARCIS (Netherlands)

    Kranenburg, Wouter; Ribberink, Jan S.; Uittenbogaard, R.E.; Hulscher, Suzanne J.M.H.

    2012-01-01

    The net current (streaming) in a turbulent bottom boundary layer under waves above a flat bed, identified as potentially relevant for sediment transport, is mainly determined by two competing mechanisms: an onshore streaming resulting from the horizontal non-uniformity of the velocity field under

  20. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    Science.gov (United States)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  1. Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media

    Science.gov (United States)

    Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.

    2017-12-01

    Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.

  2. Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.

    Science.gov (United States)

    Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent

    2015-01-01

    This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams. © 2015, National Ground Water Association.

  3. Explaining and modeling the concentration and loading of Escherichia coli in a stream-A case study.

    Science.gov (United States)

    Wang, Chaozi; Schneider, Rebecca L; Parlange, Jean-Yves; Dahlke, Helen E; Walter, M Todd

    2018-09-01

    Escherichia coli (E. coli) level in streams is a public health indicator. Therefore, being able to explain why E. coli levels are sometimes high and sometimes low is important. Using citizen science data from Fall Creek in central NY we found that complementarily using principal component analysis (PCA) and partial least squares (PLS) regression provided insights into the drivers of E. coli and a mechanism for predicting E. coli levels, respectively. We found that stormwater, temperature/season and shallow subsurface flow are the three dominant processes driving the fate and transport of E. coli. PLS regression modeling provided very good predictions under stormwater conditions (R 2  = 0.85 for log (E. coli concentration) and R 2  = 0.90 for log (E. coli loading)); predictions under baseflow conditions were less robust. But, in our case, both E. coli concentration and E. coli loading were significantly higher under stormwater condition, so it is probably more important to predict high-flow E. coli hazards than low-flow conditions. Besides previously reported good indicators of in-stream E. coli level, nitrate-/nitrite-nitrogen and soluble reactive phosphorus were also found to be good indicators of in-stream E. coli levels. These findings suggest management practices to reduce E. coli concentrations and loads in-streams and, eventually, reduce the risk of waterborne disease outbreak. Copyright © 2018. Published by Elsevier B.V.

  4. A Simple FSPN Model of P2P Live Video Streaming System

    OpenAIRE

    Kotevski, Zoran; Mitrevski, Pece

    2011-01-01

    Peer to Peer (P2P) live streaming is relatively new paradigm that aims at streaming live video to large number of clients at low cost. Many such applications already exist in the market, but, prior to creating such system it is necessary to analyze its performance via representative model that can provide good insight in the system’s behavior. Modeling and performance analysis of P2P live video streaming systems is challenging task which requires addressing many properties and issues of P2P s...

  5. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.

    Science.gov (United States)

    Luo, Yuzhou; Zhang, Minghua

    2009-12-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed.

  6. Using spatially detailed water-quality data and solute-transport modeling to improve support total maximum daily load development

    Science.gov (United States)

    Walton-Day, Katherine; Runkel, Robert L.; Kimball, Briant A.

    2012-01-01

    Spatially detailed mass-loading studies and solute-transport modeling using OTIS (One-dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass-loading data collected during low-flow from Cement Creek (a low-pH, metal-rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL-recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53-63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse-source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse-source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.

  7. Progressive Conversion from B-rep to BSP for Streaming Geometric Modeling.

    Science.gov (United States)

    Bajaj, Chandrajit; Paoluzzi, Alberto; Scorzelli, Giorgio

    2006-01-01

    We introduce a novel progressive approach to generate a Binary Space Partition (BSP) tree and a convex cell decomposition for any input triangles boundary representation (B-rep), by utilizing a fast calculation of the surface inertia. We also generate a solid model at progressive levels of detail. This approach relies on a variation of standard BSP tree generation, allowing for labeling cells as in, out and fuzzy, and which permits a comprehensive representation of a solid as the Hasse diagram of a cell complex. Our new algorithm is embedded in a streaming computational framework, using four types of dataflow processes that continuously produce, transform, combine or consume subsets of cells depending on their number or input/output stream. A varied collection of geometric modeling techniques are integrated in this streaming framework, including polygonal, spline, solid and heterogeneous modeling with boundary and decompositive representations, Boolean set operations, Cartesian products and adaptive refinement. The real-time B-rep to BSP streaming results we report in this paper are a large step forward in the ultimate unification of rapid conceptual and detailed shape design methodologies.

  8. Evaluation of neutron streaming in fast breeder reactor fuel assembly by double heterogeneous modelling

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Takeda, Toshikazu

    1988-01-01

    Neutron streaming in a fast breeder reactor fuel assembly caused by the double heterogeneity structure is estimated by double heterogeneous modelling. The conventional pin cell model, a two-region subassembly model and the exact pin cluster model are used to take into account the streaming effect caused by the pin cell structure and the surrounding wrapper tube structure. The heterogeneity of wrapper tube and its surrounding sodium is explicitly considered. The streaming effect is evaluated based on Benoist's diffusion coefficient. The total streaming effect caused by the double heterogeneity structure of a fuel subassembly is found to be -0.2 % dk/kk' for k eff , which is almost twice that obtained from the conventional pin cell model of -0.1 % dk/kk'. (author)

  9. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  10. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    Science.gov (United States)

    Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  11. Bedload transport measurements with impact plate geophones in two Austrian mountain streams (Fischbach and Ruetz): system calibration, grain size estimation, and environmental signal pick-up

    Science.gov (United States)

    Rickenmann, Dieter; Fritschi, Bruno

    2017-10-01

    The Swiss plate geophone system is a bedload surrogate measuring technique that has been installed in more than 20 streams, primarily in the European Alps. Here we report about calibration measurements performed in two mountain streams in Austria. The Fischbach and Ruetz gravel-bed streams are characterized by important runoff and bedload transport during the snowmelt season. A total of 31 (Fischbach) and 21 (Ruetz) direct bedload samples were obtained during a 6-year period. Using the number of geophone impulses and total transported bedload mass for each measurement to derive a calibration function results in a strong linear relation for the Fischbach, whereas there is only a poor linear calibration relation for the Ruetz measurements. Instead, using geophone impulse rates and bedload transport rates indicates that two power law relations best represent the Fischbach data, depending on transport intensity; for lower transport intensities, the same power law relation is also in reasonable agreement with the Ruetz data. These results are compared with data and findings from other field sites and flume studies. We further show that the observed coarsening of the grain size distribution with increasing bedload flux can be qualitatively reproduced from the geophone signal, when using the impulse counts along with amplitude information. Finally, we discuss implausible geophone impulse counts that were recorded during periods with smaller discharges without any bedload transport, and that are likely caused by vehicle movement very near to the measuring sites.

  12. Investigating transport capacity equations in sediment yield modelling for the Cariri semi-arid region of Paraiba-PB/Brazil

    Directory of Open Access Journals (Sweden)

    E. E. De Figueiredo

    2015-03-01

    Full Text Available In the semi arid Cariri region of the state of Paraiba, Brazil, runoff is of the Hortonian type generated by excess of rainfall over infiltration capacity, and soil erosion is governed by rainfall intensity and sediment size. However, the governing sediment transport mechanism is not well understood. Sediment transport generally depends on the load of sediment provided by soil erosion and on the transport capacity of the flow. The latter is mainly governed by mechanisms such as water shear stress, or stream power. Accordingly, the load of sediment transported by the flow may vary depending on the mechanism involved in the equation of estimation. Investigation of the sediment transport capacity of the flow via a distributed physically-based model is an important and necessary task, but quite rare in semi-arid climates, and particularly in the Cariri region of the state of Paraíba/Brazil. In this study, the equations of Yalin, Engelund & Hansen, Laursen, DuBoys and Bagnold have been coupled with the MOSEE distributed physically based model aiming at identifying the mechanisms leading to the best model simulations when compared with data observed at various basin scales and land uses in the study region. The results obtained with the investigated methods were quite similar and satisfactory suggesting the feasibility of the mechanisms involved, but the observed values were better represented with Bagnold’s equation, which is physically grounded on the stream power, and we recommend it for simulations of similar climate, runoff generation mechanisms and sediment characteristics as in the study region.

  13. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles.

    Science.gov (United States)

    Oh, Jin Sun; Kwon, Yong Seok; Lee, Kyung Ho; Jeong, Woowon; Chung, Sang Kug; Rhee, Kyehan

    2014-01-01

    Drug delivery into neurological tissue is challenging because of the low tissue permeability. Ultrasound incorporating microbubbles has been applied to enhance drug delivery into these tissues, but the effects of a streaming flow by microbubble oscillation on drug perfusion have not been elucidated. In order to clarify the physical effects of steady streaming on drug delivery, an experimental study on dye perfusion into a tissue model was performed using microbubbles excited by acoustic waves. The surface concentration and penetration length of the drug were increased by 12% and 13%, respectively, with streaming flow. The mass of dye perfused into a tissue phantom for 30s was increased by about 20% in the phantom with oscillating bubbles. A computational model that considers fluid structure interaction for streaming flow fields induced by oscillating bubbles was developed, and mass transfer of the drug into the porous tissue model was analyzed. The computed flow fields agreed with the theoretical solutions, and the dye concentration distribution in the tissue agreed well with the experimental data. The computational results showed that steady streaming with a streaming velocity of a few millimeters per second promotes mass transfer into a tissue. © 2013 Published by Elsevier Ltd.

  14. Numerical modeling of water-vapor transport during pre-storm and COHMEX

    Science.gov (United States)

    Djuric, Dusan

    1986-01-01

    Initial conditions are designed for numerical simulation of mesocale processes in the atmosphere using the Limited Area Mesoscale Prediction System (LAMPS) model. These initial conditions represent an idealized baroclinic wave in which the transport of water vapor can be simulated. The constructed atmosphere has two homogeneous air masses, polar front, polar jet stream and a stratosphere. All these simulate the basic structure of the earth's atmosphere. The hydrostatic and geostrophic balances make it possible to evaluate mutually consistent fields of wind and of the height of isobaric surfaces.

  15. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics

    Science.gov (United States)

    Marcé, R.; Armengol, J.

    2009-07-01

    One of the fundamental problems of using large-scale biogeochemical models is the uncertainty involved in aggregating the components of fine-scale deterministic models in watershed applications, and in extrapolating the results of field-scale measurements to larger spatial scales. Although spatial or temporal lumping may reduce the problem, information obtained during fine-scale research may not apply to lumped categories. Thus, the use of knowledge gained through fine-scale studies to predict coarse-scale phenomena is not straightforward. In this study, we used the nutrient uptake metrics defined in the Nutrient Spiralling concept to formulate the equations governing total phosphorus in-stream fate in a deterministic, watershed-scale biogeochemical model. Once the model was calibrated, fitted phosphorus retention metrics where put in context of global patterns of phosphorus retention variability. For this purpose, we calculated power regressions between phosphorus retention metrics, streamflow, and phosphorus concentration in water using published data from 66 streams worldwide, including both pristine and nutrient enriched streams. Performance of the calibrated model confirmed that the Nutrient Spiralling formulation is a convenient simplification of the biogeochemical transformations involved in total phosphorus in-stream fate. Thus, this approach may be helpful even for customary deterministic applications working at short time steps. The calibrated phosphorus retention metrics were comparable to field estimates from the study watershed, and showed high coherence with global patterns of retention metrics from streams of the world. In this sense, the fitted phosphorus retention metrics were similar to field values measured in other nutrient enriched streams. Analysis of the bibliographical data supports the view that nutrient enriched streams have lower phosphorus retention efficiency than pristine streams, and that this efficiency loss is maintained in a wide

  16. Sources and transport of phosphorus to rivers in California and adjacent states, U.S., as determined by SPARROW modeling

    Science.gov (United States)

    Domagalski, Joseph L.; Saleh, Dina

    2015-01-01

    The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de-trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small- and intermediate-sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.

  17. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Minghua

    2009-01-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  18. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  19. Intercomparison of the Gulf Stream in ocean reanalyses: 1993-2010

    Science.gov (United States)

    Chi, Lequan; Wolfe, Christopher L. P.; Hameed, Sultan

    2018-05-01

    In recent years, significant progress has been made in the development of high-resolution ocean reanalysis products. This paper compares aspects of the Gulf Stream (GS) from the Florida Straits to south of the Grand Banks-particularly Florida Strait transport, separation of the GS near Cape Hatteras, GS properties along the Oleander Line (from New Jersey to Bermuda), GS path, and the GS north wall positions-in 13 widely used global reanalysis products of various resolutions, including two unconstrained products. A large spread across reanalysis products is found. HYCOM and GLORYS2v4 stand out for their superior performance by most metrics. Some common biases are found in all discussed models; for example, the velocity structure of the GS near the Oleander Line is too symmetrical and the maximum velocity is too weak compared with observations. Less than half of the reanalysis products show significant correlations (at the 95% confidence level) with observations for the GS separation latitude at Cape Hatteras, the GS transport, and net transport across Oleander Line. The cross-stream velocity structure is further discussed by a theoretical model idealizing GS as a smoothed PV front.

  20. Peristaltic transport and mixing of cytosol through the whole body of Physarum plasmodium.

    Science.gov (United States)

    Iima, Makoto; Nakagaki, Toshiyuki

    2012-09-01

    We study how the net transport and mixing of chemicals occur in a relatively large amoeba, the true slime mold Physarum polycephalum. The shuttle streaming of the amoeba is characterized by a rhythmic flow of the order of 1 μm/s in which the protoplasm streams back and forth. To explain the experimentally observed transport of chemicals, we formulate a simplified model to consider the mechanism by which net transport can be induced by shuttle (or periodic) motion inside the amoeba. This model is independent from the details of fluid property as it is based on the mass conservation law only. Even in such a simplified model, we demonstrate that sectional oscillations play an important role in net transport and discuss the effects of the sectional boundary motion on net transport in the microorganism.

  1. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  2. Modeling studies of water consumption for transportation fuel options: Hawaii, US-48

    Science.gov (United States)

    King, C. W.; Webber, M. E.

    2011-12-01

    There are now major drivers to move from petroleum transportation: moving to low-carbon transport life cycles for climate change mitigation, fuel diversity to reduce reliance on imported oil, and economic concerns regarding the relatively high price of oil ( $100/barrel) and the resulting impact on discretionary income. Unfortunately many transportation fuel alternatives also have some environmental impacts, particularly with regard to water consumption and biodiversity. In this presentation we will discuss the water and energy sustainability struggle ongoing in Hawai'i on the island of Maui with a brief history and discussion of energy and water modeling scenarios. The vast majority of surface water on Maui is diverted via man-made ditches for irrigation on sugar cane plantations. Maui currently allocates between 250 and 300 million gallons per day (Mgal/d) of irrigation water for sugarcane cultivation each day, and it is likely that the island could support a biofuel-focused sugarcane plantation by shifting production focus from raw sugar to ethanol. However, future water availability is likely to be less than existing water availability because Maui is growing, more water is being reserved for environmental purposes, and precipitation levels are on decline for the past two decades and some expect this trend to continue. While Maui residents cannot control precipitation patterns, they can control the levels of increased requirements for instream flow in Maui's streams. The Hawaii State Commission on Water Resource Management (CWRM) sets instream flow standards, and choosing not to restore instream flow could have what many locals consider negative environmental and cultural impacts that must be weighed against the effects of reducing surface water availability for agriculture. Instream flow standards that reduce legal withdrawals for streams that supply irrigation water would reduce the amount of surface water available for biofuel crop irrigation. Environmental

  3. Cytoplasmic Streaming in the Drosophila Oocyte.

    Science.gov (United States)

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  4. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000

    Science.gov (United States)

    Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.

    2004-01-01

    The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a

  5. Transport and Breakdown of Organic Matter in Urban and Forested Streams: The Effects of Altered Hydrology and Landscape Position

    Science.gov (United States)

    Belt, K. T.; Swan, C. M.; Pouyat, R. V.; Kaushal, S.; Groffman, P. M.; Stack, W. P.; Fisher, G. T.

    2006-05-01

    A better understanding of how urbanization and trees interact to alter organic matter transport and cycling is needed to assess retention in catchments and streams, as well as to estimate the magnitude of carbon fluxes to the atmosphere and to downstream aquatic ecosystems. The influx of particulate and dissolved organic matter (POM/DOC) to headwater streams normally originates within or near riparian areas, and is important to aquatic food webs in stream ecosystems. Urban catchments, however, have huge effective drainage densities (due to storm drainage infrastructure), which facilitate a POM/DOC "gutter subsidy" to streams that dwarfs riparian inputs and alters benthic litter quality (and represents a major short-circuit in the carbon vegetation-soil cycle.) We measured in-situ leaf litter breakdown rates, flows, DOC, BOD and nutrients in forested, suburban and urban streams of the BES LTER and Baltimore City DPW sampling networks, which encompassed a variety of urban and rural landscapes. Sycamore and Planetree leaf litter in-situ experiments revealed faster breakdown rates for suburban and urban landscape litter than for riparian litter, with rates being much faster than literature values for forested catchments. DOC, BOD and nutrient data (storm and dry weather) from BES/DPW stream sites showed much higher concentrations and loads in the more urbanized catchments and indicate the streams are likely heterotrophic and experience transient but high dissolved oxygen demands. High nutrient concentrations, faster litter breakdown rates, and substantially higher upland urban fluxes of organic matter (particulate and dissolved) in urban streams suggest that export rates are likely substantially higher than in forested systems and that carbon loads to both downstream aquatic systems and to the atmosphere (as CO2) are substantial.

  6. Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture.

    Science.gov (United States)

    Ganguly, Sujoy; Williams, Lucy S; Palacios, Isabel M; Goldstein, Raymond E

    2012-09-18

    Cells can localize molecules asymmetrically through the combined action of cytoplasmic streaming, which circulates their fluid contents, and specific anchoring mechanisms. Streaming also contributes to the distribution of nutrients and organelles such as chloroplasts in plants, the asymmetric position of the meiotic spindle in mammalian embryos, and the developmental potential of the zygote, yet little is known quantitatively about the relationship between streaming and the motor activity which drives it. Here we use Particle Image Velocimetry to quantify the statistical properties of Kinesin-dependent streaming during mid-oogenesis in Drosophila. We find that streaming can be used to detect subtle changes in Kinesin activity and that the flows reflect the architecture of the microtubule cytoskeleton. Furthermore, based on characterization of the rheology of the cytoplasm in vivo, we establish estimates of the number of Kinesins required to drive the observed streaming. Using this in vivo data as the basis of a model for transport, we suggest that the disordered character of transport at mid-oogenesis, as revealed by streaming, is an important component of the localization dynamics of the body plan determinant oskar mRNA.

  7. sedFlow – a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    Directory of Open Access Journals (Sweden)

    F. U. M. Heimann

    2015-01-01

    floods. The model is intended for temporal scales from the individual event (several hours to few days up to longer-term evolution of stream channels (several years. The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL (www.wsl.ch/sedFlow. Examples of the application of sedFlow are given in a companion article by Heimann et al. (2015.

  8. Modeling the effects of LID practices on streams health at watershed scale

    Science.gov (United States)

    Shannak, S.; Jaber, F. H.

    2013-12-01

    Increasing impervious covers due to urbanization will lead to an increase in runoff volumes, and eventually increase flooding. Stream channels adjust by widening and eroding stream bank which would impact downstream property negatively (Chin and Gregory, 2001). Also, urban runoff drains in sediment bank areas in what's known as riparian zones and constricts stream channels (Walsh, 2009). Both physical and chemical factors associated with urbanization such as high peak flows and low water quality further stress aquatic life and contribute to overall biological condition of urban streams (Maxted et al., 1995). While LID practices have been mentioned and studied in literature for stormwater management, they have not been studied in respect to reducing potential impact on stream health. To evaluate the performance and the effectiveness of LID practices at a watershed scale, sustainable detention pond, bioretention, and permeable pavement will be modeled at watershed scale. These measures affect the storm peak flows and base flow patterns over long periods, and there is a need to characterize their effect on stream bank and bed erosion, and aquatic life. These measures will create a linkage between urban watershed development and stream conditions specifically biological health. The first phase of this study is to design and construct LID practices at the Texas A&M AgriLife Research and Extension Center-Dallas, TX to collect field data about the performance of these practices on a smaller scale. The second phase consists of simulating the performance of LID practices on a watershed scale. This simulation presents a long term model (23 years) using SWAT to evaluate the potential impacts of these practices on; potential stream bank and bed erosion, and potential impact on aquatic life in the Blunn Watershed located in Austin, TX. Sub-daily time step model simulations will be developed to simulate the effectiveness of the three LID practices with respect to reducing

  9. Pollutant Dispersion Modeling in Natural Streams Using the Transmission Line Matrix Method

    Directory of Open Access Journals (Sweden)

    Safia Meddah

    2015-09-01

    Full Text Available Numerical modeling has become an indispensable tool for solving various physical problems. In this context, we present a model of pollutant dispersion in natural streams for the far field case where dispersion is considered longitudinal and one-dimensional in the flow direction. The Transmission Line Matrix (TLM, which has earned a reputation as powerful and efficient numerical method, is used. The presented one-dimensional TLM model requires a minimum input data and provides a significant gain in computing time. To validate our model, the results are compared with observations and experimental data from the river Severn (UK. The results show a good agreement with experimental data. The model can be used to predict the spatiotemporal evolution of a pollutant in natural streams for effective and rapid decision-making in a case of emergency, such as accidental discharges in a stream with a dynamic similar to that of the river Severn (UK.

  10. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  11. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  12. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  13. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural

  14. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat......High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate...... high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation...

  15. Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

  16. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Science.gov (United States)

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  17. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  18. Considering direct and indirect habitat influences on stream biota in eco-geomorphology research to better understand, model, and manage riverine ecosystems

    Science.gov (United States)

    Cienciala, P.; Nelson, A. D.

    2017-12-01

    The field of fluvial eco-geomorphology strives to improve the understanding of interactions between physical and biological processes in running waters. This body of research has greatly contributed to the advancement of integrated river science and management. Arguably, the most popular research themes in eco-geomorphology include hydrogemorphic controls of habitat quality and effects of disturbances such as floods, sediment transport events or sediment accumulation. However, in contrast to the related field of ecology, the distinction between direct and indirect mechanisms which may affect habitat quality and biotic response to disturbance has been poorly explored in eco-geomorphic research. This knowledge gap poses an important challenge for interpretations of field observations and model development. In this research, using the examples of benthic invertebrates and fish, we examine the importance of direct and indirect influences that geomorphic and hydraulic processes may exert on stream biota. We also investigate their implications for modeling of organism-habitat relationships. To achieve our goal, we integrate field and remote sensing data from montane streams in the Pacific Northwest region with habitat models. Preliminary results indicate that indirect hydrogeomorphic influences of stream organisms, such as those mediated by altered availability of food resources, can be as important as direct influences (e.g. physical disturbance). We suggest that these findings may also have important implications for modeling of riverine habitat.

  19. SP@CE - An SP-based programming model for consumer electronics streaming applications

    NARCIS (Netherlands)

    Varbanescu, Ana Lucia; Nijhuis, Maik; Escribano, Arturo González; Sips, Henk; Bos, Herbert; Bal, Henri

    2007-01-01

    Efficient programming of multimedia streaming applications for Consumer Electronics (CE) devices is not trivial. As a solution for this problem, we present SP@CE, a novel programming model designed to balance the specific requirements of CE streaming applications with the simplicity and efficiency

  20. Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport

    Science.gov (United States)

    Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.

    2017-12-01

    In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.

  1. The development of stream temperature model in a mountainous river of Taiwan.

    Science.gov (United States)

    Tung, Ching-Pin; Lee, Tsung-Yu; Huang, Jr-Chuang; Perng, Po-Wen; Kao, Shih-Ji; Liao, Lin-Yen

    2014-11-01

    Formosan landlocked salmon is an endangered species and is very sensitive to stream temperature change. This study attempts to improve a former stream temperature model (STM) which was developed for the salmon's habitat to simulate stream temperature more realistically. Two modules, solar radiation modification (SRM) and surface/subsurface runoff mixing (RM), were incorporated to overcome the limitation of STM designed only for clear-sky conditions. It was found that daily temperature difference is related to cloud cover and can be used to adjust the effects of cloud cover on incident solar radiation to the ground level. The modified model (STM + SRM) improved the simulation during a baseflow period in both winter and summer with the Nash-Sutcliffe efficiency coefficient improved from 0.37 (by STM only) to 0.71 for the winter and from -0.18 to 0.70 for the summer. On the days with surface/subsurface runoff, the incorporation of the two new modules together (STM + SRM + RM) improved the Nash-Sutcliffe efficiency coefficient from 0.00 to 0.65 and from 0.29 to 0.83 in the winter and the summer, respectively. Meanwhile, the contributions of major thermal sources to stream temperature changes were identified. Groundwater is a major controlling factor for regulating seasonal changes of stream temperature while solar radiation is the primary factor controlling daily stream temperature variations. This study advanced our understanding on short-term stream temperature variation, which could be useful for the authorities to restore the salmon's habitat.

