WorldWideScience

Sample records for stream produced water

  1. Heavy-water extraction from non-electrolytic hydrogen streams

    International Nuclear Information System (INIS)

    LeRoy, R.L.; Hammerli, M.; Butler, J.P.

    1981-01-01

    Heavy water may be produced from non-electrolytic hydrogen streams using a combined electrolysis and catalytic exchange process. The method comprises contacting feed water in a catalyst column with hydrogen gas originating partly from a non-electrolytic hydrogen stream and partly from an electrolytic hydrogen stream, so as to enrich the feed water with the deuterium extracted from both the non-electrolytic and electrolytic hydrogen gas, and passing the deuterium water to an electrolyser wherein the electrolytic hydrogen gas is generated and then fed through the catalyst column. (L.L.)

  2. Methodology to produce a water and energy stream map (WESM in the South African manufacturing industry

    Directory of Open Access Journals (Sweden)

    Davies, Edward

    2016-11-01

    Full Text Available The increasing demand for water and energy in South Africa, and the capacity constraints and restrictions of both resources, have led to a rapid increase in their cost. The manufacturing industry remains South Africa’s third-largest consumer of water and second- largest consumer of national energy. The improvement of water and energy efficiency is becoming an increasingly important theme for both organisational success and national economic sustainability. This paper presents the ‘lean based water and energy stream mapping framework’ developed for the manufacturing industry, with the specific objective of decreasing its water and energy intensity. As with the traditional value stream mapping tool, the water and energy stream mapping focuses on eliminating water- and energy-specific wastes within a process. Water and energy waste categories that will be used in conjunction with the framework will also be discussed. The key objective of this paper is to detail the process of creating the water and energy stream mapping, and the statistical forecasting methodology used to develop the baseline water and energy demand data. The outcome of the implementation of the framework is the future state water and energy stream mapping, which is effectively a blueprint for increased water and energy efficiency within a studied process.

  3. Membrane crystallization for recovery of salts from produced water

    DEFF Research Database (Denmark)

    Quist-Jensen, Cejna Anna; Jensen, Henriette Casper; Ali, Aamer

    Membrane Crystallization (MCr) is a novel technology able to recover freshwater and high-purity salts from complex solutions and therefore, is suggested for a better exploitation of wastewater streams. Unlike other membrane processes, MCr is not limited by high concentrations and, therefore, the ......, the membrane maintained its hydrophobic nature despite that produced water contained oil residues. Conductivity and HPLC was utilized to analyze the quality of the permeate stream......., the solutions can be treated to achieve saturation level. Hereby different salts can be precipitated and directly recovered from various streams. In this study, it is shown that MCr is able to treat produced water by producing clean water and simultaneously NaCl crystals. The recovered crystals exhibited high...

  4. Control of microbially generated hydrogen sulfide in produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  5. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  6. In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality.

    Science.gov (United States)

    Gomes, Pattiyage I A; Wai, Onyx W H

    2015-08-01

    Implications of instream physical heterogeneity, rainfall-aided flushing, and stream discharge on water quality control have been investigated in a headwater stream of a climatic region that has contrasting dry and wet seasons. Dry (low flow) season's physical heterogeneity showed a positive correlation with good water quality. However, in the wet season, physical heterogeneity showed minor or no significance on water quality variations. Furthermore, physical heterogeneity appeared to be more complementary with good water quality subsequent to rainfall events. In many cases stream discharge was a reason for poor water quality. For the dry season, graywater inputs to the stream could be held responsible. In the wet season, it was probably the result of catchment level disturbances (e.g., regulation of ephemeral freshwater paths). Overall, this study revealed the importance of catchment-based approaches on water quality improvement in tandem with in-stream approaches framed on a temporal scale.

  7. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  8. Link between DOC in near surface peat and stream water in an upland catchment.

    Science.gov (United States)

    Clark, Joanna M; Lane, Stuart N; Chapman, Pippa J; Adamson, John K

    2008-10-15

    Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at -1 and -5 cm depth and stream water, and weaker correlations between concentrations at -20 to -50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.

  9. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    Science.gov (United States)

    Hladik, Michelle; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  10. Identify the dominant variables to predict stream water temperature

    Science.gov (United States)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  11. Health risk assessment for radium discharged in produced waters

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-01-01

    Produced water generated during the production of oil and gas can contain enhanced levels of radium. This naturally occurring radioactive material (NORM) is discharged into freshwater streams, estuarine, coastal and outer continental shelf waters. Large volumes of produced waters are discharged to coastal waters along the Gulf Coast of Louisiana. The Gulf of Mexico is an important producer of fish and shellfish, and there is concern that radium discharged to coastal Louisiana could contaminate fish and shellfish used by people for food, and present a significant increase in cancer risk. This paper describes a screening-level assessment of the potential cancer risks posed by radium discharged to coastal Louisiana in oil-field produced waters. This screening analysis was performed to determine if a more comprehensive and realistic assessment is necessary, and because of the conservative assumptions embedded in the analysis overestimates the risk associated with the discharge of radium in produced waters. Two isotopes of radium (Ra-226 and Ra-228) are the radionuclides of most concern in produced water in terms of potential human health effects

  12. Contaminated Stream Water as Source for Escherichia coli O157 Illness in Children.

    Science.gov (United States)

    Probert, William S; Miller, Glen M; Ledin, Katya E

    2017-07-01

    In May 2016, an outbreak of Shiga toxin-producing Escherichia coli O157 infections occurred among children who had played in a stream flowing through a park. Analysis of E. coli isolates from the patients, stream water, and deer and coyote scat showed that feces from deer were the most likely source of contamination.

  13. Long-term biomonitoring of a produced water discharge from the Cedar Cove degasification field, Alabama. January 1991

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, P.E.; Harris, S.C.; Mettee, M.F.; McGregor, S.W.; Shepard, T.E.

    1991-01-01

    Development of coalbed methane has become a major industry for the state of Alabama. In excess of 1,300 wells were producing methane by the end of July 1990. A byproduct of methane production is produced water containing elevated concentrations of chloride, sodium, iron and bicarbonate. These waters are currently permitted for discharge into streams or as a land application. The purpose of the study was to examine the long-term impacts of produced waters to streams relative to water-quality changes and aquatic biological effects. Distinct water-quality changes in the receiving stream were documented and consisted primarily of increased dissolved solids, changes in the pH regime and changes in the carbonate buffering system. In contrast, no significant or consistent detrimental change in the structure or function of the stream biological community could be detected. Subtle changes in biological community structure and composition were noted and most likely due to effects associated with algal productivity in settling lagoons. These changes, however, were within the boundaries of variation typically observed for the communities. Based on the results of this and earlier studies, it was concluded that the national water-quality criterion for chloride was protective of stream life as examined in the study.

  14. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  15. Produced water radionuclide hazard/risk assessment, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called produced water.'' Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  16. Produced water radionuclide hazard/risk assessment, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called ``produced water.`` Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  17. Produced water radionuclide hazard/risk assessment, Phase 1

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called ''produced water.'' Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium

  18. Precipitation of metals in produced water : influence on contaminant transport and toxicity

    International Nuclear Information System (INIS)

    Azetsu-Scott, K.; Wohlgeschaffen, G.; Yeats, P.; Dalziel, J.; Niven, S.; Lee, K.

    2006-01-01

    Produced water contains a number of compounds of environmental concern and is the largest volume waste stream from oil and gas production activities. Recent studies have shown that chemicals dissolved in waste water from oil platforms stunted the growth of North Sea cod and affected their breeding patterns. Scientific research is needed to identify the impact of produced water discharges on the environment as well as to identify acceptable disposal limits for produced water. This presentation provided details of a study to characterize produced water discharged within the Atlantic regions of Canada. The study included dose response biological effect studies; research on processes controlling the transport and transformation of contaminants associated with produced water discharges and the development of risk assessment models. The sample location for the study was a site near Sable Island off the coast of Nova Scotia. Chemical analysis of the produced water was conducted as well as toxicity tests. Other tests included a time-series particulate matter sedimentation test; time-series metal and toxicity analysis; time-series change in metal precipitates tests and a produced water/seawater layering experiment. Dissolved and particulate fractions were presented, and the relationship between toxicity and particulate concentrations was examined. Results of the study suggested that produced water contaminants are variable over spatial and temporal scales due to source variations and changes in discharge rates. Chemical changes occur within 24 hours of produced water being mixed with seawater and facilitate contaminant partitioning between the surface micro layer, water column and sediments. Changes in the toxicity of the produced water are correlated with the partitioning of chemical components. The impact zone may be influenced by chemical kinetics that control the distribution of potential toxic metals. Further research is needed to investigate the effects of low level

  19. Determination of water quality index and portability of Iguedo stream ...

    African Journals Online (AJOL)

    Determination of water quality index and portability of Iguedo stream in Edo ... has been found functional in assessing the water quality of this stream based on the ... Key words: Water quality index, physicochemical parameters, Iguedo Stream.

  20. The effect of in-stream activities on the Njoro River, Kenya. Part I: Stream flow and chemical water quality

    Science.gov (United States)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    For shallow streams in sub-Saharan Africa, in-stream activities could be described as the actions by people and livestock, which take place within or besides stream channels. This study examined the nature of in-stream activities along a rural stream in Kenya and established the inequality in water allocation for various livelihood needs, as well as the negative impact they have on dry weather stream flow and chemical water quality. Seven locations along the stream were studied in wet and dry weather of 2006. Enumeration consisted of making head counts of people and livestock and tallying visitors at hourly intervals from 6 a.m. to 7 p.m. To estimate water abstraction, filled containers of known volume were counted and the stream was sampled to examine the impact on water quality. Water samples were obtained upstream and downstream of in-stream activities before (6 a.m.) and during (11 a.m., 6 p.m.) activities. Samples were analyzed for suspended solids, turbidity, BOD 5, total nitrogen and total phosphorus. The daily total abstraction at the middle reaches during dry weather was 120-150 m 3 day -1. More than 60% of abstraction was done by water vendors. Vended water from the stream was sold at US 3.5-7.5 per m 3 and vendors earned between US 3-6 a day. Abstracted water contributed approximately 40-60% of the total daily consumptive water use in the riparian area during dry weather but >30% of the morning stream flow was abstracted thereby upsetting stream flow in the lower reaches. The daily total water abstraction correlated positively ( R2, 0.98) and significantly ( p < 0.05) with the daily total human visit, which was diurnally periodic with two peaks, occurring between 9 a.m. and 10 a.m. and from 4 p.m. to 5 p.m. This diurnal pattern of visits and the corresponding in-stream activities affected water quality. In particular, suspended solids, turbidity and BOD 5 levels increased significantly ( p < 0.05) downstream during in-stream activities. It was concluded

  1. The role of headwater streams in downstream water quality

    Science.gov (United States)

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  2. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  3. Treatment of offshore produced water - an effective membrane process

    International Nuclear Information System (INIS)

    Taylor, J.; Larson, R.; Scherer, B.

    1991-01-01

    The conference paper describes a new membrane technology being extremely effective in separating hydrocarbons from water streams. The membrane is composed of a completely natural cellulose and is resistant to all hydrocarbons and organic solvents, and preliminary tests have shown that it is resistant to fouling by oily molecules and calcium scaling. The membrane system being designed shows good potential for the treatment of offshore produced water with a hydrocarbon content well within present and emerging standards. 6 refs., 8 figs., 3 tabs

  4. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher; Wilson, Aaron

    2016-05-01

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generate a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.

  5. Partial oxidation process for producing a stream of hot purified gas

    Science.gov (United States)

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  6. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    Science.gov (United States)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  7. Technique for producing a continuous interference-free stream of Argon-41 in air

    International Nuclear Information System (INIS)

    Tseng, T.-T.; Jester, W.A.

    1984-01-01

    A monitoring system was developed for the detection of 131 I in the presence of orders of magnitude higher concentrations of radioactive noble gas. During the course of this work, a technique was developed for producing a continuous air stream of 41 Ar required for testing this concept. The 41 Ar stream is produced by the neutron activation of air using a research reactor. The 41 Ar content of the air stream can be varied by many orders of magnitude by varying the reactor power level and the rate at which the air is pumped through a vertically positioned tube in or in front of the reactor. It was found that the neutrons also activate other air constituents, producing undesirable interference radionuclides. Selective filtering techniques have therefore been developed to remove these interference radionuclides from the 41 Ar air stream

  8. Water Quality in Tortum Stream and its Tributaries (Erzurum/Turkey

    Directory of Open Access Journals (Sweden)

    Mine KÖKTÜRK

    2015-04-01

    Full Text Available This study was undertaken with the aim of determining the effects of domestic waste and hydroelectric dams on water quality in the Tortum Stream and its tributaries. Water samples were taken monthly from nine sampling points of Tortum Stream and its tributaries between July 2012 and May 2013. Analyzed for temperature (°C, pH, dissolved oxygen (DO, total suspended solids (TSS, alkalinity, Ca, total hardness, sulfate (SO4, ammonia-nitrogen (N-NH3−, nitrite-nitrogen (N-NO2− and nitrate nitrogen (N-NO3− as well as total phosphorus (TP, total orthophosphate (TO, total iron and silica (SiO2 were carried out. Physical and chemical characteristics of Tortum Stream and its tributaries which were examined according to the Water Framework Directive and the Water Pollution Control Regulations. It can be said that the stream has a low water quality standard except for water temperature, dissolved oxygen and sulfate. The results showed that Tortum Stream and tributaries are under threat because of domestic waste, fertilizers and hydroelectric constructions.

  9. Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality

    Science.gov (United States)

    Ledford, S. H.; Lautz, L. K.

    2013-12-01

    Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach

  10. Assessing the impact of groundwater contamination on stream water quality by multiple approaches at the groundwater-surface water interface (Invited Presentation)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rønde, Vinni Kampman; Balbarini, Nicola

    Contaminants such as chlorinated solvents and pesticides, as well as new classes of compounds or emerging micropollutants are extensively produced, utilized and then discarded in society and subsequently released to streams from multiple point and diffuse sources. Sustainable management of water...

  11. Impact of Industrial Effluents on Water Quality of Streams in Nakawa ...

    African Journals Online (AJOL)

    Impact of Industrial Effluents on Water Quality of Streams in Nakawa-Ntinda, Uganda. ... Journal of Applied Sciences and Environmental Management ... physicochemical parameters of streams that receive effluents from different categories of industries in Nakawa -Ntinda industrial area of Kampala. the stream water quality ...

  12. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    International Nuclear Information System (INIS)

    Rosinski, M.; Badziak, B.; Parys, P.; Wolowski, J.; Pisarek, M.

    2009-01-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:∼0.5 J, power density: 10 10 W/cm 2 ) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES

  13. StreamStats: A water resources web application

    Science.gov (United States)

    Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.

    2008-01-01

    Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations

  14. Accumulation of anthropogenic radionuclides in crops in conditions of water stream and classical hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Mayrapetyan, Khachatur; Hovsepyan, Albert; Daryadar, Mahsa; Alexanyan, Julietta; Tovmasyan, Anahit; Ghalachyan, Laura; Tadevosyan, Anna; Mayrapetyan, Stepan [Institute of Hydroponics Problems, NAS, Noragyugh 108, 0082, Yerevan (Armenia)

    2014-07-01

    Natural and artificial radionuclides (RN) dangerous for health are emitted into ecosystems because of human anthropogenic activities in the field of nuclear energetics. Biologically artificial RN {sup 90}Sr(T{sub 1/2}=28,6 years) and {sup 137}Cs (T{sub 1/2}=30,1 years)are very dangerous. Therefore obtaining radio-ecologically safe raw material of high quality is a very urgent problem now. Taking into account the above mentioned, in order to obtain ecologically safe raw material we carried out comparative radiochemical investigations on essential oil and medicinal plants peppermint(Mentha piperita L.) and sweet basil (Ocimum basilicum L.) grown in new water-stream (continuous, gully, cylindrical) and classical hydroponics, with the aim of revealing accumulation peculiarities of {sup 90}Sr and {sup 137}Cs. The results of experiments have shown that in classical hydroponics peppermint and sweet basil exceeded the same indices of water-stream hydroponics with {sup 90}Sr and {sup 137}Cs content 1,1-1,2; 1,2-1,3 and 1,5-1,8; 1,4-1,8 times, respectively. Moreover, sweet basil exceeded peppermint in water-stream hydroponics {sup 90}Sr 1,3-1,6; {sup 137}Cs 1,2-1,4 times and in classical hydroponics {sup 90}Sr 1,6; {sup 137}Cs 1,2 times. The content of controlled artificial RN in raw material did not exceed the allowed concentration limit (ACL). New water-stream hydroponics system worked out in Institute of Hydroponics Problems is a radio-ecologically more profitable method for producing raw material than classical hydroponics. At the same time water-stream hydroponics system in comparison with classical hydroponics promoted productivity (dry raw material) increase of peppermint and sweet basil 1,1-1,4 times. (authors)

  15. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    Science.gov (United States)

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  16. Troubled Waters: where Multiple Streams of Inequality Converge in the Math and Science Experiences of Nonprivileged Girls

    Science.gov (United States)

    Parrott, Laurel; Spatig, Linda; Kusimo, Patricia S.; Carter, Carolyn C.; Keyes, Marian

    Water is often hardest to navigate at the confluence of individual streams. As they experience math and science, nonprivileged girls maneuver through roiling waters where the streams of gender, ethnicity, poverty, place, and teaching practices converge. Just as waters of separate streams blend, these issues - too often considered separate factors - become blended and difficult to isolate, and the resulting turbulence produces a bumpy ride. We draw on 3 years of qualitative data collected as part of an intervention program to explore the math and science experiences and perceptions of a group of ethnically diverse, low socioeconomic status rural and urban adolescent Appalachian girls. After describing program and community contexts, we explore "opportunity to leant" issues - specifically, expectations, access to content, and support networks - and examine their schooling experiences against visions of science and math reform and pressures for accountability. Data are discussed within a framework of critical educational theory.

  17. An assessment of whole effluent toxicity testing as a means of regulating waters produced by the oil and gas industry

    International Nuclear Information System (INIS)

    Hill, S.L.; Bergman, H.L.

    1993-01-01

    Approximately 500 million barrels of produced water are discharged to Wyoming's surface waters by the oil and gas industry. This discharges are of two types: direct and indirect. The direct discharges have been issued NPDES permits requiring whole effluent toxicity testing. Toxicity testing requirements have not been incorporated into permits written for indirect discharges because of the applicability of toxicity testing for regulating these waters has not been determined. Preliminary testing has shown that most produced waters are toxic at the point of discharge because of high concentrations of hydrogen sulfide, but that the toxicity of an indirect discharge is often lost before it reaches a receiving stream. Thus, whole effluent toxicity testing of an indirect discharge may be overly stringent, resulting in treatment or reinjection of the water or closure of the well. Any of these options would have severe economic consequences for oil producers and the state's agricultural industry. The purpose of this study was to determine whether whole effluent toxicity testing actually predicts the in-stream effects of indirect discharges on water quality and benthic invertebrate populations. The authors will report the results of short-term ambient toxicity tests and in-stream bioassessments performed upstream and downstream of six indirect discharges located in four drainages in Wyoming

  18. Produced water volumes and management practices in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E.; Veil, J. A. (Environmental Science Division)

    2009-09-01

    Produced water volume generation and management in the United States are not well characterized at a national level. The U.S. Department of Energy (DOE) asked Argonne National Laboratory to compile data on produced water associated with oil and gas production to better understand the production volumes and management of this water. The purpose of this report is to improve understanding of produced water by providing detailed information on the volume of produced water generated in the United States and the ways in which produced water is disposed or reused. As the demand for fresh water resources increases, with no concomitant increase in surface or ground water supplies, alternate water sources, like produced water, may play an important role. Produced water is water from underground formations that is brought to the surface during oil or gas production. Because the water has been in contact with hydrocarbon-bearing formations, it contains some of the chemical characteristics of the formations and the hydrocarbons. It may include water from the reservoir, water previously injected into the formation, and any chemicals added during the production processes. The physical and chemical properties of produced water vary considerably depending on the geographic location of the field, the geologic formation, and the type of hydrocarbon product being produced. Produced water properties and volume also vary throughout the lifetime of a reservoir. Produced water is the largest volume by-product or waste stream associated with oil and gas exploration and production. Previous national produced water volume estimates are in the range of 15 to 20 billion barrels (bbl; 1 bbl = 42 U.S. gallons) generated each year in the United States (API 1988, 2000; Veil et al. 2004). However, the details on generation and management of produced water are not well understood on a national scale. Argonne National Laboratory developed detailed national-level information on the volume of produced

  19. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows.

    Science.gov (United States)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.

    2014-12-01

    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  20. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  1. Characterization of water quality for streams in the southern Yampa River basin, northwestern Colorado. Water Resources Investigation

    International Nuclear Information System (INIS)

    Parker, R.S.

    1991-01-01

    Historically, the Yampa River basin in northwestern Colorado has been an area of coal-mining development. Coal mining generally has been developed in the southern part of the basin and at lower elevations. The purpose of the report is to characterize the stream water quality by summarizing selected major dissolved constituents for the streams that drain the southern part of the Yampa River basin. Characterization is done initially by providing a statistical summary of the constituents for individual water-quality sites in the study area. These statistical summaries can be used to help assess water-quality within specified stream reaches. Water-quality data are available for sites on most perennial streams in the study area, and these data provide the best information about the immediate stream reach. Water-quality data from all sites are combined into regions, and linear-regression equations between dissolved constituents and specific conductance are calculated. Such equations provide an estimate of the water-quality relations within these regions. The equations also indicate an increase in error as individual sites are combined

  2. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    Science.gov (United States)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  3. Assessing effects of water abstraction on fish assemblages in Mediterranean streams

    Science.gov (United States)

    Benejam, Lluis; Angermeier, Paul L.; Munne, Antoni; García-Berthou, Emili

    2010-01-01

    1. Water abstraction strongly affects streams in arid and semiarid ecosystems, particularly where there is a Mediterranean climate. Excessive abstraction reduces the availability of water for human uses downstream and impairs the capacity of streams to support native biota. 2. We investigated the flow regime and related variables in six river basins of the Iberian Peninsula and show that they have been strongly altered, with declining flows (autoregressive models) and groundwater levels during the 20th century. These streams had lower flows and more frequent droughts than predicted by the official hydrological model used in this region. Three of these rivers were sometimes dry, whereas there were predicted by the model to be permanently flowing. Meanwhile, there has been no decrease in annual precipitation. 3. We also investigated the fish assemblage of a stream in one of these river basins (Tordera) for 6 years and show that sites more affected by water abstraction display significant differences in four fish metrics (catch per unit effort, number of benthic species, number of intolerant species and proportional abundance of intolerant individuals) commonly used to assess the biotic condition of streams. 4. We discuss the utility of these metrics in assessing impacts of water abstraction and point out the need for detailed characterisation of the natural flow regime (and hence drought events) prior to the application of biotic indices in streams severely affected by water abstraction. In particular, in cases of artificially dry streams, it is more appropriate for regulatory agencies to assign index scores that reflect biotic degradation than to assign ‘missing’ scores, as is presently customary in assessments of Iberian streams.

  4. Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014

    Science.gov (United States)

    This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water temperatures, and red circles represent warming trends in stream water temperatures. Data were analyzed by Mike Kolian of EPA in partnership with John Jastram and Karen Rice of the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators

  5. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  6. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  7. Olfactory responses to natal stream water in sockeye salmon by BOLD fMRI.

    Directory of Open Access Journals (Sweden)

    Hiroshi Bandoh

    Full Text Available Many studies have shown that juvenile salmon imprint olfactory memory of natal stream odors during downstream migration, and adults recall this stream-specific odor information to discriminate their natal stream during upstream migration for spawning. The odor information processing of the natal stream in the salmon brain, however, has not been clarified. We applied blood oxygenation level-dependent (BOLD functional magnetic resonance imaging to investigate the odor information processing of the natal stream in the olfactory bulb and telencephalon of lacustrine sockeye salmon (Oncorhynchus nerka. The strong responses to the natal stream water were mainly observed in the lateral area of dorsal telencephalon (Dl, which are homologous to the medial pallium (hippocampus in terrestrial vertebrates. Although the concentration of L-serine (1 mM in the control water was 20,000-times higher than that of total amino acid in the natal stream water (47.5 nM, the BOLD signals resulting from the natal stream water were stronger than those by L-serine in the Dl. We concluded that sockeye salmon could process the odor information of the natal stream by integrating information in the Dl area of the telencephalon.

  8. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    International Nuclear Information System (INIS)

    Zelazny, Miroslaw; Astel, Aleksander; Wolanin, Anna; Malek, Stanislaw

    2011-01-01

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: → We use SOM approach to explore physiochemical data for mountain waters. → Geologic structure and hydrological events impact water chemistry. → Limited leaching, typical of crystalline core, reflects in low water mineralization. → Sedimentary rocks are susceptible for leaching. → Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  9. Water quality of streams in Johnson County, Kansas, 2002-07

    Science.gov (United States)

    Rasmussen, T.J.

    2009-01-01

    Water quality of streams in Johnson County, Kansas was evaluated from October 2002 through December 2007 in a cooperative study between the U.S. Geological Survey and the Johnson County Stormwater Management Program. Water quality at 42 stream sites, representing urban and rural basins, was characterized by evaluating benthic macroinvertebrates, water (discrete and continuous data), and/or streambed sediment. Point and nonpoint sources and transport were described for water-quality constituents including suspended sediment, dissolved solids and major ions, nutrients (nitrogen and phosphorus), indicator bacteria, pesticides, and organic wastewater and pharmaceutical compounds. The information obtained from this study is being used by city and county officials to develop effective management plans for protecting and improving stream quality. This fact sheet summarizes important results from three comprehensive reports published as part of the study and available on the World Wide Web at http://ks.water.usgs.gov/Kansas/studies/qw/joco/. ?? 2009 ASCE.

  10. innovation in radioactive waste water-stream management

    International Nuclear Information System (INIS)

    Shaaban, D.A.E.F.

    2010-01-01

    treatment of radioactive waste dtreams is receiving considereble attention in most countries. the present work is for the radioactive wastewater stream management, by volume reduction by a mutual heating and humidificaction of a compressed dry air introduced through the wastewater. in the present work, a mathematical model describing the volume reduction by at the optimum operating condition is determined. a set of coupled first order differential equations, obtained through the mass and energy conservations laws, are used to obtain the humidity ratio, water diffused to the air stream, water temperature, and humid air stream temperature distributions through the bubbling column. these coupled differential equations are simulataneously solved numerically by the developed computer program using fourth order rung-kutta method. the results obtained, according to the present mathematical model, revealed that the air bubble state variables such as mass transfer coefficient (K G ) and interfacial area (a) have a strong effect on the process. therefore, the behavior of the air bubble state variables with coulmn height can be predicted and optimized. moreover, the design curves of the volumetric reduction of the wastewater streams are obtained and assessed at the different operating conditions. an experimental setup was constructed to verify the suggested model. comperhensive comparison between suggested model results, recent experimental measurements and the results of previous work was carried out

  11. Water's Journey from Rain to Stream in perspective

    Science.gov (United States)

    Rodhe, Allan; Grip, Harald

    2015-04-01

    The International Hydrological Decade (IHD) 1965-1974, sponsored by UNESCO, initiated a research effort for coordinating the fragmented branches of hydrology and for understanding and quantifying the hydrologic cycle on various scales, from continents to small catchments. One important part of the Swedish IHD-program was to quantify the terms of the water budget, including detailed data on soil water and groundwater storage dynamics, of several medium sized to small. As an outcome of these studies and subsequent process oriented studies, a new view of the runoff process in forested till soils was developed in the 1970's, stressing the dominating role of groundwater in delivering water to the streams and the usefulness of subdividing catchments into recharge and discharge areas for groundwater for understanding the flowpaths of water. This view contrasted with the general view among the public, and also among professionals within the field and in text books, according to which overland flow is the main process for runoff. With this latter view it would, for instance, not be possible to understand stream water chemistry, which had become an important question in a time of growing environmental concern. In order to decrease the time lag between research results and practice, the Swedish Natural Science Research Council initiated a text book project for presenting the recent results of hydrologic research on stream flow generation applied to Swedish conditions, and in 1985 our book "Water's Journey from Rain to Stream" was published. Founded on the basic principles for water storage and flow in soils, the book gives a general picture of the water flow through the forested till landscape, with separate chapters for recharge and discharge areas. Chemical processes along the flowpaths of water are treated and the book concludes with a few applications to current issues. The book is written in Swedish and the target audience is those working professionally with water and

  12. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    OpenAIRE

    Gurbir Singh; Jon E. Schoonover; Karl W. J. Williard

    2018-01-01

    In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphor...

