WorldWideScience

Sample records for stream sediment sampling

  1. Stream sediment sampling and analysis. Final report

    International Nuclear Information System (INIS)

    Means, J.L.; Voris, P.V.; Headington, G.L.

    1986-04-01

    The objectives were to sample and analyze sediments from upstream and downstream locations (relative to the Goodyear Atomic plant site) of three streams for selected pollutants. The three streams sampled were the Scioto River, Big Beaver Creek, and Big Run Creek. Sediment samples were analyzed for EPA's 129 priority pollutants (Clean Water Act) as well as isotopic uranium ( 234 U, 235 U, and 238 U) and technetium-99

  2. Effectiveness of stream-sediment sampling along the Rio Ojo Caliente, New Mexico

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.

    1977-01-01

    During 1976 a detailed geochemical study was conducted of the water and stream sediments in the tributaries of the Rio Ojo Caliente above the USGS gaging station 4 km below La Madera to determine: (1) the source of the anomaly in the water and (2) why the stream sediment samples did not contain a corresponding anomaly. The low uranium content of the stream sediments from these high uranium waters can be explained by (1) the presence of a ground water source for the uranium and (2) insufficient time for the uranium in the water to be adsorbed onto the sediments. Although a stream sediment anomaly in the streams containing high uranium waters can not be established with a size fraction less than 150 μm, enough uranium has been adsorbed by the fine fraction that a small local anomaly can be outlined using only the fraction size less than 90 μm. Thus, because adsorption appears to be a major control on the uranium in the fine fraction and detrital minerals control the uranium in the coarse fraction, if it is assumed that buried deposits are of prime importance because most surface deposits have been recognized, then sampling should be restricted to the fine fraction (less than 90 μm). Nevertheless, in a case where ground water is the contributing source for uranium, as was shown above by the low anomalous uranium values, even in the fine fraction, stream sediment sampling alone is not an effective technique for detecting uranium anomalies. This emphasizes the necessity of water sampling in conjunction with stream-sediment sampling

  3. Hydrogeochemical and stream sediment sampling for uranium in the sandstone environment

    International Nuclear Information System (INIS)

    Wenrich, K.J.

    1985-01-01

    Sandstone terranes commonly host uranium occurrences in the western United States. In addition, because sedimentary terranes, particularly shales and immature, not well cemented sandstone, contribute more sediment and soluble material than do plutonic, volcanic, or metamorphic terranes they are an excellent regime for hydrogeochemical and stream-sediment prospecting. Because of higher conductivity, and hence higher uranium content, of waters draining such environments the sampling need not be as precise nor the analytical detection limit as low as in other terranes to yield a successful survey. Nevertheless, reasonable preparation and care of the samples is recommended: (1) The water samples should be filtered through 0.45 μm membranes and acidified to a pH of less than 1. (2) Because the adsorption of uranium by organic material is so significant it is recommended that the reasonable finest stream-sediment fraction, 4 , conductivity, etc.) are useful in the data reduction towards the elimination of false anomalies. (author)

  4. Collection and preparation of wet and dry stream-sediment samples

    International Nuclear Information System (INIS)

    Puchlik, K.

    1977-03-01

    Lawrence Livermore Laboratory is responsible for the Hydrogeochemistry and Stream Sediment Reconnaissance (HSSR) program for uranium in the seven far western states. The work thus far has concentrated on the arid to semi-arid regions of the West and this paper discusses the collection and preparation of sediment samples in the Basin and Range province. The sample collection and preparation procedures described here may not be applicable to other parts of the far western states or other areas. These procedures also differ somewhat from those used by the other three laboratories involved in the HSSR program

  5. Analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Motooka, J.M.; Adrian, B.M.; Church, S.E.; McDougal, C.M.; Fife, J.B.

    1989-01-01

    A U.S. Geological Survey report is presented giving analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska

  6. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    International Nuclear Information System (INIS)

    De Bruin, D.

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab

  7. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    Energy Technology Data Exchange (ETDEWEB)

    De Bruin, D

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab.

  8. Methanotrophy in surface sediments of streams

    Science.gov (United States)

    Bagnoud, Alexandre; Pramateftaki, Paraskevi; Peter, Hannes; Battin, Tom

    2017-04-01

    Because streams are often found to be supersaturated in methane (CH4), they are considered as atmospheric sources of this greenhouse gas. However, little is known about the processes driving CH4 cycling in these environments, i.e. production, consumption and fluxes. CH4 is thought to be produced in deeper anoxic sediments, before it migrates up to reach the oxic stream water, where it can be oxidized by methanotrophs. In order to gain insights into this process, we investigated 14 different streams across Switzerland. We characterized the chemistry of surface and sediment waters by measuring dissolved chemical profiles. We also sampled surface sediments and determined methanotrophic rates with laboratory incubations and Michaelis-Menten modeling. Interestingly, rates were strongly correlated with the CH4 concentrations in stream waters, rather than in sediment waters. This indicates that methantrophic populations feed on CH4 from the surface streamwater, even though CH4 concentrations are higher in the sediment waters. Methanotrophy rates were also correlated with Crenothrix counts (based on 16S rRNA sequencing), a strict methanotroph, while this latter was correlated with pmoA counts (based on quantitative PCR), a gene involved in methanotrophy. These results show that Crenothrix genera are the most active methanotrophs in surface sediments of streams, and can represent more than 2% of microbial communities. Remarkably, the dominating Crenothrix species was detected in all 14 samples. This work allows the assessment of in situ methanotrophic rates, of the environmental parameters driving this process, and of the microbial populations carrying it out, and thus brings useful insights about carbon cycling in streams.

  9. Relationships of sedimentation and benthic macroinvertebrate assemblages in headwater streams using systematic longitudinal sampling at the reach scale.

    Science.gov (United States)

    Longing, S D; Voshell, J R; Dolloff, C A; Roghair, C N

    2010-02-01

    Investigating relationships of benthic invertebrates and sedimentation is challenging because fine sediments act as both natural habitat and potential pollutant at excessive levels. Determining benthic invertebrate sensitivity to sedimentation in forested headwater streams comprised of extreme spatial heterogeneity is even more challenging, especially when associated with a background of historical and intense watershed disturbances that contributed unknown amounts of fine sediments to stream channels. This scenario exists in the Chattahoochee National Forest where such historical timber harvests and contemporary land-uses associated with recreation have potentially affected the biological integrity of headwater streams. In this study, we investigated relationships of sedimentation and the macroinvertebrate assemblages among 14 headwater streams in the forest by assigning 30, 100-m reaches to low, medium, or high sedimentation categories. Only one of 17 assemblage metrics (percent clingers) varied significantly across these categories. This finding has important implications for biological assessments by showing streams impaired physically by sedimentation may not be impaired biologically, at least using traditional approaches. A subsequent multivariate cluster analysis and indicator species analysis were used to further investigate biological patterns independent of sedimentation categories. Evaluating the distribution of sedimentation categories among biological reach clusters showed both within-stream variability in reach-scale sedimentation and sedimentation categories generally variable within clusters, reflecting the overall physical heterogeneity of these headwater environments. Furthermore, relationships of individual sedimentation variables and metrics across the biological cluster groups were weak, suggesting these measures of sedimentation are poor predictors of macroinvertebrate assemblage structure when using a systematic longitudinal sampling design

  10. Uranium Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana

    Energy Technology Data Exchange (ETDEWEB)

    Broxton, D.E.

    1978-02-01

    The Los Alamos Scientific Laboratory conducted a Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana from early August to mid-October of 1976. A total of 1240 water and 1933 sediment samples were collected from 1994 locations at a nominal density of one location per 10 km/sup 2/. The water samples were collected from streams, wells, and springs; sediment samples were taken at streams and springs. All samples were analyzed at Los Alamos for total uranium by fluorometry or delayed-neutron counting. The uranium content of water samples ranges from below the detection limit (less than 0.3 ppB) to 45.30 ppB and has a mean value of 1.40 ppB. The uranium content of the sediment samples ranges between 0.20 and 206.80 ppM and averages 6.12 ppM. The chosen uranium anomaly threshold value was 7 ppB for surface waters (streams), 9 ppB for groundwaters (wells and springs), and 25 ppM for all sediment samples. The study area consists of the following lithologic groups: Precambrian basement complex, Precambrian Belt metasediments, Paleozoic and Mesozoic shelf sediments, Cretaceous and early Tertiary volcanic and plutonic rocks, Laramide orogenic clastic sediments, and middle to late Tertiary volcanic rocks and intermontane basin sediments. Most of the anomalous water and sediment samples with well-developed dispersion trains occur in areas underlain by or adjacent to silicic plutonic rocks of the Idaho and Boulder batholiths. These anomalies may indicate the presence of uraniferous veins and pegmatites similar to those already known to exist in the area. Fewer anomalous water samples occur in areas underlain by Precambrian basement complex and Tertiary basin fill.

  11. Uranium Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1978-02-01

    The Los Alamos Scientific Laboratory conducted a Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana from early August to mid-October of 1976. A total of 1240 water and 1933 sediment samples were collected from 1994 locations at a nominal density of one location per 10 km 2 . The water samples were collected from streams, wells, and springs; sediment samples were taken at streams and springs. All samples were analyzed at Los Alamos for total uranium by fluorometry or delayed-neutron counting. The uranium content of water samples ranges from below the detection limit (less than 0.3 ppB) to 45.30 ppB and has a mean value of 1.40 ppB. The uranium content of the sediment samples ranges between 0.20 and 206.80 ppM and averages 6.12 ppM. The chosen uranium anomaly threshold value was 7 ppB for surface waters (streams), 9 ppB for groundwaters (wells and springs), and 25 ppM for all sediment samples. The study area consists of the following lithologic groups: Precambrian basement complex, Precambrian Belt metasediments, Paleozoic and Mesozoic shelf sediments, Cretaceous and early Tertiary volcanic and plutonic rocks, Laramide orogenic clastic sediments, and middle to late Tertiary volcanic rocks and intermontane basin sediments. Most of the anomalous water and sediment samples with well-developed dispersion trains occur in areas underlain by or adjacent to silicic plutonic rocks of the Idaho and Boulder batholiths. These anomalies may indicate the presence of uraniferous veins and pegmatites similar to those already known to exist in the area. Fewer anomalous water samples occur in areas underlain by Precambrian basement complex and Tertiary basin fill

  12. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    International Nuclear Information System (INIS)

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.; Wolf, D.A.

    1981-01-01

    The purpose of the Date Creek Supplement is to characterize the chemistry of sediment samples representing stream basins in which the Anderson Mine (and related prospects) occur. Once characterized, the chemistry is then used to delineate other areas within the Date Creek Basin where stream sediment chemistry resembles that of the Anderson Mine area. This supplementary report examines more closely the data from sediment samples taken in 239 stream basins collected over a total area of approximately 900 km 2 (350 mi 2 ). Cluster and discriminant analyses are used to characterize the geochemistry of the stream sediment samples collected in the Date Creek Basin. Cluster and discriminant analysis plots are used to delineate areas having a potential for uranium mineralization similar to that of the Anderson Mine

  13. Regional geochemical maps of the Tonopah 1 degree by 2 degrees Quadrangle, Nevada, based on samples of stream sediment and nonmagnetic heavy-mineral concentrate

    Science.gov (United States)

    Nash, J.T.; Siems, D.F.

    1988-01-01

    This report is part of a series of geologic, geochemical, and geophysical maps of the Tonopah 1° x 2° quadrangle, Nevada, prepared during studies of the area for the Conterminous United States Mineral Assessment Program (CUSMAP). Included here are 21 maps showing the distributions of selected elements or combinations of elements. These regional geochemical maps are based on chemical analyses of the minus-60 mesh (0.25 mm) fraction of stream-sediment samples and the nonmagnetic heavy-mineral concentrate derived from stream sediment. Stream sediments were collected at 1,217 sites. Our geochemical studies of mineralized rock samples provide a framework for evaluating the results from stream sediments.

  14. Modern sedimentation patterns in Lake El'gygytgyn, NE Russia, derived from surface sediment and inlet streams samples

    Directory of Open Access Journals (Sweden)

    V. Wennrich

    2013-01-01

    Full Text Available Lake El'gygytgyn/NE Russia holds a continuous 3.58 Ma sediment record, which is regarded as the most long-lasting climate archive of the terrestrial Arctic. Based on multi-proxy geochemical, mineralogical, and granulometric analyses of surface sediment, inlet stream and bedrock samples, supplemented by statistical methods, major processes influencing the modern sedimentation in the lake were investigated. Grain-size parameters and chemical elements linked to the input of feldspars from acidic bedrock indicate a wind-induced two-cell current system as major driver of sediment transport and accumulation processes in Lake El'gygytgyn. The distribution of mafic rock related elements in the sediment on the lake floor can be traced back to the input of weathering products of basaltic rocks in the catchment. Obvious similarities in the spatial variability of manganese and heavy metals indicate sorption or co-precipitation of these elements with Fe and Mn hydroxides and oxides. But the similar distribution of organic matter and clay contents might also point to a fixation to organic components and clay minerals. An enrichment of mercury in the inlet streams might be indicative of neotectonic activity around the lake. The results of this study add to the fundamental knowledge of the modern lake processes of Lake El'gygytgyn and its lake-catchment interactions, and thus, yield crucial insights for the interpretation of paleo-data from this unique archive.

  15. Data report: Illinois, Indiana, Kentucky, Tennessee, and Ohio. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Sargent, K.A.; Cook, J.R.; Fay, W.M.

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Illinois, Indiana, Kentucky, Tennessee, and Ohio. The following sample types were collected in each state: Illinois - 716 stream sediment, 1046 ground water, 337 stream water; Indiana - 126 stream sediment, 443 ground water, 111 stream water; Kentucky - 4901 stream sediment, 6408 ground water, 3966 stream water; Tennessee - 3309 stream sediment, 3574 ground water, 1584 stream water; Ohio - 1214 stream sediment, 2049 ground water, 1205 stream water. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 248 sediment samples from Tennessee. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation

  16. Process recognition in multi-element soil and stream-sediment geochemical data

    Science.gov (United States)

    Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.

    2009-01-01

    the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others. Crown Copyright ?? 2009.

  17. Quantifying trail erosion and stream sedimentation with sediment tracers

    Science.gov (United States)

    Mark S. Riedel

    2006-01-01

    Abstract--The impacts of forest disturbance and roads on stream sedimentation have been rigorously investigated and documented. While historical research on turbidity and suspended sediments has been thorough, studies of stream bed sedimentation have typically relied on semi-quantitative measures such as embeddedness or marginal pool depth. To directly quantify the...

  18. Sample collection: an overview of the Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1979-01-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnaissance program is conducted by four national laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most samples are collected at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multi-element analytical data, which can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  19. Tracing the sources of stream sediments by Pb isotopes and trace elements

    International Nuclear Information System (INIS)

    Kyung-Seok Ko; Jae Gon Kim; Kyoochul Ha; Kil Yong Lee

    2012-01-01

    The objective of this research is to trace the sources of stream sediments in a small watershed influenced by anthropogenic and lithogenic origins identified by the spatial distributions and temporal variations of stream sediments using geochemical interpretation of the stable and radiogenic isotopes, major components, and heavy metals data and principal component analysis. To know the effects of both present and past mining, the stream sediments were sampled at the stream tributaries and sediment coring work. The spatial distributions of heavy metals clearly showed the effects of Cu and Pb-Zn mineralization zones at the site. Anthropogenic Pb was elevated at the downstream area by the stream sediments due to an active quarry. The results of principal components analysis also represent the effects of the stream sediments origins, including anthropogenic wastes and the active quarry and lithogenic sediment. Anomalous Cu, indicating the effect of past Guryong mining, was identified at the deep core sediments of 1.80-5.05 m depth. The influence of active quarry was shown in the recently deposited sediments of 210 Pb and stable Pb and Sr isotopes. This study suggests that the chemical studies using radiogenic and stable isotopes and heavy metals and multivariate statistical method are useful tools to discriminate the sources of stream sediments with different origins. (author)

  20. Denitrification potential in sediments of headwater streams in the southern appalachian mountains, USA

    Science.gov (United States)

    Lara A. Martin; Patrick J. Mulholland; Jackson R. Webster; H. Maurice Vallett

    2001-01-01

    We investigated variations in resource availability (NOa-N and labile organic C [LOCJ] as determinants of potential denitrification in stream sediments in the southern Appalachian Mountains, USA. stream-water and sediments were sampled seasonally in 2 streams of contrasting NO3,-N availability, Noland Creek (high NO

  1. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Fay, W.M.; Sargent, K.A.; Cook, J.R.

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation

  2. Hydrogeochemical and stream-sediment reconnaissance program at LLL

    International Nuclear Information System (INIS)

    Tinney, J.F.

    1977-03-01

    The Lawrence Livermore Laboratory (LLL) is conducting a Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR) survey in support of ERDA's National Uranium Resource Evaluation (NURE) program. Included in the LLL portion of this survey are seven western states (Arizona, California, Idaho, Nevada, Oregon, Utah, and Washington). Similar surveys are being carried out in the rest of the continental United States, including Alaska, as part of a systematic nationwide study of the distribution of uranium in surface water, groundwater, and stream sediment. The overall objective is to identify favorable areas for uranium exploration. This paper describes the program being conducted by LLL to complete our portion of the survey by 1981. The topics discussed are geology and sample acquisition, sample preparation and analysis, and data-base management

  3. Geochemical survey of stream sediments of the Piceance Creek Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, C.D.

    1977-01-01

    A stream sediment survey was conducted in the Piceance Creek Basin to study the spatial distribution of Zn, Mo, Hg, Cd and As for future baseline considerations. The pH and organic matter were also measured. From samples taken at the mouths (junctions) of most of the named creeks in the basin, it is concluded that none of the streams contained sediments with anomalous trace element concentrations with respect to the basin. But it is thought that Mo and possibly As could be potentially toxic because of their abundance and their mobility under the stream sediments' alkaline condition. From a different sampling plan, designed to describe the background variance of five streams (Roan, Black Sulfur, Parachute, Yellow and Piceance Creeks), it was found that most of the variance occurred at distances from 0-10 m within 2 km stream segments 10 km apart for Mo, Hg, Az, and organic matter. When the variance between the five streams was considered, it was found to dominate the variances of the other factors for Mo, Hg, and Zn. This variance between streams is actually thought to represent the variance between the major drainage system in the basin. When comparison is made between the two sampling design results, it is thought that the trace element concentrations of stream junction samples represented the best range of expected values for the entire basin. The expected ranges of the trace elements from the nested design are thought to be reasonable estimates of preliminary baselines for Parachute Creek, Roan Creek and Black Sulfur Creek within the restricted limits of the streams defined in the text. From the experience gained in pursuing this study, it is thought that composite sampling should be considered, where feasible, to reduce the analytical load and to reduce the small scale variance.

  4. Quantifying ratios of suspended sediment sources in forested headwater streams following timber-harvesting operations

    Science.gov (United States)

    Rachels, A. A.; Bladon, K. D.; Bywater-Reyes, S.

    2017-12-01

    Historically, timber-harvesting has increased fine sediment inputs to streams due to increased hillslope and streambank erosion and mass wasting along roads. However, under modern best management practices, the relative importance and variability of these sources is poorly understood. We present preliminary results from an ongoing study investigating the primary sources of suspended sediment in Oregon Coast Range streams influenced by timber harvesting. We instrumented two catchments, Enos Creek (harvested 2016) and Scheele Creek (reference) in fall 2016. Phillips samplers (5-6 per catchment) have been deployed longitudinally down the streams to enable robust characterization of suspended sediments—the collected samples integrate the chemical signatures of upstream sediment exports. We will collect samples monthly over 2 wet seasons and return to the laboratory to analyze the sediment using source fingerprinting approaches. The fingerprinting technique compares the chemical properties of stream sediment samples with the chemical properties of potential source areas, including 1) roads, 2) stream banks, and 3) hillslopes. To design a robust model for sediment-source identification, different types of chemical data are required—we will analyze sediment samples using a combination of: a) stable isotopes and C/N ratios (i.e., δ15N, δ13C, and C/N), b) geochemistry (Fe, K, and Ca), and c) radiogenic isotopes (137Cs and 210Pb). At the harvested site, the C/N ratios of the streambanks (17.9 ± 3.8) and the hillslopes (26.4 ± 4.8) are significantly different from one another (p = .016). C/N ratios of the suspended sediment (20.5 ± 2.0) are intermediate values between potential endmembers and behave conservatively with transport. The C/N ratios of the suspended sediment appear unaffected by roads (18.9 ± 8.7) along specific sections of the stream, suggesting that roads are not a primary sediment contributor. Under this assumption, the suspended sediment is, on

  5. Orientation study of northern Arkansas. National Uranium Resource Evaluation program. Hydrogeochemical and stream-sediment reconnaissance

    International Nuclear Information System (INIS)

    Steele, K.F.

    1982-08-01

    Samples of ground water, stream water, and sediment were collected at 335 sites for an orientation study of northern Arkansas. Each stream site consisted of both sediment and stream water (if available), and each sediment sample was sieved to produce four size fractions for analysis. The orientation area included all or parts of Benton, Carroll, Madison, and Washington Counties. Several black shales, including the Chattanooga Shale, crop out in this area, and the Sylamore Sandstone Member has local radiation anomalies. The following analyses were performed for all water samples (both ground water and stream water): pH, conductivity, total alkalinity, temperature, nitrate, ammonia, phosphate and sulfate. Additional water was collected, filtered, and reacted with a resin that was then analyzed by neutron activation analysis for U, Br, Cl, F, Mn, Na, Al, and Dy. In addition, ground water samples were analyzed for He. The stream sediments were analyzed by neutron activation for U, Th, Hf, Ce, Fe, Mn, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu

  6. Sediment exchange between groin fields and main-stream

    Science.gov (United States)

    Qin, Jie; Zhong, Deyu; Wu, Teng; Wu, Lingli

    2017-10-01

    Sediment exchange between groin fields and the main-stream influences the transport and distribution of polluted sediment that represents a hazard for rivers and neighboring floodplains. Despite its practical significance, little research has been done on the sediment exchange process itself, and existing studies used to estimate the sediment exchange by morphological change. The sediment exchange process, however, differs from morphological variation and includes two behaviors: the entrance of main-stream sediment into groin fields and the movement of groin field sediment out of groin fields. Therefore, this study aims at examining this exchange process and exploring the mechanisms of different exchange phenomena. Experiments were conducted in a mobile-bed laboratory flume by using a novel experimental method that successfully separates the movement of groin fields sediment from that of main-stream sediment. In addition to traditional measurements, such as measurements of morphological changes, surface flow velocities, and bed-form propagation, the deposition of main-stream sediment in groin fields is measured in detail. The results demonstrate that morphological change cannot reflect the sediment exchange process. The deposition of main-stream sediment in groin fields is determined by the dynamics of sediment movement, in which bedload- and suspended-sediment-dominated processes exhibit different deposition patterns. The movement of groin field sediment out of groin fields is determined mainly by local scouring around groins.

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Valdez NTMS Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Valdez NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System (GJOIS) at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples.

  8. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    Science.gov (United States)

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado

  9. Stream sediment detailed geochemical survey for Marysvale, Utah

    International Nuclear Information System (INIS)

    Butz, T.R.; Vreeland, J.L.; Bard, C.S.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Marysvale detailed geochemical survey are reported. Field and laboratory data are presented for 397 stream sediment samples and 160 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Stream sediments containing significant amounts of soluble uranium (greater than or equal to 16.93 ppM) occur in numerous areas, the most prevalent being in the western portion of the survey area, within and surrounding the Mount Belknap Caldera. Thorium, beryllium, cerium, manganese, molybdenum, niobium, potassium, yttrium, zinc, and zirconium occur in concentrations greater than or equal to 84th percentile in many sediment samples taken from within and surrounding the Mount Belknap Caldera. The uranium and related variables are associated with highly silicic intrusions and extrusions of the Mount Belknap Volcanics, as well as hydrothermal activity which has occurred in the Marysvale volcanic field

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Healy NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Healy NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements multivariate statistical analyses have been included

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the Seldovia NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Seldovia NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  12. Characterization of a stream sediment matrix material for sampling behavior in order to use it as a CRM

    International Nuclear Information System (INIS)

    Huang Donghui; Xiao Caijin; Ni Bangfa; Tian Weizhi; Zhang Yuanxun; Wang Pingsheng; Liu Cunxiong; Zhang Guiying

    2010-01-01

    Sampling behavior of multielements in a stream sediment matrix was studied with sample sizes in a range of 9 orders of magnitude by a combination of INAA, PIXE and SR-XRF. For accurately weighable sample sizes (>1 mg), sampling uncertainties for 16 elements are better than 1% by INAA. For sample sizes that cannot be accurately weighed (<1 mg), PIXE and SR-XRF were used and the effective sample sizes were estimated. Sampling uncertainties for seven elements are better than 1% at sample sizes of tenth mg level, and that for three elements are better than 10% on ng levels.

  13. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring

    Science.gov (United States)

    Kristin Bunte; Steven R. Abt

    2001-01-01

    This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...

  14. Data report: Pennsylvania, New Jersey, and New York. National uranium resource evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.; Fay, W.M.; Sargent, K.A.

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Pennsylvania, New Jersey, and New York. Ground water samples were collected at 5734 sites in Pennsylvania, 1038 sites in New Jersey, and 4829 sites in New York. Stream sediment samples were collected at 4499 sites in Pennsylvania, 628 sites in New Jersey, and 5696 sites in New York. Stream water samples were collected at 4401 sites in Pennsylvania, 382 sites in New Jersey, and 5047 sites in New York. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 6947 sediment samples. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes quadrangle, Alaska, are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and Laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  16. Chlorinated pesticides in stream sediments from organic, integrated and conventional farms

    International Nuclear Information System (INIS)

    Shahpoury, Pourya; Hageman, Kimberly J.; Matthaei, Christoph D.; Magbanua, Francis S.

    2013-01-01

    To determine if current sheep/beef farming practices affect pesticide residues in streams, current-use and legacy chlorinated pesticides were quantified in 100 sediment samples from 15 streams on the South Island of New Zealand. The study involved five blocks of three neighboring farms, with each block containing farms managed by organic, integrated and conventional farming practices. Significantly higher concentrations of dieldrin, ∑ endosulfans, ∑ current-use pesticides, and ∑ chlorinated pesticides were measured in sediments from conventional farms compared to organic and integrated farms. However, streams in the latter two farming categories were not pesticide-free and sometimes contained relatively high concentrations of legacy pesticides. Comparison of measured pesticide concentrations with sediment quality guidelines showed that, regardless of farming practice, mean pesticide concentrations were below the recommended toxicity thresholds. However, up to 23% of individual samples contained chlorpyrifos, endosulfan sulfate, ∑ DDT, dieldrin, or ∑ chlordane concentrations above these thresholds. -- Highlights: •Pesticides were measured in streams in organic, integrated, and conventional farms. •Higher concentrations of some pesticides were found in conventional sites. •Streams in organic and integrated sites were not pesticide free. •Mean pesticide concentrations were below the recommended toxicity thresholds. -- Higher concentrations of several chlorinated pesticides were found in conventional farms; however, organic and integrated practices were not pesticide-free

  17. Get In and Get Out: Assessing Stream Sediment Loading from Short Duration Forest Harvest Operations and Rapid Haul Road Decommissioning.

    Science.gov (United States)

    Corrigan, A.; Silins, U.; Stone, M.

    2016-12-01

    Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, may field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  19. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.L.

    1979-02-01

    Wet and dry sediments were collected throughout the 18,500-km/sup 2/arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40 ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data.

  20. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    International Nuclear Information System (INIS)

    Wagoner, J.L.

    1979-02-01

    Wet and dry sediments were collected throughout the 18,500-km 2 arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40 ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data

  1. Isolating the impact of sediment toxicity in urban streams

    International Nuclear Information System (INIS)

    Marshall, Stephen; Pettigrove, Vincent; Carew, Melissa; Hoffmann, Ary

    2010-01-01

    Several factors can contribute to the ecological degradation of stream catchments following urbanization, but it is often difficult to separate their relative importance. We isolated the impact of polluted sediment on the condition of an urban stream in Melbourne, Australia, using two complementary approaches. Using a rapid bioassessment approach, indices of stream condition were calculated based on macroinvertebrate field surveys. Urban stream reaches supported impoverished macroinvertebrate communities, and contained potentially toxic concentrations of heavy metals and hydrocarbons. Using a field microcosm approach, a bioassay was carried out to assess sediment pollution effects on native macroinvertebrates. Sediment from urban sites substantially altered the microcosm macroinvertebrate community, most likely due to elevated heavy metal and hydrocarbon concentrations. Macroinvertebrate surveys combined with a bioassay approach based on field microcosms can help isolate the effect of stream pollutants in degraded ecosystems. - Field microcosms isolate the ecological impact of polluted sediment in an urban stream.

  2. First post-fire flush in a Mediterranean temporary stream: source ascription in bed sediments

    Science.gov (United States)

    Estrany Bertos, Joan; García-Comendador, Julián; Fortesa, Josep; Calsamiglia, Aleix; Garcias, Francesca

    2017-04-01

    First flushes can be of great importance for suspended-sediment transport in fluvial systems of drylands, being temporary streams a characteristic feature of Mediterranean basins. After a wildfire, storm flows may enhance runoff delivery to channels and then increasing the first-flush effect. 137Cs and 210Pbex were used as tracers for recognizing the first post-fire flush effect in the source ascription of bed sediments temporarily stored in a Mediterranean temporary stream severely affected by a wildfire. Thirty potential sediment source samples were collected along the main stem of a catchment located in Mallorca (Spain) during a field campaign developed some weeks after the wildfire. The sample collection was designed considering the wildfire affection, and also distinguishing between soil surface and channel bank. To quantify the relative source contribution to the bed sediment temporarily stored, five sediment samples -deposited during the first storm occurred three months after the wildfire- were collected into the bed stream of the main channel. The 137Cs and 210Pbex concentrations were measured by gamma spectrometry. Then, a linear mixing model was used to establish the relative contribution of each source type to the bed sediments discerning between the most upstream and the downstream parts of the catchment. Post-fire first-flush effect was generated by a torrential event with a suspended-sediment concentration peak ca. 33,618 mg L-1, although transmission losses under a very low runoff coefficient (1%) promoted sediment deposition. Significant differences were observed in fallout radionuclide concentrations between burned surface soil and channel bank samples (p 0.05). Source ascription in bed sediments in the middle stream shows that 67% was generated in burned hillslopes, reaching 75% in the downstream part because downstream propagation of the sediment derived from the burned area. Bed sediments were mostly generated in burned hillslopes because of

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Lawton NTMS quadrangle, Oklahoma; Texas

    International Nuclear Information System (INIS)

    1978-01-01

    Field and laboratory data are presented for 703 groundwater and 782 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Groundwater data indicate that the most promising areas for potential uranium mineralization occur in the Lower Permian units surrounding the granite outcrops of the Wichita Mountains. Waters from the Hennessey and Clearfork Groups and the Garber Sandstone contain the highest uranium values. Elements associated with the uranium are arsenic, boron, barium, molybdenum, sodium, selenium, and vandium. Stream sediment data indicate that the promising areas for potential uranium mineralization occur around the Wichita Mountains where stream sediments are derived from the Lower Permian Post Oak Conglomerate, Hennessey Group, and Garber Sandstone and from the Cambrian igneous rocks. Other areas of interest occur (1) in the western part of the quadrangle where the sediments are derived from rocks of the El Reno Group, and (2) along the southern border of the quadrangle where the sediments are derived from the Wichita Group

  4. Knoxville 10 x 20 NTMS area, North Carolina, South Carolina, and Tennessee: data release. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Baucom, E.I.; Ferguson, R.B.

    1979-05-01

    Stream sediment and stream water samples were collected from small streams at 1430 sites or at a nominal density of one site per 14 square kilometers (five square miles) in rural areas. Ground water samples were collected at 791 sites or at a nominal density of one site per 25 square kilometers (ten square miles). Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) well depth, (3) elemental analyses (U, Br, Cl, F, Mg, Mn, Na, and V). Supplementary data include site descriptors (well age, frequency of use of well, etc.) and tabulated analytical data for Al and Dy. Key data from stream sediment sites include (1) water quality measurements (pH, conductivity, and alkalinity), and (2) important elemental analyses (U, Th, Hf, Al, Ce, Fe, Mn, Na, Sc, Ti, and V). Supplementary data from stream sediment sites include sample site descriptors (stream characteristics, vegetation, etc.) and additional elemental analyses

  5. Monitoring of streams: macrozoobenthos and accumulation of heavy metals and radionuclides in bottom sediments

    International Nuclear Information System (INIS)

    Arbaciauskas, K.; Mackeviciene, G.; Striupkuviene, N.; Motiejunas, S; Kreslauskaite, R.

    1998-01-01

    To evaluate the environmental quality of streams in integrated monitoring sites (IMS) and agrostations (AS), the macrozoobenthos communities and accumulation of heavy metals and radionuclides in bottom sediments were studied during 1993-1996. Samples of macrozoobenthos were collected in stream biotopes which were recommended for monitoring. Community biodiversity was assessed by Shannon-Wiener and Simpson indices, and water quality of streams was estimated by Trent and Mean Chandler biotic indices. Heavy metal (Pb, Cd, Cu, Cr, Ni, Mn) concentrations and radionuclide ( 137 Cs, 134 Cs, 40 K, 90 Sr) activity were determined in sediments. Macrozoobenthos communities indicated that the studied streams were clean waters. The heavy metal concentrations in surficial sediments showed annual and seasonal changes and differences between monitoring sites. The Cu concentration in the soft turfy stream sediments at the Aukstaitija IMS was twice as high as that in sediments of other monitoring streams with hard sandy-gravel bottoms. During 1994-1996, the Ni concentration decreased, while levels of Cu, Cd and Cr were relatively stable. The Pb concentrations decreased in all IMS, while those in AS increased. The concentration of 137 Cs was relatively stable in agrostation streams. Compared to levels in 1993, an increase of 137 Cs activity was observed in sediments at the Dzuklija IMS during 1995-1996. 90 Sr activity fluctuated in the monitoring sites from 1.6 to 3.7 Bq/kg dry weight. (author)

  6. Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments

    Science.gov (United States)

    Writer, Jeffrey; Barber, Larry B.; Ryan, Joseph N.; Bradley, Paul M.

    2011-01-01

    Biodegradation of select endocrine-disrupting compounds (17β-estradiol, estrone, 17α-ethynylestradiol, 4-nonylphenol, 4-nonylphenolmonoexthoylate, and 4-nonylphenoldiethoxylate) was evaluated in stream biofilm, sediment, and water matrices collected from locations upstream and downstream from a wastewater treatment plant effluent discharge. Both biologically mediated transformation to intermediate metabolites and biologically mediated mineralization were evaluated in separate time interval experiments. Initial time intervals (0–7 d) evaluated biodegradation by the microbial community dominant at the time of sampling. Later time intervals (70 and 185 d) evaluated the biodegradation potential as the microbial community adapted to the absence of outside energy sources. The sediment matrix was more effective than the biofilm and water matrices at biodegrading 4-nonylphenol and 17β-estradiol. Biodegradation by the sediment matrix of 17α-ethynylestradiol occurred at later time intervals (70 and 185 d) and was not observed in the biofilm or water matrices. Stream biofilms play an important role in the attenuation of endocrine-disrupting compounds in surface waters due to both biodegradation and sorption processes. Because sorption to stream biofilms and bed sediments occurs on a faster temporal scale (185 d), these compounds can accumulate in stream biofilms and sediments.

  7. Mortandad Canyon: Elemental concentrations in vegetation, streambank soils, and stream sediments - 1979

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Gladney, E.S.

    1997-06-01

    In 1979, stream sediments, streambank soils, and streambank vegetation were sampled at 100 m intervals downstream of the outfall of the TA-50 radioactive liquid waste treatment facility in Mortandad Canyon. Sampling was discontinued at a distance of 3260 m at the location of the sediment traps in the canyon. The purpose of the sampling was to investigate the effect of the residual contaminants in the waste treatment facility effluent on elemental concentrations in various environmental media

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Raton NTMS quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Morgan, T.L.; Broxton, D.E.

    1978-10-01

    A total of 824 water and 1340 sediment samples were collected from 1844 sample locations in the Raton NTMS quadrangle and analyzed for uranium. Samples were collected at a nominal density of one per 10 km 2 . Notably high uranium values were found in both water and sediment samples collected from tributaries of Costilla Creek in the Culebra Range. Uranium contents in stream waters from this area range from individual high values of 145.1 and 76.1 to values slightly higher than the background concentrations in adjacent areas. Stream sediments range from 4.1 to 202.2 ppM uranium and average 30 ppM. The Culebra Range is a favorable setting for hard-rock type uranium mineralization. The uraniferous water and sediment samples call attention to this area as a possible exploration target. Numerous groups of ground waters with high uranium concentrations come from locations along the Cimarron and Sierra Grande Arches in the eastern part of the quadrangle. The Cimarron Arch is the locus of the largest group of uraniferous ground waters, with concentrations ranging between 5.2 and 103.3 ppB. Aquifers from which these samples were derived include the Fort Hays and Smoky Hill members of the Niobrara formation, the Pierre shale, and Quaternary surficial deposits. Most of the uraniferous ground waters along the Sierra Grande Arch occur in small, isolated groups that probably represent minor, local sources of uranium. Carbonate complexing of uranium may contribute to the high uranium values seen in these samples. Stream sediment samples with high uranium concentrations (10.1 to 51.4 ppM) were found in several drainages from the western front of the Taos Range. One group of locations providing high-uranium sediments is near known uranium occurrence in the vicinity of Cabresto and Latir Peaks. The western Taos Range is a favorable setting for hard rock uranium mineralization and may also warrant further study

  9. Fine sediment in pools: An index of how sediment is affecting a stream channel

    Science.gov (United States)

    Tom Lisle; Sue Hilton

    1991-01-01

    One of the basic issues facing managers of fisheries watersheds is how inputs of sediment affect stream channels. In some cases we can measure and even roughly predict effects of land use on erosion and delivery of sediment from hillslopes to streams. But we are at a loss about how a given increase in sediment load will affect channel morphology, flow conditions, and...

  10. Geochemical provenance of anomalous metal concentrations in stream sediments in the Ashton 1:250,000 quadrangle, Idaho/Montana/Wyoming

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1982-01-01

    Stream-sediment samples from 1500 sites in the Ashton, Idaho/Montana/Wyoming 1:250,000 quadrangle were analyzed for 45 elements. Almost all samples containing anomalous concentrations (exceeding one standard deviation above the mean value of any element) were derived from drainage basins underlain by Quaternary rhyolite, Tertiary andesite or Precambrian gneiss and schist. Aluminum, barium, calcium, cobalt, iron, nickel, magnesium, scandium, sodium, strontium, and vanadium have no andesite provenance. Most anomalous manganese, europium, hafnium, and zirconium values were derived from Precambrian rocks. All other anomalous elemental concentrations are related to Quaternary rhyolite. This study demonstrates that multielemental stream-sediment analyses can be used to infer the provenance of stream sediments. Such data are available for many parts of the country as a result of the National Uranium Resource Evaluation. This study suggests that stream-sediment samples collected in the Rocky Mountains can be used either as pathfinders or as direct indicators to select targets for mineral exploration for a host of metals

  11. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    Science.gov (United States)

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  12. Uranium hydrogeochemical and stream sediment reconnaissance of the Kenai NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Kenai NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Denver NTMS quadrangle, Colorado

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Denver NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through E describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  14. Stream-sediment geochemical exploration for uranium in Narigan area Central Iran

    International Nuclear Information System (INIS)

    Yazdi, M.; Khoshnoodi, K.; Kavand, M.; Ashteyani, A. R.

    2009-01-01

    Uranium deposits of Iran occur mainly in the Central Iran zone. Several uranium deposits have been discovered in this zone. The Narigan area is one of the most important uranium mineralized area in this zone. The uranium bearing sequences in this area are contained in the plutonic to volcanic rocks of Narigan which intruded to the Pre-Cambrian pyroclastics rocks. Plutonic and volcanic rocks are granite, rhyolite and volcanoclastic. Diabasic dykes have been intruded to these igneous rocks. The plutonic and volcanic rocks have been covered by Cretaceous limestones which seem to be youngest the rocks in this area. The aim of our project is to develop a regional exploration strategy for uranium in these igneous rocks. A grid-based sampling was planned following the results of the previous geochemical mapping at a scale of 1:100,000, integrated with geophysical data and alteration zones and outcrop of intrusive rocks. The following results are based on geological, and stream geochemical explorations in 1:20000 scale of this area. During this study 121 samples were collected from the stream sediments of <80 mesh for final sampling. Ten percent of the samples were used for checking laboratories errors. The samples were collected according to conventional methods from 30-40 cm depth of stream sediments. Finally, geochemical and radiometric data were combined and the results introduced 3 anomalies in the Narigan area

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  17. Hydrogeochemical and stream sediment reconnaissance basic data for Seguin NTMS quadrangle, Texas

    International Nuclear Information System (INIS)

    1978-01-01

    Results of a reconnaissance geochemical survey of the Sequin Quadrangle, Texas are reported. Field and laboratory data are presented for 848 groundwater, 950 stream sediment, and 406 stream water samples. Statistical and areal distributions of uranium and other possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that uranium concentrations above the 85th percentile occur along several northeast-southwest trends paralleling the regional strike of the major formations located within the survey area. The stream sediment data indicate that uranium is associated with heavy and/or resistate minerals in the Carrizo Sand and certain members of the Claiborne Group. Soluble uranium is primarily associated with the Cretaceous Formations, the Whitsett and Catahoula Formations, and sections of the Oakville and Fleming Formations. Stream water data corroborate well with both groundwater and stream sediment data. Anomalous values for uranium and associated pathfinder elements indicate that the Whitsett and Catahoula Formations and sections of the Oakville and Fleming Formations are potentially favorable for uranium mineralization. Anomalous values for certain pathfinder elements also occur in basins draining from the Beaumont Formation and may warrant further investigation

  18. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Leadville NTMS Quadrangle, Colorado, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Planner, H.N.

    1980-10-01

    A total of 1797 locations was sampled over a 19 330-km 2 area, providing an average density of one sample location per 11 km 2 . This report contains results for uranium in water samples and uranium and 42 additional elements in sediment samples. A total of 1279 water samples was collected from streams (1125) and springs (154). Uranium concentrations for all water samples range from below the detection limit of 0.02 ppB to 37.56 ppB. Mean concentrations in streams and springs are 1.05 ppB and 1.19 ppB, respectively. A total of 1784 sediment samples was collected from streams (1590), springs (193), and one pond. Uranium concentrations in sediments range from 1.27 to 223.80 ppM. Statistical mean uranium concentrations for wet stream (8.55 ppM) and spring (7.51 ppM) sediments are found to be greater than their dry counterparts (5.13 ppM and 4.96 ppM, respectively). Field data, recorded at the collection site, are reported with the elemental concentrations for each water and sediment sample listed. These data include a scintillometer determination of the equivalent uranium, pH and conductivity measurements, and geographic and weather information

  19. Introduction to suspended-sediment sampling

    Science.gov (United States)

    Nolan, K. Michael; Gray, John R.; Glysson, G. Douglas

    2005-01-01

    Knowledge of the amount and timing of sediment transport in streams is important to those directly or indirectly responsible for developing and managing water and land resources. Such data are often used to judge the health of watershed and the success or failure of activities designed to mitigate adverse impacts of sediment on streams and stream habitats. This training class presents an introduction to methods currently used by the U.S. Geological Survey (USGS) to sample suspended-sediment concentrations in streams. The presentation is narrated, but you control the pace of the presentation. If the computer you are using can view 'MPEG' videos you will be able to take advantage of videos interspersed in the presentation. A test, found at the end of the presentation, can be taken to assess how well you understood the training material. The class, which is registered as class SW4416 with the National Training Center of the USGS, should take two or three hours to complete. In order to use the presentation provided via this Web page, you will need to download a large disc images (linked below) and 'burn' it to a blank CD-ROM using a CD-ROM recorder on your computer. The presentation will only run on a Windows-based personal computer (PC). The presentation was developed using Macromedia Director MX 20041 and is contained in the file 'SIR05-5077.exe' which should autolaunch. If it does not, the presentation can be started by double-clicking on the file name. A sound card and speakers are necessary to take advantage of narrations that accompany the presentation. Text of narrations is provided, if you are unable to listen to narrations. Instructions for installing and running the presentation are included in the file 'Tutorial.htm', which is on the CD. 1 Registered Trademark: Macromedia Incorporated

  20. Spectrochemical determination of beryllium and lithium in stream sediments

    International Nuclear Information System (INIS)

    Gallimore, D.L.; Hues, A.D.; Palmer, B.A.; Cox, L.E.; Simi, O.R.; Bieniewski, T.M.; Steinhaus, D.W.

    1979-11-01

    A spectrochemical method was developed to analyze 200 or more samples of stream sediments per day for beryllium and lithium. One part of ground stream sediment is mixed with two parts graphite-SiO 2 buffer, packed into a graphite electrode, and excited in a direct-current arc. The resulting emission goes to a 3.4-m, direct-reading, Ebert spectrograph. A desk-top computer system is used to record and process the signals, and to report the beryllium and lithium concentrations. The limits of detection are 0.2 μg/g for beryllium and 0.5 μg/g for lithium. For analyses of prepared reference materials, the relative standard deviations were 16% for determining 0.2 to 100 μg/g of beryllium and 15% for determining 0.5 to 500 μg/g of lithium. A correction is made for vanadium interference

  1. Hydrogeochemical and stream sediment reconnaissance basic data report for Winnemucca NTMS Quadrangle, Nevada

    International Nuclear Information System (INIS)

    Puchlik, K.P.

    1978-05-01

    Results are presented of the geochemical reconnaissance sampling in the Winnemucca 1 0 x 2 0 quadrangle of the National Topographic Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km 2 arid to semi-arid area and water samples at available streams, springs and wells. Results of neutron activation analyses are presented of uranium and trace elements and other measurements made in the field and laboratory in tabular hardcopy and microfiche format. The report includes 5 full-size overlays for use with the Winnemucca NTMS 1:250,000 quadrangle. Water sampling sites, water-sample uranium and thorium concentrations, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are given and the 12 known uranium occurrences are described. The results indicate that the uranium geochemistry of the area is diverse. High concentrations (greater than 5 ppM) of uranium in sediments are associated mainly with rhyolitic ash falls and flows and silicic intrusives. In defining areas of interest the ratio of relatively insoluble thorium to uranium was considered. The anomalies as defined are then the sediment samples containing low Th/U and high uranium concentrations. These areas consist mainly of fluvial-lacustrine units. Most known uranium occurrences were also identified by this technique. The main Humboldt River shows an irregular increase in uranium concentration downstream which may be related to agricultural modification of the stream flow. U/Cl ratios were used to evaluate the effects of evaporative concentration. Of interest are spring and tributary waters containing high U/Cl and high uranium values. These waters mainly drain acid intrusives, silicic volcanic rocks and related sediments. One such area is the Shoshone and Cortez Mountains

  2. Stream sediment geochemical surveys for uranium

    International Nuclear Information System (INIS)

    Price, V.; Ferguson, R.B.