  2. Adding Live-Streaming to Recorded Lectures in a Non-Distributed Pre-Clerkship Medical Education Model.

    Science.gov (United States)

    Sandhu, Amanjot; Fliker, Aviva; Leitao, Darren; Jones, Jodi; Gooi, Adrian

    2017-01-01

    Live-streaming video has had increasing uses in medical education, especially in distributed education models. The literature on the impact of live-streaming in non-distributed education models, however, is scarce. To determine the attitudes towards live-streaming and recorded lectures as a resource to pre-clerkship medical students in a non-distributed medical education model. First and second year medical students were sent a voluntary cross-sectional survey by email, and were asked questions on live-streaming, recorded lectures and in person lectures using a 5-point Likert and open answers. Of the 118 responses (54% response rate), the data suggested that both watching recorded lectures (Likert 4.55) and live-streaming lectures (4.09) were perceived to be more educationally valuable than face-to-face attendance of lectures (3.60). While responses indicated a statistically significant increase in anticipated classroom attendance if both live-streaming and recorded lectures were removed (from 63% attendance to 76%, p =0.002), there was no significant difference in attendance if live-streaming lectures were removed but recorded lectures were maintained (from 63% to 66%, p=0.76). The addition of live-streaming lectures in the pre-clerkship setting was perceived to be value added to the students. The data also suggests that the removal of live-streaming lectures would not lead to a statistically significant increase in classroom attendance by pre-clerkship students.

  3. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  4. Fate of acetone in an outdoor model stream with a nitrate supplement, southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1991-01-01

    The fate of acetone in an outdoor model stream to which nitrate was added as a nutrient supplement was determined. The stream, in southern Mississippi, U.S.A. was 234 m long. Water was supplied to the stream by an artesian well at about 1.21 s-1, resulting in a mean water velocity of about 0.5 m min-1. Acetone was injected continuously for 26 days resulting in concentrations of 20-40 mg l-1. A nitrate solution was injected for 21 days resulting in an instream concentration of about 1.7 mg l-1 at the upstream end of the stream. Rhodamine-WT dye was used to determine the travel time and dispersion characteristics of the stream, and t-butyl alcohol was used to determine the volatilization characteristics. Volatilization controlled the fate of acetone in the model stream. The lack of substantial bacterial degradation of acetone was contrary to expectations based on the results of laboratory degradation studies using model stream water enriched with nitrate. A possible explanation for the lack of significant degradation in the model stream may be the limited 6-h residence time of the acetone in the stream. ?? 1991.

  5. THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR SUPERNOVA NEUTRINO TRANSPORT

    International Nuclear Information System (INIS)

    Liebendoerfer, M.; Whitehouse, S. C.; Fischer, T.

    2009-01-01

    Astrophysical observations originate from matter that interacts with radiation or transported particles. We develop a pragmatic approximation in order to enable multidimensional simulations with basic spectral radiative transfer when the available computational resources are not sufficient to solve the complete Boltzmann transport equation. The distribution function of the transported particles is decomposed into a trapped particle component and a streaming particle component. Their separate evolution equations are coupled by a source term that converts trapped particles into streaming particles. We determine this source term by requiring the correct diffusion limit for the evolution of the trapped particle component. For a smooth transition to the free streaming regime, this 'diffusion source' is limited by the matter emissivity. The resulting streaming particle emission rates are integrated over space to obtain the streaming particle flux. Finally, a geometric estimate of the flux factor is used to convert the particle flux to the streaming particle density, which enters the evaluation of streaming particle-matter interactions. The efficiency of the scheme results from the freedom to use different approximations for each particle component. In supernovae, for example, reactions with trapped particles on fast timescales establish equilibria that reduce the number of primitive variables required to evolve the trapped particle component. On the other hand, a stationary-state approximation considerably facilitates the treatment of the streaming particle component. Different approximations may apply in applications to stellar atmospheres, star formation, or cosmological radiative transfer. We compare the isotropic diffusion source approximation with Boltzmann neutrino transport of electron flavor neutrinos in spherically symmetric supernova models and find good agreement. An extension of the scheme to the multidimensional case is also discussed.

  6. Cytoplasmic streaming velocity as a plant size determinant.

    Science.gov (United States)

    Tominaga, Motoki; Kimura, Atsushi; Yokota, Etsuo; Haraguchi, Takeshi; Shimmen, Teruo; Yamamoto, Keiichi; Nakano, Akihiko; Ito, Kohji

    2013-11-11

    Cytoplasmic streaming is active transport widely occurring in plant cells ranging from algae to angiosperms. Although it has been revealed that cytoplasmic streaming is generated by organelle-associated myosin XI moving along actin bundles, the fundamental function in plants remains unclear. We generated high- and low-speed chimeric myosin XI by replacing the motor domains of Arabidopsis thaliana myosin XI-2 with those of Chara corallina myosin XI and Homo sapiens myosin Vb, respectively. Surprisingly, the plant sizes of the transgenic Arabidopsis expressing high- and low-speed chimeric myosin XI-2 were larger and smaller, respectively, than that of the wild-type plant. This size change correlated with acceleration and deceleration, respectively, of cytoplasmic streaming. Our results strongly suggest that cytoplasmic streaming is a key determinant of plant size. Furthermore, because cytoplasmic streaming is a common system for intracellular transport in plants, our system could have applications in artificial size control in plants. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Transverse two-stream instability in a matched plasma channel

    International Nuclear Information System (INIS)

    Whlttum, D.H.

    1994-01-01

    A relativistic electron beam magnetically self-focused in a plasma is subject to a transverse two stream or 'hose' instability. Linear evolution is described in terms of a tune distribution characterizing the beam, and an effective transverse impedance determined by the beam and the plasma profiles. This model is compared to cloud-in-cell simulations of three-dimensional transport of a beam with a Bennett profile, through a matched plasma channel. In the limit of large skin-depth this instability appears to be the primary limitation on stable beam transport. (author)

  8. Predictive Models of the Hydrological Regime of Unregulated Streams in Arizona

    Science.gov (United States)

    Anning, David W.; Parker, John T.C.

    2009-01-01

    Three statistical models were developed by the U.S. Geological Survey in cooperation with the Arizona Department of Environmental Quality to improve the predictability of flow occurrence in unregulated streams throughout Arizona. The models can be used to predict the probabilities of the hydrological regime being one of four categories developed by this investigation: perennial, which has streamflow year-round; nearly perennial, which has streamflow 90 to 99.9 percent of the year; weakly perennial, which has streamflow 80 to 90 percent of the year; or nonperennial, which has streamflow less than 80 percent of the year. The models were developed to assist the Arizona Department of Environmental Quality in selecting sites for participation in the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program. One model was developed for each of the three hydrologic provinces in Arizona - the Plateau Uplands, the Central Highlands, and the Basin and Range Lowlands. The models for predicting the hydrological regime were calibrated using statistical methods and explanatory variables of discharge, drainage-area, altitude, and location data for selected U.S. Geological Survey streamflow-gaging stations and a climate index derived from annual precipitation data. Models were calibrated on the basis of streamflow data from 46 stations for the Plateau Uplands province, 82 stations for the Central Highlands province, and 90 stations for the Basin and Range Lowlands province. The models were developed using classification trees that facilitated the analysis of mixed numeric and factor variables. In all three models, a threshold stream discharge was the initial variable to be considered within the classification tree and was the single most important explanatory variable. If a stream discharge value at a station was below the threshold, then the station record was determined as being nonperennial. If, however, the stream discharge was above the threshold

  9. An Eulerian two-phase flow model for sediment transport under realistic surface waves

    Science.gov (United States)

    Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.

    2017-12-01

    Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.

  10. Encrypted data stream identification using randomness sparse representation and fuzzy Gaussian mixture model

    Science.gov (United States)

    Zhang, Hong; Hou, Rui; Yi, Lei; Meng, Juan; Pan, Zhisong; Zhou, Yuhuan

    2016-07-01

    The accurate identification of encrypted data stream helps to regulate illegal data, detect network attacks and protect users' information. In this paper, a novel encrypted data stream identification algorithm is introduced. The proposed method is based on randomness characteristics of encrypted data stream. We use a l1-norm regularized logistic regression to improve sparse representation of randomness features and Fuzzy Gaussian Mixture Model (FGMM) to improve identification accuracy. Experimental results demonstrate that the method can be adopted as an effective technique for encrypted data stream identification.

  11. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Baattrup-Pedersen, Annette; Wiberg-Larsen, Peter

    Non-point source contamination with agricultural pesticides is widely acknowledged as one of the greatest sources of pollution in stream ecosystems, and surface runoff is an important transport route. Consequently, maximum pesticide concentrations occur briefly during heavy precipitation events......) of agricultural pesticides originating from normal agricultural practices. We link the findings to a predictive model for pesticide surface runoff (RP) and evaluate the potential impact of pesticides on benthic macroinvertebrates. Furthermore, we apply detailed land-use data and field characteristics to identify...

  12. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  13. Development of solute transport models in YMPYRÄ framework to simulate solute migration in military shooting and training areas

    Science.gov (United States)

    Warsta, L.; Karvonen, T.

    2017-12-01

    There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the

  14. Hydraulic modeling of thermal discharges into shallow, tidal affected streams

    International Nuclear Information System (INIS)

    Copp, H.W.; Shashidhara, N.S.

    1981-01-01

    A two-unit nuclear fired power plant is being constructed in western Washington state. Blowdown water from cooling towers will be discharged into the Chehalis River nearby. The location of a diffuser is some 21 miles upriver from Grays Harbor on the Pacific Ocean. Because the Chehalis River is classified as an excellent stream from the standpoint of water quality, State regulatory agencies required demonstration that thermal discharges would maintain water quality standards within fairly strict limits. A hydraulic model investigation used a 1:12 scale, undistorted model of a 1300-foot river reach in the vicinity of the diffuser. The model scale was selected to insure fully turbulent flows both in the stream and from the diffuser (Reynolds similitude). Model operation followed the densimetric Froude similitude. Thermistors were employed to measure temperatures in the model; measurements were taken by computer command and such measurements at some 250 positions were effected in about 2.5 seconds

  15. Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code

    Energy Technology Data Exchange (ETDEWEB)

    Trent, D.S.

    1973-06-01

    The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.

  16. Transformation of QSPA plasma streams in longitudinal magnetic field

    International Nuclear Information System (INIS)

    Makhlaj, V.A.; Bandura, A.N.; Chebotarev, V.V.; Kulik, N.V.; Wuerz, H.

    2002-01-01

    The main aim of this work is analysis of efficiency of QSPA powerful plasma streams transportation in longitudinal magnetic field in dependence on operational mode of accelerator and plasma stream parameters

  17. Effects of stream topology on ecological community results from neutral models

    Science.gov (United States)

    While neutral theory and models have stimulated considerable literature, less well investigated is the effect of topology on neutral metacommunity model simulations. We implemented a neutral metacommunity model using two different stream network topologies, a widely branched netw...

  18. Radiation shielding techniques and applications. 3. Analysis of Photon Streaming Through and Around Shield Doors

    International Nuclear Information System (INIS)

    Barnett, Marvin; Hack, Joe; Nathan, Steve; White, Travis

    2001-01-01

    Westinghouse Safety Management Solutions (Westinghouse SMS) has been tasked with providing radiological engineering design support for the new Commercial Light Water Reactor Tritium Extraction Facility (CLWR-TEF) being constructed at the Savannah River Site (SRS). The Remote Handling Building (RHB) of the CLWR-TEF will act as the receiving facility for irradiated targets used in the production of tritium for the U.S. Department of Energy (DOE). Because of the high dose rates, approaching 50 000 rads/h (500 Gy/h) from the irradiated target bundles, significant attention has been made to shielding structures within the facility. One aspect of the design that has undergone intense review is the shield doors. The RHB has six shield doors that needed to be studied with respect to photon streaming. Several aspects had to be examined to ensure that the design meets the radiation dose levels. Both the thickness and streaming issues around the door edges were designed and examined. Photon streaming through and around a shield door is a complicated problem, creating a reliance on computer modeling to perform the analyses. The computer code typically used by the Westinghouse SMS in the evaluation of photon transport through complex geometries is the MCNP Monte Carlo computer code. The complexity of the geometry within the problem can cause problems even with the Monte Carlo codes. Striking a balance between how the code handles transport through the shield door with transport through the streaming paths, particularly with the use of typical variance reduction methods, is difficult when trying to ensure that all important regions of the model are sampled appropriately. The thickness determination used a simple variance reduction technique. In construction, the shield door will not be flush against the wall, so a solid rectangular slab leaves streaming paths around the edges. Administrative controls could be used to control dose to workers; however, 10 CFR 835.1001 states

  19. STREAMS - Technology Programme. Yearbook 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The STREAMS Technology Programme addresses municipal waste. Municipal waste is composed of waste from households and small businesses. The programme focuses on five areas Waste prevention, Collection, transportation, and management of waste streams, Waste treatment technologies, Waste recycling into raw materials and new products, Landfill technologies. The development projects of the STREAMS Programme utilize a number of different technologies, such as biotechnology, information technology, materials technology, measurement and analysis, and automation technology. Finnish expertise in materials recycling technologies and related electronics and information technology is extremely high on a worldwide scale even though the companies represent SMEs. Started in 2001, the STREAMS programme has a total volume of 27 million euros, half of which is funded by Tekes. The programme runs through the end of 2004. (author)

  20. Computer-aided mapping of stream channels beneath the Lawrence Livermore National Laboratory Super Fund Site

    Energy Technology Data Exchange (ETDEWEB)

    Sick, M. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    The Lawrence Livermore National Laboratory (LLNL) site rests upon 300-400 feet of highly heterogeneous braided stream sediments which have been contaminated by a plume of Volatile Organic Compounds (VOCs). The stream channels are filled with highly permeable coarse grained materials that provide quick avenues for contaminant transport. The plume of VOCs has migrated off site in the TFA area, making it the area of greatest concern. I mapped the paleo-stream channels in the TFA area using SLICE an LLNL Auto-CADD routine. SLICE constructed 2D cross sections and sub-horizontal views of chemical, geophysical, and lithologic data sets. I interpreted these 2D views as a braided stream environment, delineating the edges of stream channels. The interpretations were extracted from Auto-CADD and placed into Earth Vision`s 3D modeling and viewing routines. Several 3D correlations have been generated, but no model has yet been chosen as a best fit.

  1. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    Musa, J. J

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  2. Stream nitrogen sources apportionment and pollution control scheme development in an agricultural watershed in eastern China.

    Science.gov (United States)

    Chen, Dingjiang; Lu, Jun; Huang, Hong; Liu, Mei; Gong, Dongqin; Chen, Jiabo

    2013-08-01

    A modeling system that couples a land-usebased export coefficient model, a stream nutrient transport equation, and Bayesian statistics was developed for stream nitrogen source apportionment. It divides a watershed into several sub-catchments, and then considers the major landuse categories as stream nitrogen sources in each subcatchment. The runoff depth and stream water depth are considered as the major factors influencing delivery of nitrogen from land to downstream stream node within each sub-catchment. The nitrogen sources and delivery processes are lumped into several constant parameters that were calibrated using Bayesian statistics from commonly available stream monitoring and land-use datasets. This modeling system was successfully applied to total nitrogen (TN) pollution control scheme development for the ChangLe River watershed containing six sub-catchments and four land-use categories. The temporal (across months and years) and spatial (across sub-catchments and land-use categories) variability of nonpoint source (NPS) TN export to stream channels and delivery to the watershed outlet were assessed. After adjustment for in-stream TNretention, the time periods and watershed areas with disproportionately high-TN contributions to the stream were identified. Aimed at a target stream TN level of 2 mg L-1, a quantitative TN pollution control scheme was further developed to determine which sub-catchments, which land-use categories in a sub-catchment, which time periods, and how large of NPS TN export reduction were required. This modeling system provides a powerful tool for stream nitrogen source apportionment and pollution control scheme development at the watershed scale and has only limited data requirements.

  3. Influence of the Gulf Stream on the troposphere.

    Science.gov (United States)

    Minobe, Shoshiro; Kuwano-Yoshida, Akira; Komori, Nobumasa; Xie, Shang-Ping; Small, Richard Justin

    2008-03-13

    The Gulf Stream transports large amounts of heat from the tropics to middle and high latitudes, and thereby affects weather phenomena such as cyclogenesis and low cloud formation. But its climatic influence, on monthly and longer timescales, remains poorly understood. In particular, it is unclear how the warm current affects the free atmosphere above the marine atmospheric boundary layer. Here we consider the Gulf Stream's influence on the troposphere, using a combination of operational weather analyses, satellite observations and an atmospheric general circulation model. Our results reveal that the Gulf Stream affects the entire troposphere. In the marine boundary layer, atmospheric pressure adjustments to sharp sea surface temperature gradients lead to surface wind convergence, which anchors a narrow band of precipitation along the Gulf Stream. In this rain band, upward motion and cloud formation extend into the upper troposphere, as corroborated by the frequent occurrence of very low cloud-top temperatures. These mechanisms provide a pathway by which the Gulf Stream can affect the atmosphere locally, and possibly also in remote regions by forcing planetary waves. The identification of this pathway may have implications for our understanding of the processes involved in climate change, because the Gulf Stream is the upper limb of the Atlantic meridional overturning circulation, which has varied in strength in the past and is predicted to weaken in response to human-induced global warming in the future.

  4. rEMM: Extensible Markov Model for Data Stream Clustering in R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2010-10-01

    Full Text Available Clustering streams of continuously arriving data has become an important application of data mining in recent years and efficient algorithms have been proposed by several researchers. However, clustering alone neglects the fact that data in a data stream is not only characterized by the proximity of data points which is used by clustering, but also by a temporal component. The extensible Markov model (EMM adds the temporal component to data stream clustering by superimposing a dynamically adapting Markov chain. In this paper we introduce the implementation of the R extension package rEMM which implements EMM and we discuss some examples and applications.

  5. Determining hyporheic storage using the rSAS model in urban restored streams.

    Science.gov (United States)

    Stoll, E.; Putnam, S. M.; Cosans, C.; Harman, C. J.

    2017-12-01

    One aim of stream restoration is to increase the connectivity of the stream with the hyporheic zone, which is important for processes like denitrification. This study analyzed transects of different restoration techniques in an urban stream, Stony Run in Baltimore, Maryland. The extent of the hyporheic zone was determined using a combination of salt slug injection tracer studies to determine the breakthrough curves and the rank StorAge Selection (rSAS) model. Previous studies using salt tracer injections have often focused on the shape of the breakthrough curve and the transit time distributions of streams to infer indicies correlated with hyporheic zone storage. This study uses the rSAS model to determine the volume of storage that must be turning over to produce the breakthrough curve. This study looked at transects of two different restoration techniques, one with floodplain rehabilitation and one without. Both transects had cross vanes and pool and riffle systems and only differed in the steepness of the banks surrounding the stream. The utility and accuracy of rSAS method was found to be heavily dependent on accurate flow rates. To avoid potential skew in the results, normalized, relatively flow rate-independent metric of storage were compared among transects to reduce error resulting from the flow rate. The results suggested that stream water was retained for longer in a larger storage volume in the transect that did not have floodplain rehabilitation. When compared to the storage of a natural stream with similar geomorphologic characteristics, the restored transect without floodplain rehabilitation had a larger storage volume than the natural stream. The restored transect with floodplain rehabilitation not only had a smaller storage volume than the restored section without rehabilitation, but also had a smaller storage volume than the natural stream with similar bank slopes. This suggests that the floodplain restoration does not significantly contribute to

  6. Efficient Processing of Continuous Skyline Query over Smarter Traffic Data Stream for Cloud Computing

    Directory of Open Access Journals (Sweden)

    Wang Hanning

    2013-01-01

    Full Text Available The analyzing and processing of multisource real-time transportation data stream lay a foundation for the smart transportation's sensibility, interconnection, integration, and real-time decision making. Strong computing ability and valid mass data management mode provided by the cloud computing, is feasible for handling Skyline continuous query in the mass distributed uncertain transportation data stream. In this paper, we gave architecture of layered smart transportation about data processing, and we formalized the description about continuous query over smart transportation data Skyline. Besides, we proposed mMR-SUDS algorithm (Skyline query algorithm of uncertain transportation stream data based on micro-batchinMap Reduce based on sliding window division and architecture.

  7. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  8. A daily salt balance model for stream salinity generation processes following partial clearing from forest to pasture

    Directory of Open Access Journals (Sweden)

    M. A. Bari

    2006-01-01

    Full Text Available We developed a coupled salt and water balance model to represent the stream salinity generation process following land use changes. The conceptual model consists of three main components with five stores: (i Dry, Wet and Subsurface Stores, (ii a saturated Groundwater Store and (iii a transient Stream zone Store. The Dry and Wet Stores represent the salt and water movement in the unsaturated zone and also the near-stream dynamic saturated areas, responsible for the generation of salt flux associated with surface runoff and interflow. The unsaturated Subsurface Store represents the salt bulge and the salt fluxes. The Groundwater Store comes into play when the groundwater level is at or above the stream invert and quantifies the salt fluxes to the Stream zone Store. In the stream zone module, we consider a 'free mixing' between the salt brought about by surface runoff, interflow and groundwater flow. Salt accumulation on the surface due to evaporation and its flushing by initial winter flow is also incorporated in the Stream zone Store. The salt balance model was calibrated sequentially following successful application of the water balance model. Initial salt stores were estimated from measured salt profile data. We incorporated two lumped parameters to represent the complex chemical processes like diffusion-dilution-dispersion and salt fluxes due to preferential flow. The model has performed very well in simulating stream salinity generation processes observed at Ernies and Lemon experimental catchments in south west of Western Australia. The simulated and observed stream salinity and salt loads compare very well throughout the study period with NSE of 0.7 and 0.4 for Ernies and Lemon catchment respectively. The model slightly over predicted annual stream salt load by 6.2% and 6.8%.

  9. Solute transport and extraction by a single root in unsaturated soils: model development and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaisoo; Sung, Kijune; Corapcioglu, M. Yavuz; Drew, Malcolm C

    2004-09-01

    A contaminant transport model was developed to simulate the fate and transport of organic compounds such as TNT (2,4,6-trinitrotoluene), using the single-root system. Onions were planted for this system with 50-ml plastic tubes. Mass in the soil, soil solution, root and leaf was monitored using {sup 14}C-TNT. Model parameters were acquired from the experiments in the single-root system and were used to simulate total TNT concentration in soil, providing the average concentrations in the rhizosphere and bulk soil as well as root and leaf compartments. Because the existing RCF (root concentration factor) and TSCF (transpiration stream concentration factor) equations based on log K{sub ow} (octanol-water partition coefficient) were not correlated to TNT uptake, a new term, root uptake rate (R{sub ur}), and a new T{sub scf} equation, based on the experimental data, were introduced in the proposed model. The results from both modeling and experimental studies showed higher concentrations of TNT in the rhizosphere than in the bulk soil, because mass transported from the surrounding soil into the rhizosphere was higher than that by root uptake.

  10. Dendritic network models: Improving isoscapes and quantifying influence of landscape and in-stream processes on strontium isotopes in rivers

    Science.gov (United States)

    Brennan, Sean R.; Torgersen, Christian E.; Hollenbeck, Jeff P.; Fernandez, Diego P.; Jensen, Carrie K.; Schindler, Daniel E.

    2016-05-01

    A critical challenge for the Earth sciences is to trace the transport and flux of matter within and among aquatic, terrestrial, and atmospheric systems. Robust descriptions of isotopic patterns across space and time, called "isoscapes," form the basis of a rapidly growing and wide-ranging body of research aimed at quantifying connectivity within and among Earth's systems. However, isoscapes of rivers have been limited by conventional Euclidean approaches in geostatistics and the lack of a quantitative framework to apportion the influence of processes driven by landscape features versus in-stream phenomena. Here we demonstrate how dendritic network models substantially improve the accuracy of isoscapes of strontium isotopes and partition the influence of hydrologic transport versus local geologic features on strontium isotope ratios in a large Alaska river. This work illustrates the analytical power of dendritic network models for the field of isotope biogeochemistry, particularly for provenance studies of modern and ancient animals.

  11. Methods of producing transportation fuel

    Science.gov (United States)

    Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  12. Modelling an environmental pollutant transport from the stacks to and through the soil

    Directory of Open Access Journals (Sweden)

    Rushdi M.M. El-Kilani

    2010-07-01

    Full Text Available In this paper, a model is presented for predicting the transport of an environmental pollutant from the source to and through the soil. The model can predict the deposition of an environmental pollutant on the soil surface due to the pollutant being loaded on dust particles, which are later deposited on the soil surface. The model is a coupling of three models: a model for predicting the cumulative dust deposition from near and far field sources on a certain area; a canopy microclimate model for solving the energy partition within the canopy elements and so predicting the water convection stream for pollutant transport through the soil; and coupling the deposition of these pollutants on the soil surface to a model for its transport through the soil. The air pollution model uses the Gaussian model approach, superimposed for multiple emission sources, to elucidate the deposition of pollutant laden airborne particulates on the soil surface. A complete canopy layer model is used to calculate within the canopy energy fluxes. The retardation factor for the pollutant is calculated from an adsorption batch experiment. The model was used to predict the deposition of lead laden dust particles on the soil surface and lead's transport through the soil layers inside a metropolitan region for: (1 three large cement factories and (2 a large number of smelters. The results show that, due to the very high retardation values for lead movement through the soil, i.e. ranging from 4371 to 53,793 from previous data and 234 from the adsorption experiment in this paper, lead is immobile and all the lead added to the soil surface via deposited dust or otherwise, even if it is totally soluble, will remain mostly on the soil surface and not move downwards due to high affinity with the soil.