  13. Incorporation of water-use summaries into the StreamStats web application for Maryland

    Science.gov (United States)

    Ries, Kernell G.; Horn, Marilee A.; Nardi, Mark R.; Tessler, Steven

    2010-01-01

    Approximately 25,000 new households and thousands of new jobs will be established in an area that extends from southwest to northeast of Baltimore, Maryland, as a result of the Federal Base Realignment and Closure (BRAC) process, with consequent new demands on the water resources of the area. The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment, has extended the area of implementation and added functionality to an existing map-based Web application named StreamStats to provide an improved tool for planning and managing the water resources in the BRAC-affected areas. StreamStats previously was implemented for only a small area surrounding Baltimore, Maryland, and it was extended to cover all BRAC-affected areas. StreamStats could provide previously published streamflow statistics, such as the 1-percent probability flood and the 7-day, 10-year low flow, for U.S. Geological Survey data-collection stations and estimates of streamflow statistics for any user-selected point on a stream within the implemented area. The application was modified for this study to also provide summaries of water withdrawals and discharges upstream from any user-selected point on a stream. This new functionality was made possible by creating a Web service that accepts a drainage-basin delineation from StreamStats, overlays it on a spatial layer of water withdrawal and discharge points, extracts the water-use data for the identified points, and sends it back to StreamStats, where it is summarized for the user. The underlying water-use data were extracted from the U.S. Geological Survey's Site-Specific Water-Use Database System (SWUDS) and placed into a Microsoft Access database that was created for this study for easy linkage to the Web service and StreamStats. This linkage of StreamStats with water-use information from SWUDS should enable Maryland regulators and planners to make more informed decisions on the use of water resources in the BRAC area, and

  14. Influence of climate on alpine stream chemistry and water sources

    Science.gov (United States)

    Foks, Sydney; Stets, Edward; Singha, Kamini; Clow, David W.

    2018-01-01

    The resilience of alpine/subalpine watersheds may be viewed as the resistance of streamflow or stream chemistry to change under varying climatic conditions, which is governed by the relative size (volume) and transit time of surface and subsurface water sources. Here, we use end‐member mixing analysis in Andrews Creek, an alpine stream in Rocky Mountain National Park, Colorado, from water year 1994 to 2015, to explore how the partitioning of water sources and associated hydrologic resilience change in response to climate. Our results indicate that four water sources are significant contributors to Andrews Creek, including snow, rain, soil water, and talus groundwater. Seasonal patterns in source‐water contributions reflected the seasonal hydrologic cycle, which is driven by the accumulation and melting of seasonal snowpack. Flushing of soil water had a large effect on stream chemistry during spring snowmelt, despite making only a small contribution to streamflow volume. Snow had a large influence on stream chemistry as well, contributing large amounts of water with low concentrations of weathering products. Interannual patterns in end‐member contributions reflected responses to drought and wet periods. Moderate and significant correlations exist between annual end‐member contributions and regional‐scale climate indices (the Palmer Drought Severity Index, the Palmer Hydrologic Drought Index, and the Modified Palmer Drought Severity Index). From water year 1994 to 2015, the percent contribution from the talus‐groundwater end member to Andrews Creek increased an average of 0.5% per year (p < 0.0001), whereas the percent contributions from snow plus rain decreased by a similar amount (p = 0.001). Our results show how water and solute sources in alpine environments shift in response to climate variability and highlight the role of talus groundwater and soil water in providing hydrologic resilience to the system.

  15. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    Science.gov (United States)

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  16. Macro Invertebrates As Bio Indicators Of Water Quality In Nzovwe Stream In Mbeya Tanzania

    Directory of Open Access Journals (Sweden)

    Fredrick Ojija

    2015-08-01

    Full Text Available This study was carried out to assess the water quality of Nzovwe stream using macroinvertebrates as bioindicators. Biological monitoring working party BMWP scoring system was the index used to assess the ecosystem health of Nzovwe stream. A total of 584 aquatic macroinvertebrates were identified from Nzovwe stream. They belonged to 22 families. The most abundant taxa were Odonata 35.959 Hemiptera 25.514 Coleoptera 18.493 and Diptera 12.842. Whereas the least abundant taxa were Ephemeroptera and Gastropoda each constituting 1.028 of all macroinvertebrates. The most abundant macroinvertebrates were Dragonflies 27.226 Water striders 13.185 and Creeping water bugs 10.274 whereas the least abundant were Giant water bugs 0.514 and Backswimmers 0.514. The BMWP score of Nzovwe stream was 115. Based on this score the water of Nzovwe stream is neither very clean nor significantly altered aquatic environment. Hence the Nzovwe stream is moderately polluted due to non-point source pollution from several sources. Moreover it was found that agricultural activities washing and bathing could alter physico-chemical parameters of the stream and hence changing the abundance of macroinvertebrates as well as the quality of water. This study therefore recommends that the source of pollutants should be controlled and the stream regularly monitored by the relevant authorities. Additionally biological indicators and their indices are suggested to be used in assessing the condition of a stream ecosystem.

  17. Contamination of water in Oliwski Stream after the flood in 2016

    Directory of Open Access Journals (Sweden)

    Matej-Łukowicz Karolina

    2017-01-01

    Full Text Available In the article pollution of stream waters with surface runoff from an urbanized area caused by an extremely high rainfall is discussed. The analyzes were carried out after the rainfall of the depth 152 mm which took place in Gdańsk on 14th and 15th July 2016. This extreme rainfall caused urban flooding, damage of several retention ponds and pollution of surface waters. In the article the results of physical and chemical analyzes of the water samples from Oliwski Stream, inflowing to the Gulf of Gdańsk at the beach in Jelitkowo, are presented. The samples were collected at six points along the Stream in order to evaluate potential pollution sources. The results of the study indicated elevated concentrations of phosphorus compounds and nitrates (V. Additionally, the concentrations of total suspended solids (TSS, solids granulometry and grain size distribution along the stream was investigated.

  18. Use of stream water pH and specific conductance measurements to identify ground water discharges of fly ash leachate

    International Nuclear Information System (INIS)

    Price, R.M.

    1992-01-01

    Low pH and high specific conductance are typical chemical characteristics of coal fly ash leachate. Measurements of these parameters in streams adjacent to a fly ash facility were used to identify areas of ground water discharge into the streams. In-situ specific conductance and pH were determined at approximately 50 surface water stations from on-site and off-site streams. The results of the in-situ determinations were used to select twelve surface water stations for more detailed chemical analyses. The chemical character of the stream water affected by ground water discharges was similar to the water quality of sedimentation ponds which received drainage from the fly ash embankment. The results indicated that in-situ measurements of indicator parameters such as pH and specific conductance can be used as a screening method for identifying surface water quality impacts at fly ash facilities

  19. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  20. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    Science.gov (United States)

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  1. IMPACT OF MUNICIPAL LANDFILL SITE ON WATER QUALITY IN THE WŁOSANKA STREAM

    Directory of Open Access Journals (Sweden)

    Włodzimierz Kanownik

    2016-09-01

    Full Text Available Hydrochemical research conducted in the years 2007–2010 comprised monitoring of the Włosanka stream waters and leachate waters from the municipal landfill in Kulerzów in the Malopolskie province. 16 leachate samples were collected from the container taking into consideration the vertical stratification of the quality and samples of water from the Włosanka stream in measurement points situated before and after the landfill. Concentrations of metals: calcium, magnesium, sodium, potassium, iron, manganese and heavy metals: chromium, zinc, copper, cadmium, nickel and lead were determined in the leachates and the stream water. Analysis of the studied metals in the leachates revealed that only potassium concentration exceeded the highest admissible value which is the condition of introducing sewage to water bodies or to soil. Water along the investigated reach of the Włosanka stream, both above and below the municipal landfill was of quality class 1. The landfill had no significant effect on the studied metal concentrations in the stream water – no statistically significant differences were registered between the concentrations of the studied metals (including heavy metals either in the point above or below the landfill. However, statistical tests comparing values of metal concentrations in the landfill leachates with the stream water revealed that the concentrations of 7 out of 12 tested metals were significantly higher in the leachates. Therefore, the landfill site monitoring should be continued, leachate waters should be collected in the container and supplied to the sewage treatment plant to prevent any threat to human life and health, or to the environment.

  2. Physico-chemical characteristics of water sample from Aiba Stream ...

    African Journals Online (AJOL)

    This study aimed at assessing the effectiveness of solar distillation in purification of water. The water sample collected from Aiba stream was subjected to double slope solar water distillation unit. The physico- chemical characteristics of the raw sample and the distillate were determined using standard methods. The.

  3. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  4. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    Directory of Open Access Journals (Sweden)

    Gurbir Singh

    2018-04-01

    Full Text Available In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphorus, and sediment loss in stream water from a no-till corn-soybean rotation planted with winter cover crops cereal rye (Secale cereale and hairy vetch (Vicia villosa in non-tile drained paired watersheds in Illinois, USA. The paired watersheds are under mixed land use (agriculture, forest, and pasture. The control watershed had 27 ha of row-crop agriculture, and the treatment watershed had 42 ha of row crop agriculture with cover crop treatment (CC-treatment. During a 4-year calibration period, 42 storm events were collected and Event Mean Concentrations (EMCs for each storm event were calculated for total suspended solids (TSS, nitrate-N (NO3-N, ammonia-N (NH4-N, dissolved reactive phosphorus (DRP, and total discharge. Predictive regression equations developed from the calibration period were used for calculating TSS, NO3-N, NH4-N, and DRP losses of surface runoff for the CC-treatment watershed. The treatment period consisted of total 18 storm events, seven of which were collected during the cereal rye, eight in the hairy vetch cover crop season and three during cash crop season. Cover crops reduced TSS and discharge by 33% and 34%, respectively in the CC-treatment watershed during the treatment period. However, surprisingly, EMCs for NO3-N, NH4-N, and DRP did not decrease. Stream discharge from the paired-watersheds will continue to be monitored to determine if the current water quality results hold or new patterns emerge.

  5. Process Design and Techno-economic Analysis for Materials to Treat Produced Waters.

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Brandon Walter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Paap, Scott M [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sasan, Koroush [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variability in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.

  6. Three-dimensionally spiral structure of the water stream induced by a centrifugal stirrer in large aqua-cultural ponds

    Science.gov (United States)

    Itano, Tomoaki; Inagaki, Taishi; Nakamura, Choji; Sugihara-Seki, Masako; Hyodo, Jinsuke

    2017-11-01

    We have conducted measurements of the water stream produced by a mechanical stirrer (diameter 2.4[m], electric power 50[W]) located in shallow rectangular reservoirs (small 0.7[ha], large 3.7[ha]), which may be employed as a cost-efficient aerator for the aqua-cultural purpose, with the aid of both particle tracking velocimetry by passive tracers floating on the surface and direct measurement by electro-magnetic velocimeter under the surface. The present measurements indicate that the stirrer drives primarily the horizontally rotating water stream and secondarily the vertical convection between the surface and the bottom of the reservoir, which results in the three-dimensionally spiral-shaped water streams scaled vertically by just a meter but horizontally by more than ten meters. It is suggested that the spiral structure driven by the stirrer may activate the underwater vertical mixing and enhance dissolved oxygen at the bottom of aqua-cultural pond more effectively than the paddle-wheel aerators commonly used in aqua-cultural ponds. This research was financially supported in part by the Kansai University Fund for Supporting Young Scholars, 2016-2017.

  7. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Rose, A.W.; Smith, A.T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program

  8. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A. W.; Smith, A. T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program.

  9. Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity.

    Science.gov (United States)

    Rožman, Marko; Acuña, Vicenç; Petrović, Mira

    2018-02-01

    A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Depauperate macroinvertebrates in a mine affected stream: Clean water may be the key to recovery

    International Nuclear Information System (INIS)

    Battaglia, M.; Hose, G.C.; Turak, E.; Warden, B.

    2005-01-01

    Acid mine drainage (AMD) is frequently linked with changes in macroinvertebrate assemblages, but the relative contribution of water and sediment to toxicity is equivocal. We have shown that the macroinvertebrate fauna of Neubecks Ck, a mine impacted stream in New South Wales, Australia, was much poorer than in two reference streams. Multivariate RELATE analyses indicated that the patterns in the biological data were more strongly correlated with the concentrations of common metals in the surface water than the pore water of these streams. From this we hypothesised that the water was more toxic to the biota than the sediment and we tested this hypothesis with a sediment transplant experiment. Sediment from Neubecks Ck that was placed in reference streams retained high concentrations of metals throughout the experiment, yet supported a macroinvertebrate assemblage similar to that in the reference streams. Sediment from the reference streams that was placed in Neubecks Ck supported few, if any, animals. This indicates that water in Neubecks Ck is toxic to biota, but that sediment is able to support aquatic biota in clean water. Therefore, remediation should focus on improving water quality rather than sediment quality. - Macroinvertebrates colonise contaminated sediment in clean water

  11. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    Science.gov (United States)

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  12. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    Science.gov (United States)

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  13. Catchment hydrochemical processes controlling acidity and nitrogen in forest stream water

    International Nuclear Information System (INIS)

    Foelster, Jens

    2001-01-01

    Atmospheric deposition of air pollutants has been a severe threat to terrestrial and forest ecosystems for several decades. In Sweden sulphur deposition has caused acidification of soils and runoff, while nitrogen deposition only had a minor or local impact on runoff quality so far. During the last three decades, emission control has caused a decline in sulphur deposition, whereas nitrogen deposition on the other hand, has continued to increase to a rate several times above the natural background level. Long term changes in runoff acidity and nitrogen chemistry after these changes in deposition are of great concern. Monitoring of small, well-defined catchments including hydrochemistry of precipitation, soil and runoff, is a valuable tool for addressing this concern. When interpreting runoff data from such sites, the near-stream zone has been identified to be of crucial importance. The main objective for this thesis was to explain how catchment processes were related to short-term variation and long-term trends in the hydrochemistry of forest stream water. The field work was conducted on the strongly acidified and nitrogen limited Kindla catchment, with a special emphasis on the relationship between the near-stream zone and both stream acidity and nitrogen leaching. Furthermore, time series of hydrochemistry in forest stream water from 13 catchments were analysed for changes in acidity and nitrogen leaching. In three of these sites, soil water from E- and B-horizons was also analysed with regards to these questions. The investigations revealed that the near-stream zone was a net source of acidity in runoff at Kindla due to leaching of organic acids, although this contribution was overshadowed by sulphate from upland soils and deposition. The near-stream zone was also the main source for both organic nitrogen and nitrate to the stream, but the leaching rate was low, especially for inorganic nitrogen. In the 13 reference streams, sulphate concentrations declined in

  14. Dynamics of physicochemical parameter concentrations in the Graniczna Woda stream water

    Directory of Open Access Journals (Sweden)

    Żarnowiec Wioletta

    2017-12-01

    Full Text Available The paper presents variability of physicochemical parameter concentrations and determined the potential and chemical status of water in the Graniczna Woda stream, the right bank tributary to the Stoła River. The stream catchment area of 41.5 km2 is covered mainly by forests. A lowland stream flows through part of the Upper Silesia Industrial Region through three districts. A biological-mechanical municipal sewage treatment plant operates in the area of Miasteczko Śląskie, as well as a factory sewage treatment plant of Zinc Plant. The data base used in the papers consisted of the results obtained from the Provincial Inspectorate of the Environmental Protection in Katowice, monthly analyses of water samples collected in the years 2009–2013 in the control-measurement points located by the mouth of the Stoła River. 34 physicochemical indices were analyzed in the paper. Statistically significant upward trends were determined over the period of investigations for values of electrical conductivity (EC, total suspended solids, Cl, SO4, NO2-N and Zn in the stream water. Statistically significant downward trend was noted for total hardness. It was stated that both the potential and chemical status o the stream water were below good. Exceeded limit values for quality class II determined for oxygen and organic indices (chemical oxygen demand COD-Mn, total organic carbon TOC, salinity (EC, SO4, Cl, Ca, hardness and biogenic indices and substances particularly harmful for aquatic environment (Zn, Tl as well as exceeded allowable heavy metal concentrations may evidence a constant inflow of heavy metals to the aquatic environment of the Graniczna Woda stream from municipal and industrial sewage.

  15. Effect of boiling regime on melt stream breakup in water

    International Nuclear Information System (INIS)

    Spencer, B.W.; Gabor, J.D.; Cassulo, J.C.

    1986-01-01

    A study has been performed examining the breakup and mixing behavior of an initially coherent stream of high-density melt as it flows downward through water. This work has application to the quenching of molten core materials as they drain downward during a postulated severe reactor accident. The study has included examination of various models of breakup distances based upon interfacial instabilities dominated either by liquid-liquid contact or by liquid-vapor contact. A series of experiments was performed to provide a data base for assessment of the various modeling approaches. The experiments involved Wood's metal (T/sub m/ = 73 0 C, rho = 9.2 g/cm 3 , d/sub j/ = 20 mm) poured into a deep pool of water. The temperature of the water and wood's metal were varied to span the range from single-phase, liquid-liquid contact to the film boiling regime. Experiment results showed that breakup occurred largely as a result of the spreading and entrainment from the leading edge of the jet. However, for streams of sufficient lengths a breakup length could be discerned at which there was no longer a coherent central core of the jet to feed the leading edge region. The erosion of the vertical trailing column is by Kelvin-Helmoltz instabilities and related disengagement of droplets from the jet into the surrounding fluid. For conditions of liquid-liquid contact, the breakup length has been found to be about 20 jet diameters; when substantial vapor is produced at the interface due to heat transfer from the jet to the water, the breakup distance was found to range to as high as 50 jet diameters. The former values are close to the analytical prediction of Taylor, whereas the latter values are better predicted by the model of Epstein and Fauske

  16. Storm water runoff-a source of emerging contaminants in urban streams

    Science.gov (United States)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This

  17. Using of CFD software for setting the location of water stream micro turbines

    Directory of Open Access Journals (Sweden)

    Borsuk Łukasz

    2016-01-01

    Full Text Available The aim of this work was to estimate the efficiency of CFD software in calculating flow velocity magnitude in natural water streams. These kinds of estimations are essential for setting the locations of water stream micro turbines. These devices can be useful to provide electricity in areas remote from power generating facilities or as backup power supply in case of power grid failure. The analysed water stream has length of 100 m and its average slope was approximately 10%. Water velocity varies in the range from 0.5 m3*s−1 to 5 m3*s−1. Additionally, the influence of ground roughness on the stream velocity was also an important factor. Results proved to be satisfactory. In the analysed stream, velocities were in a range which allows the proposed micro turbine to be effective. Calculation grid created by CFD software did not have many areas which may raise doubts. Also, the influence of changes in the ground roughness factor was noticeable. Preliminary CFD simulations allow to estimate where in the stream the micro turbine will be most efficient. On the other hand, despite these calculations, profitability and return on the investment still can be questionable.

  18. Fragmentation and quench behavior of corium melt streams in water

    International Nuclear Information System (INIS)

    Spencer, B.W.; Wang, K.; Blomquist, C.A.; McUmber, L.M.; Schneider, J.P.

    1994-02-01

    The interaction of molten core materials with water has been investigated for the pour stream mixing mode. This interaction plays a crucial role during the later stages of in-vessel core melt progression inside a light water reactor such as during the TMI-2 accident. The key issues which arise during the molten core relocation include: (i) the thermal attack and possible damage to the RPV lower head from the impinging molten fuel stream and/or the debris bed, (ii) the molten fuel relocation pathways including the effects of redistribution due to core support structure and the reactor lower internals, (iii) the quench rate of the molten fuel through the water in the lower plenum, (iv) the steam generation and hydrogen generation during the interaction, (v) the transient pressurization of the primary system, and (vi) the possibility of a steam explosion. In order to understand these issues, a series of six experiments (designated CCM-1 through -6) was performed in which molten corium passed through a deep pool of water in a long, slender pour stream mode. Results discussed include the transient temperatures and pressures, the rate and magnitude of steam/hydrogen generation, and the posttest debris characteristics

  19. Pasture size effects on the ability of off-stream water or restricted stream access to alter the spatial/temporal distribution of grazing beef cows.

    Science.gov (United States)

    Bisinger, J J; Russell, J R; Morrical, D G; Isenhart, T M

    2014-08-01

    For 2 grazing seasons, effects of pasture size, stream access, and off-stream water on cow distribution relative to a stream were evaluated in six 12.1-ha cool-season grass pastures. Two pasture sizes (small [4.0 ha] and large [12.1 ha]) with 3 management treatments (unrestricted stream access without off-stream water [U], unrestricted stream access with off-stream water [UW], and stream access restricted to a stabilized stream crossing [R]) were alternated between pasture sizes every 2 wk for 5 consecutive 4-wk intervals in each grazing season. Small and large pastures were stocked with 5 and 15 August-calving cows from mid May through mid October. At 10-min intervals, cow location was determined with Global Positioning System collars fitted on 2 to 3 cows in each pasture and identified when observed in the stream (0-10 m from the stream) or riparian (0-33 m from the stream) zones and ambient temperature was recorded with on-site weather stations. Over all intervals, cows were observed more (P ≤ 0.01) frequently in the stream and riparian zones of small than large pastures regardless of management treatment. Cows in R pastures had 24 and 8% less (P cows in or near pasture streams regardless of pasture size. In 2011, the probability of cow presence in the stream and riparian zones increased at greater (P cow presence in the stream and riparian zones increased at greater (P cow presence in the stream and riparian zone increased less (P cow presence in shade (within 10 m of tree drip lines) in the total pasture with increasing temperatures did not differ between treatments. However, probability of cow presence in riparian shade increased at greater (P cows in or near pasture streams with unrestricted access.

  20. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Science.gov (United States)

    A. Ramirez; K.G. Rosas; A.E. Lugo; O.M. Ramos-Gonzalez

    2014-01-01

    Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial...

  1. Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet.

    Science.gov (United States)

    Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan

    2013-12-01

    Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study.

  2. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  3. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.

    Science.gov (United States)

    Protano, G; Riccobono, F

    2002-01-01

    Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.

  4. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  5. Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits

    International Nuclear Information System (INIS)

    Korner, L.A.; Rose, A.W.

    1977-06-01

    Radon-222, a daughter in the radioactive decay of uranium, has potential as a geochemical guide to uranium ores because of its chemical inertness and its relatively easy determination. The radon contents of 59 stream and 149 ground waters have been determined with a newly designed portable radon detector in order to test the method in uranium exploration. Radon contents of stream waters do not appear useful for reconnaissance uranium exploration of areas like Pennsylvania because of relatively rapid degassing of radon from turbulent waters, and because most radon is derived from nearby influx of ground waters into the streams. Radon in streams near uranium occurrences in Carbon and Lycoming counties is lower than many background streams. Radon in ground water is recommended as a reconnaissance method of uranium exploration because most samples from near mineralized areas are anomalous in radon. In contrast, uranium in ground waters is not anomalous near mineralized areas in Carbon County. Equations are derived to show the relation of radon in ground waters to uranium contents of enclosing rocks, emanation of radon from the solids to water, and porosity or fracture width. Limonites are found to be highly enriched in radium, the parent of radon. A model for detection of a nearby uranium ore body by radon measurement on a pumping well has been developed

  6. Norm removal from frac water

    Science.gov (United States)

    Silva, James Manio; Matis, Hope; Kostedt, IV, William Leonard

    2014-11-18

    A method for treating low barium frac water includes contacting a frac water stream with a radium selective complexing resin to produce a low radium stream, passing the low radium stream through a thermal brine concentrator to produce a concentrated brine; and passing the concentrated brine through a thermal crystallizer to yield road salt.

  7. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

    Science.gov (United States)

    Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter

    2013-01-01

    In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...

  8. Investigation of plasma stream collision produced by thin films irradiated by powerful pulsed electron beam

    International Nuclear Information System (INIS)

    Efremov, V P; Demidov, B A; Ivkin, M V; Mescheryakov, A N; Petrov, V A; Potapenko, A I

    2006-01-01

    Collision of fast plasma streams in vacuum is investigated. Plasma streams were produced by irradiation of thin foils with a powerful pulsed electron beam. Interaction of the plasma flows was studied by using frame and streak cameras. One-dimensional numerical simulation was carried out. Application of this method for porous ICF targets and high-energy physics is discussed

  9. Mixing Hot and Cold Water Streams at a T-Junction

    Science.gov (United States)

    Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin

    2008-01-01

    A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…

  10. Monitoring of water quality of a stream at the Federal University of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Marlyete Chagas de Araújo

    2013-12-01

    Full Text Available The Cavouco stream is an affluent of Pernambuco’s main river, the Capibaribe, and has its source on the campus of the Federal University of Pernambuco (UFPE. The stretch of the river that runs within the university receives an influx of pollution in the form of chemicals, and household and hospital waste. In light of this situation, and hoping to mitigate it, the aim of this study was to analyze the water quality of this stream and to raise the academic community’s awareness regarding this issue. To this end, stream water samples were collected in two different periods (dry and rainy at five strategic points on campus. The water samples were sent to the Water Treatment Plant and to the Laboratory for Analysis of Mineral, Soil and Water of the UFPE where 16 physicochemical parameters were analyzed (temperature, turbidity, conductivity, total dissolved solids, pH, dissolved oxygen, ammonia, nitrite, nitrate, iron, manganese, cadmium, lead, copper, chromium, zinc according to the methodology of 21st Standard Methods for the Examination of Water and Wastewater. The results show that the water of the Cavouco stream has a high load of pollution, with the points P2 and P5 being the most impacted. Additionally, the results of the Index of Water Quality for the Protection of Aquatic Life indicated that currently the stream has a low capacity for maintenance of aquatic life.

  11. National water summary 1990-91: Hydrologic events and stream water quality

    Science.gov (United States)

    Paulson, Richard W.; Chase, Edith B.; Williams, John S.; Moody, David W.