    1979-01-01

    Stream sediment is more universally available than ground and surface waters and comprises the bulk of NURE samples. Orientation studies conducted by the Savannah River Laboratory indicate that several mesh sizes can offer nearly equivalent information. Sediment is normally sieved in the field to pass a 420-micrometer screen (US Std. 40 mesh) and that portion of the dried sediment passing a 149-micrometer screen (US Std. 100 mesh) is recovered for analysis. Sampling densities usually vary with survey objectives and types of deposits anticipated. Principal geologic features that can be portrayed at a scale of 1:250,000, such as major tectonic units, plutons, and pegmatite districts, are readily defined using a sampling density of 1 site per 5 square miles (13 km 2 ). More detailed studies designed to define individual deposits require greater sampling density. Analyses for elements known to be associated with uranium in a particular mineral host may be used to estimate the relative proportion of uranium in several forms. For example, uranium may be associated with thorium and cerium in monazite, and with zirconium and hafnium in zircon. Readily leachable uranium may be adsorbed to trapped in oxide coatings on mineral particles. Soluble or mobile uranium may indicate an ore source, whereas uranium in monazite or zircon is not likely to be economically attractive. Various schemes may be used to estimate for form of uranium in a sample. Simple elemental ratios are a useful first approach. Multiple ratios and subtractive formulas empirically designed to account for the presence of particular minerals are more useful. Residuals calculated from computer-derived regression equations or factor scores appear to have the greatest potential for locating uranium anomalies

  3. Comparison of total and cold-extractable uranium in stream sediments of the southwestern Karoo supergroup, South Africa

    International Nuclear Information System (INIS)

    Jakob, W.R.O.; Smit, M.C.B.; Murphy, G.C.

    1979-01-01

    In order to evaluate the usefullness of cold-extractable uranium as a tool of uranium prospecting in stream sediments of the southwestern Karoo, South Africa, ten orientation studies were conducted near known mineralisation jointly by the Atomic Energy Board and the Geological Survey of South Africa. These indicate that the topography determines the nature of the dispersion. In areas of moderate to high relief the total uranium content of the stream sediment gives dispersion trains up to about 500 m from the mineralisation, and peak-to-background ratios of about 3. The use of cold-extractable uranium doubles the length of the dispersion, and peak-to-background ratios are greater than 10 and may be as high as 35. In areas of low relief, the total uranium content of the sediment gives low anomalies, with short dispersion downstream. Cold-extractable uranium gives anomalies 500-1 000 m from the mineralisation. This is interpreted to be due to the longer residence time of the clay minerals in the stream. In order to test the applicability of cold-extractable uranium on a regional scale, 720 samples were collected at a density of one sample per square kilometre. Statistical treatment of the data shows the U content of the stream sediments, to be log-normally distributed. For cold-extractable uranium, polymodal distributions, apparently representing background and anomalous samples, can be separated with a high rate of success, and meaningful threshold values can be assigned. This is not the case for the total uranium content of the stream sediments [af

  4. Transport of bedload sediment and channel morphology of a southeast Alaska stream.

    Science.gov (United States)

    Margaret A. Estep; Robert L. Beschta

    1985-01-01

    During 1980-81, transport of bedload sediment and channel morphology were determined at Trap Bay Creek, a third-order stream that drains a 13.5-square kilometer watershed on Chichagof island in southeast Alaska. Bedload sediment was sampled for 10 storms: peak flows ranged from 0.6 to 19.0 cubic meters per second, and transport rates ranged from 4 to 4400 kilograms per...

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Valdez NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Valdez NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System (GJOIS) at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  6. Uranium hydrogeochemical and stream-sediment reconnaissance of the Selawik NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Selawik NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Candle NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Candle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  8. Seasonal Changes in Microbial Community Structure in Freshwater Stream Sediment in a North Carolina River Basin

    Directory of Open Access Journals (Sweden)

    John P. Bucci

    2014-01-01

    Full Text Available This study examined seasonal differences in microbial community structure in the sediment of three streams in North Carolina’s Neuse River Basin. Microbes that reside in sediment are at the base of the food chain and have a profound influence on the health of freshwater stream environments. Terminal-Restriction Fragment Length Polymorphism (T-RFLP, molecular fingerprint analysis of 16S rRNA genes was used to examine the diversity of bacterial species in stream sediment. Sediment was sampled in both wet and dry seasons from an agricultural (Bear, mixed urban (Crabtree and forested (Marks Creek, and the microbiota examined. Gamma, Alpha and Beta proteobacteria were prevalent species of microbial taxa represented among all sites. Actinobacteria was the next most prevalent species observed, with greater occurrence in dry compared to the wet season. Discernable clustering was observed of Marks and Bear Creek samples collected during the wetter period (September–April, which corresponded with a period of higher precipitation and cooler surface water temperatures. Although not statistically significant, microbial community structure appeared different between season (ANOSIM, R = 0.60; p < 0.10. Principal components analysis confirmed this pattern and showed that the bacterial groups were separated by wet and dry seasonal periods. These results suggest seasonal differences among the microbial community structure in sediment of freshwater streams and that these communities may respond to changes in precipitation during wetter periods.

  9. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe Mn oxyhydroxides: Fractionation, speciation, and controls over REE + Y patterns in the surface environment

    Science.gov (United States)

    Leybourne, Matthew I.; Johannesson, Karen H.

    2008-12-01

    We have collected ˜500 stream waters and associated bed-load sediments over an ˜400 km 2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into "dissolved" (primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO 2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.

  10. Assessment of Energetic Compounds, Semi-volatile Organic Compounds, and Trace Elements in Streambed Sediment and Stream Water from Streams Draining Munitions Firing Points and Impact Areas, Fort Riley, Kansas, 2007-08

    Science.gov (United States)

    Coiner, R.L.; Pope, L.M.; Mehl, H.E.

    2010-01-01

    An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in

  11. Stream-sediment geochemistry in mining-impacted streams: Prichard, Eagle, and Beaver creeks, northern Coeur d'Alene Mining District, northern Idaho

    Science.gov (United States)

    Box, Stephen E.; Wallis, John C.; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    This report presents the results of one aspect of an integrated watershed-characterization study that was undertaken to assess the impacts of historical mining and milling of silver-lead-zinc ores on water and sediment composition and on aquatic biota in streams draining the northern part of the Coeur d?Alene Mining District in northern Idaho. We present the results of chemical analyses of 62 samples of streambed sediment, 19 samples of suspended sediment, 23 samples of streambank soil, and 29 samples of mine- and mill-related artificial- fill material collected from the drainages of Prichard, Eagle, and Beaver Creeks, all tributaries to the North Fork of the Coeur d?Alene River. All samples were sieved into three grain-size fractions (Beaver Creek drainages has resulted in enrichments of lead, zinc, mercury, arsenic, cadmium, silver, copper, cobalt, and, to a lesser extent, iron and manganese in streambed sediment. Using samples collected from the relatively unimpacted West Fork of Eagle Creek as representative of background compositions, streambed sediment in the vicinity of the mines and millsites has Pb and Zn contents of 20 to 100 times background values, decreasing to 2 to 5 times background values at the mouth of the each stream, 15 to 20 km downstream. Lesser enrichments (<10 times background values) of mercury and arsenic also are generally associated with, and decrease downstream from, historical silver-lead-zinc mining in the drainages. However, enrichments of arsenic and, to a lesser extent, mercury also are areally associated with the lode gold deposits along Prichard Creek near Murray, which were not studied here. Metal contents in samples of unfractionated suspended sediment collected during a high-flow event in April 2000 are generally similar to, but slightly higher than, those in the fine (<0.063- mm grain size) fraction of streambed sediment from the same sampling site. Although metal enrichment in streambed sediment typically begins adjacent to

  12. Uranium hydrogeochemical and stream sediment reconnaissance of the thermopolis NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium in the Thermopolis National Topographic Map Series quadrangle, Wyoming. Totals of 920 water and 1821 sediment samples were collected from 1977 locations at an average density of one sample location per 9 km 2 over an 18,000-km 2 area. Water samples were collected from streams, springs, and wells; sediment samples were collected from streams and springs. The uranium contents of water samples range from below the detection limit of 0.02 ppB to 307.98 ppB with a median of 0.56 ppB. Six clusters of anomalous water samples were delineated within the Wind River Basin and are associated predominantly with the Wind River formation. Two clusters of anomalous waters were collected on the southern margin of the Bighorn Basin and are associated with sandstone and shales of Permian through Cretaceous age. The uranium contents of sediment samples range from 0.43 to 94.65 ppM with a median of 2.90 ppM. Most sediment samples with uranium concentrations of greater than 12 ppM are underlain by Precambrian crystalline rocks of the Wind River Range; this area contains the highest uranium values found in sediments from the Thermopolis quadrangle. Other samples containing greater than 12 ppM uranium are found associated with the Wind River and Aycross formations along the northern margin of the Wind River Basin, and one sample was collected from Precambrian granitic terrain of the Owl Creek Mountains

  13. Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Hintzen, Emily P. [Department of Environmental Studies, Baylor University, Waco, TX 76798 (United States); Lydy, Michael J. [Fisheries and Illinois Aquaculture Center, and Department of Zoology, Southern Illinois University, Carbondale, IL 62091 (United States); Belden, Jason B. [Department of Zoology, Oklahoma State University, 430 Life Science West, Stillwater, OK 74078 (United States)], E-mail: jbelden@okstate.edu

    2009-01-15

    Despite heavy insecticide usage in urban areas, only a few studies have investigated the impact of current-use insecticides on benthic invertebrates in urban streams. The objective of this study was to measure the presence and concentration of current-use pesticides in sediments of residential streams in central Texas. Additionally, toxicity of these sediments to Hyalella azteca was evaluated. Sediment samples were collected from several sites in urban streams over the course of a year, of which, 66% had greater than one toxic unit (TU) of insecticide. Bifenthrin was the greatest contributor accounting for 65% of the TUs, and sediment toxicity to H. azteca correlated with the magnitude of total insecticides and bifenthrin TUs. The results of this study further raise concerns over the environmental consequences posed by many current-use insecticides, especially pyrethroids, in urban settings. - This study examined the presence of insecticides in Texas stream sediments as a model for evaluating the potential impact of urban insecticide use in the Southern United States.

  14. Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas

    International Nuclear Information System (INIS)

    Hintzen, Emily P.; Lydy, Michael J.; Belden, Jason B.

    2009-01-01

    Despite heavy insecticide usage in urban areas, only a few studies have investigated the impact of current-use insecticides on benthic invertebrates in urban streams. The objective of this study was to measure the presence and concentration of current-use pesticides in sediments of residential streams in central Texas. Additionally, toxicity of these sediments to Hyalella azteca was evaluated. Sediment samples were collected from several sites in urban streams over the course of a year, of which, 66% had greater than one toxic unit (TU) of insecticide. Bifenthrin was the greatest contributor accounting for 65% of the TUs, and sediment toxicity to H. azteca correlated with the magnitude of total insecticides and bifenthrin TUs. The results of this study further raise concerns over the environmental consequences posed by many current-use insecticides, especially pyrethroids, in urban settings. - This study examined the presence of insecticides in Texas stream sediments as a model for evaluating the potential impact of urban insecticide use in the Southern United States

  15. Hydrogeochemical and stream sediment reconnaissance basic data for Dallas NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey of the Dallas Quadrangle, Texas are reported. Field and laboratory data are presented for 284 groundwater and 545 stream sediment samples. Statistical and areal distribution plots of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided. Groundwater produced from the Navarro Group, Neylandville Formation, Marlbrook Marl, and the Glen Rose and Twin Mountains Formations exhibit anomalous uranium (> 9.05 ppB) and specific conductance (> 1871 μmhos/cm) values. The anomalies represent a southern extension of a similar trend observed in the Sherman Quadrangle, K/UR-110. Stream sediments representing the Eagle Ford Group and Woodbine Formation exhibit the highest concentrations of total and hot-acid-soluble uranium and thorium of samples collected in the Dallas Quadrangle. The U/TU value indicates that > 80% of this uranium is present in a soluble form

  16. Forestry best management practices and sediment control at skidder stream crossings

    Science.gov (United States)

    Laura R. Wear; W. Michael Aust; M. Chad Bolding; Brian D. Strahm; Andrew C. Dolloff

    2015-01-01

    Stream crossings for skid trails have high sediment delivery ratios. Forestry Best Management Practices (BMPs) have proven to be effective for erosion control, but few studies have quantified the impact of various levels of BMPs on sedimentation. In this study, three skid-trail stream-crossing BMP treatments were installed on nine operational stream crossings (three...

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the White Sulfur Springs NTMS quadrangle, Montana

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the White Sulphur Springs NTMS quadrangle, Montana. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through C describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, stream-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  18. Effectiveness of best management practices for sediment reduction at operation forest stream crossings

    Science.gov (United States)

    Laura R. Wear; Michael W. Aust; M. Chad Bolding; Brian D. Strahm; C. Andrew Dolloff

    2013-01-01

    Temporary skid trail stream crossings have repeatedly been identified as having considerable potential to introduce sediment to streams. Forestry Best Management Practices (BMPs) have proven to be effective for controlling erosion and subsequent sedimentation, yet few studies have quantified sedimentation associated with various levels of BMPs for skidder stream...

  19. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Socorro NRMS Quadrangle, New Mexico, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Planner, H.N.; Fuka, M.A.; Hanks, D.E.; Hansel, J.M.; Minor, M.M.; Montoya, J.D.; Sandoval, W.F.

    1980-10-01

    Results for uranium in water samples and uranium and 42 additional elements in sediment samples are given. A total of 650 water samples was collected from wells (525), springs (99), streams (25), and one pond. Uranium concentrations for all water samples range from below the detection limit to 157.20 parts per billion (ppB). Mean concentrations in springs and well waters are 4.91 ppB and 5.04 ppB, respectively, compared to a value of 2.78 ppB in stream waters. Of the 1384 sediment samples collected, 1246 are from dry stream beds. The remaining 138 samples are from springs (68), ponds (50), and flowing streams (20). Uranium concentrations in sediments range from 0.84 to 13.40 parts per million (ppM) with the exception of a single 445.10-ppM concentration. The mean uranium content of all sediments is 3.12 ppM. Field data, recorded at the collection site, are reported with the elemental concentrations for each water and sediment sample listed in Appendixes I-A and I-B. These data include a scintillometer determination of the equivalent uranium, pH and conductivity measurements, and geographic and weather information. Appendix II explains the codes used in Appendix I and describes the standard field and analytical procedures used by the LASL in the HSSR program

  20. Pocatello 10 x 20 NTMS area Idaho. Data report: National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-07-01

    This data report presents results of groundwater and stream/surface sediment reconnaissance in the National Topographic Map Series (NTMS) Pocatello 1 0 x 2 0 quadrangle. Surface samples (sediment) were collected from 1701 sites. The target sampling density was one site per 16 square kilometers (six square miles). Ground water samples were collected at 381 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Data from sediment sites include: (1) stream water chemistry measurements where applicable (pH, conductivity, and alkalinity); and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements; U/Th, U/Hf, and U/La ratios; and scintillometer readings for sediment sample sites are included on the microfiche. Data from groundwater sites include: (1) water chemistry measurements (pH, conductivity, and alkalinity); (2) physical measurements where applicable (water temperature, well description, and scintillometer reading); and (3) elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na, and V). Data from stream water sites include: (1) water chemistry measurements (pH, conductivity, and alkalinity); and (2) elemental analyses

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Dickinson NTMS Quadrangle, North Dakota

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dickinson Quadrangle, North Dakota are reported. Field and laboratory data are presented for 544 groundwater and 554 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Interpretation of the groundwater data indicates that scattered localities in the central portion of the quadrangle appear most promising for uranium mineralization. High values of uranium in this area are usually found in waters of the Sentinel Butte and Tongue River Formations. Uranium is believed to be concentrated in the lignite beds of the Fort Union Group, with concentrations increasing with proximity to the pre-Oligocene unconformity. Stream sediment data indicate high uranium values distributed over the central area of the quadrangle. Uranium in stream sediments does not appear to be associated with any particular geologic unit and is perhaps following a structural trend

  2. Uranium concentrations in stream waters and sediments from selected sites in the eastern Seward Peninsula, Koyukuk, and Charley River areas, and across South-Central Alaska

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Hill, D.E.

    1978-04-01

    During the summer of 1975, a 6-week reconnaissance was conducted in widespread areas of Alaska as part of the National Uranium Resource Evaluation (NURE) program; Water, stream sediment, and bedrock samples were taken from the eastern Seward Peninsula, from north of Koyukuk River, from the Charley River area, and from across south central Alaska. This report contains the LASL uranium determinations resulting from fluorometric analysis of the water samples and delayed-neutron counting of the stream sediment samples. Results of total uranium for 611 water and 641 sediment samples, from 691 stream locations, are presented. Overlays showing the numbered sample locations and graphically portraying the concentrations of uranium in water and stream sediment samples, at 1:250,000 scale for use with existing National Topographic Map Series (NTMS) sheets and published geologic maps, are provided as plates. The main purposes of this work are to make the uranium data available to the public in the standard computer format used in the NURE Hydrogeochemical and Stream Sediment Reconnaissance (i.e., with a DOE sample number giving the latitude and longitude of each sample location) and to provide uranium concentration overlays at the standard scale of 1:250,000 adopted by the DOE for the NURE program. It also allows a plausible explanation of differences between the uranium values for sediment as determined by acid dissolution/extraction/fluorometry and by delayed-neutron counting that were noted in the earlier report

  3. Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet.

    Science.gov (United States)

    Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan

    2013-12-01

    Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study.

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the Grand Junction NTMS quadrangle, Colorado/Utah

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Kenai NTMS quadrangle, Colorado/Utah. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  5. A stream sediment orientation programme for Uranium in the Alligator River Province, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Gingrich, J.E.; Foy, M.F.

    1977-01-01

    Sediments samples were collected from streams draining the Koongarra uranium deposit and the small uranium mines in the South Alligator Valley. Determinations for U, Cu and Pb on various size fractions taken from each of these samples indicated that the best results were obtained for U from the minus 200-mesh fraction, but the train from the Koongarra ore deposit was very short. Cu and Pb were not found to be very useful as indicator elements for U. Alpha-track films were used to determine the Rn content of each sample and the ratio of alpha-track film reading to U content was found to define anomalous drainage areas around the mineralization in the Koongarra area. The areas so defined were of sufficient magnitude to be defined in a reconnaissance stream sediment programme

  6. Evaluation of Deposited Sediment and Macroinvertebrate Metrics Used to Quantify Biological Response to Excessive Sedimentation in Agricultural Streams

    Science.gov (United States)

    Sutherland, Andrew B.; Culp, Joseph M.; Benoy, Glenn A.

    2012-07-01

    The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.

  7. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment pilot survey of Llano area, Texas

    International Nuclear Information System (INIS)

    Nichols, C.E.; Kane, V.E.; Minkin, S.C.; Cagle, G.W.

    1976-01-01

    A pilot geochemical survey of the Llano, Texas, area was conducted during February and March 1976. The purpose of this work was to prepare for a subsequent reconnaissance geochemical survey of uranium in Central Texas. Stream sediment, stream water, well water, and plant ash from five geologic areas were analyzed in the laboratory for approximately 25 parameters. Examples of anomalous values in stream sediment and stream water indicate the usefulness of both sample types in identifying anomalies at a regional reconnaissance-scale station spacing of approximately 5 km (3 mi). Groundwater samples, which generally best indicate the geochemistry of formations at depth in a survey of this type, represent another important tool in detecting uranium mineralization. Anomalies in San Saba County are associated with the Marble Falls-Smithwich Formations and the Strawn Series (Pennsylvanian), the Houy Formation (Devonian and lower Mississippian), and the Hickory Sandstone Member of the Riley Formation (Cambrian). In Burnet County anomalous values are due to the influence of the Valley Spring Formation (Precambrian); and in Blanco County anomalies are found associated with the Riley Formation

  8. Investigating high zircon concentrations in the fine fraction of stream sediments draining the Pan-African Dahomeyan Terrane in Nigeria

    International Nuclear Information System (INIS)

    Key, Roger M.; Johnson, Christopher C.; Horstwood, Matthew S.A.; Lapworth, Dan J.; Knights, Katherine V.; Kemp, Simon J.; Watts, Michael; Gillespie, Martin; Adekanmi, Michael; Arisekola, Tunde

    2012-01-01

    Sixteen hundred stream sediments (<150 μm fraction) collected during regional geochemical surveys in central and SW Nigeria have high median and maximum concentrations of Zr that exceed corresponding Zr concentrations found in stream sediments collected from elsewhere in the World with similar bedrock geology. X-ray diffraction studies on a sub-set of the analysed stream sediments showed that Zr is predominantly found in detrital zircon grains. However, the main proximal source rocks (Pan-African ‘Older Granites’ of Nigeria and their Proterozoic migmatitic gneiss country rocks) are not enriched in zircon (or Zr). Nevertheless, U–Pb LA-ICP-MS dating with cathodoluminescence imaging on detrital zircons, both from stream sediment samples and underlying Pan-African ‘Older Granites’ confirms a local bedrock source for the stream sediment zircons. A combination of tropical/chemical weathering and continuous physical weathering, both by ‘wet season’ flash flooding and ‘dry season’ unidirectional winds are interpreted to have effectively broken down bedrock silicate minerals and removed much of the resultant clay phases, thereby increasing the Zr contents in stream sediments. The strong correlation between winnowing index (Th/Al) and Zr concentration across the study area support this interpretation. Therefore, ‘anomalous’ high values of Zr, as well as other elements concentrated in resistant ‘heavy’ minerals in Nigeria’s streams may not reflect proximal bedrock concentrations of these elements. This conclusion has important implications for using stream sediment chemistry as an exploration tool in Nigeria for primary metal deposits associated with heavy minerals.

  9. Uranium hydrogeochemical and stream sediment reconnaissance Misheguk Mountain NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Misheguk Mountain NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  10. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  11. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Rose, A.W.; Smith, A.T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program

  12. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A. W.; Smith, A. T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program.

  13. Roanoke 10 x 20 NTMS area, Virginia. Data report (abbreviated): National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-12-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series Roanoke 1 0 x 2 0 quadrangle. Surface sediment samples were collected at 1235 sites. Ground water samples were collected at 767 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, etc.), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included. Key data from stream water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Al, Br, Cl, Dy, F, Mg, Mn, Na, and V). Uranium concentrations in the sediments range from 0.50 to 83.50 ppM with a mean of 6.67 ppM. A cluster of high log (U/Th + Hf) ratios appear in the southeastern portion of the quadrangle. Uranium, thorium, and the rare earth elements show a striking correlation with the geology of the area

  14. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Lewistown NTMS Quadrangle, Montana, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1980-08-01

    Totals of 758 water and 1170 sediment samples were collected from 1649 locations in the Levistown quadrangle. Water samples were collected at streams, springs, wells, ponds, and marshes; sediment samples were obtained from streams, springs, and ponds. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. All samples were collected at the nominal reconnaissance density of one sample location per 10 km 2 . Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium to thorium (U/Th) ratios for sediment samples are included. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB U were reanalyzed by delayed-neutron counting. Sediments were analyzed for U and Th as well as Al, Sb, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sa, Sc, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, and Zn. All sediments were analyzed for U by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results are reported as parts per million. Descriptions of procedures used for analysis of water and sediments samples as well as analytical precisions and detection limits are given

  15. Sediment contributions from floodplains and legacy sediments to Piedmont streams of Baltimore County, Maryland

    Science.gov (United States)

    Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen

    2015-04-01

    Disparity between watershed erosion rates and downstream sediment delivery has remained an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a common focus. In the Piedmont Province of the eastern USA, upland deforestation and agricultural land use following European settlement led to accumulation of thick packages of overbank sediment in valley bottoms, commonly referred to as legacy deposits. Previous authors have argued that legacy deposits represent a potentially important source of modern sediment loads following remobilization by lateral migration and progressive channel widening. This paper seeks to quantify (1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, (2) proportions of streambank sediment derived from legacy deposits, and (3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont. We calculated measurable gross erosion and deposition rates within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 in Baltimore County, Maryland. We compared stream channel and floodplain morphology from lidar-based digital elevation data collected in 2005 with channel positions recorded on 1:2400 scale topographic maps from 1959-1961 in order to quantify 44-46 years of channel change. Sediment bulk density and particle size distributions were characterized from streambank and channel deposit samples and used for volume to mass conversions and for comparison with other sediment sources. Average annual lateral migration rates ranged from 0.04 to 0.19 m/y, which represented an annual migration of 2.5% (0.9-4.4%) channel width across all study segments, suggesting that channel dimensions may be used as reasonable predictors of bank erosion rates. Gross bank erosion rates varied from 43 to 310 Mg/km/y (median = 114) and were

  16. The trace element analysis in freshwater fish species, water and sediment in Iyidere stream (Rize-Turkey).

    Science.gov (United States)

    Verep, Bulent; Mutlu, Cengiz; Apaydin, Gokhan; Cevik, Ugur

    2012-07-15

    Many environmental problems like dam construction, agricultural debris, flooding and industrial establishments threaten Iyidere stream (Rize, Turkey) on the southeastern coast of the Black Sea (Turkey). The trace element concentrations in water, fish and sediments in lyidere stream (Rize, Turkey) were investigated in this study. The concentration of six different elements in ten freshwater fish species and sediment was determined using energy dispersive X-ray fluorescence method. A radioisotope excited X-ray fluorescence analysis using the method of multiple standard addition is applied for the elemental analysis of fish and sediments. Water samples for trace metals were analyzed using standard spectrophotometry methods. A qualitative analysis of spectral peaks showed that ten different freshwater fish samples (Chondrostoma colchicum, Chalcalburnus chalcoides, Salmo trutta labrax, Alburnoides bipunctatus, Leuciscus cephalus, Barbus taurus escherichia, Capoeta tinca, Neogobius kessleri, Rutilus frisii, Lampetra lanceolata) and sediment contained phosphorus (P), sulphur (S), chlorine (Cl), potassium (K), calcium (Ca) and titanium (Ti). Heavy metals as toxic elements for biota (Pb, Cd, Hg, Zn and Mn etc.) were not detected in fish, water and sediments. Thus, It can be declared that freshwater fish of Iyidere does not contains health risks for consumers in terms of metal pollution.

  17. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Dubois NTMS Quadrangle, Idaho/Montana, including concentrations of forty-five additional elements

    International Nuclear Information System (INIS)

    LaDelfe, C.M.

    1980-08-01

    Totals of 1024 water samples and 1600 sediment samples were collected from 1669 locations in the Dubois quadrangle. Water samples were taken at streams, springs, and wells; sediment samples were collected from streams and springs. All field and analytical data are presented for waters in Appendix I-A and for sediments in I-B. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than the upper detection limit of uranium were reanalyzed by delayed neutron counting. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium rubidium, samarium, scandium, selenium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, zinc and zirconium. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million

  18. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Dubois NTMS Quadrangle, Idaho/Montana, including concentrations of forty-five additional elements

    Energy Technology Data Exchange (ETDEWEB)

    LaDelfe, C.M.

    1980-08-01

    Totals of 1024 water samples and 1600 sediment samples were collected from 1669 locations in the Dubois quadrangle. Water samples were taken at streams, springs, and wells; sediment samples were collected from streams and springs. All field and analytical data are presented for waters in Appendix I-A and for sediments in I-B. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than the upper detection limit of uranium were reanalyzed by delayed neutron counting. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium rubidium, samarium, scandium, selenium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, zinc and zirconium. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million.

  19. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part II. whole-sediment toxicity to the amphipod hyalella azteca

    Science.gov (United States)

    Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.

    2010-01-01

    This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of

  20. Uranium hydrogeochemical and stream-sediment reconnaissance of the Glasgow NTMS quadrangle, Montana

    International Nuclear Information System (INIS)

    1982-06-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Glasgow NTMS quadrangle, Montana. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through C describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, stream-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the Nome NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Nome NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and stream water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL, and will not be included in this report

  2. Uranium hydrogeochemical and stream sediment reconnaissance of the Cordova NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Cordova NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and stream water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  3. Uranium hydrogeochemical and stream sediment reconnaissance of the Solomon NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Solomon NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and stream water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  4. Monitoring changes in stream bottom sediments and benthic invertebrates.

    Science.gov (United States)

    1981-01-01

    The study was conducted to determine whether the analysis of stream bottom sediments could be used to assess sediment pollution generated by highway construction. Most of the work completed to date has involved testing and refining methods for the co...

  5. Uranium Hydrogeochemical and stream sediment reconnaissance of the Tanacross NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Tanacross NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  6. Uranium hydrogeochemical and stream-sediment reconnaissance of the Unalakleet NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Unalakleet NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information onthe field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  7. Uranium hydrogeochemical and stream-sediment reconnaissance of the Umiat NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Umiat NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  8. Uranium hydrogeochemical and stream-sediment reconnaissance of the Ruby NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Ruby NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Nulato NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Znkl, R.J.; Shellel, D.C. Jr.; Langfeldt, S.L.; Hardy, L.C.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Nulato NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  10. Uranium hydrogeochemical and stream-sediment reconnaissance of the Sagavanirktok NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Sagavanirktok NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the Hughes NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Hughes NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  12. Uranium hydrogeochemical and stream-sediment reconnaissance of the Wainwright NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wainwright NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Coleen NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Coleen NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these date are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laborarory and will not be included in this report

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Bozeman NTMS quadrangle, Montana

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1978-11-01

    A total of 1251 water and 1536 sediment samples were collected from 1586 locations over a 17 400-km 2 area at a nominal density of one location per 10 km 2 . Samples were collected predominantly from surface streams although 38 ground water locations were also sampled. The uranium concentrations in waters sampled range from below the detection limit of 0.20 ppB to 41.35 ppB, with a mean concentration of 1.17 ppB. Waters with anomalous uranium concentrations as defined were found in tributaries of the Boulder River which drain Precambrian rocks in the Beartooth Mountains and in tributaries of the Three Forks basin which are underlain predominantly by Tertiary-Quaternary sediments. The two areas appearing most favorable for future exploration on the basis of water data are in the Three Forks basin in the vicinity of the Madison plateau and in a district about 20 km due west of Three Forks. Sediment samples from the quadrangle were found to have uranium concentrations that range from 0.90 ppM to 94.30 ppM, with a mean concentration of 3.71 ppM. The majority of anomalous sediment samples were collected from areas underlain by Precambrian rocks. Based on the data from sediments, the areas appearing most favorable for future exploration include the tributaries of the Boulder River in the Beartooth Mountains, the northern part of the Madison Range, and the Tobacco Root Mountains just north of Virginia City. The uranium concentrations in the sediments from these areas are probably associated with uraniferous siliceous veins or pegmatites

  15. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  16. Environmental Risk Assessment Based on High-Resolution Spatial Maps of Potentially Toxic Elements Sampled on Stream Sediments of Santiago, Cape Verde

    Directory of Open Access Journals (Sweden)

    Marina M. S. Cabral Pinto

    2014-10-01

    Full Text Available Geochemical mapping is the base knowledge to identify the regions of the planet with critical contents of potentially toxic elements from either natural or anthropogenic sources. Sediments, soils and waters are the vehicles which link the inorganic environment to life through the supply of essential macro and micro nutrients. The chemical composition of surface geological materials may cause metabolic changes which may favor the occurrence of endemic diseases in humans. In order to better understand the relationships between environmental geochemistry and public health, we present environmental risk maps of some harmful elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn in the stream sediments of Santiago, Cape Verde, identifying the potentially harmful areas in this island. The Estimated Background Values (EBV of Cd, Co, Cr, Ni and V were found to be above the Canadian guidelines for any type of use of stream sediments and also above the target values of the Dutch and United States guidelines. The Probably Effect Concentrations (PEC, above which harmful effects are likely in sediment dwelling organisms, were found for Cr and Ni. Some associations between the geological formations of the island and the composition of stream sediments were identified and confirmed by descriptive statistics and by Principal Component Analysis (PCA. The EBV spatial distribution of the metals and the results of PCA allowed us to establish relationships between the EBV maps and the geological formations. The first two PCA modes indicate that heavy metals in Santiago stream sediments are mainly originated from weathering of underlying bedrocks. The first metal association (Co, V, Cr, and Mn; first PCA mode consists of elements enriched in basic rocks and compatible elements. The second association of variables (Zn and Cd as opposed to Ni; second PCA mode appears to be strongly controlled by the composition of alkaline volcanic rocks and pyroclastic rocks. So, the

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the Atlin NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Altin NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Only 6 samples were taken in the Atlin Quadrangle. Appendix A describes the sample media and summarizes the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Information on the field and analytical procedures used by the Los Alamos National laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. Chemical analysis and field data for water samples from this quadrangle were open filed by the DOE Grand Junction Office as GJX-166

  18. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  19. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  20. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Greeley NTMS quadrangle, Colorado

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Greeley NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  1. The outlier sample effects on multivariate statistical data processing geochemical stream sediment survey (Moghangegh region, North West of Iran)

    International Nuclear Information System (INIS)

    Ghanbari, Y.; Habibnia, A.; Memar, A.

    2009-01-01

    In geochemical stream sediment surveys in Moghangegh Region in north west of Iran, sheet 1:50,000, 152 samples were collected and after the analyze and processing of data, it revealed that Yb, Sc, Ni, Li, Eu, Cd, Co, as contents in one sample is far higher than other samples. After detecting this sample as an outlier sample, the effect of this sample on multivariate statistical data processing for destructive effects of outlier sample in geochemical exploration was investigated. Pearson and Spear man correlation coefficient methods and cluster analysis were used for multivariate studies and the scatter plot of some elements together the regression profiles are given in case of 152 and 151 samples and the results are compared. After investigation of multivariate statistical data processing results, it was realized that results of existence of outlier samples may appear as the following relations between elements: - true relation between two elements, which have no outlier frequency in the outlier sample. - false relation between two elements which one of them has outlier frequency in the outlier sample. - complete false relation between two elements which both have outlier frequency in the outlier sample

  2. Death Valley 10 x 20 NTMS area, California and Nevada. Data report: National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-04-01

    Results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Death Valley 1 0 x 2 0 quadrangle are presented. Stream sediment samples were collected from small streams at 649 sites or at a nominal density of one site per 20 square kilometers. Ground water samples were collected at 62 sites or at a nominal density of one site per 220 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water and surface water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) scintillometer readings, and (3) elemental analyses (U, Br, Cl, F, He, Mn, Na, and V). Supplementary data include site descriptors, tabulated analytical data for Al, Dy, and Mg, and histograms and cumulative frequency plots for all elements. Key data from stream sediment sites include (1) water quality measurements (2) important elemental analyses, (U, Th, Hf, Ce, Fe, Mn, Sc, Na, Ti, and V), and (3) scintillometer readings. Supplementary data from stream sediment sites include sample site descriptors (stream characteristics, vegetation, etc.), additional elemental analyses (Dy, Eu, La, Lu, Sm, and Yb), and histograms and cumulative frequency plots for all elements

  3. Uranium hydrogeochemical and stream sediment reconnaissance of the Dalhart NTMS quadrangle, New Mexico/Texas/Oklahoma, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1980-08-01

    Totals of 1583 water samples and 503 sediment samples were collected from 2028 locations within the 20 000-km 2 area of the quadrangle at an average density of one location per 9.86 km 2 . Water samples were collected from wells, springs, and streams and were analyzed for uranium. Sediment samples were collected from streams and springs and were analyzed for uranium, thorium, and 41 additional elements. All field and analytical data are listed in the appendixes of this report. Discussion is limited to anomalous samples, which are considered to be those containing over 20 ppB uranium for waters and over 5 ppM uranium for sediments. Uranium concentrations in water samples range from below the detection limit of 0.2 ppB to 1457.65 ppB and average 7.41 ppB. Most of the seventy anomalous water samples (4.4% of all water samples) are grouped spatially into five clusters or areas of interest. Samples in three of the clusters were collected along the north edge of the quadrangle where Mesozoic strata are exposed. The other two clusters are from the central and southern portions where the Quaternary Ogallala formation is exposed. Sediment samples from the quadrangle have uranium concentrations that range from 0.90 ppM to 27.20 ppM and average 3.27 ppM. Fourteen samples (2.8% of all sediment samples) contain over 5 ppM uranium and are considered anomalous. The five samples with the highest concentrations occur where downcutting streams expose Cretaceous units beneath the Quaternary surficial deposits. The remaining anomalous sediment samples were collected from scattered locations and do not indicate any single formation or unit as a potential source for the anomalous concentrations

  4. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  5. Data release for intermediate-density hydrogeochemical and stream sediment sampling in the Vallecito Creek Special Study Area, Colorado, including concentrations of uranium and forty-six additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.

    1981-04-01

    A sediment sample and two water samples were collected at each location about a kilometer apart from small tributary streams within the area. One of the two water samples collected at each location was filtered in the field and the other was not. Both samples were acidified to a pH of < 1; field data and uranium concentrations are listed first for the filtered sample (sample type = 07) and followed by the unfiltered sample (sample type = 27) for each location in Appendix I-A. Uranium concentrations are higher in unfiltered samples than in filtered samples for most locations. Measured uranium concentrations in control standards analyzed with the water samples are listed in Appendix II. All sediments were air dried and the fraction finer than 100 mesh was separated and analyzed for uranium and forty-six additional elements. Field data and analytical results for each sediment sample are listed in Appendix I-B. Analytical procedures for both water and sediment samples are briefly described in Appendix III. Most bedrock units within the sampled area are of Precambrian age. Three Precambrian units are known or potential hosts for uranium deposits; the Trimble granite is associated with the recently discovered Florida Mountain vein deposit, the Uncompahgre formation hosts a vein-type occurrence in Elk Park near the contact with the Irving formation, and the Vallecito conglomerate has received some attention as a possible host for a quartz pebble conglomerate deposit. Nearly all sediment samples collected downslope from exposures of Timble granite (geologic unit symbol ''T'' in Appendix I) contain unusually high uranium concentrations. High uranium concentrations in sediment also occur for an individual sample location that has a geologic setting similar to the Elk Park occurrence and for a sample associated with the Vallecito conglomerate

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Dixon Entrance NTMS and Prince Rupert D-6 quadrangles, Alaska, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; Hensley, W.K.; Hanks, D.E.

    1980-09-01

    During August 1978, sediment and water samples were collected from 203 lakes, streams, and springs in the Dixon Entrance and Prince Rupert D-6 quadrangles, Alaska. Variations in concentrations of all 43 elements among the five sieve fractions at each location are generally less than analytical uncertainty. Therefore, elemental analyses are generally comparable for a wide range in sieve fractions for sediment sample locations in southeastern Alaska. However, at some few locations, several elemental concentrations increase with finer mesh size; for uranium, such an increase may be associated with mineralization. Waterborne sediment samples collected from the center of a stream yield analyses essentially identical to those collected from the adjacent bank for most elements. Chlorine concentrations are generally higher in bank sediments, probably as a result of concentration of halogens in the vegetation that stabilizes the bank. At a few locations, concentrations of the ferrous elements, particularly Mn and Co, differ notably between the stream center and bank: such behavior is characteristic of mineralized areas. Concentrations of the ferrous elements, particularly Mn and Co, are strikingly enriched in the stream sediments compared either to lake sediments or to crustal abundances. This suggests that this area might be a favorable location for strategic resources of these elements. Uranium concentrations in all 950 sediment samples of all sieve fractions range from 0.54 to 22.80 ppM, with a median of 2.70 ppM

  7. Sediment contributions from floodplains and legacy sediments to Piedmont streams of Baltimore County, Maryland

    Science.gov (United States)

    Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen C.

    2015-01-01

    Disparity between watershed erosion rates and downstream sediment delivery has remained an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a common focus. In the Piedmont Province of the eastern USA, upland deforestation and agricultural land use following European settlement led to accumulation of thick packages of overbank sediment in valley bottoms, commonly referred to as legacy deposits. Previous authors have argued that legacy deposits represent a potentially important source of modern sediment loads following remobilization by lateral migration and progressive channel widening. This paper seeks to quantify (1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, (2) proportions of streambank sediment derived from legacy deposits, and (3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont.We calculated measurable gross erosion and deposition rates within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 in Baltimore County, Maryland. We compared stream channel and floodplain morphology from lidar-based digital elevation data collected in 2005 with channel positions recorded on 1:2400 scale topographic maps from 1959–1961 in order to quantify 44–46 years of channel change. Sediment bulk density and particle size distributions were characterized from streambank and channel deposit samples and used for volume to mass conversions and for comparison with other sediment sources.Average annual lateral migration rates ranged from 0.04 to 0.19 m/y, which represented an annual migration of 2.5% (0.9–4.4%) channel width across all study segments, suggesting that channel dimensions may be used as reasonable predictors of bank erosion rates. Gross bank erosion rates varied from 43 to 310 Mg/km/y (median = 114) and

  8. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    Science.gov (United States)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  9. Boston 10 x 20 NTMS area, Massachusetts, and New Hampshire. Data report (abbreviated): National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-01-01

    Results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Boston 1 0 x 2 0 quadrangle are presented. Surface sediment samples were collected at 669 sites. Ground water samples were collected at 303 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, etc.), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included on the microfiche. Key data from stream water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Al, Br, Ci, Dy, F, Mg, Mn, Na, and V). The maximum uranium concentration in the sediments of the Boston quadrangle was 82.1 ppM. The mean of the logarithms of the uranium concentrations in sediments was 0.68, which corresponds to 4.8 ppM uranium. A cluster of samples with uranium values greater than 40 ppM and which have low thorium concentrations occurs in Essex County, Massachusetts

  10. Testing the effects of in-stream sediment sources and sinks on simulated watershed sediment yield using the coupled U.S. Army Corps of Engineers GSSHA Model and SEDLIB Sediment Transport Library

    Science.gov (United States)

    Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.

    2017-12-01

    The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.

  11. Uncertanity Analysis in Parameter Estimation of Coupled Bacteria-Sediment Fate and Transport in Streams

    Science.gov (United States)

    Massoudieh, A.; Le, T.; Pachepsky, Y. A.

    2014-12-01

    E. coli is widely used as an fecal indicator bacteria in streams. It has been shown that the interaction between sediments and the bacteria is an important factor in determining its fate and transport in water bodies. In this presentation parameter estimation and uncertainty analysis of a mechanistic model of bacteria-sediment interaction respectively using a hybrid genetic algorithm and Makov-Chain Monte Carlo (MCMC) approach will be presented. The physically-based model considers the advective-dispersive transport of sediments as well as both free-floating and sediment-associated bacteria in the water column and also the fate and transport of bacteria in the bed sediments in a small stream. The bed sediments are treated as a distributed system which allows modeling the evolution of the vertical distribution of bacteria as a result of sedimentation and resuspension, diffusion and bioturbation in the sediments. One-dimensional St. Venant's equation is used to model flow in the stream. The model is applied to sediment and E. coli concentration data collected during a high flow event in a small stream historically receiving agricultural runoff. Measured total suspended sediments and total E. coli concentrations in the water column at three sections of the stream are used for the parameter estimation. The data on the initial distribution of E. coli in the sediments was available and was used as the initial conditions. The MCMC method is used to estimate the joint probability distribution of model parameters including sediment deposition and erosion rates, critical shear stress for deposition and erosion, attachment and detachment rate constants of E. coli to/from sediments and also the effective diffusion coefficients of E. coli in the bed sediments. The uncertainties associated with the estimated parameters are quantified via the MCMC approach and the correlation between the posterior distribution of parameters have been used to assess the model adequacy and

  12. Continental-scale transport of sediments by the Baltic Ice Stream elucidated by coupled grain size and Nd provenance analyses

    Science.gov (United States)

    Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.

    2018-05-01

    We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.

  13. Uranium hydrogeochemical and stream-sediment reconnaissance of the Point Lay NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Point Lay NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Howard Pass NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Howard Pass NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analysis, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Beechey Point NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Beechey Point NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANI) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981) and will not be included in this report

  16. Uranium hydrogeochemical and stream-sediment reconnaissance of the Utukok River NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Utukok River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  17. Uranium hydrogeochemical and stream-sediment reconnaissance of the Port Alexander NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Port Alexander NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available fom DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. Uranium hydrogeochemical and stream-sediment reconnaissance of the Big Delta NTMS quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L. C.; D& #x27; Andrea, Jr., R. F.; Zinkl, R. J.; Shettel, Jr., D. L.; Langfeldt, S. L. [comps.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Big Delta NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  19. Uranium hydrogeochemical and stream-sediment reconnaissance of the Big Delta NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Big Delta NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  20. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  1. Sediment transport and channel morphology of small, forested streams.

    Science.gov (United States)

    Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant

    2005-01-01

    This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...

  2. Natural radioactivity in stream sediments of Oltet River, Romania

    Science.gov (United States)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the features, the mechanical degradation of the rocks overcomes their chemical decomposition. In the middle part of the river as result of almost abrupt passage between mountain and hilly terrains increases and concentration of radionuclides; effect of large quantities of clastic material deposited by torrents. The mechanical migration of resistant uranium, thorium and

  3. Uranium hydrogeochemical and stream-sediment reconnaissance of the Eagle NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Eagle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  4. National Uranium Resource Evaluation: uranium hydrogeochemical and stream-sediment reconnaissance of the Shishmaref NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Shishmaref NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Ketchikan NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; Minor, M.M.; McInteer, C.; Hansel, J.N.; Broxton, D.E.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the Ketchikan NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Melozitna NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Melozitna NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Beaver NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W.

    1981-11-01

    The report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the Ketchikan NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) protion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  8. Uranium Hydrogeochemical and Stream-Sediment Reconnaissance of the Seward NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, D.L.; Hardy, L.D.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR) of the Seward NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Sterling NTMS quadrangle, Colorado. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Garcia, S.R.; Hanks, D.; George, W.E.; Boliver, S.L.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the Sterling NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  10. Uranium hydrogeochemical and stream-sediment reconnaissance of the Teller NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-06-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Teller NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  11. Uranium Hydrogeochemical and Stream-Sediment Reconnaissance of the Bendeleben NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bendeleben NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting program of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  12. Uranium hydrogeochemical and stream-sediment reconnaissance of the Noatak NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Noatak NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. 16 figures, 12 tables

  13. Results of elemental analyses of water and waterborne sediment samples from the Fairbanks NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Aamodt, P.L; Hill, D.E.