  13. Background and Recent Progress in Anomalous Transport Simulation

    Science.gov (United States)

    2017-07-19

    variations Azimuthal E field normalized by the imposed electric field along the channel Electron density normalized by the initial plasma density used in the...Threshold electron two-stream instability Threshold for ion participation in two- stream instability Note: Analysis is for electron -H+ plasma 10DISTRIBUTION A...distribution unlimited PA# 17447 Fundamental Challenge Modeling electron Transport across B-field • Classical formulation for fluid mobility based on

  14. Stream Width Dynamics in a Small Headwater Catchment

    Science.gov (United States)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  15. Description of the transport mechanisms and pathways in the far field of a KBS-3 type repository

    International Nuclear Information System (INIS)

    Elert, M.; Neretnieks, I.

    1992-04-01

    The main purpose of this document is to serve as a reference document for the far field radionuclide transport description within SKB 91. A conceptual description of far field transport in crystalline rock is given together with a discussion of the application of the stream tube concept. In this concept the transport in a complex tree-dimensional flow field is divided into a number of imaginary tubes which are modelled independently. The stream tube concept is used as the basis for the radionuclide calculations in SKB 91. Different mathematical models for calculating the transport of radionuclides in fractured rock are compared: advection dispersion models, channeling models and network models. In the SKB 91 project a dual-porosity continuum model based on the one dimensional advection-dispersion equation taking into account matrix diffusion, sorption in the rock matrix and radioactive chain decay. Furthermore, the data needed for the transport models is discussed and recommended ranges and central values are given. (42 refs.) (au)

  16. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    and Ridge siliciclastic HGMR and the Locust Grove Watershed in the Coastal Plain Uplands HGMR. A nutrient-reduction scenario was created for East Mahantango Creek, where the average residence time was determined to be approximately 10 years on the basis of the output of particle tracking from a ground-water-flow model. This scenario showed decreases of nearly 50 percent in base-flow concentrations of nitrate in streams within the first year after the reduction in nitrogen input; smaller reductions in nitrate concentration occurred in each subsequent year. A second scenario for that same watershed, in which the same 10-year average residence time was assumed and an exponential model was used for analysis, showed that a 50-percent reduction in base-flow concentrations of nitrate could take up to 5 years. For the Locust Grove Watershed, in which an average residence time of 32 years was assumed, simulation with the exponential model showed that it may take more than 20 years to achieve a 50-percent reduction in base-flow concentra-tions of nitrate. Although it was not possible to construct such scenarios for all watersheds, these examples show the range of possible responses to changes in nutrient inputs in two very different types of watersheds.Findings from this study include information on factors that affect ground-water age, spatial distribution of ages, and nitrogen transport. In the East Mahantango Creek Watershed and the Polecat Creek Watershed, the residence time varied spatially depending on the position of the flow path, and temporally depending on the recharge conditions. Generally, ground water in areas near the stream had short residence times and the water in upland areas had longer residence times. Water traveling through deep layers had longer residence times than water traveling through shallow layers, and residence times were faster under high recharge conditions than low recharge conditions. Ground water in the Pocomoke Watershed exhibits a

  17. The Midwest Stream Quality Assessment—Influences of human activities on streams

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  18. Interaction of Physical and Chemical Processes Controlling the Environmental Fate and Transport of Lampricides Through Stream-Hyporheic Systems

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.

    2016-12-01

    The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  19. Quality models for audiovisual streaming

    Science.gov (United States)

    Thang, Truong Cong; Kim, Young Suk; Kim, Cheon Seog; Ro, Yong Man

    2006-01-01

    Quality is an essential factor in multimedia communication, especially in compression and adaptation. Quality metrics can be divided into three categories: within-modality quality, cross-modality quality, and multi-modality quality. Most research has so far focused on within-modality quality. Moreover, quality is normally just considered from the perceptual perspective. In practice, content may be drastically adapted, even converted to another modality. In this case, we should consider the quality from semantic perspective as well. In this work, we investigate the multi-modality quality from the semantic perspective. To model the semantic quality, we apply the concept of "conceptual graph", which consists of semantic nodes and relations between the nodes. As an typical of multi-modality example, we focus on audiovisual streaming service. Specifically, we evaluate the amount of information conveyed by a audiovisual content where both video and audio channels may be strongly degraded, even audio are converted to text. In the experiments, we also consider the perceptual quality model of audiovisual content, so as to see the difference with semantic quality model.

  20. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    Science.gov (United States)

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total

  1. Solar wind stream evolution at large heliocentric distances - Experimental demonstration and the test of a model

    Science.gov (United States)

    Gosling, J. T.; Hundhausen, A. J.; Bame, S. J.

    1976-01-01

    A stream propagation model which neglects all dissipation effects except those occurring at shock interfaces, was used to compare Pioneer-10 solar wind speed observations, during the time when Pioneer 10, the earth, and the sun were coaligned, with near-earth Imp-7 observations of the solar wind structure, and with the theoretical predictions of the solar wind structure at Pioneer 10 derived from the Imp-7 measurements, using the model. The comparison provides a graphic illustration of the phenomenon of stream steepening in the solar wind with the attendant formation of forward-reverse shock pairs and the gradual decay of stream amplitudes with increasing heliocentric distance. The comparison also provides a qualitative test of the stream propagation model.

  2. Spatially-Distributed Stream Flow and Nutrient Dynamics Simulations Using the Component-Based AgroEcoSystem-Watershed (AgES-W) Model

    Science.gov (United States)

    Ascough, J. C.; David, O.; Heathman, G. C.; Smith, D. R.; Green, T. R.; Krause, P.; Kipka, H.; Fink, M.

    2010-12-01

    Cedar Creek watershed (CCW) in northeastern Indiana, USA was selected for application of the OMS3-based AgroEcoSystem-Watershed (AgES-W) model. AgES-W performance for stream flow and N loading was assessed using Nash-Sutcliffe model efficiency (ENS) and percent bias (PBIAS) model evaluation statistics. Comparisons of daily and average monthly simulated and observed stream flow and N loads for the 1997-2005 simulation period resulted in PBIAS and ENS values that were similar or better than those reported in the literature for SWAT stream flow and N loading predictions at a similar scale. The results show that the AgES-W model was able to reproduce the hydrological and N dynamics of the CCW with sufficient quality, and should serve as a foundation upon which to better quantify additional water quality indicators (e.g., sediment transport and P dynamics) at the watershed scale.

  3. Improving road transport operations through lean thinking: A case study

    OpenAIRE

    Villarreal, B.; Garza-Reyes, J. A.; Kumar, V.; Lim, M. K.

    2017-01-01

    Traditionally, logistics and transportation problems have been addressed through mathematical modelling, operations research, and simulation methods. This paper documents a case study where the road transport operations of a leading Mexican brewery organisation have been improved through lean thinking and waste reduction. Two lean-based principles and tools were combined; the Seven Transportation Extended Wastes (STEWs) and Transportation Value Stream Mapping (TVSM), and three systematic step...

  4. Modeling the time--varying subjective quality of HTTP video streams with rate adaptations.

    Science.gov (United States)

    Chen, Chao; Choi, Lark Kwon; de Veciana, Gustavo; Caramanis, Constantine; Heath, Robert W; Bovik, Alan C

    2014-05-01

    Newly developed hypertext transfer protocol (HTTP)-based video streaming technologies enable flexible rate-adaptation under varying channel conditions. Accurately predicting the users' quality of experience (QoE) for rate-adaptive HTTP video streams is thus critical to achieve efficiency. An important aspect of understanding and modeling QoE is predicting the up-to-the-moment subjective quality of a video as it is played, which is difficult due to hysteresis effects and nonlinearities in human behavioral responses. This paper presents a Hammerstein-Wiener model for predicting the time-varying subjective quality (TVSQ) of rate-adaptive videos. To collect data for model parameterization and validation, a database of longer duration videos with time-varying distortions was built and the TVSQs of the videos were measured in a large-scale subjective study. The proposed method is able to reliably predict the TVSQ of rate adaptive videos. Since the Hammerstein-Wiener model has a very simple structure, the proposed method is suitable for online TVSQ prediction in HTTP-based streaming.

  5. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  6. In-stream nutrient uptake kinetics along stream size and development gradients in a rapidly developing mountain resort watershed

    Science.gov (United States)

    Covino, T.; McGlynn, B.; McNamarra, R.; Gardner, K.

    2012-04-01

    Land use / land cover (LULC) change including mountain resort development often lead to increased nutrient loading to streams, however the potential influence on stream ecosystem nutrient uptake kinetics and transport remain poorly understood. Given the deleterious impacts elevated nutrient loading can have on aquatic ecosystems, it is imperative to improve understanding of nutrient retention capacities across stream scales and watershed development intensities. We performed seventeen nutrient addition experiments on six streams across the West Fork Gallatin Watershed, Montana, USA, to quantify nitrogen (N) uptake kinetics and retention dynamics across stream sizes (1st to 4th order) and along a mountain resort development gradient. We observed that stream N uptake kinetics and spiraling parameters varied across streams of different development intensity and scale. In more developed watersheds we observed a fertilization affect, however, none of the streams exhibited saturation with respect to N. Additionally, we observed that elevated loading led to increased biomass and retentive capacities in developed streams that helped maintain export at low levels during baseflow. Our results indicate that LULC can enhance in-stream uptake of limiting nutrients and highlight the value of characterizing uptake kinetic curves from ambient to saturation.

  7. In-Stream Sediment Dynamics for predicted environmental concentration calculations of plant protection products in the FOCUSSW Scenarios

    Science.gov (United States)

    Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard

    2016-04-01

    The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by

  8. Modelling the Emergence and Dynamics of Perceptual Organisation in Auditory Streaming

    Science.gov (United States)

    Mill, Robert W.; Bőhm, Tamás M.; Bendixen, Alexandra; Winkler, István; Denham, Susan L.

    2013-01-01

    Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the

  9. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  10. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Spatial Statistical Network Models for Stream and River Temperatures in the Chesapeake Bay Watershed

    Science.gov (United States)

    Numerous metrics have been proposed to describe stream/river thermal regimes, and researchers are still struggling with the need to describe thermal regimes in a parsimonious fashion. Regional temperature models are needed for characterizing and mapping current stream thermal re...

  12. Analytical Models of Exoplanetary Atmospheres. IV. Improved Two-stream Radiative Transfer for the Treatment of Aerosols

    International Nuclear Information System (INIS)

    Heng, Kevin; Kitzmann, Daniel

    2017-01-01

    We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.

  13. Analytical Models of Exoplanetary Atmospheres. IV. Improved Two-stream Radiative Transfer for the Treatment of Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin; Kitzmann, Daniel, E-mail: kevin.heng@csh.unibe.ch, E-mail: daniel.kitzmann@csh.unibe.ch [University of Bern, Center for Space and Habitability, Gesellschaftsstrasse 6, CH-3012, Bern (Switzerland)

    2017-10-01

    We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.

  14. The coupling of runoff and dissolved organic matter transport: Insights from in situ fluorescence measurements in small streams and large rivers

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Shanley, J. B.; Aiken, G.; Murdoch, P. S.

    2011-12-01

    Understanding dissolved organic matter (DOM) dynamics in streams and rivers can help characterize mercury transport, assess causes of drinking water issues, and lead to improved understanding of watershed source areas and carbon loads to downstream ecosystems. However, traditional sampling approaches that collect discrete concentration data at weekly to monthly intervals often fail to adequately capture hydrological pulses ranging from early snowmelt periods to short-duration rainfall events. Continuous measurements of chromophoric dissolved organic matter fluorescence (FDOM) in rivers and streams now provide an opportunity to more accurately quantify DOM loads and processes in aquatic ecosystems at a range of scales. In this study, we used continuous FDOM data from in situ sensors along with discharge data to assess the coupling of FDOM transport and runoff in small streams and large rivers. Results from headwater catchments in New England and California show that FDOM is tightly coupled with runoff, supporting strong linkages between watershed flow paths and DOM concentrations in streams. Results also show that the magnitude of FDOM response relative to runoff varies seasonally, with highest concentrations during autumn rainfall events (after leaf fall) and lower concentrations during peak snowmelt for equivalent runoff. In large river basins, FDOM dynamics are also coupled with runoff and exhibit the same seasonal variability in the magnitude of FDOM response relative to discharge. However, the peaks in FDOM typically lag runoff by several days, reflecting the influence of a variety of factors such as water residence times, reservoir releases, and connectivity to organic matter-rich riparian floodplains and wetlands. Our results show that in situ FDOM data will be important for understanding the coupling of runoff and DOM across multiple scales and could serve a critical role in monitoring, assessment and decision-making in both small and large watersheds.

  15. Estimating the Spatial Distribution of Groundwater Age Using Synoptic Surveys of Environmental Tracers in Streams

    Science.gov (United States)

    Gardner, W. P.

    2017-12-01

    A model which simulates tracer concentration in surface water as a function the age distribution of groundwater discharge is used to characterize groundwater flow systems at a variety of spatial scales. We develop the theory behind the model and demonstrate its application in several groundwater systems of local to regional scale. A 1-D stream transport model, which includes: advection, dispersion, gas exchange, first-order decay and groundwater inflow is coupled a lumped parameter model that calculates the concentration of environmental tracers in discharging groundwater as a function of the groundwater residence time distribution. The lumped parameters, which describe the residence time distribution, are allowed to vary spatially, and multiple environmental tracers can be simulated. This model allows us to calculate the longitudinal profile of tracer concentration in streams as a function of the spatially variable groundwater age distribution. By fitting model results to observations of stream chemistry and discharge, we can then estimate the spatial distribution of groundwater age. The volume of groundwater discharge to streams can be estimated using a subset of environmental tracers, applied tracers, synoptic stream gauging or other methods, and the age of groundwater then estimated using the previously calculated groundwater discharge and observed environmental tracer concentrations. Synoptic surveys of SF6, CFC's, 3H and 222Rn, along with measured stream discharge are used to estimate the groundwater inflow distribution and mean age for regional scale surveys of the Berland River in west-central Alberta. We find that groundwater entering the Berland has observable age, and that the age estimated using our stream survey is of similar order to limited samples from groundwater wells in the region. Our results show that the stream can be used as an easily accessible location to constrain the regional scale spatial distribution of groundwater age.

  16. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  17. Gamma streaming experiments for validation of Monte Carlo code

    International Nuclear Information System (INIS)

    Thilagam, L.; Mohapatra, D.K.; Subbaiah, K.V.; Iliyas Lone, M.; Balasubramaniyan, V.

    2012-01-01

    In-homogeneities in shield structures lead to considerable amount of leakage radiation (streaming) increasing the radiation levels in accessible areas. Development works on experimental as well as computational methods for quantifying this streaming radiation are still continuing. Monte Carlo based radiation transport code, MCNP is usually a tool for modeling and analyzing such problems involving complex geometries. In order to validate this computational method for streaming analysis, it is necessary to carry out some experimental measurements simulating these inhomogeneities like ducts and voids present in the bulk shields for typical cases. The data thus generated will be analysed by simulating the experimental set up employing MCNP code and optimized input parameters for the code in finding solutions for similar radiation streaming problems will be formulated. Comparison of experimental data obtained from radiation streaming experiments through ducts will give a set of thumb rules and analytical fits for total radiation dose rates within and outside the duct. The present study highlights the validation of MCNP code through the gamma streaming experiments carried out with the ducts of various shapes and dimensions. Over all, the present study throws light on suitability of MCNP code for the analysis of gamma radiation streaming problems for all duct configurations considered. In the present study, only dose rate comparisons have been made. Studies on spectral comparison of streaming radiation are in process. Also, it is planned to repeat the experiments with various shield materials. Since the penetrations and ducts through bulk shields are unavoidable in an operating nuclear facility the results on this kind of radiation streaming simulations and experiments will be very useful in the shield structure optimization without compromising the radiation safety

  18. On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime

    Science.gov (United States)

    Fisher, Karl B.

    1995-08-01

    The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.

  19. Modelling of a vanishing Hawaiin stream with DHSVM

    NARCIS (Netherlands)

    Verger, R.P.; Augustijn, Dionysius C.M.; Booij, Martijn J.; Fares, A.; Erdbrink, C.D.; van Os, A.G.

    2008-01-01

    Several Hawaiian streams show downward trends in stream flow. In this study Makaha Stream is investigated as an example. Three possible reasons are commonly mentioned for the discharge reduction: groundwater pumping, decreasing rainfall, and changes in vegetation. The effect of these factors on

  20. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction

    Science.gov (United States)

    Desimone, Leslie A.; Barlow, Paul M.

    1999-01-01

    Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.

  1. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2012-08-01

    Full Text Available Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  2. Variation of stream power with seepage in sand-bed channels

    African Journals Online (AJOL)

    2009-12-27

    Dec 27, 2009 ... Keywords: friction slope, seepage, sediment transport, stream power, suction ... particles from the bed and on further movement of the bed load is of great ..... KNIGHTON AD (1987) River channel adjustment – the down stream.

  3. Cellular Subcompartments through Cytoplasmic Streaming.

    Science.gov (United States)

    Pieuchot, Laurent; Lai, Julian; Loh, Rachel Ann; Leong, Fong Yew; Chiam, Keng-Hwee; Stajich, Jason; Jedd, Gregory

    2015-08-24

    Cytoplasmic streaming occurs in diverse cell types, where it generally serves a transport function. Here, we examine streaming in multicellular fungal hyphae and identify an additional function wherein regimented streaming forms distinct cytoplasmic subcompartments. In the hypha, cytoplasm flows directionally from cell to cell through septal pores. Using live-cell imaging and computer simulations, we identify a flow pattern that produces vortices (eddies) on the upstream side of the septum. Nuclei can be immobilized in these microfluidic eddies, where they form multinucleate aggregates and accumulate foci of the HDA-2 histone deacetylase-associated factor, SPA-19. Pores experiencing flow degenerate in the absence of SPA-19, suggesting that eddy-trapped nuclei function to reinforce the septum. Together, our data show that eddies comprise a subcellular niche favoring nuclear differentiation and that subcompartments can be self-organized as a consequence of regimented cytoplasmic streaming. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach

    Science.gov (United States)

    Marx, Anne; Conrad, Marcus; Aizinger, Vadym; Prechtel, Alexander; van Geldern, Robert; Barth, Johannes A. C.

    2018-05-01

    A large portion of terrestrially derived carbon outgasses as carbon dioxide (CO2) from streams and rivers to the atmosphere. Particularly, the amount of CO2 outgassing from small headwater streams is highly uncertain. Conservative estimates suggest that they contribute 36 % (i.e. 0.93 petagrams (Pg) C yr-1) of total CO2 outgassing from all fluvial ecosystems on the globe. In this study, stream pCO2, dissolved inorganic carbon (DIC), and δ13CDIC data were used to determine CO2 outgassing from an acidic headwater stream in the Uhlířská catchment (Czech Republic). This stream drains a catchment with silicate bedrock. The applied stable isotope model is based on the principle that the 13C / 12C ratio of its sources and the intensity of CO2 outgassing control the isotope ratio of DIC in stream water. It avoids the use of the gas transfer velocity parameter (k), which is highly variable and mostly difficult to constrain. Model results indicate that CO2 outgassing contributed more than 80 % to the annual stream inorganic carbon loss in the Uhlířská catchment. This translated to a CO2 outgassing rate from the stream of 34.9 kg C m-2 yr-1 when normalised to the stream surface area. Large temporal variations with maximum values shortly before spring snowmelt and in summer emphasise the need for investigations at higher temporal resolution. We improved the model uncertainty by incorporating groundwater data to better constrain the isotope compositions of initial DIC. Due to the large global abundance of acidic, humic-rich headwaters, we underline the importance of this integral approach for global applications.

  5. Multi-Scale Characean Experimental System: From Electrophysiology of Membrane Transporters to Cell-to-Cell Connectivity, Cytoplasmic Streaming and Auxin Metabolism

    Science.gov (United States)

    Beilby, Mary J.

    2016-01-01

    The morphology of characean algae could be mistaken for a higher plant: stem-like axes with leaf-like branchlets anchored in the soil by root-like rhizoids. However, all of these structures are made up of giant multinucleate cells separated by multicellular nodal complexes. The excised internodal cells survive long enough for the nodes to give rise to new thallus. The size of the internodes and their thick cytoplasmic layer minimize impalement injury and allow specific micro-electrode placement. The cell structure can be manipulated by centrifugation, perfusion of cell contents or creation of cytoplasmic droplets, allowing access to both vacuolar and cytoplasmic compartments and both sides of the cell membranes. Thousands of electrical measurements on intact or altered cells and cytoplasmic droplets laid down basis to modern plant electrophysiology. Furthermore, the giant internodal cells and whole thalli facilitate research into many other plant properties. As nutrients have to be transported from rhizoids to growing parts of the thallus and hormonal signals need to pass from cell to cell, Characeae possess very fast cytoplasmic streaming. The mechanism was resolved in the characean model. Plasmodesmata between the internodal cells and nodal complexes facilitate transport of ions, nutrients and photosynthates across the nodes. The internal structure was found to be similar to those of higher plants. Recent experiments suggest a strong circadian influence on metabolic pathways producing indole-3-acetic acid (IAA) and serotonin/melatonin. The review will discuss the impact of the characean models arising from fragments of cells, single cells, cell-to-cell transport or whole thalli on understanding of plant evolution and physiology. PMID:27504112

  6. Variance reduction techniques for 14 MeV neutron streaming problem in rectangular annular bent duct

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Kotaro [Ship Research Inst., Mitaka, Tokyo (Japan)

    1998-03-01

    Monte Carlo method is the powerful technique for solving wide range of radiation transport problems. Its features are that it can solve the Boltzmann`s transport equation almost without approximation, and that the complexity of the systems to be treated rarely becomes a problem. However, the Monte Carlo calculation is always accompanied by statistical errors called variance. In shielding calculation, standard deviation or fractional standard deviation (FSD) is used frequently. The expression of the FSD is shown. Radiation shielding problems are roughly divided into transmission through deep layer and streaming problem. In the streaming problem, the large difference in the weight depending on the history of particles makes the FSD of Monte Carlo calculation worse. The streaming experiment in the 14 MeV neutron rectangular annular bent duct, which is the typical streaming bench mark experiment carried out of the OKTAVIAN of Osaka University, was analyzed by MCNP 4B, and the reduction of variance or FSD was attempted. The experimental system is shown. The analysis model by MCNP 4B, the input data and the results of analysis are reported, and the comparison with the experimental results was examined. (K.I.)

  7. UTMTOX, Toxic Chemical Transport in Atmosphere, Ground Water, Sediments

    International Nuclear Information System (INIS)

    1988-01-01

    A - Description of program or function: UTMTOX is a unified transport model for toxic materials. It combines hydrologic, atmospheric, and sediment transport in one computer code and extends the scope to predict the transport of not only trace metals but also many chemical compounds, including organics. UTMTOX is capable of calculating 1) the atmospheric dispersion of up to 20 chemicals from a maximum of 10 point, 10 line, and 10 area sources; 2) deposition of one chemical at a time in both wet and dry form on foliage or the surface of the earth; 3) surface flow and erosion; 4) percolation through the soil to a stream channel; and 5) flow in the stream channel to the outfall of a watershed. B - Method of solution: UTMTOX calculates rates of flux of chemicals from release to the atmosphere, through deposition on a watershed, infiltration, and runoff from the soil to flow in the stream channel and the associated sediment transport. From these values, mass balances can be established, budgets for the chemical can be made, and concentrations in many environmental compartments can be estimated. Since the coupling is established among three major submodels, they can share data

  8. Stream classification of the Apalachicola-Chattahoochee-Flint River System to support modeling of aquatic habitat response to climate change

    Science.gov (United States)

    Elliott, Caroline M.; Jacobson, Robert B.; Freeman, Mary C.

    2014-01-01

    A stream classification and associated datasets were developed for the Apalachicola-Chattahoochee-Flint River Basin to support biological modeling of species response to climate change in the southeastern United States. The U.S. Geological Survey and the Department of the Interior’s National Climate Change and Wildlife Science Center established the Southeast Regional Assessment Project (SERAP) which used downscaled general circulation models to develop landscape-scale assessments of climate change and subsequent effects on land cover, ecosystems, and priority species in the southeastern United States. The SERAP aquatic and hydrologic dynamics modeling efforts involve multiscale watershed hydrology, stream-temperature, and fish-occupancy models, which all are based on the same stream network. Models were developed for the Apalachicola-Chattahoochee-Flint River Basin and subbasins in Alabama, Florida, and Georgia, and for the Upper Roanoke River Basin in Virginia. The stream network was used as the spatial scheme through which information was shared across the various models within SERAP. Because these models operate at different scales, coordinated pair versions of the network were delineated, characterized, and parameterized for coarse- and fine-scale hydrologic and biologic modeling. The stream network used for the SERAP aquatic models was extracted from a 30-meter (m) scale digital elevation model (DEM) using standard topographic analysis of flow accumulation. At the finer scale, reaches were delineated to represent lengths of stream channel with fairly homogenous physical characteristics (mean reach length = 350 m). Every reach in the network is designated with geomorphic attributes including upstream drainage basin area, channel gradient, channel width, valley width, Strahler and Shreve stream order, stream power, and measures of stream confinement. The reach network was aggregated from tributary junction to tributary junction to define segments for the

  9. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  10. Maximizing the model for Discounted Stream of Utility from ...