    1993-01-01

    National Water Summary 1990-91 Hydrologic Events and Stream Water Quality was planned to complement existing Federal-State water-quality reporting to the U.S. Congress that is required by the Clean Water Act of 1972. This act, formally known as the Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500), and its amendments in 1977,1979,1980,1981,1983, and 1987, is the principal basis for Federal-State cooperation on maintaining and reporting on water quality in the United States. Under section 305(b) of the Clean Water Act, the States must designate uses for waterbodies, biennially assess whether the waterbodies meet designated uses, and report to the U.S. Environmental Protection Agency (EPA), which in turn summarizes the findings of the State assessments in a biennial National Water Quality Inventory report to the Congress.

  12. The Influence of Geology and Other Environmental Factors on Stream Water Chemistry and Benthic Invertebrate Assemblages

    OpenAIRE

    Olson, John R.

    2012-01-01

    Catchment geology is known to influence water chemistry, which can significantly affect both species composition and ecosystem processes in streams. However, current predictions of how stream water chemistry varies with geology are limited in both scope and precision, and we have not adequately tested the specific mechanisms by which water chemistry influences stream biota. My dissertation research goals were to (1) develop empirical models to predict natural base-flow water chemistry from ca...

  13. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    International Nuclear Information System (INIS)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R.

    2004-01-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales

  14. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales.

  15. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  16. Evaluating the accotink creek restoration project for improving water quality, in-stream habitat, and bank stability

    Science.gov (United States)

    Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.

    2007-01-01

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data

  17. Reconnaissance study of uranium and fluorine contents of stream and lake waters, West Greenland

    International Nuclear Information System (INIS)

    Steenfelt, A.; Dam, E.

    1982-01-01

    The present study forms part of a current investigation on the applicability of geochemical methods in mineral exploration in Greenland. The sampling programme of 1981 comprised three parts: (1) A helicopter supported, low density, regional sampling (1 sample/30 km 2 ) of stream water and stream sediment in the area covered by map sheet 66 V.2, south-east of Soendre Stroemfjord. A total of 207 water samples was obtained. (2) Detailed sampling within a 20 km 2 area of lake and stream water (71 samples) from a camp at 66deg49'N, 25deg37'W, 25 km south-west of Soendre Stroemfjord. (3) Reconnaissance sampling, by boat, along the southern part of the west coast of Greenland. The aim of this reconnaissance was to obtain information on the character of the drainage systems and on the availability of sample media (water, stream sediment, aquatic moss) for geochemical exploration. A total of 195 water samples were collected. In addition, rust zones and areas of known mineralisation along the coast were sampled. (author)

  18. Biological responses to acidification reversal in Cumbrian streamwaters - stream water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E.; Hardie, D.J.; Lawlor, A.J.; Lofts, S.; Simon, B.M.; Vincent, C.D. [Institute of Freshwater Ecology, Ambleside (United Kingdom)

    1999-07-01

    This reports summarises the findings of a study sampling the streams for invertebrates and comparing the results with those made in the 1960s and 1970s, The distribution of the bacterium Cytophaga was examined, and the results of the chemical analysis of the stream waters were compared with the results from previous years. The background to the study is traced, and details of the sampling and chemical analysis are given. Evidence of the reversal of acidification in the streams is considered.

  19. Precipitation and stream water stable isotope data from the Marys River, Oregon in water year 2015.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Water stable isotope data collected from a range of streams throughout the Marys River basin in water year 2015, and precipitation data collected within the basin at...

  20. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Science.gov (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  1. The application and testing of diatom-based indices of stream water ...

    African Journals Online (AJOL)

    The application and testing of diatom-based indices of stream water quality in Chinhoyi Town, Zimbabwe. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... test the applicability of foreign diatom-based water quality assessment indices to ...

  2. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    DEFF Research Database (Denmark)

    Petersen, Mette Fjendbo; Eriksson, Eva; Binning, Philip John

    2012-01-01

    the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor...... at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl chloride). Vinyl chloride concentrations surpassed Danish stream water quality criteria with a factor 10. The largest chemical impact...

  3. Tekna's produced water conference 2005

    International Nuclear Information System (INIS)

    2005-01-01

    The conference has 22 presentations discussing topics on discharge reduction, produced water quality, produced water re-injection, chemicals particularly environmentally friendly ones, separation technology, reservoir souring, total water management systems, pollution, oil in water problems and platform operation. Various field tests and experiences particularly from the offshore petroleum sector are presented (tk)

  4. Guidelines for the collection of continuous stream water-temperature data in Alaska

    Science.gov (United States)

    Toohey, Ryan C.; Neal, Edward G.; Solin, Gary L.

    2014-01-01

    Objectives of stream monitoring programs differ considerably among many of the academic, Federal, state, tribal, and non-profit organizations in the state of Alaska. Broad inclusion of stream-temperature monitoring can provide an opportunity for collaboration in the development of a statewide stream-temperature database. Statewide and regional coordination could reduce overall monitoring cost, while providing better analyses at multiple spatial and temporal scales to improve resource decision-making. Increased adoption of standardized protocols and data-quality standards may allow for validation of historical modeling efforts with better projection calibration. For records of stream water temperature to be generally consistent, unbiased, and reproducible, data must be collected and analyzed according to documented protocols. Collection of water-temperature data requires definition of data-quality objectives, good site selection, proper selection of instrumentation, proper installation of sensors, periodic site visits to maintain sensors and download data, pre- and post-deployment verification against an NIST-certified thermometer, potential data corrections, and proper documentation, review, and approval. A study created to develop a quality-assurance project plan, data-quality objectives, and a database management plan that includes procedures for data archiving and dissemination could provide a means to standardize a statewide stream-temperature database in Alaska. Protocols can be modified depending on desired accuracy or specific needs of data collected. This document is intended to guide users in collecting time series water-temperature data in Alaskan streams and draws extensively on the broader protocols already published by the U.S. Geological Survey.

  5. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Jin [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Ryu, Jong-Sik [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Mayer, Bernhard [Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Lee, Kwang-Sik, E-mail: kslee@kbsi.re.kr [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Lee, Sin-Woo [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geology, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-07-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO{sub 3} were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO{sub 4} were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4}) verified that the SO{sub 4} in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ{sup 15}N{sub NO3} and δ{sup 18}O{sub NO3}) indicated that NO{sub 3} in JS is attributable to nitrification of soil organic matter but that NO{sub 3} in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ{sup 34}S{sub SO4} and δ{sup 15}N{sub NO3}. This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes

  6. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    International Nuclear Information System (INIS)

    Shin, Woo-Jin; Ryu, Jong-Sik; Mayer, Bernhard; Lee, Kwang-Sik; Lee, Sin-Woo

    2014-01-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO 3 were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO 4 were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ 34 S SO4 and δ 18 O SO4 ) verified that the SO 4 in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ 15 N NO3 and δ 18 O NO3 ) indicated that NO 3 in JS is attributable to nitrification of soil organic matter but that NO 3 in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ 34 S SO4 and δ 15 N NO3 . This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes controlling the water chemistry of streams draining watersheds having different

  7. Process for purification of waste water produced by a Kraft process pulp and paper mill

    Science.gov (United States)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  8. Use of neural networks for monitoring surface water quality changes in a neotropical urban stream.

    Science.gov (United States)

    da Costa, Andréa Oliveira Souza; Silva, Priscila Ferreira; Sabará, Millôr Godoy; da Costa, Esly Ferreira

    2009-08-01

    This paper reports the using of neural networks for water quality analysis in a tropical urban stream before (2002) and after sewerage building and the completion of point-source control-based sanitation program (2003). Mathematical modeling divided water quality data in two categories: (a) input of some in situ water quality variables (temperature, pH, O2 concentration, O2 saturation and electrical conductivity) and (b) water chemical composition (N-NO2(-); N-NO3(-); N-NH4(+) Total-N; P-PO4(3-); K+; Ca2+; Mg+2; Cu2+; Zn2+ and Fe+3) as the output from tested models. Stream water data come from fortnightly sampling in five points along the Ipanema stream (Southeast Brazil, Minas Gerais state) plus two points downstream and upstream Ipanema discharge into Doce River. Once the best models are consistent with variables behavior we suggest that neural networking shows potential as a methodology to enhance guidelines for urban streams restoration, conservation and management.

  9. Stormwater management impacts on urban stream water quality and quantity during and after development in Clarksburg, MD

    Science.gov (United States)

    Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.

    2012-12-01

    Urbanization and urban land use leads to degradation of local stream habitat and 'urban stream syndrome.' Best Management Practices (BMPs) are often used in an attempt to mitigate the impact of urban land use on stream water quality and quantity. Traditional development has employed stormwater BMPs that were placed in a centralized manner located either in the stream channel or near the riparian zone to treat stormwater runoff from large drainage areas; however, urban streams have largely remained impaired. Recently, distributed placement of BMPs throughout the landscape has been implemented in an attempt to detain, treat, and infiltrate stormwater runoff from smaller drainage areas near its source. Despite increasing implementation of distributed BMPs, little has been reported on the catchment-scale (1-10 km^2) performance of distributed BMPs and how they compare to centralized BMPs. The Clarksburg Special Protection Area (CSPA), located in the Washington, DC exurbs within the larger Chesapeake Bay watershed, is undergoing rapid urbanization and employs distributed BMPs on the landscape that treat small drainage areas with the goal of preserving high-quality stream resources in the area. In addition, the presence of a nearby traditionally developed (centralized BMPs) catchment and an undeveloped forested catchment makes the CSPA an ideal setting to understand how the best available stormwater management technology implemented during and after development affects stream water quality and quantity through a comparative watershed analysis. The Clarksburg Integrated Monitoring Partnership is a consortium of local and federal agencies and universities that conducts research in the CSPA including: monitoring of stream water quality, geomorphology, and biology; analysis of stream hydrological and water quality data; and GIS mapping and analysis of land cover, elevation change and BMP implementation data. Here, the impacts of urbanization on stream water quantity

  10. Angular distributions of atomic vapor stream produced by electron beam heating

    International Nuclear Information System (INIS)

    Ohba, Hironori; Amekawa, Kazuhiro; Shibata, Takemasa

    1997-03-01

    The angular distributions were measured as a function of deposition rate for aluminium, copper, gadolinium and cerium vapor stream produced by an electron beam gun with water-cooled copper crucible. The distributions were recorded on the mounted on a semicircular (120mm in radius) mask over the evaporation source. The measured distributions were able to be described by a simple cosine law, that is cos n θ, except for the case of extremely high evaporation rate with a porous material, where n is a rate-dependent beaming exponent, θ is the angle from the vertical. For many kinds of evaporants, it was confirmed that the beaming exponents increase continuously from unity to 3 or 4 with increasing deposition rate and are approximately proportional to R 0.25 where R is the deposition rate. Moreover, it was found that the beaming exponents n are able to be expressed as n = α Kn 0 -0.25 , where Kn 0 -1 is the inverse of Knudsen number, which is defined by the mean free path of evaporated atoms and the evaporation spot size, and α is the constant. (author)

  11. Angular distributions of atomic vapor stream produced by electron beam heating

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Amekawa, Kazuhiro; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The angular distributions were measured as a function of deposition rate for aluminium, copper, gadolinium and cerium vapor stream produced by an electron beam gun with water-cooled copper crucible. The distributions were recorded on the mounted on a semicircular (120mm in radius) mask over the evaporation source. The measured distributions were able to be described by a simple cosine law, that is cos{sup n} {theta}, except for the case of extremely high evaporation rate with a porous material, where n is a rate-dependent beaming exponent, {theta} is the angle from the vertical. For many kinds of evaporants, it was confirmed that the beaming exponents increase continuously from unity to 3 or 4 with increasing deposition rate and are approximately proportional to R{sup 0.25} where R is the deposition rate. Moreover, it was found that the beaming exponents n are able to be expressed as n = {alpha} Kn{sub 0}{sup -0.25}, where Kn{sub 0}{sup -1} is the inverse of Knudsen number, which is defined by the mean free path of evaporated atoms and the evaporation spot size, and {alpha} is the constant. (author)

  12. Produced water - composition and analysis

    International Nuclear Information System (INIS)

    Kvernheim, Arne Lund

    1998-01-01

    Produced water can be defined as ''High volume waste-water separated from oil and gas that is produced from subsurface formations''. The water contains aliphatic and aromatic hydrocarbons, particulate matter and soluble salts as well as elements originating from formations and from sea water injections. Residues of chemicals may also be present. The accepted North Sea discharge limit is 40 ppm. In this presentation the focus will be on the chemical composition of produced water and on the challenges involved in developing and implementing analytical methods. The focus will also be on the development of a new oil-in-water analytical method as a replacement for the Freon method. 7 refs., 1 tab

  13. Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams

    International Nuclear Information System (INIS)

    Fonyuy, Ernest W.; Atekwana, Eliot A.

    2008-01-01

    Dissolved inorganic carbon (DIC) constitutes a significant fraction of a stream's carbon budget, yet the role of acid mine drainage (AMD) in DIC dynamics in receiving streams remains poorly understood. The objective of this study was to evaluate spatial and temporal effects of AMD and its chemical evolution on DIC and stable isotope ratio of DIC (δ 13 C DIC ) in receiving streams. We examined spatial and seasonal variations in physical and chemical parameters, DIC, and δ 13 C DIC in a stream receiving AMD. In addition, we mixed different proportions of AMD and tap water in a laboratory experiment to investigate AMD dilution and variable bicarbonate concentrations to simulate downstream and seasonal hydrologic conditions in the stream. Field and laboratory samples showed variable pH, overall decreases in Fe 2+ , alkalinity, and DIC, and variable increase in δ 13 C DIC . We attribute the decrease in alkalinity, DIC loss, and enrichment of 13 C of DIC in stream water to protons produced from oxidation of Fe 2+ followed by Fe 3+ hydrolysis and precipitation of Fe(OH) 3(s) . The extent of DIC decrease and 13 C enrichment of DIC was related to the amount of HCO 3 - dehydrated by protons. The laboratory experiment showed that lower 13 C enrichment occurred in unmixed AMD (2.7 per mille ) when the amount of protons produced was in excess of HCO 3 - or in tap water (3.2 per mille ) where no protons were produced from Fe 3+ hydrolysis for HCO 3 - dehydration. The 13 C enrichment increased and was highest for AMD-tap water mixture (8.0 per mille ) where Fe 2+ was proportional to HCO 3 - concentration. Thus, the variable downstream and seasonal 13 C enrichment in stream water was due in part to: (1) variations in the volume of stream water initially mixed with AMD and (2) to HCO 3 - input from groundwater and seepage in the downstream direction. Protons produced during the chemical evolution of AMD caused seasonal losses of 50 to >98% of stream water DIC. This loss of DIC

  14. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2012-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2–0.3 Bq/L and 2–7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1–0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below

  15. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2013-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2-0.3 Bq/L and 2-7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1-0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below the

  16. Produced Water Management and Beneficial Use

    International Nuclear Information System (INIS)

    Brown, Terry; Frost, Carol; Hayes, Thomas; Heath, Leo; Johnson, Drew; Lopez, David; Saffer, Demian; Urynowicz, Michael; Wheaton, John; Zoback, Mark

    2007-01-01

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm

  17. Produced Water Management and Beneficial Use

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  18. Application of regression model on stream water quality parameters

    International Nuclear Information System (INIS)

    Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.

    2012-01-01

    Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)

  19. Variations in surface water-ground water interactions along a headwater mountain stream: comparisons between transient storage and water balance analyses

    Science.gov (United States)

    Adam S. Ward; Robert A. Payn; Michael N. Gooseff; Brian L. McGlynn; Kenneth E. Bencala; Christa A. Kellecher; Steven M. Wondzell; Thorsten. Wagener

    2013-01-01

    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We...

  20. Environmental Monitoring, Water Quality - MO 2009 Stream Team Volunteer Water Quality Monitoring Sites (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set shows the monitoring locations of trained Volunteer Water Quality Monitors. A monitoring site is considered to be a 300 foot section of stream channel....

  1. Methanotrophy in surface sediments of streams

    Science.gov (United States)

    Bagnoud, Alexandre; Pramateftaki, Paraskevi; Peter, Hannes; Battin, Tom

    2017-04-01

    Because streams are often found to be supersaturated in methane (CH4), they are considered as atmospheric sources of this greenhouse gas. However, little is known about the processes driving CH4 cycling in these environments, i.e. production, consumption and fluxes. CH4 is thought to be produced in deeper anoxic sediments, before it migrates up to reach the oxic stream water, where it can be oxidized by methanotrophs. In order to gain insights into this process, we investigated 14 different streams across Switzerland. We characterized the chemistry of surface and sediment waters by measuring dissolved chemical profiles. We also sampled surface sediments and determined methanotrophic rates with laboratory incubations and Michaelis-Menten modeling. Interestingly, rates were strongly correlated with the CH4 concentrations in stream waters, rather than in sediment waters. This indicates that methantrophic populations feed on CH4 from the surface streamwater, even though CH4 concentrations are higher in the sediment waters. Methanotrophy rates were also correlated with Crenothrix counts (based on 16S rRNA sequencing), a strict methanotroph, while this latter was correlated with pmoA counts (based on quantitative PCR), a gene involved in methanotrophy. These results show that Crenothrix genera are the most active methanotrophs in surface sediments of streams, and can represent more than 2% of microbial communities. Remarkably, the dominating Crenothrix species was detected in all 14 samples. This work allows the assessment of in situ methanotrophic rates, of the environmental parameters driving this process, and of the microbial populations carrying it out, and thus brings useful insights about carbon cycling in streams.

  2. Local geology determines responses of stream producers and fungal decomposers to nutrient enrichment: A field experiment.

    Science.gov (United States)

    Mykrä, Heikki; Sarremejane, Romain; Laamanen, Tiina; Karjalainen, Satu Maaria; Markkola, Annamari; Lehtinen, Sirkku; Lehosmaa, Kaisa; Muotka, Timo

    2018-04-16

    We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.

  3. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Science.gov (United States)

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  4. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Science.gov (United States)

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  5. The influence of data characteristics on detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware

    Science.gov (United States)

    Vanderhoof, Melanie; Distler, Hayley; Lang, Megan W.; Alexander, Laurie C.

    2018-01-01

    The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.

  6. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Science.gov (United States)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  7. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    2005-01-01

    Full Text Available Spatio-temporal patterns of small water bodies (SWBs under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  8. USE OF DIATOMS TO ASSES WATER QUALITY OF ANTHROPOGENICALLY MODIFIED MATYSÓWKA STREAM

    Directory of Open Access Journals (Sweden)

    Teresa Noga

    2013-04-01

    Full Text Available Matysówka stream is small, under 6 km long watercourse, which is a right-bank tributary of Strug River. In 2009–2011studies on the subject of diversity of diatom communities using diatom indices IPS, GDI and TDI for water quality assessment were conducted. On the stream 271 diatom taxa were identified, among which: Achnanthidium minutissimum var. minutissimum, Navicula cryptotenella, N. gregaria, N. lanceolata, N. tripunctata, Nitzschia linearis, N. pusilla, N. recta, Planothidium frequentissimum, Rhoicosphenia abbreviata were the most frequent. Middle and lower section of Matysówka stream was characterized by increased concentrations of phosphates, nitrites, ammonium, total phosphorus and nitrogen, BOD5. On the basis of diatom indices IPS and GDI waters were characterized as III–IV quality classes, while the TDI index revealed the worst water quality classes (IV–V.

  9. 244-AR vault cooling water stream-specific report

    International Nuclear Information System (INIS)

    1990-08-01

    The proposed wastestream designation for the 244-AR Vault cooling water wastestream is that this stream is not a dangerous waste, pursuant to the Washington (State) Administration Code (WAC) 173-303, Dangerous Waste Regulations. A combination of process knowledge and sampling data was used to make this determination. 21 refs., 6 figs., 7 tabs

  10. Process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbon and an apparatus therefor

    International Nuclear Information System (INIS)

    Symons, E.A.; Rolston, J.H.; Clermont, M.J.; Paterson, L.M.

    1983-01-01

    This invention provides a process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbons comprising: (a) bringing into contact a water stream, a halohydrocarbon stream, and a catalytic porous anion exchange resin so that the isotope-deficient halohydrocarbon stream is enriched; (b) decomposing the halohydrocarbon stream photolytically into two gaseous streams, one enriched and the other deficient; (c) removing as a product the first, enriched stream; and (d) recycling the second stream for enrichment. An apparatus is also provided

  11. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  12. Operational forest stream crossings effects on water quality in the Virginia Piedmont

    Science.gov (United States)

    Wallace M. Aust; Matthew B. Carroll; M. Chad Bolding; Andy Dolloff

    2011-01-01

    Water quality indices were examined for paired upstream and downstream samples for 23 operational stream crossings and approaches during four periods. Stream crossings were (1) portable bridges (BRIDGE), (2) culverts backfilled with poles (POLE), (3) culverts with earth backfill (CULVERT), and (4) reinforced fords (FORD). The four operational periods were (1) prior to...

  13. Use of index analysis to evaluate the water quality of a stream ...

    African Journals Online (AJOL)

    In this paper, the water quality of a stream that receives industrial effluents is evaluated through the analysis of two indices. Data (dissolved oxygen, biochemical oxygen demand, pH, turbidity, colour, temperature and thermotolerant coliforms) were collected from five stations in the Mussuré Stream, located in João Pessoa ...

  14. Inference of Stream Network Fragmentation Patterns from Ground Water - Surface Water Interactions on the High Plains Aquifer

    Science.gov (United States)

    Chandler, D. G.; Yang, X.; Steward, D. R.; Gido, K.

    2007-12-01

    Stream networks in the Great Plains integrate fluxes from precipitation as surface runoff in discrete events and groundwater as base flow. Changes in land cover and agronomic practices and development of ground water resources to support irrigated agriculture have resulted in profound changes in the occurrence and magnitude of stream flows, especially near the Ogallala aquifer, where precipitation is low. These changes have demonstrably altered the aquatic habitat of western Kansas, with documented changes in fish populations, riparian communities and groundwater quality due to stream transmission losses. Forecasting future changes in aquatic and riparian ecology and groundwater quality requires a large scale spatially explicit model of groundwater- surface water interaction. In this study, we combine historical data on land use, stream flow, production well development and groundwater level observations with groundwater elevation modeling to support a geospatial framework for assessing changes in refugia for aquatic species in four rivers in western Kansas between 1965 and 2005. Decreased frequency and duration of streamflow occurred in all rivers, but the extent of change depended on the geomorphology of the river basin and the extent of groundwater development. In the absence of streamflow, refugia for aquatic species were defined as the stream reaches below the phreatic surface of the regional aquifer. Changes in extent, location and degree of fragmentation of gaining reaches was found to be a strong predictor of surface water occurrence during drought and a robust hydrological template for the analysis of changes in recharge to alluvial and regional aquifers and riparian and aquatic habitat.

  15. Meteorological, stream-discharge, and water-quality data for water year 1992 from two basins in Central Nevada

    International Nuclear Information System (INIS)

    McKinley, P.W.; Oliver, T.A.

    1995-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is studying Yucca Mountain, Nevada, as a potential repository for high level nuclear waste. As part of the Yucca Mountain Site Project, the analog recharge study is providing data for the evaluation of recharge to the Yucca Mountain ground-water system given a cooler and wetter climate than currently exists. The current and climatic conditions are favorable to the isolation of radioactive waste. Because waste isolation from the accessible environment for 10,000 years is necessary, climatic change and the potential for increased ground-water recharge need to be considered as part of the characterization of the potential repository. Therefore, two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to ground water. The semiarid 3-Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. The purpose of this publication is to make available the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins

  16. Predicting Hyporheic Exchange of Water and Solutes in Streams on the Basis of a Priori Estimates of Stream Physical Characteristics

    Science.gov (United States)

    Stone, S. H.; Harvey, J.; Packman, A.; Worman, A.

    2005-12-01

    It is very important to accurately model solute transport in rivers in order to analyze contaminant transport, water quality, and a variety of ecological processes. The purpose of this research is to determine the physical characteristics of a stream or river that are sufficient to predict hyporheic exchange and downstream solute transport. In the fall of 2004, we conducted a bromide tracer injection and made physical measurements in Sugar Creek, a small agricultural stream in northwestern Indiana. As is typical for small mid-western agricultural streams, Sugar Creek has been ditched and straightened, and subsequent downcutting through glacial sediments and slumpage of bank sediments composed of finer grain sizes has created a stream of intermediate complexity. In order to relate the observed solute transport to more basic physical characteristics of the stream, we determined the bathymetry of Sugar Creek over a wide range of scales (centimeters to decameters), and measured velocity profiles, the water elevation surface profile, hydraulic conductivity via in situ measurements, and bed sediment grain size distributions throughout the study reach. Our most detailed topographic measurements revealed fine scale bed variations with wavelengths on the order of ten centimeters, while surveying of the entire study reach characterized large scale meanders with wavelengths on the order of five meters. The distribution of wavelengths influences the driving forces that cause solute to enter the bed and banks. Hydraulic conductivity determines the resistance to flow of stream water through the (meander) stream banks and streambed. We used a scaling approach to relate the geometric and hydrogeologic characteristics of the stream to solute transport and also applied a new analytical solution for the subsurface flows resulting from topographic variations over a wide range of spatial scales. These models captured the main features of the observed solute transport. The greatest

  17. Interactions between hyporheic flow produced by stream meanders, bars, and dunes

    Science.gov (United States)

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.

    2013-01-01

    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  18. Measuring surface-water loss in Honouliuli Stream near the ‘Ewa Shaft, O‘ahu, Hawai‘i

    Science.gov (United States)

    Rosa, Sarah N.

    2017-05-30

    The Honolulu Board of Water Supply is currently concerned with the possibility of bacteria in the pumped water of the ‘Ewa Shaft (State well 3-2202-21). Groundwater from the ‘Ewa Shaft could potentially be used to meet future potable water needs in the ‘Ewa area on the island of O‘ahu. The source of the bacteria in the pumped water is unknown, although previous studies indicate that surface water may be lost to the subsurface near the site. The ‘Ewa Shaft consists of a vertical shaft, started near the south bank of Honouliuli Stream at an altitude of about 161 feet, and two horizontal infiltration tunnels near sea level. The shaft extracts groundwater from near the top of the freshwater lens in the Waipahu-Waiawa aquifer system within the greater Pearl Harbor Aquifer Sector, a designated Water Management Area.The surface-water losses were evaluated with continuous groundwater-level data from the ‘Ewa Shaft and a nearby monitoring well, continuous stream-discharge data from U.S. Geological Survey streamflow-gaging station 16212490 (Honouliuli Stream at H-1 Freeway near Waipahu), and seepage-run measurements in Honouliuli Stream and its tributary. During storms, discharge at the Honouliuli Stream gaging station increases and groundwater levels at ‘Ewa Shaft and a nearby monitoring well also increase. The concurrent increase in water levels at ‘Ewa Shaft and the nearby monitoring well during storms indicates that regional groundwater-level changes related to increased recharge, reduced withdrawals (due to a decrease in demand during periods of rainfall), or both may be occurring; although these data do not preclude the possibility of local recharge from Honouliuli Stream. Discharge measurements from two seepage runs indicate that surface water in the immediate area adjacent to ‘Ewa Shaft infiltrates into the streambed and may later reach the groundwater system developed by the ‘Ewa Shaft. The estimated seepage loss rates in the vicinity of

  19. Flowing water affects fish fast-starts: escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni.

    Science.gov (United States)

    Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W

    2016-10-01

    Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.

  20. Subglacial hydrology and the formation of ice streams.

    Science.gov (United States)

    Kyrke-Smith, T M; Katz, R F; Fowler, A C

    2014-01-08

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice-water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.