    1979-04-01

    During the late spring and then again in late summer, 1977, lake and stream water and bottom sediment samples were collected at a nominal density of one location every 16 km 2 from throughout the approximate 16,500-km 2 area of the Fairbanks NTMS quadrangle, Alaska. These samples were collected using standard procedures by investigators from the University of Alaska, Fairbanks, as part of a special Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) study to identify variance in total uranium contents related to natural factors such as seasonal changes, source types, and geologic/geographic environments. Histograms and statistical summaries of total uranium in a number of sample populations presented herein indicate that water samples collected in late summer have a mean uranium content that is slightly higher than the mean for waters collected in the spring. Dilution and/or evaporative concentration are possible causes for this difference. Sediment samples collected from streams and springs have a slightly higher mean uranium content than those collected from lakes, and this is consistent with HSSR data from other Alaskan areas. The Alaskan investigators will complete a detailed analysis of variance study of these data in the near future and a second open-file report will be forthcoming upon its completion

  14. Hydrogeochemical and stream sediment reconnaissance basic data for Dodge City NTMS Quadrangle, Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dodge City Quadrangle are reported. Field and laboratory data are presented for 756 groundwater and 321 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising areas for uranium mineralization are as follows: (1) in the north central area of the quadrangle within close proximity to the Arkansas River, mostly from waters of the Ogallala Formation; (2) in the west central area, from groundwater samples of the Dakota and the Ogallala Formations; and (3) between the North Fork of the Cimarron River and the main Cimarron River, mostly in waters from the Ogallala Formation. Associated with the high uranium values are high concentrations for magnesium, strontium, and sulfate. Of the groundwater samples taken 81% were collected from the Ogallala Formation. Stream sediment data indicate high uranium concentrations in scattered samples in the northwestern, central, and southwestern areas of the quadrangle. Most of the samples with high uranium values were collected from the Quaternary alluvium. Associated with the high uranium values are high concentrations of barium, cerium, iron, manganese, titanium, vanadium, yttrium, and zirconium

  15. Heavy metal contamination of stream water and sediment in the Taejon area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Woong [Paichai University, Taejon (Korea, Republic of); Lee, Hyun Koo [Chungnam National University, Taejon (Korea, Republic of)

    1996-08-31

    Associated with the rapid pace of overpopulation and industrialization is the increase of municipal and industrial wastewater and heavy metal contamination from these point sources have received much attention in the Taejon area. To reduce the environmental problems, 21 stream sediments from Gap-chun, Yudeung-chun, Yusung-chun and Keum river have been analyzed for Cd, Cu, Pb and Zn. The results show that heavy metal concentrations are high in sediments from the Sintanjin and Taehwa Industrial Complex area with particular reference to 1388 {mu}g/g Cu in the stream sediment of Yusung-chun. When the geochemical map drawn from the Kriging technique of these data are compared with the industrialization and urbanization index map, high concentrations of heavy metals are found in stream sediments in industrialized areas resulting from the accumulation of heavy metals from the polluting factories. Concentrations of Cu in sediments from the Taehwa Industrial Complex area and those of Zn in sediments from the Sintanjin Complex area higher than EPA standard in the U.S.A and may be the potential sources of pollution in Keum river with possible implications to human health. For the speciation of Cu, Pb and Zn, the high proportions of exchangeable phase of Cu and Zn in stream sediments indicate that the metals originate not from parent materials but from wastewater and exist as the adsorbed phase on the surface of sediments. These metals are easily dissolved into the water by the reaction and relative amounts of easily dissolved phase of metals are in the order of Cu = Zn > Pb. (author). 17 refs., 4 tabs., 7 figs.

  16. Sediments of watersheds from Frutal and Bebedouro Streams (Frutal, MG, Brazil as an indicator of human activities

    Directory of Open Access Journals (Sweden)

    Sofia Luiza Brito

    2017-01-01

    Full Text Available Soil degradation is a physical process intensified by political and socioeconomic factors, and by the population growth of the 20th century. In this study, we evaluated the sediments of the Frutal and Bebedouro Streams, located in Frutal municipality, Minas Gerais State, Brazil, and their relation to major human activities that are responsible soil erosion and silting. Samples were collected between 2012 and 2013 for the determination of granulometric composition, organic matter content, and minerals in sediments. The Wentworth scale was used for particle size measurement, and then the size classes regrouped to ABNT scale (NBR 6502/1995. The results found that agriculture and cattle ranching are the main activities that cause intense erosion and silting in both watersheds. Bebedouro Stream is better preserved, as it is completely located in rural area with larger riparian vegetation, unlike the mid-stretch of Frutal Stream, which is located in an urban area. Quartz is the predominant mineral in the sediments as the soils of the region are formed by sandstones; consequently, few nutritional elements were found in the studied samples. Principal component analysis showed that water quality parameters are correlated to silt/clays and organic matter content in most of the collected stations.

  17. Petrographic and geochemical characteristics of organic matter associated with stream sediments in Trail area British Columbia, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, J.; Goodarzi, F.; Sanei, H.; Stasiuk, L.D. [Environmental Study Group, Geological Survey of Canada-Calgary, 3303 33rd Street NW, Calgary, Alberta (Canada T2A 2A7); Duncan, W. [Teck Cominco Metals Ltd., Trail, British Columbia (Canada V1R 4L8)

    2006-01-03

    Fifty-six samples of stream sediments from 12 creeks in the vicinity of Trail, British Columbia, Canada were examined to determine their origin, characterize their organic matter and their relation to natural/geogenic and anthropogenic sources. The samples were initially screened by Rock-Eval(R) 6 pyrolysis for their TOC, HI, and OI contents and then examined by both reflected (polarized) and fluorescent light microscopy. It was found that organic matter in stream sediments is mostly from natural/biological sources from local vegetation, such as woody tissue, suberin, spores, and pollen, as well as altered natural/biological input from char formed due to forest fires. Anthropogenic organic matter, mostly coke particles, was also found in the stream sediments. The coke particles have anisotropic properties with medium grained texture formed from medium volatile bituminous coal. The occurrence of coke particles is limited to Ryan Creek located close to an area were some small gold, nickel, and lead smelting operations previously occurred. There is no evidence to indicate that the coke particles found in the creek are emitted from the lead and zinc smelter currently in operation in the area. There are no coal-bearing strata in the area that may have a direct input of coal fragments in any of the creeks. (author)

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Arctic NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Arctic NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  19. Uraniam hydrogeochemical and stream sediment reconnaissance of the Wiseman NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wiseman NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (198a) into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  20. Uranium concentrations in lake and stream waters and sediments from selected sites in the Susitna River Basin, Alaska

    International Nuclear Information System (INIS)

    Hill, D.E.

    1977-03-01

    During the summer of 1976, 141 water and 211 sediment samples were taken from 147 locations in the Susitna River basin in Alaska by the Geophysical Institute of the University of Alaska for the LASL. These samples were taken to provide preliminary information on the uranium concentrations in waters and sediments from the Susitna River basin and to test the analytical methods proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in Alaska. The uranium determinations resulting from the fluorometric analysis of the water samples and the delayed-neutron counting of the sediment samples are presented. The low levels of uranium in the water samples, many of which were below the detectable limit of the LASL fluorometric technique, indicate that a more sensitive analytical method is needed for the analysis of Alaskan water samples from this area. An overlay showing numbered sample locations and overlays graphically portraying the concentrations of uranium in the water and sediment samples, all at 1:250,000 scale for use with existing USGS topographic sheets, are also provided as plates

  1. Uranium and coexisting element behaviour in surface waters and associated sediments with varied sampling techniques used for uranium exploration

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.

    1977-01-01

    Optimum sampling methods in surface water and associated sediments for use in uranium exploration are being studied at thirty sites in Colorado, New Mexico, Arizona and Utah. For water samples, filtering is recommended to increase sample homogeneity and reproducibility because for most elements studied water samples which were allowed to remain unfiltered until time of analysis contained higher concentrations than field-filtered samples of the same waters. Acidification of unfiltered samples resulted in still higher concentrations. This is predominantly because of leaching of the elements from the suspended fraction. U in water correslates directly with Ca, Mg, Na, K, Ba, B, Li and As. In stream sediments, U and other trace elements are concentrated in the finer size fractions. Accordingly, in prospecting, grain size fractions less than 90 μm (170 mesh) should be analyzed for U. A greater number of elements (21) show a significant positive correlation with U in stream sediments than in water. Results have revealed that anomalous concentrations of U found in water may not be detected in associated sediments and vice versa. Hence, sampling of both surface water and coexisting sediment is strongly recommended

  2. Hydrogeochemical and stream sediment reconnaissance basic data for Lubbock NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    1979-01-01

    Field and laboratory data are presented for 994 groundwater and 602 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Interpretation of the groundwater data indicate that the area which appears most promising for uranium mineralization is located in the southwestern part of the quadrangle, particularly in Crosby, Garza, Lynn, and Lubbock Counties. The waters produced from the Ogallala Formation in this area have high values for arsenic, molybdenum, selenium, and vanadium. Groundwaters from the Dockum Group in Garza County where uranium is associated with selenium, molybdenum, and copper indicate potential for uranium mineralization. Uranium is generally associated with copper, iron, and sulfate in the Permian aquifers reflecting the red bed evaporite lithology of those units. The stream sediment data indicate that the Dockum Group has the highest potential for uranium mineralization, particularly in and around Garza County. Associated elements indicate that uranium may occur in residual minerals or in hydrous manganese oxides. Sediment data also indicate that the Blaine Formation shows limited potential for small red bed copper-uranium deposits

  3. Occurrence, distribution, and volume of metals-contaminated sediment of selected streams draining the Tri-State Mining District, Missouri, Oklahoma, and Kansas, 2011–12

    Science.gov (United States)

    Smith, D. Charlie

    2016-12-14

    Lead and zinc were mined in the Tri-State Mining District (TSMD) of southwest Missouri, northeast Oklahoma, and southeast Kansas for more than 100 years. The effects of mining on the landscape are still evident, nearly 50 years after the last mine ceased operation. The legacies of mining are the mine waste and discharge of groundwater from underground mines. The mine-waste piles and underground mines are continuous sources of trace metals (primarily lead, zinc, and cadmium) to the streams that drain the TSMD. Many previous studies characterized the horizontal extent of mine-waste contamination in streams but little information exists on the depth of mine-waste contamination in these streams. Characterizing the vertical extent of contamination is difficult because of the large amount of coarse-grained material, ranging from coarse gravel to boulders, within channel sediment. The U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife service, collected channel-sediment samples at depth for subsequent analyses that would allow attainment of the following goals: (1) determination of the relation between concentration and depth for lead, zinc and cadmium in channel sediments and flood-plain sediments, and (2) determination of the volume of gravel-bar sediment from the surface to the maximum depth with concentrations of these metals that exceeded sediment-quality guidelines. For the purpose of this report, volume of gravel-bar sediment is considered to be distributed in two forms, gravel bars and the wetted channel, and this study focused on gravel bars. Concentrations of lead, zinc, and cadmium in samples were compared to the consensus probable effects concentration (CPEC) and Tri-State Mining District specific probable effects concentration (TPEC) sediment-quality guidelines.During the study, more than 700 sediment samples were collected from borings at multiple sites, including gravel bars and flood plains, along Center Creek, Turkey Creek, Shoal Creek

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the Nabesne NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Garcia, S.R.; Hanks, D.; George, W.E.; Boliver, S.L.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Nabesna NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981), and will not be included in this report

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Limon NTMS quadrangle, Colorado. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Minor, M.M.; McInteer, C.; Hansel, J.N.; Broxton, D.E.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Limon NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream water, lake water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information of the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981) and will not be included in this report

  6. In-Stream Sediment Dynamics for predicted environmental concentration calculations of plant protection products in the FOCUSSW Scenarios

    Science.gov (United States)

    Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard

    2016-04-01

    The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Kateel River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kateel River NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Clovis NTMS Quadrangle, New Mexico. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Clovis NTMS Quadrangle, New Mexico. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through E describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses.Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  9. Johnson City 10 x 20 NTMS area, Kentucky, North Carolina, Tennessee, and Virginia: data report (abbreviated). National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Fay, W.M.

    1980-10-01

    Results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Johnson City 1 0 x 2 0 quadrangle are presented. Surface sediment samples were collected at 959 sites. Ground water samples were collected at 1099 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Data from ground water sites include: (1) water chemistry measurements (pH, conductivity, and alkalinity); (2) physical measurements where applicable (water temperature, well description, etc.); and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include: (1) stream water chemistry measurements; and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are given. Areal distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included on the microfiche. The Johnson City Quadrangle is underlain by Precambrian cyrstalline rocks in the southeastern corner of the quadrangle and by Paleozoic sediments in the remainder of the quadrangle. The highest uranium concentrations in sediments (up to 22 ppM) are in samples from the Precambrian crystalline rock areas. These samples also have high thorium concentrations suggesting that most of the uranium is in resistate minerals such as monazite. The U/Th ratios in sediment samples are generaly low with the higher values (up to 2.07) mostly within the lower Paleozoic sediments, particularly the Copper Ridge Dolomite. The uranium concentration in ground water is also highest in the lower Paleozoic sediments

  10. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Fairweather NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Fairweather NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in macine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  11. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    Science.gov (United States)

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Bentham, Adam J.

    2012-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest

  12. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    Science.gov (United States)

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Benthem, Adam J.

    2013-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest

  13. National uranium resource evaluation program. Hydrogeochemical and stream sediment reconnaissance basic data for Oklahoma City NTMS Quadrangle, Oklahoma. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1978-01-01

    Field and laboratory data are presented for 812 groundwater samples and 847 stream sediment samples. Statistical and areal distributions of uranium and other possibly uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on the results from groundwater sampling, the most promising formations for potential uranium mineralization in the quadrangle are the Permian Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog Creek, Chickasha, Duncan, and Cedar Hills Formations. These units are characterized by relatively high average concentrations of uranium, conductivity, arsenic, calcium, lithium, molybdenum, and sulfate. In addition, groundwaters from the Pennsylvanian Oscar Formation are characterized by values above the 85th percentile for uranium, conductivity, the uranium/sulfate ratio, arsenic, and vanadium. Results of stream sediment sampling indicate that the most promising formations for potential uranium mineralization include the same Permian Formation as indicated by groundwater sampling (Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog-Creek, Chickasha, Duncan, and Cedar Hill Formations) in an area where these formations crop out north of the North Canadian River. Stream sediment samples from this area are characterized by concentrations above the 85th percentile for uranium, thorium, arsenic, lithium, manganese, and vanadium

  14. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  15. National Uranium Resource Evaluation Program (NURE): hydrogeochemical and stream sediment reconnaissance in the eastern United States

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V. Jr.

    1976-01-01

    A geochemical reconnaissance of twenty-five eastern states for uranium will be conducted by the Savannah River Laboratory for the U.S. Energy Research and Development Administration. A sound technical basis for the reconnaissance is being developed by intensive studies of sampling, analysis, and data management. Results of three orientation studies in the southern Appalachian Piedmont and Blue Ridge areas indicate that multi-element analysis of -100 mesh (less than 149 μm) stream sediments will provide adequate information for reconnaissance. Stream and groundwater samples also provide useful information but are not considered cost-effective for regional reconnaissance in the areas studied

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Newcastle NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.; Talcott, C.L.; Martinez, R.G.; Minor, M.E.; Mills, C.F.

    1980-06-01

    Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales

  17. Hydrogeochemical and stream sediment reconnaissance basic data for Ashland NTMS Quadrangle, Wisconsin; Michigan; Minnesota

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Ashland Quadrangle, Wisconsin; Michigan; Minnesota are reported. Field and laboratory data are presented for 312 groundwater and 383 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising area for potential uranium mineralization occurs along the Douglas Thrust Fault in northern Douglas County, Wisconsin. The Douglas Fault brings Fond du Lac Formation sediments in contact with Chengwatana volcanics where carbonate-rich water derived from the mafic volcanics enter the arkosic Fond du Lac Formation. Another area of interest surrounds the Bad River Indian Reservation in northern Ashland and Iron Counties. The waters here are produced from red lithic sandstone and are also associated with the Douglas Fault. Water chemistry of these waters appears similar to the waters from the Douglas County area. The stream sediment data are inconclusive because of the extensive cover of glacial deposits. A moderately favorable area is present in a strip along Lake Superior in Douglas County, where sediments are derived from arkoses of the Fond du Lac Formation

  18. Geochemical mapping using stream sediments in west-central Nigeria: Implications for environmental studies and mineral exploration in West Africa

    International Nuclear Information System (INIS)

    Lapworth, Dan J.; Knights, Katherine V.; Key, Roger M.; Johnson, Christopher C.; Ayoade, Emmanuel; Adekanmi, Michael A.; Arisekola, Tunde M.; Okunlola, Olugbenga A.; Backman, Birgitta; Eklund, Mikael; Everett, Paul A.; Lister, Robert T.; Ridgway, John; Watts, Michael J.; Kemp, Simon J.; Pitfield, Peter E.J.

    2012-01-01

    This paper provides an overview of regional geochemical mapping using stream sediments from central and south-western Nigeria. A total of 1569 stream sediment samples were collected and 54 major and trace elements determined by ICP-MS and Au, Pd and Pt by fire assay. Multivariate statistical techniques (e.g., correlation analysis and principal factor analysis) were used to explore the data, following appropriate data transformation, to understand the data structure, investigate underlying processes controlling spatial geochemical variability and identify element associations. Major geochemical variations are controlled by source geology and provenance, as well as chemical weathering and winnowing processes, more subtle variations are a result of land use and contamination from anthropogenic activity. This work has identified placer deposits of potential economic importance for Au, REE, Ta, Nb, U and Pt, as well as other primary metal deposits. Areas of higher As and Cr (>2 mg/kg and >70 mg/kg respectively) are associated with Mesozoic and younger coastal sediments in SW Nigeria. High stream sediment Zr concentrations (mean >0.2%), from proximal zircons derived from weathering of basement rocks, have important implications for sample preparation and subsequent analysis due to interferences. Associated heavy minerals enriched in high field strength elements, and notably rare earths, may also have important implications for understanding magmatic processes within the basement terrain of West Africa. This study provides important new background/baseline geochemical values for common geological domains in Nigeria (which extend across other parts of West Africa) for assessment of contamination from urban/industrial land use changes and mining activities. Regional stream sediment mapping is also able to provide important new information with applications across a number of sectors including agriculture, health, land use and planning.

  19. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives.

  20. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    International Nuclear Information System (INIS)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives

  1. Pesticides in stream sediment and aquatic biota: distribution, trends, and governing factors

    Science.gov (United States)

    Nowell, Lisa H.; Capel, Peter D.

    1999-01-01

    More than 20 years after the ban of DDT and other organochlorine pesticides, pesticides continue to be detected in air, rain, soil, surface water, bed sediment, and aquatic and terrestrial biota throughout the world. Recent research suggests that low levels of some of these pesticides may have the potential to affect the development, reproduction, and behavior of fish and wildlife, and possibly humans. Pesticides in Stream Sediment and Aquatic Biota: Distribution, Trends, and Governing Factors assesses the occurrence and behavior of pesticides in bed sediment and aquatic biota-the two major compartments of the hydrologic system where organochlorine pesticides are most likely to accumulate. This book collects, for the first time, results from several hundred monitoring studies and field experiments, ranging in scope from individual sites to the entire nation. Comprehensive tables provide concise summaries of study locations, pesticides analyzed, and study outcomes. Comprehensive and extensively illustrated, Pesticides in Stream Sediment and Aquatic Biota: Distribution, Trends, and Governing Factors evaluates the sources, environmental fate, geographic distribution, and long-term trends of pesticides in bed sediment and aquatic biota. The book focuses on organochlorine pesticides, but also assesses the potential for currently used pesticides to be found in bed sediment and aquatic biota. Topics covered in depth include the effect of land use on pesticide occurrence, mechanisms of pesticide uptake and accumulation by aquatic biota, and the environmental significance of observed levels of pesticides in stream sediment and aquatic biota.

  2. Hydrogeochemical and stream sediment reconnaissance basic data for Milbank NTMS Quadrangle, Minnesota; North Dakota; South Dakota

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey are reported for the Milbank Quadrangle, Minnesota; North Dakota; South Dakota. Statistical data and areal distributions for uranium and uranium-related variables are presented for 662 groundwater and 319 stream sediment samples. Also included is a brief discussion on location and geologic setting

  3. Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Butz, T.R.; Dean, N.E.; Bard, C.S.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-05-31

    Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at the surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.

  4. Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming

    International Nuclear Information System (INIS)

    Butz, T.R.; Dean, N.E.; Bard, C.S.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at the surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines

  5. Assessment of the Water and Sediment Quality of Tropical Forest Streams in Upper Reaches of the Baleh River, Sarawak, Malaysia, Subjected to Logging Activities

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2016-01-01

    Full Text Available The study of the impact of logging activities on water and sediment quality of Sarawak forest streams is still scarce despite Sarawak being the largest exporter of timber in Malaysia. This study was aimed at determining the water and sediment quality of forest streams in Sarawak and the potential impact of logging activities. In situ parameters were measured, and water and sediment samples were collected at six stations before rain. Additionally, water quality was investigated at three stations after rain. The results showed that canopy removal resulted in large temperature variation and sedimentation in the forest streams. Lower suspended solids were found at stations with inactive logging (<2 mg/L compared to active logging (10–16 mg/L activities. The highest concentration of total nitrogen and total phosphorus in water and sediment was 4.4 mg/L, 77.6 μg/L, 0.17%, and 0.01%, respectively. Besides, significantly negative correlation of sediment nitrogen and water total ammonia nitrogen indicated the loss of nitrogen from sediment to water. Water quality of the streams deteriorated after rain, in particular, suspended solids which increased from 8.3 mg/L to 104.1 mg/L. This study reveals that logging activities have an impact on the water quality of Sarawak forest streams particularly in rainfall events.

  6. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Data Summary Tables, United States: Volume 2

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across states. Hawaii is missing from all tables since no sampling was done in that state. The following section briefly outlines the approach used by ISP in preparing these data tables. The third section contains the summary tables organized by sample type (water and sediment) and displaying elements within states and states within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Gillette NTMS quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; George, W.E.; Minor, M.M.; Simi, O.R.; Talcott, C.L.; Hensley, W.K.; Cheadle, J.M. III.

    1980-08-01

    During 1976 and 1977, 752 water and 843 sediment samples were collected from 1419 locations within the 17 700-km 2 area of the Gillette quadrangle, Wyoming. Water samples were collected primarily from wells, and also from springs, ponds, and streams; sediment samples were collected primarily from stream channels, and also from springs and ponds. Each water sample was analyzed for uranium and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 to 212.20 ppB and have a median of 1.10 ppB. The highest background uranium concentrations, as well as the highest individual uranium values, are in areas where favorable host units for uranium mineralization crop out. These units are the Wasatch and Fort Union formations in the Powder River Basin and the Inyan Kara group in the Black Hills. Uranium concentrations in sediment samples range from 0.64 to 29.83 ppM and have a median of 3.24 ppM. Background uranium concentrations are strongly controlled by the exposed geologic unit, and range from 4 to 8 ppM for the Cretaceous Colorado group to 1 to 3 ppM for the Triassic and Paleozoic units exposed in the Black Hills. Several areas where the Wasatch and Fort Union formations are exposed exhibit uranium concentrations in sediment samples that are slightly, but distinctly, above background values for these units. All of these areas are also associated with notably high uranium concentrations in water samples. Because epigenetic uranium mineralization in economically important areas can exhibit a similar geochemical signature, these areas within the Gillette quadrangle should be further examined for the possible presence of uranium mineralization

  8. Collection and preparation of bottom sediment samples for analysis of radionuclides and trace elements

    International Nuclear Information System (INIS)

    2003-07-01

    The publication is the first in a series of TECDOCs on sampling and sample handling as part of the IAEA support to improve reliability of nuclear analytical techniques (NATs) in Member State laboratories. The purpose of the document is to provide information on the methods for collecting sediments, the equipment used, and the sample preparation techniques for radionuclide and elemental analysis. The most appropriate procedures for defining the strategies and criteria for selecting sampling locations, for sample storage and transportation are also given. Elements of QA/QC and documentation needs for sampling and sediment analysis are discussed. Collection and preparation of stream and river bottom sediments, lake bottom sediments, estuary bottom sediments, and marine (shallow) bottom sediments are covered. The document is intended to be a comprehensive manual for the collection and preparation of bottom sediments as a prerequisite to obtain representative and meaningful results using NATs. Quality assurance and quality control (QA/QC) is emphasized as an important aspect to ensure proper collection, transportation, preservation, and analysis since it forms the basis for interpretation and legislation. Although there are many approaches and methods available for sediment analyses, the scope of the report is limited to sample preparation for (1) analysis of radionuclides (including sediment dating using radionuclides such as Pb-210 and Cs-137) and (2) analysis of trace, minor and major elements using nuclear and related analytical techniques such as NAA, XRF and PIXE

  9. Collection and preparation of bottom sediment samples for analysis of radionuclides and trace elements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The publication is the first in a series of TECDOCs on sampling and sample handling as part of the IAEA support to improve reliability of nuclear analytical techniques (NATs) in Member State laboratories. The purpose of the document is to provide information on the methods for collecting sediments, the equipment used, and the sample preparation techniques for radionuclide and elemental analysis. The most appropriate procedures for defining the strategies and criteria for selecting sampling locations, for sample storage and transportation are also given. Elements of QA/QC and documentation needs for sampling and sediment analysis are discussed. Collection and preparation of stream and river bottom sediments, lake bottom sediments, estuary bottom sediments, and marine (shallow) bottom sediments are covered. The document is intended to be a comprehensive manual for the collection and preparation of bottom sediments as a prerequisite to obtain representative and meaningful results using NATs. Quality assurance and quality control (QA/QC) is emphasized as an important aspect to ensure proper collection, transportation, preservation, and analysis since it forms the basis for interpretation and legislation. Although there are many approaches and methods available for sediment analyses, the scope of the report is limited to sample preparation for (1) analysis of radionuclides (including sediment dating using radionuclides such as Pb-210 and Cs-137) and (2) analysis of trace, minor and major elements using nuclear and related analytical techniques such as NAA, XRF and PIXE.

  10. Assessment of selected contaminants in streambed- and suspended-sediment samples collected in Bexar County, Texas, 2007-09

    Science.gov (United States)

    Wilson, Jennifer T.

    2011-01-01

    Elevated concentrations of sediment-associated contaminants are typically associated with urban areas such as San Antonio, Texas, in Bexar County, the seventh most populous city in the United States. This report describes an assessment of selected sediment-associated contaminants in samples collected in Bexar County from sites on the following streams: Medio Creek, Medina River, Elm Creek, Martinez Creek, Chupaderas Creek, Leon Creek, Salado Creek, and San Antonio River. During 2007-09, the U.S. Geological Survey periodically collected surficial streambed-sediment samples during base flow and suspended-sediment (large-volume suspended-sediment) samples from selected streams during stormwater runoff. All sediment samples were analyzed for major and trace elements and for organic compounds including halogenated organic compounds and polycyclic aromatic hydrocarbons (PAHs). Selected contaminants in streambed and suspended sediments in watersheds of the eight major streams in Bexar County were assessed by using a variety of methods—observations of occurrence and distribution, comparison to sediment-quality guidelines and data from previous studies, statistical analyses, and source indicators. Trace elements concentrations were low compared to the consensus-based sediment-quality guidelines threshold effect concentration (TEC) and probable effect concentration (PEC). Trace element concentrations were greater than the TEC in 28 percent of the samples and greater than the PEC in 1.5 percent of the samples. Chromium concentrations exceeded sediment-quality guidelines more frequently than concentrations of any other constituents analyzed in this study (greater than the TEC in 69 percent of samples and greater than the PEC in 8 percent of samples). Mean trace element concentrations generally are lower in Bexar County samples compared to concentrations in samples collected during previous studies in the Austin and Fort Worth, Texas, areas, but considering the relatively

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the McCarthy NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the McCarthy NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of stream sediments. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical result. Statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  12. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of

  13. Differing Levels of Forestry Best Management Practices at Stream Crossing Structures Affect Sediment Delivery and Installation Costs

    Directory of Open Access Journals (Sweden)

    Brian C. Morris

    2016-03-01

    Full Text Available Forestry best management practices (BMPs are used to reduce sedimentation from forest stream crossings. Three BMP treatments (BMP−, BMP-std, and BMP+ were applied to three forest road stream crossings (bridge, culvert, and ford. BMP− did not meet existing BMP guidelines, BMP-std met standard recommendations, and BMP+ treatments exceeded recommendations. Following BMP applications, three simulated rainfall intensities (low, medium, and high were applied in order to evaluate sediment delivery from crossing type and BMP level. During rainfall simulation, sediment concentrations (mg/L were collected with automated samplers and discharge (L/s was estimated to calculate total sediment loading. Costs of stream crossings and BMP levels were also quantified. Mean sediment associated with the three stream crossings were 3.38, 1.87, and 0.64 Mg for the BMP−, BMP-std, and BMP+ levels, respectively. Ford, culvert, and bridge crossings produced 13.04, 12.95, and 0.17 Mg of sediment during construction, respectively. BMP enhancement was more critical for sediment control at the culvert and ford crossings than at the bridge. Respective costs for BMP−, BMP-std, and BMP+ levels were $5,368, $5,658, and $5,858 for the bridge; $3,568, $4,166 and $4,595 for the culvert; and $180, $420 and $1,903 for the ford. Costs and sediment values suggest that current standard BMP levels effectively reduce stream sediment while minimizing costs.

  14. Sediment dynamics of a high gradient stream in the Oi river basin of Japan

    Science.gov (United States)

    Hideji Maita

    1991-01-01

    This paper discusses the effects of the valley width for discontinuities of sediment transport in natural stream channels. The results may be summarized as follows: 1)ln torrential rivers. deposition or erosion depend mostly on the sediment supply. not on the magnitude of the flow discharge. 2)Wide valley floors of streams are depositional spaces where the excess...

  15. Review of samples of tailings, soils and stream sediment adjacent to and downstream from the Ruth Mine, Inyo County, California

    Science.gov (United States)

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Ruth Mine and mill are located in the western Mojave Desert in Inyo County, California (fig. 1). The mill processed gold-silver (Au-Ag) ores mined from the Ruth Au-Ag deposit, which is adjacent to the mill site. The Ruth Au-Ag deposit is hosted in Mesozoic intrusive rocks and is similar to other Au-Ag deposits in the western Mojave Desert that are associated with Miocene volcanic centers that formed on a basement of Mesozoic granitic rocks (Bateman, 1907; Gardner, 1954; Rytuba, 1996). The volcanic rocks consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions (fig. 2) that were emplaced into Mesozoic silicic intrusive rocks (Troxel and Morton, 1962). The Ruth Mine is on Federal land managed by the U.S. Bureau of Land Management (BLM). Tailings from the mine have been eroded and transported downstream into Homewood Canyon and then into Searles Valley (figs. 3, 4, 5, and 6). The BLM provided recreational facilities at the mine site for day-use hikers and restored and maintained the original mine buildings in collaboration with local citizen groups for use by visitors (fig. 7). The BLM requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure arsenic (As) and other geochemical constituents in soils and tailings at the mine site and in stream sediments downstream from the mine in Homewood Canyon and in Searles Valley (fig. 3). The request was made because initial sampling of the site by BLM staff indicated high concentrations of As in tailings and soils adjacent to the Ruth Mine. This report summarizes data obtained from field sampling of mine tailings and soils adjacent to the Ruth Mine and stream sediments downstream from the mine on June 7, 2009. Our results permit a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  16. Response of stream-breeding salamander larvae to sediment deposition in southern Appalachian (U.S.A.) headwater streams

    Science.gov (United States)

    S. Conner Keitzer; Reuben. Goforth

    2012-01-01

    Summary 1. Increased fine sediment deposition is a prevalent threat to stream biodiversity and has been shown to impact stream-breeding salamanders negatively. However, their complex life histories make it difficult to determine which stage is affected. 2. We conducted field experiments from 26 August to 11 September 2010 and 11 October to 11...

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km 2 area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.

  19. SEDIMENTATION IN PACIFIC NORTHWEST COASTAL STREAMS -- EVIDENCE FROM REGIONAL SURVEY OF BED SUBSTRATE SIZE AND STABILITY

    Science.gov (United States)

    Excessive erosion, transport and deposition of sediment are major problems in streams and rivers throughout the United States. We examined evidence of anthropogenic sedimentation in Oregon and Washington coastal streams using relatively rapid measurements taken from surveys duri...

  20. Macrophyte presence is an indicator of enhanced denitrification and nitrification in sediments of a temperate restored agricultural stream

    Science.gov (United States)

    Stream macrophytes are often removed with their sediments to deepen stream channels, stabilize channel banks, or provide habitat for target species. These sediments may support enhanced nitrogen processing. To evaluate sediment nitrogen processing, identify seasonal patterns, and...

  1. Needles 10 x 20 NTMS area, California and Arizona, data report (abbreviated). National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-05-01

    Surface sediment samples were collected at 1672 sites, at a target sampling density of one site per 13 square kilometers. Ground water samples were collected at 49 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, and scintillometer reading), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mg, Mn, Na, and V). Helium analyses are given for ground water. Data from sediment sites include (1) stream water chemistry measurements from sites where water was available and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Samples site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements; U/Th, U/Hf, U/(Th + Hf), and U/La ratios; and scintillometer readings at sediment sample sites are included on the microfiche. Uranium concentrations in the sediments which were above limits ranged from 0.10 to 33.90 ppM. The mean of the logarithms of the uranium concentrations was 0.52. Clusters of uranium values greater than 10 ppM occur in quadrangles AH, BH, and DA

  2. Comparability of river suspended-sediment sampling and laboratory analysis methods

    Science.gov (United States)

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  3. FORTRAN computer programs to process Savannah River Laboratory hydrogeochemical and stream-sediment reconnaissance data

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; D'Andrea, R.F. Jr.

    1980-03-01

    FORTRAN computer programs have been written to read, edit, and reformat the hydrogeochemical and stream-sediment reconnaissance data produced by Savannah River Laboratory for the National Uranium Resource Evaluation program. The data are presorted by Savannah River Laboratory into stream sediment, ground water, and stream water for each 1 0 x 2 0 quadrangle. Extraneous information is eliminated, and missing analyses are assigned a specific value (-99999.0). Negative analyses are below the detection limit; the absolute value of a negative analysis is assumed to be the detection limit

  4. Lake Champlain 10 x 20 NTMS area New York, Vermont, and New Hampshire: data report (abbreviated). National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-03-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Lake Champlain 1 0 x 2 0 quadrangle. Surface sediment samples were collected at 1196 sites. Ground-water samples were collected at 619 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, for uranium and 8 other elements in ground water, and for uranium and 9 other elements in surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Data from ground-water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, etc.), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. A real distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included. Key data from stream water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Al, Br, Cl, Dy, F, Mg, Mg, Na, and V). Uranium concentrations in the sediments range from 0.30 to 43.40 ppM with a mean of 3.03 ppM. A cluster of high log (U/Th+Hf) ratios appear in the southeastern portion of the quadrangle. The U x 1000/conductivity ratio in surface water is high in this same area

  5. Hydrogeochemical and stream sediment reconnaissance basic data for Grand Island NTMS Quadrangle, Nebraska/Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Grand Island Quadrangle, Nebraska/Kansas are reported. Statistical data and areal distributions for uranium and uranium-related variables are presented for 564 groundwater and 532 stream sediment samples. Also included is a brief discussion on location and geologic setting. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in shallow wells (0 to 20 m) along or near the Platte and Republican Rivers, which flow west to east along the northern and southern portions of the quadrangle, respectively. Waters containing high concentration of uranium in the northern portion of the quadrangle occur in recent alluvium and nearby glacial deposits. In the southern portion of the quadrangle, waters containing high uranium concentrations occur in Recent alluvium and the Niobrara Chalk in the southeast. Stream sediment data indicate that uranium concentrations above the 85th percentile occur in sediments along the Platte River in the northern portion of the quadrangle and paralleling the Republican River in the southeastern portion. Sediments with high uranium values along the Platte River are derived from glacial and alluvial deposits. High uranium values paralleling the Republican River in the southeast are derived from the Niobrara Chalk, the Carlile Shale, and glacial and alluvial deposits. High U-NT and thorium values, and high values for cerium, niobium, scandium, titanium, vanadium, yttrium, and zirconium suggest the presence of clays and/or residual minerals in the southeast. Sediment derivation and the leaching of possible ash-rich loess and alluvial deposits and/or uranium-rich alkaline evaporite deposits could account for high uranium concentrations in sediment and groundwaters within the quadrangle

  6. A study of the effects of implementing agricultural best management practices and in-stream restoration on suspended sediment, stream habitat, and benthic macroinvertebrates at three stream sites in Surry County, North Carolina, 2004-2007-Lessons learned

    Science.gov (United States)

    Smith, Douglas G.; Ferrell, G.M.; Harned, Douglas A.; Cuffney, Thomas F.

    2011-01-01

    The effects of agricultural best management practices and in-stream restoration on suspended-sediment concentrations, stream habitat, and benthic macroinvertebrate assemblages were examined in a comparative study of three small, rural stream basins in the Piedmont and Blue Ridge Physiographic Provinces of North Carolina and Virginia between 2004 and 2007. The study was designed to assess changes in stream quality associated with stream-improvement efforts at two sites in comparison to a control site (Hogan Creek), for which no improvements were planned. In the drainage basin of one of the stream-improvement sites (Bull Creek), several agricultural best management practices, primarily designed to limit cattle access to streams, were implemented during this study. In the drainage basin of the second stream-improvement site (Pauls Creek), a 1,600-foot reach of the stream channel was restored and several agricultural best management practices were implemented. Streamflow conditions in the vicinity of the study area were similar to or less than the long-term annual mean streamflows during the study. Precipitation during the study period also was less than normal, and the geographic distribution of precipitation indicated drier conditions in the southern part of the study area than in the northern part. Dry conditions during much of the study limited opportunities for acquiring high-flow sediment samples and streamflow measurements. Suspended-sediment yields for the three basins were compared to yield estimates for streams in the southeastern United States. Concentrations of suspended sediment and nutrients in samples from Bull Creek, the site where best management practices were implemented, were high compared to the other two sites. No statistically significant change in suspended-sediment concentrations occurred at the Bull Creek site following implementation of best management practices. However, data collected before and after channel stabilization at the Pauls

  7. National Uranium Resource Evaluation: uranium hydrogeochemical and stream-sediment reconnaissance of the Shungnak NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Shungnak NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Craig NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Craig NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Circle NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Circle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  10. Uranium hydrogeochemical and stream-sediment reconnaissance of the Ophir NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Ophir NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. 14 figures, 10 tables

  11. Uranium hydrogeochemical and stream-sediment reconnaissance of the Tanana NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Tanana NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendix A describes the sample medium and summarizes the analytical results for that medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting program of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will be included in this report

  12. Detailed uranium hydrogeochemical and stream sediment reconnaissance data release for the eastern portion of the Montrose NTMS Quadrangle, Colorado, including concentrations of forty-five additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1981-01-01

    In September and October 1979, the Los Alamos Scientific Laboratory (LASL) conducted a detailed geochemical survey for uranium primarily in the Sawatch Range in the eastern part of the Montrose National Topographic Map Series (NTMS) quadrangle, Colorado, as part of the National Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 1034 water and 2087 sediment samples were collected from streams and springs from 2088 locations within a 5420-km 2 area. Statistical data for uranium concentrations in water and sediment samples are presented. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in appendices. Uranium/thorium ratios for sediment samples are also included. This report contains uranium analyses for water samples and multielement analyses for sediment samples. Sediments were analyzed for uranium and thorium as well as Al, Sb, As, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sm, Sc, Se, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, Zn, and Zr. All elemental analyses were performed at the LASL. Water samples were analyzed for uranium by fluorometry. Sediments were analyzed for uranium by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Descriptions of procedures as analytical precisions and detection limits are given in the appendix

  13. Sediment deposition from forest roads at stream crossings as influenced by road characteristics

    Science.gov (United States)

    A.J. Lang; W.M. Aust; M.C. Bolding; K.J. McGuire

    2015-01-01

    Recent controversies associated with ditched forest roads and stream crossings in the Pacific Northwest have focused national attention on sediment production and best management practices (BMPs) at stream crossings. Few studies have quantified soil erosion rates at stream crossings as influenced by road characteristics and compared them to modeled rates. Soil erosion...

  14. Determination of total arsenic in streams and sediments from Obuasi gold mines

    International Nuclear Information System (INIS)

    Serfor Armah, Yaw

    1994-03-01

    In this work streams and sediments of Obuasi, a major gold mining town in Ghana were analysed. In addition to the total arsenic the parameters determined included the levels of Pe, Al, Nn and Au and nutrients. Leaching of arsenic from the sediment was also carried out to ascertain the rate at which As will be removed from the sediment to acceptable levels. Results indicate that in spite of the newly installed Arsenic Recovery Plant (ARP) which is able to remove about 90% of the arsenic dusts, the streams in the area remain heavily polluted with arsenic. In the water Total Arsenic values range between 0.13 - 20.00ppm. The sediments are also polluted to a depth of at least 30cm with values ranging from 15.38 - 50.00ppm. Contrary to expectations, the gold concentration in both the water and sediment are too low and may not be suitable for exploration. The leaching results show that very little amount of arsenic was leached from the sediments. Even after 20 weeks of continuous leaching less than 1% of As had been leached. This was attributed to the ability of arsenic to form sparingly soluble compounds with Fe, Al, Mn etc in the sediment environment. (au)

  15. Characterisation of heavy metal-bearing phases in stream sediments of the Meza River Valley, Slovenia, by means of SEM/EDS analysis

    International Nuclear Information System (INIS)

    Miler, M; Gosar, M

    2010-01-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Mez'a River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  16. Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water

    International Nuclear Information System (INIS)

    El-Tahawy, M.S.; Farouk, M.A.; Ibrahiem, N.M.; El-Mongey, S.A.M.

    1994-01-01

    Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238 U series, 232 Th series and 40 K did not exceed 16.0, 15.5 and 500.0 Bq kg -1 dry weight for sediments. The activity concentration of 238 U series and 40 K did not exceed 0.6 and 18.0 Bq l -1 for stream water. (author)

  17. Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water

    Science.gov (United States)

    El-Tahawy, M. S.; Farouk, M. A.; Ibrahiem, N. M.; El-Mongey, S. A. M.

    1994-07-01

    Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238U series, 232Th series and 40K did not exceed 16.0, 15.5 and 500.0 Bq kg-1 dry weight for sediments. The activity concentration of 238U series and 40K did not exceed 0.6 and 18.0 Bq 1-1 for stream water.

  18. Continuous sampling from distributed streams

    DEFF Research Database (Denmark)

    Graham, Cormode; Muthukrishnan, S.; Yi, Ke

    2012-01-01

    A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple distribu......A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple...... distributed sites. The main challenge is to ensure that a sample is drawn uniformly across the union of the data while minimizing the communication needed to run the protocol on the evolving data. At the same time, it is also necessary to make the protocol lightweight, by keeping the space and time costs low...... for each participant. In this article, we present communication-efficient protocols for continuously maintaining a sample (both with and without replacement) from k distributed streams. These apply to the case when we want a sample from the full streams, and to the sliding window cases of only the W most...

  19. Comparison of hot hydroxylamine hydrochloride and oxalic acid leaching of stream sediment and coated rock samples as anomaly enhancement techniques

    Science.gov (United States)

    Filipek, L.H.; Chao, T.T.; Theobald, P.K.

    1982-01-01

    A hot hydroxylamine hydrochloride (H-Hxl) extraction in 25% acetic acid is compared with the commonly used oxalic acid extraction as a method of anomaly enhancement for Cu and Zn in samples from two very different metal deposits and climatic environments. Results obtained on minus-80-mesh stream sediments from an area near the Magruder massive sulfide deposit in Lincoln County, Georgia, where the climate is humid subtropical, indicate that H-Hxl enhances the anomaly for Cu by a factor of 2 and for Zn by a factor of 1.5, compared to the oxalic method. Analyses of Fe oxide-coated rock samples from outcrops overlying the North Silver Bell porphyry copper deposit near Tucson, Arizona, where the climate is semi-arid to arid, indicate that both techniques effectively outline the zones of hydrothermal alteration. The H-Hxl extraction can also perform well in high-carbonate or high-clay environments, where other workers have suggested that oxalic acid is not very effective. Therefore, the H-Hxl method is recommended for general exploration use. ?? 1982.

  20. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  1. Scranton 10 x 20 NTMS area: New Jersey, New York, and Pennsylvania. Preliminary basic data report. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Tones, P.L.

    1978-11-01

    Stream sediment and stream water samples were collected from small streams at 980 sites for a nominal density of one site per 18 square kilometers in rural areas. Ground water samples were collected at 1251 sites for a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water and surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included

  2. Uranium hydrogeochemical and stream-sediment reconnaissance of the Charley River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Charley River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  3. Uranium hydrogeochemical and stream-sediment reconnaissance of the Black River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Black River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  4. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Lookout Ridge NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; Garcia, S.R.; Hanks, D.; George, W.E.; Bolivar, S.L.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the lookout Ridge NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  5. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Harrison Bay NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Minor, M.M.; McInteer, C.; Hansel, J.N.; Broxton, D.E.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Harrison Bay NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  6. Uranium hydrogeochemical and stream-sediment reconnaissance of the Kantishna River NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kantishna River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  7. Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream

    Science.gov (United States)

    Eaton, B. C.; Hassan, M. A.; Davidson, S. L.

    2012-12-01

    In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive

  8. Interpreting stream sediment fingerprints against primary and secondary source signatures in agricultural catchments

    Science.gov (United States)

    Blake, Will H.; Haley, Steve; Smith, Hugh G.; Taylor, Alex; Goddard, Rupert; Lewin, Sean; Fraser, David

    2013-04-01

    Many sediment fingerprinting studies adopt a black box approach to source apportionment whereby the properties of downstream sediment are compared quantitatively to the geochemical fingerprints of potential catchment sources without consideration of potential signature development or modification during transit. Working within a source-pathway-receptor framework, this study aimed to undertake sediment source apportionment within 6 subcatchments of an agricultural river basin with specific attention to the potential role of contaminants (vehicle emissions and mine waste) in development of stream sediment signatures. Fallout radionuclide (FRN) and geochemical fingerprinting methods were adopted independently to establish source signatures for primary sediment sources of surface and subsurface soil materials under various land uses plus reworked mine and 'secondary' soil material deposited, in transit, along road networks. FRN data demonstrated expected variability between surface soil (137Cs = 14 ± 3 Bq kg-1; 210Pbxs = 40 ± 7 Bq kg-1) and channel bank materials (137Cs = 3 ± 1 Bq kg-1; 210Pbxs = 24 ± 5 Bq kg-1) but road transported soil material was considerably elevated in 210Pbxs (up to 673 ± 51 Bq kg-1) due to sediment interaction with pluvial surface water within the road network. Geochemical discrimination between surface and subsurface soil materials was dominated by alkaline earth and alkali metals e.g. Ba, Rb, Ca, K, Mg which are sensitive to weathering processes in soil. Magnetic susceptibility and heavy metals were important discriminators of road transported material which demonstrated transformation of the signatures of material transported via the road network. Numerical unmixing of stream sediment indicated that alongside channel bank erosion, road transported material was an important component in some systems in accord with FRN evidence. While mining spoil also ranked as a significant source in an affected catchment, perhaps related to legacy

  9. A spatially referenced regression model (SPARROW) for suspended sediment in streams of the conterminous U.S.

    Science.gov (United States)

    Schwarz, Gregory E.; Smith, Richard A.; Alexander, Richard B.; Gray, John R.