    African Journals Online (AJOL)

    Osagiede et al. (2009) considered an analytic model for maximizing discounted stream of utility from consumption when the rate of production is linear. A solution was provided to a level where methods of solving order differential equations will be applied, but they left off there, as a result of the mathematical complexity ...

  11. A physical perspective on cytoplasmic streaming.

    Science.gov (United States)

    Goldstein, Raymond E; van de Meent, Jan-Willem

    2015-08-06

    Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two spiralling bands of molecular motors at the cell periphery drive the cellular fluid up and down at speeds up to 100 µm s(-1), motion that has been hypothesized to mitigate the slowness of metabolite transport on these scales and to aid in homeostasis. This is the most organized instance of a broad class of continuous motions known as 'cytoplasmic streaming', found in a wide range of eukaryotic organisms-algae, plants, amoebae, nematodes and flies-often in unusually large cells. In this overview of the physics of this phenomenon, we examine the interplay between streaming, transport and cell size and discuss the possible role of self-organization phenomena in establishing the observed patterns of streaming.

  12. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  13. A sandpile model of grain blocking and consequences for sediment dynamics in step-pool streams

    Science.gov (United States)

    Molnar, P.

    2012-04-01

    Coarse grains (cobbles to boulders) are set in motion in steep mountain streams by floods with sufficient energy to erode the particles locally and transport them downstream. During transport, grains are often blocked and form width-spannings structures called steps, separated by pools. The step-pool system is a transient, self-organizing and self-sustaining structure. The temporary storage of sediment in steps and the release of that sediment in avalanche-like pulses when steps collapse, leads to a complex nonlinear threshold-driven dynamics in sediment transport which has been observed in laboratory experiments (e.g., Zimmermann et al., 2010) and in the field (e.g., Turowski et al., 2011). The basic question in this paper is if the emergent statistical properties of sediment transport in step-pool systems may be linked to the transient state of the bed, i.e. sediment storage and morphology, and to the dynamics in sediment input. The hypothesis is that this state, in which sediment transporting events due to the collapse and rebuilding of steps of all sizes occur, is analogous to a critical state in self-organized open dissipative dynamical systems (Bak et al., 1988). To exlore the process of self-organization, a cellular automaton sandpile model is used to simulate the processes of grain blocking and hydraulically-driven step collapse in a 1-d channel. Particles are injected at the top of the channel and are allowed to travel downstream based on various local threshold rules, with the travel distance drawn from a chosen probability distribution. In sandpile modelling this is a simple 1-d limited non-local model, however it has been shown to have nontrivial dynamical behaviour (Kadanoff et al., 1989), and it captures the essence of stochastic sediment transport in step-pool systems. The numerical simulations are used to illustrate the differences between input and output sediment transport rates, mainly focussing on the magnification of intermittency and

  14. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    Science.gov (United States)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value

  15. Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.

    2016-12-01

    Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.

  16. User's guide to revised method-of-characteristics solute-transport model (MOC--version 31)

    Science.gov (United States)

    Konikow, Leonard F.; Granato, G.E.; Hornberger, G.Z.

    1994-01-01

    The U.S. Geological Survey computer model to simulate two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978; Goode and Konikow, 1989) has been modified to improve management of input and output data and to provide progressive run-time information. All opening and closing of files are now done automatically by the program. Names of input data files are entered either interactively or using a batch-mode script file. Names of output files, created automatically by the program, are based on the name of the input file. In the interactive mode, messages are written to the screen during execution to allow the user to monitor the status and progress of the simulation and to anticipate total running time. Information reported and updated during a simulation include the current pumping period and time step, number of particle moves, and percentage completion of the current time step. The batch mode enables a user to run a series of simulations consecutively, without additional control. A report of the model's activity in the batch mode is written to a separate output file, allowing later review. The user has several options for creating separate output files for different types of data. The formats are compatible with many commercially available applications, which facilitates graphical postprocessing of model results. Geohydrology and Evaluation of Stream-Aquifer Relations in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern Alabama, Northwestern Florida, and Southwestern Georgia By Lynn J. Torak, Gary S. Davis, George A. Strain, and Jennifer G. Herndon Abstract The lower Apalachieola-Chattahoochec-Flint River Basin is underlain by Coastal Plain sediments of pre-Cretaceous to Quaternary age consisting of alternating units of sand, clay, sandstone, dolomite, and limestone that gradually thicken and dip gently to the southeast. The stream-aquifer system consism of carbonate (limestone and dolomite) and elastic sediments

  17. GALACTIC COSMIC-RAY INTENSITY MODULATION BY COROTATING INTERACTION REGION STREAM INTERFACES AT 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190 (China); Florinski, V. [Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States)

    2016-07-20

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Our results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.

  18. GALACTIC COSMIC-RAY INTENSITY MODULATION BY COROTATING INTERACTION REGION STREAM INTERFACES AT 1 au

    International Nuclear Information System (INIS)

    Guo, X.; Florinski, V.

    2016-01-01

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Our results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.

  19. Woody debris transport modelling by a coupled DE-SW approach

    Science.gov (United States)

    Persi, Elisabetta; Petaccia, Gabriella; Sibilla, Stefano

    2016-04-01

    The presence of wood in rivers is gaining more and more attention: on one side, the inclusion of woody debris in streams is emphasized for its ecological benefits; on the other hand, particular attention must be paid to its management, not to affect hydraulic safety. Recent events have shown that wood can be mobilized during floodings (Comiti et al. 2008, Lange and Bezzola 2006), aggravating inundations, in particular near urban areas. For this reason, the inclusion of woody debris influence on the prediction of flooded areas is an important step toward the reduction of hydraulic risk. Numerical modelling plays an important role to this purpose. Ruiz-Villanueva et al. (2014) use a two-dimensional numerical model to calculate the kinetics of cylindrical woody debris transport, taking into account also the hydrodynamic effects of wood. The model here presented couples a Discrete Element approach (DE) for the calculation of motion of a cylindrical log with the solution of the Shallow Water Equations (SW), in order to simulate woody debris transport in a two-dimensional stream. In a first step, drag force, added mass force and side force are calculated from flow and log velocities, assuming a reference area and hydrodynamic coefficients taken from literature. Then, the equations of dynamics are solved to model the planar roto-translation of the wooden cylinder. Model results and its physical reliability are clearly affected by the values of the drag and side coefficients, which in turn depend upon log submergence and angle towards the flow direction. Experimental studies to evaluate drag and side coefficients can be found for a submerged cylinder, with various orientations (Gippel et al. 1996; Hoang et al. 2015). To extend such results to the case of a floating (non-totally submerged) cylinder, the authors performed a series of laboratory tests whose outcomes are implemented in the proposed DE-SW model, to assess the effects of these values on the dynamic of woody

  20. Toward Design Guidelines for Stream Restoration Structures: Measuring and Modeling Unsteady Turbulent Flows in Natural Streams with Complex Hydraulic Structures

    Science.gov (United States)

    Lightbody, A.; Sotiropoulos, F.; Kang, S.; Diplas, P.

    2009-12-01

    Despite their widespread application to prevent lateral river migration, stabilize banks, and promote aquatic habitat, shallow transverse flow training structures such as rock vanes and stream barbs lack quantitative design guidelines. Due to the lack of fundamental knowledge about the interaction of the flow field with the sediment bed, existing engineering standards are typically based on various subjective criteria or on cross-sectionally-averaged shear stresses rather than local values. Here, we examine the performance and stability of in-stream structures within a field-scale single-threaded sand-bed meandering stream channel in the newly developed Outdoor StreamLab (OSL) at the St. Anthony Falls Laboratory (SAFL). Before and after the installation of a rock vane along the outer bank of the middle meander bend, high-resolution topography data were obtained for the entire 50-m-long reach at 1-cm spatial scale in the horizontal and sub-millimeter spatial scale in the vertical. In addition, detailed measurements of flow and turbulence were obtained using acoustic Doppler velocimetry at twelve cross-sections focused on the vicinity of the structure. Measurements were repeated at a range of extreme events, including in-bank flows with an approximate flow rate of 44 L/s (1.4 cfs) and bankfull floods with an approximate flow rate of 280 L/s (10 cfs). Under both flow rates, the structure reduced near-bank shear stresses and resulted in both a deeper thalweg and near-bank aggradation. The resulting comprehensive dataset has been used to validate a large eddy simulation carried out by SAFL’s computational fluid dynamics model, the Virtual StreamLab (VSL). This versatile computational framework is able to efficiently simulate 3D unsteady turbulent flows in natural streams with complex in-stream structures and as a result holds promise for the development of much-needed quantitative design guidelines.

  1. Geospatial Image Stream Processing: Models, techniques, and applications in remote sensing change detection

    Science.gov (United States)

    Rueda-Velasquez, Carlos Alberto

    Detection of changes in environmental phenomena using remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios where real-time detection plays a crucial role in the saving of human lives and the preservation of natural resources. Although various approaches formulated to model multidimensional data can in principle be applied to the inherent complexity of remotely sensed geospatial data, there are still challenging peculiarities that demand a precise characterization in the context of change detection, particularly in scenarios of fast changes. In the same vein, geospatial image streams do not fit appropriately in the standard Data Stream Management System (DSMS) approach because these systems mainly deal with tuple-based streams. Recognizing the necessity for a systematic effort to address the above issues, the work presented in this thesis is a concrete step toward the foundation and construction of an integrated Geospatial Image Stream Processing framework, GISP. First, we present a data and metadata model for remotely sensed image streams. We introduce a precise characterization of images and image streams in the context of remotely sensed geospatial data. On this foundation, we define spatially-aware temporal operators with a consistent semantics for change analysis tasks. We address the change detection problem in settings where multiple image stream sources are available, and thus we introduce an architectural design for the processing of geospatial image streams from multiple sources. With the aim of targeting collaborative scientific environments, we construct a realization of our architecture based on Kepler, a robust and widely used scientific workflow management system, as the underlying computational support; and open data and Web interface standards, as a means to facilitate the interoperability of GISP instances with other processing infrastructures and client applications. We demonstrate our

  2. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  3. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach

    Directory of Open Access Journals (Sweden)

    A. Marx

    2018-05-01

    Full Text Available A large portion of terrestrially derived carbon outgasses as carbon dioxide (CO2 from streams and rivers to the atmosphere. Particularly, the amount of CO2 outgassing from small headwater streams is highly uncertain. Conservative estimates suggest that they contribute 36 % (i.e. 0.93 petagrams (Pg C yr−1 of total CO2 outgassing from all fluvial ecosystems on the globe. In this study, stream pCO2, dissolved inorganic carbon (DIC, and δ13CDIC data were used to determine CO2 outgassing from an acidic headwater stream in the Uhlířská catchment (Czech Republic. This stream drains a catchment with silicate bedrock. The applied stable isotope model is based on the principle that the 13C ∕ 12C ratio of its sources and the intensity of CO2 outgassing control the isotope ratio of DIC in stream water. It avoids the use of the gas transfer velocity parameter (k, which is highly variable and mostly difficult to constrain. Model results indicate that CO2 outgassing contributed more than 80 % to the annual stream inorganic carbon loss in the Uhlířská catchment. This translated to a CO2 outgassing rate from the stream of 34.9 kg C m−2 yr−1 when normalised to the stream surface area. Large temporal variations with maximum values shortly before spring snowmelt and in summer emphasise the need for investigations at higher temporal resolution. We improved the model uncertainty by incorporating groundwater data to better constrain the isotope compositions of initial DIC. Due to the large global abundance of acidic, humic-rich headwaters, we underline the importance of this integral approach for global applications.

  4. FACT. Streamed data analysis and online application of machine learning models

    Energy Technology Data Exchange (ETDEWEB)

    Bruegge, Kai Arno; Buss, Jens [Technische Universitaet Dortmund (Germany). Astroteilchenphysik; Collaboration: FACT-Collaboration

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) like FACT produce a continuous flow of data during measurements. Analyzing the data in near real time is essential for monitoring sources. One major task of a monitoring system is to detect changes in the gamma-ray flux of a source, and to alert other experiments if some predefined limit is reached. In order to calculate the flux of an observed source, it is necessary to run an entire data analysis process including calibration, image cleaning, parameterization, signal-background separation and flux estimation. Software built on top of a data streaming framework has been implemented for FACT and generalized to work with the data acquisition framework of the Cherenkov Telescope Array (CTA). We present how the streams-framework is used to apply supervised machine learning models to an online data stream from the telescope.

  5. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  6. Combining Empirical Relationships with Data Based Mechanistic Modeling to Inform Solute Tracer Investigations across Stream Orders

    Science.gov (United States)

    Herrington, C.; Gonzalez-Pinzon, R.; Covino, T. P.; Mortensen, J.

    2015-12-01

    Solute transport studies in streams and rivers often begin with the introduction of conservative and reactive tracers into the water column. Information on the transport of these substances is then captured within tracer breakthrough curves (BTCs) and used to estimate, for instance, travel times and dissolved nutrient and carbon dynamics. Traditionally, these investigations have been limited to systems with small discharges (turbidity (e.g., nitrate signals with SUNA instruments or fluorescence measures) and/or high total dissolved solids (e.g., making prohibitively expensive the use of salt tracers such as NaCl) in larger systems. Additionally, a successful time-of-travel study is valuable for only a single discharge and river stage. We have developed a method to predict tracer BTCs to inform sampling frequencies at small and large stream orders using empirical relationships developed from multiple tracer injections spanning several orders of magnitude in discharge and reach length. This method was successfully tested in 1st to 8th order systems along the Middle Rio Grande River Basin in New Mexico, USA.

  7. Impact of Watershed Development on Sediment Transport and Seasonal Flooding in the Main Stream of the Mekong River

    Science.gov (United States)

    Kameyama, S.; Nohara, S.; Sato, T.; Fujii, Y.; Kudo, K.

    2009-12-01

    The Mekong River watershed is undergoing rapid economic progress and population growth, raising conflicts between watershed development and environmental conservation. A typical conflict is between the benefits of dam construction versus the benefits of watershed ecological services. In developed countries, this conflict is changing to a coordinated search for outcomes that are mutually acceptable to all stakeholders. In the Mekong River, however, government policy gives priority to watershed development for ensuring steady energy supplies. Since the 1990s, a series of dams called “the Mekong Cascade” have been under construction. Dam construction has multiple economic values as electric power supply, irrigation water, flood control, etc. On the other hand, the artificial flow discharge controls of dam moderate seasonal hydrologic patterns of the Asian monsoon region. Dam operations can change the sediment transport regime and river structure. Furthermore, their impacts on watershed ecosystems and traditional economic activities of fisheries and agriculture in downstream areas may be severe. We focus on dam impacts on spatio-temporal patterns of sediment transport and seasonal flood in riparian areas downstream from Mekong River dams. Our study river section is located on 100 km down stream from the Golden Triangle region of Myanmar, Laos, and Thailand. We selected a 10-km section in this main channel to simulate seasonal flooding. We modeled the river hydrology in the years 1991 and 2002, before and after the Manwan dam construction (1986-1993). For this simulation, we adapted three models (distributed runoff model, 1-D hydrological model, and 2-D flood simulation with sediment movement algorithm.) Input data on river structure, water velocity, and flow volume were acquired from field survey data in November 2007 and 2008. In the step of parameter decision, we adopted the shuffled complex evolution method. To validate hydrologic parameters, we used annual

  8. Connectivity and conditional models of access and abundance of species in stream networks.

    Science.gov (United States)

    Chelgren, Nathan D; Dunham, Jason B

    2015-07-01

    Barriers to passage of aquatic organisms at stream road crossings are a major cause of habitat fragmentation in stream networks. Accordingly, large investments have been made to restore passage at these crossings, but often without estimation of population-level benefits. Here, we describe a broad-scale approach to quantifying the effectiveness of passage restoration in terms interpretable at population levels, namely numbers of fish and length of stream gained through restoration, by sampling abundance in a study design that accounts for variable biogeographic species pools, variable stream and barrier configurations, and variable probabilities of capture and detectability for multiple species. We modified an existing zero-inflated negative-binomial model to estimate the probability of site access, abundance conditional on access, and capture probability of individual fish. Therein, we modeled probability of access as a function of gradient, stream road-crossing type, and downstream access by fish simultaneously with a predictive model for abundance at sites accessible to fish. Results indicated that replacement of barriers with new crossing designs intended to allow for greater movement was associated with dramatically higher probability of access for all fishes, including migratory Pacific salmon, trout, sculpin, and lamprey. Conversely, existing non-replaced crossings negatively impacted fish distributions. Assuming no downstream constraints on access, we estimated the potential length of stream restored by the program ranged between 7.33 (lamprey) and 15.28 km (small coastal cutthroat and rainbow trout). These contributions represented a fraction of the total length available upstream (187 km) of replaced crossings. When limited ranges of species were considered, the estimated contributions of culvert replacement were reduced (1.65-km range, for longnose dace to 12.31 km for small coastal cutthroat and rainbow trout). Numbers of fish contributed ranged from

  9. Modelling stream-fish functional traits in reference conditions: regional and local environmental correlates.

    Directory of Open Access Journals (Sweden)

    João M Oliveira

    Full Text Available Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1 pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2 at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in 'natural' streams, as well as to improve biomonitoring and restoration of fluvial ecosystems.

  10. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  11. STEEP STREAMS - Solid Transport Evaluation and Efficiency in Prevention: Sustainable Techniques of Rational Engineering and Advanced MethodS

    Science.gov (United States)

    Armanini, Aronne; Cardoso, Antonio H.; Di Baldassarre, Giuliano; Bellin, Alberto; Breinl, Korbinian; Canelas, Ricardo B.; Larcher, Michele; Majone, Bruno; Matos, Jorges; Meninno, Sabrina; Nucci, Elena; Rigon, Riccardo; Rosatti, Giorgio; Zardi, Dino

    2017-04-01

    The STEEP STREAMS (Solid Transport Evaluation and Efficiency in Prevention: Sustainable Techniques of Rational Engineering and Advanced MethodS) project consists of a collaboration among the Universities of Trento, Uppsala and Lisbon, who joined in a consortium within the ERANET Water JPI call WaterWorks2014. The aim of the project is to produce new rational criteria for the design of protection works against debris flows, a phenomenon consisting in hyper-concentrated flows of water and sediments, classified as catastrophic events typical of small mountainous basins (area triggered by intense rainstorms. Such events are non-stationary phenomena that arise in a very short time, and their recurrence is rather difficult to determine. Compared to flash floods, they are more difficult to anticipate, mostly since they are triggered by convective precipitation events, posing a higher risk of damage and even loss of human lives. These extreme events occur almost annually across Europe, though the formal return period in an exposed site is much larger. Recently, an increase in intensity and frequency of small-scale storm events, leading to extreme solid transport in steep channels, are recognized as one of the effects of climate change. In this context, one of the key challenges of this project is the use of comparatively coarse RCM projections to the small catchments examined in STEEP STREAMS. Given these changes, conventional protection works and their design criteria may not suffice to provide adequate levels of protection to human life and urban settlements. These structures create a storage area upstream the alluvial fans and the settlements, thereby reducing the need of channelization in areas often constrained by urban regulations. To optimize the lamination, and in particular to reduce the peak of solid mass flux, it is necessary that the deposition basin is controlled by a slit check dam, capable of inducing a controlled sedimentation of the solid mas flux. In

  12. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    Science.gov (United States)

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  13. An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream model

    Science.gov (United States)

    Fukumori, Ichiro; Malanotte-Rizzoli, Paola

    1995-04-01

    A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kaiman filter based on approximations of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.

  14. THE USE OF GEOMORPHOLOGY IN THE ASSESSMENT OF STREAM STABILITY

    Science.gov (United States)

    Various applications of geomorphic data and stream stability rating systems are being considered in order to establish tools for the development of TMDLs for clean sediment in streams. The transport of "clean" sediment, as opposed to contaminated sediment, is of concern to the en...

  15. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  16. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hari Selvi Viswanathan

    1999-01-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone

  17. Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing.

    Science.gov (United States)

    Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng

    2014-10-01

    Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA's CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream . Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels.

  18. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  19. Progress in transport modelling of internal transport barrier plasmas in JET

    International Nuclear Information System (INIS)

    Tala, T.; Bourdelle, C.; Imbeaux, F.; Moreau, D.; Garbet, X.; Joffrin, E.; Laborde, L.; Litaudon, X.; Mazon, D.; Parail, V.; Corrigan, G.; Heading, D.; Crisanti, F.; Mantica, P.; Salmi, A.; Strand, P.; Weiland, J.

    2005-01-01

    This paper will report on the recent progress in transport modelling of Internal Transport Barrier (ITB) plasmas. Two separate issues will be covered, fully predictive transport modelling of ITBs in the multi-tokamak database, including micro-stability analyses of ITBs, and predictive closed-loop (i.e. real-time control) transport simulations of the q-profile and ITBs. For the first time, the predictive capabilities of the mixed Bohm/GyroBohm and Weiland transport models are investigated with discharges from the ITPA ITB database by fully predictive transport simulations. The predictive transport simulations with the Bohm/GyroBohm model agree very well with experimental results from JET and JT-60U. In order to achieve a good agreement in DIII-D, the stabilisation had to be included into the model, showing the significant role played by the stabilisation in governing the physics of the ITBs. The significant role of the stabilisation is also emphasised by the gyrokinetic analysis. The Weiland transport model shows only limited agreement between the model predictions and experimental results with respect to the formation and location of the ITB. The fully predictive closed-loop simulations with real-time control of the q-profile and ITB show that it is possible to reach various set-point profiles for q and ITB and control them for longer than a current diffusion time in JET using the same real-time control technique as in the experiments. (author)

  20. Measuring nutrient spiralling in streams

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; O' Neill, R V; Van Winkle, W

    1981-01-01

    Nutrient cycling in streams involves some downstream transport before the cycle is completed. Thus, the path traveled by a nutrient atom in passing through the cycle can be visualized as a spiral. As an index of the spiralling process, we introduce spiralling length, defined as the average distance associated with one complete cycle of a nutrient atom. This index provides a measure of the utilization of nutrients relative to the available supply from upstream. Using /sup 32/p as a tracer, we estimated a spiralling length of 193 m for phosphorus in a small woodland stream.

  1. CAMS: OLAPing Multidimensional Data Streams Efficiently

    Science.gov (United States)

    Cuzzocrea, Alfredo

    In the context of data stream research, taming the multidimensionality of real-life data streams in order to efficiently support OLAP analysis/mining tasks is a critical challenge. Inspired by this fundamental motivation, in this paper we introduce CAMS (C ube-based A cquisition model for M ultidimensional S treams), a model for efficiently OLAPing multidimensional data streams. CAMS combines a set of data stream processing methodologies, namely (i) the OLAP dimension flattening process, which allows us to obtain dimensionality reduction of multidimensional data streams, and (ii) the OLAP stream aggregation scheme, which aggregates data stream readings according to an OLAP-hierarchy-based membership approach. We complete our analytical contribution by means of experimental assessment and analysis of both the efficiency and the scalability of OLAPing capabilities of CAMS on synthetic multidimensional data streams. Both analytical and experimental results clearly connote CAMS as an enabling component for next-generation Data Stream Management Systems.

  2. Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust. [conducted in the Langley 14 by 22 foot subsonic wind tunnel

    Science.gov (United States)

    Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank

    1994-01-01

    A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

  3. Exchange of TiO2 nanoparticles between streams and streambeds.

    Science.gov (United States)

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  4. Towards a streaming model for nested data parallelism

    DEFF Research Database (Denmark)

    Madsen, Frederik Meisner; Filinski, Andrzej

    2013-01-01

    The language-integrated cost semantics for nested data parallelism pioneered by NESL provides an intuitive, high-level model for predicting performance and scalability of parallel algorithms with reasonable accuracy. However, this predictability, obtained through a uniform, parallelism-flattening......The language-integrated cost semantics for nested data parallelism pioneered by NESL provides an intuitive, high-level model for predicting performance and scalability of parallel algorithms with reasonable accuracy. However, this predictability, obtained through a uniform, parallelism......-processable in a streaming fashion. This semantics is directly compatible with previously proposed piecewise execution models for nested data parallelism, but allows the expected space usage to be reasoned about directly at the source-language level. The language definition and implementation are still very much work...