  1. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Directory of Open Access Journals (Sweden)

    Alonso Ramírez

    2014-06-01

    Full Text Available Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial variability in stream physicochemistry in a highly urbanized watershed in Puerto Rico. The main objective of the study was to describe stream physicochemical characteristics and relate them to urban intensity, e.g., percent impervious surface cover, and watershed infrastructure, e.g., road and pipe densities. The Río Piedras Watershed in the San Juan Metropolitan Area, Puerto Rico, is one of the most urbanized regions on the island. The Río Piedras presented high solute concentrations that were related to watershed factors, such as percent impervious cover. Temporal variability in ion concentrations lacked seasonality, as did all other parameters measured except water temperature, which was lower during winter and highest during summer, as expected based on latitude. Spatially, stream physicochemistry was strongly related to watershed percent impervious cover and also to the density of urban infrastructure, e.g., roads, pipe, and building densities. Although the watershed is serviced by a sewage collection system, illegal discharges and leaky infrastructure are probably responsible for the elevated ion concentration found. Overall, the Río Piedras is an example of the response of a tropical urban watershed after major sewage inputs are removed, thus highlighting the importance of proper infrastructure maintenance and management of runoff to control ion concentrations in tropical streams.

  2. Headwater streams in the EU Water Framework Directive: Evidence-based decision support to select streams for river basin management plans

    DEFF Research Database (Denmark)

    Baattrup-Pedersen, Annette; Larsen, Søren Erik; Andersen, Dagmar K.

    2018-01-01

    , however, it is intensely debated whether the small size and low slopes, typical of Danish streams, in combination with degraded habitat conditions obstruct their ability to fulfill the ecological quality objectives required by the EU Water Framework Directive (WFD). The purpose of this studywas to provide...... an analytically based framework for guiding the selection of headwater streams for RBMP. Specifically, the following hypotheses were addressed: i) stream slope, width, planform, and general physical habitat quality can act as criteria for selecting streams for the next generation of RBMPs, and ii) probability......-based thresholds for reaching good ecological status can be established for some or all of these criteria, thus creating a sound, scientifically based, and clear selection process. The hypotheses were tested using monitoring data on Danish streams from the period 2004–2015. Significant linear relationships were...

  3. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  4. Sources of trends in water-quality data for selected streams in Texas, 1975-89 water years

    Science.gov (United States)

    Schertz, T.L.; Wells, F.C.; Ohe, D.J.

    1994-01-01

    Sources of trends in water-quality data for selected streams in Texas for the 1975-89 water years were investigated in this study. The investigation of sources was confined to distinct geographic patterns in the trend indicators for one constituent or for a group of related constituents.

  5. Missouri StreamStats—A water-resources web application

    Science.gov (United States)

    Ellis, Jarrett T.

    2018-01-31

    The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged

  6. Continuous analytical control of the streaming waters in a uranium treatment plant and of various chemical products using automatic discharge valves

    International Nuclear Information System (INIS)

    Archimbaud, M.; Simeon, C.

    1968-01-01

    This report describes a method for controlling the streaming waters produced by the Pierrelatte Centre; it is based on continuous analysis, with simultaneous recording of the species liable to be found accidentally in the corresponding hydrological circuits (chlorides, fluorides, chromium VI, uranium). An alarm set off at pre-determined thresholds leads to an automatic cutting off of the discharge valves; the outward flow of the waters is thus interrupted. This study has shown the various applications which can be found for this water control method, and gives an idea of the cost price. (authors) [fr

  7. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during

  8. Indicators of streamflow alteration, habitat fragmentation, impervious cover, and water quality for Massachusetts stream basins

    Science.gov (United States)

    Weiskel, Peter K.; Brandt, Sara L.; DeSimone, Leslie A.; Ostiguy, Lance J.; Archfield, Stacey A.

    2010-01-01

    Massachusetts streams and stream basins have been subjected to a wide variety of human alterations since colonial times. These alterations include water withdrawals, treated wastewater discharges, construction of onsite septic systems and dams, forest clearing, and urbanization—all of which have the potential to affect streamflow regimes, water quality, and habitat integrity for fish and other aquatic biota. Indicators were developed to characterize these types of potential alteration for subbasins and groundwater contributing areas in Massachusetts. The potential alteration of streamflow by the combined effects of withdrawals and discharges was assessed under two water-use scenarios. Water-use scenario 1 incorporated publicly reported groundwater withdrawals and discharges, direct withdrawals from and discharges to streams, and estimated domestic-well withdrawals and septic-system discharges. Surface-water-reservoir withdrawals were excluded from this scenario. Water-use scenario 2 incorporated all the types of withdrawal and discharge included in scenario 1 as well as withdrawals from surface-water reservoirs—all on a long-term, mean annual basis. All withdrawal and discharge data were previously reported to the State for the 2000–2004 period, except domestic-well withdrawals and septic-system discharges, which were estimated for this study. The majority of the state’s subbasins and groundwater contributing areas were estimated to have relatively minor (less than 10 percent) alteration of streamflow under water-use scenario 1 (seasonally varying water use; no surface-water-reservoir withdrawals). However, about 12 percent of subbasins and groundwater contributing areas were estimated to have extensive alteration of streamflows (greater than 40 percent) in August; most of these basins were concentrated in the outer metropolitan Boston region. Potential surcharging of streamflow in August was most commonly indicated for main-stem river subbasins, although

  9. Using heat to characterize streambed water flux variability in four stream reaches

    Science.gov (United States)

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. Water Stream in Bidet Toilet Commode as a Cause of Anterior Anal Fissure: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Pankaj Garg

    2017-03-01

    Full Text Available Background Water used as a single sharp stream in toilet commode for post defecation cleansing is a common practice in several countries across the globe including India. Repeated hitting of the anus by water stream could potentially cause injury to the anal canal epithelium and lead to development of fissure-in-ano. As the water stream is emanating from the backside of the toilet commode, the possible injury, if any, would be on the anterior anal canal. Objectives The present study aimed at determining whether water stream usage in toilet commodes increased the incidence of anterior fissure-in-ano; this was determined by the incidence of anterior fissure-in-ano the study and control groups. Methods All consecutive fissure-in-ano patients referring to a colorectal clinic from February 2012 to 2015 were included in the study. The patients were classified as a study group (who were using water stream for cleansing purposes in toilet commodes and a control group (patients who were not using water stream. The characteristics and location (position of the fissure-in-ano was noted. Results In this study, 165 patients were prospectively enrolled. Male/female ratio was 96/69, and the mean age was 36.3 ± 11.2 years. The anterior fissure-in-ano in the study group was 55.9% (47/84, while it was 17.3 % (14/81 in the control group (P < 0.0001, odds ratio: 6.08, 95% CI: 2.96 - 12.47]. Conclusions Water used as a single sharp stream to cleanse after defecation in toilet commodes is hazardous and should be avoided.

  11. Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water

    International Nuclear Information System (INIS)

    El-Tahawy, M.S.; Farouk, M.A.; Ibrahiem, N.M.; El-Mongey, S.A.M.

    1994-01-01

    Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238 U series, 232 Th series and 40 K did not exceed 16.0, 15.5 and 500.0 Bq kg -1 dry weight for sediments. The activity concentration of 238 U series and 40 K did not exceed 0.6 and 18.0 Bq l -1 for stream water. (author)

  12. Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water

    Science.gov (United States)

    El-Tahawy, M. S.; Farouk, M. A.; Ibrahiem, N. M.; El-Mongey, S. A. M.

    1994-07-01

    Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238U series, 232Th series and 40K did not exceed 16.0, 15.5 and 500.0 Bq kg-1 dry weight for sediments. The activity concentration of 238U series and 40K did not exceed 0.6 and 18.0 Bq 1-1 for stream water.

  13. Changing Groundwater-Surface Water Interactions Impact Stream Chemistry and Ecology at the Arctic-Boreal Transition in Western Alaska

    Science.gov (United States)

    Koch, J. C.; Carey, M.; O'Donnell, J.; Sjoberg, Y.; Zimmerman, C. E.

    2016-12-01

    The arctic-boreal transition zone of Alaska is experiencing rapid change related to unprecedented warming and subsequent loss of permafrost. These changes in turn may affect groundwater-surface water (GW-SW) interactions, biogeochemical cycling, and ecosystem processes. While recent field and modeling studies have improved our understanding of hydrology in watersheds underlain by thawing permafrost, little is known about how these hydrologic shifts will impact bottom-up controls on stream food webs. To address this uncertainty, we are using an integrative experimental design to link GW-SW interactions to stream biogeochemistry and biota in 10 first-order streams in northwest Alaska. These study streams drain watersheds that span several gradients, including elevation, aspect, and vegetation (tundra vs. forest). We have developed a robust, multi-disciplinary data set to characterize GW-SW interactions and to mechanistically link GW-SW dynamics to water quality and the stream ecosystem. Data includes soil hydrology and chemistry; stream discharge, temperature, and inflow rates; water chemistry (including water isotopes, major ions, carbon concentration and isotopes, nutrients and chlorophyll-a), and invertebrate and fish communities. Stream recession curves indicate a decreasing rate later in the summer in some streams, consistent with seasonal thaw in lower elevation and south-facing catchments. Base cation and water isotope chemistry display similar impacts of seasonal thaw and also suggest the dominance of groundwater in many streams. Coupled with estimates of GW-SW exchange at point, reach, and catchment scales, these results will be used to predict how hydrology and water quality are likely to impact fish habitat and growth given continued warming at the arctic-boreal transition.

  14. Are the streams of the Sinos River basin of good water quality? Aquatic macroinvertebrates may answer the question

    Directory of Open Access Journals (Sweden)

    L. Bieger

    Full Text Available Macroinvertebrate communities are one of the most used groups in assessments of water quality, since they respond directly to the level of contamination of aquatic ecosystems. The main objective of this study was the assessment of the water quality of the Sinos River basin (Rio Grande do Sul state, Brazil through biotic indices based on the macroinvertebrate community ("Family Biotic Index - FBI", and "Biological Monitoring Working Party Score System - BMWP". Three lower order streams (2nd order were selected in each one of three main regions of the basin. In each stream, the samplings were performed in three reaches (upper, middle, and lower, totalling 27 reaches. Two samplings were carried in each reach over one year (winter and summer. A total of 6,847 macroinvertebrates distributed among 54 families were sampled. The streams from the upper region were of better water quality than the lower region. The water quality did not change between the upper, middle and lower reaches of the streams. However, the upper reaches of the streams were of better water quality in all the regions of the basin. The water quality of the streams did not vary between the summer and the winter. This result demonstrated that water quality may be analysed in both studied seasons (summer and winter using biotic indices. The analysis of the results allows us to conclude that the biotic indices used reflected the changes related to the water quality along the longitudinal gradient of the basin. Thus, aquatic macroinvertebrates were important bioindicators of the water and environmental quality of the streams of the Sinos River basin.

  15. Cross-regional prediction of long-term trajectory of stream water DOC response to climate change

    Science.gov (United States)

    H. Laudon; J.M. Buttle; S.K. Carey; J.J. McDonnell; K.J. McGuire; J. Seibert; J. Shanley; C. Soulsby; D. Tetzlaff

    2012-01-01

    There is no scientific consensus about how dissolved organic carbon (DOC) in surface waters is regulated. Here we combine recent literature data from 49 catchments with detailed stream and catchment process information from nine well established research catchments at mid- to high latitudes to examine the question of how climate controls stream water DOC. We show for...

  16. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  17. Watershed features and stream water quality: Gaining insight through path analysis in a Midwest urban landscape, USA

    Science.gov (United States)

    Jiayu Wu; Timothy W. Stewart; Janette R. Thompson; Randy Kolka; Kristie J. Franz

    2015-01-01

    Urban stream condition is often degraded by human activities in the surrounding watershed. Given the complexity of urban areas, relationships among variables that cause stream degradation can be difficult to isolate. We examined factors affecting stream condition by evaluating social, terrestrial, stream hydrology and water quality variables from 20 urban stream...

  18. Wintertime Emissions from Produced Water Ponds

    Science.gov (United States)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond

  19. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  20. Assessment of Heavy Metals in the Water of Sahastradhara Hill Stream at Dehradun, India

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Bharti

    2014-09-01

    Full Text Available A study on heavy metals assessment in the water of Sahastradhara hill-stream was conducted with different five sites at significant differences. The present paper deals with the water quality status of Sahastradhara stream by the assessment of heavy metals. Heavy Metals were found in fluctuated trend from first upstream to last downstream. The values of almost all Heavy Metals were found in increasing manner especially after the fourth sampling site. After the third sampling station, a solid waste dumping site was found. So, there may be a relation between heavy metals in stream water and solid waste dumping site. Concentrations of all Heavy Metals at fourth and fifth sampling site were found very high. DOI: http://dx.doi.org/10.3126/ije.v3i3.11076 International Journal of Environment Vol.3(3 2014: 164-172

  1. Study of Uranium Concentrations in Water and Organic Material from Streams in Sweden

    International Nuclear Information System (INIS)

    Ek, J.

    1981-12-01

    The purpose of the investigation has been to study how uranium concentrations in stream water and organic material are related to various geological parameters such as rock types, average uranium content and radioactivity, fracturing, leachability of uranium from the bedrock, occurrence of uranium mineralisations and thickness and type of Quarternary deposits. The investigation has also taken account of the effects of environmental factors such as climate , precipitation, height above sea level and topography. The background concentration of uranium in organic stream sediment varies from 1 ppm to 45 ppm, with a background value of 10 ppm for all 14 areas considered together. The threshold value for organic stream material varies from 3 ppm U to 303 ppm U with a threshold value of 133 ppm U for all 14 areas considered together. For water, the background concentration varies between the 5 areas from 0.2 ppb U to 0.7 ppb U with a background value of 0.4 ppb U for all 5 areas together. The threshold value varies from 0.3 ppb U to 5.2 ppb U with a threshold value of 2.9 ppb U for all 5 areas together. An investigation of the correlation between uranium concentrations in water and organic stream material from one and the same sampling point shows a positive correlation for high concentrations, but the correlation becomes successively less significant with lower concentrations. Uranium concentrations in organic stream material and water are positively correlated with the following geological parameters:1) Background concentrations of uranium in the bedrock. 2) Abundance of fractures in the bedrock. 3) Leachability of uranium from the bedrock. 4) Presence of uranium mineralisations. For organic stream material, this positive correlation is obtained for both high and low uranium concentrations whereas for water it occurs only with high concentrations. In areas of broken topography and high relief, there is a more clearly defined correlation to the bedrock than in areas of

  2. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Science.gov (United States)

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  3. Seasonality, water quality trends and biological responses in four streams in the Cairngorm Mountains, Scotland

    Directory of Open Access Journals (Sweden)

    C. Soulsby

    2001-01-01

    Full Text Available The chemical composition and invertebrate communities found in four streams in the Cairngorms, Scotland, were monitored between 1985-1997. Stream waters were mildly acidic (mean pH ca. 6.5, with low alkalinity (mean acid neutralising capacity varying from 35-117 meq l-1 and low ionic strength. Subtle differences in the chemistry of each stream were reflected in their invertebrate faunas. Strong seasonality in water chemistry occurred, with the most acid, low alkalinity waters observed during the winter and early spring. This was particularly marked during snowmelt between January and April. In contrast, summer flows were usually groundwater dominated and characterised by higher alkalinity and higher concentrations of most other weathering-derived solutes. Seasonality was also clear in the invertebrate data, with Canonical Correspondence Analysis (CCA separating seasonal samples along axes related to water temperature and discharge characteristics. Inter-annual hydrological and chemical differences were marked, particularly with respect to the winter period. Invertebrate communities found in each of the streams also varied from year to year, with spring communities significantly more variable (PHydrochemical trends over the study period were analysed using a seasonal Kendall test, LOcally WEighted Scatterplot Smoothing (LOWESS and graphical techniques. These indicated that a reduction in sulphate concentrations in stream water is occurring, consistent with declining levels of atmospheric deposition. This may be matched by increases in pH and declining calcium concentrations, though available evidence is inconclusive. Other parameters, such as chloride, total organic carbon and zinc, reveal somewhat random patterns, probably reflecting irregular variations in climatic factors and/or atmospheric deposition. Previous studies have shown that the stream invertebrate communities have remained stable over this period (i.e. no significant linear trends

  4. Stream mesocosm response sensitivities to simulated ion stress in produced waters from resource extraction activities

    Science.gov (United States)

    To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...

  5. Producing deep-water hydrocarbons

    International Nuclear Information System (INIS)

    Pilenko, Thierry

    2011-01-01

    Several studies relate the history and progress made in offshore production from oil and gas fields in relation to reserves and the techniques for producing oil offshore. The intention herein is not to review these studies but rather to argue that the activities of prospecting and producing deep-water oil and gas call for a combination of technology and project management and, above all, of devotion and innovation. Without this sense of commitment motivating men and women in this industry, the human adventure of deep-water production would never have taken place

  6. Assessment of Energetic Compounds, Semi-volatile Organic Compounds, and Trace Elements in Streambed Sediment and Stream Water from Streams Draining Munitions Firing Points and Impact Areas, Fort Riley, Kansas, 2007-08

    Science.gov (United States)

    Coiner, R.L.; Pope, L.M.; Mehl, H.E.

    2010-01-01

    An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in

  7. Long-term changes in the water quality of rainfall, cloud water and stream water for moorland, forested and clear-felled catchments at Plynlimon, mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2001-01-01

    Full Text Available Long term changes in the water quality of rainfall, cloud water and stream waters draining acidic and acid sensitive moorland and forested catchments at Plynlimon, mid-Wales, are examined for the period 1983 to 2001. Atmospheric inputs of chloride and sulphate are influenced by the relative inputs of clean maritime and polluted land based air masses. There is no systematic increase or decrease over time for chloride and non-sea-salt sulphate. Rather, there is a decadal scale process possibly representative of the influence of the North Atlantic Oscillation that affects the maritime and pollution climate of the Atlantic seaboard of the UK. Over 17 years of study, there may be a small decrease in non-sea-salt sulphate of about 10 μeq l-1 and a small improvement in acid neutralising capacity of about 20 to 30 μeq l-1 in rainfall. There is a clear improvement in cloud water chemistry with respect to pollutant components (ammonium, nitrate, non-sea-salt sulphate and acidity (acid neutralising capacity improved by about 300 μeq l-1 through the study period. Many of the changes in cloud water chemistry are similar to rainfall over the same period except the magnitude of change is larger for the cloud water. Within the streams, there is some evidence for reductions in acidity as reflected by acid neutralising capacity becoming less negative. For one stream, deforestation occurred during the sampling period and this led to large increases in nitrate and smaller increases in aluminium midway through the study period. However, the climate and hydrological variability largely masked out other changes. The current analysis provides only a start to identifying trends for such a complex and variable environmental system. The need for strong statistical tools is emphasised to resolve issues of: (a hydrological induced water quality variability, (b changing soil and groundwater "endmember" chemistry contribution to the stream and (c the non-linear patterns of

  8. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  9. Effects of golf course construction and operation on water chemistry of headwater streams on the Precambrian Shield

    International Nuclear Information System (INIS)

    Winter, Jennifer G.; Dillon, Peter J.

    2005-01-01

    To investigate the effects of golf course construction and operation on the water chemistry of Shield streams, we compared the water chemistry in streams draining golf courses under construction (2) and in operation (5) to streams in forested reference locations and to upstream sites where available. Streams were more alkaline and higher in base cation and nitrate concentrations downstream of operational golf courses. Levels of these parameters and total phosphorus increased over time in several streams during golf course construction through to operation. There was evidence of inputs of mercury to streams on two of the operational courses. Nutrient (phosphorus and nitrogen) concentrations were significantly related to the area of unmanaged vegetation in a 30 x 30 m area on either side of the sampling sites, and to River Bank Quality Index scores, suggesting that maintaining vegetated buffers along the stream on golf courses will reduce in-stream nutrient concentrations. - Golf course construction and operation had a significant impact on alkalinity, nitrogen and base cation concentrations of streams

  10. The potential of using organic side-streams produced in Ghana for generation of bio-fuel

    International Nuclear Information System (INIS)

    Laryea, G. N; Abdul-Samii, R.; Tottimeh, G.

    2014-01-01

    Bio-fuel can be generated from organic side-streams of maize, rice, millet, sorghum and groundnut by using fast pyrolysis technology. Data on side-streams of these crops were obtained from the Ministry of Food and Agriculture (MoFA) in 2010 for the study. The study shows that the estimated total crop side-streams generated was 3,475,413 t of which 2,345,903.5 of bio-fuel can be produced, given a potential energy equivalent of 42,226 PJ/y. The result shows a growth rate of 12.9 per cent in energy equivalent potential for synthetic fuel production as compared to the estimated production in 2009. Northern Region had the highest energy potential of 9,676 PJ/y (22.91%) of the total energy equivalent of bio-fuel, whereas, Greater Accra Region had the lowest with 183 PJ/y (0.43%). It is recommended that the available energy potential at the three northern regions of Ghana be utilised effectively when renewable energy policy is improved for a wider applications of side-streams from crops.(au)

  11. Orientation study of northern Arkansas. National Uranium Resource Evaluation program. Hydrogeochemical and stream-sediment reconnaissance

    International Nuclear Information System (INIS)

    Steele, K.F.

    1982-08-01

    Samples of ground water, stream water, and sediment were collected at 335 sites for an orientation study of northern Arkansas. Each stream site consisted of both sediment and stream water (if available), and each sediment sample was sieved to produce four size fractions for analysis. The orientation area included all or parts of Benton, Carroll, Madison, and Washington Counties. Several black shales, including the Chattanooga Shale, crop out in this area, and the Sylamore Sandstone Member has local radiation anomalies. The following analyses were performed for all water samples (both ground water and stream water): pH, conductivity, total alkalinity, temperature, nitrate, ammonia, phosphate and sulfate. Additional water was collected, filtered, and reacted with a resin that was then analyzed by neutron activation analysis for U, Br, Cl, F, Mn, Na, Al, and Dy. In addition, ground water samples were analyzed for He. The stream sediments were analyzed by neutron activation for U, Th, Hf, Ce, Fe, Mn, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu

  12. Tracing disturbance impacts on water quantity and quality through a stream network

    Science.gov (United States)

    Ross, Matthew; Nippgen, Fabian; McGlynn, Brian; Bernhardt, Emily

    2017-04-01

    By dismantling and redistributing 100s of meters of bedrock to mine coal from the surface, mountaintop mining with valley fills has dramatically changed catchment hydrology and biogeochemistry over more than 5,000 km2 in Central Appalachia. Throughout this expansive coal region, mining operators deposit tens of millions of m3 of crushed bedrock into headwater valleys, creating valley fills, which have substantial subsurface water storage potential. Streams draining mines have reduced peakflows, elevated baseflows, and lower event runoff ratios on average. The water stored in and percolating through valley fills drives the dissolution and oxidation of pyrite into sulfuric acid which reacts with carbonate-rich materials to rapidly weather out a suite of elements including Ca2+, Mg2+, K+, SO42-, HCO3-, and the pollutant Selenium. Together these ions increase the average specific conductance of mined streams from 60 to 1,500 µS/cm, 25-times higher than unmined streams, exporting 45-times more total dissolved solids. Together, the increased catchment storage, consequent elevated baseflow, and elevated weathering rates from mining have the potential to lower water quality throughout river networks in Central Appalachia, especially during the summer low flow period. To better understand the water quality impacts of mining at the river network scale, we used the paired catchment approach. Working in the Mud River, West Virginia, we instrumented a 4th order catchment 35 km2, that was 46% mined. Within the large catchment we instrumented 8 additional 1st-3rd order sub-catchments that varied in catchment size, mining cover, mine size, and mine age. At each site we measured stream discharge and specific conductance (SC). Using SC as a trace for mining we did simple hydrograph separations at our largest catchments, partitioning the hydrograph between mined and unmined water. Our results suggest that on an annual scale, mine water contributes a disproportionate percentage of

  13. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

    Science.gov (United States)

    Randy A. Dahlgren

    1998-01-01

    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  14. Method and apparatus for producing food grade carbon dioxide

    International Nuclear Information System (INIS)

    Nobles, J.E.; Swenson, L.K.

    1984-01-01

    A method is disclosed of producing food grade carbon dioxide from an impure carbon dioxide source stream containing contaminants which may include light and heavy hydrocarbons (at least C 1 to C 3 ) and light sulfur compounds such as hydrogen sulfide and carbonyl sulfide as well as heavier sulfur constituents in the nature of mercaptans (RSH) and/or organic mono and disulfides (RSR and RSSR). Nitrogen, water and/or oxygen may also be present in varying amounts in the impure feed stream. The feed gas is first rectified with liquid carbon dioxide condensed from a part of the feed stream to remove heavy hydrocarbons and heavy sulfur compounds, then passed through an absorber to effect removal of the light sulfur compounds, next subjected to an oxidizing atmosphere capable of converting all of the C 2 hydrocarbons and optionally a part of the methane to carbon oxides and water, chilled to condense the water in the remaining gas stream without formation of hydrates, liquefied for ease of handling and storage and finally stripped to remove residual contaminants such as methane, carbon monoxide and nitrogen to produce the final food grade carbon dioxide product

  15. Dissolved pesticides, dissolved organic carbon, and water-quality characteristics in selected Idaho streams, April--December 2010

    Science.gov (United States)

    Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.

    2012-01-01

    Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.

  16. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    Science.gov (United States)

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis

    Science.gov (United States)

    Streams, riparian areas, floodplains, alluvial aquifers, and downstream waters (e.g., large rivers, lakes, and oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials, and energy. Collectively, these interconnected waters are called fluv...

  18. Organic and inorganic species in produced water: Implications for water reuse

    Science.gov (United States)

    Kharaka, Yousif K.; Rice, Cynthia A.

    2004-01-01

    Currently 20-30 billion barrels of formation water are co-produced annually in the USA with conventional oil and natural gas. The large database on the geochemistry of this produced water shows salinities that vary widely from ~5,000 to >350,000 mg/L TDS. Chloride, Na and Ca are generally the dominant ions, and concentrations of Fe, Mn, B, NH3 and dissolved organics, including, BTEX, phenols and poly aromatic hydrocarbons (PAHs) may be relatively high. Hazardous concentrations of NORMs, including Ra-226 and Rn-222 have been reported in produced water from several states.Coal-bed methane (CBM) wells currently produce close to a billion barrels of water and deliver ~8% of total natural gas. The salinity of this produced water generally is lower than that of water from petroleum wells; salinity commonly is 1,000-20,000 mg/L, but ranges to150,000 mg/L TDS. Most CBM wells produce Na-HCO3-Cl type water that is low in trace metals and has no reported NORMs. This water commonly has no oil and grease and has relatively low DOC, but its organic composition has not been characterized in detail. The water is disposed of by injection into saline aquifers, through evaporation and/or percolation in disposal pits, road spreading, and surface discharge. Water that has an acceptable salinity and sodium absorption ratio (SAR) is considered acceptable for surface discharge and for injection into freshwater aquifers.As an alternative to costly disposal, low salinity produced water is being considered for reclamation, especially in the arid western USA. The cost of reclaiming this water to meet irrigation, industrial and drinking water standards was evaluated in a 10 gpm pilot field study at Placerita oil field, California. This produced water had a low salinity of ~8,000 mg/L, but high concentration of Si and organics. Removal of B, Si, NH3 and especially organics from this water proved difficult, and the estimated treatment cost was high at $0.08-$0.39/bbl for water treated for

  19. Process for humidifying a gaseous fuel stream

    International Nuclear Information System (INIS)

    Sederquist, R. A.