    2001-01-01

    Suspended sediment has long been recognized as an important contaminant affecting water resources. Besides its direct role in determining water clarity, bridge scour and reservoir storage, sediment serves as a vehicle for the transport of many binding contaminants, including nutrients, trace metals, semi-volatile organic compounds, and numerous pesticides (U.S. Environmental Protection Agency, 2000a). Recent efforts to address water-quality concerns through the Total Maximum Daily Load (TMDL) process have identified sediment as the single most prevalent cause of impairment in the Nation’s streams and rivers (U.S. Environmental Protection Agency, 2000b). Moreover, sediment has been identified as a medium for the transport and sequestration of organic carbon, playing a potentially important role in understanding sources and sinks in the global carbon budget (Stallard, 1998).A comprehensive understanding of sediment fate and transport is considered essential to the design and implementation of effective plans for sediment management (Osterkamp and others, 1998, U.S. General Accounting Office, 1990). An extensive literature addressing the problem of quantifying sediment transport has produced a number of methods for estimating its flux (see Cohn, 1995, and Robertson and Roerish, 1999, for useful surveys). The accuracy of these methods is compromised by uncertainty in the concentration measurements and by the highly episodic nature of sediment movement, particularly when the methods are applied to smaller basins. However, for annual or decadal flux estimates, the methods are generally reliable if calibrated with extended periods of data (Robertson and Roerish, 1999). A substantial literature also supports the Universal Soil Loss Equation (USLE) (Soil Conservation Service, 1983), an engineering method for estimating sheet and rill erosion, although the empirical credentials of the USLE have recently been questioned (Trimble and Crosson, 2000). Conversely, relatively

  10. Interactions of solutes and streambed sediment: 1. An experimental analysis of cation and anion transport in a mountain stream

    Science.gov (United States)

    Bencala, Kenneth E.; Kennedy, Vance C.; Zellweger, Gary W.; Jackman, Alan P.; Avanzino, Ronald J.

    1984-01-01

    An experimental injection was performed to study the transport of stream water solutes under conditions of significant interaction with streambed sediments in a mountain pool-and-riffle stream. Experiments were conducted in Little Lost Man Creek, Humboldt County, California, in a period of low flow duringwhich only a part of the bank-full channel held active surface flow. The injection of chloride and several trace cations lasted 20 days. In this report we discuss the results of the first 24 hours of the injection and survey the results of the first 10 days. Solute-streambed interactions of two types were observed. First, the physical transport of the conservative tracer, chloride, was affected by intergravel flow and stagnant watt, zones created by the bed relief. Second, the transport of the cations (strontium, potassium, and lithium) was appreciably modified by sorption onto streambed sediment. In the stream the readily observable consequence of the solute-streambed interactions was an attenuation of the dissolved concentration of each of the tracers. The attenuation in the stream channel occurred concurrently with the storage of tracers in the streambed via both physical and chemical processes. All tracers were subsequently present in shallow wells dug several meters from the wetted part of the channel. Sediment samples collected approximately 3 weeks after the start of the injection contained increased concentrations of the injected cations.

  11. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Gibs, Jacob, E-mail: jgibs@usgs.gov [U.S. Geological Survey, 810 Bear Tavern Road, West Trenton, NJ 08628 (United States); Heckathorn, Heather A. [U.S. Geological Survey, 810 Bear Tavern Road, West Trenton, NJ 08628 (United States); Meyer, Michael T. [U.S. Geological Survey, 4821 Quail Crest Place, Lawrence, KS 66049 (United States); Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert L. [New Jersey Department of Environmental Protection, PO Box 413, Trenton, NJ 08625 (United States)

    2013-08-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin–H{sub 2}O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin

  12. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008

    International Nuclear Information System (INIS)

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert L.

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin–H 2 O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin

  13. Sediment composition mediated land use effects on lowland streams ecosystems

    NARCIS (Netherlands)

    Dos Reis Oliveira, P.C.; Kraak, M.H.S.; van der Geest, H.G.; Naranjo, S.; Verdonschot, P.F.M

    2018-01-01

    Despite the widely acknowledged connection between terrestrial and aquatic ecosystems, the contribution of runoff to the sediment composition in lowland stream deposition zones and the subsequent effects on benthic invertebrates remain poorly understood. The aim of this study was therefore to

  14. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the McGrath and Talkeetna NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Jacobsen, S.I.; Hill, D.E.

    1979-04-01

    During the summer of 1977, 1268 water and 1206 sediment samples were collected from 1292 lakes and streams throughout the two quadrangles in south-central Alaska. Each of the water samples was analyzed for uranium and 12 other elements and each of the sediment samples for uranium, thorium, and 41 other elements. Uranium concentrations in water samples range from below 0.02 ppB to 19.64 ppB. In general, lake waters contain somewhat less uranium than stream waters, and the highest concentrations in both sample types were found in or near the Alaska Range. Uranium concentrations in sediment samples range from 0.10 ppM to 172.40 ppM. The highest concentrations are found in samples collected in the Alaska Range near areas of felsic igneous rocks. Sediment samples having high thorium concentrations also come from areas underlain by felsic igneous rocks in the Alaska Range. The following areas were found to be most favorable for significant uranium mineralization: (1) the Windy Fork stock on the southeastern boundary of the McGrath quadrangle; (2) an area in the northwest corner of the Talkeetna quadrangle near the Mespelt prospects; (3) the Hidden River drainage in the northeast corner of the Talkeetna quadrangle; (4) an area near Chelatna Lake in the center of the Talkeetna quadrangle; (5) the Kichatna River drainage, near the western border of the Talkeetna quadrangle; and (6) an area near the Mount Estelle pluton in the extreme southwest corner of the Talkeetna quadrangle

  16. Hydrogeochemical and stream sediment reconnaissance basic data for Watertown NTMS Quadrangle, South Dakota; Minnesota

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey of the Watertown Quadrangle are reported. Field and laboratory data are presented for 711 groundwater and 603 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that high uranium concentrations are derived predominantly from glacial aquifers of variable water composition located on the Coteau des Prairies. Elements associated with high uranium values in these waters include barium, calcium, copper, iron, magnesium, selenium, sulfate, and total alkalinity. Low uranium values were observed in waters originating from the Cretaceous Dakota sandstone whose water chemistry is characterized by high concentrations of boron, sodium, and chloride. Stream sediment data indicate that high uranium concentrations are scattered across the glacial deposits of the Coteau des Prairies. A major clustering of high uranium values occurs in the eastern portion of the glaciated quadrangle and is associated with high concentrations of selenium, lithium, iron, arsenic, chromium, and vanadium. The sediment data suggest that the drift covering the Watertown Quadrangle is compositionally homogeneous, although subtle geochemical differences were observed as a result of localized contrasts in drift source-rock mineralogy and modification of elemental distributions by contemporaneous and postglacial hydrologic processes

  17. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    Science.gov (United States)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  18. Hydrogeochemical and stream sediment reconnaissance basic data for Brownsville-McAllen NTMS Quadrangles, Texas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Brownsville-McAllen Quadrangles, Texas are reported. Field and laboratory data are presented for 427 groundwater and 171 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate the most promising area for potential uranium mineralization occurs in the northwestern section of the quadrangles (Jim Hogg, Starr, and Zapata Counties), where waters are derived from the Catahoula Formation. These groundwaters have high concentrations of uranium, uranium associated elements, and low values for specific conductance. Another area with high uranium concentrations is in the southeastern portion of the survey area (Hidalgo, Cameron, and Willacy Counties). Shallow wells <10 m (30 ft) are numerous in this area and high specific conductance values may indicate contamination from extensive fertilization. Stream sediment data for the survey does not indicate an area favorable for uranium mineralization. Anomalous acid soluble uranium values in the southeastern area (Hidalgo, Cameron, and Willacy Counties) can be attributed to phosphate fertilizer contamination. Four samples in the western part of the area (western Starr County) have anomalously high total uranium values and low acid soluble uranium values, indicating the uranium may be contained in resistate minerals

  19. Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill

    Science.gov (United States)

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Fogarty, Lisa R.; Johnson, Heather E.; Gibson, Kristen E.; Focazio, Michael J.; Schwab, Kellogg J.; Hubbard, Laura E.; Foreman, William T.

    2015-01-01

    Manure spills to streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for: fecal indicator bacteria (FIB); the fecal indicator chemicals cholesterol and coprostanol; 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence polymerase chain reaction (PCR) for viable cells; one swine-specific Escherichia coli toxin gene (STII) by quantitative PCR (qPCR); and nine human and animal viruses by qPCR, or reverse-transcriptase qPCR. Twelve days post-spill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1-2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli, were detected in water or sediment. STII increased from undetectable before, or above the spill, to 105 copies/100 mL water 12 days post-spill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells post-spill. Eighteen days post-spill porcine adenovirus and teschovirus were detected 5.6 km downstream. Sediment FIB concentrations (per gram wet weight) were greater than in water, and sediment was a continuous reservoir of genes and chemicals post-spill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days post-spill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes, and the potential for human and veterinary health consequences.

  20. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1981-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. Water and sediment samples are collected at a nominal density of one sample location per 10 km 2 except for lake areas of Alaska where the density is one sample location per 23 km 2 . Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting with a 20 parts per billion lower limit of detection, which is well below the range of uranium concentrations in natural sediment samples. Elemental concentrations in sediments are also determined by neutron activation analysis for 31 elements by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. The multielement analyses provide valuable data for studies concerning pathfinder elements, environmental pollution, elemental distributions, dispersion halos, and economic ore deposits other than uranium. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km 2

  1. Savannah River Laboratory hydrogeochemical and stream sediment reconnaissance. Preliminary raw data release, Charlotte 10 x 20 NTMS area, North Carolina and South Carolina. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Heffner, J.D.; Ferguson, R.B.

    1978-01-01

    This report presents preliminary results of stream sediment and ground water reconnaissance in the Charlotte National Topographic Map Series (NTMS) 1 0 x 2 0 quadrangle. Stream sediment samples were collected from small streams at 1254 sites for a nominal density of one site per 13 square kilometers (five square miles) in rural areas. Ground water samples were collected at 759 sites for a nominal density of one site per 25 square kilometers (ten squre miles). Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Key data are presented in page-sized hard copy. Supplementary data are on microfiche. Key data from stream sites include (1) water quality measurements (pH, conductivity, and alkalinity), (2) elements that may be related to potential uranium and thorium mineralization in this area (U, Th, Hf, Ce, and Dy), and (3) elements useful for geologic classification of the sample area (Ti, V, Fe, Mn, Al, and Sc). Supplementary data from stream sites include sample site descriptors (stream characteristics, vegetation, stream width, etc.) and additional elemental analyses that may be useful (F, Eu, Sm, La, Yb, and Lu). Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Na, Cl, Mg, Al, Mn, Br, V, and F). Supplementary data include site descriptors, information about the collection of the samples (well age, well depth, frequency of use of well, etc.), and analytical data for dysprosium

  2. Savannah River Laboratory Hydrogeochemical and Stream Sediment Reconnaissance. Preliminary raw data release: Spartanburg 10 x 20 NTMS area, North Carolina and South Carolina. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Heffner, J.D.; Ferguson, R.B.

    1977-12-01

    Preliminary results are presented of stream sediment and ground water reconnaissance in the Spartanburg National Topographic Map Series (NTMS) 1 0 x 2 0 quadrangle. Stream sediment samples were collected from small streams at 1202 sites for a nominal density of one site per 13 square kilometers (five square miles) in rural areas. Ground water samples were collected at 771 sites for a nominal density of one site per 25 square kilometers (ten square miles). Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Key data are presented in page-sized hard copy. Supplementary data are on microfiche. Key data from stream sites include (1) water quality measurements (pH, conductivity, and alkalinity), (2) elements that may be related to potential uranium and thorium mineralization in this area (U, Th, Hf, Ce, and Dy), and (3) elements useful for geologic classification of the sample area (Ti, V, Fe, Mn, A, and Sc). Supplementary data from stream sites include sample site descriptors (stream characteristics, vegetation, stream width, etc.) and additional elemental analyses that may be useful (F, Eu, Sm, La, Yb, and Lu). Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Na, Cl, Mg, Al, Mn, Br, V, and F). Supplementary data include site descriptors, information about the collection of the samples (well age, well depth, frequency of use of well, etc.), and analytical data for dyprosium

  3. Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb – Zn Ore Mining. Areas of Ebonyi ... produced both for local consumption and also for food supplies to other .... of deionised water using a pH-meter (Aqualytica. Model pH 17).

  4. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure

    International Nuclear Information System (INIS)

    Ancion, Pierre-Yves; Lear, Gavin; Dopheide, Andrew; Lewis, Gillian D.

    2013-01-01

    Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota. - Highlights: ► Zn, Cu and Pb concentrations in biofilm and sediments from 23 streams were assessed. ► Bacteria and ciliate protozoa were simultaneously used as biological indicators. ► Zn and Cu were generally enriched in biofilm compared to sediments. ► Metals in biofilm provide a useful assessment of freshwater ecosystem contamination. ► Results highlight the likely ecological importance of biofilm associated metals. - Metal concentrations in stream biofilms provide a good assessment of the effects of trace metal contaminants on freshwater ecosystems.

  5. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Peco, Texas. Sierra Vieja survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Sierra Vieja survey area of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 29 groundwater and 240 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Highest concentrations of uranium in groundwater predominantly occur in areas marginal to the Rio Grande. These wells and spring produce from Quaternary alluvium or the Vieja Group. High specific conductance is also associated with most of the wells located marginal to the Rio Grande. The specific conductance of wells in other areas with greater than or equal to 11.5 ppB uranium are notably lower. Higher than background concentrations of molybdenum, arsenic, and vanadium are observed with wells containing greater than or equal to 11.5 ppB uranium. Total alkalinity and pH display a variable distribution throughout the survey area. Stream sediment from several areas contain greater than or equal to 2.57 soluble uranium. In areas where these concentrations account for greater than or equal to 83% of the uranium present in the sediment, above background concentrations of sodium, aluminum, barium, potassium, zirconium, cerium, and strontium are detected. The degree to which these elements are associated with favorably high uranium concentrations is related to the relative amounts of volcaniclastic and calcareous sedimentary material incorporated in the sample

  6. Determination of the effects of fine-grained sediment and other limiting variables on trout habitat for selected streams in Wisconsin

    Science.gov (United States)

    Scudder, Barbara C.; Selbig, J.W.; Waschbusch, R.J.

    2000-01-01

    Two Habitat Suitability Index (HSI) models, developed by the U.S. Fish and Wildlife Service, were used to evaluate the effects of fine-grained (less than 2 millimeters) sediment on brook trout (Salvelinusfontinalis, Mitchill) and brown trout (Salmo trutta, Linnaeus) in 11 streams in west-central and southwestern Wisconsin. Our results indicated that fine-grained sediment limited brook trout habitat in 8 of 11 streams and brown trout habitat in only one stream. Lack of winter and escape cover for fry was the primary limiting variable for brown trout at 61 percent of the sites, and this factor also limited brook trout at several stations. Pool area or quality, in stream cover, streambank vegetation for erosion control, minimum flow, thalweg depth maximum, water temperature, spawning substrate, riffle dominant substrate, and dissolved oxygen also were limiting to trout in the study streams. Brook trout appeared to be more sensitive to the effects of fine-grained sediment than brown trout. The models for brook trout and brown trout appeared to be useful and objective screening tools for identifying variables limiting trout habitat in these streams. The models predicted that reduction in the amount of fine-grained sediment would improve brook trout habitat. These models may be valuable for establishing instream sediment-reduction goals; however, the decrease in sediment delivery needed to meet these goals cannot be estimated without quantitative data on land use practices and their effects on sediment delivery and retention by streams.

  7. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North Region: Volume 7

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  8. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, East Region: Volume 4

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  9. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, West Region: Volume 10

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  10. A spatially referenced regression model (SPARROW) for suspended sediment in streams of the Conterminous U.S.

    Science.gov (United States)

    Schwarz, Gregory E.; Smith, Richard A.; Alexander, Richard B.; Gray, John R.

    2001-01-01

    Suspended sediment has long been recognized as an important contaminant affecting water resources. Besides its direct role in determining water clarity, bridge scour and reservoir storage, sediment serves as a vehicle for the transport of many binding contaminants, including nutrients, trace metals, semi-volatile organic compounds, a nd numerous pesticides (U.S. Environmental Protection Agency, 2000a). Recent efforts to addr ess water-quality concerns through the Total Maximum Daily Load (TMDL) process have iden tified sediment as the single most prevalent cause of impairment in the Nation’s streams a nd rivers (U.S. Environmental Protection Agency, 2000b). Moreover, sediment has been identified as a medium for the tran sport and sequestration of organic carbon, playing a potentia lly important role in understa nding sources and sinks in the global carbon budget (Stallard, 1998). A comprehensive understanding of sediment fate a nd transport is considered essential to the design and implementation of effective plans for sediment management (Osterkamp and others, 1998, U.S. General Accounting Office, 1990). An exte nsive literature addr essing the problem of quantifying sediment transport has produced a nu mber of methods for estimating its flux (see Cohn, 1995, and Robertson and Roerish, 1999, for us eful surveys). The accuracy of these methods is compromised by uncertainty in the concentration measurements and by the highly episodic nature of sediment movement, particul arly when the methods are applied to smaller basins. However, for annual or decadal flux es timates, the methods are generally reliable if calibrated with extended periods of data (Robertson and Roerish, 1999). A substantial literature also supports the Universal Soil Loss Equation (U SLE) (Soil Conservation Service, 1983), an engineering method for estimating sheet and rill erosion, although the empirical credentials of the USLE have recently been questioned (Tri mble and Crosson, 2000

  11. Characterisation of heavy metal-bearing phases in stream sediments of the Meža River Valley, Slovenia, by means of SEM/EDS analysis

    Science.gov (United States)

    Miler, M.; Gosar, M.

    2010-02-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Meža River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  12. Savannah River Laboratory hydrogeochemical and stream sediment reconnaissance. Preliminary raw data release: Greenville 10 x 20 NTMS area Georgia, North Carolina, and South Carolina. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.

    1978-03-01

    Preliminary results of stream sediment and ground water reconnaissance in the Greenville National Topographic Map Series (NTMS) 1 0 x 2 0 quadrangle are presented. Stream sediment samples were collected from small streams at 1413 sites for a nominal density of one site per 13 square kilometers in rural areas. Ground water samples were collected at 731 sites for a nominal density of one site per 25 square kilometers. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Key data are presented in page-sized hard copy. Supplementary data are on microfiche. Key data from stream sites include (1) water quality measurements (pH, conductivity, and alkalinity), (2) elements that may be related to potential uranium and thorium mineralization in this area (U, Th, Hf, Ce, and Dy) and (3) elements useful for geologic classification of the sample area (Ti, V, Fe, Mn, Al, and Sc). Supplementary data from stream sites include sample site descriptors (stream characteristics, vegetation, stream width, etc.) and additional elemental analyses that may be useful (F, Eu, Sm, La, Yb, and Lu). Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Na, Cl, Mg, Al, Mn, Br, V, and F). Supplementary data include site descriptors, information about the collection of the samples (well age, well depth, frequency of use of well, etc.), and analytical data for dysprosium

  13. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1981-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. Water and sediment samples are collected at a nominal density of one sample location per 10 km/sup 2/ except for lake areas of Alaska where the density is one sample location per 23 km/sup 2/. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting with a 20 parts per billion lower limit of detection, which is well below the range of uranium concentrations in natural sediment samples. Elemental concentrations in sediments are also determined by neutron activation analysis for 31 elements by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. The multielement analyses provide valuable data for studies concerning pathfinder elements, environmental pollution, elemental distributions, dispersion halos, and economic ore deposits other than uranium. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km/sup 2/.

  14. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    Directory of Open Access Journals (Sweden)

    Xiaopeng Jia

    2014-01-01

    Full Text Available The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  15. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  16. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Pecos, Texas. Solitario survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Solitario survey area portion of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 119 groundwater and 520 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are breifly discussed. Groundwaters having concentrations of uranium greater than or equal to 11.5 ppB are observed in the western half of the survey area. These wells generally produce from the Chisos Formation and Buck Hill Volcanic Series or alluvium derived from these units. Lithium, sodium, boron, uranium/specific conductance, uranium/boron, and uranium/sulfate are noted to be most highly associated within the area of anomalously high uranium. The highest potential for uranium mineralization, in view of these groundwater data, lies in the LaVuida and Bandera Mesa areas. Stream sediments containing greater than or equal to 2.57 ppM soluble uranium occur in numerous areas within the survey area. The highest concentrations of uranium occur in sediments derived from the Buck Hill Volcanic Series and Cretaceous limestones. Above background concentrations of arsenic, selenium, molybdenum, nickel, calcium, and strontium were noted to be associated with areas of anomalously high uranium. These elements are most prominently associated with uranium anomalies occurring in Cretaceous limestone

  17. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Farmington Project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Farmington project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 71 groundwater samples, 345 stream sediment samples, and 178 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from <0.20 to 21.77 ppB. The highest values are from groundwaters producing from areas in or near the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations, and the Farmington Canyon Complex. The uranium:boron ratio delineates an anomalous trend associated with the Farmington Canyon Complex. Variables associated with uranium in groundwaters producing from the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations include the uranium:sulfate ratio, boron, barium, potassium, lithium, silicon, chloride, selenium, and vanadium. Soluble uranium concentrations (U-FL) in stream sediments range from 0.99 to 86.41 ppM. Total uranium concentrations (U-NT) range from 1.60 to 92.40 ppM. Thorium concentrations range from <2 to 47 ppM. Anomalous concentrations of these variables are associated with the Farmington Canyon Complex. Variables which are associated with uranium include cerium, sodium, niobium, phosphorus, titanium, and yttrium

  18. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    P. Gao

    2013-03-01

    Full Text Available Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P P P P P < 0.05, respectively. The impact of precipitation or human activity on the reduction amount after the transition years was estimated by double mass curves of precipitation vs. stream flow (sediment. For reductions in stream flow and sediment discharge, the contribution rate of human activity was found to be 82.80 and 95.56%, respectively, and was significantly stronger than the contribution rate of precipitation. This evidence clearly suggests that, in the absence of significant decreases in precipitation

  19. Automated energy-dispersive x-ray determination of trace elements in stream sediments

    International Nuclear Information System (INIS)

    Hansel, J.M.; Martell, C.J.

    1977-01-01

    Nickel, copper, tungsten, lead, bismuth, niobium, silver, cadmium, and tin are determined in stream sediments using a computer-controlled energy-dispersive x-ray fluorescence system. The system consists of an automatic 20-position sample changer, a silicon lithium-drifted detector, a pulsed molybdenum transmission-target x-ray tube, a multichannel analyzer, and a minicomputer. Samples are analyzed as minus 325-mesh powders. A computer program positions the samples, unfolds overlapping peaks, determines peak intensities for each element, and calculates the ratio of the intensity of each peak to that of the molybdenum Kα Compton peak. Concentrations of each element are then calculated using equations obtained by analyzing prepared standards. Detection limits range from 5 ppM for silver, cadmium, lead, and bismuth to 20 ppM for niobium. The relative standard is 10 percent or less at the 100-ppM level and 20 percent at the 20-ppM level. Samples can be analyzed at the rate of sixty per day

  20. Santa Cruz 10 x 20 NTMS area, California: data report (abbreviated), National Uranium Resource Evaluation Program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-07-01

    This abbreviated data report presents results of ground water and stream/surface sediment reconnaissance in the National Topographic Map Series (NTMS) Santa Cruz 1 0 x 2 0 quadrangle. Surface sediment samples were collected at 1270 sites, at a target sampling density of one site per 13 square kilometers (five square miles). Ground water samples were collected at 636 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, and BB

  1. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    Science.gov (United States)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  2. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South East Region: Volume 5

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  3. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South West Region: Volume 9

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  4. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid West Region: Volume 8

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  5. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North West Region: Volume 11

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  6. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid East Region: Volume 6

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  7. Suspended sediment and turbidity after road construction/improvement and forest harvest in streams of the Trask River Watershed Study, Oregon

    Science.gov (United States)

    Ivan Arismendi; Jeremiah D. Groom; Maryanne Reiter; Sherri L. Johnson; Liz Dent; Mark Meleason; Alba Argerich; Arne E. Skaugset

    2017-01-01

    Transport of fine-grained sediment from unpaved forest roads into streams is a concern due to the potential negative effects of additional suspended sediment on aquatic ecosystems. Here we compared turbidity and suspended sediment concentration (SSC) dynamics in five nonfish bearing coastal Oregon streams above and below road crossings, during three consecutive time...

  8. Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    Science.gov (United States)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2017-12-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.

  9. Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and coastal British Columbia.

    Science.gov (United States)

    Rosenfeld, Jordan; Hogan, Daniel; Palm, Daniel; Lundquist, Hans; Nilsson, Christer; Beechie, Timothy J

    2011-01-01

    Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and land use affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Land-use impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of in-stream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Land-use impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting land-use impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional land-use impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.

  10. Pathways for arsenic from sediments to groundwater to streams: Biogeochemical processes in the Inner Coastal Plain, New Jersey, USA

    Science.gov (United States)

    Barringer, Julia L.; Mumford, Adam; Young, Lily Y.; Reilly, Pamela A.; Bonin, Jennifer L.; Rosman, Robert

    2010-01-01

    The Cretaceous and Tertiary sediments that underlie the Inner Coastal Plain of New Jersey contain the arsenic-rich mineral glauconite. Streambed sediments in two Inner Coastal Plain streams (Crosswicks and Raccoon Creeks) that traverse these glauconitic deposits are enriched in arsenic (15–25 mg/kg), and groundwater discharging to the streams contains elevated levels of arsenic (>80 μg/L at a site on Crosswicks Creek) with arsenite generally the dominant species. Low dissolved oxygen, low or undetectable levels of nitrate and sulfate, detectable sulfide concentrations, and high concentrations of iron and dissolved organic carbon (DOC) in the groundwater indicate that reducing environments are present beneath the streambeds and that microbial activity, fueled by the DOC, is involved in releasing arsenic and iron from the geologic materials. In groundwater with the highest arsenic concentrations at Crosswicks Creek, arsenic respiratory reductase gene (arrA) indicated the presence of arsenic-reducing microbes. From extracted DNA, 16s rRNA gene sequences indicate the microbial community may include arsenic-reducing bacteria that have not yet been described. Once in the stream, iron is oxidized and precipitates as hydroxide coatings on the sediments. Arsenite also is oxidized and co-precipitates with or is sorbed to the iron hydroxides. Consequently, dissolved arsenic concentrations are lower in streamwater than in the groundwater, but the arsenic contributed by groundwater becomes part of the arsenic load in the stream when sediments are suspended during high flow. A strong positive relation between concentrations of arsenic and DOC in the groundwater samples indicates that any process—natural or anthropogenic—that increases the organic carbon concentration in the groundwater could stimulate microbial activity and thus increase the amount of arsenic that is released from the geologic materials.

  11. Scranton 1/sup 0/ x 2/sup 0/ NTMS area: New Jersey, New York, and Pennsylvania. Preliminary basic data report. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, R.B.; Tones, P.L.

    1978-11-01

    Stream sediment and stream water samples were collected from small streams at 980 sites for a nominal density of one site per 18 square kilometers in rural areas. Ground water samples were collected at 1251 sites for a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water and surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included.

  12. THE USE OF GEOMORPHOLOGY AND STREAM STABILITY IN THE ASSESSMENT OF THE RISK OF STREAM IMPAIRMENT FROM SEDIMENT

    Science.gov (United States)

    The evaluation of the current condition is critical to the management of streams impaired by sediment and other non-point source stressors, which adversely affect both physical habitat and water quality. Several rating and classification systems based on geomorphic data exist for...

  13. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    Science.gov (United States)

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  14. Arsenic in New Jersey Coastal Plain streams, sediments, and shallow groundwater: effects from different geologic sources and anthropogenic inputs on biogeochemical and physical mobilization processes

    Science.gov (United States)

    Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.

    2013-01-01

    Arsenic (As) concentrations in New Jersey Coastal Plain streams generally exceed the State Surface Water Quality Standard (0.017 micrograms per liter (µg/L)), but concentrations seldom exceed 1 µg/L in filtered stream-water samples, regardless of geologic contributions or anthropogenic inputs. Nevertheless, As concentrations in unfiltered stream water indicate substantial variation because of particle inputs from soils and sediments with differing As contents, and because of discharges from groundwater of widely varying chemistry.

  15. National Uranium Resource Evaluation Program: the Hydrogeochemical Stream Sediment Reconnaissance Program at LLNL

    International Nuclear Information System (INIS)

    Higgins, G.H.

    1980-08-01

    From early 1975 to mid 1979, Lawrence Livermore National Laboratory (LLNL) participated in the Hydrogeochemical Stream Sediment Reconnaissance (HSSR), part of the National Uranium Resource Evaluation (NURE) program sponsored by the Department of Energy (DOE). The Laboratory was initially responsible for collecting, analyzing, and evaluating sediment and water samples from approximately 200,000 sites in seven western states. Eventually, however, the NURE program redefined its sampling priorities, objectives, schedules, and budgets, with the increasingly obvious result that LLNL objectives and methodologies were not compatible with those of the NURE program office, and the LLNL geochemical studies were not relevant to the program goal. The LLNL portion of the HSSR program was consequently terminated, and all work was suspended by June 1979. Of the 38,000 sites sampled, 30,000 were analyzed by instrumental neutron activation analyses (INAA), delayed neutron counting (DNC), optical emission spectroscopy (OES), and automated chloride-sulfate analyses (SC). Data from about 13,000 sites have been formally reported. From each site, analyses were published of about 30 of the 60 elements observed. Uranium mineralization has been identified at several places which were previously not recognized as potential uranium source areas, and a number of other geochemical anomalies were discovered

  16. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    Science.gov (United States)

    Yu, Mingjing; Rhoads, Bruce L.

    2018-05-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should

  17. Analysis of storm runoff-sediment yield of a 1st order stream basin in ...

    African Journals Online (AJOL)

    Analysis of storm runoff-sediment yield of a 1st order stream basin in Obafemi Awolowo University, Ile-Ife, southwestern Nigeria. ... The findings of this study will aid programme in soil erosion controls designed by the governments and individuals in forested watersheds. Key Words: Storm flow discharge, storm sediment ...

  18. Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Ecker, R.M.; Walters, W.H.; Onishi, Y.

    1982-08-01

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions

  19. Computer analysis to the geochemical interpretation of soil and stream sediment data in an area of Southern Uruguay

    International Nuclear Information System (INIS)

    Spangenberg, J.

    2010-01-01

    In southern Uruguay there are several known occurrences of base metal sulphide mineralization within an area of Precambrian volcanic sedimentary rocks. Regional geochemical stream sediment reconnaissance surveys revealed new polymetallic anomalies in the same stratigraphic zone. Geochemical interpretation of multi-element data from a soil and stream sediment survey carried out in one of these anomalous areas is presented.

  20. Low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream

    Science.gov (United States)

    DeTemple, B.; Wilcock, P.

    2011-12-01

    In an alluvial, gravel-bed stream governed by a plane-bed bedload transport regime, the physicochemical properties, size distribution, and granular architecture of the sediment grains that constitute the streambed surface influence many hydrodynamic, geomorphic, chemical, and ecological processes. Consequently, the abilities to accurately characterize the morphology and model the morphodynamics of the streambed surface and its interaction with the bedload above and subsurface below are necessary for a more complete understanding of how sediment, flow, organisms, and biogeochemistry interact. We report on our progress in the bottom-up development of low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream. These balance laws are assembled in a four stage process. First, the stream sediment-water system is conceptually abstracted as a nested, multi-phase, multi-species, structured continuum. Second, the granular surface of an aggregate of sediment grains is mathematically defined. Third, an integral approach to mass balance, founded in the continuum theory of multiphase flow, is used to formulate primordial, differential, instantaneous, local, continuum, mass balance laws applicable at any material point within a gravel-bed stream. Fourth, area averaging and time-after-area averaging, employing planform, low-pass filtering expressed as correlation or convolution integrals and based on the spatial and temporal filtering techniques found in the fields of multiphase flow, porous media flow, and large eddy simulation of turbulent fluid flow, are applied to smooth the primordial equations while maximizing stratigraphic resolution and preserving the definitions of relevant morphodynamic surfaces. Our approach unifies, corrects, contextualizes, and generalizes prior efforts at developing stream sediment continuity equations, including the top-down derivations of the surface layer (or "active layer") approach of Hirano

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Emory Peak NTMS Quadrangle, Texas. Uranium Resource Evaluation Project

    International Nuclear Information System (INIS)

    1978-01-01

    Results of a reconnaissance geochemical survey of the Emory Peak Quadrangle, Texas, are reported. Field and laboratory data are presented for 193 groundwater samples and 491 stream sediment samples. Statistical and areal distributions of uranium and other possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and the pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. In groundwater, uranium concentrations above the 85th percentile outline an area in the northwest portion of the quadrangle which is dominated by tertiary tuffaceous ash beds which disconformably overlie cretaceous units. The relationship between uranium and related variables indicates this area appears to have the best potential for uranium mineralization within the quadrangle. Stream sediment data indicate four areas that appear to be favorable for potential uranium mineralization: the Upper Green Valley-Paradise Valley region, the Terlingua Creek-Solitario region, an area in the vicinity of Big Bend National Park, and an area east of long. 102 0 15' W. In the first three of the preceding areas, soluble uranium is associated with tertiary igneous rocks. In the fourth area, soluble uranium is present in carbonate-dominant cretaceous strata

  2. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnaissance program is conducted by four Department of Energy laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  3. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-07-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnasissance program is conducted by four Department of Energy Laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. Each laboratory was assigned a geographic region of the United States. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  4. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    Science.gov (United States)

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and

  5. Uranium hydrogeochemical and stream sediment reconnasissance of the Trinidad NTMS Quadrangle, Colorado, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1980-05-01

    Uranium and other elemental data resulting from the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Trinidad National Topographic Map Series (NTMS) quadrangle, Colorado, by the Los Alamos Scientific Laboratory (LASL) are reported herein. This study was conducted as part of the United States Department of Energy's National Uranium Resource Evaluation (NURE), which is designed to provide improved estimates of the availability and economics of nuclear fuel resources and to make available to industry information for use in exploration and development of uranium resources. The HSSR data will ultimately be integrated with other NURE data (e.g., airborne radiometric surveys and geological investigations) to complete the entire NURE program. This report is a supplement to the HSSR uranium evaluation report for the Trinidad quadrange (Morris et al, 1978), which presented the field and uranium data for the 1060 water and 1240 sediment samples collected from 1768 locations in the quadrangle. The earlier report contains an evaluation of the uranium concentrations of the samples as well as descriptions of the geology, hydrology, climate, and uranium occurrences of the quadrange. This supplement presents the sediment field and uranium data again and the analyses of 42 other elements in the sediments. All uranium samples were redetermined by delayed-neutron counting (DNC) when the sediment samples were analyzed for 31 elements by neutron activation. For 99.6% of the sediment samples analyzed, the differences between the uranium contents first determined (Morris et al, 1978) and the analyses reported herein are less than 10%

  6. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Wyoming portions of the Driggs, Preston, and Ogden NTMS Quadrangles

    International Nuclear Information System (INIS)

    Broxton, D.E.; Nunes, H.P.

    1978-04-01

    This report describes work done in the Wyoming portions of the Driggs and Preston, Wyoming/Idaho, and the Ogden, Wyoming/Utah, National Topographic Map Series (NTMS) quadrangles (1 : 250,000 scale) by the Los Alamos Scientific Laboratory (LASL) as part of the nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The HSSR is designed to identify areas having higher than normal concentrations of uranium in ground waters, surface waters, and water-transported sediments. During the fall of 1976, 1108 water samples and 1956 sediment samples were taken from 1999 locations by a private contractor within the Wyoming portion of Driggs, Preston, and Ogden quadrangles. An additional 108 water samples and 128 sediment samples were collected in the Grand Teton National Park during the fall of 1977 by staff members from the LASL. All of the samples were collected and treated according to standard specifications described in Appendix A. Uranium concentrations were determined at the LASL using standard analytical methods and procedures, also described briefly in Appendix A. Appendixes B-I through B-III and C-I through C-III are listings of all field and analytical data for the water and sediment samples, respectively. Appendixes D-I and D-II provide keys to codes used in the data listings. Statistical data describing the mean, range, and standard deviations of uranium concentrations are summarized by quadrangle and sample source-type in Tables I through III

  7. The impact of anthropogenic factors on the occurrence of molybdenum in stream and river sediments of central Upper Silesia (Southern Poland

    Directory of Open Access Journals (Sweden)

    Pasieczna Anna

    2017-12-01

    Full Text Available In our study, a detailed survey was conducted with the aim to determine the distribution and possible anthropogenic sources of molybdenum in river and stream sediments in the central Upper Silesian Industrial Region (Southern Poland, where for many years, iron and zinc smelters as well as coking and thermal power plants were operating. At the same time, this has also been a residential area with the highest population density in the country. Sediments (1397 samples in total were collected from rivers and streams, and analysed for the content of molybdenum and 22 other elements. ICP-AES and CV-AAS methods were applied for the determination of the content of elements. The studies revealed molybdenum content in the range of 5 mg·kg−1. The spatial distribution of molybdenum demonstrated by the geochemical map has indicated that the principal factor determining its content in sediments is the discharge of wastewater from steelworks and their slag heaps. Another source of this element in sediments has been the waste of the historical mining of zinc ore and metallurgy of this metal. Additionally, molybdenum migration from landfills of power plants, coal combustion and Mo emission to the atmosphere and dust fall-out have been significant inputs of Mo pollution to the sediments.

  8. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    Science.gov (United States)

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  9. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.

    Science.gov (United States)

    Sebok, Eva; Engesgaard, Peter; Duque, Carlos

    2017-08-24

    This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.

  10. An Exploratory Analysis of Stream Teratogenicity and Human Health Using Zebrafish Whole-Sediment Toxicity Test

    Directory of Open Access Journals (Sweden)

    Matthew Dellinger

    2014-02-01

    Full Text Available This study demonstrates a novel application of effect-based toxicity testing for streams that may provide indications of co-perturbation to ecological and human health. For this study, a sediment contact assay using zebrafish (Danio rerio embryos was adapted to serve as an indicator of teratogenic stress within river sediments. Sediment samples were collected from Lake Michigan tributary watersheds. Sediment contact assay responses were then compared to prevalence of congenital heart disease (CHD and vital statistic birth indicators aggregated from civil divisions associated with the watersheds. Significant risk relationships were detected between variation in early life-stage (ELS endpoints of zebrafish embryos 72 h post-fertilization and the birth prevalence of human congenital heart disease, low birthweight and infant mortality. Examination of principal components of ELS endpoints suggests that variance related to embryo heart and circulatory malformations is most closely associated with human CHD prevalence. Though toxicity assays are sometimes used prospectively, this form of investigation can only be conducted retrospectively. These results support the hypothesis that bioassays normally used for ecological screening can be useful as indicators of environmental stress to humans and expand our understanding of environmental–human health linkages.

  11. Sedgeunkedunk stream bed sediment particle diameter from 2007-08-15 to 2016-03-30 (NCEI Accession 0152487)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are collecting stream channel geometry and bed sediment grain size distribution data at Sedgeunkedunk stream to evaluate physical habitat changes associated with...

  12. Geochemistry of stream sediments, water and U-Th radiation anomaly around Neyshabour Fyrouzeh mine and its environmental impact on people living nearby villages

    International Nuclear Information System (INIS)

    Karimpour, M. H.; Malekzadeh Shafaroudi, A.

    2013-01-01

    Fyrouzeh mine is located about 55 km northwest of Neyshabour in the Province of Khorasan Razavi. The exposed rocks are mainly volcanic and intrusive with intermediate composition and all of them are altered. This mine is the first type of IOCG recognized in Iran with Cu-Au-LREE-U. Besides Cu-Au-U, this area shows As, Mo, Zn and Th anomalies. Geochemical evaluation of stream sediment with regard to environmental concern revealed high Cu anomalies. Rocks show high uranium anomalies (up to 35 ppm) higher than the standard values (1 ppm). Airborne radiometric maps show high U and Th anomalies in a broad area. Ag, Hg and Mn show anomalies within the stream sediments. Cu, Pb, Zn, Ag, Ni, Mn, Sb, Hg, and U content of both drinking and agricultural water are fortunately within the range of standard, only two samples have higher As content (more than 10 ppb). High level of U-Th radiation and contamination of stream sediment with respect to Cu, Hg, Ag, Mn and agricultural water to As are important environmental issues and people health therefore they need to be study.

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Livengood NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1981-11-01

    This report presents results of a hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Livengood NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-water and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  14. National Uranium Resource Evaluation: uranium hydrogeochemical and stream-sediment reconnaissance of the Wolf Point NTMS Quadrangle, Montana

    International Nuclear Information System (INIS)

    1982-06-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wolf Point NTMS quadrangle, Montana. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  15. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    Science.gov (United States)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore

  16. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Pribram, Czech Republic

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Molek, Michael; Grygar, Tomas; Zeman, Josef

    2006-01-01

    Stream sediments from the mining and smelting district of Pribram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg -1 , 26 039 mg Zn kg -1 , 316.4 mg Cd kg -1 , 256.9 mg Cu kg -1 ). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF > 40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting ( 206 Pb/ 207 Pb = 1.16), while the role of secondary smelting (car battery processing) is negligible. - Pb isotopes properly complete traditional investigations of metal sources and dispersal in contaminated stream sediments

  17. Uranium hydrogeochemical and stream-sediment reconnaissance of the Teshekpuk NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Teshekpuk NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. Analysis of postfire hydrology, water quality, and sediment transport for selected streams in areas of the 2002 Hayman and Hinman fires, Colorado

    Science.gov (United States)

    Stevens, Michael R.

    2013-01-01

    The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.

  19. The distribution of plutonium, americium and curium isotopes in pond and stream sediments of the Savannah River Plant, South Carolina, USA

    International Nuclear Information System (INIS)

    Alberts, J.J.; Halverson, J.E.; Orlandini, K.A.

    1986-01-01

    The concentrations of 238 Pu, 239 , 240 Pu, 241 Am and 244 Cm were determined in sediment samples from five streams and two ponds on the Savannah River Plant (SRP) and in four sediment samples from the Savannah River above and below the plant site. The following concentration ranges were determined: 238 Pu, 0.07-386 fCi g -1 ; 239 , 240 Pu, 0.37-1410 fCi g -1 ; 241 Am, 0.1-4360 fCi g -1 ; 244 Cm, -1 . Comparisons of the elemental and isotopic ratios of the sediments show that the majority of the sediments studied have been impacted upon by plant operations and that sediments outside the plant boundary in the Savannah River have only been influenced by aerial releases. Atom ratios of 240 Pu/ 239 Pu indicate that up to 86% of the Pu in these sediments is derived from plant operations. However, comparisons of the concentration data with values for other impacted sediments near nuclear facilities indicate that the levels are relatively small. Finally, <13% of the Pu, Am or Cm in pond sediments is associated with humic or fulvic acids, indicating that little of the material should be remobilized in oxic environments through organic complexation. (author)

  20. Targeting sediment management strategies using sediment quantification and fingerprinting methods

    Science.gov (United States)

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.

    2016-04-01

    Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (account for particle size and organic matter selectivity processes. Contributions from potential sources type groups (channel - ditches and stream banks, roads - road verges and tracks, fields - grassland and arable topsoils) were

  1. Relationship between bifenthrin sediment toxic units and benthic community metrics in urban California streams.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D

    2013-08-01

    The objective of this study was to use ecologically relevant field measurements for determining the relationship between bifenthrin sediment toxic units (TUs) (environmental concentrations/Hyalella acute LC50 value) and 15 benthic metrics in four urban California streams sampled from 2006 to 2011. Data from the following four California streams were used in the analysis: Kirker Creek (2006, 2007), Pleasant Grove Creek (2006, 2007, and 2008), Arcade Creek (2009, 2010, and 2011), and Salinas streams (2009, 2010, and 2011). The results from univariate analysis of benthic metrics versus bifenthrin TU calculations for the four California streams with multiple-year datasets combined by stream showed that there were either nonsignificant relationships or lack of metric data for 93 % of cases. For 7 % of the data (4 cases) where significant relationships were reported between benthic metrics and bifenthrin TUs, these relationships were ecologically meaningful. Three of these significant direct relationships were an expression of tolerant benthic taxa (either % tolerant taxa or tolerance values, which are similar metrics), which would be expected to increase in a stressed environment. These direct significant tolerance relationships were reported for Kirker Creek, Pleasant Grove Creek, and Arcade Creek. The fourth significant relationship was an inverse relationship between taxa richness and bifenthrin TUs for the 3-year Pleasant Grove Creek dataset. In summary, only a small percent of the benthic metric × bifenthrin TU relationships were significant for the four California streams. Therefore, the general summary conclusion from this analysis is that there is no strong case for showing consistent meaningful relationships between various benthic metrics used to characterize the status of benthic communities and bifenthrin TUs for these four California streams.

  2. Physicochemical characteristics of radionuclides associated with sediment from a contaminated fresh water stream

    International Nuclear Information System (INIS)

    Murdock, R.N.; Hemingway, J.D.; Jones, S.R.

    1993-01-01

    The relationships between concentrations of 241 Am, 137 Cs and 239,240 Pu and sediment particle size and geochemical species were examined for sediments taken from a freshwater stream contaminated by radioactive effluent from a low-level waste disposal site. Both 137 Cs and gross alpha concentrations were strongly correlated with the silt and clay content of the sediment, radionuclide concentrations following the order: clay>silt>sand. Positive correlations with organic content were also observed for both 137 Cs and gross alpha activity. These relationships, together with erosional and depositional characteristics obtained from streamflow data, largely explained the spatial variation in radionuclide concentrations in streambed sediments. Sequential extraction experiments showed that 137 Cs was mostly ''irreversibly'' bound to sediment particle, principally illitic clays, whereas 241 Am and 239,240 Pu were associated primarily with organic and oxy-hydroxy species within the sediments. (Author)

  3. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Pecos, Texas. Tascotal survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Tascotal survey area portion of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 337 groundwater and 611 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 80.0 ppB uranium were detected in three areas largely producing from acidic volcanoclastics in the south central portion of the survey area. High specific conductance and an association of lithium, selenium, and sodium were observed in these areas of anomalously high uranium. High uranium/specific conductance, uranium/boron, and uranium/sulfate ratios are also associated with areas of the highest uranium concentrations. Alkalinities in these areas were noted to be highly variable over short distances within the same hydrologic unit. Stream sediments containing greater than or equal to 2.57 ppM soluble uranium are located in the southwestern and the north and south central portions of the survey area. High U-FL/U-NT and low thorium/U-NT values are observed with sediments derived from acidic volcanics in the southern portions of the survey area. In areas of anomalously high uranium, an association of above background concentrations of thorium, lithium, potassium, beryllium, and zirconium were noted. In view of these data, areas containing the Buck Hill Volcanic Series, the Mitchell Mesa, and Tascotal Formations provide the best possibilities of an economical uranium deposit

  4. Sampling marine sediments for radionuclide monitoring

    International Nuclear Information System (INIS)

    Papucci, C.