  5. Three-dimensional modelling for assessment of far-field impact of tidal stream turbine: A case study at the Anglesey Coast, Wales, UK

    Science.gov (United States)

    Li, Xiaorong; Li, Ming; Wolf, Judith

    2017-04-01

    As a response to worldwide climate change, clean non-carbon renewable energy resources have been gaining significant attention. Among a range of renewable alternatives, tidal stream energy is considered very promising; due to its consistent predictability and availability. To investigate impacts of tidal stream devices on their surroundings, prototype experiments involving small scale laboratory studies have been implemented. Computational Flow Dynamics (CFD) modelling is also commonly applied to study turbine behaviours. However, these studies focus on impacts of the turbine in the near-field scale. As a result, in order to study and predict the far-field impacts caused by the operation of turbines, large scale 2D and 3D numerical oceanography models have been used, with routines added to reflect the impacts of turbines. In comparison to 2D models, 3D models are advantageous in providing complete prediction of vertical flow structures and hence mixing in the wake of a turbine. This research aims to deliver a thorough 3D tidal stream turbine simulation system, by considering major coastal processes, i.e. current, waves and sediment transport, based on a 3D wave-current-sediment fully coupled numerical oceanography model — the Unstructured Grid Finite Volume Community Ocean Model (FVCOM). The energy extraction of turbines is simulated by adding a body force to the momentum equations. Across the water depth, the coefficient related to the additional body force is given different values according to the turbine configuration and operation to reflect the vertical variation of the turbine's impacts on the passing flow. Three turbulence perturbation terms are added to the turbulence closure to simulate the turbine-induced turbulence generation, dissipation and interference for the turbulence length-scale. Impacts of turbine operation on surface waves are also considered by modification of wave energy flux across the device. A thorough validation study is carried out in

  6. Transport modelling for ergodic configurations

    International Nuclear Information System (INIS)

    Runov, A.; Kasilov, S.V.; McTaggart, N.; Schneider, R.; Bonnin, X.; Zagorski, R.; Reiter, D.

    2004-01-01

    The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the transport in complex edge geometries (in particular for W7-X) two possible methods are used. First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they exist) and discretization. All toroidal terms are discretized by finite differences. Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport results in increasingly steep profiles for the respective quantities within the islands. (author)

  7. Performance Evaluation of Concurrent Multipath Video Streaming in Multihomed Mobile Networks

    Directory of Open Access Journals (Sweden)

    James Nightingale

    2013-01-01

    Full Text Available High-quality real-time video streaming to users in mobile networks is challenging due to the dynamically changing nature of the network paths, particularly the limited bandwidth and varying end-to-end delay. In this paper, we empirically investigate the performance of multipath streaming in the context of multihomed mobile networks. Existing schemes that make use of the aggregated bandwidth of multiple paths can overcome bandwidth limitations on a single path but suffer an efficiency penalty caused by retransmission of lost packets in reliable transport schemes or path switching overheads in unreliable transport schemes. This work focuses on the evaluation of schemes to permit concurrent use of multiple paths to deliver video streams. A comprehensive streaming framework for concurrent multipath video streaming is proposed and experimentally evaluated, using current state-of-the-art H.264 Scalable Video Coding (H.264/SVC and the next generation High Efficiency Video Coding (HEVC standards. It provides a valuable insight into the benefit of using such schemes in conjunction with encoder specific packet prioritisation mechanisms for quality-aware packet scheduling and scalable streaming. The remaining obstacles to deployment of concurrent multipath schemes are identified, and the challenges in realising HEVC based concurrent multipath streaming are highlighted.

  8. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    Science.gov (United States)

    Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  9. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Baptiste, Marisa [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Cao, Qian [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Lettenmaier, Dennis P. [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Nijssen, Bart [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA

    2016-08-22

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution. DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and

  10. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    Science.gov (United States)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  11. A model to predict stream water temperature across the conterminous USA

    Science.gov (United States)

    Catalina Segura; Peter Caldwell; Ge Sun; Steve McNulty; Yang Zhang

    2014-01-01

    Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating...

  12. Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling

    International Nuclear Information System (INIS)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish

    2015-01-01

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO 2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO 2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO 2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties

  13. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  14. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    discusses four research directions driven by current and future application requirements reflecting the areas identified as important by STREAM2016. These include (i) Algorithms, (ii) Programming Models, Languages and Runtime Systems (iii) Human-in-the-loop and Steering in Scientific Workflow and (iv) Facilities.

  15. Modeling a Change in Flowrate through Detention or Additional Pavement on the Receiving Stream : Final Report

    Science.gov (United States)

    2017-11-01

    The addition or removal of flow from a stream affects the water surface downstream and possibly upstream. The extent of such effects is generally determined by modeling the receiving stream. Guidance that concisely describes how far up/downstream a h...

  16. Model Comparison for Electron Thermal Transport

    Science.gov (United States)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  17. Correspondence of biological condition models of California streams at statewide and regional scales

    Science.gov (United States)

    May, Jason T.; Brown, Larry R.; Rehn, Andrew C.; Waite, Ian R.; Ode, Peter R; Mazor, Raphael D; Schiff, Kenneth C

    2015-01-01

    We used boosted regression trees (BRT) to model stream biological condition as measured by benthic macroinvertebrate taxonomic completeness, the ratio of observed to expected (O/E) taxa. Models were developed with and without exclusion of rare taxa at a site. BRT models are robust, requiring few assumptions compared with traditional modeling techniques such as multiple linear regression. The BRT models were constructed to provide baseline support to stressor delineation by identifying natural physiographic and human land use gradients affecting stream biological condition statewide and for eight ecological regions within the state, as part of the development of numerical biological objectives for California’s wadeable streams. Regions were defined on the basis of ecological, hydrologic, and jurisdictional factors and roughly corresponded with ecoregions. Physiographic and land use variables were derived from geographic information system coverages. The model for the entire state (n = 1,386) identified a composite measure of anthropogenic disturbance (the sum of urban, agricultural, and unmanaged roadside vegetation land cover) within the local watershed as the most important variable, explaining 56 % of the variance in O/E values. Models for individual regions explained between 51 and 84 % of the variance in O/E values. Measures of human disturbance were important in the three coastal regions. In the South Coast and Coastal Chaparral, local watershed measures of urbanization were the most important variables related to biological condition, while in the North Coast the composite measure of human disturbance at the watershed scale was most important. In the two mountain regions, natural gradients were most important, including slope, precipitation, and temperature. The remaining three regions had relatively small sample sizes (n ≤ 75 sites) and had models that gave mixed results. Understanding the spatial scale at which land use and land cover affect

  18. Applications of spatial statistical network models to stream data

    Science.gov (United States)

    Daniel J. Isaak; Erin E. Peterson; Jay M. Ver Hoef; Seth J. Wenger; Jeffrey A. Falke; Christian E. Torgersen; Colin Sowder; E. Ashley Steel; Marie-Josee Fortin; Chris E. Jordan; Aaron S. Ruesch; Nicholas Som; Pascal. Monestiez

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for...

  19. stream nutrient uptake, forest succession, and biogeochemical theory

    OpenAIRE

    Valett, H. M.; Crenshaw, C. L.; Wagner, P. F.

    2002-01-01

    Theories of forest succession predict a close relationship between net biomass increment and catchment nutrient retention. Retention, therefore, is expected to be greatest during aggrading phases of forest succession. In general, studies of this type have compared watershed retention efficiency by monitoring stream nutrient export at the base of the catchment. As such, streams are viewed only as transport systems. Contrary to this view, the nutrient spiraling concept emphasizes transformation...

  20. Stream habitat structure influences macroinvertebrate response to pesticides

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2012-01-01

    Agricultural pesticide contamination in surface waters is increasingly threatening to impair the surface water ecosystems. Agricultural streams are furthermore often heavily maintained to optimise the transport of water away from fields. The physical habitat degradation that result from heavy...... stream maintenance probably introduce additional stress that may act in concert with pesticide stress. We surveyed pesticide contamination and macroinvertebrate community structure in 14 streams along a gradient of expected pesticide exposure. A paired-reach approach was applied to differentiate...... the effects of pesticides between sites with degraded and more undisturbed physical properties. The effect of pesticides on macroinvertebrate communities (measured as the relative abundance of SPEcies At Risk) was increased at stream sites with degraded physical habitats primarily due to the absence...

  1. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  2. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  3. Pesticide transport to tile-drained fields in SWAT model – macropore flow and sediment

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte

    2015-01-01

    Tool (SWAT) to simulate transport of both mobile (e.g. Bentazon) and strongly sorbed (e.g. Diuron) pesticides in tile drains. Macropore flow is initiated when soil water content exceeds a threshold and rainfall intensity exceeds infiltration capacity. The amount of macropore flow is calculated...... to macropore sediment transport. Simulated tile drain discharge, sediment and pesticide loads are calibrated against data from intensively monitored tile-drained fields and streams in Denmark....

  4. Modelling free surface aquifers to analyze the interaction between groundwater and sinuous streams

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Boon, W. M.; Bjerg, Poul Løgstrup

    and errors. In addition, when streams are sinuous, groundwater flow is truly 3-dimensional, with strong vertical flows and sharp changes in horizontal direction. Here 3 different approaches to simulating free surface aquifers are compared for simulating groundwater-stream interaction. The aim of the models......: a saturated-unsaturated flow model, moving mesh, and a new coordinate transformation. The saturated/unsaturated model couples the saturated groundwater flow equation with a solution of Richards equation. The moving mesh solves the saturated groundwater equation with a free surface and deformable numerical...... finite element mesh. Finally, the new coordinate transform method employs a coordinate transform so that the saturated groundwater flow equation is solved on a fixed finite element mesh with a stationary free surface. This paper describes in detail the new coordinate transform method. It employs...

  5. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  6. The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution

    Science.gov (United States)

    Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.

    2017-12-01

    Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for

  7. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    Science.gov (United States)

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  8. [Characteristics and Transport Patterns of Ammonia, Nitrites, Nitrates and Inorganic Nitrogen Flux at Epikarst Springs and a Subterranean Stream in Nanshan, Chongqing].

    Science.gov (United States)

    Zhang, Yuan-zhu; He, Qiu-fang; Jiang, Yong-jun; Li, Yong

    2016-04-15

    In a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen. The concentration of inorganic nitrogen was stable in the epikarst water while it was fluctuant in the subterranean stream. Epikarst water was less affected by rainfall and sewage compared with subterranean stream. In epikarst water, the nitrate concentration was much higher than the ammonia concentration. Dissolved inorganic nitrogen, mainly from non-point source pollution related to agricultural activities, passed in and out of the epikarst water based on a series of physical; chemical and biological processes in the epikarst zone, such as ammonification, adsorption and nitrification. On the contrary, subterranean stream showed a result of NH₄⁺-N > NO₃⁻-N in dry seasons and NO₃⁻-N > NH₄⁺-N in rainy seasons. This can be due to the fact that sanitary and industrial sewage flowed into subterranean river through sinkholes, fissures and grikes in dry season. Dissolved inorganic nitrogen in subterranean river was mainly from the non-point source pollution in wet season. Non-point source pollutants entered into subterranean water by two transport ways, one by penetration along with vadose flow through fissures and grikes, and the other by conduit flow through sinkholes from the surface runoff, soil water flow and epikarst flow. The export flux of DIN was 56.05 kg · (hm² · a)⁻¹, and NH₄⁺-N and NO₃⁻-N accounted for 46.03% and 52.51%, respectively. The contributions of point-source pollution and non point-source pollution to the export flux of DIN were 25.08% and 74.92%, respectively, based on run

  9. Scenario driven data modelling: a method for integrating diverse sources of data and data streams

    Science.gov (United States)

    2011-01-01

    Background Biology is rapidly becoming a data intensive, data-driven science. It is essential that data is represented and connected in ways that best represent its full conceptual content and allows both automated integration and data driven decision-making. Recent advancements in distributed multi-relational directed graphs, implemented in the form of the Semantic Web make it possible to deal with complicated heterogeneous data in new and interesting ways. Results This paper presents a new approach, scenario driven data modelling (SDDM), that integrates multi-relational directed graphs with data streams. SDDM can be applied to virtually any data integration challenge with widely divergent types of data and data streams. In this work, we explored integrating genetics data with reports from traditional media. SDDM was applied to the New Delhi metallo-beta-lactamase gene (NDM-1), an emerging global health threat. The SDDM process constructed a scenario, created a RDF multi-relational directed graph that linked diverse types of data to the Semantic Web, implemented RDF conversion tools (RDFizers) to bring content into the Sematic Web, identified data streams and analytical routines to analyse those streams, and identified user requirements and graph traversals to meet end-user requirements. Conclusions We provided an example where SDDM was applied to a complex data integration challenge. The process created a model of the emerging NDM-1 health threat, identified and filled gaps in that model, and constructed reliable software that monitored data streams based on the scenario derived multi-relational directed graph. The SDDM process significantly reduced the software requirements phase by letting the scenario and resulting multi-relational directed graph define what is possible and then set the scope of the user requirements. Approaches like SDDM will be critical to the future of data intensive, data-driven science because they automate the process of converting

  10. Multinomial N-mixture models improve the applicability of electrofishing for developing population estimates of stream-dwelling Smallmouth Bass

    Science.gov (United States)

    Mollenhauer, Robert; Brewer, Shannon K.

    2017-01-01

    Failure to account for variable detection across survey conditions constrains progressive stream ecology and can lead to erroneous stream fish management and conservation decisions. In addition to variable detection’s confounding long-term stream fish population trends, reliable abundance estimates across a wide range of survey conditions are fundamental to establishing species–environment relationships. Despite major advancements in accounting for variable detection when surveying animal populations, these approaches remain largely ignored by stream fish scientists, and CPUE remains the most common metric used by researchers and managers. One notable advancement for addressing the challenges of variable detection is the multinomial N-mixture model. Multinomial N-mixture models use a flexible hierarchical framework to model the detection process across sites as a function of covariates; they also accommodate common fisheries survey methods, such as removal and capture–recapture. Effective monitoring of stream-dwelling Smallmouth Bass Micropterus dolomieu populations has long been challenging; therefore, our objective was to examine the use of multinomial N-mixture models to improve the applicability of electrofishing for estimating absolute abundance. We sampled Smallmouth Bass populations by using tow-barge electrofishing across a range of environmental conditions in streams of the Ozark Highlands ecoregion. Using an information-theoretic approach, we identified effort, water clarity, wetted channel width, and water depth as covariates that were related to variable Smallmouth Bass electrofishing detection. Smallmouth Bass abundance estimates derived from our top model consistently agreed with baseline estimates obtained via snorkel surveys. Additionally, confidence intervals from the multinomial N-mixture models were consistently more precise than those of unbiased Petersen capture–recapture estimates due to the dependency among data sets in the

  11. From bottles to stream reaches and networks: Consequences of scale in how we interpret the function of freshwaters in the carbon cycle

    Science.gov (United States)

    Hotchkiss, E. R.

    2017-12-01

    Freshwater biological processes can alter the quantity and quality of organic carbon (OC) inputs from land before they are transported downstream, but the relative role of hydrologic transport and in-stream processing is still not well quantified at the scale of fluvial networks. Despite much research on the role of biology and hydrology in governing the form and fate of C in inland waters, conclusions about the function of freshwater ecosystems in modifying OC still largely depend on where we draw our ecosystem boundaries, i.e., the spatial scale of measurements used to assess OC transformations. Here I review freshwater OC uptake rates derived from bioassay incubations, synoptic modeling, reach-scale experiments, and ecosystem OC spiraling estimates. Median OC uptake velocities from standard bioassay incubations (0.02 m/d) and synoptic modeling (0.04 m/d) are 1-2 orders of magnitude lower than reach-scale experimental DOC additions and ecosystem OC spiraling estimates (2.2 and 0.27 m/d, respectively) in streams and rivers. Together, ecosystem metabolism and OC fluxes can be used to estimate the distance OC travels before being consumed and respired as CO2 through biological processes (i.e., OC spiraling), allowing for a more mechanistic understanding of the role of ecosystem processes and hydrologic fluxes in modifying downstream OC transport. Beyond the reach scale, data from stream network and stream-lake-river modeling simulations show how we may use linked sampling sites within networks to better understand the integrated sources and fate of OC in freshwaters. We currently underestimate the role of upstream processes in contributing to downstream fluxes: moving from single-ecosystem comparisons to linked-ecosystem simulations increases the contribution of in situ OC processing to CO2 emissions from 30% to >40%. Insights from literature reviews, ecosystem process measurements, and model simulations provide a framework for future considerations of integrated C

  12. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  13. The interaction of the flux errors and transport errors in modeled atmospheric carbon dioxide concentrations

    Science.gov (United States)

    Feng, S.; Lauvaux, T.; Butler, M. P.; Keller, K.; Davis, K. J.; Jacobson, A. R.; Schuh, A. E.; Basu, S.; Liu, J.; Baker, D.; Crowell, S.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Regional estimates of biogenic carbon fluxes over North America from top-down atmospheric inversions and terrestrial biogeochemical (or bottom-up) models remain inconsistent at annual and sub-annual time scales. While top-down estimates are impacted by limited atmospheric data, uncertain prior flux estimates and errors in the atmospheric transport models, bottom-up fluxes are affected by uncertain driver data, uncertain model parameters and missing mechanisms across ecosystems. This study quantifies both flux errors and transport errors, and their interaction in the CO2 atmospheric simulation. These errors are assessed by an ensemble approach. The WRF-Chem model is set up with 17 biospheric fluxes from the Multiscale Synthesis and Terrestrial Model Intercomparison Project, CarbonTracker-Near Real Time, and the Simple Biosphere model. The spread of the flux ensemble members represents the flux uncertainty in the modeled CO2 concentrations. For the transport errors, WRF-Chem is run using three physical model configurations with three stochastic perturbations to sample the errors from both the physical parameterizations of the model and the initial conditions. Additionally, the uncertainties from boundary conditions are assessed using four CO2 global inversion models which have assimilated tower and satellite CO2 observations. The error structures are assessed in time and space. The flux ensemble members overall overestimate CO2 concentrations. They also show larger temporal variability than the observations. These results suggest that the flux ensemble is overdispersive. In contrast, the transport ensemble is underdispersive. The averaged spatial distribution of modeled CO2 shows strong positive biogenic signal in the southern US and strong negative signals along the eastern coast of Canada. We hypothesize that the former is caused by the 3-hourly downscaling algorithm from which the nighttime respiration dominates the daytime modeled CO2 signals and that the latter

  14. A neighborhood statistics model for predicting stream pathogen indicator levels.

    Science.gov (United States)

    Pandey, Pramod K; Pasternack, Gregory B; Majumder, Mahbubul; Soupir, Michelle L; Kaiser, Mark S

    2015-03-01

    Because elevated levels of water-borne Escherichia coli in streams are a leading cause of water quality impairments in the U.S., water-quality managers need tools for predicting aqueous E. coli levels. Presently, E. coli levels may be predicted using complex mechanistic models that have a high degree of unchecked uncertainty or simpler statistical models. To assess spatio-temporal patterns of instream E. coli levels, herein we measured E. coli, a pathogen indicator, at 16 sites (at four different times) within the Squaw Creek watershed, Iowa, and subsequently, the Markov Random Field model was exploited to develop a neighborhood statistics model for predicting instream E. coli levels. Two observed covariates, local water temperature (degrees Celsius) and mean cross-sectional depth (meters), were used as inputs to the model. Predictions of E. coli levels in the water column were compared with independent observational data collected from 16 in-stream locations. The results revealed that spatio-temporal averages of predicted and observed E. coli levels were extremely close. Approximately 66 % of individual predicted E. coli concentrations were within a factor of 2 of the observed values. In only one event, the difference between prediction and observation was beyond one order of magnitude. The mean of all predicted values at 16 locations was approximately 1 % higher than the mean of the observed values. The approach presented here will be useful while assessing instream contaminations such as pathogen/pathogen indicator levels at the watershed scale.

  15. Jet stream wind power as a renewable energy resource: little power, big impacts

    Directory of Open Access Journals (Sweden)

    L. M. Miller

    2011-11-01

    Full Text Available Jet streams are regions of sustained high wind speeds in the upper atmosphere and are seen by some as a substantial renewable energy resource. However, jet streams are nearly geostrophic flow, that is, they result from the balance between the pressure gradient and Coriolis force in the near absence of friction. Therefore, jet stream motion is associated with very small generation rates of kinetic energy to maintain the high wind velocities, and it is this generation rate that will ultimately limit the potential use of jet streams as a renewable energy resource. Here we estimate the maximum limit of jet stream wind power by considering extraction of kinetic energy as a term in the free energy balance of kinetic energy that describes the generation, depletion, and extraction of kinetic energy. We use this balance as the basis to quantify the maximum limit of how much kinetic energy can be extracted sustainably from the jet streams of the global atmosphere as well as the potential climatic impacts of its use. We first use a simple thought experiment of geostrophic flow to demonstrate why the high wind velocities of the jet streams are not associated with a high potential for renewable energy generation. We then use an atmospheric general circulation model to estimate that the maximum sustainable extraction from jet streams of the global atmosphere is about 7.5 TW. This estimate is about 200-times less than previous estimates and is due to the fact that the common expression for instantaneous wind power 12 ρv3 merely characterizes the transport of kinetic energy by the flow, but not the generation rate of kinetic energy. We also find that when maximum wind power is extracted from the jet streams, it results in significant

  16. Study on neutron streaming effect in large fast critical assembly

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yamaoka, Mitsuaki; Sakurai, Shungo; Tanimoto, Koichi; Abe, Yuhei

    1981-03-01

    A cell calculation method taking into account the neutron leakage from a cell and a transport calculation method treating the neutron streaming have been developed, and their applicability has been investigated. In the cell calculation method, the neutron leakage in the perpendicular direction to plates was treated by introducing an albedo collision probability which is a first-flight collision probability incorporating albedos at cell boundaries, and that in the parallel direction was treated by the pseudo absorption method. The use of the albedo collision probability made it possible to calculate the flux tilt in a cell exactly. This cell calculation method was applied to two slab models where fuel drawers were stacked in perpendicular and parallel directions to plates. Cell averaged cross sections calculated by the proposed method agreed well with those obtained from exact transport calculations treating the plate-wise heterogeneity, while the infinite cell calculation and the conventional pseudo absorption method produced about 2% errors in the cell-averaged cross sections. The cell-averaging procedure for control-rod channels was also proposed, and this method was applied to the calculation of control-rod worths and control-rod position worths. A transport calculation method based on the response matrix method has been proposed to treat the neutron streaming in fast critical assemblies directly. A response matrix code in two dimensional XY geometry RES2D was made. The accuracy of response matrices obtained from the RES2D code was checked by applying it to a slab cell and by comparing cell-averaged cross sections and k-infinity with those from a reference cell calculation based on the collision probability. The agreement of the results was good, and it was found that the response matrix method is very promising for the treatment of the neutron streaming in fast critical assemblies. (author)

  17. A scalable delivery framework and a pricing model for streaming media with advertisements

    Science.gov (United States)

    Al-Hadrusi, Musab; Sarhan, Nabil J.

    2008-01-01

    This paper presents a delivery framework for streaming media with advertisements and an associated pricing model. The delivery model combines the benefits of periodic broadcasting and stream merging. The advertisements' revenues are used to subsidize the price of the media content. The pricing is determined based on the total ads' viewing time. Moreover, this paper presents an efficient ad allocation scheme and three modified scheduling policies that are well suited to the proposed delivery framework. Furthermore, we study the effectiveness of the delivery framework and various scheduling polices through extensive simulation in terms of numerous metrics, including customer defection probability, average number of ads viewed per client, price, arrival rate, profit, and revenue.

  18. Predicting long-term recovery of a strongly acidified stream using MAGIC and climate models (Litavka, Czech Republic

    Directory of Open Access Journals (Sweden)

    D. W. Hardekopf

    2008-03-01

    Full Text Available Two branches forming the headwaters of a stream in the Czech Republic were studied. Both streams have similar catchment characteristics and historical deposition; however one is rain-fed and strongly affected by acid atmospheric deposition, the other spring-fed and only moderately acidified. The MAGIC model was used to reconstruct past stream water and soil chemistry of the rain-fed branch, and predict future recovery up to 2050 under current proposed emissions levels. A future increase in air temperature calculated by a regional climate model was then used to derive climate-related scenarios to test possible factors affecting chemical recovery up to 2100. Macroinvertebrates were sampled from both branches, and differences in stream chemistry were reflected in the community structures. According to modelled forecasts, recovery of the rain-fed branch will be gradual and limited, and continued high levels of sulphate release from the soils will continue to dominate stream water chemistry, while scenarios related to a predicted increase in temperature will have little impact. The likelihood of colonization of species from the spring-fed branch was evaluated considering the predicted extent of chemical recovery. The results suggest that the possibility of colonization of species from the spring-fed branch to the rain-fed will be limited to only the acid-tolerant stonefly, caddisfly and dipteran taxa in the modelled period.

  19. Assessment of applications of transport models on regional scale solute transport

    Science.gov (United States)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  20. Numerical Model of Streaming DEP for Stem Cell Sorting

    Directory of Open Access Journals (Sweden)

    Rucha Natu

    2016-11-01

    Full Text Available Neural stem cells are of special interest due to their potential in neurogenesis to treat spinal cord injuries and other nervous disorders. Flow cytometry, a common technique used for cell sorting, is limited due to the lack of antigens and labels that are specific enough to stem cells of interest. Dielectrophoresis (DEP is a label-free separation technique that has been recently demonstrated for the enrichment of neural stem/progenitor cells. Here we use numerical simulation to investigate the use of streaming DEP for the continuous sorting of neural stem/progenitor cells. Streaming DEP refers to the focusing of cells into streams by equilibrating the dielectrophoresis and drag forces acting on them. The width of the stream should be maximized to increase throughput while the separation between streams must be widened to increase efficiency during retrieval. The aim is to understand how device geometry and experimental variables affect the throughput and efficiency of continuous sorting of SC27 stem cells, a neurogenic progenitor, from SC23 cells, an astrogenic progenitor. We define efficiency as the ratio between the number of SC27 cells over total number of cells retrieved in the streams, and throughput as the number of SC27 cells retrieved in the streams compared to their total number introduced to the device. The use of cylindrical electrodes as tall as the channel yields streams featuring >98% of SC27 cells and width up to 80 µm when using a flow rate of 10 µL/min and sample cell concentration up to 105 cells/mL.