    1985-01-01

    A fuel gas stream for a fuel cell is humidified by a recirculating hot liquid water stream using the heat of condensation from the humidified stream as the heat to vaporize the liquid water. Humidification is accomplished by directly contacting the liquid water with the dry gas stream in a saturator to evaporate a small portion of water. The recirculating liquid water is reheated by direct contact with the humidified gas stream in a condenser, wherein water is condensed into the liquid stream. Between the steps of humidifying and condensing water from the gas stream it passes through the fuel cell and additional water, in the form of steam, is added thereto

  20. Insecticide toxicity to Hyalella curvispina in runoff and stream water within a soybean farm (Buenos Aires, Argentina).

    Science.gov (United States)

    Mugni, H; Ronco, A; Bonetto, C

    2011-03-01

    Toxicity to the locally dominant amphipod Hyalella curvispina was assessed in a first-order stream running through a cultivated farm. Cypermethrin, chlorpyrifos, endosulfan and glyphosate were sprayed throughout the studied period. Toxicity was assayed under controlled laboratory conditions with runoff and stream water samples taken from the field under steady state and flood conditions. Ephemeral toxicity pulses were observed as a consequence of farm pesticide applications. After pesticide application, runoff water showed 100% mortality to H. curvispina for 1 month, but no mortality thereafter. Toxicity persistence was shortest in stream water, intermediate in stream sediments and longest in soil samples. Runoff had a more important toxicity effect than the exposure to direct aerial fumigation. The regional environmental features determining fast toxicity dissipation are discussed. Copyright © 2010. Published by Elsevier Inc.

  1. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A short report regarding the physicochemical properties of surface water quality in Karaçomak stream, Turkey

    Science.gov (United States)

    Şuţan, Nicoleta Anca; Mutlu, Ekrem; Yanik, Telat; Dobre, Raluca

    2016-04-01

    Within the scope of present study, the water quality of stream Karaçomak in Kastamonu-Turkey was investigated. Water samples were collected from 9 stations selected on Karaçomak stream, considering the pollution points and the points, where the entrance of water into stream is high. The samples taken were analyzed in terms of water temperature, pH, dissolved oxygen, saltiness, electrical conductivity, chemical composition and heavy metal content, and for their genotoxic and cytotoxic potential. Physicochemical evaluation indicated that all samples had heterogeneous intensity of environmental influence, but the considerable impact was noticed for the third and seventh stations. The present study highlights the need for continuous evaluation of water pollution level, and is intended to help in mitigating the environmental impacts and improve environmental performance.

  3. A model to predict stream water temperature across the conterminous USA

    Science.gov (United States)

    Catalina Segura; Peter Caldwell; Ge Sun; Steve McNulty; Yang Zhang

    2014-01-01

    Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating...

  4. Application of HEC-RAS water quality model to estimate contaminant spreading in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Halaj, Peter; Bárek, Viliam; Halajová, Anna Báreková; Halajová, Denisa [Slovak University of Agriculture in Nitra, Nitra (Slovakia)

    2013-07-01

    The paper presents study of some aspects of HEC-RAS water quality model connected to simulation of contaminant transport in small stream. Authors mainly focused on one of the key tasks in process of pollutant transport modelling in streams - determination of the dispersion characteristics represented by longitudinal dispersion coefficient D. Different theoretical and empirical formulas have been proposed for D value determination and they have revealed that the coefficient is variable parameter that depends on hydraulic and morphometric characteristics of the stream reaches. Authors compare the results of several methods of coefficient D assessment, assuming experimental data obtained by tracer studies and compare them with results optimized by HEC-RAS water quality model. The analyses of tracer study and computation outputs allow us to outline the important aspects of longitudinal dispersion coefficient set up in process of the HEC-RAS model use. Key words: longitudinal dispersion coefficient, HEC-RAS, water quality modeling.

  5. Water-supply potential of major streams and the Upper Floridan Aquifer in the vicinity of Savannah, Georgia

    Science.gov (United States)

    Garza, Reggina; Krause, Richard E.

    1997-01-01

    Surface- and ground-water resources in the Savannah, Georgia, area were evaluated for potential water-supply development. Stream-discharge and water-quality data were analyzed for two major streams considered to be viable water-supply sources. A ground-water flow model was developed to be used in conjunction with other previously calibrated models to simulate the effects of additional pumpage on water levels near areas of saltwater intrusion at Brunswick and seawater encroachment at Hilton Head Island. Hypothetical scenarios also were simulated involving redistributions and small increases, and decreases in pumpage.

  6. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    Science.gov (United States)

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  7. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  8. Potential Impacts of Organic Wastes on Small Stream Water Quality

    Science.gov (United States)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  9. Methods and Sources of Data Used to Develop Selected Water-Quality Indicators for Streams and Ground Water for EPA's 2007 Report on the Environment: Science Report

    Science.gov (United States)

    Baker, Nancy T.; Wilson, John T.; Moran, Michael J.

    2008-01-01

    The U.S. Geological Survey (USGS) was one of numerous governmental agencies, private organizations, and the academic community that provided data and interpretations for the U.S. Environmental Protection Agency?s (USEPA) 2007 Report on the Environment: Science Report. This report documents the sources of data and methods used to develop selected water?quality indicators for the 2007 edition of the report compiled by USEPA. Stream and ground?water?quality data collected nationally in a consistent manner as part of the USGS?s National Water?Quality Assessment Program (NAWQA) were provided for several water?quality indicators, including Nitrogen and Phosphorus in Streams in Agricultural Watersheds; Pesticides in Streams in Agricultural Watersheds; and Nitrate and Pesticides in Shallow Ground Water in Agricultural Watersheds. In addition, the USGS provided nitrate (nitrate plus nitrite) and phosphorus riverine load estimates calculated from water?quality and streamflow data collected as part of its National Stream Water Quality Accounting Network (NASQAN) and its Federal?State Cooperative Program for the Nitrogen and Phosphorus Discharge from Large Rivers indicator.

  10. Mathematical simulation of water distillation column for decreasing volume of tritiated water

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Naruse, Yuji

    1981-12-01

    Water distillation is an attractive method for decreasing volume of the tritiated water produced by operation of tritium facilities. The tritiated water is continuously fed to a column and it is separated into two streams. The top stream is discarded to the environment after addition of sufficient amount of uncontaminated water. The bottom stream is further treated for solidification and capsulation. The tridiagonal matrix method proved to provide surprisingly rapid convergences of the calculations. The concentration of deuterium naturally contained in the tritiated water is higher than the tritium concentration, but it was verified that presence of HDO can be ignored in the calculation. (author)

  11. Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07

    Science.gov (United States)

    Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the City of Omaha, investigated the water quality of combined sewer overflows, stormwater, and streams in the Omaha, Nebraska, area by collecting and analyzing 1,175 water samples from August 2006 through October 2007. The study area included the drainage area of Papillion Creek at Capeheart Road near Bellevue, Nebraska, which encompasses the tributary drainages of the Big and Little Papillion Creeks and Cole Creek, along with the Missouri River reach that is adjacent to Omaha. Of the 101 constituents analyzed during the study, 100 were detected in at least 1 sample during the study. Spatial and seasonal comparisons were completed for environmental samples. Measured concentrations in stream samples were compared to water-quality criteria for pollutants of concern. Finally, the mass loads of water-quality constituents in the combined sewer overflow discharges, stormwater outfalls, and streams were computed and compared. The results of the study indicate that combined sewer overflow and stormwater discharges are affecting the water quality of the streams in the Omaha area. At the Papillion Creek Basin sites, Escherichia coli densities were greater than 126 units per 100 milliliters in 99 percent of the samples (212 of 213 samples analyzed for Escherichia coli) collected during the recreational-use season from May through September (in 2006 and 2007). Escherichia coli densities in 76 percent of Missouri River samples (39 of 51 samples) were greater than 126 units per 100 milliliters in samples collected from May through September (in 2006 and 2007). None of the constituents with human health criteria for consumption of water, fish, and other aquatic organisms were detected at levels greater than the criteria in any of the samples collected during this study. Total phosphorus concentrations in water samples collected in the Papillion Creek Basin were in excess of the U.S. Environmental Protection Agency's proposed

  12. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    Science.gov (United States)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these

  13. FORTRAN computer programs to process Savannah River Laboratory hydrogeochemical and stream-sediment reconnaissance data

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; D'Andrea, R.F. Jr.

    1980-03-01

    FORTRAN computer programs have been written to read, edit, and reformat the hydrogeochemical and stream-sediment reconnaissance data produced by Savannah River Laboratory for the National Uranium Resource Evaluation program. The data are presorted by Savannah River Laboratory into stream sediment, ground water, and stream water for each 1 0 x 2 0 quadrangle. Extraneous information is eliminated, and missing analyses are assigned a specific value (-99999.0). Negative analyses are below the detection limit; the absolute value of a negative analysis is assumed to be the detection limit

  14. Water quality of some logged and unlogged California streams

    Science.gov (United States)

    Fredric R. Kopperdahl; James W. Burns; Gary E. Smith

    1971-01-01

    Water quality was monitored in 1968 and 1969 in six coastal streams in northern California, four of which were subjected to logging and/or road building (Bummer Lake Creek, South Fork Yager Creek, Little North Fork Noyo River, and South Fork Caspar Creek), while the others remained undisturbed (Godwood Creek and North Fork Caspar Creek). The purposes of this study were...

  15. Flocculation of organic carbon from headwaters to estuary - the impact of soil erosion, water quality and land use on carbon transformation processes in eight streams draining Exmoor, UK

    Science.gov (United States)

    Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.

    2017-12-01

    Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how

  16. Impacts of Catfish Effluents on Water Quality Parameters of Majidun Stream, South-West, Nigeria

    Directory of Open Access Journals (Sweden)

    O. E. Omofunmi

    2017-06-01

    Full Text Available There has been a great concern about the level of safety of surface waters, especially in developing countries where there is an exponential increase in water pollution and water-borne diseases. The aim of this study was to assess the effect of catfish pond effluents on water quality of stream water where five catfish farms were located. Water samples were taken on monthly basis, 20 cm of below water surface from the streams that receive effluents from neighboring fishponds. Water quality indicators like dissolved oxygen, biochemical oxygen demand (BOD5, nitrate, nitrite, water temperature, ammonia and Hydrogen ion Concentration (pH were examined in the sampled waters in accordance with the American Public Health Association standards. The average values of water quality indicators examined at effluents and non-effluents discharged sites of the stream indicated that water (24.6 ± 0.2, 24.2 ±0.1, (7.29±0.30, 7.30±0.10, (6.90±0.4, 7.07±0.1 mg/l, (0.40±0.04, 0.27±0.01, (3.77±0.26, 2.34±0.16 mg/l, (3.59±0.11, 2.80±0.02 mg/l and (3.51±0.24, 2.46±0.21 mg/l at (p≥0.05 respectively for temperature, pH, dissolved oxygen, total ammonia, total nitrogen, total phosphorus, and BODs. They were significant differences (P 0.05 excepts temperature and pH, between values obtained at effluents discharged and non-effluents discharged sites, indicating that improper discharges of catfish pond effluents could resulted into environmental contamination

  17. Pollution Impact and Alternative Treatment for Produced Water

    Science.gov (United States)

    Hedar, Yusran; Budiyono

    2018-02-01

    Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  18. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  19. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  20. Review of produced water recycle and beneficial reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hum, F.; Tsang, P. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Harding, T. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory]|[Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering

    2006-11-15

    Fresh water scarcity and increasing water demands are concerns facing jurisdictions around the world. A number of water management initiatives involving produced water recycling and reuse in Alberta and Canada will have a significant impact on sustainable development in Alberta. Produced water must first be treated to meet water quality requirements and regulatory guidelines for specific applications. This paper presented a comprehensive technical and economic review of commercially available water treatment technologies and discussed technical challenges in recycling produced water for steam generation and for commercial use. It provided an introduction to fresh water allocations and oil, gas and water production volumes in Alberta. In addition to research and development activities, the paper identified guidelines from Alberta Environment and the Energy and Utilities Board. Benefits of treated produced water were discussed. Desalination technologies include both distillation processes and membrane processes. The paper provided cost estimates based on a literature view and discussed the potential water treatment for south-east Alberta. The paper also offered a number of recommendations for further research. It was concluded that treating and recycling produced water for agriculture, irrigation, commercial and domestic uses are at early stages of research and development and that regulatory guidelines on water quality, health and safety for specific industries, ownership and transfer of produced water need to be developed in order to facilitate beneficial reuse of produced water. 57 refs., 7 tabs., 14 figs.

  1. Application of the water gas shift reaction to fusion fuel exhaust streams

    International Nuclear Information System (INIS)

    McKay, A.M.; Cheh, C.H.; Glass, R.W.

    1983-10-01

    In a Fusion Fuel Clean Up (FCU) system, impurities will be removed from the fusion reactor exhaust and neutral beam line streams. Tritium in this impurity stream will be recovered and recycled to the fuel stream. In one flowsheet configuration of the Tritium Systems Test Assembly (TSTA), tritium is recovered from a simulated impurity stream via uranium hot metal beds and recycled to an isotope separation system. This study has shown, however, that the catalyzed water gas shift reaction, by which (H,D,T) 2 O and CO are converted to (H,D,T) 2 and CO 2 is a better method of (H,D,T) 2 O reduction than the hot metal beds. Catalytic reactors were designed, built and tested to provide data for the design of a prototype reactor to replace the hot metal beds in the FCU system. The prototype reactor contains only 10 g of catalyst and is expected to last at least 5 years. The reactor is small (1.3 cm OD x 13 cm long), operates at low temperatures (approximately 490 K) and will convert water to hydrogen, at a CO/H 2 O ratio of 1.5, with an efficiency of greater than 98 percent. Results show that the catalytic reactor is very stable even during upset conditions. Wide ranges of flow and a CO/H 2 O ratio variance from 1.3 upward have little effect on the conversion efficiency. Short term high temperature excursions do not affect the catalyst and lower temperatures will simply decrease the reaction rate resulting in lower conversions. The reactor appears to be unaffected by NO 2 , CO 2 , O 2 and N 2 in the feed stream at concentration levels expected in a fusion reactor exhaust stream

  2. Oilfield Produced Water Reuse and Reinjection with Membrane

    Directory of Open Access Journals (Sweden)

    Siagian Utjok W.R.

    2018-01-01

    Full Text Available Produced water has become a global environmental issue due to its huge volume and toxicity that may pose detrimental effects on receiving environment. Several approaches have been proposed to provide a strategy for produced water handling such as reinjection, reuse, or discharge. With various advantages, membrane technology has been increasingly used in produced water treatment replacing the conventional technologies. However, fouling is a major drawback of membrane processes in this application which needs to be controlled. This paper gives an overview and comparison of different produced water management. Special attention is given to produced water treatment for reuse purpose. Furthermore, the use of membrane processes in produced water reuse including performance, challenges, and future outlook are discussed.

  3. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    I.O.OLABANJI

    3D) with 0.457 ± 0.061 and 0.364 ± 0.056 mg/L in dry and wet seasons. The mean .... safe limit clearly indicating that Cd contamination of the stream water might be ... of lead contaminant in the study area is the formation of acid mine drainage.

  4. Pollution Impact and Alternative Treatment for Produced Water

    Directory of Open Access Journals (Sweden)

    Hedar Yusran

    2018-01-01

    Full Text Available Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  5. Carcinogenic ptaquiloside in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Strobel, Bjarne W.; Clauson-Kaas, Frederik; Hansen, Hans Chr. Bruun

    2017-01-01

    identified, of which the compound ptaquiloside (PTA) is the most abundant. Ptaquiloside has been shown to be highly water soluble, leachable from bracken fronds and litter, and present in the soil below bracken stands. During storm events throughfall from the bracken canopy was collected as well. Stream...... water samples were taken as grab samples, while throughfall accumulated in glass jars set out below the canopy. Field blanks and fortified lab controls were included to ensure reliability of the analysis. Ptaquiloside concentrations were determined using LC-MS/MS after a clean-up using solid phase...... extraction. Results showed that PTA levels in the stream were highly dependent on precipitation, and was rising considerably during rain events, peaking at 2.28 μg/L, before quickly (conservation...

  6. Flow of a stream through a reservoir

    International Nuclear Information System (INIS)

    Sauerwein, K.

    1967-01-01

    If a reservoir is fed from a single source, which may not always be pure, the extent to which the inflowing stream mixes with the water in the reservoir is important for the quality of the water supplied by the reservoir. This question was investigated at the Lingese Reservoir, containing between one and two million cubic metres of water, in the Bergisches Land (North Rhine-Westphalia). The investigation was carried out at four different seasons so that the varying effects of the stream-water temperatures could be studied in relation to the temperature of the reservoir water. The stream was radioactively labelled at the point of inflow into the reservoir, and its flow through the reservoir was measured in length and depth from boats, by means of 1-m-long Geiger counters. In two cases the radioactivity of the outflowing water was also measured at fixed points. A considerable variety of intermixing phenomena were observed; these were mainly of limnological interest. The results of four experiments corresponding to the four different seasons are described in detail. They were as follows: (1) The mid-October experiment where the stream, with a temperature of 8.0 deg. C, was a good 5 deg. C colder than the water of the reservoir, whose temperature was almost uniform, ranging from 13.2 deg. C at the bed to 13.6 deg. C at the surface. (2) The spring experiment (second half of March), when the stream temperature was only 0.3 deg. C below that of the reservoir surface (7.8 deg. C), while the temperature of the bed was 5.8 deg. C. (3) The winter experiment (early December) where at first the temperature of the stream was approximately the same as that of the surface so that, once again, the stream at first flowed 1/2 - 1 m below the surface. During the almost wind-free night a sudden fall in temperature occurred, and the air temperature dropped from 0 deg. C to -12 deg. C. (4) The summer experiment (end of July to mid-August) when the stream was nearly 1 deg. C colder than

  7. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  8. Measurement of dissolved Cs-137 in stream water, soil water and groundwater at Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    Science.gov (United States)

    Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected

  9. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  10. Ecological Status of Rivers and Streams in Saxony (Germany According to the Water Framework Directive and Prospects of Improvement

    Directory of Open Access Journals (Sweden)

    Uwe Müller

    2012-11-01

    Full Text Available The Federal State of Saxony (Germany transposed the EU Water Framework Directive into state law, identifying 617 surface water bodies (rivers and streams for implementation of the water framework directive (WFD. Their ecological status was classified by biological quality elements (macrophytes and phytobenthos, benthic invertebrates and fish, and in large rivers, phytoplankton and specific synthetic and non-synthetic pollutants. Hydromorphological and physico-chemical quality elements were used to identify significant anthropogenic pressures, which surface water bodies are susceptible to, and to assess the effect of these pressures on the status of surface water bodies. In 2009, the data for classification of the ecological status and the main pressures and impacts on water bodies were published in the river basin management plans (RBMP of the Elbe and Oder rivers. To that date, only 23 (4% streams achieved an ecological status of “good”, while the rest failed to achieve the environmental objective. The two main reasons for the failure were significant alterations to the stream morphology (81% of all streams and nutrient enrichment (62% caused by point (industrial and municipal waste water treatment plants and non-point (surface run-off from arable fields, discharges from urban drainages and decentralized waste water treatment plants sources. It was anticipated that a further 55 streams would achieve the environmental objective by 2015, but the remaining 539 need extended deadlines.

  11. Tekna's produced water conference 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference has 22 presentations discussing topics on discharge reduction, produced water quality, produced water re-injection, chemicals particularly environmentally friendly ones, separation technology, reservoir souring, total water management systems, pollution, oil in water problems and platform operation. Various field tests and experiences particularly from the offshore petroleum sector are presented (tk)

  12. Water-quality trends for a stream draining the Southern Anthracite Field, Pennsylvania

    Science.gov (United States)

    Cravotta, C.A.; Bilger, Michael D.

    2001-01-01

    Stream flow, chemical and biological data for the northern part of Swatara Creek, which drains a 112 km2 area in the Southern Anthracite Field of eastern Pennsylvania, indicate progressive improvement in water quality since 1959, after which most mines in the watershed had been flooded. Drainage from the flooded mines contributes substantially to base flow in Swatara Creek. Beginning in 1995, a variety of treatment systems and surface reclamation were implemented at some of the abandoned mines. At Ravine, Pa., immediately downstream of the mined area, median SO4 concentration declined from about 150 mg l-1 in 1959 to 75 mg l-1 in 1999 while pH increased from acidic to near-neutral values (medians: c. pH 4 before 1975; c. pH 6 after 1975). Fish populations rebounded from non-existent during 1959-1990 to 21 species identified in 1999. Nevertheless, recent monitoring indicates (1) episodic acidification and elevated concentrations and transport of Fe, Al, Mn, and trace metals during storm flow; (2) elevated concentrations of Fe, Mn, Co, Cu, Pb, Ni, and Zn in streambed sediments relative to unmined areas and to toxicity guidelines for aquatic invertebrates and fish; and (3) elevated concentrations of metals in fish tissue, notably Zn. The metals are ubiquitous in the fine fraction (water column are correlated, and those for storm flow typically exceed base flow. Nevertheless, the metals concentrations are poorly correlated with stream flow because concentrations of suspended solids and total metals typically peak prior to peak stream stage. In contrast, SO4, specific conductance and pH are inversely correlated with stream flow as a result of dilution of poorly buffered stream water with weakly acidic storm runoff derived mainly from low-pH rainfall. Declines in pH to values approaching 5.0 during storm flow events or declines in redox potential during burial of sediment could result in the remobilization of metals associated with suspended solids and streambed deposits.

  13. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion

  14. Multivariate statistical techniques for the evaluation of surface water quality of the Himalayan foothills streams, Pakistan

    Science.gov (United States)

    Malik, Riffat Naseem; Hashmi, Muhammad Zaffar

    2017-10-01

    Himalayan foothills streams, Pakistan play an important role in living water supply and irrigation of farmlands; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan. Grab surface water samples were collected from different sites (5-15 cm water depth) in pre-washed polyethylene containers. Fast Sequential Atomic Absorption Spectrophotometer (Varian FSAA-240) was used to measure the metals concentration. Concentrations of Ni, Cu, and Mn were high in pre-monsoon season than the post-monsoon season. Cluster analysis identified impaired, moderately impaired and least impaired clusters based on water parameters. Discriminant function analysis indicated spatial variability in water was due to temperature, electrical conductivity, nitrates, iron and lead whereas seasonal variations were correlated with 16 physicochemical parameters. Factor analysis identified municipal and poultry waste, automobile activities, surface runoff, and soil weathering as major sources of contamination. Levels of Mn, Cr, Fe, Pb, Cd, Zn and alkalinity were above the WHO and USEPA standards for surface water. The results of present study will help to higher authorities for the management of the Himalayan foothills streams.

  15. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    Science.gov (United States)

    Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.

    2010-01-01

    National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future

  16. Produced water treatment methods for SAGD

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions and Technologies, Mississauga, ON (Canada)

    2008-07-01

    Produced water treatment methods for steam assisted gravity drainage (SAGD) processes were presented. Lime softening is used to remove sludge before weak acid cation processes. However, the process is not reliable in cold climates, and disposal of the sludge is now posing environmental problems in Alberta. High pH MVC evaporation processes use sodium hydroxide (NaOH) additions to prevent silica scaling. However the process produces silica wastes that are difficult to dispose of. The sorption slurry process was designed to reduce the use of caustic soda and develop a cost-effective method of disposing evaporator concentrates. The method produces 98 per cent steam quality for SAGD injection. Silica is sorbed onto crystals in order to prevent silica scaling. The evaporator concentrate from the process is suitable for on- and off-site deep well disposal. The ceramic membrane process was designed to reduce the consumption of chemicals and improve the reliability of water treatment processes. The ion exchange desilication process uses 80 per cent less power and produces 80 per cent fewer CO{sub 2} emissions than MVC evaporators. A comparative operating cost evaluation of various electric supply configurations and produced water treatment processes was also included, as well as an analysis of produced water chemistry. tabs., figs.

  17. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Science.gov (United States)

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  18. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    International Nuclear Information System (INIS)

    Ray W. Sheldon

    2001-01-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (stripper gas water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program is intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research is to determine appropriate guidelines for field trials by accurately

  19. Evaluation of water quality at the source of streams of the Sinos River Basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    T Benvenuti

    Full Text Available The Sinos River Basin (SRB is located in the northeastern region of the state of Rio Grande do Sul (29º20' to 30º10'S and 50º15' to 51º20'W, southern Brazil, and covers two geomorphologic provinces: the southern plateau and the central depression. It is part of the Guaíba basin, has an area of approximately 800 km2 and contains 32 counties. The basin provides drinking water for 1.6 million inhabitants in one of the most important industrial centres in Brazil. This study describes different water quality indices (WQI used for the sub-basins of three important streams in the SRB: Pampa, Estância Velha/Portão and Schmidt streams. Physical, chemical and microbiological parameters assessed bimonthly using samples collected at each stream source were used to calculate the Horton Index (HI, the Dinius Index (DI and the water quality index adopted by the US National Sanitation Foundation (NSF WQI in the additive and multiplicative forms. These indices describe mean water quality levels at the streams sources. The results obtained for these 3 indexes showed a worrying scenario in which water quality has already been negatively affected at the sites where three important sub-basins in the Sinos River Basin begin to form.

  20. Featured collection introduction: Connectivity of streams and wetlands to downstream waters

    Science.gov (United States)

    Alexander, Laurie C.; Fritz, Ken M.; Schofield, Kate; Autrey, Bradley; DeMeester, Julie; Golden, Heather E.; Goodrich, David C.; Kepner, William G.; Kiperwas, Hadas R.; Lane, Charles R.; LeDuc, Stephen D.; Leibowitz, Scott; McManus, Michael G.; Pollard, Amina I.; Ridley, Caroline E.; Vanderhoof, Melanie; Wigington, Parker J.

    2018-01-01

    Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act's frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science‐based efforts to provide safe, reliable sources of fresh water for present and future generations.

  1. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  2. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  3. Effects of sulphuric acid pollution on the biology of streams in the Transvaal, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, A D

    1958-01-01

    Strongly acid effluents or drainage waters are produced during gold and coal mining activities in the Transvaal. Sulphuric acid is produced during oxidation of pyrites exposed by mining operations and much of it finds its way into streams and creates serious pollution problems. The object of this paper is to give a short account of the effects of this acid pollution on the biology of these streams. The first streams considered are the Klip and Klipspruit near their confluence at Olifantsvlei, near Johannesburg. These were studied during a two-year investigation of the area. Both receive acid pollution from gold mine dumps and slimes dams, the seepages from which have pH values as low as 2.3. Both streams run over dolomite formations so the acid is gradually neutralised but highly mineralised, permanently hard water results. The Klip and the Klipspruit join in the middle of a y-shaped, swampy area, each stream coming down one of the upper arms of the y. A sampling station was set up on each where it runs slowly through the swamp just before confluence.

  4. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  5. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    Science.gov (United States)

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  6. Agriculture and stream water quality: A biological evaluation of erosion control practices

    Science.gov (United States)

    Lenat, David R.

    1984-07-01

    Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.