    1997-01-01

    A description of the most common devices used for sampling marine sediments are reported. The systems are compared to evidence their intrinsic usefulness, for collecting samples in different environmental conditions or with different scientific objectives. Perturbations and artifacts introduced during the various steps of the sampling procedure are also reviewed, and suggestions are proposed for obtaining and preserving, as much as possible, the representativeness of the sediment samples. (author)

  5. Lead mobilisation in the hyporheic zone and river bank sediments of a contaminated stream. Contribution to diffuse pollution

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo-Roe, Barbara; Wragg, Joanna; Banks, Vanessa J. [British Geological Survey, Keyworth Nottingham (United Kingdom)

    2012-12-15

    Purpose: Past metal mining has left a legacy of highly contaminated sediments representing a significant diffuse source of contamination to water bodies in the UK and worldwide. This paper presents the results of an integrated approach used to define the role of sediments in contributing to the dissolved lead (Pb) loading to surface water in a mining-impacted catchment. Materials and methods: The Rookhope Burn catchment, northern England, UK is affected by historical mining and processing of lead ore. Quantitative geochemical loading determinations, measurements of interstitial water chemistry from the stream hyporheic zone and inundation tests of bank sediments were carried out. Results and discussion: High concentrations of Pb in the sediments from the catchment, identified from the British Geological Survey Geochemical Baseline Survey of the Environment (GBASE) data, demonstrate both the impact of mineralisation and widespread historical mining. The results from stream water show that the stream Pb load increased in the lower part of the catchment, without any apparent or significant contribution of point sources of Pb to the stream. Relative to surface water, the interstitial water of the hyporheic zone contained high concentrations of dissolved Pb in the lower reaches of the Rookhope Burn catchment, downstream of a former mine washing plant. Concentrations of 56 {mu}g l{sup -1} of dissolved Pb in the interstitial water of the hyporheic zone may be a major cause of the deterioration of fish habitats in the stream and be regarded as a serious risk to the target of good ecological status as defined in the European Water Framework Directive. Inundation tests provide an indication that bank sediments have the potential to contribute dissolved Pb to surface water. Conclusions: The determination of Pb in the interstitial water and in the inundation water, taken with water Pb mass balance and sediment Pb distribution maps at the catchment scale, implicate the

  6. Effects of legacy sediment removal on hydrology and biogeochemistryin a first order stream in Pennsylvania, USA

    Science.gov (United States)

    Historic forest conversion to agriculture and associated stream impoundments built for hydropower led to extensive burial of valley bottoms throughout the mid-Atlantic region of the US. These so-called legacy sediments are sources of nutrient and sediment pollutant loads to down...

  7. Ecological effects and chemical composition of fine sediments in Upper Austrian streams and resulting implications for river management

    Science.gov (United States)

    Höfler, Sarah; Pichler-Scheder, Christian; Gumpinger, Clemens

    2017-04-01

    In the current scientific discussion high loads of fine sediments are considered one of the most important causes of river ecosystem degradation worldwide. Especially in intensively used catchment areas changes in the sediment household must be regarded as a reason, which prevents the achievement of the objectives of the European Water Framework Directive (WFD). Therefore, the Upper Austrian Water Authorities have launched two comprehensive studies on the topic. The first one was a survey on the current siltation status of river courses in Upper Austria. The second study deals with two selected catchments in detail, in order to get a clear picture of the impacts of the fines on the aquatic fauna (trout eggs, benthic invertebrates), the chemical composition of these fractions, the crucial hydrogeological processes and to develop possible role models for measures both in the catchments and in the streams. At eight sites within the two catchments sediment and water samples were collected at two dates for detailed chemical analysis. On one date additionally the benthic invertebrate fauna was investigated on the microhabitat level. Thereby it was possible to enhance the understanding of the range of ecological impacts caused by silting-up in different hydro-morphological circumstances and with different fine sediment loads. The water samples as well as the sediment fraction samples ethylbenzene, and xylenes), AOX (adsorbable organohalogens) and various nutrients. Additionally, the basic parameters dry residue, loss on ignition, TC (total carbon), TOC (total organic carbon) and nutrients were analysed. From the sediment eluates and the filtered water decomposition products of pesticides, remains of medical drugs, sweeteners, hormonally active substances and water-soluble elements were analysed. Furthermore, a GIS-based analysis was carried out for the two examined catchments. The model included data gained from a digital elevation model, land use data and digital soil

  8. Assessment of stream bottom sediment quality in the vicinity of the Caldas uranium mine

    International Nuclear Information System (INIS)

    Oliveira, Priscila E.S. de; Silva, Nivaldo C.

    2015-01-01

    An evaluation of the quality of stream bottom sediments was performed in the surroundings of the Caldas Uranium Mining and Milling Facilities (UMMF), sited on Pocos de Caldas Plateau (southeastern Brazil), to verify whether the sediments in the water bodies downstream the plant, were impacted by effluents from a large waste rock pile, named Waste Rock Pile 4 (WRP4), and from the Tailings Dam (TD). In order to perform the research, twelve sampling stations were established in the watersheds around Caldas UMMF: the Soberbo creek, the Consulta brook, and the Taquari river. One of the stations was located inside the Bacia Nestor Figueiredo, a retention pond that receives effluents from WRP4, and another in a settling tank (D2) for radium, which receives the effluents from TD. A monitoring scheme has been developed, comprising four sampling campaigns in 2010 and 2011, and the samples were analyzed for selected metals-metalloids and radionuclides, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), Ultraviolet-Visible (UV-Vis) Spectroscopy and Gamma-ray Spectrometry. The results suggest that effluents discharged from retention ponds to watercourses, causing an increase in the concentration of As, B, Ba, Cr, Mo, Mn, Pb, Zn, 238 U, 232 Th, 226 Ra, 228 Ra and 210 Pb in sediments. Detailed investigation in sub-superficial layers is recommended at these locations to evaluate the need of implementing mitigation actions such as lining and constructing hydraulic barriers downstream the ponds. Actually, the UTM/Caldas operator is already implementing control measures. (author)

  9. Assessment of stream bottom sediment quality in the vicinity of the Caldas uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Priscila E.S. de, E-mail: pge_13@hotmail.com [Universidade Federal de Ouro Preto (ProAmb/UFOP), Ouro Preto, MG (Brazil). Programa de Pos-Graduacao em Engenharia Ambiental; Filho, Carlos A.C.; Moreira, Rubens M.; Ramos, Maria E.A.F.; Dutra, Pedro H.; Ferreira, Vinicius V.M., E-mail: cacf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte (Brazil); Silva, Nivaldo C., E-mail: ncsilva@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2015-07-01

    An evaluation of the quality of stream bottom sediments was performed in the surroundings of the Caldas Uranium Mining and Milling Facilities (UMMF), sited on Pocos de Caldas Plateau (southeastern Brazil), to verify whether the sediments in the water bodies downstream the plant, were impacted by effluents from a large waste rock pile, named Waste Rock Pile 4 (WRP4), and from the Tailings Dam (TD). In order to perform the research, twelve sampling stations were established in the watersheds around Caldas UMMF: the Soberbo creek, the Consulta brook, and the Taquari river. One of the stations was located inside the Bacia Nestor Figueiredo, a retention pond that receives effluents from WRP4, and another in a settling tank (D2) for radium, which receives the effluents from TD. A monitoring scheme has been developed, comprising four sampling campaigns in 2010 and 2011, and the samples were analyzed for selected metals-metalloids and radionuclides, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), Ultraviolet-Visible (UV-Vis) Spectroscopy and Gamma-ray Spectrometry. The results suggest that effluents discharged from retention ponds to watercourses, causing an increase in the concentration of As, B, Ba, Cr, Mo, Mn, Pb, Zn, {sup 238}U, {sup 232}Th, {sup 226}Ra, {sup 228}Ra and {sup 210}Pb in sediments. Detailed investigation in sub-superficial layers is recommended at these locations to evaluate the need of implementing mitigation actions such as lining and constructing hydraulic barriers downstream the ponds. Actually, the UTM/Caldas operator is already implementing control measures. (author)

  10. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Cottonwood project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of Cottonwood project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 15 groundwater samples, 79 stream sediment samples, and 85 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from 0.25 to 3.89 ppB. The highest concentrations are from groundwaters from the Little Cottonwood and Ferguson Stocks. Variables that appear to be associated with uranium in groundwater include cobalt, iron, potassium, manganese, nickel, sulfate, and to a lesser extent, molybdenum and strontium. This association is attributed to the Monzonitic Little Cottonwood Stock, granodioritic to granitic and lamprophyric dikes, and known sulfide deposits. Soluble uranium concentrations (U-FL) in stream sediments range from 0.31 to 72.64 ppM. Total uranium concentrations (U-NT) range from 1.80 to 75.20 ppM. Thorium concentrations range from <2 to 48 ppM. Anomalous values for uranium and thorium are concentrated within the area of outcrop of the Little Cottonwood and Ferguson Stocks. Variables which are areally associated with high values of uranium, thorium, and the U-FL:U-NT ratio within the Little Cottonwood Stock are barium, copper, molybdenum, and zinc. High concentrations of these variables are located near sulfide deposits within the Little Cottonwood Stock

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the vernal NTMS quadrangle, Utah/Colorado, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Purson, J.D.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a geochemical reconnaissance for uranium in the Vernal NTMS quadrangle, Utah/Colorado, in the summers of 1977 and 1978. Totals of 422 water and 1552 sediment samples were collected from 1652 locations. These samples were collected at an average density of one sample location per 11 km 2 over an 18,800 km 2 area. Water samples were collected from streams and springs. Only those samples containing >10 ppB uranium for waters and >8 ppM uranium for sediments are discussed; however, all field and analytical data are included in the appendixes. The uranium concentrations in waters range from below the detection limit of 0.01 ppB to 108.04 ppB, with a mean uranium concentration for all water types of 3.11 ppB. Three clusters of samples containing relatively high uranium values are defined; they are associated with the Duchesne River formation, the Mancos shale, or the Uinta Mountain group and Browns Park formations. A few of the samples having the highest uranium values are associated with host rocks favorable for significant uranium mineralization. Sediments collected in this study have uranium concentrations that range between 0.70 ppM and 56.70 ppM, with a mean of 3.46 ppM. The majority of sediment samples with relatively high uranium concentrations were collected from one area in the Sand Wash basin in the northeastern corner of the quadrangle and are associated with the Wasatch formation. None of the water clusters define areas of significant interest; however, the area having high uranium values in sediments is worthy of further study

  12. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary.

    Science.gov (United States)

    Kim, Haryun; Bae, Hee-Sung; Reddy, K Ramesh; Ogram, Andrew

    2016-12-01

    River tributaries are ecologically important environments that function as sinks of inorganic nitrogen. To gain greater insight into the nitrogen cycle (N-cycle) in these environments, the distributions and activities of microbial populations involved in the N-cycle were studied in riparian and stream sediments of the Santa Fe River (SFR) tributaries located in northern Florida, USA. Riparian sediments were characterized by much higher organic matter content, and extracellular enzyme activities, including cellobiohydrolase, β-d-glucosidase, and phenol oxidase than stream sediments. Compared with stream sediments, riparian sediments exhibited significantly higher activities of nitrification, denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation; correspondingly, with higher copies of amoA (a biomarker for enumerating nitrifiers), nirS and nirK (for denitrifiers), and nrfA (for DNRA bacteria). Among N-cycle processes, denitrification showed the highest activities and the highest concentrations of the corresponding gene (nirK and nirS) copy numbers. In riparian sediments, substantial nitrification activities (6.3 mg-N kg soil -1 d -1 average) and numbers of amoA copies (7.3 × 10 7  copies g soil -1 average) were observed, and nitrification rates correlate with denitrification rates. The guild structures of denitrifiers and nitrifiers in riparian sediments differed significantly from those found in stream sediments, as revealed by analysis of nirS and archaeal amoA sequences. This study shows that riparian sediments serve as sinks for inorganic nitrogen loads from non-point sources of agricultural runoff, with nitrification and denitrification associated with elevated levels of carbon and nitrogen contents and extracellular enzyme activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Factors Effecting Adsorption of 137 Cs in Marine Sediment Samples in Marine Sediment Samples from the Upper Gulf of Thailand

    International Nuclear Information System (INIS)

    Saengkul, C.; Sawangwong, P.; Pakkong, P.

    2014-01-01

    Contamination of 137 Cs in sediment is a far more serious problem than in water because sediment is a main transport factor of 137 Cs to the aquatic environmental. Most of 137 Cs in water could be accumulated in sediment which has direct effect to benthos. This study focused on factors effecting the adsorption of 137Cs in marine sediment samples collected from four different estuary sites to assess the transfer direction of 137 Cs from water to sediment that the study method by treat 137 Cs into seawater and mixed with different sediment samples for 4 days. The result indicated that properties of marine sediment (cation exchange capacity (CEC), organic matter, clay content, texture, type of clay mineral and size of soil particle) had effects on 137 Cs adsorption. CEC and clay content correlated positively with the accumulation of 137 Cs in the marine sediment samples. On the other hand, organic matter in sediment correlated negatively with the accumulation of 137 Cs in samples. The study of environmental effects (pH and potassium) found that the 137 Cs adsorption decreased when concentration of potassium increased. The pH effect is still unclear in this study because the differentiation of pH levels (6, 7, 8.3) did not have effects on 137 Cs adsorption in the samples.

  14. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Rock Springs NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1981-01-01

    This report contains data collected by the Los Alamos Scientific Laboratory (LASL) during a regional geochemical survey for uranium in the Rock Springs National Topographic Map Series (NTMS) quadrangle, southwestern Wyoming, as part of the nationwide hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 397 water and 1794 sediment samples were collected from 1830 locations in the Rock Springs quadrangle of southern Wyoming during the summer of 1976. The average uranium concentration of all water samples is 6.57 ppb and the average sediment uranium concentration is 3.64 ppM. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in the appendices. Uranium/thorium ratios for sediment samples are also included. A sample location overlay (Plate I) at 1:250 000 scale for use in conjunction with the Rock Springs NTMS quadrangle sheet (US Geological Survey, 1954) is provided. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting. Sediments were analyzed for uranium and thorium as well as Al, Sb, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sm, Sc, Ag, Na, Sr, Ta, Tb, Sn, T, W, V, Yb, and Zn. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. These analytical methods are described briefly in the appendix. This report is simply a data release and is intended to make the data available to the DOE and to the public as quickly as possible

  15. Patterns and contributions of floodplain and legacy sediments remobilized from Piedmont streams of the mid-Atlantic U.S.

    Science.gov (United States)

    Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen

    2015-04-01

    The perceived role of streambank erosion as a contributor to watershed sediment yield is an important driver of policy decisions for managing downstream impacts in the United States. In the Piedmont physiographic province of the eastern U.S. and in other regions of the south and midwest, the issue of 'legacy' sediment stored in stream valleys has long been recognized as a consequence of rapid deforestation and erosive agricultural practices following European settlement. Remobilization of stored floodplain sediment by bank erosion is frequently cited as a dominant component of watershed sediment budgets, with legacy sediment comprising the largest portion of this source. However there are few published studies documenting spatially extensive measurements of channel change throughout the drainage network on time scales of more than a few years. In this study we document 1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, 2) proportions of streambank sediment derived from legacy deposits, and 3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont. We measured gross erosion and channel deposition rates over 45 years within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 by comparing stream channel and floodplain morphology from LiDAR-based digital elevation data collected in 2005 with channel positions recorded on 1:2400-scale topographic maps from 1959-1961. Results were extrapolated to estimate contributions to watershed sediment yield from 1005 km2 of northern Baltimore County. Results indicate that legacy sediment is a dominant component (62%) of the sediment derived from bank erosion and that its relative importance is greater in larger valleys with broader valley floors and lower gradients. Although mass of sediment remobilized per unit channel length is greater in

  16. The role of geology in sediment supply and bedload transport patterns in coarse-grained streams

    Science.gov (United States)

    Sandra E. Ryan

    2007-01-01

    This paper compares gross differences in rates of bedload sediment moved at bankfull discharges in 19 channels on national forests in the Middle and Southern Rocky Mountains. Each stream has its own "bedload signal," in that the rate and size of materials transported at bankfull discharge largely reflect the nature of flow and sediment particular to that...

  17. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    Science.gov (United States)

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  18. Design and methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015

    Science.gov (United States)

    Sheibley, Rich W.; Morace, Jennifer L.; Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Nakagaki, Naomi; Button, Daniel T.; Qi, Sharon L.

    2017-08-25

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project conducted the Pacific Northwest Stream Quality Assessment (PNSQA) to investigate stream quality across the western part of the Pacific Northwest. The goal of the PNSQA was to assess the health of streams in the region by characterizing multiple water-quality factors that are stressors to in-stream aquatic life and by evaluating the relation between these stressors and the condition of biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowland and Willamette Valley Level III Ecoregions were the focus of this regional study. Findings will help inform the public and policymakers about human and environmental factors that are the most critical in affecting stream quality and, thus, provide insights into possible strategies to protect or improve the health of streams in the region.Land-use data were used in the study to identify and select sites within the region that ranged in levels of urban and agricultural development. A total of 88 sites were selected across the region—69 were on streams that explicitly spanned a range of urban land use in their watersheds, 8 were on streams in agricultural watersheds, and 11 were reference sites with little or no development in their watersheds. Depending on the type of land use, sites were sampled for contaminants, nutrients, and sediment for either a 4- or 10-week period during April, May, and June 2015. This water-quality “index period” was immediately followed with an ecological survey of all sites that included stream habitat, benthic algae, benthic macroinvertebrates, and fish. Additionally, streambed sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing.This report provides a detailed description of the specific study components and methods of the PNSQA, including (1) surveys of stream habitat and aquatic biota, (2) discrete

  19. Quantifying the influence of sediment source area sampling on detrital thermochronometer data

    Science.gov (United States)

    Whipp, D. M., Jr.; Ehlers, T. A.; Coutand, I.; Bookhagen, B.

    2014-12-01

    Detrital thermochronology offers a unique advantage over traditional bedrock thermochronology because of its sensitivity to sediment production and transportation to sample sites. In mountainous regions, modern fluvial sediment is often collected and dated to determine the past (105 to >107 year) exhumation history of the upstream drainage area. Though potentially powerful, the interpretation of detrital thermochronometer data derived from modern fluvial sediment is challenging because of spatial and temporal variations in sediment production and transport, and target mineral concentrations. Thermochronometer age prediction models provide a quantitative basis for data interpretation, but it can be difficult to separate variations in catchment bedrock ages from the effects of variable basin denudation and sediment transport. We present two examples of quantitative data interpretation using detrital thermochronometer data from the Himalaya, focusing on the influence of spatial and temporal variations in basin denudation on predicted age distributions. We combine age predictions from the 3D thermokinematic numerical model Pecube with simple models for sediment sampling in the upstream drainage basin area to assess the influence of variations in sediment production by different geomorphic processes or scaled by topographic metrics. We first consider a small catchment from the central Himalaya where bedrock landsliding appears to have affected the observed muscovite 40Ar/39Ar age distributions. Using a simple model of random landsliding with a power-law landslide frequency-area relationship we find that the sediment residence time in the catchment has a major influence on predicted age distributions. In the second case, we compare observed detrital apatite fission-track age distributions from 16 catchments in the Bhutan Himalaya to ages predicted using Pecube and scaled by various topographic metrics. Preliminary results suggest that predicted age distributions scaled

  20. The occurrence of trace elements in bed sediment collected from areas of varying land use and potential effects on stream macroinvertebrates in the conterminous western United States, Alaska, and Hawaii, 1992-2000

    Science.gov (United States)

    Paul, Angela P.; Paretti, Nicholas V.; MacCoy, Dorene E.; Brasher, Anne M.D.

    2012-01-01

    As part of the National Water-Quality Assessment Program of the U.S. Geological Survey, this study examines the occurrence of nine trace elements in bed sediment of varying mineralogy and land use and assesses the possible effects of these trace elements on aquatic-macroinvertebrate community structure. Samples of bed sediment and macroinvertebrates were collected from 154 streams at sites representative of undeveloped, agricultural, urban, mined, or mixed land-use areas and 12 intermediate-scale ecoregions within the conterminous western United States, Alaska, and Hawaii from 1992 to 2000. The nine trace elements evaluated during this study—arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), and zinc (Zn)—were selected on the basis of potential ecologic significance and availability of sediment-quality guidelines. At most sites, the occurrence of these trace elements in bed sediment was at concentrations consistent with natural geochemical abundance, and the lowest concentrations were in bed-sediment samples collected from streams in undeveloped and agricultural areas. With the exception of Zn at sampling sites influenced by historic mining-related activities, median concentrations of all nine trace elements in bed sediment collected from sites representative of the five general land-use areas were below concentrations predicted to be harmful to aquatic macroinvertebrates. The highest concentrations of As, Cd, Pb, and Zn were in bed sediment collected from mined areas. Median concentrations of Cu and Ni in bed sediment were similarly enriched in areas of mining, urban, and mixed land use. Concentrations of Cr and Ni appear to originate largely from geologic sources, especially in the western coastal states (California, Oregon, and Washington), Alaska, and Hawaii. In these areas, naturally high concentrations of Cr and Ni can exceed concentrations that may adversely affect aquatic macroinvertebrates

  1. Underwater Sediment Sampling Research

    Science.gov (United States)

    2017-01-01

    impacted sediments was found to be directly related to the concentration of crude oil detected in the sediment pore waters . Applying this mathematical...Kurt.A.Hansen@uscg.mil. 16. Abstract (MAXIMUM 200 WORDS ) The USCG R&D Center sought to develop a bench top system to determine the amount of total...scattered. The approach here is to sample the interstitial water between the grains of sand and attempt to determine the amount of oil in and on

  2. Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment.

    Directory of Open Access Journals (Sweden)

    Jeremy J Piggott

    Full Text Available Changes to land use affect streams through nutrient enrichment, increased inputs of sediment and, where riparian vegetation has been removed, raised water temperature. We manipulated all three stressors in experimental streamside channels for 30 days and determined the individual and pair-wise combined effects on benthic invertebrate and algal communities and on leaf decay, a measure of ecosystem functioning. We added nutrients (phosphorus+nitrogen; high, intermediate, natural and/or sediment (grain size 0.2 mm; high, intermediate, natural to 18 channels supplied with water from a nearby stream. Temperature was increased by 1.4°C in half the channels, simulating the loss of upstream and adjacent riparian shade. Sediment affected 93% of all biological response variables (either as an individual effect or via an interaction with another stressor generally in a negative manner, while nutrient enrichment affected 59% (mostly positive and raised temperature 59% (mostly positive. More of the algal components of the community responded to stressors acting individually than did invertebrate components, whereas pair-wise stressor interactions were more common in the invertebrate community. Stressors interacted often and in a complex manner, with interactions between sediment and temperature most common. Thus, the negative impact of high sediment on taxon richness of both algae and invertebrates was stronger at raised temperature, further reducing biodiversity. In addition, the decay rate of leaf material (strength loss accelerated with nutrient enrichment at ambient but not at raised temperature. A key implication of our findings for resource managers is that the removal of riparian shading from streams already subjected to high sediment inputs, or land-use changes that increase erosion or nutrient runoff in a landscape without riparian buffers, may have unexpected effects on stream health. We highlight the likely importance of intact or restored buffer

  3. Water-quality, bed-sediment, and biological data (October 2015 through September 2016) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    Science.gov (United States)

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2018-03-30

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2015 through September 2016. Bed-sediment and biota samples were collected once at 13 sites during August 2016.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2015 through September 2016. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Samples for analysis of turbidity were collected at 13 sites, whereas samples for analysis of dissolved organic carbon were collected at 10 sites. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained (less than 0.063 millimeter) fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  4. Hydrogeochemical and stream sediment reconnaissance of the National Uranium Resource Evaluation Program. Progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, T.A.; Bunker, M.E.; Hansel, J.M. Jr.

    1978-10-01

    The modifications to the Los Alamos Scientific Laboratory (LASL) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, necessary to incorporate the expansion and revision of the overall HSSR program as required by the Department of Energy, have been completed. To date, approximately 57% of the total area assigned to the LASL in the Rocky Mountain region and Alaska has been sampled and plans are well under way to sample an additional 28% during FY 78. Contracts have been let to complete the sampling of the LASL area in the lower states and bids to sample an additional 33% of Alaska are being evaluated. Twenty reports (2 in press and 18 in preparation) are presently scheduled to be open filed within six months, reporting uranium data only for 18 complete quadrangles and multielement data for 11 complete quadrangles. In addition, data releases are being prepared to open file the uranium data from portions of 13 quadrangles that are now outside the LASL reporting boundary but which had been sampled by the LASL prior to the establishment of the new boundary in October 1977. By the end of the quarter, all multielement analysis systems were operational. Water samples from 7780 locations and sediment samples from 4170 locations were analyzed for uranium. Samples from approximately 6500 locations were analyzed by one or more of the multielement methods.

  5. Hydrogeochemical and stream sediment reconnaissance of the National Uranium Resource Evaluation Program. Progress report, January--March 1978

    International Nuclear Information System (INIS)

    Weaver, T.A.; Bunker, M.E.; Hansel, J.M. Jr.

    1978-10-01

    The modifications to the Los Alamos Scientific Laboratory (LASL) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, necessary to incorporate the expansion and revision of the overall HSSR program as required by the Department of Energy, have been completed. To date, approximately 57% of the total area assigned to the LASL in the Rocky Mountain region and Alaska has been sampled and plans are well under way to sample an additional 28% during FY 78. Contracts have been let to complete the sampling of the LASL area in the lower states and bids to sample an additional 33% of Alaska are being evaluated. Twenty reports (2 in press and 18 in preparation) are presently scheduled to be open filed within six months, reporting uranium data only for 18 complete quadrangles and multielement data for 11 complete quadrangles. In addition, data releases are being prepared to open file the uranium data from portions of 13 quadrangles that are now outside the LASL reporting boundary but which had been sampled by the LASL prior to the establishment of the new boundary in October 1977. By the end of the quarter, all multielement analysis systems were operational. Water samples from 7780 locations and sediment samples from 4170 locations were analyzed for uranium. Samples from approximately 6500 locations were analyzed by one or more of the multielement methods

  6. Field procedures for the uranium hydrogeochemical and stream sediment reconnaissance as used by the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Aamodt, P.L.

    1978-04-01

    This manual of field procedures is prepared to aid personnel involved in the field sampling of natural waters and waterborne sediment for the Los Alamos Scientific Laboratory (LASL) as part of the US Department of Energy (DOE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the National Uranium Resource Evaluation (NURE) program. It presents the procedural guidelines to be followed by all contractors, contractor employees, and others who collect, treat, or otherwise handle samples taken for the LASL as part of the HSSR program. Part I relates to all sampling in the conterminous states of the US for which the LASL is responsible to the DOE for carrying out the HSSR work. Part II describes procedures to be followed for HSSR work, using helicopter support, in the state of Alaska. The objective of the manual is to insure that consistent techniques are used throughout the survey. If any procedure is unclear or cannot be followed, telephone collect to Group G-5, LASL, (505) 667-7590, for further instructions. No variations in the specific procedures should be made without prior approval of the LASL

  7. River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply

    Science.gov (United States)

    Sklar, Leonard; Dietrich, William E.

    The simplicity and apparent mechanistic basis of the stream power river incision law have led to its wide use in empirical and theoretical studies. Here we identify constraints on its calibration and application, and present a mechanistic theory for the effects of sediment supply on incision rates which spotlights additional limitations on the applicability of the stream power law. On channels steeper than about 20%, incision is probably dominated by episodic debris flows, and on sufficiently gentle slopes, sediment may bury the bedrock and prevent erosion. These two limits bound the application of the stream power law and strongly constrain the possible combination of parameters in the law. In order to avoid infinite slopes at the drainage divide in numerical models of river profiles using the stream power law it is commonly assumed that the first grid cell is unchanneled. We show, however, that the size of the grid may strongly influence the calculated equilibrium relief. Analysis of slope-drainage area relationships for a river network in a Northern California watershed using digital elevation data and review of data previously reported by Hack reveal that non-equilibrium profiles may produce well defined slope-area relationships (as expected in equilibrium channels), but large differences between tributaries may point to disequilibrium conditions. To explore the role of variations in sediment supply and transport capacity in bedrock incision we introduce a mechanistic model for abrasion of bedrock by saltating bedload. The model predicts that incision rates reach a maximum at intermediate levels of sediment supply and transport capacity. Incision rates decline away from the maximum with either decreasing supply (due to a shortage of tools) or increasing supply (due to gradual bed alluviation), and with either decreasing transport capacity (due to less energetic particle movement) or increasing transport capacity (due less frequent particle impacts per unit bed

  8. Grazing management effects on sediment, phosphorus, and pathogen loading of streams in cool-season grass pastures.

    Science.gov (United States)

    Schwarte, Kirk A; Russell, James R; Kovar, John L; Morrical, Daniel G; Ensley, Steven M; Yoon, Kyoung-Jin; Cornick, Nancy A; Cho, Yong Il

    2011-01-01

    Erosion and runoff from pastures may lead to degradation of surface water. A 2-yr grazing study was conducted to quantify the effects of grazing management on sediment, phosphorus (P), and pathogen loading of streams in cool-season grass pastures. Six adjoining 12.1-ha pastures bisected by a stream in central Iowa were divided into three treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with restricted stream access (CSR), and rotational stocking (RS). Rainfall simulations on stream banks resulted in greater ( CSR pastures. Bovine enterovirus was shed by an average of 24.3% of cows during the study period and was collected in the runoff of 8.3 and 16.7% of runoff simulations on bare sites in CSU pastures in June and October of 2008, respectively, and from 8.3% of runoff simulations on vegetated sites in CSU pastures in April 2009. Fecal pathogens (bovine coronavirus [BCV], bovine rotavirus group A, and O157:H7) shed or detected in runoff were almost nonexistent; only BCV was detected in feces of one cow in August of 2008. Erosion of cut-banks was the greatest contributor of sediment and P loading to the stream; contributions from surface runoff and grazing animals were considerably less and were minimized by grazing management practices that reduced congregation of cattle by pasture streams. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition

    Directory of Open Access Journals (Sweden)

    Jacob D. Hosen

    2017-08-01

    Full Text Available Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition

  10. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. The reconnaissance data will be combined with data from airborne radiometric surveys and geological and geophysical investigations to provide an improved estimate for the economics and availability of nuclear fuel resources in the United States and to make information available to industry for use in the exploration and development of uranium resources. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting and a 20 parts per billion lower limit of detection. Elemental concentrations in sediments are also determined by neutron activation analysis, x-ray fluorescence, and by arc-source emission spectrography. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km 2 . The philosophy, sampling methodology, analytical techniques, and progress of the reconnaissance are described in several published pilot study, reconnaissance, and technical reports. The Los Alamos program was designed to maximize the identification of uranium in terrains of varied geography, geology, and climate

  11. Uranium hydrogeochemical and stream sediment reconnaissance data listing release for the Three Forks Basin, Spanish Peaks, and Boulder River areas for the Bozeman NTMS quadrangle, Montana, including concentrations of forty-six additional elements

    International Nuclear Information System (INIS)

    Bolivar, S.L.; George, W.E.; Gallimore, D.L.; Apel, C.T.; Gansel, J.M.; Hensley, W.K.; Van Haaften, I.J.; Pirtle, J.

    1980-08-01

    Totals of 531 water and 1275 sediment samples were collected from 1275 stream and spring locations. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium/thorium ratios for sediment samples are also included. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements (Al, Sb, Ba, Ca, Ce, Cs, Cl, Cr, Co, Dy, Eu, Au, Hf, Fe, La, Lu, Mg, Mn, K, Rb, Sn, Sc, Na, Sr, Ta, Tb, Th, Ti, V, Yb, and Zn), by x-ray fluorescence for 13 elements (As, Bi, Cd, Cu, Pb, Mo, Ni, Nb, Se, Ag, Sn, W, and Zr), and by arc-source emission spectrography for Li and Be. Analytical results for sediments are reported as parts per million

  12. Lawrence Livermore Laboratory hydrogeochemical and stream sediment reconnaissance. Raw data report: Winnemucca Dry Lake Basin orientation study, Lovelock and Reno 10 x 20 NTMS area, Nevada

    International Nuclear Information System (INIS)

    Puchlik, K.P.; Holder, B.E.; Smith, C.F.

    1978-01-01

    This report presents the results of the Winnemucca Dry Lake Basin, Nevada, orientation study in the Lovelock and Reno 1 0 x 2 0 quadrangles of the National Topographic Map Series (NTMS). Wet, dry, and playa sediment samples were collected throughout the 597 km 2 semi-arid, closed basin. Water samples were collected at the few available streams and springs. In addition to neutron activation analysis for uranium and 15 to 20 trace elements on all samples, field and laboratory measurements were made on water samples. Analytical data and field measurements are presented in tabular hardcopy and fiche format. Eight full-size overlays for use with the Lovelock and Reno NTMS 1:250,000 quadrangles are included. Water sample site locations, water sample uranium concentration, sediment sample site locations, and sediment sample total uranium concentration are shown on the separate overlays. A general description of the area and the rock type distribution is presented. Some of the data in this report have been issued previously in ''Preliminary Report on the Winnemucca Dry Lake Basin Pilot Study,'' GJBX-41(76), August 1976

  13. Multivariate statistical analysis of stream sediments for mineral resources from the Craig NTMS Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Beyth, M.; McInteer, C.; Broxton, D.E.; Bolivar, S.L.; Luke, M.E.

    1980-06-01

    Multivariate statistical analyses were carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Craig quadrangle, Colorado, to support the National Uranium Resource Evaluation and to evaluate strategic or other important commercial mineral resources. A few areas for favorable uranium mineralization are suggested for parts of the Wyoming Basin, Park Range, and Gore Range. Six potential source rocks for uranium are postulated based on factor score mapping. Vanadium in stream sediments is suggested as a pathfinder for carnotite-type mineralization. A probable northwest trend of lead-zinc-copper mineralization associated with Tertiary intrusions is suggested. A few locations are mapped where copper is associated with cobalt. Concentrations of placer sands containing rare earth elements, probably of commercial value, are indicated for parts of the Sand Wash Basin

  14. Evaluation of water and sediment of Graminha and Aguas da Serra stream in Limeira (SP) by SR-TXRF

    International Nuclear Information System (INIS)

    Fazza, Elizete Vieira; Moreira, Silvana

    2007-01-01

    Limeira city is located in the Sao Paulo State, in the second area of the State with the largest economic and demographic growth. It possesses expressive economy, with industries in several productive sections. As the Graminha and Aguas da Serra streams present its nascent ones in the urban zone of the Limeira city, they cross part of the rural zone and it unites draining in the Piracicaba River, it is possible that these basins suffer or have already suffered the impacts related to the environmental pollution caused by anthropogenic factors. Once the city have galvanization industries for the jewels, semi-jewels and bijoux production the descriptions and interpretations of the concentrations of heavy metals, in the water and in the sediments, are indicative to elucidate the influence anthropogenic and the loading of these compounds for Piracicaba River. For the metal determination Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) was used. All measurements were performed using a white beam of synchrotron radiation for excitation and a Ge hyperpure detector. Detection limits for water samples was 0.04 -μg.L -1 and in sediment samples 0.03 μg.g -1 for Cu and Zn elements. In the water samples concentrations higher than permissive values established by CONAMA for Al, Fe, Zn, Cr, Ni, Cu and Pb were observed. For sediment samples values higher than reference value quality defined by CETESB was verified for Cr, Zn, Cu, Ni and Pb. (author)

  15. Evaluation of water and sediment of Graminha and Aguas da Serra stream in Limeira (SP) by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Fazza, Elizete Vieira; Moreira, Silvana [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mails: silvana@fec.unicamp.br; fazzaelizete@yahoo.com

    2007-07-01

    Limeira city is located in the Sao Paulo State, in the second area of the State with the largest economic and demographic growth. It possesses expressive economy, with industries in several productive sections. As the Graminha and Aguas da Serra streams present its nascent ones in the urban zone of the Limeira city, they cross part of the rural zone and it unites draining in the Piracicaba River, it is possible that these basins suffer or have already suffered the impacts related to the environmental pollution caused by anthropogenic factors. Once the city have galvanization industries for the jewels, semi-jewels and bijoux production the descriptions and interpretations of the concentrations of heavy metals, in the water and in the sediments, are indicative to elucidate the influence anthropogenic and the loading of these compounds for Piracicaba River. For the metal determination Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) was used. All measurements were performed using a white beam of synchrotron radiation for excitation and a Ge hyperpure detector. Detection limits for water samples was 0.04 -{mu}g.L{sup -1} and in sediment samples 0.03 {mu}g.g{sup -1} for Cu and Zn elements. In the water samples concentrations higher than permissive values established by CONAMA for Al, Fe, Zn, Cr, Ni, Cu and Pb were observed. For sediment samples values higher than reference value quality defined by CETESB was verified for Cr, Zn, Cu, Ni and Pb. (author)

  16. Selected Metals in Sediments and Streams in the Oklahoma Part of the Tri-State Mining District, 2000-2006

    Science.gov (United States)

    Andrews, William J.; Becker, Mark F.; Mashburn, Shana L.; Smith, S. Jerrod

    2009-01-01

    The abandoned Tri-State mining district includes 1,188 square miles in northeastern Oklahoma, southeastern Kansas, and southwestern Missouri. The most productive part of the Tri-State mining district was the 40-square mile part in Oklahoma, commonly referred to as 'the Picher mining district' in north-central Ottawa County, Oklahoma. The Oklahoma part of the Tri-State mining district was a primary producing area of lead and zinc in the United States during the first half of the 20th century. Sulfide minerals of cadmium, iron, lead, and zinc that remained in flooded underground mine workings and in mine tailings on the land surface oxidized and dissolved with time, forming a variety of oxide, hydroxide, and hydroxycarbonate metallic minerals on the land surface and in streams that drain the district. Metals in water and sediments in streams draining the mining district can potentially impair the habitat and health of many forms of aquatic and terrestrial life. Lakebed, streambed and floodplain sediments and/or stream water were sampled at 30 sites in the Oklahoma part of the Tri-State mining district by the U.S. Geological Survey and the Oklahoma Department of Environmental Quality from 2000 to 2006 in cooperation with the U.S. Environmental Protection Agency, and the Quapaw and Seneca-Cayuga Tribes of Oklahoma. Aluminum and iron concentrations of several thousand milligrams per kilogram were measured in sediments collected from the upstream end of Grand Lake O' the Cherokees. Manganese and zinc concentrations in those sediments were several hundred milligrams per kilogram. Lead and cadmium concentrations in those sediments were about 10 percent and 0.1 percent of zinc concentrations, respectively. Sediment cores collected in a transect across the floodplain of Tar Creek near Miami, Oklahoma, in 2004 had similar or greater concentrations of those metals than sediment cores collected at the upstream end of Grand Lake O' the Cherokees. The greatest concentrations of

  17. Stream remediation following a gasoline spill

    International Nuclear Information System (INIS)

    Owens, E.H.; Reiter, G.A.; Challenger, G.

    2000-01-01

    On June 10, 1999, a pipe ruptured on the Olympic Pipe Line causing the release, explosion and fire of up to one million litres of gasoline in Bellingham, Washington. It affected approximately 5 km of the Whatcom Creek ecosystem. Following the incident, several concurrent activities in the source area and downstream occurred. This paper discussed the remediation of the affected stream bed sections. During the period July 6 - August 16, an interagency project was implemented. It involved mechanical, manual, and hydraulic in-situ treatment techniques to remove the gasoline from the stream bed and the banks. In addition, a series of controlled, hydraulic flushes were conducted. The sluice or control gates at the head of the Whatcom Creek were opened each night, and bigger flushes took place before and after the treatments. Simultaneously, water and sediment were sampled and analysed. The data obtained provided information on the state of the initial stream water and stream sediment and on the effects that the remediation had had. The residual gasoline was successfully removed from the sediments and river banks in six weeks. No downstream movement of the released gasoline towards Bellingham was detected. 3 refs., 2 tabs., 11 figs

  18. Supplement to hydrogeochemical and stream-sediment reconnaissance basic data reports K/UR-445 through K/UR-457 [GJBX-165(82) through GJBX-177(82)]. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Program was to provide information to be used in accomplishing the overall National Uranium Resource Evaluation (NURE) Program objectives. This was accomplished by a reconnaissance of surface water, groundwater, stream sediment, and lake sediment. The survey was conducted by Los Alamos National Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. The samples in the reports were collected by SRL and analyzed by the Uranium Resource Evaluation Project in Oak Ridge, Tennessee. Laboratory analyses were completed in August 1982. The following quadrangles located in the states of California, Nevada, Oregon, Arizona, Maine, Washington, and South Carolina are covered in this report: Adel, Bangor, Bath, Boise, Challis, Caliente, Death Valley, Elko, Ely, Fresno, Hailey, Idaho Falls, Jordan Valley, Lund, Mariposa, Phoenix, San Luis Obispo, Sacramento, Santa Cruz, Twin Falls, and Vya

  19. Uranium Hydrogeochemical and Stream Sediment Reconnaissance data release for the New Mexico portions of the Hobbs and Brownfield NTMS quadrangles, New Mexico/Texas

    International Nuclear Information System (INIS)

    Warren, R.G.; Nunes, H.P.

    1978-06-01

    U concentrations in waters approximate a lognormal distribution with a mean of 4.73 parts per billion (ppB) for the combined water samples from the western halves of both quadrangles. The highest U concentration found in a water sample is 139.7 ppb. About 93% of these samples were collected from 1008 wells. Of the remainder, 1 sample was collected from a spring and 75 samples were collected from combined surface water sources of artificial and natural ponds. The mean U content of the samples from surface water sources (7.63 ppB) is higher than that of the samples from wells (4.50 ppB). The water samples having the highest U content are from wells and ponds in the western, and especially the northwestern, portion of the Brownfield quadrangle. Most waters containing less than 20 ppB U were collected from areas in which the Dockum group underlies a thin veneer of surficial deposits, near the edge of the caprock, or from saline ponds. The U concentrations in sediments approximate a normal distribution with a mean of 2.18 ppM for the 914 sediment samples collected from the western halves of both quadrangles. The highest U value found in a sediment sample is 19.3 ppM. Sediments were collected from 154 dry streams, 522 dry natural ponds, 166 dry artificial ponds, and a total of 72 wet natural ponds, wet artificial ponds, and springs. The mean U content for sediments derived from the wet sources (2.77 ppM) is noticeably higher than that from dry sources (2.11 ppM).The highest U contents within the report area generally are associated with sediments collected from locations in which the Dockum group underlies a thin cover of surficial deposits. A cluster of seven sediments containing more than 3.0 ppM U is centered at 33 0 34'N, 103 0 53'W, where a U occurrence is reported at the Hoffacker test hole in the middle Dockum group

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Lime Hills and Tyonek NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Jacobsen, S.I.; Aamodt, P.L.; Sharp, R.R. Jr.

    1979-01-01

    The U contents of the 671 waters from the Lime Hills quadrangle range from below 0.02 ppB to a high of 11.29 ppB. U contents of the 667 sediments from this quadrangle range from a low of 0.1 ppM to a high of 94.9 ppM. Both waters and sediments containing relatively high U concentrations are found to cluster in association with plutonic rocks in the Alaska Range, and particularly so in the vicinity of the Tired Pup batholith and Mount Estelle pluton. The U contents of 575 waters from the Tyonek quadrangle range from below the detection limit to 13.13 ppB. Relatively high U concentrations in waters were found to cluster near the Mount Estelle pluton and undifferentiated igneous, metasedimentary, and volcanic rocks in the Alaska Range and in Pleistocene deposits along the Castle Mountain fault. Uranium contents in 502 sediments from the Tyonek quadrangle range from 0.1 to 58 ppM. Most sediment samples having high U concentrations are from locations near the Mount Estelle pluton and Styx River batholith in the Alaska Range. Data for samples collected in the Alaska Range and the two flanking lowlands were also examined separately. Water samples from all source types in the Alaska Range had a higher mean U concentration (0.85 ppB) than those from the Western Lowland (0.34 ppB) or the Susitna Lowland (0.51 ppB). The mean U concentrations for lake water samples from the Alaska Range and the lowland areas are similar. Sediment samples from streams and lakes in the Alaska Range have a markedly higher mean U concentration (7.00 ppM) than sediment samples from either the Western Lowland (2.46 ppM) or the Susitna Lowland area

  1. Hydrogeochemical and stream sediment reconnaissance program in central United States. Semiannual progress report, October 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Arendt, J.W.

    1979-01-01

    Basic data reports were open filed for eight NTMS quadrangles during the reporting period: Sherman, Houston, Ardmore, Emory Peak, Presidio, Enig, Austin, and Lawton. Basic data reports, which have been prepared and are in the process of being open filed, include Wichita, St. Cloud, Ashland, and Clinton. Results indicate that the most favorable areas for the occurrence of uranium mineralization in the open filed quadrangles reported are as follows: Austin Quadrangle, Lawton Quadrangle, Emory Peak Quadrangle. During the period, approximately 13,886 samples of groundwater and stream sediments were collected by the URE Project. Approximately 20,738 samples were analyzed by the URE Laboratory

  2. Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study.

    Science.gov (United States)

    Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny

    2018-06-01

    Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine

  3. Organochlorine compounds in streambed sediment and in biological tissue from streams and their relations to land use, central Arizona

    Science.gov (United States)

    Gebler, Joseph B.

    2000-01-01

    Streambed-sediment samples from 13 sites and biological-tissue samples from 11 sites in the Gila River Basin in central Arizona were analyzed for 32 organochlorine compounds in streambed sediment and 28 compounds in biological tissue during 1996 as part of the U.S. Geological Survey's National Water-Quality Assessment program. The objectives of the study were to determine the occurrence and distribution of organochlorine compounds and their relation to land use. Sampling sites were categorized on the basis of major land uses in the basin or the source of water in the stream. Because land uses were mixed or had changed over time, some land-use categories were combined. Sites were categorized as forest/rangeland (6), forest/urban (1), urban (4), or agricultural/urban (2). Thirteen organochlorine compounds were detected in streambed-sediment samples, and 10 were detected in tissue samples. The number of compounds found in streambed-sediment samples from individual sites ranged from 0 to 10, and the range for individual tissue samples was 0 to 7. Comparison of the number of detections in streambed-sediment samples to the number of detections in tissue samples from particular sites where both were sampled yielded five instances where more compounds were detected in streambed sediment, six instances where more compounds were detected in tissue, and five instances where the number of detections in streambed sediment and tissue were equal. The frequency of detection of particular compounds for sites where both streambed sediment and tissue were sampled resulted in five compounds being detected more frequently in streambed sediment, five more frequently in tissue, and three compounds that were equally frequent in streambed sediment and in tissue. Few contaminants were detected in samples from the forest/rangeland sites; greater numbers of compounds were detected at the urban sites and at the forest/urban site. The greatest number of compounds and the highest concentrations

  4. Reconnaissance study of uranium and fluorine contents of stream and lake waters, West Greenland

    International Nuclear Information System (INIS)

    Steenfelt, A.; Dam, E.