  1. Mathematical modeling plasma transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 1020/m3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  2. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  3. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  4. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing

  5. Risks of transport of radioactive materials on the road; some exploring calculations performed with the INTERTRAN-model

    International Nuclear Information System (INIS)

    1987-04-01

    Under the auspices of the IAEA a computercode, named INTERTRAN, has been developed in order to calculate the risks of the transport of radioactive materials. This code has to be tested nearer. For the Dutch situation a number of calculations has been performed of more or less realistic cases in which four transport streams have been investigated. Two transport routes are chosen. The risks thus obtained are compared quantitatively with the risks of LPG-transports. 4 refs.; 9 figs

  6. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    Science.gov (United States)

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  7. Mass transfer of a neutral solute in porous microchannel under streaming potential.

    Science.gov (United States)

    Mondal, Sourav; De, Sirshendu

    2014-03-01

    The mass transport of a neutral solute in a porous wall, under the influence of streaming field, has been analyzed in this study. The effect of the induced streaming field on the electroviscous effect of the fluid for different flow geometries has been suitably quantified. The overall electroosmotic velocity profile and expression for streaming field have been obtained analytically using the Debye-Huckel approximation, and subsequently used in the analysis for the mass transport. The analysis shows that as the solution Debye length increases, the strength of the streaming field and, consequently, the electroviscous effect diminishes. The species transport equation has been coupled with Darcy's law for quantification of the permeation rate across the porous wall. The concentration profile inside the mass transfer boundary layer has been solved using the similarity transformation, and the Sherwood number has been calculated from the definition. In this study, the variation of the permeation rate and solute permeate concentration has been with the surface potential, wall retention factor and osmotic pressure coefficient has been demonstrated for both the circular as well as rectangular channel cross-section. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...... iterating between a route-choice (demand) model and a time-flow (supply) model. It is generally recognised that a simple iteration scheme where the level-of-service level is fed directly to the route-choice and vice versa may exhibit an unstable pattern and lead to cyclic unstable solutions. It can be shown...

  9. Methods of making transportation fuel

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2012-04-10

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation. The alkylated hydrocarbons may be blended with one or more components to produce transportation fuel.

  10. Developing an Effective Model for Predicting Spatially and Temporally Continuous Stream Temperatures from Remotely Sensed Land Surface Temperatures

    Directory of Open Access Journals (Sweden)

    Kristina M. McNyset

    2015-12-01

    Full Text Available Although water temperature is important to stream biota, it is difficult to collect in a spatially and temporally continuous fashion. We used remotely-sensed Land Surface Temperature (LST data to estimate mean daily stream temperature for every confluence-to-confluence reach in the John Day River, OR, USA for a ten year period. Models were built at three spatial scales: site-specific, subwatershed, and basin-wide. Model quality was assessed using jackknife and cross-validation. Model metrics for linear regressions of the predicted vs. observed data across all sites and years: site-specific r2 = 0.95, Root Mean Squared Error (RMSE = 1.25 °C; subwatershed r2 = 0.88, RMSE = 2.02 °C; and basin-wide r2 = 0.87, RMSE = 2.12 °C. Similar analyses were conducted using 2012 eight-day composite LST and eight-day mean stream temperature in five watersheds in the interior Columbia River basin. Mean model metrics across all basins: r2 = 0.91, RMSE = 1.29 °C. Sensitivity analyses indicated accurate basin-wide models can be parameterized using data from as few as four temperature logger sites. This approach generates robust estimates of stream temperature through time for broad spatial regions for which there is only spatially and temporally patchy observational data, and may be useful for managers and researchers interested in stream biota.

  11. Analysis of radionuclide migration through fractures using the stream tube approach

    International Nuclear Information System (INIS)

    Jong Soon Song; Kun Jai Lee

    1988-01-01

    An analytical solution for the radionuclide migration in the heterogeneous geologic media is developed by using the Green's function techniques. To take into account the non-homogeneous geologic formation and non-uniform groundwater flow field effectively, a combined fracture/porous media model (in series network) is introduced. The stream tube approach is suggested as an efficient method to analyze groundwater hydrology occurring primarily along the fractures. With this approach, three-dimensional heterogeneous media may be approximated as a network of one-dimensional flow paths (fractures) and the corresponding subsurface transport equations can be solved more easily and efficiently by using the Green's function technique within each unit stream tubes. Also a method of combining the corresponding separate Green's functions to derive an overall Green's function for the flow path network is developed. Analytical solutions with various time-dependent radionuclide release modes for heterogeneous geologic media are obtained and sample calculations are performed for the parametric studies. Comparison with other model shows the validity of the present model. 22 refs.; 11 figs.; 5 tabs

  12. Towards benchmarking an in-stream water quality model

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A method of model evaluation is presented which utilises a comparison with a benchmark model. The proposed benchmarking concept is one that can be applied to many hydrological models but, in this instance, is implemented in the context of an in-stream water quality model. The benchmark model is defined in such a way that it is easily implemented within the framework of the test model, i.e. the approach relies on two applications of the same model code rather than the application of two separate model codes. This is illustrated using two case studies from the UK, the Rivers Aire and Ouse, with the objective of simulating a water quality classification, general quality assessment (GQA, which is based on dissolved oxygen, biochemical oxygen demand and ammonium. Comparisons between the benchmark and test models are made based on GQA, as well as a step-wise assessment against the components required in its derivation. The benchmarking process yields a great deal of important information about the performance of the test model and raises issues about a priori definition of the assessment criteria.

  13. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    Science.gov (United States)

    Wagner, Brian J.; Harvey, Judson W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute

  14. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-08-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  15. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-06-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  16. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  17. A GIS-based groundwater travel time model to evaluate stream nitrate concentration reductions from land use change

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2007-01-01

    Excessive nitrate-nitrogen (nitrate) loss from agricultural watersheds is an environmental concern. A common conservation practice to improve stream water quality is to retire vulnerable row croplands to grass. In this paper, a groundwater travel time model based on a geographic information system (GIS) analysis of readily available soil and topographic variables was used to evaluate the time needed to observe stream nitrate concentration reductions from conversion of row crop land to native prairie in Walnut Creek watershed, Iowa. Average linear groundwater velocity in 5-m cells was estimated by overlaying GIS layers of soil permeability, land slope (surrogates for hydraulic conductivity and gradient, respectively) and porosity. Cells were summed backwards from the stream network to watershed divide to develop a travel time distribution map. Results suggested that groundwater from half of the land planted in prairie has reached the stream network during the 10 years of ongoing water quality monitoring. The mean travel time for the watershed was estimated to be 10.1 years, consistent with results from a simple analytical model. The proportion of land in the watershed and subbasins with prairie groundwater reaching the stream (10-22%) was similar to the measured reduction of stream nitrate (11-36%). Results provide encouragement that additional nitrate reductions in Walnut Creek are probable in the future as reduced nitrate groundwater from distal locations discharges to the stream network in the coming years. The high spatial resolution of the model (5-m cells) and its simplicity may make it potentially applicable for land managers interested in communicating lag time issues to the public, particularly related to nitrate concentration reductions over time. ?? 2007 Springer-Verlag.

  18. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...

  19. Highway and interline transportation routing models

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1994-01-01

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described

  20. Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study.

    Science.gov (United States)

    Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny

    2018-06-01

    Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine

  1. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  2. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  3. ECOLOGICAL EFFECTS OF METALS IN STREAMS ON A DEFENSE MATERIALS PROCESSING SITE IN SOUTH CAROLINA, USA

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.; Dyer, S.

    2009-09-01

    The Savannah River Site (SRS) is a 780 km{sup 2} U.S. Department of Energy facility near Aiken SC established in 1950 to produce nuclear materials. SRS streams are 'integrators' that potentially receive water transportable contaminants from all sources within their watersheds necessitating a GIS-based watershed approach to organize contaminant distribution data and accurately characterize the effects of multiple contaminant sources on aquatic organisms. Concentrations of metals in sediments, fish, and water were elevated in streams affected by SRS operations, but contaminant exposure models for Lontra Canadensis and Ceryle alcyon indicated that toxicological reference values were exceeded only by Hg and Al. Macroinvertebrate community structure was unrelated to sediment metal concentrations. This study indicated that (1) modeling studies and field bioassessments provide a complementary basis for addressing the individual and cumulative effects of contaminants, (2) habitat effects must be controlled when assessing contaminant impacts, (3) sensitivity analyses of contaminant exposure models are helpful in apportioning sampling effort, and (4) contaminants released during fifty years of industrial operations have not resulted in demonstrable harm to aquatic organisms in SRS streams.

  4. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  5. High-resolution modeling assessment of tidal stream resource in Western Passage of Maine, USA

    Science.gov (United States)

    Yang, Zhaoqing; Wang, Taiping; Feng, Xi; Xue, Huijie; Kilcher, Levi

    2017-04-01

    Although significant efforts have been taken to assess the maximum potential of tidal stream energy at system-wide scale, accurate assessment of tidal stream energy resource at project design scale requires detailed hydrodynamic simulations using high-resolution three-dimensional (3-D) numerical models. Extended model validation against high quality measured data is essential to minimize the uncertainties of the resource assessment. Western Passage in the State of Maine in U.S. has been identified as one of the top ranking sites for tidal stream energy development in U.S. coastal waters, based on a number of criteria including tidal power density, market value and transmission distance. This study presents an on-going modeling effort for simulating the tidal hydrodynamics in Western Passage using the 3-D unstructured-grid Finite Volume Community Ocean Model (FVCOM). The model domain covers a large region including the entire the Bay of Fundy with grid resolution varies from 20 m in the Western Passage to approximately 1000 m along the open boundary near the mouth of Bay of Fundy. Preliminary model validation was conducted using existing NOAA measurements within the model domain. Spatial distributions of tidal power density were calculated and extractable tidal energy was estimated using a tidal turbine module embedded in FVCOM under different tidal farm scenarios. Additional field measurements to characterize resource and support model validation were discussed. This study provides an example of high resolution resource assessment based on the guidance recommended by the International Electrotechnical Commission Technical Specification.

  6. Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2017-02-01

    Full Text Available In recent years, data streams have become an increasingly important area of research for the computer science, database and statistics communities. Data streams are ordered and potentially unbounded sequences of data points created by a typically non-stationary data generating process. Common data mining tasks associated with data streams include clustering, classification and frequent pattern mining. New algorithms for these types of data are proposed regularly and it is important to evaluate them thoroughly under standardized conditions. In this paper we introduce stream, a research tool that includes modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. In addition to data handling, plotting and easy scripting capabilities, R also provides many existing algorithms and enables users to interface code written in many programming languages popular among data mining researchers (e.g., C/C++, Java and Python. In this paper we describe the architecture of stream and focus on its use for data stream clustering research. stream was implemented with extensibility in mind and will be extended in the future to cover additional data stream mining tasks like classification and frequent pattern mining.

  7. Exploring inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video

    Science.gov (United States)

    Li, Jia; Tian, Yonghong; Gao, Wen

    2008-01-01

    In recent years, the amount of streaming video has grown rapidly on the Web. Often, retrieving these streaming videos offers the challenge of indexing and analyzing the media in real time because the streams must be treated as effectively infinite in length, thus precluding offline processing. Generally speaking, captions are important semantic clues for video indexing and retrieval. However, existing caption detection methods often have difficulties to make real-time detection for streaming video, and few of them concern on the differentiation of captions from scene texts and scrolling texts. In general, these texts have different roles in streaming video retrieval. To overcome these difficulties, this paper proposes a novel approach which explores the inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video. In our approach, the inter-frame correlation information is used to distinguish caption texts from scene texts and scrolling texts. Moreover, wavelet-domain Generalized Gaussian Models (GGMs) are utilized to automatically remove non-text regions from each frame and only keep caption regions for further processing. Experiment results show that our approach is able to offer real-time caption detection with high recall and low false alarm rate, and also can effectively discern caption texts from the other texts even in low resolutions.

  8. Monte Carlo impurity transport modeling in the DIII-D transport

    International Nuclear Information System (INIS)

    Evans, T.E.; Finkenthal, D.F.

    1998-04-01

    A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed

  9. Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Sin, Gürkan; Gernaey, Krist V.

    2015-01-01

    In this work the Benchmark Simulation Model No.2 is extended with processes for nitrous oxide production and for side-stream partial nitritation/Anammox (PN/A) treatment. For these extensions the Activated Sludge Model for Greenhouse gases No.1 was used to describe the main waterline, whereas...... the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...... increased the total nitrogen removal by 10%; (ii) reduced the aeration demand by 16% compared to the base case, and (iii) the activity of ammonia-oxidizing bacteria is most influencing nitrous oxide emissions. The extended model provides a simulation platform to generate, test and compare novel control...

  10. Mining Frequent Item Sets in Asynchronous Transactional Data Streams over Time Sensitive Sliding Windows Model

    International Nuclear Information System (INIS)

    Javaid, Q.; Memon, F.; Talpur, S.; Arif, M.; Awan, M.D.

    2016-01-01

    EPs (Extracting Frequent Patterns) from the continuous transactional data streams is a challenging and critical task in some of the applications, such as web mining, data analysis and retail market, prediction and network monitoring, or analysis of stock market exchange data. Many algorithms have been developed previously for mining FPs (Frequent Patterns) from a data stream. Such algorithms are currently highly required to develop new solutions and approaches to the precise handling of data streams. New techniques, solutions, or approaches are developed to address unbounded, ordered, and continuous sequences of data and for the generation of data at a rapid speed from data streams. Hence, extracting FPs using fresh or recent data involves the high-level analysis of data streams. We have suggested an efficient technique for the window sliding model; this technique extracts new and fresh FPs from high-speed data streams. In this study, a CPILT (Compacted Tree Compact Pattern Tree) is developed to capture the latest contents in the stream and to efficiently remove outdated contents from the data stream. The main concept introduced in this work on CPILT is the dynamic restructuring of a tree, which is helpful in producing a compacted tree and the frequency descending structure of a tree on runtime. With the help of the mining technique of FP growth, a complete list of new and fresh FPs is obtained from a CPILT using an existing window. The memory usage and time complexity of the latest FPs in high-speed data streams can efficiently be determined through proper experimentation and analysis. (author)

  11. Performance Evaluation of UML2-Modeled Embedded Streaming Applications with System-Level Simulation

    Directory of Open Access Journals (Sweden)

    Arpinen Tero

    2009-01-01

    Full Text Available This article presents an efficient method to capture abstract performance model of streaming data real-time embedded systems (RTESs. Unified Modeling Language version 2 (UML2 is used for the performance modeling and as a front-end for a tool framework that enables simulation-based performance evaluation and design-space exploration. The adopted application meta-model in UML resembles the Kahn Process Network (KPN model and it is targeted at simulation-based performance evaluation. The application workload modeling is done using UML2 activity diagrams, and platform is described with structural UML2 diagrams and model elements. These concepts are defined using a subset of the profile for Modeling and Analysis of Realtime and Embedded (MARTE systems from OMG and custom stereotype extensions. The goal of the performance modeling and simulation is to achieve early estimates on task response times, processing element, memory, and on-chip network utilizations, among other information that is used for design-space exploration. As a case study, a video codec application on multiple processors is modeled, evaluated, and explored. In comparison to related work, this is the first proposal that defines transformation between UML activity diagrams and streaming data application workload meta models and successfully adopts it for RTES performance evaluation.

  12. Hierarchical multi-taxa models inform riparian vs. hydrologic restoration of urban streams in a permeable landscape.

    Science.gov (United States)

    Gwinn, Daniel C; Middleton, Jen A; Beesley, Leah; Close, Paul; Quinton, Belinda; Storer, Tim; Davies, Peter M

    2018-03-01

    The degradation of streams caused by urbanization tends to follow predictable patterns; however, there is a growing appreciation for heterogeneity in stream response to urbanization due to the local geoclimatic context. Furthermore, there is building evidence that streams in mildly sloped, permeable landscapes respond uncharacteristically to urban stress calling for a more nuanced approach to restoration. We evaluated the relative influence of local-scale riparian characteristics and catchment-scale imperviousness on the macroinvertebrate assemblages of streams in the flat, permeable urban landscape of Perth, Western Australia. Using a hierarchical multi-taxa model, we predicted the outcomes of stylized stream restoration strategies to increase the riparian integrity at the local scale or decrease the influences of imperviousness at the catchment scale. In the urban streams of Perth, we show that local-scale riparian restoration can influence the structure of macroinvertebrate assemblages to a greater degree than managing the influences of catchment-scale imperviousness. We also observed an interaction between the effect of riparian integrity and imperviousness such that the effect of increased riparian integrity was enhanced at lower levels of catchment imperviousness. This study represents one of few conducted in flat, permeable landscapes and the first aimed at informing urban stream restoration in Perth, adding to the growing appreciation for heterogeneity of the Urban Stream Syndrome and its importance for urban stream restoration. © 2017 by the Ecological Society of America.

  13. Coal supply and transportation model (CSTM)

    International Nuclear Information System (INIS)

    1991-11-01

    The Coal Supply and Transportation Model (CSTM) forecasts annual coal supply and distribution to domestic and foreign markets. The model describes US coal production, national and international coal transportation industries. The objective of this work is to provide a technical description of the current version of the model

  14. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  15. Transport Choice Modeling for the Evaluation of New Transport Policies

    Directory of Open Access Journals (Sweden)

    Ander Pijoan

    2018-04-01

    Full Text Available Quantifying the impact of the application of sustainable transport policies is essential in order to mitigate effects of greenhouse gas emissions produced by the transport sector. One of the most common approaches used for this purpose is that of traffic modelling and simulation, which consists of emulating the operation of an entire road network. This article presents the results of fitting 8 well known data science methods for transport choice modelling, the area in which more research is needed. The models have been trained with information from Biscay province in Spain in order to match as many of its commuters as possible. Results show that the best models correctly forecast more than 51% of the trips recorded. Finally, the results have been validated with a second data set from the Silesian Voivodeship in Poland, showing that all models indeed maintain their forecasting ability.

  16. Potential stream density in Mid-Atlantic US watersheds.

    Science.gov (United States)

    Elmore, Andrew J; Julian, Jason P; Guinn, Steven M; Fitzpatrick, Matthew C

    2013-01-01

    Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts.

  17. Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado front range

    Science.gov (United States)

    Miller, Matthew P.; McKnight, Diane M.; Cory, R.M.; Williams, Mark W.; Runkel, Robert L.

    2006-01-01

    The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (?? ??? 10-3 s -1). Parallel factor analysis of fluorescence spectra was used to quantify the redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (?? = 6.5 ?? 10-3 s -1) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (?? = 1.2 ?? 10-3 s-1) and production of nitrate (?? = -1.0 ?? 10-3 s-1) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale. ?? 2006 American Chemical Society.

  18. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  19. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado

    Science.gov (United States)

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  20. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  1. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    Science.gov (United States)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  2. Stream Clustering of Growing Objects

    Science.gov (United States)

    Siddiqui, Zaigham Faraz; Spiliopoulou, Myra

    We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of Customer and Transaction. As the Transactions stream accumulates, the Customers’ profiles grow. First, we use an incremental propositionalisation to convert the multi-table stream into a single-table stream upon which we apply clustering. For this purpose, we develop an online version of K-Means algorithm that can handle these swelling objects and any new objects that arrive. The algorithm also monitors the quality of the model and performs re-clustering when it deteriorates. We evaluate our method on the PKDD Challenge 1999 dataset.

  3. Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.

  4. Characterizing Soil Lead Contamination Near Streams in Oakland, California

    Science.gov (United States)

    Tanouye, D.

    2017-12-01

    Lead (Pb) contamination of soils, groundwater, and surface waters is a major concern because of the potential health risks related to accumulation of high levels of lead in blood. This is a pervasive issue in many low-income neighborhoods throughout the United States, and is documented to be particularly acute in West Oakland, California. The fate and transport of lead in the environment is largely dependent on how it will bind to various solids and compounds in solution. These adsorption mechanisms are a principal aspect of metal dissolution and chemical speciation. Stream channels are natural drainage areas for urban runoff, and may represent a hot spot for increased levels of lead. This study evaluates the environmental conditions at 15 sites near streams in West Oakland using in-situ soil sampling with the handheld X-Ray Fluorescence (XRF) analyzer to measure concentrations of lead in soil. Results from this study suggest that the levels of lead in soils near stream channels are generally lower than the regional regulatory screening level of 80 milligrams per kilogram (mg/kg), but the highest concentrations are found near stream banks. The spatial distribution can be explained by a contaminant transport process related to the presence of fluvial channels.

  5. Repository thermal response: A preliminary evaluation of the effects of modeled waste stream resolution

    International Nuclear Information System (INIS)

    Ryder, E.E.; Dunn, E.

    1995-09-01

    One of the primary factors that influences our predictions of host-rock thermal response within a high level waste repository is how the waste stream's represented in the models. In the context of thermal modeling, waste stream refers to an itemized listing of the type (pressurized-water or boiling-water reactor), age, burnup, and enrichment of the spent nuclear fuel assemblies entering the repository over the 25-year emplacement phase. The effect of package-by-package variations in spent fuel characteristics on predicted repository thermal response is the focus of this report. A three-year portion of the emplacement period was modeled using three approaches to waste stream resolution. The first assumes that each package type emplaced in a given year is adequately represented by average characteristics. For comparison, two models that explicitly account for each waste package's individual characteristics were run; the first assuming a random selection of packages and the second an ordered approach aimed at locating the higher power output packages toward the center of the emplacement area. Results indicate that the explicit representation of packages results in hot and cold spots that could have performance assessment and design implications. Furthermore, questions are raised regarding the representativeness of average characteristics with respect to integrated energy output and the possible implications of a mass-based repository loading approach

  6. Switch of flow direction in an Antarctic ice stream.

    Science.gov (United States)

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  7. Cumulus parameterizations in chemical transport models

    Science.gov (United States)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  8. Nitrogen spiraling in stream ecosystems spanning a gradient of chronic nitrogen loading

    OpenAIRE

    Earl, Stevan Ross

    2004-01-01

    This dissertation is a study of the relationships between nitrogen (N) availability and spiraling (the paired processes of nutrient cycling and advective transport) in stream ecosystems. Anthropogenic activities have greatly increased rates of N loading to aquatic ecosystems. However, streams may be important sites for retention, removal, and transformation of N. In order to identify controls on NO3-N spiraling in anthropogenically impacted streams, I examined relationships among NO3-N spi...

  9. Modelling radionuclide transport in the geosphere: a review of the models available

    International Nuclear Information System (INIS)

    Cacas, M.C.; Cordier, E.; Coudrain-Ribstein, A.; Fargue, D.; Goblet, P.; Jamet, Ph.; Ledoux, E.; Marsily, G. de; Vinsot, A.; Brun, Ch.; Cernes, A.; Jacquier, Ph.; Lewi, J.; Priem, Th.

    1990-01-01

    Over the last twelve years, several models have been developed to simulate the transport of radionuclides in the environment of a radioactive waste repository: - continuous equivalent porous media flow and transport models using the finite element method in 1, 2 or 3 dimensions and taking into account various coupled mechanisms; - discontinuous stochastic fracture network models in 3 dimensions representing flow, transport, matrix diffusion, heat flow and mechanical stress; - geochemical models representing interactions between transported elements and a solid matrix; - transport process models coupling non dominant phenomena such as thermo-diffusion or thermo-gravitation. This paper reviews the role that each of these models can play in safety analyses. 3 refs [fr

  10. A Field Exercise in Fluvial Sediment Transport.

    Science.gov (United States)

    Tharp, Thomas M.

    1983-01-01

    Describes an investigation which introduces the mathematical principles of stream hydraulics and fluvial sediment in a practical context. The investigation has four stages: defining hydrology of the stream; defining channel hydraulics in a study reach; measuring grain size; and calculating transportable grain size and comparing measure stream-bed…

  11. A 3-D numerical model of the influence of meanders on groundwater discharge to a gaining stream in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Boon, Wietse M.; Nicolajsen, Ellen

    2017-01-01

    Groundwater discharge to streams depends on stream morphology and groundwater flow direction, but are not always well understood. Here a 3-D groundwater flow model is employed to investigate the impact of meandering stream geometries on groundwater discharge to streams in an unconfined and homoge...

  12. SCIENTIFIC METHODOLOGICAL APPROACHES TO CREATION OF COMPLEX CONTROL SYSTEM MODEL FOR THE STREAMS OF BUILDING WASTE

    Directory of Open Access Journals (Sweden)

    Tskhovrebov Eduard Stanislavovich

    2015-09-01

    Full Text Available In 2011 in Russia a Strategy of Production Development of Construction Materials and Industrial Housing Construction for the period up to 2020 was approved as one of strategic documents in the sphere of construction. In the process of this strategy development all the needs of construction complex were taken into account in all the spheres of economy, including transport system. The strategy also underlined, that the construction industry is a great basis for use and application in secondary economic turnover of dangerous waste from different production branches. This gives possibility to produce construction products of recycled materials and at the same time to solve the problem of environmental protection. The article considers and analyzes scientific methodological approaches to creation of a model of a complex control system for the streams of building waste in frames of organizing uniform ecologically safe and economically effective complex system of waste treatment in country regions.