  7. Management of Reclaimed Produced Water in the Rocky Mountain States Enhanced with the Expanded U.S. Geological Survey Produced Waters Geochemical Database

    Science.gov (United States)

    Gans, K. D.; Blondes, M. S.; Reidy, M. E.; Conaway, C. H.; Thordsen, J. J.; Rowan, E. L.; Kharaka, Y. K.; Engle, M.

    2016-12-01

    The Rocky Mountain states; Wyoming, Colorado, Montana, New Mexico and Utah produce annually approximately 470,000 acre-feet (3.66 billion barrels) of produced water - water that coexists with oil and gas and is brought to the surface with the pumping of oil and gas wells. Concerns about severe drought, groundwater depletion, and contamination have prompted petroleum operators and water districts to examine the recycling of produced water. Knowledge of the geochemistry of produced waters is valuable in determining the feasibility of produced water reuse. Water with low salinity can be reclaimed for use inside and outside of the petroleum industry. Since a great proportion of petroleum wells in the Rocky Mountain states, especially coal-bed methane wells, have produced water with relatively low salinity (generally oil recovery, and even for municipal uses, such as drinking water. The USGS Produced Waters Geochemical Database, available at http://eerscmap.usgs.gov/pwapp, has 60,000 data points in this region (this includes 35,000 new data points added to the 2002 database) and will facilitate studies on the management of produced water for reclamation in the Rocky Mountain region. Expanding on the USGS 2002 database, which contains geochemical analyses of major ions and total dissolved solids, the new data also include geochemical analyses of minor ions and stable isotopes. We have added an interactive web map application which allows the user to filter data on chosen fields (e.g. TDS data set can provide critical insight for better management of produced waters in water-constrained regions of the Rocky Mountains.

  8. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  9. Impact of Unconventional Shale Gas Waste Water Disposal on Surficial Streams

    Science.gov (United States)

    Cozzarelli, I.; Akob, D.; Mumford, A. C.

    2014-12-01

    The development of unconventional natural gas resources has been rapidly increasing in recent years, however, the environmental impacts and risks are not yet well understood. A single well can generate up to 5 million L of produced water (PW) consisting of a blend of the injected fluid and brine from a shale formation. With thousands of wells completed in the past decade, the scope of the challenge posed in the management of this wastewater becomes apparent. The USGS Toxic Substances Hydrology Program is studying both intentional and unintentional releases of PW and waste solids. One method for the disposal of PW is underground injection; we are assessing the potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in the Wolf Creek watershed in WV. Disposal of PW via injection begun in 2002, with over 5.5 mil. L of PW injected to date. The facility consists of the injection well, a tank farm, and two former holding ponds (remediated in early 2014) and is bordered by two small tributaries of Wolf Creek. Water and sediments were acquired from these streams in June 2014, including sites upstream, within, and downstream from the facility. We are analyzing aqueous and solid phase geochemistry, mineralogy, hydrocarbon content, microbial community composition, and potential toxicity. Field measurements indicated that conductivity downstream (416 μS/cm) was elevated in comparison to upstream (74 μS/cm) waters. Preliminary data indicated elevated Cl- (115 mg/L) and Br- (0.88 mg/L) concentrations downstream, compared to 0.88 mg/L Cl- and impacting nearby streams. In addition, total Fe concentrations downstream were 8.1 mg/L, far in excess of the 0.13 mg/L found upstream from the facility, suggesting the potential for microbial Fe cycling. We are conducting a broad suite of experiments to assess the potential for microbial metabolism of the organic components of PW, and to determine the effects of this metabolism on the

  10. Estimating Discharge and Nonpoint Source Nitrate Loading to Streams From Three End-Member Pathways Using High-Frequency Water Quality Data

    Science.gov (United States)

    Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  11. Beneficial Reuse of San Ardo Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Liske

    2006-07-31

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron

  12. Experimental investigation of mixing of non-isothermal water streams at BWR operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bergagio, Mattia, E-mail: bergagio@kth.se [AlbaNova University Center, Nuclear Reactor Technology Division, Department of Physics, Royal Institute of Technology, 106 91 Stockholm (Sweden); Anglart, Henryk, E-mail: henryk@kth.se [AlbaNova University Center, Nuclear Reactor Technology Division, Department of Physics, Royal Institute of Technology, 106 91 Stockholm (Sweden); Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw (Poland)

    2017-06-15

    Highlights: • Temperatures are measured in the presence of mixing at BWR operating conditions. • The thermocouple support is moved along a pattern to extend the measurement region. • Uncertainty of 1.58 K for temperatures acquired at 1000 Hz. • Momenta of the hot streams and thermal stratification affect the data examined. • Unconventional spectral analysis is required to further study the data collected. - Abstract: In this experimental investigation, wall surface temperatures have been measured during mixing of three water streams in the annular gap between two coaxial stainless-steel tubes. The inner tube, with an outer diameter of 35 mm and a thickness of 5 mm, holds six K-type, ungrounded thermocouples with a diameter of 0.5 mm, which measured surface temperatures with a sampling rate of either 100 Hz or 1000 Hz. The tube was rotated from 0 to 360° and moved in a range of 387 mm in the axial direction to allow measurements of surface temperatures in the whole mixing region. The outer tube has an inner diameter of 80 mm and a thickness of 10 mm to withstand a water pressure of 9 MPa. A water stream at a temperature of either 333 K or 423 K and a Reynolds number between 1657 and 8410 rose vertically in the annular gap and mixed with two water streams at a temperature of 549 K and a Reynolds number between 3.56 × 10{sup 5} and 7.11 × 10{sup 5}. These two water streams entered the annulus radially on the same axial level, 180° apart. Water pressure was kept at 7.2 MPa. Temperature recordings were performed at five axial and eight azimuthal locations, for each set of boundary conditions. Each recording lasted 120 s to provide reliable data on the variance, intermittency and frequency of the surface temperature time series at hand. Thorough calculations indicate that the uncertainty in the measured temperature is of 1.58 K. The mixing region extends up to 0.2 m downward of the hot inlets. In most cases, measurements indicate non-uniform mixing in the

  13. Stream water chemistry in watersheds receiving different atmospheric inputs of H+, NH4+, NO3-, and SO42-1

    Science.gov (United States)

    Stottlemyer, R.

    1997-01-01

    Weekly precipitation and stream water samples were collected from small watersheds in Denali National Park, Alaska, the Fraser Experimental Forest, Colorado, Isle Royale National Park, Michigan, and the Calumet watershed on the south shore of Lake Superior, Michigan. The objective was to determine if stream water chemistry at the mouth and upstream stations reflected precipitation chemistry across a range of atmospheric inputs of H+, NH4+, NO3-, and SO42-. Volume-weighted precipitation H+, NH4+, NO3-, and SO42- concentrations varied 4 to 8 fold with concentrations highest at Calumet and lowest in Denali. Stream water chemistry varied among sites, but did not reflect precipitation chemistry. The Denali watershed, Rock Creek, had the lowest precipitation NO3- and SO42- concentrations, but the highest stream water NO3and SO42- concentrations. Among sites, the ratio of mean monthly upstream NO3- concentration to precipitation NO3- concentration declined (p 90 percent inputs) across inputs ranging from 0.12 to > 6 kg N ha-1 y-1. Factors possibly accounting for the weak or non-existent signal between stream water and precipitation ion concentrations include rapid modification of meltwater and precipitation chemistry by soil processes, and the presence of unfrozen soils which permits winter mineralization and nitrification to occur.

  14. From a water resource to a point pollution source: the daily journey of a coastal urban stream

    Directory of Open Access Journals (Sweden)

    LR. Rörig

    Full Text Available The aim of this study was to understand how a stream ecosystem that flows from its fountainhead to its mouth inside a city, changes from a water resource to a point pollution source. A multidisciplinary descriptive approach was adopted, including the short-term temporal and spatial determination of physical, chemical, biological and ecotoxicological variables. Results showed that water quality rapidly decreases with increasing urbanization, leading the system to acquire raw sewage attributes even in the first hundred meters after the fountainheads. Despite the tidal circulation near the stream mouth being restricted by shallowness, some improvement of the water quality was detected in this area. The multidisciplinary evaluation showed to be useful for obtaining a more realistic understanding of the stream degradation process, and to forecast restoration and mitigation measures.

  15. Water-quality trends for a stream draining the Southern Anthracite Field, Pennsylvania

    Science.gov (United States)

    Cravotta, C.A.; Bilger, Michael D.

    2001-01-01

    Stream flow, chemical and biological data for the northern part of Swatara Creek, which drains a 112 km2 area in the Southern Anthracite Field of eastern Pennsylvania, indicate progressive improvement in water quality since 1959, after which most mines in the watershed had been flooded. Drainage from the flooded mines contributes substantially to base flow in Swatara Creek. Beginning in 1995, a variety of treatment systems and surface reclamation were implemented at some of the abandoned mines. At Ravine, Pa., immediately downstream of the mined area, median SO4 concentration declined from about 150 mg l-1 in 1959 to 75 mg l-1 in 1999 while pH increased from acidic to near-neutral values (medians: c. pH 4 before 1975; c. pH 6 after 1975). Fish populations rebounded from non-existent during 1959-1990 to 21 species identified in 1999. Nevertheless, recent monitoring indicates (1) episodic acidification and elevated concentrations and transport of Fe, Al, Mn, and trace metals during storm flow; (2) elevated concentrations of Fe, Mn, Co, Cu, Pb, Ni, and Zn in streambed sediments relative to unmined areas and to toxicity guidelines for aquatic invertebrates and fish; and (3) elevated concentrations of metals in fish tissue, notably Zn. The metals are ubiquitous in the fine fraction (mining-affected tributaries and the main stem of Swatara Creek. As a result of scour and transport of streambed deposits, concentrations of suspended solids and total metals in the water column are correlated, and those for storm flow typically exceed base flow. Nevertheless, the metals concentrations are poorly correlated with stream flow because concentrations of suspended solids and total metals typically peak prior to peak stream stage. In contrast, SO4, specific conductance and pH are inversely correlated with stream flow as a result of dilution of poorly buffered stream water with weakly acidic storm runoff derived mainly from low-pH rainfall. Declines in pH to values approaching 5

  16. Mercury in stream water at five Czech catchments across a Hg and S deposition gradient

    Science.gov (United States)

    Navrátil, Tomáš; Shanley, James B.; Rohovec, Jan; Oulehle, Filip; Krám, Pavel; Matoušková, Šárka; Tesař, Miroslav; Hojdová, Maria

    2015-01-01

    The Czech Republic was heavily industrialized in the second half of the 20th century but the associated emissions of Hg and S from coal burning were significantly reduced since the 1990s. We studied dissolved (filtered) stream water mercury (Hg) and dissolved organic carbon (DOC) concentrations at five catchments with contrasting Hg and S deposition histories in the Bohemian part of the Czech Republic. The median filtered Hg concentrations of stream water samples collected in hydrological years 2012 and 2013 from the five sites varied by an order of magnitude from 1.3 to 18.0 ng L− 1. The Hg concentrations at individual catchments were strongly correlated with DOC concentrations r from 0.64 to 0.93 and with discharge r from 0.48 to 0.75. Annual export fluxes of filtered Hg from individual catchments ranged from 0.11 to 13.3 μg m− 2 yr− 1 and were highest at sites with the highest DOC export fluxes. However, the amount of Hg exported per unit DOC varied widely; the mean Hg/DOC ratio in stream water at the individual sites ranged from 0.28 to 0.90 ng mg− 1. The highest stream Hg/DOC ratios occurred at sites Pluhův Bor and Jezeří which both are in the heavily polluted Black Triangle area. Stream Hg/DOC was inversely related to mineral and total soil pool Hg/C across the five sites. We explain this pattern by greater soil Hg retention due to inhibition of soil organic matter decomposition at the sites with low stream Hg/DOC and/or by precipitation of a metacinnabar (HgS) phase. Thus mobilization of Hg into streams from forest soils likely depends on combined effects of organic matter decomposition dynamics and HgS-like phase precipitation, which were both affected by Hg and S deposition histories.

  17. The water quality of streams draining a plantation forest on gley soils: the Nant Tanllwyth, Plynlimon mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of the Nant Tanllwyth stream in the Plynlimon region of mid-Wales is related to the key hydrobiogeological controls and the effects of conifer harvesting based on an analysis of rain, cloud, stream and groundwater measurements. The results show the normal patterns of stream water quality response to hydrology. Thus, there is a high damping of atmospheric inputs due to storage in a highly heterogeneous soil and groundwater system. Correspondingly, there is a highly dynamic response for components such as calcium, bicarbonate and aluminium. This response links to the relative inputs of acidic and aluminium-bearing soil waters under high flow conditions and base enriched bicarbonate bearing waters from the groundwater areas under baseflow conditions. The introduction of a deep borehole near the main stem of the river opened up a groundwater flow route to the stream and other parts of the catchment. There were two aspects to this. Firstly, it caused a change to the stream water quality, particularly under baseflow conditions, by increasing the concentrations of calcium and magnesium and by reducing the acidity. The monitoring shows that this change has persisted for over eight years and that there is no sign of reversion to pre-borehole times. Secondly, it caused a change in the groundwater level and chemistry at a borehole on the other side of the river. This feature shows that the fracture system is of hydrogeochemical and hydrogeological complexity. The effects of conifer harvesting are remarkable. At the local scale, felling leads to the expected short term increase in nitrate, ammonium and phosphate from the disturbance of the soil and the reduction in uptake into the vegetation. Correspondingly, there is a reduction in sodium and chloride linked to reduced scavenging of atmospheric inputs from cloud water by the vegetation and also due to increased dilution potential due to reductions in transpiration by the trees. However

  18. Water quality and ecological condition of urban streams in Independence, Missouri, June 2005 through December 2008

    Science.gov (United States)

    Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.

    2010-01-01

    To identify the sources of selected constituents in urban streams and better understand processes affecting water quality and their effects on the ecological condition of urban streams and the Little Blue River in Independence, Missouri the U.S. Geological Survey in cooperation with the City of Independence Water Pollution Control Department initiated a study in June 2005 to characterize water quality and evaluate the ecological condition of streams within Independence. Base-flow and stormflow samples collected from five sites within Independence, from June 2005 to December 2008, were used to characterize the physical, chemical, and biologic effects of storm runoff on the water quality in Independence streams and the Little Blue River. The streams draining Independence-Rock Creek, Sugar Creek, Mill Creek, Fire Prairie Creek, and the Little Blue River-drain to the north and the Missouri River. Two small predominantly urban streams, Crackerneck Creek [12.9-square kilometer (km2) basin] and Spring Branch Creek (25.4-km2 basin), were monitored that enter into the Little Blue River between upstream and downstream monitoring sites. The Little Blue River above the upstream site is regulated by several reservoirs, but streamflow is largely uncontrolled. The Little Blue River Basin encompasses 585 km2 with about 168 km2 or 29 percent of the basin lying within the city limits of Independence. Water-quality samples also were collected for Rock Creek (24.1-km2 basin) that drains the western part of Independence. Data collection included streamflow, physical properties, dissolved oxygen, chloride, metals, nutrients, common organic micro-constituents, and fecal indicator bacteria. Benthic macroinvertebrate community surveys and habitat assessments were conducted to establish a baseline for evaluating the ecological condition and health of streams within Independence. Additional dry-weather screenings during base flow of all streams draining Independence were conducted to

  19. Survival of Acetate in Biodegraded Stream Water DOM: New Insights Based on NMR Spectroscopy

    Science.gov (United States)

    Whitty, S.; Waggoner, D. C.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Hatcher, P.

    2017-12-01

    DOM is a complex chemical mixture of high- (HMW) and low-molecular-weight (LMW) organic molecules that serve as the primary energy sources for heterotrophic bacteria in freshwater environments. However, there are still large uncertainties on the composition of DOM that is labile and thus rapidly metabolized. The current thinking is that labile DOM is primarily composed of monosaccharides, amino acids, and other LMW organic acids such as formic, acetic, or propionic among others, although some humic substances also are biologically labile. To test the contribution of LMW organic acids to the labile fraction of DOM, freshwater samples were collected from five streams within the Rio Tempisquito watershed in Costa Rica and subjected to differing degrees of biodegradation using a series of plug-flow bioreactors with residence times ranging from 0.5-150 min. Varying the residence times of bioreactors allows for separation and identification of labile from less labile to more recalcitrant DOM. The stream water fed into the bioreactors had DOC concentrations that ranged from 0.7-1.2 ppm C and the GF/F-filtered stream water as well as the bioreactor effluents were analyzed directly without pre-treatment using proton nuclear magnetic resonance spectroscopy (1H NMR). Small molecules dominated the 1H NMR spectra with the greatest changes, as a function of bioreactor residence time, in the carbohydrate, terminal methyl, and long-chain methylene structures. In contrast, acetate remained relatively constant after 150 min of bioreactor residence time, thus raising the question of why this inherently labile volatile fatty acid was not consumed by stream microbes colonizing bioreactors that otherwise metabolized approximately 35% of the total dissolved organic carbon present in the stream water. We suggest that acetate may resist biodegradation because it is complexed strongly with inorganic cations.

  20. Diel changes in water chemistry in an arsenic-rich stream and treatment-pond system

    Science.gov (United States)

    Gammons, C.H.; Grant, T.M.; Nimick, D.A.; Parker, S.R.; DeGrandpre, M.D.

    2007-01-01

    Arsenic concentrations are elevated in surface waters of the Warm Springs Ponds Operable Unit (WSPOU), located at the head of the upper Clark Fork River Superfund site, Montana, USA. Arsenic is derived from historical deposition of smelter emissions (Mill and Willow Creeks) and historical mining and milling wastes (Silver Bow Creek). Although long-term monitoring has characterized the general seasonal and flow-related trends in As concentrations in these streams and the pond system used to treat Silver Bow Creek water, little is known about solubility controls and sorption processes that influence diel cycles in As concentrations. Diel (24-h) sampling was conducted in July 2004 and August 2005 at the outlet of the treatment ponds, at two locations along a nearby reconstructed stream channel that diverts tributary water around the ponds, and at Silver Bow Creek 2??km below the ponds. Dissolved As concentration increased up to 51% during the day at most of the stream sites, whereas little or no diel change was displayed at the treatment-pond outlet. The strong cycle in streams is explained by pH- and temperature-dependent sorption of As onto hydrous metal oxides or biofilms on the streambed. Concentrations of dissolved Ca2+ and HCO3- at the stream sites showed a diel temporal pattern opposite to that of As, and geochemical modeling supports the hypothesis that the concentrations of Ca2+ and HCO3- were controlled by precipitation of calcite during the warm afternoon hours when pH rose above 9.0. Nightly increases in dissolved Mn and Fe(II) concentrations were out of phase with concentrations of other divalent cations and are more likely explained by redox phenomena. ?? 2007 Elsevier B.V. All rights reserved.

  1. Water chemistry in 179 randomly selected Swedish headwater streams related to forest production, clear-felling and climate.

    Science.gov (United States)

    Löfgren, Stefan; Fröberg, Mats; Yu, Jun; Nisell, Jakob; Ranneby, Bo

    2014-12-01

    From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.

  2. Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb – Zn Ore Mining. Areas of Ebonyi ... produced both for local consumption and also for food supplies to other .... of deionised water using a pH-meter (Aqualytica. Model pH 17).

  3. Methylmercury bioaccumulation in stream food webs declines with increasing primary production

    Science.gov (United States)

    Walters, David; D.F. Raikow,; C.R. Hammerschmidt,; M.G. Mehling,; A. Kovach,; J.T. Oris,

    2015-01-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048–0.71 mg O2 L–1 d–1) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.

  4. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  5. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  6. Recycling produced water for algal cultivation for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Justin N. [Los Alamos National Laboratory; Sullivan, Enid J. [Los Alamos National Laboratory; Dean, Cynthia A. [Los Alamos National Laboratory; Steichen, Seth A. [Los Alamos National Laboratory

    2012-08-09

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal, New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.

  7. Temperature of the Gulf Stream

    Science.gov (United States)

    2002-01-01

    The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using

  8. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  9. Analysis of postfire hydrology, water quality, and sediment transport for selected streams in areas of the 2002 Hayman and Hinman fires, Colorado

    Science.gov (United States)

    Stevens, Michael R.

    2013-01-01

    The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.

  10. VARIABILITY OF VALUES OF PHYSICOCHEMICAL WATER QUALITY INDICES ALONG THE LENGTH OF THE IWONICZANKA STREAM

    Directory of Open Access Journals (Sweden)

    Andrzej Bogdał

    2015-11-01

    Full Text Available The paper aims at presentation of the effect of changes in the catchment area management on the value of water quality physicochemical indices along the length of the Iwoniczanka stream, which flows through Iwonicz-Zdrój, one of the oldest health resorts in Poland. Analyses of 14 water quality indices were conducted from November 2013 to May 2014 in five measurement points: two situated in the upper course of the stream – in forest areas, two located in the area of Iwonicz-Zdrój town, and one below the rural built-up area. On the basis of the conducted data analysis it was found that the mean values of pH, electrolytic conductivity, sulphates, calcium, total iron and manganese were increasing with the course of flowing water, as evidenced by the water enrichment in substances which had their sources in built-up areas. On average, the highest values of biogenic indices and chlorides but the lowest values of oxygen indices were registered immediately below the location of drain collector from the closed sewage treatment plant, which resulted in pollution of the analysed stream bed with the substances previously drained from the treatment plant. Water flowing through the forest areas had the maximum ecological potential in the built-up areas and due to phosphate concentrations it was classified to class II and then, due to self-purification, returned to the physicochemical parameters appropriate for class I water. The conducted hydro-chemical tests confirmed a significant negative effect of built-up areas on the quality of the flowing waters.

  11. Controls on stream water dissolved mercury in three mid-Appalachian forested headwater catchments

    Science.gov (United States)

    Riscassi, Ami L.; Scanlon, Todd M.

    2011-12-01

    Determining the controls on dissolved mercury (HgD) transport is necessary to improve estimations of export from unmonitored watersheds and to forecast responses to changes in deposition and other environmental forcings. Stream water HgD and dissolved organic carbon (DOC) were evaluated over a range of discharge conditions in three streams within Shenandoah National Park, VA. Watersheds are distinguished by stream water pH (ranging from neutral to acidic) and soil size fractioning (ranging from clays to sands). At all sites, discharge was a significant but poor predictor of HgD concentrations (r2 from 0.13-0.52). HgD was strongly coupled with DOC at all sites (r2 from 0.74-0.89). UV absorbance at 254 nm (UV254), a proxy for DOC quantity and quality, slightly improved the predictions of HgD. Mean DOC quality differed between streams, with less aromatic DOC mobilized from the more acidic watershed. The site with less aromatic DOC and sandy soils mobilized more Hg to the stream for the same quantity and quality of DOC, likely due to the reduced capacity of the larger-grained soils to retain Hg, leaving a greater fraction associated with the organic matter. A similar amount of 0.54 ng HgD/mg DOC is transported at all sites, suggesting the less aromatic DOC transports less Hg per unit DOC, offsetting the effects of soil type. This research demonstrates that soil composition and DOC quality influence HgDexport. We also provide evidence that soil organic carbon is a primary control on Hg-DOC ratios (0.12-1.4 ng mg-1) observed across the U.S. and Sweden.

  12. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  13. Benthic invertebrate fauna, small streams

    Science.gov (United States)

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  14. Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment

    International Nuclear Information System (INIS)

    Hosseini, Ali; Brown, Justin E.; Gwynn, Justin P.; Dowdall, Mark

    2012-01-01

    Produced water has been described as the largest volume waste stream in the exploration and production process of oil and gas. It is accompanied by discharges of naturally occurring radionuclides raising concerns over the potential radiological impacts of produced water on marine biota. In the Northern European marine environment, radioactivity in produced water has received substantial attention owing to the OSPAR Radioactive Substances Strategy which aims at achieving ‘concentrations in the environment near background values for naturally occurring radioactive substances’. This review provides an overview of published research on the impacts to biota from naturally occurring radionuclides discharged in produced water by the offshore oil and gas industry. In addition to summarising studies and data that deal directly with the issue of dose and effect, the review also considers studies related to the impact of added chemicals on the fate of discharged radionuclides. The review clearly illustrates that only a limited number of studies have investigated possible impacts on biota from naturally occurring radionuclides present in produced water. Hence, although these studies indicate that the risk to the environment from naturally occurring radionuclides discharged in produced water is negligible, the substantial uncertainties involved in the assessments of impact make it difficult to be conclusive. With regard to the complexity involved in the problem under consideration there is a pressing need to supplement existing data and acquire new knowledge. Finally, the present work identifies some knowledge gaps to indicate future research requirements. -- Highlights: ► Produced water from offshore oil industry contains naturally occurring radionuclides. ► Published research on the impacts to biota from these radionuclides is reviewed. ► Review includes impact of added chemicals on the fate of discharged radionuclides. ► Studies indicate negligible risk to biota

  15. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams

    Science.gov (United States)

    B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan

    2012-01-01

    In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeral–intermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...

  16. PCBs in Rain Water, Streams and a Reservoir in a Small Catchment of NW Spain

    Science.gov (United States)

    Delgado-Martín, Jordi; Cereijo-Arango, José Luis; García-Morrondo, David; Juncosa-Rivera, Ricardo; Cillero-Castro, Carmen; Muñoz-Ibáñez, Andrea

    2016-04-01

    Polychlorinated biphenyls (PCBs) constitute a significant environmental concern due to its persistence, tendency to bio-accumulate, acknowledged toxicity and ubiquity. In the present study, a small water catchment (~100 km2) inclusive of a two-tailed water supply reservoir (Abegondo-Cecebre) has been monitored between 2009 and 2014. Sampling stations include: a) one precipitation gauge used to collect monthly-integrated bulk precipitation (25 samples); b) seven streams (95 samples); c) five surface and one bottom points within the reservoir (104 samples); d) five points for sediment sampling in two surveys (spring and summer; 10 samples). All the water samples as well as the leachates of sediment washing have been analyzed for their concentration in 6 marker PCB (congeners 28, 52, 101, 138, 153 and 180) and 12 dioxin-like PCB (congeners 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 and 189) compounds. The average concentration of PCBtot in the bulk precipitation during the sampling period is ~406 pg/L although a very significant decrease has occurred since the end of 2011 (~800 pg/L) to the end of 2014 (~60 pg/L). Likewise, the mean concentration of PCBtot in the stream water samples is 174 pg/L and a similar reduction in the concentration of PCBtot is also acknowledged for the same period of time (~250 pg/L before the end of 2011 and ~30 pg/L after then). Reservoir surface water has a PCBtot concentration of ~234 pg/L which, according to its sampling time (2010-2011) is consistent with the measured stream waters. However, deep reservoir water reveals an average concentration which is higher than the corresponding top water (~330 pg/L) but significantly smaller than the water-leached sediments (~860 pg/L). The available data suggest that up to a 30% of PCBs associated with precipitation becomes sequestered by the soil/sediment system while no significant change takes place during the transfer of water from the stream to the reservoir system, at least in

  17. Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture

    Science.gov (United States)

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Focazio, Michael J.; Meyer, Michael T.; Johnson, Heather E.; Oster, Ryan J.; Foreman, William T.

    2016-01-01

    Animal waste, stream water, and streambed sediment from 19 small (animal agriculture (control, n = 4), or predominantly beef (n = 4), dairy (n = 3), swine (n = 5), or poultry (n = 3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural practices and environmental conditions

  18. Forested wetland mitigation resulting from discharges of cooling water into streams

    International Nuclear Information System (INIS)

    Nelson, E.A.