    1982-01-01

    The present study forms part of a current investigation on the applicability of geochemical methods in mineral exploration in Greenland. The sampling programme of 1981 comprised three parts: (1) A helicopter supported, low density, regional sampling (1 sample/30 km 2 ) of stream water and stream sediment in the area covered by map sheet 66 V.2, south-east of Soendre Stroemfjord. A total of 207 water samples was obtained. (2) Detailed sampling within a 20 km 2 area of lake and stream water (71 samples) from a camp at 66deg49'N, 25deg37'W, 25 km south-west of Soendre Stroemfjord. (3) Reconnaissance sampling, by boat, along the southern part of the west coast of Greenland. The aim of this reconnaissance was to obtain information on the character of the drainage systems and on the availability of sample media (water, stream sediment, aquatic moss) for geochemical exploration. A total of 195 water samples were collected. In addition, rust zones and areas of known mineralisation along the coast were sampled. (author)

  5. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts.

    Science.gov (United States)

    Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel

    2014-10-01

    Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Rawlins NTMS quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Weaver, T.A.; Morris, W.A.; Trexler, P.K.

    1978-04-01

    During the spring and winter of 1976 and January and June of 1977, 570 natural water and 1281 waterborne sediment samples were collected from 1369 locations in the Rawlins, Wyoming, NTMS quadrangle. The samples obtained from this 18 700-km 2 area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 parts per billion (ppB) to 448 ppB, with a mean value of 6 ppB. The concentrations in sediments ranged from 1.2 parts per million (ppM) to 60.4 ppM, with a mean value of 4.1 ppM. Based on simple statistical analyses of these data, arbitrary anomaly thresholds were set at 50 ppB for water samples and 9 ppM for sediment samples. Eleven water and 44 sediment samples were considered anomalous; 1 anomalous water and 25 anomalous sediments could be associated with four of the five major uranium occurrences in the quadrangle. Only the Ketchum Buttes area did not show up in the data. Twelve minor reported occurrences could not be identified by the data. Eleven anomalous samples (8 waters and 3 sediments) and 13 near-anomalous samples (10 waters and 3 sediments) outline a broad area in the northeast corner of the quadrangle (corresponding to the drainage area of the Medicine Bow River) where two airborne radiometric anomalies were discovered in an earlier study. This area, and perhaps others, may warrant further, more detailed geological, geophysical, and geochemical investigations

  7. Morphology and sedimentation in Caribbean montane streams" examples from Jamaica and Puerto Rico

    Science.gov (United States)

    R. Ahmad; F.N. Scatena; A Gupta

    1993-01-01

    This paper presents a summary description of the morphology, sedimentation, and behaviour of the montane streams of eastern Jamaica and eastern Puerto Rico. The area is located within a 200 km wide seismically active zone of Neogene left-lateral strike-slip deformation which defines the plate boundary between the Caribbean and North American Plates. Tropical storms,...

  8. Sampling methods for amphibians in streams in the Pacific Northwest.

    Science.gov (United States)

    R. Bruce Bury; Paul Stephen. Corn

    1991-01-01

    Methods describing how to sample aquatic and semiaquatic amphibians in small streams and headwater habitats in the Pacific Northwest are presented. We developed a technique that samples 10-meter stretches of selected streams, which was adequate to detect presence or absence of amphibian species and provided sample sizes statistically sufficient to compare abundance of...

  9. Trace metals of an acid mine drainage stream using a chemical model (WATEQ) and sediment analysis

    International Nuclear Information System (INIS)

    West, K.A.; Wilson, T.P.

    1992-01-01

    The high metal contents common to the discharge of acid-mine drainage (AMD) from mines and mine spoils is an environmental concern to both government and industry. This paper reports the results of investigation of the behavior of metals in an AMD system at a former surface coal mine in Tuscarawas County, Oh. AMD discharges from seeps travels, in respective order through a laminar flow stream; a Typha-dominated wetland; a turbulent flow stream; and a sediment retention pond. Dissolved metals (Fe, Mn, Zn, Cr, Cd, Cu, and Al) major and minor components, and other parameters (pH, dissolved oxygen and Eh) were measured in the AMD water at each sample location. A chemical mineral equilibrium model (WATEQ) was used to predict the minerals which should precipitate at each site. Results suggest that the seeps are supersaturated and should be precipitating hematite, goethite and magnetite (iron oxides), and siderite (iron carbonate), whereas water of the other downstream sites were at or below equilibrium conditions for these minerals. The hydrogeochemistry of the AMD was further studied using sequential chemical attacks on the precipitate sediment surface coatings, in order to determine metal concentrations in the exchangeable, carbonate, Fe-Mn oxyhydroxide, and oxidizable fractions. The carbonate and exchangeable fractions of the precipitate are dominated by Ca and Fe, as well as Mg in the carbonate fraction. The Fe-Mn oxyhydroxide fraction contained Fe, Al, Mn, Mg, and trace metals, and also contained the greatest concentration of total elements in the system. The Fe-Mn oxyhydroxide is therefore, the major sink for metals of this AMD system. The decrease in the concentration of metals in the sediment precipitates in the downstream locations, is consistent with WATEQ and water analysis results

  10. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Rieuwerts, J.S., E-mail: jrieuwerts@plymouth.ac.uk [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Mighanetara, K.; Braungardt, C.B. [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Rollinson, G.K. [Camborne School of Mines, CEMPS, University of Exeter, Tremough Campus, Penryn, Cornwall TR10 9EZ (United Kingdom); Pirrie, D. [Helford Geoscience LLP, Menallack Farm, Treverva, Penryn, Cornwall TR10 9BP (United Kingdom); Azizi, F. [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2014-02-01

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1–5 orders of magnitude, with a maximum concentration in mine wastes of 1.8 × 10{sup 5} mg kg{sup −1} As and concentrations in stream sediments of up to 2.5 × 10{sup 4} mg kg{sup −1} As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. - Highlights: • Stream sediments in a former mining area remain polluted with up to 25 g As per kg. • The main arsenic mineral in adjacent mine wastes appears to be scorodite. • Low solubility scorodite was inversely correlated with potentially mobile As. • Combining

  11. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK

    International Nuclear Information System (INIS)

    Rieuwerts, J.S.; Mighanetara, K.; Braungardt, C.B.; Rollinson, G.K.; Pirrie, D.; Azizi, F.

    2014-01-01

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1–5 orders of magnitude, with a maximum concentration in mine wastes of 1.8 × 10 5 mg kg −1 As and concentrations in stream sediments of up to 2.5 × 10 4 mg kg −1 As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. - Highlights: • Stream sediments in a former mining area remain polluted with up to 25 g As per kg. • The main arsenic mineral in adjacent mine wastes appears to be scorodite. • Low solubility scorodite was inversely correlated with potentially mobile As. • Combining mineralogical and

  12. Network Structure as a Modulator of Disturbance Impacts in Streams

    Science.gov (United States)

    Warner, S.; Tullos, D. D.

    2017-12-01

    This study examines how river network structure affects the propagation of geomorphic and anthropogenic disturbances through streams. Geomorphic processes such as debris flows can alter channel morphology and modify habitat for aquatic biota. Anthropogenic disturbances such as road construction can interact with the geomorphology and hydrology of forested watersheds to change sediment and water inputs to streams. It was hypothesized that the network structure of streams within forested watersheds would influence the location and magnitude of the impacts of debris flows and road construction on sediment size and channel width. Longitudinal surveys were conducted every 50 meters for 11 kilometers of third-to-fifth order streams in the H.J. Andrews Experimental Forest in the Western Cascade Range of Oregon. Particle counts and channel geometry measurements were collected to characterize the geomorphic impacts of road crossings and debris flows as disturbances. Sediment size distributions and width measurements were plotted against the distance of survey locations through the network to identify variations in longitudinal trends of channel characteristics. Thresholds for the background variation in sediment size and channel width, based on the standard deviations of sample points, were developed for sampled stream segments characterized by location as well as geomorphic and land use history. Survey locations were classified as "disturbed" when they deviated beyond the reference thresholds in expected sediment sizes and channel widths, as well as flow-connected proximity to debris flows and road crossings. River network structure was quantified by drainage density and centrality of nodes upstream of survey locations. Drainage density and node centrality were compared between survey locations with similar channel characteristic classifications. Cluster analysis was used to assess the significance of survey location, proximity of survey location to debris flows and road

  13. 100 Area Columbia River sediment sampling

    International Nuclear Information System (INIS)

    Weiss, S.G.

    1993-01-01

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g

  14. 100 Area Columbia River sediment sampling

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-08

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

  15. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    Science.gov (United States)

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  16. Experimental determination of the flood wave transformation and the sediment resuspension in a small regulated stream in an agricultural catchment

    Directory of Open Access Journals (Sweden)

    D. Zumr

    2017-11-01

    Full Text Available This paper presents the methodology used for artificial flood experiments conducted in a small artificial, trained (regulated channel on the Nučice experimental agricultural catchment (0.5 km2, central Czech Republic, and the results of the experiments. The aim was to monitor the transformation of the flood wave and the sediment transport within the channel. Two series of experiments were carried out in contrasting initial conditions: (a in September, when the stream banks were dry, the baseflow was negligible, and the channel was fully overgrown with vegetation; and (b in March, when the stream banks were almost water saturated, the baseflow was above the annual average, and there was no vegetation present. Within each campaign, three successive flood waves, each with an approximate volume of 17 m3 and peak flow of ca. 40 L s−1, were pumped into the upper part of the catchment drainage channel. The transformation of the flood wave and the sediment transport regime within an approximately 400 m long channel section were monitored by measuring the discharge, the turbidity, and the electrical conductivity in three profiles along the stream. On the basis of the results, it was concluded that there is a considerable amount of deposited sediment, even in the well-trained and straight channel that can be re-mobilized by small floods. Part of the recorded sediment therefore originates from the particles deposited during previous soil erosion events. The flood waves initiated in dissimilar instream conditions progressed differently – we show that the saturation of the channel banks, the stream vegetation and the actual baseflow had a strong influence on the flood transformation and the sediment regime in the channel. The sediment moves quickly in winter and early spring, but in the later part of the year the channel serves as a sediment trap and the resuspension is slower, if dense vegetation is present.

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the Durango NTMS quadrangle, Colorado

    International Nuclear Information System (INIS)

    Dawson, H.E.; Weaver, T.A.

    1979-01-01

    During the spring and summer of 1976, 1518 water and 1604 waterborne sediment samples were collected from 1804 locations in the Durango NTMS quadrangle, Colorado. The samples obtained from this 19 940-km 2 area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppB to 25.7 ppB, with a mean value of 0.84 ppB. The concentrations in sediments ranged from 1.0 ppM to 71.6 ppM, with a mean value of 4.2 ppM. Study of total water and total sediment populations indicated that both are actually mixtures of several populations. Consequently, samples were chosen for discussion on the basis of their having conspicuously high uranium concentrations relative to surrounding background values. Thirty-four water samples (approximately 2.2% of the total water population) had uranium concentrations above 5.00 ppB, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3% of the total sediment population) had uranium concentrations above 12.0 ppM. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and Mesozoic strate and Tertiary volcanics. The uranium concentrations in sediment samples from areas of Precambrian rock were especially high and these areas may warrant further, more detailed investigations

  18. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Science.gov (United States)

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  19. Uranium hydrogeochemical and stream sediment reconnaissance data from the area of the Noatak and portions of the Baird Mountains and Ambler River Quadrangles, Alaska

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Hill, D.E.; Sharp, R.R. Jr.

    1978-05-01

    During August 1976, a total of 876 natural waters and 861 bottom sediments were collected at a nominal density of one location each 23 km 2 from streams and small lakes throughout the Noatak NTMS quadrangle, the southern two-thirds of the Baird Mountains NTMS quadrangle, and in the southwest corner of the Ambler River NTMS quadrangle. These samples were collected as part of the National Uranium Resource Evaluation program in Alaska being conducted by the Los Alamos Scientific Laboratory (LASL). The field collection and treatment of the samples were performed following strict LASL specifications. Total uranium was measured in the waters by fluorometry and in the sediments by delayed-neutron counting, using stringent quality assurance controls at the LASL. The uranium contents of the waters ranged from below the detection limit of 0.02 parts per billion (ppB) to a high of 8.38 ppB, and the uranium contents of the sediments ranged from a low of 0.3 parts per million (ppM) to a high of 34.0 ppM. In general, the locations of waters containing relatively high uranium contents were found to occur in clusters, and particularly in the headwaters of streams draining the southern slopes of the Baird Mountains. Few sediments contained relatively high uranium contents. These usually occurred singly at isolated locations scattered throughout the area. No obvious association exists between the location of high-uranium waters and sediments anywhere in the study area. The geology, mineralogy, and hydrology of this area is only generally described in the literature; therefore, it is difficult to correlate these data with particular aspects of the physical environment where individual samples were collected. However, the data do indicate that certain areas underlaid by Paleozoic sedimentary rocks and granitic intrusives within the Baird Mountains and a quartz-pebble conglomerate in the Waring Mountains may warrant more detailed field investigations

  20. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    Science.gov (United States)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  1. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P., E-mail: dweston@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Asbell, A.M., E-mail: aasbell@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Hecht, S.A., E-mail: scott.hecht@noaa.gov [NOAA Fisheries, Office of Protected Resources, 510 Desmond Drive S.E., Lacey, WA 98503 (United States); Scholz, N.L., E-mail: nathaniel.scholz@noaa.gov [NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112 (United States); Lydy, M.J., E-mail: mlydy@siu.edu [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)

    2011-10-15

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: > Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. > Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. > Two creeks contained concentrations acutely lethal to sensitive invertebrates. > Bifenthrin was of greatest concern, though less than in prior studies. > Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  2. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    International Nuclear Information System (INIS)

    Weston, D.P.; Asbell, A.M.; Hecht, S.A.; Scholz, N.L.; Lydy, M.J.

    2011-01-01

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: → Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. → Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. → Two creeks contained concentrations acutely lethal to sensitive invertebrates. → Bifenthrin was of greatest concern, though less than in prior studies. → Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  3. Turbidity-controlled sampling for suspended sediment load estimation

    Science.gov (United States)

    Jack Lewis

    2003-01-01

    Abstract - Automated data collection is essential to effectively measure suspended sediment loads in storm events, particularly in small basins. Continuous turbidity measurements can be used, along with discharge, in an automated system that makes real-time sampling decisions to facilitate sediment load estimation. The Turbidity Threshold Sampling method distributes...

  4. Design and methods of the Midwest Stream Quality Assessment (MSQA), 2013

    Science.gov (United States)

    Garrett, Jessica D.; Frey, Jeffrey W.; Van Metre, Peter C.; Journey, Celeste A.; Nakagaki, Naomi; Button, Daniel T.; Nowell, Lisa H.

    2017-10-18

    During 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Project (NAWQA), in collaboration with the USGS Columbia Environmental Research Center, the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA), and the EPA Office of Pesticide Programs assessed stream quality across the Midwestern United States. This Midwest Stream Quality Assessment (MSQA) simultaneously characterized watershed and stream-reach water-quality stressors along with instream biological conditions, to better understand regional stressor-effects relations. The MSQA design focused on effects from the widespread agriculture in the region and urban development because of their importance as ecological stressors of particular concern to Midwest region resource managers.A combined random stratified selection and a targeted selection based on land-use data were used to identify and select sites representing gradients in agricultural intensity across the region. During a 14-week period from May through August 2013, 100 sites were selected and sampled 12 times for contaminants, nutrients, and sediment. This 14-week water-quality “index” period culminated with an ecological survey of habitat, periphyton, benthic macroinvertebrates, and fish at all sites. Sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing. Of the 100 sites, 50 were selected for the MSQA random stratified group from 154 NRSA sites planned for the region, and the other 50 MSQA sites were selected as targeted sites to more evenly cover agricultural and urban stressor gradients in the study area. Of the 50 targeted sites, 12 were in urbanized watersheds and 21 represented “good” biological conditions or “least disturbed” conditions. The remaining 17 targeted sites were selected to improve coverage of the agricultural intensity gradient or because of historical data collection to provide temporal context for the

  5. Quality of Streams in Johnson County, Kansas, and Relations to Environmental Variables, 2003-07

    Science.gov (United States)

    Rasmussen, Teresa J.; Poulton, Barry C.; Graham, Jennifer L.

    2009-01-01

    The quality of streams and relations to environmental variables in Johnson County, northeastern Kansas, were evaluated using water, streambed sediment, land use, streamflow, habitat, algal periphyton (benthic algae), and benthic macroinvertebrate data. Water, streambed sediment, and macroinvertebrate samples were collected in March 2007 during base flow at 20 stream sites that represent 11 different watersheds in the county. In addition, algal periphyton samples were collected twice (spring and summer 2007) at one-half of the sites. Environmental data including water and streambed-sediment chemistry data (primarily nutrients, fecal-indicator bacteria, and organic wastewater compounds), land use, streamflow, and habitat data were used in statistical analyses to evaluate relations between biological conditions and variables that may affect them. This report includes an evaluation of water and streambed-sediment chemistry, assessment of habitat conditions, comparison of biological community attributes (such as composition, diversity, and abundance) among sampling sites, placement of sampling sites into impairment categories, evaluation of biological data relative to environmental variables, and evaluation of changes in biological communities and effects of urbanization. This evaluation is useful for understanding factors that affect stream quality, for improving water-quality management programs, and for documenting changing conditions over time. The information will become increasingly important for protecting streams in the future as urbanization continues. Results of this study indicate that the biological quality at nearly all biological sampling sites in Johnson County has some level of impairment. Periphyton taxa generally were indicative of somewhat degraded conditions with small to moderate amounts of organic enrichment. Camp Branch in the Blue River watershed was the only site that met State criteria for full support of aquatic life in 2007. Since 2003

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Cheyenne NTMS Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Trexler, P.K.

    1978-06-01

    Between June 1976 and October 1977, 1138 water and 600 sediment samples were systematically collected from 1498 locations in the Cheyenne NTMS quadrangle of southeast Wyoming. The samples were analyzed for total uranium at the Los Alamos Scientific Laboratory. The uranium concentration in waters ranged from 0.01 to 296.30 parts per billion (ppB), with a median of 3.19 ppB and a mean of 8.34 ppB. The uranium in sediments ranged from 0.8 to 83.0 parts per million (ppM) with a median of 3.4 ppM and a mean of 4.5 ppM. Arbitrary anomaly thresholds were selected to isolate those water and sediment samples containing uranium concentrations above those of 98% of the population sampled. Using this procedure, 23 water samples above 54.50 ppB and 12 sediment samples above 14.0 ppM were considered anomalous. Several areas appear favorable for further investigation for possible uranium mineralization. High uranium concentrations were detected in waters from the northeast corner of the Cheyenne quadrangle. High uranium concentrations were detected in sediments from locations in the southern and central Laramie Mountains and along the southeast and east-central edges of the study area

  7. The effect of deposited fine sediment on summer survival and growth of rainbow trout in riffles of a small stream

    Science.gov (United States)

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto

    2009-01-01

    Elevated fine-sediment inputs to streams can alter a variety of conditions and processes, including the amount of fine sediment stored in riffles. We sought to measure the influence of deposited fine sediment on the survival and growth of juvenile rainbow trout Oncorhynchus mykiss (106–130 mm fork length) using a field experiment that included 18 enclosures in riffles...

  8. Evaluation of water and sediment of the Graminha and Aguas da Serra streams in the city of Limeira (Sp-Brazil) by Synchrotron Radiation Total Reflection X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana [University of Campinas, School of Civil Engineering, Architecture and Urban Design, P. O. Box 602, Zip Code 13083-852, Campinas, SP (Brazil)], E-mail: silvana@fec.unicamp.br; Fazza, Elizete Vieira [University of Campinas, School of Civil Engineering, Architecture and Urban Design, P. O. Box 602, Zip Code 13083-852, Campinas, SP (Brazil)], E-mail: fazzaelizete@yahoo.com

    2008-12-15

    The city of Limeira is located in the state of Sao Paulo, Brazil and has the second largest economy and demographic growth of the state. It comprises an expressive economy with industries in several productive sectors. The source of the Graminha and Aguas da Serra streams is located within the Limeira urban zone. The streams cross part of the rural zone and unite by draining into the Piracicaba River. It is possible that these basins suffer or have already suffered the impacts of environmental pollution caused by anthropogenic factors. Since the city has galvanization industries for the production of precious and semi-precious jewels as well as imitation jewelry, the concentration descriptions and interpretations of heavy metals in waters and sediments indicate anthropogenic influence and the dumping of these compounds into the Piracicaba River. The Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) was used for determining the metals. All measurements were performed using a white beam of synchrotron radiation for excitation and a Ge hyperpure detector. Detection limits for water samples were 0.04 {mu}g L{sup -1} and in sediment samples 0.03 {mu}g g{sup -1} for Cu and Zn elements. In the water samples, concentrations higher than permissible as established by the Brazilian legislation (CONAMA) for Al, Fe, Zn, Cr, Ni, Cu and Pb, were observed. For sediment samples, values higher than quality reference values defined by the Brazilian legislation (CETESB) were verified for Cr, Zn, Cu, Ni and Pb.

  9. Evaluation of water and sediment of the Graminha and Aguas da Serra streams in the city of Limeira (Sp-Brazil) by Synchrotron Radiation Total Reflection X-ray Fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Fazza, Elizete Vieira

    2008-01-01

    The city of Limeira is located in the state of Sao Paulo, Brazil and has the second largest economy and demographic growth of the state. It comprises an expressive economy with industries in several productive sectors. The source of the Graminha and Aguas da Serra streams is located within the Limeira urban zone. The streams cross part of the rural zone and unite by draining into the Piracicaba River. It is possible that these basins suffer or have already suffered the impacts of environmental pollution caused by anthropogenic factors. Since the city has galvanization industries for the production of precious and semi-precious jewels as well as imitation jewelry, the concentration descriptions and interpretations of heavy metals in waters and sediments indicate anthropogenic influence and the dumping of these compounds into the Piracicaba River. The Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) was used for determining the metals. All measurements were performed using a white beam of synchrotron radiation for excitation and a Ge hyperpure detector. Detection limits for water samples were 0.04 μg L -1 and in sediment samples 0.03 μg g -1 for Cu and Zn elements. In the water samples, concentrations higher than permissible as established by the Brazilian legislation (CONAMA) for Al, Fe, Zn, Cr, Ni, Cu and Pb, were observed. For sediment samples, values higher than quality reference values defined by the Brazilian legislation (CETESB) were verified for Cr, Zn, Cu, Ni and Pb

  10. Computer analysis to the geochemical of soil and stream sediments data in an area of Southern Uruguay

    International Nuclear Information System (INIS)

    Spangenberg, J.

    2012-01-01

    This work is about geochemical interpretation of multi-element data from a soil and stream sediment survey carried out in Southern of Uruguay .This zone has several occurrences of metal sulphide mineralization

  11. Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Couceiro, Sheyla Regina Marques; Hamada, Neusa [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Forsberg, Bruce Rider [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Ecologia, Manaus, AM (Brazil); Padovesi-Fonseca, Claudia [Univ. de Brasilia, Dept. de Ecologia, Brasilia, DF (Brazil)

    2010-01-15

    Purpose: While environmental risks associated with petroleum extraction such as oil spills or leaks are relatively well known, little attention has been given to the impacts of silt. The increase in petroleum exploitation in Amazonia has resulted in sediment input to aquatic systems, with impacts on their biodiversity. Here we use a combination of field measurements and statistical analyses to evaluate the impacts of anthropogenic silt derived from the construction of roads, borrow pits, and wells during the terrestrial development of gas and oil, on macroinvertebrate communities in streams of the Urucu Petroleum Province in the Central Brazilian Amazon. Material and methods: Ten impacted and nine non-impacted streams were sampled in January, April, and November of 2007. Macroinvertebrates were sampled along a 100-m continuous reach in each stream at 10-m intervals using a dip net. Abiotic variables including, a siltation index (SI), suspended inorganic sediment (SIS), sediment color index (SCI), suspend organic sediment (SOS), pH, electrical conductivity, dissolved oxygen, temperature, water velocity, channel width, and depth, were measured at three equidistant points in each stream ({proportional_to}30-m intervals). Results and discussion: SI did not differ between impacted and undisturbed streams. SIS was higher and SCI lower (more reddish) in impacted than in non-impacted streams. SCI had a positive and SIS a negative effect on both macroinvertebrate richness and density. SIS and SCI also influenced macrophyte taxonomic composition. In impacted streams, taxonomic richness and density were 1.5 times lower than in non-impacted streams. No taxon was significantly associated with impacted streams. SIS was positively correlated with SOS and electrical conductivity while SCI was negatively correlated with SOS, electrical conductivity, and pH. The lack of difference in SI between impacted and nonimpacted streams suggests that anthropogenic sediment does not accumulate

  12. CHNTRN: a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1983-09-01

    This report presents the development of a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network. A particular feature of the model is its capability to deal with the network system that may consist of any number of joined and branched streams/rivers of comparable size. The model employs a numerical method - an integrated compartment method (ICM) - which greatly facilitates the setup of the matrix equation for the discrete field approximating the corresponding continuous field. Most of the possible boundary conditions that may be anticipated in real-world problems are considered. These include junctions, prescribed concentration, prescribed dispersive flux, and prescribed total flux. The model is applied to two case studies: (1) a single river and (2) a five-segment river in a watershed. Results indicate that the model can realistically simulate the behavior of the sediment and chemical variations in a stream/river network. 11 references, 10 figures, 3 tables.

  13. Results of elemental analyses of water and waterborne sediment samples from areas of Alaska proposed for the Chukchi Imuruk National Reserve, Selawik National Wildlife Refuge, and Cape Krusenstern National Monument

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.

    1978-10-01

    During July--August 1976, waters and sediments were collected from streams and lakes over an area of 100,000 km 2 around Kotzebue, Alaska, as part of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance. The work provides multielement results for 949 waters and 886 sediments from 979 locations. Of these, 492 waters and 452 sediments are from 517 locations in the proposed Chukchi Imuruk Reserve; 447 waters and 423 sediments are from 451 locations in the proposed Selawik Wildlife Refuge; and 10 waters and 11 sediments are from 11 locations in the proposed Cape Krusenstern Monument. The field data, with concentrations of 13 elements in the waters and 43 in the sediments, are presented, and the sample locations are shown on accompanying plates. The waters were analyzed for uranium by fluorometry or delayed-neutron counting and calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, titanium, and zinc by plasma-source emission spectrography. The sediment samples were analyzed for uranium by delayed-neutron counting, beryllium and lithium by arc-source emission spectrography, bismuth, cadmium, copper, lead, nickel, niobium, silver, tin, and tungsten by x-ray fluorescence, and aluminum, antimony, barium, calcium, cerium, cesium, chlorine, chromium, cobalt, dysprosium, europium, gold, hafnium, iron, lanthanum, lutetium, magnesium, manganese, potassium, rubidium, samarium, scandium, sodium, strontium, tantalum, terbium, thorium, titanium, vanadium, ytterbium, and zinc by neutron activation. Uranium to thorium ratios in each sediment are also provided

  14. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    Science.gov (United States)

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  15. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus

    NARCIS (Netherlands)

    Laarhoven, Bob; Elissen, H.J.H.; Temmink, H.; Buisman, C.J.N.

    2016-01-01

    An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water

  16. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus.

    Directory of Open Access Journals (Sweden)

    Bob Laarhoven

    Full Text Available An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv. The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml, 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin. With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.

  17. Equilibrium sampling of polychlorinated biphenyls in River Elbe sediments – Linking bioaccumulation in fish to sediment contamination

    DEFF Research Database (Denmark)

    Schäfer, Sabine; Antoni, Catherine; Möhlenkamp, Christel

    2015-01-01

    Equilibrium sampling can be applied to measure freely dissolved concentrations (cfree) of hydrophobic organic chemicals (HOCs) that are considered effective concentrations for diffusive uptake and partitioning. It can also yield concentrations in lipids at thermodynamic equilibrium...... with the sediment (Clip⇔sed) by multiplying concentrations in the equilibrium sampling polymer with lipid to polymer partition coefficients. We have applied silicone coated glass jars for equilibrium sampling of seven ‘indicator’ polychlorinated biphenyls (PCBs) in sediment samples from ten locations along...... bioaccumulation and the thermodynamic potential of sediment-associated HOCs for partitioning into lipids. This novel approach gives clearer and more consistent results compared to conventional approaches that are based on total concentrations in sediment and biota-sediment accumulation factors. We propose...

  18. Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream

    Science.gov (United States)

    Dunkerley, David; Brown, Kate

    1999-08-01

    The behaviour of a discrete sub-bank-full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank-full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank-full stage, and be higher in both sub-bank-full and overbank flows. Factors contributing to enhanced flow loss in the sub-bank-full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments.

  19. Trace element, semivolatile organic, and chlorinated organic compound concentrations in bed sediments of selected streams at Fort Gordon, Georgia, February-April 2010

    Science.gov (United States)

    Thomas, Lashun K.; Journey, Celeste A.; Stringfield, Whitney J.; Clark, Jimmy M.; Bradley, Paul M.; Wellborn, John B.; Ratliff, Hagan; Abrahamsen, Thomas A.

    2011-01-01

    A spatial survey of streams was conducted from February to April 2010 to assess the concentrations of major ions, selected trace elements, semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls associated with the bed sediments of surface waters at Fort Gordon military installation near Augusta, Georgia. This investigation expanded a previous study conducted in May 1998 by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, that evaluated the streambed sediment quality of selected surface waters at Fort Gordon. The data presented in this report are intended to help evaluate bed sediment quality in relation to guidelines for the protection of aquatic life, and identify temporal trends in trace elements and semivolatile organic compound concentrations at streambed sites previously sampled. Concentrations of 34 major ions and trace elements and 102 semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl compounds were determined in the fine-grained fraction of bed sediment samples collected from 13 of the original 29 sites in the previous study, and 22 additional sites at Fort Gordon. Three of the sites were considered reference sites as they were presumed to be located away from potential sources of contaminants and were selected to represent surface waters flowing onto the fort, and the remaining 32 nonreference sites were presumed to be located within the contamination area at the fort. Temporal trends in trace elements and semivolatile organic compound concentrations also were evaluated at 13 of the 32 nonreference sites to provide an assessment of the variability in the number of detections and concentrations of constituents in bed sediment associated with potential sources, accumulation, and attenuation processes. Major ion and trace element concentrations in fine-grained bed

  20. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    Science.gov (United States)

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R

    2016-07-01

    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.

  1. Data Used in Analyses of Trends, and Nutrient and Suspended-Sediment Loads for Streams in the Southeastern United States, 1973-2005

    Science.gov (United States)

    Staub, Erik L.; Peak, Kelly L.; Tighe, Kirsten C.; Sadorf, Eric M.; Harned, Douglas A.

    2010-01-01

    Water-quality data from selected surface-water monitoring sites in the Southeastern United States were assessed for trends in concentrations of nutrients, suspended sediment, and major constituents and for in-stream nutrient and suspended-sediment loads for the period 1973-2005. The area of interest includes river basins draining into the southern Atlantic Ocean, the Gulf of Mexico, and the Tennessee River-drainage basins in Hydrologic Regions 03 (South Atlantic - Gulf) and 06 (Tennessee). This data assessment is related to studies of several major river basins as part of the U.S. Geological Survey National Water-Quality Assessment Program, which was designed to assess national water-quality trends during a common time period (1993-2004). Included in this report are data on which trend tests could be performed from 44 U.S. Geological Survey National Water Information System (NWIS) sampling sites. The constituents examined include major ions, nutrients, and suspended sediment; the physical properties examined include pH, specific conductance, dissolved oxygen, and streamflow. Also included are data that were tested for trends from an additional 290 sites from the U.S. Environmental Protection Agency Storage and Retrieval (STORET) database. The trend analyses of the STORET data were limited to total nitrogen and total phosphorus concentrations. Data from 48 U.S. Geological Survey NWIS sampling sites with sufficient water-quality and continuous streamflow data for estimating nutrient and sediment loads are included. The methods of data compilation and modification used prior to performing trend tests and load estimation are described. Results of the seasonal Kendall trend test and the Tobit trend test are given for the 334 monitoring sites, and in-stream load estimates are given for the 48 monitoring sites. Basin characteristics are provided, including regional landscape variables and agricultural nutrient sources (annual variations in cropping and fertilizer use

  2. Dilution correction equation revisited: The impact of stream slope, relief ratio and area size of basin on geochemical anomalies

    Science.gov (United States)

    Shahrestani, Shahed; Mokhtari, Ahmad Reza

    2017-04-01

    Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As

  3. Soil plutonium and cesium in stream channels and banks of Los Alamos liquid effluent-receiving areas

    International Nuclear Information System (INIS)

    Nyhan, J.W.; White, G.C.; Trujillo, G.

    1982-01-01

    Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238 Pu, sup(239,240)Pu and 137 Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven years after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams. (author)

  4. Soil plutonium and cesium in stream channels and banks of Los Alamos liquid effluent-receiving areas.

    Science.gov (United States)

    Nyhan, J W; White, G C; Trujillo, G

    1982-10-01

    Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, 239,240Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven yr after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams.

  5. Turbidity threshold sampling: Methods and instrumentation

    Science.gov (United States)

    Rand Eads; Jack Lewis

    2001-01-01

    Traditional methods for determining the frequency of suspended sediment sample collection often rely on measurements, such as water discharge, that are not well correlated to sediment concentration. Stream power is generally not a good predictor of sediment concentration for rivers that transport the bulk of their load as fines, due to the highly variable routing of...

  6. Toward an understanding of "Legacy P" - phosphorus sorption mechanisms in stream sediments as influenced by organic matter

    Science.gov (United States)

    Audette, Yuki; O'Halloran, Ivan P.; Nowell, Peter M.; Congreves, Katelyn; Voroney, R. Paul

    2017-04-01

    Water chemistry and phosphorus (P) forms were analyzed to determine the nature of legacy P in sediments of the West Holland River and the adjacent drainage canals of the Holland Marsh drainage system, located in southern Ontario, Canada. The river and canals route water from the intensively cropped muck polders of the Holland Marsh and drain Lake Simcoe. Sediment samples were characterized for mineralogy using X-ray diffraction techniques (XRD); total P (TP); and Ca, Fe, Mn, and Mg contents, as well as cation exchange capacity and organic matter (OM) content. Forms of sediment P in five depth sections (ranging from 0-15 cm depth) were characterized and quantified by sequential P fractionation chemistry. At all study sites, mobile P forms including organic P forms were found to be higher in surface sediments than in deeper sediments. The major P form within the sediments of the two canal sites, where the concentration of TP in the surface water was within the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1, was Ca-bound P, indicating a low risk of soluble reactive P (SRP) release. A trace of apatite (a stable Ca-P mineral) was also detected in these sediments. Conversely, sediments collected from the West Holland River at sites located within the Holland Marsh exhibited a high risk of SRP release, and redox-sensitive P was the dominant P form in the sediment despite the surface water exhibiting higher concentration of Ca and alkaline pH. In addition, the concentrations of TP as measured in surface water samples taken from the site were 8 times greater than PWQO. In the sediments where the risk of SRP release was high, OM contents were also relatively high and traces of brushite (a labile Ca-P mineral) were detected. The formation of OM and cation complexes, such as OM-Fe complexes, may play an important role in regulating the fate of sediment-P forms through the adsorption of SRP. These OM-Fe complexes may inhibit the formation of more stable Ca

  7. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah Sd.

    2001-01-01

    The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from RCRA borehole bore samples and composite samples. Intact cores from two RCRA boreholes (299-W22-48 and 299-W22-50) near the SX Tank Farm and four, large-quantity grab samples from outcrop sediment on and off the Hanford Site were sampled to better understand the fate of contaminants in the vadose zone beneath underground storage tanks at the Hanford Site. Borehole and outcrop samples analyzed for this report are located outside the tank farms, and therefore may be considered standard or background samples from which to compare contaminated sediments within the tank farms themselves. This report presents our interpretation of the physical, chemical, and mineralogical properties of the uncontaminated vadose zone sediments, and variations in the vertical distribution of these properties. The information presented in this report is intended to support preparation of the S-SX Field Investigation Report to be prepared by CH2M Hill Hanford Group, Inc. as well as future remediation actions at the S-SX Tank Farm

  8. Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature

    Science.gov (United States)

    Eckels, David E.; Hass, William J.

    1989-05-30

    A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

  9. One hundred prime references on hydrogeochemical and stream sediment surveying for uranium as internationally practiced, including 60 annotated references

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Bolivar, S.L.

    1981-04-01

    The United States Department of Energy (DOE), formerly the US ERDA, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). This program is part of the US National Uranium Resource Evaluation, designed to provide an improved estimate for the availability and economics of nuclear fuel resources and make available to industry information for use in exploration and development of uranium resources. The Los Alamos National Laboratory is responsible for completing the HSSR in Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in the state of Alaska. This report contains a compilation of 100 prime references on uranium hydrogeochemical and stream sediment reconnaissance as internationally practiced prior to 1977. The major emphasis in selection of these references was directed toward constructing a HSSR program with the purpose of identifying uranium in the Los Alamos National Laboratory area of responsibility. The context of the annotated abstracts are the authors' concept of what the respective article contains relative to uranium geochemistry and hydrogeochemical and stream sediment surveying. Consequently, in many cases, significant portions of the original articles are not discussed. The text consists of two parts. Part I contains 100 prime references, alphabetically arranged. Part II contains 60 select annotated abstracts, listed in chronological order

  10. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    Science.gov (United States)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm

  11. Hydrogeomorphic linkages of sediment transport in headwater streams, Maybeso Experimental Forest, southeast Alaska

    Science.gov (United States)

    Gomi, Takashi; Sidle, Roy C.; Swanston, Douglas N.

    2004-03-01

    Hydrogemorphic linkages related to sediment transport in headwater streams following basin wide clear-cut logging on Prince of Wales Island, southeast Alaska, were investigated. Landslides and debris flows transported sediment and woody debris in headwater tributaries in 1961, 1979, and 1993. Widespread landsliding in 1961 and 1993 was triggered by rainstorms with recurrence intervals (24 h precipitation) of 7.0 years and 4.2 years respectively. Occurrence, distribution, and downstream effects of these mass movements were controlled by landform characteristics such as channel gradient and valley configuration. Landslides and channelized debris flows created exposed bedrock reaches, log jams, fans, and abandoned channels. The terminus of the deposits did not enter main channels because debris flows spread and thinned on the unconfined bottom of the U-shaped glaciated valley. Chronic sediment input to channels included surface erosion of exposed till (rain splash, sheet erosion, and freeze-thaw action) and bank failures. Bedload sediment transport in a channel impacted by 1993 landslides and debris flows was two to ten times greater and relatively finer compared with bedload transport in a young alder riparian channel that had last experienced a landslide and debris flow in 1961. Sediment transport and storage were influenced by regeneration of riparian vegetation, storage behind recruited woody debris, development of a streambed armour layer, and the decoupling of hillslopes and channels. Both spatial and temporal variations of sediment movement and riparian condition are important factors in understanding material transport within headwaters and through channel networks.

  12. Coal-tar-based sealcoated pavement: A major PAH source to urban stream sediments

    International Nuclear Information System (INIS)

    Witter, Amy E.; Nguyen, Minh H.; Baidar, Sunil; Sak, Peter B.

    2014-01-01

    We used land-use analysis, PAH concentrations and assemblages, and multivariate statistics to identify sediment PAH sources in a small (∼1303 km 2 ) urbanizing watershed located in South-Central, Pennsylvania, USA. A geographic information system (GIS) was employed to quantify land-use features that may serve as PAH sources. Urban PAH concentrations were three times higher than rural levels, and were significantly and highly correlated with combined residential/commercial/industrial land use. Principal components analysis (PCA) was used to group sediments with similar PAH assemblages, and correlation analysis compared PAH sediment assemblages to common PAH sources. The strongest correlations were observed between rural sediments (n = 7) and coke-oven emissions sources (r = 0.69–0.78, n = 5), and between urban sediments (n = 22) and coal-tar-based sealcoat dust (r = 0.94, n = 47) suggesting that coal-tar-based sealcoat is an important urban PAH source in this watershed linked to residential and commercial/industrial land use. -- Highlights: • Total PAH concentrations were measured at 35 sites along an urbanizing land-use gradient. • PAH concentrations increased with increasing urban land-use. • Urban land-use metrics were measured at three spatial scales using GIS. • PAH assemblages indicate coal-tar-based sealcoat is a major urban PAH source. • PAH assemblages indicate coke-oven emissions are an important rural PAH source. -- Coal-tar-based sealcoated pavement is a major PAH source to urban freshwater stream sediments in south-central Pennsylvania, USA

  13. Factors affecting sorption of radiocobalt by river sediments

    International Nuclear Information System (INIS)

    El-Din, M.R.E.; Ramadan, A.B.; Atta, E.R.

    2001-01-01

    Analysis of the principal factors affecting the interaction of radio cobalt with fresh water sediments and their importance for migration of radio cobalt in surface water streams. The uptake percent (U%) of radio cobalt by Ismailia Cannal bottom sediments (ICUBS) have been studied as a function of contact time, ph, competing ion, carrier concentration and natural ligands such as humic acid using batch technique. Mineralogical analyses of the sediment samples were carried out. The amount sorbed per gram sediment, (X/m), increased as the carrier concentration increased from 10 -8 mol. Following a Freundlich type isotherm. The uptake of radio cobalt was found to be affected by changing in the ph of the aqueous phase. Presence of Mg 24 ions as competing cation decreases the sorption of 60 Co. Presence of humic acid shows a slight effect on the sorption of 60 Co. Desorption of the investigated metal ion from the loaded sediment samples was also studied. A mathematical model for the migration of the investigated radioisotope in Ismailia canal water stream was developed to predict the concentrations of cobalt ion at different distances in X-direction

  14. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    Science.gov (United States)

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  15. Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management.

    Science.gov (United States)

    Perks, M T; Warburton, J; Bracken, L J; Reaney, S M; Emery, S B; Hirst, S

    2017-11-01

    Under the EU Water Framework Directive, suspended sediment is omitted from environmental quality standards and compliance targets. This omission is partly explained by difficulties in assessing the complex dose-response of ecological communities. But equally, it is hindered by a lack of spatially distributed estimates of suspended sediment variability across catchments. In this paper, we demonstrate the inability of traditional, discrete sampling campaigns for assessing exposure to fine sediment. Sampling frequencies based on Environmental Quality Standard protocols, whilst reflecting typical manual sampling constraints, are unable to determine the magnitude of sediment exposure with an acceptable level of precision. Deviations from actual concentrations range between -35 and +20% based on the interquartile range of simulations. As an alternative, we assess the value of low-cost, suspended sediment sampling networks for quantifying suspended sediment transfer (SST). In this study of the 362 km 2 upland Esk catchment we observe that spatial patterns of sediment flux are consistent over the two year monitoring period across a network of 17 monitoring sites. This enables the key contributing sub-catchments of Butter Beck (SST: 1141 t km 2 yr -1 ) and Glaisdale Beck (SST: 841 t km 2 yr -1 ) to be identified. The time-integrated samplers offer a feasible alternative to traditional infrequent and discrete sampling approaches for assessing spatio-temporal changes in contamination. In conjunction with a spatially distributed diffuse pollution model (SCIMAP), time-integrated sediment sampling is an effective means of identifying critical sediment source areas in the catchment, which can better inform sediment management strategies for pollution prevention and control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sediment transport simulation in an armoured stream

    Science.gov (United States)

    Milhous, Robert T.; Bradley, Jeffrey B.; Loeffler, Cindy L.

    1986-01-01

    Improved methods of calculating bed material stability and transport must be developed for a gravel bed stream having an armoured surface in order to use the HEC-6 model to examine channel change. Good possibilities exist for use of a two layer model based on the Schoklitsch and the Einstein-Brown transport equations. In Einstein-Brown the D35 of the armour is used for stabilities and the D50 of the bed (sub-surface) is used for transport. Data on the armour and sub-surface size distribution needs to be obtained as part of a bed material study in a gravel bed river; a "shovel" sample is not adequate. The Meyer-Peter, Muller equation should not be applied to a gravel bed stream with an armoured surface to estimate the initiation of transport or for calculation of transport at low effective bed shear stress.

  17. Global Positioning System (GPS) and Geographic Information System (GIS) analysis of mobile harvesting equipment and sediment delivery to streams during forest harvest operations on steep terrain: Experimental design

    Science.gov (United States)

    Daniel Bowker; Jeff Stringer; Chris Barton; Songlin Fei

    2011-01-01

    Sediment mobilized by forest harvest machine traffic contributes substantially to the degradation of headwater stream systems. This study monitored forest harvest machine traffic to analyze how it affects sediment delivery to stream channels. Harvest machines were outfitted with global positioning system (GPS) dataloggers, recording machine movements and working status...

  18. Sediment motion and velocity in a glacier-fed stream

    Science.gov (United States)

    Mao, L.; Dell'Agnese, A.; Comiti, F.