  13. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  14. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1993-01-01

    This report documents progress to date under a three-year contract for developing ''Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing ''code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases

  15. CALCULATING BEDLOAD TRANSPORT IN RIVERS: CONCEPTS, CALCULUS ROUTINES AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Hudson de Azevedo Macedo

    2017-10-01

    Full Text Available Rivers are immensely important to human activities such as water supply, navigation, energy generation, and agriculture. They are also an important morphodynamic agent of erosion, transport and deposition. Their capacity to transport sediment depends on their hydraulic characteristics and can be predicted by mathematical models. Several mathematical models can be used to compute bed-load transport. Each one is appropriately better for certain conditions. In this paper, we present an application built in Microsoft Excel to compute the bed-load transport in rivers based on the Van Rijn mathematical model. The Van Rijn model is appropriate for rivers transporting sandy sediments in conditions of subcritical flow. Hydraulic parameters such as channel slope, stream power, and Reynolds and Froude numbers can be calculated using the application proposed here. The application was tested in the Paraná River and results from the calculations are consistent with data obtained from fieldwork surveys. The error of the application was only 20%, which shows good agreement of the model with survey values.

  16. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  17. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  18. Trapping, focusing, and sorting of microparticles through bubble streaming

    Science.gov (United States)

    Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha

    2010-11-01

    Ultrasound-driven oscillating microbubbles can set up vigorous steady streaming flows around the bubbles. In contrast to previous work, we make use of the interaction between the bubble streaming and the streaming induced around mobile particles close to the bubble. Our experiment superimposes a unidirectional Poiseuille flow containing a well-mixed suspension of neutrally buoyant particles with the bubble streaming. The particle-size dependence of the particle-bubble interaction selects which particles are transported and which particles are trapped near the bubbles. The sizes selected for can be far smaller than any scale imposed by the device geometry, and the selection mechanism is purely passive. Changing the amplitude and frequency of ultrasound driving, we can further control focusing and sorting of the trapped particles, leading to the emergence of sharply defined monodisperse particle streams within a much wider channel. Optimizing parameters for focusing and sorting are presented. The technique is applicable in important fields like cell sorting and drug delivery.

  19. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  20. A Mercury Model of Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  1. Storm Sewage Dilution in Smaller Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1987-01-01

    A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow.......A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow....

  2. Development of an emergency medical video multiplexing transport system. Aiming at the nation wide prehospital care on ambulance.

    Science.gov (United States)

    Nagatuma, Hideaki

    2003-04-01

    The Emergency Medical Video Multiplexing Transport System (EMTS) is designed to support prehospital cares by delivering high quality live video streams of patients in an ambulance to emergency doctors in a remote hospital via satellite communications. The important feature is that EMTS divides a patient's live video scene into four pieces and transports the four video streams on four separate network channels. By multiplexing four video streams, EMTS is able to transport high quality videos through low data transmission rate networks such as satellite communications and cellular phone networks. In order to transport live video streams constantly, EMTS adopts Real-time Transport Protocol/Real-time Control Protocol as a network protocol and video stream data are compressed by Moving Picture Experts Group 4 format. As EMTS combines four video streams with checking video frame numbers, it uses a refresh packet that initializes server's frame numbers to synchronize the four video streams.

  3. Measuring gravel transport and dispersion in a mountain river using passive radio tracers

    Science.gov (United States)

    Bradley, D. N.; Tucker, G. E.

    2012-01-01

    Random walk models of fluvial sediment transport recognize that grains move intermittently, with short duration steps separated by rests that are comparatively long. These models are built upon the probability distributions of the step length and the resting time. Motivated by these models, tracer experiments have attempted to measure directly the steps and rests of sediment grains in natural streams. This paper describes results from a large tracer experiment designed to test stochastic transport models. We used passive integrated transponder (PIT) tags to label 893 coarse gravel clasts and placed them in Halfmoon Creek, a small alpine stream near Leadville, Colorado, USA. The PIT tags allow us to locate and identify tracers without picking them up or digging them out of the streambed. They also enable us to find a very high percentage of our rocks, 98% after three years and 96% after the fourth year. We use the annual tracer displacement to test two stochastic transport models, the Einstein–Hubbell–Sayre (EHS) model and the Yang–Sayre gamma-exponential model (GEM). We find that the GEM is a better fit to the observations, particularly for slower moving tracers and suggest that the strength of the GEM is that the gamma distribution of step lengths approximates a compound Poisson distribution. Published in 2012. This article is a US Government work and is in the public domain in the USA.

  4. Trail Creek II: Modeling Flow and E. Coli Concentrations in a Small Urban Stream using SWAT

    Science.gov (United States)

    Radcliffe, D. E.; Saintil, T.

    2017-12-01

    Pathogens are one of the leading causes of stream and river impairment in the State of Georgia. The common presence of fecal bacteria is driven by several factors including rapid population growth stressing pre-existing and ageing infrastructure, urbanization and poor planning, increase percent imperviousness, urban runoff, municipal discharges, sewage, pet/wildlife waste and leaky septic tanks. The Trail Creek watershed, located in Athens-Clarke County, Georgia covers about 33 km2. Stream segments within Trail Creek violate the GA standard due to high levels of fecal coliform bacteria. In this study, the Soil and Water Assessment Tool (SWAT) modeling software was used to predict E. coli bacteria concentrations during baseflow and stormflow. Census data from the county was used for human and animal population estimates and the Fecal Indicator Tool to generate the number of colony forming units of E. Coli for each source. The model was calibrated at a daily time step with one year of monitored streamflow and E. coli bacteria data using SWAT-CUP and the SUFI2 algorithm. To simulate leaking sewer lines, we added point sources in the five subbasins in the SWAT model with the greatest length of sewer line within 50 m of the stream. The flow in the point sources were set to 5% of the stream flow and the bacteria count set to that of raw sewage (30,000 cfu/100 mL). The calibrated model showed that the average load during 2003-2013 at the watershed outlet was 13 million cfu per month. Using the calibrated model, we simulated scenarios that assumed leaking sewers were repaired in one of the five subbasins with point sources. The reduction ranged from 10 to 46%, with the largest reduction in subbasin in the downtown area. Future modeling work will focus on the use of green infrastructure to address sources of bacteria.

  5. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    Science.gov (United States)

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  6. Application of Genetic Programing to Develop a Modular Model for the Simulation of Stream Flow Time Series

    Science.gov (United States)

    Meshgi, A.; Babovic, V.; Chui, T. F. M.; Schmitter, P.

    2014-12-01

    Developing reliable methods to estimate stream flow has been a subject of interest due to its importance in planning, design and management of water resources within a basin. Machine learning tools such as Artificial Neural Network (ANN) and Genetic Programming (GP) have been widely applied for rainfall-runoff modeling as they require less computational time as compared to physically-based models. As GP is able to generate a function with understandable structure, it may offer advantages over other data driven techniques and therefore has been used in different studies to generate rainfall-runoff functions. However, to date, proposed formulations only contain rainfall and/or streamflow data and consequently are local and cannot be generalized and adopted in other catchments which have different physical characteristics. This study investigated the capability of GP in developing a physically interpretable model with understandable structure to simulate stream flow based on hydrological parameters (e.g. precipitation) and catchment conditions (e.g., initial groundwater table elevation and area of the catchment) by following a modular approach. The modular model resulted in two sub-models where the baseflow was first predicted and the direct runoff was then estimated for a semi-urban catchment in Singapore. The simulated results matched very well with observed data in both the training and the testing of data sets, giving NSEs of 0.97 and 0.96 respectively demonstrated the successful estimation of stream flow using the modular model derived in this study. The results of this study indicate that GP is an effective tool in developing a physically interpretable model with understandable structure to simulate stream flow that can be transferred to other catchments.

  7. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  8. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  9. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    Science.gov (United States)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  10. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  11. Transperitoneal transport of creatinine. A comparison of kinetic models

    DEFF Research Database (Denmark)

    Fugleberg, S; Graff, J; Joffe, P

    1994-01-01

    Six kinetic models of transperitoneal creatinine transport were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective...... including all three forms of transport is superior to other models. We conclude that the best model of transperitoneal creatinine transport includes diffusion, non-lymphatic convective transport and lymphatic convective transport....

  12. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  13. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  14. Video Streaming Transfer in a Smart Satellite Mobile Environment

    OpenAIRE

    Celandroni, Nedo; Davoli, Franco; Ferro, Erina; Gotta, Alberto

    2009-01-01

    In the near future, transportation media are likely to become "smart spaces", where sophisticated services are offered to the passengers. Among such services, we concentrate on video streaming provided on buses that move in urban, suburban, or highway environments. A contents' source utilizes a satellite DVB-S2 link for transmitting video streams to a bus, which, in its turn, relays it to its passengers' devices. A bus works in a smart mode taking advantage of the knowledge of the exact point...

  15. Probing dark matter streams with CoGeNT

    International Nuclear Information System (INIS)

    Natarajan, Aravind; Savage, Christopher; Freese, Katherine

    2011-01-01

    We examine the future sensitivity of CoGeNT to the presence of dark matter streams and find that consideration of streams in the data may lead to differences in the interpretation of the results. We show the allowed particle mass and cross section for different halo parameters, assuming spin-independent elastic scattering. As an example, we choose a stream with the same velocity profile as that of the Sagittarius stream (and in the Solar neighborhood) and find that, with an exposure of ∼10 kg yr, the CoGeNT results can be expected to exclude the standard-halo-model-only halo in favor of a standard halo model+stream halo at the 95% (99.7%) confidence level, provided the stream contributes 3% (5%) of the local dark matter density. The presence of a significant stream component may result in incorrect estimates of the particle mass and cross section unless the presence of the stream is taken into account. We conclude that the CoGeNT experiment is sensitive to streams and care should be taken to include the possibility of streams when analyzing experimental results.

  16. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  17. Sediment transport modelling in a distributed physically based hydrological catchment model

    Directory of Open Access Journals (Sweden)

    M. Konz

    2011-09-01

    Full Text Available Bedload sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A raster based distributed hydrological model, TOPKAPI, has been further developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the ground surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Several transport equations as well as the effects of an armour layer on the transport threshold discharge are considered. Flow resistance due to macro roughness is also considered. The advantage of this approach is the integrated simulation of the entire basin runoff response combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC demonstrates the reliability of the modelling concept. The devised technique is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.

  18. Rock stream stability structures in the vicinity of bridges.

    Science.gov (United States)

    2014-10-01

    This report was sponsored by the Utah Department of Transportation (UDOT) to determine if rock stream stability structures could be used as : scour countermeasures and to protect streambanks. Traditional scour countermeasures, such as rock riprap, ar...

  19. Numerical Modelling Approaches for Sediment Transport in Sewer Systems

    DEFF Research Database (Denmark)

    Mark, Ole

    A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....

  20. Fast algorithm for automatically computing Strahler stream order

    Science.gov (United States)

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  1. Salamander occupancy in headwater stream networks

    Science.gov (United States)

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  2. Impact of river stage prediction methods on stream-aquifer exchanges in a hydro(geo)logical model at the regional scale

    Science.gov (United States)

    Saleh, F.; Flipo, N.; de Fouquet, C.

    2012-04-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. The study focuses on the Oise basin (17 000 km2, part of the 65 000 km2 Seine basin in Northern France) where stream-aquifer exchanges cannot be assessed directly by experimental methods. Nowadays numerical methods are the most appropriate approaches for assessing stream-aquifer exchanges at this scale. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used, which aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using the Darcy law. Three methods for assessing in-stream river stages are explored to determine the most appropriate representation at regional scale over 25 years (1980-2005). The first method consists in defining rating curves for each cell of a 1D Saint-Venant hydraulic model. The second method consists in interpolating observed rating curves (at gauging stations) onto the river cells of the hydro(geo)logical model. The interpolation technique is based on geostatistics. The last method assesses river stage using Manning equation with a simplified rectangular cross-section (water depth equals the hydraulic radius). Compared to observations, the geostatistical and the Manning methodologies lead to slightly less accurate (but still acceptable) results offering a low computational cost opportunity

  3. 7Q10 flows for SRS streams

    International Nuclear Information System (INIS)

    Chen, K.F.

    1996-01-01

    The Environmental Transport Group of the Environmental Technology Section was requested to predict the seven-day ten-year low flow (7Q10 flow) for the SRS streams based on historical stream flow records. Most of the historical flow records for the SRS streams include reactor coolant water discharged from the reactors and process water released from the process facilities. The most straight forward way to estimate the stream daily natural flow is to subtract the measured upstream reactor and/or facility daily effluents from the measured downstream daily flow. Unfortunately, this method does not always work, as indicated by the fact that sometimes the measured downstream volumetric flow rates are lower than the reactor effluent volumetric flow rates. For those cases that cannot be analyzed with the simple subtracting method, an alternative method was used to estimate the stream natural flows by statistically separating reactor coolant and process water flow data. The correlation between the calculated 7Q10 flows and the watershed areas for Four Mile Branch and Pen Branch agrees with that calculated by the USGS for Upper Three Runs and Lower Three Runs Creeks. The agreement between these two independent calculations lends confidence to the 7Q10 flow calculations presented in this report

  4. Transport simulations TFTR: Theoretically-based transport models and current scaling

    International Nuclear Information System (INIS)

    Redi, M.H.; Cummings, J.C.; Bush, C.E.; Fredrickson, E.; Grek, B.; Hahm, T.S.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Scott, S.D.; Stratton, B.C.; Synakowski, E.J.; Tang, W.M.; Taylor, G.

    1991-12-01

    In order to study the microscopic physics underlying observed L-mode current scaling, 1-1/2-d BALDUR has been used to simulate density and temperature profiles for high and low current, neutral beam heated discharges on TFTR with several semi-empirical, theoretically-based models previously compared for TFTR, including several versions of trapped electron drift wave driven transport. Experiments at TFTR, JET and D3-D show that I p scaling of τ E does not arise from edge modes as previously thought, and is most likely to arise from nonlocal processes or from the I p -dependence of local plasma core transport. Consistent with this, it is found that strong current scaling does not arise from any of several edge models of resistive ballooning. Simulations with the profile consistent drift wave model and with a new model for toroidal collisionless trapped electron mode core transport in a multimode formalism, lead to strong current scaling of τ E for the L-mode cases on TFTR. None of the theoretically-based models succeeded in simulating the measured temperature and density profiles for both high and low current experiments

  5. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    Science.gov (United States)

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  6. Aqueous Transport Code Revisions Using Geographic Information Systems

    International Nuclear Information System (INIS)

    Chen, K.F.

    2003-01-01

    STREAM II, developed at the Savannah River Site (SRS) for execution on a personal computer, is an emergency response code that predicts downstream pollutant concentrations for releases from the SRS area to the Savannah River for emergency response management decision making. The STREAM II code consists of pre-processor, calculation, and post-processor modules. The pre-processor module provides a graphical user interface (GUI) for inputting the initial release data. The GUI passes the user specified data to the calculation module that calculates the pollutant concentrations at downstream locations and the transport times. The calculation module of the STREAM II adopts the transport module of the WASP5 code. WASP5 is a US Environmental Protection Agency water quality analysis program that simulates pollutant transport and fate through surface water using a finite difference method to solve the transport equation. The calculated downstream pollutant concentrations and travel times a re passed to the post-processor for display on the computer screen in graphical and tabular forms. To minimize the user's effort in the emergency situation, the required input parameters are limited to the time and date of release, type of release, location of release, amount and duration of release, and the calculation units. The user, however, could only select one of the seventeen predetermined locations. Hence, STREAM II could not be used for situations in which release locations differ from the seventeen predetermined locations. To eliminate this limitation, STREAM II has been revised to allow users to select the release location anywhere along the specified SRS main streams or the Savannah River by mouse-selection from a map displayed on the computer monitor. The required modifications to STREAM II using geographic information systems (GIS) software is discussed in this paper

  7. Transportation Sector Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  8. Microtubule–microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes

    Science.gov (United States)

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill

    2016-01-01

    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants. PMID:27512034

  9. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  10. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  11. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  12. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model

    International Nuclear Information System (INIS)

    Lindim, C.; Cousins, I.T.; Gils, J. van

    2015-01-01

    Novel approaches for estimating the emissions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to surface waters are explored. The Danube River catchment is used to investigate emissions contributing to riverine loads of PFOS and PFOA and to verify the accuracy of estimates using a catchment-scale dynamic fugacity-based chemical transport and fate model (STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model for European basins). Model accuracy evaluation performed by comparing STREAM-EU predicted concentrations and monitoring data for the Danube and its tributaries shows that the best estimates for PFOS and PFOA emissions in the Danube region are obtained by considering the combined contributions of human population, wealth (based on local gross domestic product (GDP)) and wastewater treatment. Human population alone cannot explain the levels of PFOS and PFOA found in the Danube catchment waters. Introducing wealth distribution information in the form of local GDPs improves emission estimates markedly, likely by better representing emissions resulting from consumer trends, industrial and commercial sources. For compounds such as PFOS and PFOA, whose main sink and transport media is the aquatic compartment, a major source to freshwater are wastewater treatment plants. Introducing wastewater treatment information in the emission estimations also further improves emission estimates. - Highlights: • Novel approaches for estimating PFOS/PFOA emissions to surface waters are explored. • Human population alone cannot explain the levels of PFOS/PFOA found in the Danube. • Best estimates are obtained when considering population, wealth and WWTP together.

  13. A Quality-Centric Data Model for Distributed Stream Management Systems

    OpenAIRE

    Pietzuch, P; Fiscato, M; Vu, QH

    2009-01-01

    21.10.14 KB Ok to add published version to spiral. It is challenging for large-scale stream management systems to return always perfect results when processing data streams originating from distributed sources. Data sources and intermediate processing nodes may fail during the lifetime of a stream query. In addition, individual nodes may become overloaded due to processing demands. In practice, users have to accept incomplete or inaccurate query results because of failure or overload. In t...

  14. Method and means for filtering polychlorinated biphenyls from a gas stream

    International Nuclear Information System (INIS)

    Sowinski, R.F.

    1992-01-01

    This patent describes a method of filtering, adjacent to an end user-customer's residence or business in which at least a single gas appliance is located, a natural gas stream in which polychlorinated biphenyls (PCB's) and degraded PCB products have been concentrated at sufficient levels to be a health threat in a natural gas gathering and distributing network. It comprises: introducing the natural gas stream to a filter selected from a group that includes impingement, absorbing and adsorbing media whereby PCB's and degraded PCB products concentrated in the gas stream at sufficient levels to be a health threat by a periodic loading of the natural gas within the gathering and distributing network, are filtered from the gas stream and captured irrespective of mode of transport, passing the filtered natural gas stream to the customer's gas appliance wherein safe use of the energy associated with the stream occurs; periodically and safely removing the filter, inserting a new filter in place of the removed filter

  15. An algal model for predicting attainment of tiered biological criteria of Maine's streams and rivers

    Science.gov (United States)

    Danielson, Thomas J.; Loftin, Cyndy; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth; Courtemanch, David L.; Drummond, Francis; Davies, Susan

    2012-01-01

    State water-quality professionals developing new biological assessment methods often have difficulty relating assessment results to narrative criteria in water-quality standards. An alternative to selecting index thresholds arbitrarily is to include the Biological Condition Gradient (BCG) in the development of the assessment method. The BCG describes tiers of biological community condition to help identify and communicate the position of a water body along a gradient of water quality ranging from natural to degraded. Although originally developed for fish and macroinvertebrate communities of streams and rivers, the BCG is easily adapted to other habitats and taxonomic groups. We developed a discriminant analysis model with stream algal data to predict attainment of tiered aquatic-life uses in Maine's water-quality standards. We modified the BCG framework for Maine stream algae, related the BCG tiers to Maine's tiered aquatic-life uses, and identified appropriate algal metrics for describing BCG tiers. Using a modified Delphi method, 5 aquatic biologists independently evaluated algal community metrics for 230 samples from streams and rivers across the state and assigned a BCG tier (1–6) and Maine water quality class (AA/A, B, C, nonattainment of any class) to each sample. We used minimally disturbed reference sites to approximate natural conditions (Tier 1). Biologist class assignments were unanimous for 53% of samples, and 42% of samples differed by 1 class. The biologists debated and developed consensus class assignments. A linear discriminant model built to replicate a priori class assignments correctly classified 95% of 150 samples in the model training set and 91% of 80 samples in the model validation set. Locally derived metrics based on BCG taxon tolerance groupings (e.g., sensitive, intermediate, tolerant) were more effective than were metrics developed in other regions. Adding the algal discriminant model to Maine's existing macroinvertebrate discriminant

  16. Coupled stream and population dynamics: Modeling the role beaver (Castor canadensis) play in generating juvenile steelhead (Oncorhynchus mykiss) habitat

    Science.gov (United States)

    Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.

    2013-12-01

    Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly

  17. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model i...... is being developed as a part of a study being carried out at the University of Aalborg, Denmark and VBB VIAK, Sweden. The project is funded by the Swedish Water and Waste Water Works Association and the Nordic Industrial Foundation.......This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  18. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej

    2016-02-01

    Full Text Available Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenient to consider hydrological components as stochastic phenomenon, and use stochastic models for modeling them. Stochastic simulation of time series models related to water resources, particularly hydrologic time series, have been widely used in recent decades in order to solve issues pertaining planning and management of water resource systems. In this study time series models fitted to the precipitation, evaporation and stream flow series separately and the relationships between stream flow and precipitation processes are investigated. In fact, the three mentioned processes should be modeled in parallel to each other in order to acquire a comprehensive vision of hydrological conditions in the region. Moreover, the relationship between the hydrologic processes has been mostly studied with respect to their trends. It is desirable to investigate the relationship between trends of hydrological processes and climate change, while the relationship of the models has not been taken into consideration. The main objective of this study is to investigate the relationship between hydrological processes and their effects on each other and the selected models. Material and Method: In the current study, the four sub-basins of Lake Urmia Basin namely Zolachay (A, Nazloochay (B, Shahrchay (C and Barandoozchay (D were considered. Precipitation, evaporation and stream flow time series were modeled by linear time series. Fundamental assumptions of time series analysis namely

  19. Flow characterization temporary streams : using the model SIMGRO for the Evrotas basin, Greece

    NARCIS (Netherlands)

    Vernooij, M.G.M.; Querner, E.P.; Jacobs, C.; Froebrich, J.

    2011-01-01

    Tools were developed to quantify space–time development of different flow phases on a river basin scale. Such information is needed for the WFD. The spatial development of temporary streams was investigated in the Evrotas basin, Greece. We used the regional hydrological model SIMGRO in a GIS

  20. Modeling electrokinetic transport in phenol contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)

  1. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  2. SEDIMENTATION IN PACIFIC NORTHWEST COASTAL STREAMS -- EVIDENCE FROM REGIONAL SURVEY OF BED SUBSTRATE SIZE AND STABILITY

    Science.gov (United States)

    Excessive erosion, transport and deposition of sediment are major problems in streams and rivers throughout the United States. We examined evidence of anthropogenic sedimentation in Oregon and Washington coastal streams using relatively rapid measurements taken from surveys duri...

  3. A Data Stream Model For Runoff Simulation In A Changing Environment

    Science.gov (United States)

    Yang, Q.; Shao, J.; Zhang, H.; Wang, G.

    2017-12-01

    Runoff simulation is of great significance for water engineering design, water disaster control, water resources planning and management in a catchment or region. A large number of methods including concept-based process-driven models and statistic-based data-driven models, have been proposed and widely used in worldwide during past decades. Most existing models assume that the relationship among runoff and its impacting factors is stationary. However, in the changing environment (e.g., climate change, human disturbance), their relationship usually evolves over time. In this study, we propose a data stream model for runoff simulation in a changing environment. Specifically, the proposed model works in three steps: learning a rule set, expansion of a rule, and simulation. The first step is to initialize a rule set. When a new observation arrives, the model will check which rule covers it and then use the rule for simulation. Meanwhile, Page-Hinckley (PH) change detection test is used to monitor the online simulation error of each rule. If a change is detected, the corresponding rule is removed from the rule set. In the second step, for each rule, if it covers more than a given number of instance, the rule is expected to expand. In the third step, a simulation model of each leaf node is learnt with a perceptron without activation function, and is updated with adding a newly incoming observation. Taking Fuxi River catchment as a case study, we applied the model to simulate the monthly runoff in the catchment. Results show that abrupt change is detected in the year of 1997 by using the Page-Hinckley change detection test method, which is consistent with the historic record of flooding. In addition, the model achieves good simulation results with the RMSE of 13.326, and outperforms many established methods. The findings demonstrated that the proposed data stream model provides a promising way to simulate runoff in a changing environment.

  4. The effects of road crossings on prairie stream habitat and function

    Science.gov (United States)

    Bouska, Wesley W.; Keane, Timothy; Paukert, Craig P.