    1993-01-01

    The Savannah River Swamp is a 3020-ha forested wetland on the floodplain of the Savannah River and is located on the US Department of Energy's Savannah River Site (SRS) near Aiken, South Carolina. Historically, the swamp consisted of ∼50% bald cypress-water tupelo stands, 40% mixed bottomland hardwood stands, and 10% shrub, marsh, and open water. The hydrology was controlled by flooding the Savannah River and by flow from four creeks that drain into the swamp prior to flow into the Savannah River. Upstream dams have caused some alteration of the water levels and timing of flooding within the floodplain. Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950s. Water, often in excess of 40 to 50 degrees C was discharged into one of the small streams from 1954 to 1988, at various levels, ranging from 20 to 40 times the prior flow rate of the stream. This had a major impact on the adjacent swamp land, with erosion, silting, and vegetation destruction. The Final Environmental Impact Statement, Continued Operation of K, L, and P Reactors, Savannah River Site, Aiken, South Carolina, and the subsequent record of decision directed that these areas be restored to functional forested wetland status to the extent possible. This paper describes work begun to reach that objective

  19. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R. [Resource Technology Corp., Laramie, WY (United States); Harju, J.A. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  20. Numerical investigation on effect of blade shape for stream water wheel performance.

    Science.gov (United States)

    Yah, N. F.; Oumer, A. N.; Aziz, A. A.; Sahat, I. M.

    2018-04-01

    Stream water wheels are one of the oldest and commonly used types of wheels for the production of energy. Moreover, they are economical, efficient and sustainable. However, few amounts of research works are available in the open literature. This paper aims to develop numerical model for investigation of the effect of blade shape on the performance of stream water wheel. The numerical model was simulated using Computational Fluid Dynamics (CFD) method and the developed model was validated by comparing the simulation results with experimental data obtained from literature. The performance of straight, curved type 1 and curved type 2 was observed and the power generated by each blade design was identified. The inlet velocity was set to 0.3 m/s static pressure outlet. The obtained results indicate that the highest power was generated by the Curved type 2 compared to straight blade and curved type 1. From the CFD result, Curved type 1 was able to generate 0.073 Watt while Curved type 2 generate 0.064 Watt. The result obtained were consistent with the experiment result hence can be used the numerical model as a guide to numerically predict the water wheel performance

  1. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  2. Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations

    Science.gov (United States)

    Cuthbert, M. O.; Acworth, R. I.; Andersen, M. S.; Larsen, J. R.; McCallum, A. M.; Rau, G. C.; Tellam, J. H.

    2016-02-01

    Understanding and managing groundwater resources in drylands is a challenging task, but one that is globally important. The dominant process for dryland groundwater recharge is thought to be as focused, indirect recharge from ephemeral stream losses. However, there is a global paucity of data for understanding and quantifying this process and transferable techniques for quantifying groundwater recharge in such contexts are lacking. Here we develop a generalized conceptual model for understanding water table and groundwater head fluctuations due to recharge from episodic events within ephemeral streams. By accounting for the recession characteristics of a groundwater hydrograph, we present a simple but powerful new water table fluctuation approach to quantify focused, indirect recharge over both long term and event time scales. The technique is demonstrated using a new, and globally unparalleled, set of groundwater observations from an ephemeral stream catchment located in NSW, Australia. We find that, following episodic streamflow events down a predominantly dry channel system, groundwater head fluctuations are controlled by pressure redistribution operating at three time scales from vertical flow (days to weeks), transverse flow perpendicular to the stream (weeks to months), and longitudinal flow parallel to the stream (years to decades). In relative terms, indirect recharge decreases almost linearly away from the mountain front, both in discrete monitored events as well as in the long-term average. In absolute terms, the estimated indirect recharge varies from 80 to 30 mm/a with the main uncertainty in these values stemming from uncertainty in the catchment-scale hydraulic properties.

  3. Microbial quality of irrigation water used in leafy green production in Southern Brazil and its relationship with produce safety.

    Science.gov (United States)

    Decol, Luana Tombini; Casarin, Letícia Sopeña; Hessel, Claudia Titze; Batista, Ana Carolina Fösch; Allende, Ana; Tondo, Eduardo César

    2017-08-01

    Irrigation water has been recognized as an important microbial risk factor for fruits and vegetables in many production areas, but there is still a lack of information about how the microbiological quality of different irrigation water sources and climatic conditions influence the safety of vegetables produced in Brazil. This study evaluated the distribution of generic E. coli and the prevalence of E. coli O157:H7 in two different water sources (ponds and streams bordering farmlands and urban areas) used for irrigation and on commercially produced lettuces in Southern Brazil. We also evaluated the effect of agricultural factors and meteorological conditions in the potential contamination of water and produce samples. A longitudinal study was conducted on four farms during a year (July 2014 to August 2015). The results showed generic E. coli prevalence of 84.8% and 38.3% in irrigation water samples and on lettuces, respectively, indicating irrigation water as an important source of contamination of lettuces. No significant differences were detected in the counts of E. coli between the two different surface water sources. The climatic conditions, particularly rainfall and environmental temperature, have influenced the high concentration of E. coli. The highest loads of E. coli in irrigation water and on lettuces were found during the warmest time of the year. E. coli O157:H7 was detected by qualitative polymerase chain reaction (qPCR) in 13 water samples but only 4 were confirmed by isolation in culture media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe Mn oxyhydroxides: Fractionation, speciation, and controls over REE + Y patterns in the surface environment

    Science.gov (United States)

    Leybourne, Matthew I.; Johannesson, Karen H.

    2008-12-01

    We have collected ˜500 stream waters and associated bed-load sediments over an ˜400 km 2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into "dissolved" (primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO 2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.

  5. Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts

    Science.gov (United States)

    AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...

  6. Effects of pasture management and off-stream water on temporal/spatial distribution of cattle and stream bank characteristics in cool-season grass pastures.

    Science.gov (United States)

    Schwarte, K A; Russell, J R; Morrical, D G

    2011-10-01

    A 2-yr grazing experiment was conducted to assess the effects of grazing management on cattle distribution and pasture and stream bank characteristics. Six 12.1-ha cool-season grass pastures in central Iowa were allotted to 1 of 3 treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with stream access restricted to 4.9-m-wide stabilized crossings (CSR), or rotational stocking with stream access restricted to a riparian paddock (RP). Pastures were stocked with 15 fall-calving Angus cows (Bos taurus L.) from mid-May to mid-October for 153 d in 2008 and 2009. A global positioning system (GPS) collar recording cow position every 10 min was placed on at least 1 cow per pasture for 2 wk of each month from May through September. Off-stream water was provided to cattle in CSU and CSR treatments during the second of the 2 wk when GPS collars were on the cattle. A black globe temperature relative humidity index (BGTHI) was measured at 10-min intervals to match the time of the GPS measurements. Each month of the grazing season, forage characteristics (sward height, forage mass, and CP, IVDMD, and P concentrations) and bare and fecal-covered ground were measured. Stream bank erosion susceptibility was visually scored in May, August, and October (pre-, mid-, and post-stocking). Cattle in RP and CSR treatments spent less time (P CSR treatment reduced the probability (P CSR and RP treatments in the stream and streamside zones in September and October and in July and September. Streams in pastures with the CSU treatment had less stable banks (P CSR treatments. Results show that time spent by cattle near pasture streams can be reduced by RP or CSR treatments, thereby decreasing risks of sediment and nutrient loading of pasture streams even during periods of increased BGTHI.

  7. Characteristics and applications of ion streams produced by long-pulse lasers

    International Nuclear Information System (INIS)

    Rohlena, K.; Laska, L.; Jungwirth, K.; Krasa, J.; Krousky, E.; Masek, M.; Pleifer, M.; Ullschmied, J.; Badziak, J.; Parys, P.; Wolowski, J.; Gammino, S.; Torrisi, L.; Boody, F. P.

    2005-01-01

    If a laser plasma generated on a target with a high Z if left to expand it becomes a very efficient source of highly charged ions. Depending on the parameters of the laser driver, ions with charge states from 1+up to more than 50+can be produced, with ion energies ranging from tens of eV up to tens of MeV, with no external acceleration. The ion current density may reach tens of mA/cm''3 at a distance of 1 m from the target. they can be used either for a direct to accelerator injection, for a hybrid ion source based on coupling of a laser with an Electron Cyclotron Resonance Ion Source for easier evaporation and pre-ionisation of the target material and a subsequent charge state enhancement, or for a direct ion implantation. As substrates for the implantation metallic and polymer materials are usually exposed to the laser produced ion streams with an appropriate tuning of the implantation regime to modify their surface properties. Although the interaction of the laser beam with the plasma is a fairly complex process certain fundamental phenomena have been identified based on a careful analysis of the charge-energy spectra of the outgoing ion streams. The most striking feature is a multi peak structure of the energy spectra suggesting the presence of several fast electron groups guiding the plasma expansion and assisting the charge freezing by its acceleration. On the other hand, an inherent asymmetry of the ion spectra with respect to the laser caustic can be interpreted as the onset of self focusing of the heating laser-beam inside the self-created plasma of the developing laser corona (or a pre-pulse plasma either formed by an engineered double pulse or generated spontaneously in the case of an unduly bad contrast of the heating pulse) with a dramatic increase in the power density impinging on the target. Experimental and theoretical arguments are given in support of this notion, which was first advanced by Hora. (Author)

  8. Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy

    Directory of Open Access Journals (Sweden)

    Mehri Akbari

    2014-04-01

    Full Text Available A new combined cogeneration system for producing electrical power and pure water is proposed and analyzed from the viewpoints of thermodynamics and economics. The system uses geothermal energy as a heat source and consists of a Kalina cycle, a LiBr/H2O heat transformer and a water purification system. A parametric study is carried out in order to investigate the effects on system performance of the turbine inlet pressure and the evaporator exit temperature. For the proposed system, the first and second law efficiencies are found to be in the ranges of 16%–18.2% and 61.9%–69.1%, respectively. For a geothermal water stream with a mass flow rate of 89 kg/s and a temperature of 124 °C, the maximum production rate for pure water is found to be 0.367 kg/s.

  9. Percent Forest Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  10. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  11. Tritium removal from air streams by catalytic oxidation and water adsorption

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1976-06-01

    An effective method of capturing tritium from air streams is by catalytic oxidation followed by water adsorption on a microporous solid adsorbent. Performance of a burner/dryer combination is illustrated by overall mass balance equations. Engineering design methods for packed bed reactors and adsorbers are reviewed, emphasizing the experimental data needed for design and the effect of operating conditions on system performance

  12. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  13. Evaluation of Measurements Collected with Multi-Parameter Continuous Water-Quality Monitors in Selected Illinois Streams, 2001-03

    Science.gov (United States)

    Groschen, George E.; King, Robin B.

    2005-01-01

    Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago

  14. Development and testing of an in-stream phosphorus cycling model for the soil and water assessment tool.

    Science.gov (United States)

    White, Michael J; Storm, Daniel E; Mittelstet, Aaron; Busteed, Philip R; Haggard, Brian E; Rossi, Colleen

    2014-01-01

    The Soil and Water Assessment Tool is widely used to predict the fate and transport of phosphorus (P) from the landscape through streams and rivers. The current in-stream P submodel may not be suitable for many stream systems, particularly those dominated by attached algae and those affected by point sources. In this research, we developed an alternative submodel based on the equilibrium P concentration concept coupled with a particulate scour and deposition model. This submodel was integrated with the SWAT model and applied to the Illinois River Watershed in Oklahoma, a basin influenced by waste water treatment plant discharges and extensive poultry litter application. The model was calibrated and validated using measured data. Highly variable in-stream P concentrations and equilibrium P concentration values were predicted spatially and temporally. The model also predicted the gradual storage of P in streambed sediments and the resuspension of this P during periodic high-flow flushing events. Waste water treatment plants were predicted to have a profound effect on P dynamics in the Illinois River due to their constant discharge even under base flow conditions. A better understanding of P dynamics in stream systems using the revised submodel may lead to the development of more effective mitigation strategies to control the impact of P from point and nonpoint sources. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Stream habitat or water quality - what influences stronger fish and macrozoobenthos biodiversity?

    Czech Academy of Sciences Publication Activity Database

    Adámek, Z.; Jurajda, Pavel

    2001-01-01

    Roč. 1, č. 3 (2001), s. 305-311 ISSN 1642-3593. [Ecohydrology as a tool for restoration of physically degraded fish habitats. Warsaw, 11.06.2001-13.06.2001] Institutional research plan: CEZ:AV0Z6093917 Keywords : stream ecology * water quality * fish communities Subject RIV: EH - Ecology, Behaviour

  16. A review of crosslinked fracturing fluids prepared with produced water

    Directory of Open Access Journals (Sweden)

    Leiming Li

    2016-12-01

    Full Text Available The rapidly increasing implementations of oilfield technologies such as horizontal wells and multistage hydraulic fracturing, particularly in unconventional formations, have expanded the need for fresh water in many oilfield locations. In the meantime, it is costly for services companies and operators to properly dispose large volumes of produced water, generated annually at about 21 billion barrels in the United States alone. The high operating costs in obtaining fresh water and dealing with produced water have motivated scientists and engineers, especially in recent years, to use produced water in place of fresh water to formulate well treatment fluids. The objective of this brief review is to provide a summary of the up-to-date technologies of reusing oilfield produced water in preparations of a series of crosslinked fluids implemented mainly in hydraulic fracturing operations. The crosslinked fluids formulated with produced water include borate- and metal-crosslinked guar and derivatized guar fluids, as well as other types of crosslinked fluid systems such as crosslinked synthetic polymer fluids and crosslinked derivatized cellulose fluids. The borate-crosslinked guar fluids have been successfully formulated with produced water and used in oilfield operations with bottomhole temperatures up to about 250 °F. The produced water sources involved showed total dissolved solids (TDS up to about 115,000 mg/L and hardness up to about 11,000 mg/L. The metal-crosslinked guar fluids prepared with produced water were successfully used in wells at bottomhole temperatures up to about 250 °F, with produced water TDS up to about 300,000 mg/L and hardness up to about 44,000 mg/L. The Zr-crosslinked carboxymethyl hydroxypropyl guar (CMHPG fluids have been successfully made with produced water and implemented in operations with bottomhole temperatures at about 250+ °F, with produced water TDS up to about 280,000 mg/L and hardness up to about 91,000

  17. Tritium uptake by fish in a small stream

    International Nuclear Information System (INIS)

    Eaton, D.; Murphy, C.E. Jr.

    1992-01-01

    The tritium concentration in the water from freeze drying and the water from combustion of the dry tissue was measured in fish (largemouth bass), stream macrophytes, and streamside vegetation at five sampling locations in Four Mile Branch on the Savannah River Site (SRS). Four Mile Branch has elevated tritium concentration, largely from migration of water through the soil from adjacent seepage basins that received industrial wastewater containing tritium. The stream water and the vegetation, through the food chain, are thought to be the two sources of tritium reaching the fish. Comparision of the tritium activity of the freeze-dried water from fish flesh and of the sources of tritium, indicates that the fish flesh approaches a steady-state concentration with the stream water. The freeze-dry water from the vegetation is also at a lower specific activity than the stream water. The water of combustion from the vegetation is also at a lower specific activity than stream water. The water of combustion from the fish flesh is somewhat higher in specific activity than the stream water or the water in the fish. The distribution of tritium among the components of this system can be explain in terms of the turnover of water and organic hydrogen in the components

  18. Arsenic transport in groundwater, surface water, and the hyporheic zone of a mine-influenced stream-aquifer system

    OpenAIRE

    Brown, Brendan

    2005-01-01

    We investigated the transport of dissolved arsenic in groundwater, surface water and the hyporheic zone in a stream-aquifer system influenced by an abandoned arsenopyrite mine. Mine tailing piles consisting of a host of arsenic-bearing minerals including arsenopyrite and scorodite remain adjacent to the stream and represent a continuous source of arsenic. Arsenic loads from the stream, springs, and groundwater were quantified at the study reach on nine dates from January to August 2005 and ...

  19. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data

    Science.gov (United States)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  20. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA

    Science.gov (United States)

    Hladik, Michelle; Kolpin, Dana W.; Kuivila, Kathryn

    2014-01-01

    Neonicotinoid insecticides are of environmental concern, but little is known about their occurrence in surface water. An area of intense corn and soybean production in the Midwestern United States was chosen to study this issue because of the high agricultural use of neonicotinoids via both seed treatments and other forms of application. Water samples were collected from nine stream sites during the 2013 growing season. The results for the 79 water samples documented similar patterns among sites for both frequency of detection and concentration (maximum:median) with clothianidin (75%, 257 ng/L:8.2 ng/L) > thiamethoxam (47%, 185 ng/L: imidacloprid (23%, 42.7 ng/L: treatments as their likely source.

  1. Quality and mutagenicity of water and sediment of the streams impacted by the former uranium mine area Olší-Drahonín (Czech Republic).

    Science.gov (United States)

    Hudcová, H; Badurová, J; Rozkošný, M; Sova, J; Funková, R; Svobodová, J

    2013-02-01

    The water quality research performed in the years 2003-2010 demonstrated an impact of the mine water pumped from the closed Olší uranium mine and discharged from the mine water treatment plant (MWTP) and groundwater from springs in the area on the water quality of the Hadůvka stream. The water ecosystems of the lower part of the Hadůvka stream are impacted mainly by water originated from the springs located in the stream valley and drained syenit subsoil, naturally rich in uranium. Those inflows caused a very high concentration of uranium measured in the water of the stream, which exceeds the given limit value. No negative impact on the water ecosystems of the receiving Bobrůvka River was found. This reduction of impact is caused by five times higher average daily flow rate of the Bobrůvka River in comparison with the Hadůvka stream, which results in a sufficient dilution of pollution from the Hadůvka. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    Science.gov (United States)

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2018-04-15

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event

  3. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  4. Geostatistical prediction of microbial water quality throughout a stream network using meteorology, land cover, and spatiotemporal autocorrelation.

    Science.gov (United States)

    Holcomb, David Andrew; Messier, Kyle P; Serre, Marc L; Rowny, Jakob G; Stewart, Jill R

    2018-06-11

    Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modelled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was >90%, 10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.

  5. Analysis on the Water Exchange between the Main Stream of the Yangtze River and the Poyang Lake

    NARCIS (Netherlands)

    Zhao, J.; Li, J.; Yan, H.; Zheng, L.; Dai, Z.

    2011-01-01

    Analysis on the hydrologic characteristics of the main stream of the Yangtze River and Poyang Lake were studied to discuss the water exchange between the main stream of the Yangtze River and Poyang Lake before and after the operation of Three Gorges Reservoir, as well as in the typical dry year of

  6. High purity heavy water production: need for total organic carbon determination in process water streams

    International Nuclear Information System (INIS)

    Ayushi; Kumar, Sangita D.; Reddy, A.V.R.; Vithal, G.K.

    2009-01-01

    In recent times, demand for high purity heavy water (99.98% pure) in industries and laboratories has grown by manifold. Its application started in nuclear industry with the design of CANDU reactor, which uses natural uranium as fuel. In this reactor the purest grade of heavy water is used as the moderator and the primary coolant. Diverse industrial applications like fibre optics, medicine, semiconductors etc. use high purity heavy water extensively to achieve better performance of the specific material. In all these applications there is a stringent requirement that the total organic carbon content (TOC) of high purity heavy water should be very low. This is because the presence of TOC can lead to adverse interactions in different applications. To minimize the TOC content in the final product there is a need to monitor and control the TOC content at each and every stage of heavy water production. Hence a simple, rapid and accurate method was developed for the determination of TOC content in process water samples. The paper summarizes the results obtained for the TOC content in the water samples collected from process streams of heavy water production plant. (author)

  7. Don't Cry over Spilled Water: Identifying Risks and Solutions for Produced Water Spills

    Science.gov (United States)

    Shores, Amanda Rose

    Resource requirements and future energy generation requires careful evaluation, particularly due to climate change and water scarcity. This thesis discusses one aspect of energy generation linked to water; oil-and-gas extraction and the large volumes of waste water produced, otherwise known as "produced water". This research focuses on surface spills of produced water, their ramifications, safeguards against groundwater contamination at spill sites and potential remediation strategies. Produced water contains a variety of contaminants that include the group of known toxins, BTEX (benzene, toluene, ethylbenzene and xylene), and high salt concentrations. A combination of factors such as large volumes of generated produced water, the need for storage and transportation across large distances and the toxic-and-mobile nature of produced water constituents creates risks for spills that can pollute groundwater. Spills occur regularly, particularly in Weld County, Colorado, where the demand for natural gas is high. To answer spill-related hypotheses, a multitude of methodology were employed: modeling, greenhouse experimentation, gas chromatography and summarization of spill reports and statistical analyses. Using publically available spill data, this research found that the frequency of oil-and-gas related spills and the average spilled volume has increased in Weld County from 2011-2015. Additionally, the number of spills that have resulted in groundwater contamination has increased in the area. By focusing on the oil-and-gas operators responsible for these spills, a linear relationship was found between the volumes of oil-and-gas produced compared to the volumes of produced-water generated. However, larger oil-and-gas producers did not show a linear relationship between oil-and-gas produced and produced-water generated, such that larger producers were more efficient and generated less water per unit of energy. So while scale-up efficiency seems to exist for produced-water

  8. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  9. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  10. 77 FR 74985 - Water Quality Standards for the State of Florida's Streams and Downstream Protection Values for...

    Science.gov (United States)

    2012-12-18

    ... Water Quality Standards for the State of Florida's Streams and Downstream Protection Values for Lakes... its numeric water quality standards for nutrients in Florida that were promulgated and published on.... Water Quality Criteria D. EPA Determination Regarding Florida and EPA's Rulemaking E. EPA Promulgation...

  11. Process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbon and an apparatus therefor

    International Nuclear Information System (INIS)

    Symons, E. A.; Clermont, M. J.; Paterson, L. M.; Rolston, J. H.

    1985-01-01

    Hydrogen isotope (e.g. deuterium) exchange from liquid water to a gaseous halohydrocarbon (e.g. fluoroform, CF 3 H-CF 3 D) is obtained at an operating temperature in the range 0 0 to 100 0 C. using a catalytically active mass comprising a porous anion exchange resin in the hydroxide ion form and enriched gaseous halohydrocarbon stream is decomposed by isotope selective photo-decomposition into a first, gaseous stream enriched in the hydrogen isotope, which is removed as a product, and a depleted gaseous halohydrocarbon stream, which is recirculated for enrichment again. The catalytically active mass may, for example, be in the form of resin particles suspended in a fluidized bed or packed as resin particles between sheets wound into a roll. One of the sheets may be corrugated and have open interstices to form a packing in a column which permits countercurrent gas and liquid flow past the resin. Preferably the wound sheets are hydrophilic to retard flooding by the liquid water. The liquid water stream may contain dimethyl sulfoxide (DMSO) added as co-solvent

  12. Removal of Radium isotopes from oil co-produced water using Bentonite

    International Nuclear Information System (INIS)

    Al Masri, M.S.; Al Attar, L.; Budeir, Y.; Al Chayah, O.

    2010-01-01

    In view of environmental concern, sorption of radium on natural bentonite mineral (Aleppo, Syria) was investigated using batch-type method. Data were expressed in terms of distribution coefficients. An attempt to increase the selectivity of bentonite for radium was made by preparing M-derivatives. Loss of mineral crystallinity in acidic media and the formation of new phase, such as BaCO 3 , in Ba-derivative were imposed by XRD characterisations. Of the cationic forms, Na-bentonite had shown the highest affinity. Mechanisms of radium uptake were pictured using M-derivatives and simulated radium solutions. The obtained results indicated that surface sorption/surface ion exchange were the predominated processes. The distinct sorption behaviour observed with Ba-form was, possibly, a reflection of radium co-precipitation with barium carbonate. The competing order of macro component, likely present in waste streams, was drawn by studying different concentrations of the corresponding salt media. As an outcome, sodium was the weakest inhibitor. The performance of natural bentonite and the most selective forms, i.e. Ba- and Na-derivatives, to sorb radium from actual oil co-produced waters, collected form Der Ezzor Petroleum Company (DEZPC), was studied. This mirrored the influential effect of waters pH over other comparable parameters. (author)

  13. High resolution stream water quality assessment in the Vancouver, British Columbia region: a citizen science study.

    Science.gov (United States)

    Shupe, Scott M

    2017-12-15

    Changing land cover and climate regimes modify water quantity and quality in natural stream systems. In regions undergoing rapid change, it is difficult to effectively monitor and quantify these impacts at local to regional scales. In Vancouver, British Columbia, one of the most rapidly urbanizing areas in Canada, 750 measurements were taken from a total of 81 unique sampling sites representing 49 streams located in urban, forest, and agricultural-dominant watersheds at a frequency of up to 12 times per year between 2013 and 2016. Dissolved nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations, turbidity, water temperature, pH and conductivity were measured by citizen scientists in addition to observations of hydrology, vegetation, land use, and visible stream impacts. Land cover was mapped at a 15-m resolution using Landsat 8 OLI imagery and used to determine dominant land cover for each watershed in which a sample was recorded. Regional, seasonal, and catchment-type trends in measurements were determined using statistical analyses. The relationships of nutrients to land cover varied seasonally and on a catchment-type basis. Nitrate showed seasonal highs in winter and lows in summer, though phosphate had less seasonal variation. Overall, nitrate concentrations were positively associated to agriculture and deciduous forest and negatively associated with coniferous forest. In contrast, phosphate concentrations were positively associated with agricultural, deciduous forest, and disturbed land cover and negatively associated with urban land cover. Both urban and agricultural land cover were significantly associated with an increase in water conductivity. Increased forest land cover was associated with better water quality, including lower turbidity, conductivity, and water temperature. This study showed the importance of high resolution sampling in understanding seasonal and spatial dynamics of stream water quality, made possible with the large number of

  14. From Waste to Wealth: Using Produced Water for Agriculture in Colorado

    Science.gov (United States)

    Dolan, F.; Hogue, T. S.

    2017-12-01

    According to estimates from the Colorado Water Plan, the state's population may double by 2050. Due to increasing demand, as much as 0.8 million irrigated acres may dry up statewide from agricultural to municipal and industrial transfers. To help mitigate this loss, new sources of water are being explored in Colorado. One such source may be produced water. Oil and gas production in 2016 alone produced over 300 million barrels of produced water. Currently, the most common method of disposal of produced water is deep well injection, which is costly and has been shown to cause induced seismicity. Treating this water to agricultural standards eliminates the need to dispose of this water and provides a new source of water. This research explores which counties in Colorado may be best suited to reusing produced water for agriculture based on a combined index of need, quality of produced water, and quantity of produced water. The volumetric impact of using produced water for agricultural needs is determined for the top six counties. Irrigation demand is obtained using evapotranspiration estimates from a range of methods, including remote sensing products and ground-based observations. The economic feasibility of treating produced water to irrigation standards is also determined using treatment costs found in the literature and disposal costs in each county. Finally, data from the IHS database is used to obtain the ratio between hydraulic fracturing fluid volumes and produced water volumes in each county. The results of this research will aid in the transition between viewing produced water as a waste product and using it as a tool to help secure water for the arid West.