    2017-08-01

    Current understanding of coarse sediment transport (e.g. threshold for motion, travel length and virtual velocity) in mountain rivers is still quite limited, and even less is known about glacial streams. However, the hydrological characteristics of these systems (strong daily discharge fluctuations, high water turbidity) pose challenges to the use of tracers to monitor bed sediment dynamics, as tagged clasts are usually located after bedload events when flow stage has receded, e.g. by means of portable antennas in the case of Passive Integrated Transponders (PIT). The use of stationary antennas, still scarcely in use worldwide, to detect PIT-tagged particles has potential advantages in glacier-fed streams. If water discharge is monitored continuously, a stationary antenna provides real time data on the actual discharge at the moment of tracer particles passage. This study focuses on incipient motion and virtual velocity of bed particles measured by a stationary antennas system in a steep mountain channel (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily discharge fluctuations and bedload transport occur as a result of a nivo-glacial regime. Four stationary antennas were installed 50-m apart in the study reach. A total of 629 PIT-tagged clasts were inserted in the studied reach between 2011 and 2014, ranging in size from 35 mm to 580 mm, with an overall recovery rate of around 44%. Critical discharge for sediment entrainment was obtained by detecting the movement of tracers placed immediately upstream of antennas. Virtual velocity was derived by knowing distances between the antennas and travel time of tracers. Results on initiation of motion show that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing the stationary antenna is very weak. The influence of antecedent flows on incipient motion was thus investigated by dividing the highest discharge recorded between each PIT

  19. Chemical Data for Rock, Sediment, Biological, Precipitate, and Water Samples from Abandoned Copper Mines in Prince William Sound, Alaska

    Science.gov (United States)

    Koski, Randolph A.; Munk, LeeAnn

    2007-01-01

    In the early 20th century, approximately 6 million metric tons of copper ore were mined from numerous deposits located along the shorelines of fjords and islands in Prince William Sound, Alaska. At the Beatson, Ellamar, and Threeman mine sites (fig. 1), rocks containing Fe, Cu, Zn, and Pb sulfide minerals are exposed to chemical weathering in abandoned mine workings and remnant waste piles that extend into the littoral zone. Field investigations in 2003 and 2005 as well as analytical data for rock, sediment, precipitate, water, and biological samples reveal that the oxidation of sulfides at these sites is resulting in the generation of acid mine drainage and the transport of metals into the marine environment (Koski and others, 2008; Stillings and others, 2008). At the Ellamar and Threeman sites, plumes of acidic and metal-enriched water are flowing through beach gravels into the shallow offshore environment. Interstitial water samples collected from beach sediment at Ellamar have low pH levels (to ~3) and high concentrations of metals including iron, copper, zinc, cobalt, lead, and mercury. The abundant precipitation of the iron sulfate mineral jarosite in the Ellamar gravels also signifies a low-pH environment. At the Beatson mine site (the largest copper mine in the region) seeps containing iron-rich microbial precipitates drain into the intertidal zone below mine dumps (Foster and others, 2008). A stream flowing down to the shoreline from underground mine workings at Beatson has near-neutral pH, but elevated levels of zinc, copper, and lead (Stillings and others, 2008). Offshore sediment samples at Beatson are enriched in these metals. Preliminary chemical data for tissue from marine mussels collected near the Ellamar, Threeman, and Beatson sites reveal elevated levels of copper, zinc, and lead compared to tissue in mussels from other locations in Prince William Sound (Koski and others, 2008). Three papers presenting results of this ongoing investigation of

  20. Determining the sources of fine-grained sediment using the Sediment Source Assessment Tool (Sed_SAT)

    Science.gov (United States)

    Gorman Sanisaca, Lillian E.; Gellis, Allen C.; Lorenz, David L.

    2017-07-27

    A sound understanding of sources contributing to instream sediment flux in a watershed is important when developing total maximum daily load (TMDL) management strategies designed to reduce suspended sediment in streams. Sediment fingerprinting and sediment budget approaches are two techniques that, when used jointly, can qualify and quantify the major sources of sediment in a given watershed. The sediment fingerprinting approach uses trace element concentrations from samples in known potential source areas to determine a clear signature of each potential source. A mixing model is then used to determine the relative source contribution to the target suspended sediment samples.The computational steps required to apportion sediment for each target sample are quite involved and time intensive, a problem the Sediment Source Assessment Tool (Sed_SAT) addresses. Sed_SAT is a user-friendly statistical model that guides the user through the necessary steps in order to quantify the relative contributions of sediment sources in a given watershed. The model is written using the statistical software R (R Core Team, 2016b) and utilizes Microsoft Access® as a user interface but requires no prior knowledge of R or Microsoft Access® to successfully run the model successfully. Sed_SAT identifies outliers, corrects for differences in size and organic content in the source samples relative to the target samples, evaluates the conservative behavior of tracers used in fingerprinting by applying a “Bracket Test,” identifies tracers with the highest discriminatory power, and provides robust error analysis through a Monte Carlo simulation following the mixing model. Quantifying sediment source contributions using the sediment fingerprinting approach provides local, State, and Federal land management agencies with important information needed to implement effective strategies to reduce sediment. Sed_SAT is designed to assist these agencies in applying the sediment fingerprinting

  1. Equilibrium sampling of polychlorinated biphenyls in River Elbe sediments--Linking bioaccumulation in fish to sediment contamination.

    Science.gov (United States)

    Schäfer, Sabine; Antoni, Catherine; Möhlenkamp, Christel; Claus, Evelyn; Reifferscheid, Georg; Heininger, Peter; Mayer, Philipp

    2015-11-01

    Equilibrium sampling can be applied to measure freely dissolved concentrations (cfree) of hydrophobic organic chemicals (HOCs) that are considered effective concentrations for diffusive uptake and partitioning. It can also yield concentrations in lipids at thermodynamic equilibrium with the sediment (clip⇌sed) by multiplying concentrations in the equilibrium sampling polymer with lipid to polymer partition coefficients. We have applied silicone coated glass jars for equilibrium sampling of seven 'indicator' polychlorinated biphenyls (PCBs) in sediment samples from ten locations along the River Elbe to measure cfree of PCBs and their clip⇌sed. For three sites, we then related clip⇌sed to lipid-normalized PCB concentrations (cbio,lip) that were determined independently by the German Environmental Specimen Bank in common bream, a fish species living in close contact with the sediment: (1) In all cases, cbio,lip were below clip⇌sed, (2) there was proportionality between the two parameters with high R(2) values (0.92-1.00) and (3) the slopes of the linear regressions were very similar between the three stations (0.297; 0.327; 0.390). These results confirm the close link between PCB bioaccumulation and the thermodynamic potential of sediment-associated HOCs for partitioning into lipids. This novel approach gives clearer and more consistent results compared to conventional approaches that are based on total concentrations in sediment and biota-sediment accumulation factors. We propose to apply equilibrium sampling for determining bioavailability and bioaccumulation potential of HOCs, since this technique can provide a thermodynamic basis for the risk assessment and management of contaminated sediments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Disc valve for sampling erosive process streams

    Science.gov (United States)

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1986-01-07

    A four-port disc valve is described for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of [alpha] silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions. 1 fig.

  3. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nørgaard Schmidt, Stine; Mäenpää, Kimmo

    Hydrophobic organic contaminants (HOCs) reaching the aquatic environment are largely stored in sediments. The risk of contaminated sediments is challenging to assess since traditional exhaustive extraction methods yield total HOC concentrations, whereas freely dissolved concentrations (Cfree......) govern diffusive uptake and partitioning. Equilibrium sampling of sediment was introduced 15 years ago to measure Cfree, and it has since developed into a straightforward, precise and sensitive approach for determining Cfree and other exposure parameters that allow for thermodynamic assessment...... of polluted sediments. Glass jars with µm-thin silicone coatings on the inner walls can be used for ex situ equilibration while a device housing several silicone-coated fibers can be used for in situ equilibration. In both cases, parallel sampling with varying silicone thicknesses can be applied to confirm...

  4. Relations between continuous real-time turbidity data and discrete suspended-sediment concentration samples in the Neosho and Cottonwood Rivers, east-central Kansas, 2009-2012

    Science.gov (United States)

    Foster, Guy M.

    2014-01-01

    The Neosho River and its primary tributary, the Cottonwood River, are the primary sources of inflow to the John Redmond Reservoir in east-central Kansas. Sedimentation rate in the John Redmond Reservoir was estimated as 743 acre-feet per year for 1964–2006. This estimated sedimentation rate is more than 80 percent larger than the projected design sedimentation rate of 404 acre-feet per year, and resulted in a loss of 40 percent of the conservation pool since its construction in 1964. To reduce sediment input into the reservoir, the Kansas Water Office implemented stream bank stabilization techniques along an 8.3 mile reach of the Neosho River during 2010 through 2011. The U.S. Geological Survey, in cooperation with the Kansas Water Office and funded in part through the Kansas State Water Plan Fund, operated continuous real-time water-quality monitors upstream and downstream from stream bank stabilization efforts before, during, and after construction. Continuously measured water-quality properties include streamflow, specific conductance, water temperature, and turbidity. Discrete sediment samples were collected from June 2009 through September 2012 and analyzed for suspended-sediment concentration (SSC), percentage of sediments less than 63 micrometers (sand-fine break), and loss of material on ignition (analogous to amount of organic matter). Regression models were developed to establish relations between discretely measured SSC samples, and turbidity or streamflow to estimate continuously SSC. Continuous water-quality monitors represented between 96 and 99 percent of the cross-sectional variability for turbidity, and had slopes between 0.91 and 0.98. Because consistent bias was not observed, values from continuous water-quality monitors were considered representative of stream conditions. On average, turbidity-based SSC models explained 96 percent of the variance in SSC. Streamflow-based regressions explained 53 to 60 percent of the variance. Mean squared

  5. Water and sediment quality assessment in the Colastiné-Corralito stream system (Santa Fe, Argentina): impact of industry and agriculture on aquatic ecosystems.

    Science.gov (United States)

    Regaldo, Luciana; Gutierrez, María F; Reno, Ulises; Fernández, Viviana; Gervasio, Susana; Repetti, María R; Gagneten, Ana M

    2018-03-01

    The present study focuses on the evaluation of metal (chromium, copper, and lead), arsenic, and pesticide (atrazine and endosulfan) contamination in freshwater streams of one of the most important agricultural and industrial areas of central-eastern Argentina, which has not been reported earlier. The environmental fate of inorganic microcontaminants and pesticides was assessed. Samples were collected monthly for a year. Pesticide concentrations were measured in water; metal and arsenic concentrations were measured in water and sediments, and physicochemical variables were analyzed. In most cases, metals and arsenic in water exceeded the established guideline levels for the protection of aquatic biota: 98 and 56.25% of the samples showed higher levels of Cr and Pb, while 81.25 and 85% of the samples presented higher values for Cu and As, respectively. Cr, Pb, Cu, and As exceeded 181.5 times, 41.6 times, 57.5 times, and 12.9 times, respectively, the guideline level values. In sediment samples, permitted levels were also surpassed by 40% for Pb, 15% for As, 4% for Cu, and 2% for Cr. Geoaccumulation Index (Igeo) demonstrated that most of the sediment samples were highly polluted by Cr and Cu and very seriously polluted by Pb, which indicates progressive deterioration of the sediment quality. Atrazine never exceeded them, but 27% of the 48 water samples contained total endosulfan that surpassed the guidelines. The findings of this study suggest risk to the freshwater biota over prolong periods and possible risk to humans if such type of contaminated water is employed for recreation or human use. Improper disposal of industrial effluents and agricultural runoffs need to be controlled, and proper treatment should be done before disposal to avoid further deterioration of the aquifers of this area.

  6. The Midwest Stream Quality Assessment—Influences of human activities on streams

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  7. Delivery of suspended sediment and associated phosphorus and heavy metals to small rural Danish streams

    DEFF Research Database (Denmark)

    Laubel, A. R.

    The aim of this study is to examine delivery pathways for suspended sediment, and particulate phosphorus (P) and heavy metals from open rural areas to small Danish streams. A further aim is to quantify the contribution from different path-ways and source areas. Such studies are useful as a basis...... for considering measures to reduce diffuse pollution of the aquatic environment....

  8. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    Science.gov (United States)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  9. Stream flow - its estimation, uncertainty and interaction with groundwater and floodplains

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang

    , floodplain hydraulics and sedimentation patterns has been investigated along a restored channel section of Odense stream, Denmark. Collected samples of deposited sediment, organic matter and phosphorus on the floodplain were compared with results from a 2D dynamic flow model. Three stage dependent flow...... regimes were predicted by the flow model with shifting primary overbank flow and zones of flow confluence. These dynamic flow patterns were found to correlate with the spatial deposition of total phosphorus (11.4 g m-2), organic matter (0.65 kg m-2) and sediment (4.72 kg m-2), and zones of major total...... sediment deposition coincided with the flow confluence zones. The revealed complex spatially and temporally changing floodplain flow pattern was found to play a decisive role for the deposition processes. The interaction between stream flow and groundwater from catchment to point scale has been...

  10. Quantifying Sediment Transport in a Premontane Transitional Cloud Forest

    Science.gov (United States)

    Waring, E. R.; Brumbelow, J. K.

    2013-12-01

    Quantifying sediment transport is a difficult task in any watershed, and relatively little direct measurement has occurred in tropical, mountainous watersheds. The Howler Monkey Watershed (2.2 hectares) is located in a premontane transitional cloud forest in San Isidro de Peñas Blancas, Costa Rica. In June 2012, a V-notch stream-gaging weir was built in the catchment with a 8 ft by 6 ft by 4 ft concrete stilling basin. Sediment captured by the weir was left untouched for an 11 month time period. To collect the contents of the weir, the stream was rerouted and the weir was drained. The stilling basin contents were systematically sampled, and samples were taken to a lab and characterized using sieve and hydrometer tests. The wet volume of the remaining sediment was obtained, and dry mass was estimated. Particle size distribution of samples were obtained from lab tests, with 96% of sediment trapped by the weir being sand or coarser. The efficiency of the weir as a sediment collector was evaluated by comparing particle fall velocities to residence time of water in the weir under baseflow conditions. Under these assumptions, only two to three percent of the total mass of soil transported in the stream is thought to have been suspended in the water and lost over the V-notch. Data were compared to the Universal Soil Loss Equation (USLE), a widely accepted method for predicting soil loss in agricultural watersheds. As expected, application of the USLE to a tropical rainforest was problematic with uncertainty in parameters yielding a soil loss estimate varying by a factor of 50. Continued monitoring of sediment transport should yield data for improved methods of soil loss estimation applicable to tropical mountainous forests.

  11. PCBs in Rain Water, Streams and a Reservoir in a Small Catchment of NW Spain

    Science.gov (United States)

    Delgado-Martín, Jordi; Cereijo-Arango, José Luis; García-Morrondo, David; Juncosa-Rivera, Ricardo; Cillero-Castro, Carmen; Muñoz-Ibáñez, Andrea

    2016-04-01

    Polychlorinated biphenyls (PCBs) constitute a significant environmental concern due to its persistence, tendency to bio-accumulate, acknowledged toxicity and ubiquity. In the present study, a small water catchment (~100 km2) inclusive of a two-tailed water supply reservoir (Abegondo-Cecebre) has been monitored between 2009 and 2014. Sampling stations include: a) one precipitation gauge used to collect monthly-integrated bulk precipitation (25 samples); b) seven streams (95 samples); c) five surface and one bottom points within the reservoir (104 samples); d) five points for sediment sampling in two surveys (spring and summer; 10 samples). All the water samples as well as the leachates of sediment washing have been analyzed for their concentration in 6 marker PCB (congeners 28, 52, 101, 138, 153 and 180) and 12 dioxin-like PCB (congeners 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 and 189) compounds. The average concentration of PCBtot in the bulk precipitation during the sampling period is ~406 pg/L although a very significant decrease has occurred since the end of 2011 (~800 pg/L) to the end of 2014 (~60 pg/L). Likewise, the mean concentration of PCBtot in the stream water samples is 174 pg/L and a similar reduction in the concentration of PCBtot is also acknowledged for the same period of time (~250 pg/L before the end of 2011 and ~30 pg/L after then). Reservoir surface water has a PCBtot concentration of ~234 pg/L which, according to its sampling time (2010-2011) is consistent with the measured stream waters. However, deep reservoir water reveals an average concentration which is higher than the corresponding top water (~330 pg/L) but significantly smaller than the water-leached sediments (~860 pg/L). The available data suggest that up to a 30% of PCBs associated with precipitation becomes sequestered by the soil/sediment system while no significant change takes place during the transfer of water from the stream to the reservoir system, at least in

  12. Results of Macroinvertebrate Sampling Conducted at 33 SRS Stream Locations, July--August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1994-12-01

    In order to assess the health of the macroinvertebrate communities of SRS streams, the macroinvertebrate communities at 30 stream locations on SRS were sampled during the summer of 1993, using Hester-Dendy multiplate samplers. In addition, three off-site locations in the Upper Three Runs drainage were sampled in order to assess the potential for impact from off-site activities. In interpreting the data, it is important to recognize that these data were from a single set of collections. Macroinvertebrate communities often undergo considerable temporal variation, and are also greatly influenced by such factors as water depth, water velocity, and available habitat. These stations were selected with the intent of developing an on-going sampling program at a smaller number of stations, with the selection of the stations to be based largely upon the results of this preliminary sampling program. When stations within a given stream showed similar results, fewer stations would be sampled in the future. Similarly, if a stream appeared to be perturbed, additional stations or chemical analyses might be added so that the source of the perturbation could be identified. In general, unperturbed streams will contain more taxa than perturbed streams, and the distribution of taxa among orders or families will differ. Some groups of macroinvertebrates, such as Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), which are collectively called EPT taxa, are considered to be relatively sensitive to most kinds of stream perturbation; therefore a reduced number of EPT taxa generally indicates that the stream has been subject to chemical or physical stressors. In coastal plain streams, EPT taxa are generally less dominant than in streams with rocky substrates, while Chironomidae (midges) are more abundant. (Abstract Truncated)

  13. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    DEFF Research Database (Denmark)

    ) govern diffusive uptake and partitioning. Equilibrium sampling of sediment was introduced 15 years ago to measure Cfree, and it has since developed into a straightforward, precise and sensitive approach for determining Cfree and other exposure parameters that allow for thermodynamic assessment...... of polluted sediments. Glass jars with µm-thin silicone coatings on the inner walls can be used for ex situ equilibration while a device housing several silicone-coated fibers can be used for in situ equilibration. In both cases, parallel sampling with varying silicone thicknesses can be applied to confirm...... will focus at the latest developments in equilibrium sampling concepts and methods. Further, we will explain how these approaches can provide a new basis for a thermodynamic assessment of polluted sediments....

  14. Modeling sediment concentration of rill flow

    Science.gov (United States)

    Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen

    2018-06-01

    Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.

  15. Automated electron microprobe identification of minerals in stream sediments for the national uranium resources evaluation program

    International Nuclear Information System (INIS)

    Mosley, W.C. Jr.

    1979-01-01

    Over 500 stream sediment particles have been analyzed. About 96% have been identified as distinct minerals. Most of the others appeared to be mixtures. Only zinc-bearing gahnite had to be analyzed further for positive identification. Monazite and zircon were the only minerals with concentrations of uranium significantly above the detection limit. The Frantz Isodynamic Magnetic Separator isolated the monazite into the 1.0 fraction. Monazite particles in anomalous sediments contained up to 3.7 wt % uranium. This uranium concentration is unusually high for monazite, which normally has about 0.5 wt % uranium, and may be the cause of the anomaly

  16. Cyclic Sediment Trading Between Channel and River Bed Sediments

    Science.gov (United States)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  17. Impacts of Sedimentation from Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds of the Allegheny National Forest of Northwestern Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, K.; Harris, S.; Edenborn, H.M.; Sams, J.

    2011-01-01

    Fritz, Kelley'*, Steven Harris', Harry Edenborn2, and James Sams2. 'Clarion University of Pennsylvania, Clarion, PA 16214, 2National Energy Technology Laboratory, U.S. Dept. Energy, Pittsburgh, PA 15236. Impacts a/Sedimentation/rom Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds a/the Allegheny National Forest a/Northwestern Pennsylvania - The Allegheny National Forest (ANF), located in northwestern Pennsy Ivania, is a multiuse forest combining commercial development with recreational and conservation activities. As such, portions of the ANF have been heavily logged and are now the subject of widespread oil and gas development. This rapid increase in oil and gas development has led to concerns about sediment runoff from the dirt and gravel roads associated with development and the potential impact on the aquatic biota of the receiving streams. We examined and compared the benthic macroinvertebrate communities in two adjacent watersheds of similar size and topography in the ANF; the Hedgehog Run watershed has no oil and gas development, while the adjacent Grunder Run watershed has extensive oil and gas development. In Hedgehog and Grunder Run, we collected monthly kicknet samples from riffles and glides at two sites from April to October 2010. At the same intervals, we measured standard water quality parameters, including conductivity and turbidity. Preliminary results have indicated much higher turbidity in Grunder Run, but little difference in the diversity and abundance of benthic macro invertebrates inhabiting the two streams.

  18. Predicting Monsoonal-Driven Stream Discharge and Sediment Yield in Himalaya Mountain Basins with Changing Climate and Deforestation

    Science.gov (United States)

    Neupane, R. P.; White, J. D.

    2014-12-01

    Short and long term effects of site water availability impacts the spectrum of management outcomes including landslide risk, hydropower generation, and sustainable agriculture in mountain systems heavily influenced by climate and land use changes. Climate change and land use may predominantly affect the hydrologic cycle of mountain basins as soil precipitation interception is affected by land cover. Using the Soil and Water Assessment Tool, we estimated stream discharge and sediment yield associated with climate and land use changes for two Himalaya basins located at eastern and western margins of Nepal that included drainages of the Tamor and Seti Rivers. Future climate change was modeled using average output of temperature and precipitation changes derived from Special Report on Emission Scenarios (B1, A1B & A2) of 16 global circulation models for 2080 as meteorological inputs into SWAT. Land use change was modeled spatially and included 1) deforestation, 2) expansion of agricultural land, and 3) increased human settlement that were produced by considering current land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use types. We found higher annual stream discharge in all GCM-derived scenarios compared to the baseline with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. With 7% of original forest land removed, sediment yield for Tamor basin was estimated to be 65% higher, but increased to 124% for the SRES-B1 scenario. For the Seti basin, 4% deforestation yielded 33% more sediment for the SRES-A1B scenario. Our results indicated that combined effects of future, intensified monsoon rainfall with deforestation lead to dramatic potential for increased stream discharge and sediment yield as rainfall on steep slopes with thin exposed soils increases surface runoff and soil erosion in the Himalayas. This effect appears to

  19. New marine geophysical and sediment record of the Northeast Greenland Ice Stream.

    Science.gov (United States)

    Callard, L.; Roberts, D. H.; O'Cofaigh, C.; Lloyd, J. M.; Smith, J. A.; Dorschel, B.

    2017-12-01

    The NE Greenland Ice Stream (NEGIS) drains 16% of the Greenland Ice Sheet (GrIS) and has a sea-level equivalent of 1.1-1.4 m. Stabilised by two floating ice shelves, 79N and Zachariae Isstrom, until recently it has shown little response to increased atmospheric and oceanic warming. However, since 2010 it has experienced an accelerated rate of grounding line retreat ( 4 km) and significant ice shelf loss that indicates that this sector of the GrIS is now responding to current oceanic and/or climatic change and has the potential to be a major contributor to future global sea-level rise. The project `NEGIS', a collaboration between Durham University and AWI, aims to reconstruct the history of the NE Greenland Ice Stream from the Last Glacial Maximum (LGM) to present using both onshore and offshore geological archives to better understand past ice stream response to a warming climate. This contribution presents results and interpretations from an offshore dataset collected on the RV Polarstern, cruises PS100 and PS109 in 2016 and 2017. Gravity and box cores, supplemented by swath bathymetric and sub-bottom profiler data, were acquired and initial core analysis including x-radiographs and MSCL data logging has been performed. Data collection focused principally in the Norske Trough and the area directly in front of the 79N ice shelf, a sub-ice shelf environment as recently as two years ago. On the outer shelf streamlined subglacial bedforms, grounding-zone wedges and moraines as well as overconsolidated subglacial tills, record an extensive ice sheet advance to the shelf edge. On the inner shelf and in front of the 79N ice shelf, deep, glacially-eroded bedrock basins are infilled with stratified sediment. The stratified muds represent deglacial and Holocene glacimarine sedimentation, and capture the recent transition from sub-ice shelf to shelf free conditions. Multiproxy palaeoenvironmental reconstructions, including foraminifera and diatom analysis, and radiocarbon

  20. Spatiotemporal trend analysis of metal concentrations in sediments of a residential California stream with toxicity and regulatory implications.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2017-06-07

    The objective of this study was to determine if concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc measured in the sediments of a residential stream in California (Pleasant Grove Creek) have changed temporally or spatially from 2006 to 2016. Threshold Effect Levels (TELs), conservative ecological effects benchmarks, and exceedances for the seven metals were also evaluated over the 11-year time period to provide insight into potential metal toxicity to resident benthic communities. In addition, the bioavailability of metals in sediments was also determined by calculating Simultaneous Extracted Metal/Acid Volatle Sulfide (SEM/AVS) ratios to allow an additional assessment of toxicity. Regulatory implications of this data set and the role of metal toxicity are also discussed. Stream-wide temporal trend analysis showed no statistically significant trends for any of the metals. However, spatial analysis for several sites located near storm drains did show a significant increase for most metals over the 11-year period. TEL exceedances during the 7 years of sampling, spanning 2006-2016, were reported for all metals with the number of exceedances ranging from 47 for copper and zinc to 1 for lead. A spatial analysis showed that the highest number of TEL exceedances and the highest number of SEM/AVS ratios greater than one with at least one metal exceeding a TEL occurred at upstream sites. The potentially toxic metal concentrations reported in Pleasant Grove Creek should be used in the 303 (d) listing process for impaired water bodies in California.

  1. Savannah River Laboratory semiannual report, April-September 1979. Hydrogeochemical and stream sediment reconnaissance: National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    1979-10-01

    This report summarizes the accomplishments, status, and program of the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. SRL has accepted responsibility for Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of 1,500,000 square miles in 30 eastern and 7 far-western states. The report is a progress report covering the period April 1979 through September 1979. SRL efforts in the following areas are discussed: reconnaissance and detailed studies in geological programs; management, analysis, and interpretation of analytical and field data; reporting of HSSR results; sample preparation methods; and neutron activation analysis and other analytical techniques. Appendix A to the report summarizes the SRL-NURE production of the April 1979-September 1979 period and the program plans for the first half of FY-1980. Page-scale maps are included that show the status of completed sampling, analysis, and data reports placed on open file

  2. Passive sampling methods for contaminated sediments

    DEFF Research Database (Denmark)

    Peijnenburg, Willie J.G.M.; Teasdale, Peter R.; Reible, Danny

    2014-01-01

    “Dissolved” concentrations of contaminants in sediment porewater (Cfree) provide a more relevant exposure metric for risk assessment than do total concentrations. Passive sampling methods (PSMs) for estimating Cfree offer the potential for cost-efficient and accurate in situ characterization...

  3. Water-quality assessment of part of the Upper Mississippi River Basin Study Unit, Minnesota and Wisconsin- Nutrients, chlorophyll a, phytoplankton, and suspended sediment in streams, 1996-98

    Science.gov (United States)

    Kroening, Sharon E.; Lee, Kathy E.; Goldstein, R.M.

    2003-01-01

    Stream water-quality data from part of the Upper Mississippi River Basin Study Unit (Study Unit) from 1995 through 1998 was used to describe the distribution of nutrients, chlorophyll a, phytoplankton, and suspended sediment; and the influence of natural and anthropogenic factors on reported concentrations, loads, and yields. During the study period, streamflows generally were near to greater than average. Agricultural land cover, particularly on tile-drained soils, had the most substantial influence on nutrients, chlorophyll a, and suspended sediment in the Study Unit. The greatest concentrations and yields of total nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved nitrite nitrogen, total organic plus ammonia nitrogen, total phosphorus, and suspended sediment were measured in a stream representing agricultural land cover on tile-drained soils. Total nitrogen yields also were about 6 times greater in a stream representing agricultural land cover on tile-drained soils than in a stream representing agricultural land cover on naturally welldrained soils.

  4. Polycyclic aromatic hydrocarbons (PAHs) in Austin sediments after a ban on pavement sealers

    Energy Technology Data Exchange (ETDEWEB)

    DeMott, R.P.; Gauthier, T.D.; Wiersema, J.M.; Crenson, G. [ENVIRON International, Tampa, FL (USA)

    2010-07-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations were measured in stream sediments collected before and after a municipal ban on the use of coal-tar-based pavement sealers in Austin, Texas. Samples were collected in October 2005, prior to the ban, and again in April, 2008, approximately 2 years after the ban. Differences in total PAH concentrations between samples collected before and after the ban show no net change in PAH levels in Austin stream sediments. Results of hydrocarbon fingerprinting reveal subtle differences in PAH profiles that appear to reflect the effects of weathering rather than a change in PAH sources.

  5. Hydrogeochemical and Stream Sediment Reconnaissance Program in central United States. Semiannual progress report, October 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Arendt, J.W.

    1979-01-01

    Basic data reports were open filed for eight NTMS quadrangles during the reporting period: Sherman, Houston, Ardmore, Emory Peak, Presidio, Enid, Austin, and Lawton. Basic data reports, which have been prepared and are in the process of being open filed, include Wichita, St. Cloud, Ashland, and Clinton. Results indicate that the most favorable areas for the occurrence of uranium mineralization in the open filed quadrangles are as follows: (1) Austin Quadrangle - Whitsett, Catahoula, Oakville, and Fleming Formations (Tertiary). (2) Lawton Quadrangle - Hennessey and Clearfork Groups, Garber Sandstone, and Post Oak Conglomerate (Lower Permian); and El Reno Group (Upper Permian). (3) Emory Peak Quadrangle - Tertiary tuffaceous ash beds and other igneous rocks, carbonate-dominant Cretaceous strata. During the period, approximately 13,886 samples of groundwater and stream sediments were collected by the URE Project. Approximately 20,738 samples were analyzed by the URE Laboratory

  6. Analysis Of DWPF Sludge Batch 7A (Macrobatch 8) Pour Stream Samples

    International Nuclear Information System (INIS)

    Johnson, F.

    2012-01-01

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed. The following conclusions were drawn from the analytical results provided in this report: (1) The sum of oxides for the official SB7a pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%). (2) The average calculated Waste Dilution Factor (WDF) for SB7a is 2.3. In general, the measured radionuclide content of the official SB7a pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7a Waste Acceptance Program Specification (WAPS) sample. (3) As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the official SB7a pour stream sample. (4) The Product Consistency Test (PCT) results indicate that the official SB7a pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.64 g/L, which is an order of magnitude less than the Environmental

  7. Factors affecting distribution of wood, detritus, and sediment in headwater streams draining managed young-growth red alder - Conifer forests in southeast Alaska

    Science.gov (United States)

    Gomi, T.; Johnson, A.C.; Deal, R.L.; Hennon, P.E.; Orlikowska, E.H.; Wipfli, M.S.

    2006-01-01

    Factors (riparian stand condition, management regimes, and channel properties) affecting distributions of wood, detritus (leaves and branches), and sediment were examined in headwater streams draining young-growth red alder (Alnus rubra Bong.) - conifer riparian forests (40 years old) remained in channels and provided sites for sediment and organic matter storage. Despite various alder-conifer mixtures and past harvesting effects, the abundance of large wood, fine wood, and detritus accumulations significantly decreased with increasing channel bank-full width (0.5-3.5 m) along relatively short channel distances (up to 700 m). Changes in wood, detritus, and sediment accumulations together with changes in riparian stand characteristics create spatial and temporal variability of in-channel conditions in headwater systems. A component of alder within young-growth riparian forests may benefit both wood production and biological recovery in disturbed headwater stream channels. ?? 2006 NRC.

  8. Data quality objectives for the B-Cell waste stream classification sampling

    International Nuclear Information System (INIS)

    Barnett, J.M.

    1998-01-01

    This document defines the data quality objectives, (DQOS) for sampling the B-Cell racks waste stream. The sampling effort is concentrated on determining a ratio of Cs-137 to Sr-90 and Cs-137 to transuranics (TRU). Figure 1.0 shows the logic path of sampling effort. The flow chart begins with sample and data acquisition and progresses toward (a) statistical confidence and waste classification boundaries, (b) management decisions based on the input parameters and technical methods available, and (c) grout container volume/weight limits and radiation limits. The end result will be accurately classifying the B-Cell rack waste stream

  9. Preliminary report on arsenic and heavy metals contents in soils and stream bed sediments of Cornia, Bruna and Alma coastal plains (Southern Tuscany

    Directory of Open Access Journals (Sweden)

    Dughetti F.

    2013-04-01

    Full Text Available The Department of Earth Sciences of University of Florence has conducted over the past ten years, numerous studies about the distribution of arsenic and heavy metals in mineralized areas of Tuscany, particularly in the Pecora basin. The area hosts several polymetallic ore bodies and a pyrite ore deposit. The studies have identified several geochemical anomalies (As, Cu, Pb, Zn… both in the areas which host the ore bodies and in the coastal plain (Scarlino Plain. To increase the knowledge concerning the distribution of As and heavy metals in other Tuscan coastal plains, research is under way in the alluvial plains of the Bruna, Cornia and Alma rivers. The preliminary analysis have focused on soils and stream sediments, to better understand the correlations between the downstream transport of rivers and the soils. We have made physic-chemical analysis, particle size analysis, mineralogical analysis for X-ray powder diffraction, chemical analysis for the determination of major element (X-ray Fluorescence and for the determination of 35 minor elements and traces (AAS and ICP.Preliminary data show high concentrations of several elements (As, Zn, Co…. The concentrations of these elements in soils and stream bed sediments are not always consistent; in particular we have found higher concentrations in soils than in stream bed sediments in Cornia Plain, while the opposite happens in the Bruna basin. Therefore the natural processes of rocks weathering does not seem to have affected uniformly. The distribution of As and heavy metals in soils and stream bed sediments of the all three basins of interest are still under investigation.

  10. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-31

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.

  11. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this

  12. Physico-chemical characteristics of water sample from Aiba Stream ...

    African Journals Online (AJOL)

    This study aimed at assessing the effectiveness of solar distillation in purification of water. The water sample collected from Aiba stream was subjected to double slope solar water distillation unit. The physico- chemical characteristics of the raw sample and the distillate were determined using standard methods. The.

  13. 105-N Basin sediment disposition phase-one sampling and analysis plan

    International Nuclear Information System (INIS)

    1997-01-01

    The sampling and analysis plan (SAP) for Phase 1 of the 105-N Basin sediment disposition project defines the sampling and analytical activities that will be performed for the engineering assessment phase (phase 1) of the project. A separate SAP defines the sampling and analytical activities that will be performed for the characterization phase (Phase 2) of the 105-N sediment disposition project. The Phase-1 SAP is presented in the introduction (Section 1.0), in the field sampling plan (FSP) (Section 2.0), and in the quality assurance project plan (QAPjP) (Section 3.0). The FSP defines the sampling and analytical methodologies to be performed. The QAPjP provides information on the quality assurance/quality control (QA/QC) parameters related to the sampling and analytical methodologies. This SAP defines the strategy and the methods that will be used to sample and analyze the sediment on the floor of the 105-N Basin. The resulting data will be used to develop and evaluate engineering designs for collecting and removing sediment from the basin

  14. Geochemical distribution and mobility of heavy metals in sediments of urban streams affected by combined sewer overflows

    Czech Academy of Sciences Publication Activity Database

    Hnaťuková, Petra

    2011-01-01

    Roč. 59, č. 2 (2011), s. 85-94 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600902 Institutional research plan: CEZ:AV0Z20600510 Keywords : sediments * heavy metals * urban streams * sequential extraction * combined sewer overflows Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011

  15. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons

  16. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin

    Science.gov (United States)

    P.B. Parajuli; P. Jayakody; G.F. Sassenrath; Y. Ouyang

    2016-01-01

    This study evaluated climate change impacts on stream flow, crop and sediment yields from three differ-ent tillage systems (conventional, reduced 1–close to conservation, and reduced 2–close to no-till), in theBig Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) modelwas applied to the BSRW using observed stream flow and crop...

  17. In situ sampling of interstitial water from lake sediments

    NARCIS (Netherlands)

    Brinkman, Albertus G.; van Raaphorst, Wim; Lijklema, Lambertus

    1982-01-01

    A sampler with a relatively high resolution has been developed, which allows interstitial water to be obtained from lake sediments at well defined depths, without serious disturbance of sediment structure. Oxidation effects are excluded. Sampling time is in the order of a day. Installation requires

  18. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    Science.gov (United States)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured

  19. Application of dimensionless sediment rating curves to predict suspended-sediment concentrations, bedload, and annual sediment loads for rivers in Minnesota

    Science.gov (United States)

    Ellison, Christopher A.; Groten, Joel T.; Lorenz, David L.; Koller, Karl S.

    2016-10-27

    variety of basin sizes and flow regimes than DSRC models developed using data collected for Pagosa Springs, Colorado. Minnesota DSRC models retained a substantial portion of the unique sediment signatures for most rivers, although deviations were observed for streams with limited sediment supply and for rivers in southeastern Minnesota, which had markedly larger regression exponents. Compared to Pagosa Springs DSRC models, Minnesota DSRC models had regression slopes that more closely matched the slopes of site-specific regression models, had greater Nash-Sutcliffe Efficiency values, had lower model biases, and approximated measured annual sediment loads more closely. The results presented in this report indicate that regionally based DSRCs can be used to estimate reasonably accurate values of SSC and bedload.Practitioners are cautioned that DSRC reliability is dependent on representative measures of bankfull streamflow, SSC, and bedload. It is, therefore, important that samples of SSC and bedload, which will be used for estimating SSC and bedload at the bankfull streamflow, are collected over a range of conditions that includes the ascending and descending limbs of the event hydrograph. The use of DSRC models may have substantial limitations for certain conditions. For example, DSRC models should not be used to predict SSC and sediment loads for extreme streamflows, such as those that exceed twice the bankfull streamflow value because this constitutes conditions beyond the realm of current (2016) empirical modeling capability. Also, if relations between SSC and streamflow and between bedload and streamflow are not statistically significant, DSRC models should not be used to predict SSC or bedload, as this could result in large errors. For streams that do not violate these conditions, DSRC estimates of SSC and bedload can be used for stream restoration planning and design, and for estimating annual sediment loads for streams where little or no sediment data are available.

  20. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed

    Science.gov (United States)

    This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CEC) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from...

  1. Hydroxyatrazine in soils and sediments

    Science.gov (United States)

    Lerch, R.N.; Thurman, E.M.; Blanchard, P.E.

    1999-01-01

    Hydroxyatrazine (HA) is the major metabolite of atrazine in most surface soils. Knowledge of HA sorption to soils, and its pattern of stream water contamination suggest that it is persistent in the environment. Soils with different atrazine use histories were collected from four sites, and sediments were collected from an agricultural watershed. Samples were exhaustively extracted with a mixed-mode extractant, and HA was quantitated using high performance liquid chromatography with UV detection. Atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were also measured in all samples. Concentrations of HA were considerably greater than concentrations of atrazine, DEA, and DIA in all soils and sediments studied. Soil concentrations of HA ranged from 14 to 640 ??g/kg with a median concentration of 84 ??g/kg. Sediment concentrations of HA ranged from 11 to 96 ??g/kg, with a median concentration of 14 ??g/kg. Correlations of HA and atrazine concentrations to soil properties indicated that HA levels in soils were controlled by sorption of atrazine. Because atrazine hydrolysis is known to be enhanced by sorption and pH extremes, soils with high organic matter (OM) and clay content and low pH will result in greater atrazine sorption and subsequent hydrolysis. Significant correlation of HA concentrations to OM, pH, and cation exchange capacity of sediments indicated that mixed-mode sorption (i.e., binding by cation exchange and hydrophobic interactions) was the mechanism controlling HA levels in sediment. The presence of HA in soils and stream sediments at the levels observed support existing hypotheses regarding its transport in surface runoff. These results also indicated that persistence of HA in terrestrial and aquatic ecosystems is an additional risk factor associated with atrazine usage.

  2. Albany 10 x 20 NTMS area Connecticut, New Hampshire, Massachusetts, New York and Vermont: supplemental data report. National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-03-01

    This data report presents supplemental analytical results for 1328 stream sediment samples that were collected as part of the SRL-NURE reconnaissance in the National Topographic Map Series (NTMS) Albany 1 0 x 2 0 quadrangle. Results are reported for 23 Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn). Analyses are tabulated and displayed graphically on microfiche. Field data and neutron activation analysis were open-filed in DPST-79-146-10 [GJBX-140(79)

  3. A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams

    Science.gov (United States)

    William R. Budnick; William E. Kelso; Susan B. Adams; Michael D. Kaller

    2018-01-01

    Identifying an effective protocol for sampling crayfish in streams that vary in habitat and physical/chemical characteristics has proven problematic. We evaluated an active, combined-gear (backpack electrofishing and dipnetting) sampling protocol in 20 Coastal Plain streams in Louisiana. Using generalized linear models and rarefaction curves, we evaluated environmental...

  4. Comparison. US P-61 and Delft sediment samplers

    Science.gov (United States)

    Beverage, Joseph P.; Williams, David T.

    1990-01-01

    The Delft Bottle (DB) is a flow-through device designed by the Delft Hydraulic Laboratory (DHL), The Netherlands, to sample sand-sized sediment suspended in streams. The US P-61 sampler was designed by the Federal Interagency Sedimentation Project (FISP) at the St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minnesota, to collect suspended sediment from deep, swift rivers. The results of two point-sampling tests in the United States, the Mississippi River near Vicksburg, Mississippi, in 1983 and the Colorado River near Blythe, California, in 1984, are provided in this report. These studies compare sand-transport rates, rather than total sediment-transport rates, because fine material washes through the DB sampler. In the United States, the commonly used limits for sand-sized material are 0.062 mm to 2.00 mm (Vanoni 1975).

  5. Does tree harvesting in riparian areas increase stream sedimentation and turbidity - world-wide experience relative to Australia.

    Science.gov (United States)

    Neary, D.; Smethurst, P.; Petrone, K.

    2009-04-01

    A typical improved-pasture property in the high-rainfall zone of Australia contains 0.5-2.0 km of waterways per 100 ha. Nationwide, some 25-30 million ha of improved pasture contains about 100,000 km of streams, of which about 75% are currently un-buffered and contributing to soil and water degradation. Farmers and natural resource managers are considering ways to enhance environmental outcomes at farm and catchment scales using stream-side buffers of trees and other perennial vegetation. Benefits of buffers include improved water quality, biodiversity, carbon sequestration and aesthetics. Lack of sound information and funding for establishing and managing buffer zones is hindering wide-scale adoption of this practice. Stream-side areas of farms are generally highly productive (wet and nutrient-rich) and contain a high biodiversity, but they are also high-risk zones for soil and water values and stock safety. Development of options based on a balance between environmental and economic outcomes would potentially promote wider adoption. Australian codes of forest practice currently discourage or prevent harvesting of trees in streamside buffers. These codes were developed exclusively for large-scale native forests and industrial-scale plantations, and were applicable to farm forestry as now required. In countries including USA and Germany trees in stream-side buffers are harvested using Best Management Practices. Trees may grow at a faster rate in riparian zones and provide a commercial return, but the impacts of tree establishment and harvesting on water yield and quality must be evaluated. However, there have been few designed experiments investigating this problem. Australia has recently initiated studies to explore the use of high-value timber species and associated vegetation in riparian zones to improve water quality, particularly suspended sediment. Preliminary information from the Yan Yan Gurt Catchment in Victoria indicate that forested riparian strips can

  6. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    Science.gov (United States)

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the  Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  7. Rapid Assessment of Logging-Associated Sediment-Delivery Pathways in an Intensively-Managed Forested Watershed in the Southern Cascades, Northern California

    Science.gov (United States)

    Coe, D. B.; Wopat, M. A.; Lindsay, D.; Stanish, S.; Boone, M.; Beck, B.; Wyman, A.; Bull, J.

    2012-12-01

    The potential for water-quality impacts in intensively-managed forested watersheds depends partly upon the frequency of overland flow paths linking logging-related hillslope sediment sources to the channel network, as well as the volume of sediment delivered along these flow paths. In response to public concerns over perceived water-quality impacts from clearcut timber harvesting, the Battle Creek Task Force, composed of subject-matter experts from 4 different state agencies, performed a rapid assessment for visible evidence of sediment delivery pathways from multiple logging-associated features in the upper Battle Creek watershed - an area underlain predominantly by Holocene- and Late Pleistocene-aged volcanic rock types, with highly permeable soils, and relatively few streams. Logging-associated features were selected for assessment based on erosion potential and proximity to stream channels. Identified sediment-delivery pathways were then characterized by dominant erosion process and the relative magnitude of sediment delivery (i.e., low, moderate, and high) was estimated. Approximately 26 km of stream buffers adjacent to 55 clearcut harvest units were assessed, and the single detected instance of sediment delivery was found to be of low magnitude and the result of illegal encroachment by logging equipment into a 5-m wide stream-adjacent equipment-limitation zone. The proportion of sampled sites delivering sediment was found to be highest for tractor-stream crossings, followed by road-stream crossings, stream-adjacent road segments, stream-adjacent landings, and clearcut harvest units, respectively. All 5 tractor-stream crossings delivered sediment, but were generally delivering a low magnitude of sediment derived from sheetwash and rilling. Road-stream crossings (n=39) and stream-adjacent road segments (n=24) delivered observable sediment 69 and 67 percent of the time, respectively. The highest magnitudes of sediment delivery from roads were associated with

  8. Hydrogeochemical and stream sediment reconnaissance basic data for Rawlings quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 454 water samples and 1279 sediment samples from the Rawlins Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-81(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  9. Hydrogeochemical and stream sediment reconnaissance basic data for Cheyenne Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 884 water samples and 598 sediment samples from the Cheyenne Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-106(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  10. Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry

    Science.gov (United States)

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer

    2009-01-01

    We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...

  11. Preparation Of Deposited Sediment Sample By Casting Method For Environmental Study

    International Nuclear Information System (INIS)

    Hutabarat, Tommy; Ristin PI, Evarista

    2000-01-01

    The preparation of deposited sediment sample by c asting m ethod for environmental study has been carried out. This method comprises separation of size fraction and casting process. The deposited sediment samples were wet sieved to separate the size fraction of >500 mum, (250-500) mum, (125-250) mum and (63-125) mum and settling procedures were followed for the separation of (40-63) mum, (20-40) mum, (10-20) mum and o C, ashed at 450 o C, respectively. In the casting process of sample, it was used polyester rapid cure resin and methyl ethyl ketone peroxide (MEKP) hardener. The moulded sediment sample was poured onto caster, allow for 60 hours long. The aim of this method is to get the casted sample which can be used effectively, efficiently and to be avoided from contamination of each other samples. Before casting, samples were grinded up to be fine. The result shows that casting product is ready to be used for natural radionuclide analysis

  12. Apparatus for freeze drying of biologic and sediment samples

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Freeze drying to obtain water from individual samples, though not complicated, usually requires considerable effort to maintain the cold traps on a 24-hr basis. In addition, the transfer of a sample from sample containers to freeze-dry flasks is usually made with some risk of contamination to the sample. If samples are large, 300 g to 600 g, usually several days are required to dry the samples. The use of an unattended system greatly improves personnel and drying efficiency. Commercial freeze dryers are not readily applicable to the problems of collecting water from individual samples, and lab-designed collectors required sample transfer and continual replenishment of the dry ice. A freeze-dry apparatus for collecting water from individual sediment and/or biological samples was constructed to determine the tritium concentrations in fish for dose calcaluations and the tritium distribution in sediment cores for water movement studies. The freeze, dry apparatus, which can handle eight samples simultaneously and conveniently, is set up for unattended 24-hr operation and is designed to avoid sample transfer problems

  13. THE USE OF GEOMORPHOLOGY IN THE ASSESSMENT OF STREAM STABILITY

    Science.gov (United States)

    Various applications of geomorphic data and stream stability rating systems are being considered in order to establish tools for the development of TMDLs for clean sediment in streams. The transport of "clean" sediment, as opposed to contaminated sediment, is of concern to the en...