    2010-01-01

    Improperly designed stream crossing structures may alter the form and function of stream ecosystems and habitat and prohibit the movement of aquatic organisms. Stream sections adjoining five concrete box culverts, five low-water crossings (concrete slabs vented by one or multiple culverts), and two large, single corrugated culvert vehicle crossings in eastern Kansas streams were compared to reference reaches using a geomorphologic survey and stream classification. Stream reaches were also compared upstream and downstream of crossings, and crossing measurements were used to determine which crossing design best mimicked the natural dimensions of the adjoining stream. Four of five low-water crossings, three of five box culverts, and one of two large, single corrugated pipe culverts changed classification from upstream to downstream of the crossings. Mean riffle spacing upstream at low-water crossings (8.6 bankfull widths) was double that of downstream reaches (mean 4.4 bankfull widths) but was similar upstream and downstream of box and corrugated pipe culverts. There also appeared to be greater deposition of fine sediments directly upstream of these designs. Box and corrugated culverts were more similar to natural streams than low-water crossings at transporting water, sediments, and debris during bankfull flows.

  5. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    Science.gov (United States)

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. How dynamic are ice-stream beds?

    Science.gov (United States)

    Davies, Damon; Bingham, Robert G.; King, Edward C.; Smith, Andrew M.; Brisbourne, Alex M.; Spagnolo, Matteo; Graham, Alastair G. C.; Hogg, Anna E.; Vaughan, David G.

    2018-05-01

    Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3-6 years apart, along a cumulative ˜ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a-1, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a-1 previously reported from repeat geophysical surveys in West Antarctica.

  7. Evaluating and controlling the characteristics of the nuclear waste in the FWMS using waste stream analysis model

    International Nuclear Information System (INIS)

    Andress, D.; McLeod, N.B.; Joy, D.S.

    1990-01-01

    The Waste Stream Analysis (WSA) Model is used by the Department of Energy to model the item and location dependent properties of the nuclear waste stream in the Federal Waste Managements System and at utility spent fuel storage facilities. WSA can simulate a wide variety of FWMS configurations and operating strategies and can select and sequence spent fuel for optimal efficiency in the FWMS while minimizing adverse impact on the utility sector. WSA tracks each assembly from the time of discharge to ultimate geologic disposal including all shipping cask and waste package loadings and both at-reactor and FWMS consolidation. WSA selects the highest capacity shipping cask or waste package that does not violate external dose rate or heat limitations for a group of spent fuel assemblies to be containerized. This paper presents an overview of the Waste Stream Analysis Model and a number of key results from a set of coordinated SIMS runs, which illustrates both the impact of waste characteristics on system performance and the ability to control waste characteristics by use of selection and sequencing strategies. 7 refs., 6 figs

  8. Analytic approach to auroral electron transport and energy degradation

    International Nuclear Information System (INIS)

    Stamnes, K.

    1980-01-01

    The interaction of a beam of auroral electrons with the atmosphere is described by the linear transport equation, encompassing discrete energy loss, multiple scattering, and secondary electrons. A solution to the transport equation provides the electron intensity as a function of altitude, pitch angle (with respect to the geomagnetic field) and energy. A multi-stream (discrete ordinate) approximation to the transport equation is developed. An analytic solution is obtained in this approximation. The computational scheme obtained by combining the present transport code with the energy degradation method of Swartz (1979) conserves energy identically. The theory provides a framework within which angular distributions can be easily calculated and interpreted. Thus, a detailed study of the angular distributions of 'non-absorbed' electrons (i.e., electrons that have lost just a small fraction of their incident energy) reveals a systematic variation with incident angle and energy, and with penetration depth. The present approach also gives simple yet accurate solutions in low order multi-stream approximations. The accuracy of the four-stream approximation is generally within a few per cent, whereas two-stream results for backscattered mean intensities and fluxes are accurate to within 10-15%. (author)

  9. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  10. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  11. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  12. Regression models for explaining and predicting concentrations of organochlorine pesticides in fish from streams in the United States

    Science.gov (United States)

    Nowell, Lisa H.; Crawford, Charles G.; Gilliom, Robert J.; Nakagaki, Naomi; Stone, Wesley W.; Thelin, Gail; Wolock, David M.

    2009-01-01

    Empirical regression models were developed for estimating concentrations of dieldrin, total chlordane, and total DDT in whole fish from U.S. streams. Models were based on pesticide concentrations measured in whole fish at 648 stream sites nationwide (1992-2001) as part of the U.S. Geological Survey's National Water Quality Assessment Program. Explanatory variables included fish lipid content, estimates (or surrogates) representing historical agricultural and urban sources, watershed characteristics, and geographic location. Models were developed using Tobit regression methods appropriate for data with censoring. Typically, the models explain approximately 50 to 70% of the variability in pesticide concentrations measured in whole fish. The models were used to predict pesticide concentrations in whole fish for streams nationwide using the U.S. Environmental Protection Agency's River Reach File 1 and to estimate the probability that whole-fish concentrations exceed benchmarks for protection of fish-eating wildlife. Predicted concentrations were highest for dieldrin in the Corn Belt, Texas, and scattered urban areas; for total chlordane in the Corn Belt, Texas, the Southeast, and urbanized Northeast; and for total DDT in the Southeast, Texas, California, and urban areas nationwide. The probability of exceeding wildlife benchmarks for dieldrin and chlordane was predicted to be low for most U.S. streams. The probability of exceeding wildlife benchmarks for total DDT is higher but varies depending on the fish taxon and on the benchmark used. Because the models in the present study are based on fish data collected during the 1990s and organochlorine pesticide residues in the environment continue to decline decades after their uses were discontinued, these models may overestimate present-day pesticide concentrations in fish. ?? 2009 SETAC.

  13. Modeling the fate transport of cesium in crushed granite

    International Nuclear Information System (INIS)

    Lee, C.B.; Kuo, Y.M.; Hsu, C.N.; Li, M.H.; Cheng, H.P.; Teng, S.P.

    2005-01-01

    Full text of publication follows: In order to assess the safety of a underground radwaste repository, reactive transport models suitable for evaluating the fate and transport of radionuclides need to be established based on experimental observation and analysis. The goal of this study is to construct adequate models simulating the reactive transport of cesium (Cs) in crushed granite through a systematic analysis, where synthetic groundwater (SGW) and synthetic seawater (SSW) were employed as the liquid phase. To build such models, this study applied N 2 -BET, x-ray diffraction (XRD), polar-microscopy/ auto-radiography, and solid-phase digestion for the analysis of granite, kinetic batch tests for the characterization of sorption/desorption of Cs, and multi-stage advection-dispersion column tests for the determination of major transport processes and the calibration/validation of hypothesized reactive transport models. Based on the results of solid phase analysis and batch tests, a two-site Langmuir kinetic model has been determined capable of appropriately describing Cs sorption/desorption under test conditions. From the results of non-reactive HTO column tests, a mobile/immobile transport model was proposed to capture the major transport processes in our column system. However, the combination of the two-site Langmuir model and the mobile/immobile transport model failed to provide numerical breakthrough curves matching the Cs experimental breakthroughs. It implied that our model needs to be further refined. To achieve this, the setup of our column test needs to be modified first to reduce the volume of column connecting space, so that the effect of extra diffusion/dispersion on breakthroughs would be minimized and major transport characteristics can be clearly revealed. Moreover, more investigations on the reaction mechanisms and transport processes of the reactive transport system must be conducted. (authors)

  14. An individual-based simulation model for mottled sculpin (Cottus bairdi) in a southern Appalachian stream

    Science.gov (United States)

    Brenda Rashleigh; Gary D. Grossman

    2005-01-01

    We describe and analyze a spatially explicit, individual-based model for the local population dynamics of mottled sculpin (Cottus bairdi). The model simulated daily growth, mortality, movement and spawning of individuals within a reach of stream. Juvenile and adult growth was based on consumption bioenergetics of benthic macroinvertebrate prey;...

  15. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  16. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    Science.gov (United States)

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the

  17. Limitations of sorption isotherms on modeling groundwater contaminant transport

    International Nuclear Information System (INIS)

    Silva, Eduardo Figueira da

    2007-01-01

    Design and safety assessment of radioactive waste repositories, as well as remediation of radionuclide contaminated groundwater require the development of models capable of accurately predicting trace element fate and transport. Adsorption of trace radionuclides onto soils and groundwater is an important mechanism controlling near- and far- field transport. Although surface complexation models (SCMs) can better describe the adsorption mechanisms of most radionuclides onto mineral surfaces by directly accounting for variability of system properties and mineral surface properties, isotherms are still used to model contaminant transport in groundwater, despite the much higher system dependence. The present work investigates differences between transport model results based on these two approaches for adsorption modeling. A finite element transport model is used for the isotherm model, whereas the computer program PHREEQC is used for the SCM approach. Both models are calibrated for a batch experiment, and one-dimensional transport is simulated using the calibrated parameters. At the lower injected concentrations there are large discrepancies between SCM and isotherm transport predictions, with the SCM presenting much longer tails on the breakthrough curves. Isotherms may also provide non-conservative results for time to breakthrough and for maximum concentration in a contamination plume. Isotherm models are shown not to be robust enough to predict transport behavior of some trace elements, thus discouraging their use. The results also illustrate the promise of the SCM modeling approach in safety assessment and environmental remediation applications, also suggesting that independent batch sorption measurements can be used, within the framework of the SCM, to produce a more versatile and realistic groundwater transport model for radionuclides which is capable of accounting more accurately for temporal and spatial variations in geochemical conditions. (author)

  18. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  19. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  20. H2S transport data for an aquatic system

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1978-01-01

    Upsets in the operation of the wastewater strippers in the heavy water extraction facility of the 400 Area at the Savannah River Plant (SRP) have released significant amounts of dissolved hydrogen sulfide to Beaver Dam Creek. Concern exists about the impact of these releases to the environs downstream of the 400 Area. The Beaver Dam Creek model of stream transport processed by the computer code LODIPS (LOngitudinal DIspersion of a Pollutant in a Natural Stream) grossly overpredicted the downstream concentrations based on some known facts about the releases. A literature survey revealed volatilization and oxidation as the significant hydrogen sulfide loss mechanisms. LODIPS has no option to account for some sink-source effects in a stream. Coefficients of volatilization and oxidation must be developed to use the option. Some field data are necessary to determine the coefficients

  1. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  2. Noise Prediction Module for Offset Stream Nozzles

    Science.gov (United States)

    Henderson, Brenda S.

    2011-01-01

    A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.

  3. Connectivity of streams and wetlands to downstream waters: An integrated systems framework

    Science.gov (United States)

    Leibowitz, Scott G.; Wigington, Parker J.; Schoefield, Kate A.; Alexander, Laurie C.; Vanderhoof, Melanie; Golden, Heather E.

    2018-01-01

    Interest in connectivity has increased in the aquatic sciences, partly because of its relevance to the Clean Water Act. This paper has two objectives: (1) provide a framework to understand hydrological, chemical, and biological connectivity, focusing on how headwater streams and wetlands connect to and contribute to rivers; and (2) briefly review methods to quantify hydrological and chemical connectivity. Streams and wetlands affect river structure and function by altering material and biological fluxes to the river; this depends on two factors: (1) functions within streams and wetlands that affect material fluxes; and (2) connectivity (or isolation) from streams and wetlands to rivers that allows (or prevents) material transport between systems. Connectivity can be described in terms of frequency, magnitude, duration, timing, and rate of change. It results from physical characteristics of a system, e.g., climate, soils, geology, topography, and the spatial distribution of aquatic components. Biological connectivity is also affected by traits and behavior of the biota. Connectivity can be altered by human impacts, often in complex ways. Because of variability in these factors, connectivity is not constant but varies over time and space. Connectivity can be quantified with field‐based methods, modeling, and remote sensing. Further studies using these methods are needed to classify and quantify connectivity of aquatic ecosystems and to understand how impacts affect connectivity.

  4. Spray process for the recovery of CO.sub.2 from a gas stream and a related apparatus

    Science.gov (United States)

    Soloveichik, Grigorii Lev; Perry, Robert James; Wood, Benjamin Rue; Genovese, Sarah Elizabeth

    2014-02-11

    A method for recovering carbon dioxide (CO.sub.2) from a gas stream is disclosed. The method includes the step of reacting CO.sub.2 in the gas stream with fine droplets of a liquid absorbent, so as to form a solid material in which the CO.sub.2 is bound. The solid material is then transported to a desorption site, where it is heated, to release substantially pure CO.sub.2 gas. The CO.sub.2 gas can then be collected and used or transported in any desired way. A related apparatus for recovering carbon dioxide (CO.sub.2) from a gas stream is also described herein.

  5. Modelling of activity transport in PHWR

    International Nuclear Information System (INIS)

    Veena, S.N.; Rangarajan, S.; Narasimhan, S.V.; Horvath, G.L.

    2000-01-01

    The modelling of mass and activity transport in PHWR is of importance in predicting the build up of radiation field in and around the Primary Heat Transport system which will consequently help in planning the Dilute Chemical Decontamination and man rem budgeting. Modeling also helps in understanding the different parameters controlling the transport behaviour. Some of the important parameters include coolant chemistry like pH, physical parameters like temperature, the nature of the corrosion film and hence the effect of passivation techniques. VVER code for activity transport uses six nodes for the primary system and is essentially devised for stainless steel system. In the present work though based on this model, major modifications have been incorporated to suit the PHWR conditions. In the code, the PHT system of PHWR is suitably divided into 14 nodes, 5 in-core and 9 out of core nodes based on material and heat transfer properties. This paper describes the mechanisms involved in the various processes like generation of corrosion products, their release as well as their transport into the primary coolant, the activation of inactive corrosion product nuclides and the build up of radiation field due to 60 Co around the PHT system. (author)

  6. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  7. An optimization model for transportation of hazardous materials

    International Nuclear Information System (INIS)

    Seyed-Hosseini, M.; Kheirkhah, A. S.

    2005-01-01

    In this paper, the optimal routing problem for transportation of hazardous materials is studied. Routing for the purpose of reducing the risk of transportation of hazardous materials has been studied and formulated by many researcher and several routing models have been presented up to now. These models can be classified into the categories: the models for routing a single movement and the models for routing multiple movements. In this paper, according to the current rules and regulations of road transportations of hazardous materials in Iran, a routing problem is designed. In this problem, the routs for several independent movements are simultaneously determined. To examine the model, the problem the transportations of two different dangerous materials in the road network of Mazandaran province in the north of Iran is formulated and solved by applying Integer programming model

  8. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  9. Analyzing Hydro-Geomorphic Responses in Post-Fire Stream Channels with Terrestrial LiDAR

    Science.gov (United States)

    Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.

    2015-12-01

    Wildfires have potential to significantly alter soil properties and vegetation within watersheds. These alterations often contribute to accelerated erosion, runoff, and sediment transport in stream channels and hillslopes. This research applies repeated Terrestrial Laser Scanning (TLS) Light Detection and Ranging (LiDAR) to stream reaches within the Pike National Forest in Colorado following the 2012 Waldo Canyon Fire. These scans allow investigation of the relationship between sediment delivery and environmental characteristics such as precipitation, soil burn severity, and vegetation. Post-fire LiDAR images provide high resolution information of stream channel changes in eight reaches for three years (2012-2014). All images are processed with RiSCAN PRO to remove vegetation and triangulated and smoothed to create a Digital Elevation Model (DEM) with 0.1 m resolution. Study reaches with two or more successive DEM images are compared using a differencing method to estimate the volume of sediment erosion and deposition. Preliminary analysis of four channel reaches within Williams Canyon and Camp Creek yielded erosion estimates between 0.035 and 0.618 m3 per unit area. Deposition was estimated as 0.365 to 1.67 m3 per unit area. Reaches that experienced higher soil burn severity or larger rainfall events produced the greatest geomorphic changes. Results from LiDAR analyses can be incorporated into post-fire hydrologic models to improve estimates of runoff and sediment yield. These models will, in turn, provide guidance for water resources management and downstream hazards mitigation.

  10. Distributed models of radionuclide transport on watersheds: development and implementation for the Chernobyl and Fukushima catchments

    Energy Technology Data Exchange (ETDEWEB)

    Kivva, S.; Zheleznyak, M. [Institute of Environmental Radioactivity, Fukushima University (Japan)

    2014-07-01

    watershed at sub-daily to daily timescales. The surface flow sub-model of DHSMV has been modified in DHSMV-R: D4 flow direction approach has been replaced by the D8, more numerically efficient finite-differences scheme was implemented for flow and sediment transport equations. On the basis of the approach developed within RUNTOX the new module of radionuclide wash-off from catchment and transport via stream network in soluble phase and on suspended sediments including bottom-water exchange processes was implemented. The recent implementation of DHSVM-R was simulation of the radionuclide wash-off from the watershed of Konoplyanka river, tributary of Dnieper River at the territory of the Pridneprovsky Chemical (uranium processing) Plant and neighboring tailings dumps. The modeling results has been used for the assessment of the watershed's 'hot spots' and analyses of the ways of the diminishing of the uranium wash off from the watersheds The results of the RUNTOX and DHSVM-R modelling of radionuclide wash-off from watersheds contaminated after the Fukushima accident are considered in comparison with the results of simulations of radionuclide fate at the watersheds of the Dnieper basin. Document available in abstract form only. (authors)

  11. A dynamic management of a public transportation fleet

    Directory of Open Access Journals (Sweden)

    Ireneusz Celiński

    2013-09-01

    Full Text Available Background: The present paper deals with the problems of a public transportation fleet management in public transportation operators. A management concept is proposed based on a real-time acquisition of parameters of public transportation passenger exchange. Methods: The relevant research utilised video materials documenting the processes of passenger exchange in public transportation. The proposed methodology is based on a dynamic real-time measurement of passenger streams. A characteristic feature of the measurement methodology applied is that the data is collected outside the vehicles, with a CCTV camera used per access point. Demand for the public transportation service are calculated using the image processing. Results: The derived demand characteristics allow not only an estimation of the magnitude of traffic streams in public transportation but also their qualitative description. Such an approach permits a flexible design of the transportation offer to adapt to the demand. This allows matching the timetables to the density functions describing the demand for public transportation within the space of transportation networks. In addition, based on the results of this type of research, a public transportation operator may despatch the vehicle base in a flexible way. For each run of a bus or tram fleet, basing on the registered passenger traffic streams, it is possible to rationally despatch the vehicles with suitable capacity. Conclusions: A system of this type is capable of determining the quality of work of the public transportation. With the ITS systems being introduced still more widely, the proposed methodology allows the design and implementation of dynamic timetables.

  12. Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.

    2004-01-01

    Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties

  13. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali

    2007-12-01

    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  14. A Lightweight Protocol for Secure Video Streaming.

    Science.gov (United States)

    Venčkauskas, Algimantas; Morkevicius, Nerijus; Bagdonas, Kazimieras; Damaševičius, Robertas; Maskeliūnas, Rytis

    2018-05-14

    The Internet of Things (IoT) introduces many new challenges which cannot be solved using traditional cloud and host computing models. A new architecture known as fog computing is emerging to address these technological and security gaps. Traditional security paradigms focused on providing perimeter-based protections and client/server point to point protocols (e.g., Transport Layer Security (TLS)) are no longer the best choices for addressing new security challenges in fog computing end devices, where energy and computational resources are limited. In this paper, we present a lightweight secure streaming protocol for the fog computing "Fog Node-End Device" layer. This protocol is lightweight, connectionless, supports broadcast and multicast operations, and is able to provide data source authentication, data integrity, and confidentiality. The protocol is based on simple and energy efficient cryptographic methods, such as Hash Message Authentication Codes (HMAC) and symmetrical ciphers, and uses modified User Datagram Protocol (UDP) packets to embed authentication data into streaming data. Data redundancy could be added to improve reliability in lossy networks. The experimental results summarized in this paper confirm that the proposed method efficiently uses energy and computational resources and at the same time provides security properties on par with the Datagram TLS (DTLS) standard.

  15. Population persistence of stream fish in response to environmental change: integrating data and models across space

    Science.gov (United States)

    Letcher, B. H.; Schueller, P.; Bassar, R.; Coombs, J.; Rosner, A.; Sakrejda, K.; Kanno, Y.; Whiteley, A.; Nislow, K. H.

    2013-12-01

    For stream fishes, environmental variation is a key driver of individual body growth/movement/survival and, by extension, population dynamics. Identifying how stream fish respond to environmental variation can help clarify mechanisms responsible for population dynamics and can help provide tools to forecast relative resilience of populations across space. Forecasting dynamics across space is challenging, however, because it can be difficult to conduct enough studies with enough intensity to fully characterize broad-scale population response to environmental change. We have adopted a multi-scale approach, using detailed individual-based studies and analyses (integral projection matrix) to determine sensitivities of population growth to environmental variation combined with broad spatial data and analyses (occupancy and abundance models) to estimate patterns of population response across space. Population growth of brook trout was most sensitive to stream flow in the spring and winter, most sensitive to stream temperature in the fall and sensitive to both flow and temperature in the summer. High flow in the spring and winter had negative effects on population growth while high temperature had a negative effect in the fall. Flow had no effect when it was cold, but a positive effect when it was warm in the summer. Combined with occupancy and abundance models, these data give insight into the spatial structure of resilient populations and can help guide prioritization of management actions.

  16. How Sensitive Are Transdermal Transport Predictions by Microscopic Stratum Corneum Models to Geometric and Transport Parameter Input?

    Science.gov (United States)

    Wen, Jessica; Koo, Soh Myoung; Lape, Nancy

    2018-02-01

    While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    Science.gov (United States)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  18. High Definition Video Streaming Using H.264 Video Compression

    OpenAIRE

    Bechqito, Yassine

    2009-01-01

    This thesis presents high definition video streaming using H.264 codec implementation. The experiment carried out in this study was done for an offline streaming video but a model for live high definition streaming is introduced, as well. Prior to the actual experiment, this study describes digital media streaming. Also, the different technologies involved in video streaming are covered. These include streaming architecture and a brief overview on H.264 codec as well as high definition t...

  19. Optimizing the Use of LiDAR for Hydraulic and Sediment Transport Model Development: Case Studies from Marin and Sonoma Counties, CA

    Science.gov (United States)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2013-12-01

    Effective floodplain management and restoration requires a detailed understanding of floodplain processes not readily achieved using standard one-dimensional hydraulic modeling approaches. The application of more advanced numerical models is, however, often limited by the relatively high costs of acquiring the high-resolution topographic data needed for model development using traditional surveying methods. The increasing availability of LiDAR data has the potential to significantly reduce these costs and thus facilitate application of multi-dimensional hydraulic models where budget constraints would have otherwise prohibited their use. The accuracy and suitability of LiDAR data for supporting model development can vary widely depending on the resolution of channel and floodplain features, the data collection density, and the degree of vegetation canopy interference among other factors. More work is needed to develop guidelines for evaluating LiDAR accuracy and determining when and how best the data can be used to support numerical modeling activities. Here we present two recent case studies where LiDAR datasets were used to support floodplain and sediment transport modeling efforts. One LiDAR dataset was collected with a relatively low point density and used to study a small stream channel in coastal Marin County and a second dataset was collected with a higher point density and applied to a larger stream channel in western Sonoma County. Traditional topographic surveying was performed at both sites which provided a quantitative means of evaluating the LiDAR accuracy. We found that with the lower point density dataset, the accuracy of the LiDAR varied significantly between the active stream channel and floodplain whereas the accuracy across the channel/floodplain interface was more uniform with the higher density dataset. Accuracy also varied widely as a function of the density of the riparian vegetation canopy. We found that coupled 1- and 2-dimensional hydraulic

  20. Legacy effects of wildfire on stream thermal regimes and rainbow trout ecology: an integrated analysis of observation and individual-based models

    Science.gov (United States)

    Rosenberger, Amanda E.; Dunham, Jason B.; Neuswanger, Jason R.; Railsback, Steven F.

    2015-01-01

    Management of aquatic resources in fire-prone areas requires understanding of fish species’ responses to wildfire and of the intermediate- and long-term consequences of these disturbances. We examined Rainbow Trout populations in 9 headwater streams 10 y after a major wildfire: 3 with no history of severe wildfire in the watershed (unburned), 3 in severely burned watersheds (burned), and 3 in severely burned watersheds subjected to immediate events that scoured the stream channel and eliminated streamside vegetation (burned and reorganized). Results of a previous study of this system suggested the primary lasting effects of this wildfire history on headwater stream habitat were differences in canopy cover and solar radiation, which led to higher summer stream temperatures. Nevertheless, trout were present throughout streams in burned watersheds. Older age classes were least abundant in streams draining watersheds with a burned and reorganized history, and individuals >1 y old were most abundant in streams draining watersheds with an unburned history. Burned history corresponded with fast growth, low lipid content, and early maturity of Rainbow Trout. We used an individual-based model of Rainbow Trout growth and demographic patterns to determine if temperature interactions with bioenergetics and competition among individuals could lead to observed phenotypic and ecological differences among populations in the absence of other plausible mechanisms. Modeling suggested that moderate warming associated with wildfire and channel disturbance history leads to faster individual growth, which exacerbates competition for limited food, leading to decreases in population densities. The inferred mechanisms from this modeling exercise suggest the transferability of ecological patterns to a variety of temperature-warming scenarios.