  14. Sediment problems in urban areas

    Science.gov (United States)

    Guy, Harold P.

    1970-01-01

    A recognition of and solution to sediment problems in urban areas is necessary if society is to have an acceptable living environment. Soil erosion and sediment deposition in urban areas are as much an environmental blight as badly paved and littered streets, dilapidated buildings, billboard clutter, inept land use, and air, water, and noise pollution. In addition, sediment has many direct and indirect effects on streams that may be either part of or very remote from the urban environment. Sediment, for example, is widely recognized as a pollutant of streams and other water bodies.

  15. Adsorption of copper, cadmium and zinc on suspended sediments in a stream contaminated by acid mine drainage: The effect of seasonal changes in dissolved organic carbon

    International Nuclear Information System (INIS)

    Macalady, D.L.; Ranville, J.F.; Smith, K.S.; Daniel, S.R.

    1991-01-01

    The release of metal-rich, acidic waters from abandoned mining operations is a major problem in Colorado and throughout the Western United States. In Colorado, over 600 km of stream reach are estimated to be affected by such releases (Wentz, 1974). The metals released adversely affect stream biota, including fish. It is therefore important to understand the chemical processes which influence metal transport in these waters. The report details studies of the role of suspended sediments with respect to the transport of several important trace metals in a stream impacted by acid mine drainage. The role of streambed sediments was studied in the same system as part of an earlier project (Acid Mine Drainage: streambed sorption of copper, cadmium and zinc, PB--93-118263)

  16. Soil Microbial Community Contribution to Small Headwater Stream Metabolism.

    Science.gov (United States)

    Clapcott, J. E.; Gooderham, J. P.; Barmuta, L. A.; Davies, P. E.

    2005-05-01

    The temporal dynamics of sediment respiration were examined in seven small headwater streams in forested catchments in 2004. A strong seasonal response was observed with higher respiration rates in depositional zones than in gravel runs. The data were also examined in the context of proportional habitat distributions that highlighted the importance of high flow events in shaping whole stream metabolic budgets. This study specifically examines the question of terrestrial soil respiration contribution to whole stream metabolism by the controlled inundation of terrestrial soils. The experiment included six experimentally inundated terrestrial zones, six terrestrial controls, and six in-stream depositional zones. Sediment bacterial respiration was measured using 14C leucine incorporation and cotton strip bioassays were also employed to provide an indicative measure of sediment microbial activity. Despite high variability and exhibiting significantly lower bacterial activity than in-stream sediments, modelling using flow data and habitat mapping illustrated the important contribution of terrestrial soil respiration to the whole stream metabolic budgets of small headwater streams. In addition, microbial community composition examined using phospholipid fatty acid analysis clearly differentiated between terrestrial and aquatic communities. Freshly inundated terrestrial communities remained similar to un-inundated controls after 28 days.

  17. Sediment yield and alternatives soil conservation practices of teak catchments

    Directory of Open Access Journals (Sweden)

    Tyas Mutiara Basuki

    2017-10-01

    Full Text Available Quantifying sediment is essential to determine its sources and reduce its negative impacts. A study was conducted to quantify suspended sediments of catchments covering by teak plantation and to provide alternatives soil conservation practices. Five catchments with old teak coverages of 82; 82; 74; 70; and 53 % were chosen. At the outlet of each catchment was installed tide gauge to monitor stream water level (SWL. Water samples for sediment analyses were taken for every increament of SWL. Sediment yield was calculated based on rating curves of sediment discharge. The results showed that the sources of sediment in the streams were dryland agricultural and streambank erosion. The mean annual sediment yield during the study were 9.3; 10; 15; 53.3; and 22.5 t/ha for catchments covered by old teak plantation of 82, 82, 74, 70, and 53 %, respectively. To reduce sediment yield some soil conservation practices must be applied. Conservation of soil organic matter is important in order to stabilize soil aggregate and prevent clay dispersion which causes erosion and sedimentation. Green firebreaks or making channels are needed to prevent fire during dry season and organic matter loss. Stabilization of streambank is neccesary, either using vegetative method or civil technics.

  18. Contaminants in stream sediments from seven United States metropolitan areas: part II—sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus

    Science.gov (United States)

    Kemble, Nile E.; Hardesty, Douglas K.; Ingersoll, Christopher G.; Kunz, James L.; Sibley, Paul K.; Calhoun, Daniel L.; Gilliom, Robert J.; Kuivila, Kathryn; Nowell, Lisa H.; Moran, Patrick W.

    2013-01-01

    Relationships between sediment toxicity and sediment chemistry were evaluated for 98 samples collected from seven metropolitan study areas across the United States. Sediment-toxicity tests were conducted with the amphipod Hyalella azteca (28 day exposures) and with the midge Chironomus dilutus (10 day exposures). Overall, 33 % of the samples were toxic to amphipods and 12 % of the samples were toxic to midge based on comparisons with reference conditions within each study area. Significant correlations were observed between toxicity end points and sediment concentrations of trace elements, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), or organochlorine (OC) pesticides; however, these correlations were typically weak, and contaminant concentrations were usually below sediment-toxicity thresholds. Concentrations of the pyrethroid bifenthrin exceeded an estimated threshold of 0.49 ng/g (at 1 % total organic carbon) in 14 % of the samples. Of the samples that exceeded this bifenthrin toxicity threshold, 79 % were toxic to amphipods compared with 25 % toxicity for the samples below this threshold. Application of mean probable effect concentration quotients (PECQs) based on measures of groups of contaminants (trace elements, total PAHs, total PCBs,OCpesticides, and pyrethroid pesticides [bifenthrin in particular]) improved the correct classification of samples as toxic or not toxic to amphipods compared with measures of individual groups of contaminants. Sediments are a repository for many contaminants released into surface waters. Because of this, organisms inhabiting sediments may be exposed to a wide range of contaminants (United States Environmental Protection Agency (USEPA) United States Environmental Protection Agency 2000; American Society for Testing and Materials [ASTM] American Society for Testing and Materials International 2012). Contaminants of potential concern in sediments typically include trace elements (metals

  19. Effects of wind farm construction on concentrations and fluxes of dissolved organic carbon and suspended sediment from peat catchments at Braes of Doune, central Scotland

    Directory of Open Access Journals (Sweden)

    I. Grieve

    2008-07-01

    Full Text Available This paper assesses the impacts of disturbance associated with the construction of a wind farm on fluxes of dissolved organic carbon (DOC and suspended sediment from a blanket peat catchment in central Scotland during the period immediately following completion of construction. Six streams draining the site were sampled on six dates from October 2006, when construction was completed, and an additional three control streams to the west of the site were sampled on the same dates. Turbidity and stage were recorded semi-continuously in the two largest streams (one disturbed and one control, which were also sampled during storm events. Absorbance (400 nm and DOC concentrations were determined on all samples, and suspended sediment was determined on the event samples. Absorbance and DOC were closely correlated in both the disturbed and undisturbed streams, with slightly greater absorbance per unit DOC in the disturbed streams. DOC concentrations in disturbed tributaries were always greater than those in undisturbed streams, with mean differences ranging from 2 to around 5 mg L-1. DOC and stage were positively correlated during events with maximum concentrations in excess of 30 mg L 1 at peak flow. Suspended sediment concentrations were markedly elevated in the disturbed stream with maximum concentrations at peak flow some 4–5 times greater than in the control. The colour of the sediment suggested that it was highly organic in nature at peak flow, and suspended particulate organic carbon represented a further loss of C from the site. Using flow-weighted mean DOC concentrations calculated for the storms monitored in autumn 2007, dissolved carbon losses can be estimated for the catchments of the disturbed and control streams. From these data the additional DOC loss related to disturbance associated with the wind farm is estimated at 5 g m-2.

  20. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    Science.gov (United States)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported

  1. Concentration Factors of Norm in Sediment of Cisadane River

    International Nuclear Information System (INIS)

    Agus Gindo S; Lubis, Erwansyah

    2008-01-01

    The Concentration factor (Cf) in sediment of Cisadane river was investigated. The surface water and sediment was sampling at Gunung Sindur area (down stream) until Teluk Naga area (up stream). The results indicated that Cf values of gross-α, gross-β, gross-th, gross-U, 40 K, 226 Ra and 228 Th were 830 ± 87, 1800 ± 290, 2150 ± 50, 1415 ± 41, 37 ± 1, 22 ± 5 and 115 ± 56 respectively. With these Cf values, the radiological impact from liquid effluent release to Cisadane river that contains NORM from industrial activities for agriculture and fishery pathways are able to predicted. This investigation still has to be continued for other radionuclides. (author)

  2. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    Science.gov (United States)

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  3. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal).

    Science.gov (United States)

    Antunes, I M H R; Neiva, A M R; Albuquerque, M T D; Carvalho, P C S; Santos, A C T; Cunha, Pedro P

    2018-02-01

    The Alto da Várzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41-186 µS/cm; TDS = 33-172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H 2 (AsO 4 ) - and H(AsO 4 ) 2- . Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH) 3 (CO 3 ) - , Th(OH) 2 (CO 3 ) and Th(OH) 2 (CO 3 ) 2 2- , which increase water Th contents. Uranium occurs predominantly as UO 2 CO 3 , but CaUO 2 (CO 3 ) 3 2- and CaUO 2 (CO 3 ) 3 also occur, decreasing its mobility in water. The waters are contaminated in NO 2 - , Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.

  4. DEVELOPING AN EXCELLENT SEDIMENT RATING CURVE FROM ONE HYDROLOGICAL YEAR SAMPLING PROGRAMME DATA: APPROACH

    Directory of Open Access Journals (Sweden)

    Preksedis M. Ndomba

    2008-01-01

    Full Text Available This paper presents preliminary findings on the adequacy of one hydrological year sampling programme data in developing an excellent sediment rating curve. The study case is a 1DD1 subcatchment in the upstream of Pangani River Basin (PRB, located in the North Eastern part of Tanzania. 1DD1 is the major runoff-sediment contributing tributary to the downstream hydropower reservoir, the Nyumba Ya Mungu (NYM. In literature sediment rating curve method is known to underestimate the actual sediment load. In the case of developing countries long-term sediment sampling monitoring or conservation campaigns have been reported as unworkable options. Besides, to the best knowledge of the authors, to date there is no consensus on how to develop an excellent rating curve. Daily-midway and intermittent-cross section sediment samples from Depth Integrating sampler (D-74 were used to calibrate the subdaily automatic sediment pumping sampler (ISCO 6712 near bank point samples for developing the rating curve. Sediment load correction factors were derived from both statistical bias estimators and actual sediment load approaches. It should be noted that the ongoing study is guided by findings of other studies in the same catchment. For instance, long term sediment yield rate estimated based on reservoir survey validated the performance of the developed rating curve. The result suggests that excellent rating curve could be developed from one hydrological year sediment sampling programme data. This study has also found that uncorrected rating curve underestimates sediment load. The degreeof underestimation depends on the type of rating curve developed and data used.

  5. Report on the intercomparison run IAEA-313 Ra-226, Th and U in stream sediment

    International Nuclear Information System (INIS)

    Strachnov, V.; Valkovic, V.; Zeisler, R.; Dekner, R.

    1991-01-01

    This report contains the results of the intercomparison IAEA-313 on the determination of uranium, thorium and Ra-226 in two stream sediments from Indonesia. The participants included 36 laboratories located in 18 countries, and statistical evaluation of their data yield recommended values for these elements. The elements, their recommended values and confidence intervals are: Ra-226, 343 Bq/kg (307-379); Th, 77.1 microg/g (74.8-79.4); U, 18.2 microg/g (17.0-19.3). Tabs

  6. Hydrogeochemical and stream sediment reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) 1973-1984. Technical history

    International Nuclear Information System (INIS)

    1985-01-01

    The Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) generated a database of interest to scientists and other professional personnel in the academic, business, industrial, and governmental communities. NURE was a program of the Department of Energy Grand Junction Office (GJO) to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. The HSSR program provided for the collection of water and sediment samples located on the 1 0 x 2 0 National Topographic Map Series (NTMS) quadrangle grid across the conterminous United States and Alaska and the analysis of these samples for uranium as well as for a number of additional elements. Although the initial purpose of the program was to provide information regarding uranium resources, the information recorded about other elements and general field or site characteristics has made this database potentially valuable for describing the geochemistry of a location and addressing other issues such as water quality. The purpose of this Technical History is to summarize in one report those aspects of the HSSR program that are likely to be important in helping users assess the database and make informed judgements about its application to specific research questions. The history begins with an overview of the NURE Program and its components. Following a general description of the goals, objectives, and key features of the HSSR program, the implementation of the program at each of the four federal laboratories is presented in four separate chapters. These typically cover such topics as sample collection, sample analysis, and data management. 80 refs., 5 figs., 9 tabs

  7. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    International Nuclear Information System (INIS)

    Shoupeng, Song; Zhou, Jiang

    2017-01-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry. (paper)

  8. Turbidity threshold sampling for suspended sediment load estimation

    Science.gov (United States)

    Jack Lewis; Rand Eads

    2001-01-01

    Abstract - The paper discusses an automated procedure for measuring turbidity and sampling suspended sediment. The basic equipment consists of a programmable data logger, an in situ turbidimeter, a pumping sampler, and a stage-measuring device. The data logger program employs turbidity to govern sample collection during each transport event. Mounting configurations and...

  9. Estimating sediment loads in an intra-Apennine catchments: balance between modeling and monitoring

    Science.gov (United States)

    Pelacani, Samanta; Cassi, Paola; Borselli, Lorenzo

    2010-05-01

    In this study we compare the results of a soil erosion model applied at watershed scale to the suspended sediment measured in the stream network affected by a motor way construction. A sediment delivery model is applied at watershed scale; the evaluation of sediment delivery is related to a connectivity fluxes index that describes the internal linkages between runoff and sediment sources in upper parts of catchments and the receiving sinks. An analysis of the fine suspended sediment transport and storage was conducted for a streams inlet of the Bilancino reservoir, a principal water supply of the city of Florence. The suspended sediment were collected from a section of river defined as a close systems using a time integrating suspended sediment sampling. The sediment deposited within the sampling traps was recovered after storm events and provide information of the overall contribution of the potential sediment sources. Hillslope gross erosion was assessed by a USLE-TYPE approach. A soil survey at 1:25.000 scale and a soil database was create to calculate, for each soil unit, the erodibility coefficient K using a new algorithm (Salvador Sanchis et al. 2007). Erosivity coefficient R was obtained applying geostatistical methods taking into account elevation and valley morphology. Furthermore, we evaluate a sediment delivery factor (SDR) for the entire watershed. This factor is used to correct the output of the USLE Type model. The innovative approach consist in a SDR factor variable in space and in time because it is related to a fluxes connectivity index IC (Borselli et al. 2008) based on the distribution of land use and topographic features. The aim of this study is to understand how the model simulates the real processes that intervene in the watershed and subsequently to calibrate the model with the result obtained from the monitoring of suspend sediment in the streams. From first results, it appears that human activities by highway construction, have resulted in

  10. Evaluation of sediment sampling devices and methods used in the NKS/EKO-1 project

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E. [Finnish Centre for Radiation and Nuclear Safety (Finland)

    1996-10-01

    The radioactive fallout caused by nuclear weapons tests in the 1960s and the accident at the Chernobyl NPP in 1986 has created useful markers in the sediments of many Nordic waters. These have been successfully used not only in radioecological studies but also in limnological and marine research dealing with sedimentation processes and rates. To be able to study sedimentation and processes in sediments, it is essential to obtain reliable samples from sediments. False conclusions are an obvious risk if the studies are based on biased field samples. More strictly,, it is unreasonable to perform exacting and expensive analyses if the samples themselves are unreliable or of poor quality. The instruments best suited for quantitative sampling of soft-bottom sediments appear to be those based on the coring principle. Box corers can be reliably used for bulk sampling of coherent sediments and some silty and sandy sediments. Many factors speak in favour of large diameters/areas of the corer orifices. It is not possible, however, to increase the tube diameter without negative impact to the corer`s handiness and increasing difficulty in handling and slicing of the cores. Despite the large variety of sampling instruments and many sources of error involved in the use of different instruments, it is most important to know and account for the disadvantages and to work as carefully as possible towards minimizing errors and obtaining undisturbed, reliable samples. (EG).

  11. Evaluation of sediment sampling devices and methods used in the NKS/EKO-1 project

    International Nuclear Information System (INIS)

    Ilus, E.

    1996-01-01

    The radioactive fallout caused by nuclear weapons tests in the 1960s and the accident at the Chernobyl NPP in 1986 has created useful markers in the sediments of many Nordic waters. These have been successfully used not only in radioecological studies but also in limnological and marine research dealing with sedimentation processes and rates. To be able to study sedimentation and processes in sediments, it is essential to obtain reliable samples from sediments. False conclusions are an obvious risk if the studies are based on biased field samples. More strictly,, it is unreasonable to perform exacting and expensive analyses if the samples themselves are unreliable or of poor quality. The instruments best suited for quantitative sampling of soft-bottom sediments appear to be those based on the coring principle. Box corers can be reliably used mainly for bulk sampling of coherent sediments and some silty and sandy sediments. Many factors speak in favour of relatively large diameters/areas of the corer orifices. It is not possible, however, to increase the tube diameter endlessly without negative impact to the corer's handiness and increasing difficulty in handling and slicing of the cores. Despite the large variety of sampling instruments and many sources of error involved in the use of different instruments, it is most important to know and account for the disadvantages and to work as carefully as possible towards minimizing errors and obtaining undisturbed, reliable samples. (EG)

  12. Deltamethrin in sediment samples of the Okavango Delta, Botswana ...

    African Journals Online (AJOL)

    Analysis of samples for organic matter content showed percentage total organic carbon (% TOC) ranging between 0.19% and 8.21%, with samples collected from the pool having the highest total organic carbon. The concentrations of deltamethrin residues and the % TOC in sediment samples showed a similar trend with ...

  13. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    Science.gov (United States)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (hour). The high temporal sampling resolution of the sensors permits a more realistic

  14. Evaluating sediment transport in flood-driven ephemeral tributaries using direct and acoustic methods.

    Science.gov (United States)

    Stark, K.

    2017-12-01

    One common source of uncertainty in sediment transport modeling of large semi-arid rivers is sediment influx delivered by ephemeral, flood-driven tributaries. Large variations in sediment delivery are associated with these regimes due to the highly variable nature of flows within them. While there are many sediment transport equations, they are typically developed for perennial streams and can be inaccurate for ephemeral channels. Discrete, manual sampling is labor intensive and requires personnel to be on site during flooding. In addition, flooding within these tributaries typically last on the order of hours, making it difficult to be present during an event. To better understand these regimes, automated systems are needed to continuously sample bedload and suspended load. In preparation for the pending installation of an automated site on the Arroyo de los Piños in New Mexico, manual sediment and flow samples have been collected over the summer monsoon season of 2017, in spite of the logistical challenges. These data include suspended and bedload sediment samples at the basin outlet, and stage and precipitation data from throughout the basin. Data indicate a complex system; flow is generated primarily in areas of exposed bedrock in the center and higher elevations of the watershed. Bedload samples show a large coarse-grained fraction, with 50% >2 mm and 25% >6 mm, which is compatible with acoustic measuring techniques. These data will be used to inform future site operations, which will combine direct sediment measurement from Reid-type slot samplers and non-invasive acoustic measuring methods. Bedload will be indirectly monitored using pipe-style microphones, plate-style geophones, channel hydrophones, and seismometers. These instruments record vibrations and acoustic signals from bedload impacts and movement. Indirect methods for measuring of bedload have never been extensively evaluated in ephemeral channels in the southwest United States. Once calibrated

  15. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.

    Science.gov (United States)

    Zeiger, Sean J; Hubbart, Jason A

    2016-12-01

    There is an ongoing need to validate the accuracy of predictive model simulated pollutant yields, particularly from multiple-land-use (i.e. forested, agricultural, and urban) watersheds. However, there are seldom sufficient observed data sets available that supply requisite spatial and temporal resolution and coupled multi-parameter constituents for rigorous model performance assessment. Four years of hydroclimate and water quality data were used to validate SWAT model estimates of monthly stream flow, suspended sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen from 5 nested-scale gauging sites located in a multiple-land-use watershed of the central USA. The uncalibrated SWAT model satisfactorily simulated monthly stream flow with Nash-Sutcliffe efficiency (NSE) values ranging from 0.50 near the headwaters, to 0.75 near the watershed outlet. However, the uncalibrated model did not accurately simulate monthly sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen with NSE valuesSWAT model to multiple gauging sites within the watershed improved estimates of monthly stream flow (NSE=0.83), sediment (NSE=0.78), total phosphorus (NSE=0.81), nitrate (NSE=0.90), and total inorganic nitrogen (NSE=0.86). However, NSE values were model performance decreased for sediment, nitrate, and total inorganic nitrogen during the validation period with NSE valuesSWAT model to multiple gauging sites and provide guidance to SWAT model (or similar models) users wishing to improve model performance at multiple scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Occurrence of polycyclic aromatic hydrocarbons below coal-tar-sealed parking lots and effects on stream benthic macroinvertebrate communities

    Energy Technology Data Exchange (ETDEWEB)

    Scoggins, M.; McClintock, N.L.; Gosselink, L.; Bryer, P. [City Austin, Austin, TX (United States)

    2007-12-15

    Parking-lot pavement sealants recently have been recognized as a major source of polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments in Austin, Texas. Laboratory and field studies have shown that PAHs in sediments can be toxic to aquatic organisms and can degrade aquatic communities. After identifying increases in concentrations of PAHs in sediments below seal-coated parking lots, we investigated whether the increases had significant effects on stream biota in 5 Austin streams. We sampled sediment chemistry and biological communities above and below the point at which stormwater runoff from the parking lots discharged into the streams, thus providing 5 upstream reference sites and 5 downstream treatment sites. Differences between upstream and downstream concentrations of total PAH ranged from 3.9 to 32 mg/kg. Analysis of the species occurrence data from pool and riffle habitats indicated a significant decrease in community health at the downstream sites, including decreases in richness, intolerant taxa, Diptera taxa, and density. In pool sediments, Chironomidae density was negatively correlated with PAH concentrations, whereas Oligochaeta density responded positively to PAH concentrations. In general, pool taxa responded more strongly than riffle taxa to PAHs, but riffle taxa responded more broadly than pool taxa. Increases in PAH sediment-toxicity units between upstream and downstream sites explained decreases in taxon richness and density in pools between upstream and downstream sites.

  17. Hydrogeochemical and stream sediment reconnaissance of the National Uranium Resource Evaluation Program. Progress report, July--September 1976

    International Nuclear Information System (INIS)

    Morris, W.A.

    1977-01-01

    Water and/or sediment samples have been collected from some 47,000 sample locations covering about 504,000 km 2 which represents 19% of the area assigned to the LASL for the HSSR program. Slightly over half of this sampling work was done this quarter and included the first commercial, helicopter-borne sampling contract in Alaska where 4468 locations were sampled over an area of 94,000 km 2 . Thus far, uranium determinations have been made for some 12,000 water samples by fluorometry and for over 15,000 sediment samples by delayed-neutron counting. The main effort of this quarter has been directed toward completing all outstanding commercial sampling contracts and analyzing the backlog of water and sediment samples

  18. Contaminants in stream sediments from seven United States metropolitan areas: part I: distribution in relation to urbanization

    Science.gov (United States)

    Nowell, Lisa H.; Moran, Patrick W.; Gilliom, Robert J.; Calhoun, Daniel L.; Ingersoll, Christopher G.; Kemble, Nile E.; Kuivila, Kathryn; Phillips, Patrick J.

    2013-01-01

    Organic contaminants and trace elements were measured in bed sediments collected from streams in seven metropolitan study areas across the United States to assess concentrations in relation to urbanization. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, the pyrethroid insecticide bifenthrin, and several trace elements were significantly related to urbanization across study areas. Most contaminants (except bifenthrin, chromium, nickel) were significantly related to the total organic carbon (TOC) content of the sediments. Regression models explained 45–80 % of the variability in individual contaminant concentrations using degree of urbanization, sediment-TOC, and study-area indicator variables (which represent the combined influence of unknown factors, such as chemical use or release, that are not captured by available explanatory variables). The significance of one or more study-area indicator variables in all models indicates marked differences in contaminant levels among some study areas, even after accounting for the nationally modeled effects of urbanization and sediment-TOC. Mean probable effect concentration quotients (PECQs) were significantly related to urbanization. Trace elements were the major contributors to mean PECQs at undeveloped sites, whereas organic contaminants, especially bifenthrin, were the major contributors at highly urban sites. Pyrethroids, where detected, accounted for the largest share of the mean PECQ. Part 2 of this series (Kemble et al. 2012) evaluates sediment toxicity to amphipods and midge in relation to sediment chemistry.

  19. Uranium hydrogeochemical and stream sediment reconnaissance of the Denver and Greeley NTMS Quadrangles, Colorado

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Broxton, D.E.; Olsen, C.E.

    1978-03-01

    Although this report covers two National Topographic Map Series 2 0 quadrangles, the data for each quadrangle are presented separately. Evaluation of the data by quadrangle resulted in the delineation of areas in which water and/or sediment uranium concentrations are notably higher than surrounding background concentrations. The major clusters of anomalous water samples were found in areas of the Denver Basin underlain by the Pierre, Laramie, Fox Hills, Denver, and Arapahoe formations. Most of the anomalous sediment samples were collected in areas of the Front Range underlain by Precambrian crystalline rocks, particularly granites of the Silver Plume-Sherman group. Many of the anomalous sediment samples are from sites located near fault zones. The data in this report are also presented by geologic/physiographic province because background uranium concentrations in Front Range samples differ significantly from those in the Denver Basin. Denver Basin waters have higher mean uranium concentrations (mean 14.4 ppB) than Front Range waters (mean 3.3 ppB). Conversely, Front Range sediments are more uraniferous (mean 14.7 ppM) than those in the Denver Basin (mean 6.1 ppM). These differences in background uranium concentrations between Front Range and Denver Basin samples can be attributed to differences in regional geology, physiography, and (in the case of water) the ratio of surface water to ground water sites sampled. There is a significant northward increase in uranium concentrations in water samples from the Denver Basin. The higher uranium concentrations in water samples from the northern part of the basin are probably due to leaching of uraniferous strata in the Pierre and Laramie formations which crop out in that area

  20. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Introduction to Data Files, United States: Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    One product of the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, a component of the National Uranium Resource Evaluation (NURE), is a data-base of interest to scientists and professionals in the academic, business, industrial, and governmental communities. This database contains individual records for water and sediment samples taken during the reconnaissance survey of the entire United States, excluding Hawaii. The purpose of this report is to describe the NURE HSSR data by highlighting its key characteristics and providing user guides to the data. A companion report, ''A Technical History of the NURE HSSR Program,'' summarizes those aspects of the HSSR Program which are likely to be important in helping users understand the database. Each record on the database contains varying information on general field or site characteristics and analytical results for elemental concentrations in the sample; the database is potentially valuable for describing the geochemistry of specified locations and addressing issues or questions in other areas such as water quality, geoexploration, and hydrologic studies. This report is organized in twelve volumes. This first volume presents a brief history of the NURE HSSR program, a description of the data files produced by ISP, a Users' Dictionary for the Analysis File and graphs showing the distribution of elemental concentrations for sediments at the US level. Volumes 2 through 12 are comprised of Data Summary Tables displaying the percentile distribution of the elemental concentrations on the file. Volume 2 contains data for the individual states. Volumes 3 through 12 contain data for the 1 0 x 2 0 quadrangles, organized into eleven regional files; the data for the two regional files for Alaska (North and South) are bound together as Volume 12

  1. Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment

    International Nuclear Information System (INIS)

    Libralato, Giovanni; Losso, Chiara; Arizzi Novelli, Alessandra; Citron, Marta; Della Sala, Stefano; Zanotto, Emanuele; Cepak, Franka; Volpi Ghirardini, Annamaria

    2008-01-01

    This work assesses the ecotoxicological effects of polluted sediment after a decontamination treatment process using a new sediment washing technique. Sediment samples were collected from four sites in Marghera Port industrial channels (Venice, Italy). Ecotoxicological evaluations were performed with Vibrio fischeri and Crassostrea gigas bioassays. Whole sediment and elutriate were deemed as the most suitable environmental matrices for this study. Toxicity scores developed in the Lagoon of Venice for V. fischeri on whole sediment and for C. gigas on elutriate were considered for the final ranking of samples. Ecotoxicological results showed that the treated sediment samples presented both acute and sub-chronic toxicities, which were mainly attributed to the presence of some remaining chemicals such as metals and polyaromatic hydrocarbons. The acute toxicity ranged from low to medium, while the sub-chronic one from absent to very high, suggesting that treated sediments could not be reused in direct contact with seawater. - A sediment washing technique was assessed for port contaminated sediment remediation and reuse, indicating its reduced efficiency and the need for further improvements

  2. Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment

    Energy Technology Data Exchange (ETDEWEB)

    Libralato, Giovanni [Environmental Sciences Department, Venice University Ca Foscari, Campo della Celestia 2737/b, I-30122 Venice (Italy)], E-mail: giovanni.libralato@unive.it; Losso, Chiara; Arizzi Novelli, Alessandra [Environmental Sciences Department, Venice University Ca Foscari, Campo della Celestia 2737/b, I-30122 Venice (Italy); Citron, Marta; Della Sala, Stefano; Zanotto, Emanuele [Environmental Department, Venice Port Authority, Zattere 1401, I-30123, Venice (Italy); Cepak, Franka [Institute of Public Health, Vojkovo nabrezje 4a, 6000 Koper (Slovenia); Volpi Ghirardini, Annamaria [Environmental Sciences Department, Venice University Ca Foscari, Campo della Celestia 2737/b, I-30122 Venice (Italy)

    2008-12-15

    This work assesses the ecotoxicological effects of polluted sediment after a decontamination treatment process using a new sediment washing technique. Sediment samples were collected from four sites in Marghera Port industrial channels (Venice, Italy). Ecotoxicological evaluations were performed with Vibrio fischeri and Crassostrea gigas bioassays. Whole sediment and elutriate were deemed as the most suitable environmental matrices for this study. Toxicity scores developed in the Lagoon of Venice for V. fischeri on whole sediment and for C. gigas on elutriate were considered for the final ranking of samples. Ecotoxicological results showed that the treated sediment samples presented both acute and sub-chronic toxicities, which were mainly attributed to the presence of some remaining chemicals such as metals and polyaromatic hydrocarbons. The acute toxicity ranged from low to medium, while the sub-chronic one from absent to very high, suggesting that treated sediments could not be reused in direct contact with seawater. - A sediment washing technique was assessed for port contaminated sediment remediation and reuse, indicating its reduced efficiency and the need for further improvements.

  3. Influence of particle sorting in transport of sediment-associated contaminants

    International Nuclear Information System (INIS)

    Lane, L.J.; Hakonson, T.E.

    1982-01-01

    Hydrologic and sediment transport models are developed to route the flow of water and sediment (by particle size classes) in alluvial stream channels. A simplified infiltration model is used to compute runoff from upland areas and flow is routed in ephemeral stream channels to account for infiltration or transmission losses in the channel alluvium. Hydraulic calculations, based on the normal flow assumption and an approximating hydrograph, are used to compute sediment transport by particle size classes. Contaminants associated with sediment particles are routed in the stream channels to predict contaminatant transport by particle size classes. An empirical adjustment factor, the enrichment ratio, is shown to be a function of the particle size distribution of stream bed sediments, contaminant concentrations by particle size, differential sediment transport rates, and the magnitude of the runoff event causing transport of sediment and contaminants. This analysis and an example application in a liquid effluent-receiving area illustrate the significance of particle sorting in transport of sediment associated contaminants

  4. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  5. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  6. Water and bed-material quality of selected streams and reservoirs in the Research Triangle area of North Carolina, 1988-94

    Science.gov (United States)

    Oblinger, C.J.; Treece, M.W.

    1996-01-01

    The Triangle Area Water Supply Monitoring Project was formed by a consortium of local governments and governmental agencies in cooperation with the U.S. Geological Survey to supplement existing data on conventional pollutants, nutrients, and metals to enable eventual determination of long-term trends; to examine spatial differences among water supplies within the region, especially differences between smaller upland sources, large multipurpose reservoirs, and run-of-river supplies; to provide tributary loading inlake data for predictive modeling of Falls of the Neuse and B. Everett Jordan reservoirs; and to establish a database for synthetic organic compounds. Water-quality sampling began in October 1988 at 35 sites located on area run-of-river and reservoir water supplies and their tributaries. Sampling has continued through 1994. Samples were analyzed for major ions, nutrients, trace metals, pesticides, and semivolatile and volatile organic compounds. Monthly concentration data, high-flow concentration data, and data on daily mean streamflow at most stream sites were used to calculate loadings of nitrogen, phosphorus, suspended sediment, and trace metals to reservoirs. Stream and lake sites were assigned to one of five site categories-- (1) rivers, (2) large multipurpose reservoirs, (3) small water-supply reservoirs, (4) streams below urban areas and wastewater-treatment plants, and (5) headwater streams--according to general site characteristics. Concentrations of nitrogen species, phosphorus species, and selected trace metals were compared by site category using nonparametric analysis of variance techniques and qualitatively (trace metals). Wastewater-treatment plant effluents and urban runoff had a significant impact on water quality compared to reservoirs and headwater streams. Streams draining these areas had more mineralized water than streams draining undeveloped areas. Moreover, median nitrogen and nitrite plus nitrate concentrations were significantly

  7. Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment.

    Science.gov (United States)

    Libralato, Giovanni; Losso, Chiara; Arizzi Novelli, Alessandra; Citron, Marta; Della Sala, Stefano; Zanotto, Emanuele; Cepak, Franka; Volpi Ghirardini, Annamaria

    2008-12-01

    This work assesses the ecotoxicological effects of polluted sediment after a decontamination treatment process using a new sediment washing technique. Sediment samples were collected from four sites in Marghera Port industrial channels (Venice, Italy). Ecotoxicological evaluations were performed with Vibrio fischeri and Crassostrea gigas bioassays. Whole sediment and elutriate were deemed as the most suitable environmental matrices for this study. Toxicity scores developed in the Lagoon of Venice for V. fischeri on whole sediment and for C. gigas on elutriate were considered for the final ranking of samples. Ecotoxicological results showed that the treated sediment samples presented both acute and sub-chronic toxicities, which were mainly attributed to the presence of some remaining chemicals such as metals and polyaromatic hydrocarbons. The acute toxicity ranged from low to medium, while the sub-chronic one from absent to very high, suggesting that treated sediments could not be reused in direct contact with seawater.

  8. Uranium hydrogeochemical and stream sediment reconnaissance in the San Juan Mountains, Southwest Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, J.C.

    1977-02-01

    From 1995 sites in the San Juan Mountains area, 1706 water and 1982 sediment samples were collected during June--July 1976 and analyzed for uranium. The area includes the southern third of the Colorado mineral belt which has yielded rich ores of gold, silver, copper, lead, zinc, and molybdenum. The broadly domed mountains are capped by 2500 m of Tertiary volcanics, deeply eroded to expose a Precambrian crystalline core. Adjacent plateaus underlain by Mesozoic sedimentary rocks were included in the reconnaissance. Average value of uranium in water samples from mountains was less than 0.5 ppB, from plateaus was 1 to 2 ppB, from Mancos shale areas exceeded 2 ppB. Anomalous sediment samples, 40 ppM uranium, came from near Storm King Mountain and upper Vallecito Creek. Other anomalous areas, including the Lake City mining district, were well defined by 4 to 30 ppM uranium in sediment and 3 to 30 ppB uranium in water. Anomalous areas not previously reported indicate favorable areas for future exploration.

  9. Uranium hydrogeochemical and stream sediment reconnaissance in the San Juan Mountains, Southwest Colorado

    International Nuclear Information System (INIS)

    Maxwell, J.C.

    1977-02-01

    From 1995 sites in the San Juan Mountains area, 1706 water and 1982 sediment samples were collected during June--July 1976 and analyzed for uranium. The area includes the southern third of the Colorado mineral belt which has yielded rich ores of gold, silver, copper, lead, zinc, and molybdenum. The broadly domed mountains are capped by 2500 m of Tertiary volcanics, deeply eroded to expose a Precambrian crystalline core. Adjacent plateaus underlain by Mesozoic sedimentary rocks were included in the reconnaissance. Average value of uranium in water samples from mountains was less than 0.5 ppB, from plateaus was 1 to 2 ppB, from Mancos shale areas exceeded 2 ppB. Anomalous sediment samples, 40 ppM uranium, came from near Storm King Mountain and upper Vallecito Creek. Other anomalous areas, including the Lake City mining district, were well defined by 4 to 30 ppM uranium in sediment and 3 to 30 ppB uranium in water. Anomalous areas not previously reported indicate favorable areas for future exploration

  10. Do Riparian Buffers Protect Stream Invertebrate Communities in South American Atlantic Forest Agricultural Areas?

    Science.gov (United States)

    Hunt, L.; Marrochi, N.; Bonetto, C.; Liess, M.; Buss, D. F.; Vieira da Silva, C.; Chiu, M.-C.; Resh, V. H.

    2017-12-01

    We investigated the influence and relative importance of insecticides and other agricultural stressors in determining variability in invertebrate communities in small streams in intensive soy-production regions of Brazil and Paraguay. In Paraguay we sampled 17 sites on tributaries of the Pirapó River in the state of Itapúa and in Brazil we sampled 18 sites on tributaries of the San Francisco River in the state of Paraná. The riparian buffer zones generally contained native Atlantic forest remnants and/or introduced tree species at various stages of growth. In Brazil the stream buffer width was negatively correlated with sediment insecticide concentrations and buffer width was found to have moderate importance in mitigating effects on some sensitive taxa such as mayflies. However, in both regions insecticides had low relative importance in explaining variability in invertebrate communities, while various habitat parameters were more important. In Brazil, the percent coverage of soft depositional sediment in streams was the most important agriculture-related explanatory variable, and the overall stream-habitat score was the most important variable in Paraguay streams. Paraguay and Brazil both have laws requiring forested riparian buffers. The ample forested riparian buffer zones typical of streams in these regions are likely to have mitigated the effects of pesticides on stream invertebrate communities. This study provides evidence that riparian buffer regulations in the Atlantic Forest region are protecting stream ecosystems from pesticides and other agricultural stressors. Further studies are needed to determine the minimum buffer widths necessary to achieve optimal protection.

  11. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, A. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Phillips, D.H., E-mail: d.phillips@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Bowen, J. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Sen Gupta, B. [School of the Built Environment, Hariot-Watt University, Edinburgh, Scotland (United Kingdom)

    2015-04-15

    A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO{sub 3}-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. - Highlights: • Tynagh silver mine in Co. Galway, Ireland is a source of

  12. Stream Sediment Geochemical Survey of Selected Element In Catchment Area Of Saguling Lake

    Directory of Open Access Journals (Sweden)

    Wardhani Eka

    2018-01-01

    Full Text Available Saguling Lake is one of the largest lakes in West Java Province that accommodates domestic and non-domestic wastes via the Citarum River as its main water source. This study aims to determine the geochemical background concentration (Cbg in water catchment area of Saguling Lake. The knowledge of the Cbg of heavy metals is essential for defining pollution, identifying the source of contamination, and for establishing reliable environmental quality criteria for sediments. The value of Cbg will be used for assessment of the sediment quality in Saguling Lake. Assessment of sediment quality is very important to determine the actual condition of water in the lake and as the basis for management of waters environment in the future. The search was taken at 22 sampling points in the unpolluted water catchment area. Samples were collected and analyzed for Cd, Cr, Cu, and Pb. Each sample was digested in agua regia and analyzed by ICP-EOS. Results showed Cbg which are: Cd 0.34 ± 0.10 mg/kg, Cr 110.57 ± 28.61 mg/kg, Cu 49.93 ± 9.28 mg/kg, and Pb 18.62 ± 9.83 mg/kg. Based on the assessment result, it is concluded that the sediment quality in Saguling Lake is categorized as polluted by Cd, Cr, Cu, and Pb metals.

  13. A method to quantify and value floodplain sediment and nutrient retention ecosystem services

    Science.gov (United States)

    Hopkins, Kristina G.; Noe, Gregory; Franco, Fabiano; Pindilli, Emily J.; Gordon, Stephanie; Metes, Marina J.; Claggett, Peter; Gellis, Allen; Hupp, Cliff R.; Hogan, Dianna

    2018-01-01

    Floodplains provide critical ecosystem services to local and downstream communities by retaining floodwaters, sediments, and nutrients. The dynamic nature of floodplains is such that these areas can both accumulate sediment and nutrients through deposition, and export material downstream through erosion. Therefore, estimating floodplain sediment and nutrient retention should consider the net flux of both depositional and erosive processes. An ecosystem services framework was used to quantify and value the sediment and nutrient ecosystem service provided by floodplains in the Difficult Run watershed, a small (151 km2) suburban watershed located in the Piedmont of Virginia (USA). A sediment balance was developed for Difficult Run and two nested watersheds. The balance included upland sediment delivery to streams, stream bank flux, floodplain flux, and stream load. Upland sediment delivery was estimated using geospatial datasets and a modified Revised Universal Soil Loss Equation. Predictive models were developed to extrapolate field measurements of the flux of sediment, sediment-bound nitrogen (N), and sediment-bound phosphorus (P) from stream banks and floodplains to 3232 delineated stream segments in the study area. A replacement cost approach was used to estimate the economic value of the sediment and nutrient retention ecosystem service based on estimated net stream bank and floodplain flux of sediment-bound N for all streams in the study area. Results indicated the net fluvial fluxes of sediment, sediment-bound N, and sediment-bound P were −10,439 Mg yr−1 (net export), 57,300 kg-N yr−1(net trapping), and 98 kg-P yr−1(net trapping), respectively. For sediment, floodplain retention was offset by substantial losses from stream bank erosion, particularly in headwater catchments, resulting in a net export of sediment. Nutrient retention in the floodplain exceeded that lost through stream bank erosion resulting in net retention of nutrients (TN and

  14. Turbidity-controlled suspended sediment sampling for runoff-event load estimation

    Science.gov (United States)

    Jack Lewis

    1996-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is generally a much better predictor than water discharge. Although it is now possible to collect continuous turbidity data even at remote sites, sediment sampling and load estimation are still conventionally based on discharge. With frequent calibration the relation of turbidity to...

  15. Hydrogeochemical and stream sediment reconnaissance basic data for Preston Quadrangle, Wyoming; Idaho

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 410 water samples and 702 sediment samples from the Preston Quadrangle, Wyoming; Idaho. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-70(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  16. Hydrogeochemical and stream sediment reconnaissance basic data for Aztec Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 331 water samples and 1693 sediment samples from the Aztec Quadrangle, New Mexico. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-129(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  17. Prospects of obtaining samples of bottom sediments from subglacial lake Vostok

    Directory of Open Access Journals (Sweden)

    Н. И. Васильев

    2017-04-01

    Full Text Available The paper proves the timeliness of obtaining and examining bottom sediments from subglacial Lake Vostok. Predictive geological section of Lake Vostok and information value of bottom sediments have been examined. Severe requirements towards environmental security of lake examinations and sampling of bottom sediments rule out the use of conventional drilling technologies, as they would pollute the lake with injection liquid from the borehole. In order to carry out sampling of bottom sediments from the subglacial lake, it is proposed to use a dynamically balanced tool string, which enables rotary drilling without any external support on borehole walls to transmit counter torque.     A theoretical analysis has been carried out to assess the operation of the tool string, which is a two-mass oscillatory electromechanical system of reciprocating and rotating motion (RRM with two degrees of freedom.

  18. Spatial dynamics of overbank sedimentation in floodplain systems

    Science.gov (United States)

    Pierce, Aaron R.; King, S.L.

    2008-01-01

    Floodplains provide valuable social and ecological functions, and understanding the rates and patterns of overbank sedimentation is critical for river basin management and rehabilitation. Channelization of alluvial systems throughout the world has altered hydrological and sedimentation processes within floodplain ecosystems. In the loess belt region of the Lower Mississippi Alluvial Valley of the United States, channelization, the geology of the region, and past land-use practices have resulted in the formation of dozens of valley plugs in stream channels and the formation of shoals at the confluence of stream systems. Valley plugs completely block stream channels with sediment and debris and can result in greater deposition rates on floodplain surfaces. Presently, however, information is lacking on the rates and variability of overbank sedimentation associated with valley plugs and shoals. We quantified deposition rates and textures in floodplains along channelized streams that contained valley plugs and shoals, in addition to floodplains occurring along an unchannelized stream, to improve our understanding of overbank sedimentation associated with channelized streams. Feldspar clay marker horizons and marker poles were used to measure floodplain deposition from 2002 to 2005 and data were analyzed with geospatial statistics to determine the spatial dynamics of sedimentation within the floodplains. Mean sediment deposition rates ranged from 0.09 to 0.67??cm/y at unchannelized sites, 0.16 to 2.27??cm/y at shoal sites, and 3.44 to 6.20??cm/y at valley plug sites. Valley plug sites had greater rates of deposition, and the deposited sediments contained more coarse sand material than either shoal or unchannelized sites. A total of 59 of 183 valley plug study plots had mean deposition rates > 5??cm/y. The geospatial analyses showed that the spatial dynamics of sedimentation can be influenced by the formation of valley plugs and shoals on channelized streams; however

  19. Hydrogeochemical assessment of mine-impacted water and sediment of iron ore mining

    Science.gov (United States)

    Nur Atirah Affandi, Fatin; Kusin, Faradiella Mohd; Aqilah Sulong, Nur; Madzin, Zafira

    2018-04-01

    This study was carried out to evaluate the hydrogeochemical behaviour of mine-impacted water and sediment of a former iron ore mining area. Sampling of mine water and sediment were carried out at selected locations within the mine including the former mining ponds, mine tailings and the nearby stream. The water samples were analysed for their hydrochemical facies, major and trace elements including heavy metals. The water in the mining ponds and the mine tailings was characterised as highly acidic (pH 2.54-3.07), but has near-neutral pH in the nearby stream. Results indicated that Fe and Mn in water have exceeded the recommended guidelines values and was also supported by the results of geochemical modelling. The results also indicated that sediments in the mining area were contaminated with Cd and As as shown by the potential ecological risk index values. The total risk index of heavy metals in the sediment were ranked in the order of Cd>As>Pb>Cu>Zn>Cr. Overall, the extent of potential ecological risks of the mining area were categorised as having low to moderate ecological risk.

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Bozeman NTMS quadrangle, Montana, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Hensley, W.K.; Van Haaften, I.J.; Pirtle, J.; George, W.E.; Gallimore, D.; Apel, C.; Hansel, J.

    1980-07-01

    This report contains uranium analyses for 1251 water samples and multielement analyses for 1536 sediment samples. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million. Descriptions of procedures used for analysis of water and sediment samples as well as analytical precisions and detection limits are given