  15. Hyper-saline produced water treatment for beneficial use

    NARCIS (Netherlands)

    Al-Furaiji, Mustafa

    2016-01-01

    Producing oil and gas is always accompanied with large amounts of effluent water, called “produced water” (PW). These huge quantities of water can be used (if treated efficiently and economically) for many useful purposes like industrial applications, irrigation, cattle and animal consumption, and

  16. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    Science.gov (United States)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  17. Low-Cost Alternative for the Measurement of Water Levels in Surface Water Streams

    Directory of Open Access Journals (Sweden)

    Luis E. PEÑA

    2017-11-01

    Full Text Available Flood risk management and water resources planning involve a deep knowledge of surface streams so that mitigation strategies and climate change adaptations can be implemented. Commercially, there is a wide range of technologies for the measurement of hydroclimatic variables; however, many of these technologies may not be affordable for institutions with limited budgets. This paper has two main objectives: 1 Present the design of an ultrasound-based water level measurement system, and 2 Propose a methodological alternative for the development of instruments, according to the needs of institutions conducting monitoring of surface waterbodies. To that end, the proposed methodology is based on selection processes defined according to the specific needs of each waterbody. The prototype was tested in real-world scale, with the potential to obtain accurate measurements. Lastly, we present the design of the ultrasound-based water level measurement instrument, which can be built at a low cost. Low-cost instruments can potentially contribute to the sustainable instrumental autonomy of environmental entities and help define measurement and data transmission standards based on the specific requirements of the monitoring.

  18. NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung; Naomi Davidson; Ajeet Kumar Reddy; Mingzhen Wei

    2003-04-01

    The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information, (2) a web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries, (3) a fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water, and (4) a corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project has been focused on creating the water quality databases for produced water and surface water, along with collection of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 4000 entries for southeast New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the

  19. Estimation of unaltered daily mean streamflow at ungaged streams of New York, excluding Long Island, water years 1961-2010

    Science.gov (United States)

    Gazoorian, Christopher L.

    2015-01-01

    The lakes, rivers, and streams of New York State provide an essential water resource for the State. The information provided by time series hydrologic data is essential to understanding ways to promote healthy instream ecology and to strengthen the scientific basis for sound water management decision making in New York. The U.S. Geological Survey, in cooperation with The Nature Conservancy and the New York State Energy Research and Development Authority, has developed the New York Streamflow Estimation Tool to estimate a daily mean hydrograph for the period from October 1, 1960, to September 30, 2010, at ungaged locations across the State. The New York Streamflow Estimation Tool produces a complete estimated daily mean time series from which daily flow statistics can be estimated. In addition, the New York Streamflow Estimation Tool provides a means for quantitative flow assessments at ungaged locations that can be used to address the objectives of the Clean Water Act—to restore and maintain the chemical, physical, and biological integrity of the Nation’s waters.

  20. NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung

    2003-09-24

    The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) Databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information. (2) A web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries. (3) A fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water. (4) A corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project was focused on creating the water quality databases for produced water and surface water, along with collecting of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 7000 entries for New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed

  1. Human-Nature Relationship in Mediterranean Streams: Integrating Different Types of Knowledge to Improve Water Management

    Directory of Open Access Journals (Sweden)

    Carla Gonzalez

    2009-12-01

    Full Text Available The social and ecological systems of Mediterranean streams are intrinsically linked as a result of long human occupation. In this region, these links vary greatly across small distances due to geomorphology, resulting in great diversity across space, which poses particular challenges for understanding and managing these systems. This demands (i interdisciplinary integration of knowledge that focuses on the social-ecological interactions, while according due consideration to the whole; and also (ii transdisciplinary integration, integrating lay and expert knowledge to understand local specificities. To address these needs - a focus on interactions and local knowledge - the research presented here studies the human-nature relationship in Mediterranean streams. Its main objective is to improve understanding of Mediterranean streams, but it also provides practical inputs to enhance local-level management. The study adopts an applied approach from the perspective of natural resources management. A case study was developed conducting field work on streams within the Natura 2000 site of Monfurado, Portugal - a mainly privately owned area with conflicting land uses between conservation and farming. Rivers and streams in Portugal are considered to be in very bad condition, particularly with regard to water quality. The experimental design was based, from a critical realism perspective of inter- and trans-disciplinarity, on the complementarities between methodologies from (i the social sciences: value survey and analysis of discourse; and (ii the natural sciences: biomonitoring and integrity biotic indexes. Results characterized the connected systems from both ecological and social points of view. They also characterized the relationship between both dimensions. We concluded that well-established riparian vegetation cover of streams is a key structural element of the human-nature relationship in the Mediterranean streams of Monfurado at several levels

  2. Assessment of the Water and Sediment Quality of Tropical Forest Streams in Upper Reaches of the Baleh River, Sarawak, Malaysia, Subjected to Logging Activities

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2016-01-01

    Full Text Available The study of the impact of logging activities on water and sediment quality of Sarawak forest streams is still scarce despite Sarawak being the largest exporter of timber in Malaysia. This study was aimed at determining the water and sediment quality of forest streams in Sarawak and the potential impact of logging activities. In situ parameters were measured, and water and sediment samples were collected at six stations before rain. Additionally, water quality was investigated at three stations after rain. The results showed that canopy removal resulted in large temperature variation and sedimentation in the forest streams. Lower suspended solids were found at stations with inactive logging (<2 mg/L compared to active logging (10–16 mg/L activities. The highest concentration of total nitrogen and total phosphorus in water and sediment was 4.4 mg/L, 77.6 μg/L, 0.17%, and 0.01%, respectively. Besides, significantly negative correlation of sediment nitrogen and water total ammonia nitrogen indicated the loss of nitrogen from sediment to water. Water quality of the streams deteriorated after rain, in particular, suspended solids which increased from 8.3 mg/L to 104.1 mg/L. This study reveals that logging activities have an impact on the water quality of Sarawak forest streams particularly in rainfall events.

  3. The effect of beaver ponds on water quality in rural coastal plain streams

    Science.gov (United States)

    Bason, Christopher W.; Kroes, Daniel; Brinson, Mark M.

    2017-01-01

    We compared water-quality effects of 13 beaver ponds on adjacent free-flowing control reaches in the Coastal Plain of rural North Carolina. We measured concentrations of nitrate, ammonium, soluble reactive phosphorus (SRP), and suspended sediment (SS) upstream and downstream of paired ponds and control reaches. Nitrate and SS concentrations decreased, ammonium concentrations increased, and SRP concentrations were unaffected downstream of the ponds and relative to the control reaches. The pond effect on nitrate concentration was a reduction of 112 ± 55 μg-N/L (19%) compared to a control-reach—influenced reduction of 28 ± 17 μg-N/L. The pond effect on ammonium concentration was an increase of 9.47 ± 10.9 μg-N/L (59%) compared to the control-reach—influenced reduction of 1.49 ± 1.37 μg-N/L. The pond effect on SS concentration was a decrease of 3.41 ± 1.68 mg/L (40%) compared to a control-reach—influenced increase of 0.56 ± 0.27 mg/L. Ponds on lower-order streams reduced nitrate concentrations by greater amounts compared to those in higher-order streams. Older ponds reduced SS concentrations by greater amounts compared to younger ponds. The findings of this study indicate that beaver ponds provide water-quality benefits to rural Coastal Plain streams by reducing concentrations of nitrate and suspended sediment.

  4. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of

  5. Percent Forest Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  6. Percent Agriculture Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  7. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  8. Designer solvents for the extraction of glycols and alcohols from aqueous streams

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.

    2013-01-01

    The separation of polar compounds from aqueous streams is one of the most energy intensive operations within the chemical industry, because of the formation of hydrogen bonds that should be broken and the high heat of vaporization of water. Important bulk chemicals like glycols and alcohols produced

  9. Phytophthora pseudopolonica sp. nov., a new species recovered from stream water in subtropical forests of China.

    Science.gov (United States)

    Li, Wen-Wen; Zhao, Wen-Xia; Huai, Wen-Xia

    2017-09-01

    A new species of the genus Phytophthora was isolated from stream water in the subtropical forests of China during a survey of forest Phytophthora from 2011 to 2013. This new species is formally described here and named Phytophthora pseudopolonica sp. nov. This new homothallic species is distinct from other known Phytophthora species in morphology and produces nonpapillate and noncaducous sporangia with internal proliferation. Spherical hyphal swellings and thin-walled chlamydospores are abundant when the species is kept in sterile water. The P. pseudopolonica sp. nov. forms smooth oogonia with paragynous and sometimes amphigynous antheridia. The optimum growth temperature of the species is 30 °C in V8-juice agar with β-sitosterol, yet it barely grows at 5 °C and 35 °C. Based on sequences of the internal transcribed spacer and the combined β-tubulin and elongation factor 1α gene sequence data, isolates of the new species cluster together into a single branch and are close to Phytophthora polonicabelonging to clade 9.

  10. Shade and flow effects on ammonia retention in macrophyte-rich streams: implications for water quality

    International Nuclear Information System (INIS)

    Wilcock, Robert J.; Scarsbrook, Mike R.; Cooke, James G.; Costley, Kerry J.; Nagels, John W.

    2004-01-01

    Controlled releases of NH 4 -N and conservative tracers (Br - and Cl - ) to five reaches of four streams with contrasting macrophyte communities have shown differing retentions, largely as a result of the way plants interact with stream flow and velocity. First-order constants (k) were 1.0-4.8 d -1 and retention of NH 4 -N was 6-71% of amounts added to each reach. Distance travelled before a 50% reduction in concentration was achieved were 40-450 m in three streams under low-flow conditions, and 2400-3800 m at higher flows. Retention (%) of NH 4 -N can be approximated by a simple function of travel time and k, highlighting the importance of the relationship between macrophytes and stream velocity on nutrient processing. This finding has significant management implications, particularly with respect to restoration of riparian shade. Small streams with predominantly marginal emergent plants are likely to have improved retention of NH 4 -N as a result of shading or other means of reducing plant biomass. Streams dominated by submerged macrophytes will have impaired NH 4 -N retention if plant biomass is reduced because of reduced contact times between NH 4 -N molecules and reactive sites. In these conditions water resource managers should utilise riparian shading in concert with unshaded vegetated reaches to achieve a balance between enhanced in-stream habitat and nutrient processing capacity

  11. Connectivity of streams and wetlands to downstream waters: An integrated systems framework

    Science.gov (United States)

    Leibowitz, Scott G.; Wigington, Parker J.; Schoefield, Kate A.; Alexander, Laurie C.; Vanderhoof, Melanie; Golden, Heather E.

    2018-01-01

    Interest in connectivity has increased in the aquatic sciences, partly because of its relevance to the Clean Water Act. This paper has two objectives: (1) provide a framework to understand hydrological, chemical, and biological connectivity, focusing on how headwater streams and wetlands connect to and contribute to rivers; and (2) briefly review methods to quantify hydrological and chemical connectivity. Streams and wetlands affect river structure and function by altering material and biological fluxes to the river; this depends on two factors: (1) functions within streams and wetlands that affect material fluxes; and (2) connectivity (or isolation) from streams and wetlands to rivers that allows (or prevents) material transport between systems. Connectivity can be described in terms of frequency, magnitude, duration, timing, and rate of change. It results from physical characteristics of a system, e.g., climate, soils, geology, topography, and the spatial distribution of aquatic components. Biological connectivity is also affected by traits and behavior of the biota. Connectivity can be altered by human impacts, often in complex ways. Because of variability in these factors, connectivity is not constant but varies over time and space. Connectivity can be quantified with field‐based methods, modeling, and remote sensing. Further studies using these methods are needed to classify and quantify connectivity of aquatic ecosystems and to understand how impacts affect connectivity.

  12. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    Science.gov (United States)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (hour). The high temporal sampling resolution of the sensors permits a more realistic

  13. Chironomus larvae (Chironomidae: Diptera as water quality indicators along an environmental gradient in a neotropical urban stream

    Directory of Open Access Journals (Sweden)

    Nadja Gomes Machado

    2015-04-01

    Full Text Available Anthropogenic interference in urban lotic systems is a factor affecting the biota of waterbodies. Aquatic macro invertebrates are an important food source for fish and are valuable indicators of water quality. The objective of this work was to study Chironomus larvae (Chironomidae: Diptera distribution along an environmental gradient in Barbado Stream, Cuiabá, MT, Brazil. No individual Chironomus was found in the springs of Barbado Stream, which may indicate preservation of the area. During the study period, we found 40.3 and 94.4 individuals/m2 at points 3 and 4 (low course, respectively. There is eutrophication in these sites due to domestic sewage discharges, indicating low quality water. The Barbado Stream needs restoration projects that include an awareness of the residents of their neighborhood’s environmental importance, and investments in the sanitation sector to prioritize the collection and treatment of wastewater and solid waste collection.

  14. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  15. Membrane Technology for Produced Water in Lea County

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia Nelson; Ashok Ghosh

    2011-06-30

    Southeastern New Mexico (SENM) is rich in mineral resources, including oil and gas. Produced water is a byproduct from oil and gas recovery operations. SENM generates approximately 400 million barrels per year of produced water with total dissolved solids (TDS) as high as ~ 200,000 ppm. Typically, produced water is disposed of by transporting it to injection wells or disposal ponds, costing around $1.2 billion per year with an estimated use of 0.3 million barrels of transportation fuel. New Mexico ranks first among U.S. states in potash production. Nationally, more than 85% of all potash produced comes from the Carlsbad potash district in SENM. Potash manufacturing processes use large quantities of water, including fresh water, for solution mining. If the produced water from oilfield operations can be treated and used economically in the potash industry, it will provide a beneficial use for the produced water as well as preserve valuable water resources in an area where fresh water is scarce. The goal of this current research was to develop a prototype desalination system that economically treats produced water from oil and/or natural gas operations for the beneficial use of industries located in southeastern New Mexico. Up until now, most water cleaning technologies have been developed for treating water with much lower quantities of TDS. Seawater with TDS of around 30,000 ppm is the highest concentration that has been seriously studied by researchers. Reverse osmosis (RO) technology is widely used; however the cost remains high due to high-energy consumption. Higher water fluxes and recoveries are possible with a properly designed Forward Osmosis (FO) process as large driving forces can be induced with properly chosen membranes and draw solution. Membrane fouling and breakdown is a frequent and costly problem that drives the cost of desalination very high. The technology developed by New Mexico Tech (NMT) researchers not only protects the membrane, but has also

  16. Point-Source Contributions to the Water Quality of an Urban Stream

    Science.gov (United States)

    Little, S. F. B.; Young, M.; Lowry, C.

    2014-12-01

    Scajaquada Creek, which runs through the heart of the city of Buffalo, is a prime example of the ways in which human intervention and local geomorphology can impact water quality and urban hydrology. Beginning in the 1920's, the Creek has been partially channelized and connected to Buffalo's combined sewer system (CSS). At Forest Lawn Cemetery, where this study takes place, Scajaquada Creek emerges from a 3.5-mile tunnel built to route stream flow under the city. Collocated with the tunnel outlet is a discharge point for Buffalo's CSS, combined sewer outlet (CSO) #53. It is at this point that runoff and sanitary sewage discharge regularly during rain events. Initially, this study endeavored to create a spatial and temporal picture for this portion of the Creek, monitoring such parameters as conductivity, dissolved oxygen, pH, temperature, and turbidity, in addition to measuring Escherichia coli (E. coli) concentrations. As expected, these factors responded directly to seasonality, local geomorphology, and distance from the point source (CSO #53), displaying a overall, linear response. However, the addition of nitrate and phosphate testing to the study revealed an entirely separate signal from that previously observed. Concentrations of these parameters did not respond to location in the same manner as E. coli. Instead of decreasing with distance from the CSO, a distinct periodicity was observed, correlating with a series of outflow pipes lining the stream banks. It is hypothesized that nitrate and phosphate occurring in this stretch of Scajaquada Creek originate not from the CSO, but from fertilizers used to maintain the lawns within the subwatershed. These results provide evidence of the complexity related to water quality issues in urban streams as a result of point- and nonpoint-source hydrologic inputs.

  17. Beneficial Reuse of Produced and Flowback Water

    Science.gov (United States)

    Water reuse and recycling is a significant issue in the development of oil and gas shale plays in the United StatesDrilling operations – 60,000 to 650,000 gallons per wellHydraulic fracturing operations – 3 million to 5 million gallons per wellDefinition of produced water and flowback waterInteractions of water quality constituents as they relate to water reuse and recyclingTesting criteria in the laboratory and field operations

  18. Electrolytically generated hydrogen warm water cleanses the keratin-plug-clogged hair-pores and promotes the capillary blood-streams, more markedly than normal warm water does

    Directory of Open Access Journals (Sweden)

    Yoshiharu Tanaka

    2018-01-01

    Full Text Available Biomedical properties of hydrogen water have been extensively investigated, but the effect of hydrogen on good healthy subjects remains unclear. This study was designed to explore the hygiene improvement by electrolytically generated hydrogen warm water (40°C on capillary blood streams, skin moisture, and keratin plugs in skin pores in normal good healthy subjects with their informed consents. Fingertip-capillary blood stream was estimated after hand-immersing in hydrogen warm water by videography using a CCD-based microscope, and the blood flow levels increased to about 120% versus normal warm water, after 60 minutes of the hand-immersing termination. Skin moisture of subjects was assessed using an electro-conductivity-based skin moisture meter. Immediately after taking a bath filled with hydrogen warm water, the skin moisture increased by 5–10% as compared to before bathing, which was kept on for the 7-day test, but indistinct, because of lower solubility of hydrogen in “warm” water than in room-temperature water. Cleansing of keratin plugs in skin-pores was assessed by stereoscopic microscopy and scanning electron microscopy. After hydrogen warm water bathing, the numbers of cleansed keratin plugs also increased on cheek of subjects 2.30- to 4.47-fold as many as the control for normal warm water. And areas of cleansed keratin plugs in the cheeks increased about 1.3-fold as much as the control. More marked improvements were observed on cheeks than on nostrils. Hydrogen warm water may thoroughly cleanse even keratin-plugs of residual amounts that could not be cleansed by normal warm water, through its permeability into wide-ranged portions of hair-pores, and promote the fingertip blood streams more markedly than merely through warmness due to normal warm water.

  19. Effects of water removal on a Hawaiian stream ecosystem

    Science.gov (United States)

    Kinzie, R. A.; Chong, C.; Devrell, J.; Lindstrom, D.; Wolff, R.

    2006-01-01

    A 3-year study of Wainiha River on Kaua'i, Hawai'i, was carried out to determine the impact that water removal had on key stream ecosystem parameters and functions. The study area included a diversion dam for a hydroelectric plant that removes water at an elevation of 213 m and returns it to the stream about 6 km downstream at an elevation of 30 m. There were two high-elevation sites, one with undiverted flow and one with reduced flow, and two low-elevation sites, one with reduced flow and one with full flow restored. Monthly samples were taken of instream and riparian invertebrates and plants. When samples from similar elevations were compared, dewatered sites had lower concentrations of benthic photosynthetic pigments than full-flow sites, and benthic ash-free dry mass (AFDM) was higher at the two low-elevation sites regardless of flow. Benthic chlorophyll a (chl a) and AFDM were higher in summer months than in the winter. Benthic invertebrate abundance was highest at the full-flow, low-elevation site and benthic invertebrate biomass was highest at the full-flow, high-elevation site. Season had only marginal effects on abundance and biomass of benthic invertebrates. Diversity of benthic invertebrates was higher at the more-downstream sites. Abundance of drifting invertebrates was highest at the site above the diversion dam and generally higher in winter than in summer months. Biomass of drifting invertebrates was also highest at the above-dam site but there was little seasonal difference. Almost all parameters measured were lowest at the site just downstream of the diversion dam. The biotic parameters responded only weakly to flows that had occurred up to 1 month before the measurements were made. Flow, elevation, and season interact in complex ways that impact ecosystem parameters and functions, but water diversion can override all these environmental factors. ?? 2006 by University of Hawai'i Press All rights reserved.

  20. Legacies of stream channel modification revealed using General Land Office surveys, with implications for water temperature and aquatic life

    Directory of Open Access Journals (Sweden)

    Seth M. White

    2017-02-01

    Full Text Available Land use legacies can have a discernible influence in present-day watersheds and should be accounted for when designing conservation strategies for riverine aquatic life. We describe the environmental history of three watersheds within the Grande Ronde subbasin of the Columbia River using General Land Office survey field notes from the 19th century. In the two watersheds severely impacted by Euro-American land use, stream channel widths—a metric representing habitat simplification—increased from an average historical width of 16.8 m to an average present width of 20.8 m in large streams; 4.3 m to 5.5 m in small, confined or partly confined streams; and 3.5 m to 6.5 m in small, laterally unconfined steams. Conversely, we did not detect significant change in stream widths in an adjacent, wilderness stream with minimal human impact. Using a mechanistic water temperature model and restoration scenarios based on the historical condition, we predicted that stream restoration in the impacted watersheds could notably decrease average water temperatures—especially when channel narrowing is coupled with riparian restoration—up to a 6.6°C reduction in the upper Grande Ronde River and 3.0°C in Catherine Creek. These reductions in water temperature translated to substantial changes in the percentage of stream network habitable to salmon and steelhead migration (from 29% in the present condition to 79% in the fully restored scenario and to core juvenile rearing (from 13% in the present condition to 36% in the fully restored scenario. We conclude that land use legacies leave an important footprint on the present landscape and are critical for understanding historic habitat-forming processes as a necessary first step towards restoration.

  1. Stream II-V5: Revision Of Stream II-V4 To Account For The Effects Of Rainfall Events

    International Nuclear Information System (INIS)

    Chen, K.

    2010-01-01

    STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.

  2. The effects of human land use on flow regime and water chemistry of headwater streams in the highlands of Chiapas

    Directory of Open Access Journals (Sweden)

    Castillo M.M.

    2013-03-01

    Full Text Available We studied the effects of land use changes on flow regime and water chemistry of headwater streams in the highlands of Chiapas, a region in southern Mexico that has experienced high rates of deforestation in the last decades. Samples for water chemistry were collected and discharge was measured between September 2007 and August 2008 at eight streams that differed in the land uses of their riparian and catchment areas, including streams draining protected forested areas. Streams with high forest cover (>70% in their catchments maintained flow through the year. Streams draining more disturbed catchments exhibited reduced or no flow for 4 − 6 months during the dry season. Nitrate concentrations were lower at streams draining forested catchments while highest concentrations were measured where conventional agriculture covered a high proportion of the catchment and riparian zone. Highest phosphorus concentrations occurred at the catchment where poultry manure was applied as fertilizer. Differences between forest streams and those draining disturbed areas were correlated with the proportion of forest and agriculture in the riparian zone. Variation in stream variables among sampling dates was lower at the forest sites than at the more disturbed study streams. Conversion of forest into agriculture and urban areas is affecting flow regime and increasing nutrient concentrations, although the magnitude of the impacts are influenced by the type of agricultural practices and the alteration of the riparian zone.

  3. Methods of producing transportation fuel

    Science.gov (United States)

    Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  4. The Pacific northwest stream quality assessment

    Science.gov (United States)

    Van Metre, Peter C.; Morace, Jennifer L.; Sheibley, Rich W.

    2015-01-01

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program is assessing stream quality in the Pacific Northwest. The goals of the Pacific Northwest Stream Quality Assessment (Pacific Northwest study) are to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and to evaluate the relation between these stressors and biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowlands and Willamette Valley are the focus of this regional study. Findings will provide the public and policymakers with information regarding which human and environmental factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect or improve the health of streams in the region.

  5. An economically viable alternative to coastal discharge of produced water

    International Nuclear Information System (INIS)

    D'Unger, C.V.; Carr, R.S.; Chapman, D.C.

    1993-01-01

    The discharge of produced waters to coastal estuaries has been common practice on the Texas coast for many years as these discharges are currently exempt from NPDES permitting. A study of the active produced water discharges in Nueces Bay, Texas revealed that all eight effluents were highly toxic as determined by the sea urchin (Arbacia punctulata) fertilization and embryological development assays. An alternative to discharging produced water into coastal estuaries is the use of disposal wells. Inactive wells can be converted to produced water disposal wells. Production records for the Nueces Bay, Texas area reveal that 52% of the gas wells produce less than 100 mcf/d and 50% of the oil wells produce less than 10 b/d. Using conservative estimates, the cost of converting an inactive well to a disposal well was calculated to be $31,500 which could be paid out by a gas well producing as little as 100 mcf/d in 26 months using only 50% of the well's profit. Combining multiple leases to a single disposal well would reduce proportionately the cost to each operation. This study has demonstrated that economically viable disposal options could be achieved in the Nueces Bay area through the imaginative and cooperative formation of produced water disposal ventures. This same model could be applied to produced water discharges in other coastal areas

  6. Produced water: Market and global trends - oil production - water production - choice of technology

    International Nuclear Information System (INIS)

    Robertson, Steve

    2006-01-01

    The presentation discusses various aspects of the world oil production, the energy demand, the future oil supply, the oil prices and the production growth. Some problems with produced water are also discussed as well as aspects of the market for produced water technology (tk)

  7. Some physiochemical and heavy metal concentration in surface water stream of Tutuka in the Kenyasi mining catchment area

    Directory of Open Access Journals (Sweden)

    B.M. Tiimub

    2012-09-01

    Full Text Available The research was conducted in the Akantansu stream of Tutuka in Kenyasi in the Brong Ahafo Region of Ghana from October 2010 to January 2011. The objectives of the study were to find out the contamination levels of pH, BOD5, Lead, Chromium, and Arsenic in the Akantansu stream of Tutuka to promote public health safety of people patronizing the stream for bathing and cooking. Determination of pH was achieved using Etech instrument (PC 300 series where as BOD5 level was assessed by means of empirical standard laboratory test which determined the relative oxygen requirements of waste water, effluents and polluted water using the standard procedure as per America Public Health Association (2006. An AAS 220 atomic absorption spectrometer was used for the analyses of heavy metals (lead, chromium and arsenic. The Research revealed that, the geometric mean levels of (0.01- 0.02, 0.03 – 0.26, 0 - 0.01, 3.99 – 7.06 mg/L and 5.64 – 6.40 for Arsenic, Lead, Chromium, BOD5 and pH compared to the EPA Maximum Permissible Limits of ( 0.5, 0.1, 0.1, 50 mg/L and 6-9 were respectively within the acceptable standards. However, due to slightly higher concentration of chromium (0.26 mg/L up the stream, the people of Tutuka may develop health effects such as nausea, vomiting, diarrhea, hallucinations, headaches, depression, sleeping disorders, skin cancers, tumours in lungs, bladder, kidney and liver if they continue to use water from the stream for bathing and cooking.

  8. A Review on overboard CEOR discharged produced water treatment and remediation

    Science.gov (United States)

    Rawindran, H.; Krishnan, S.; Sinnathambi, C. M.

    2017-06-01

    Produced water is a waste by-product generated during oil and gas recovery operations. It contains the mixture of organic and inorganic compounds. Produced water management is a challenge faced by the petroleum practitioners worldwide. Build-up of chemical wastes from produced water causes huge footprint, which results in high CapEx and OpEx. Different technologies are practiced by various practitioners to treat the produced waste water. However, the constituents removed by each technology and the degree of organic compound removal has to be considered to identify the potential and effective treatment technologies for offshore industrial applications. Current produced water technologies and their successful applications have advantages and disadvantages and can be ranked on the basis of several factors, such as their discharge limit into water bodies, reinjection in producing well, or for any miscellaneous beneficial use. This paper attempts to provide a review of existing physical and chemical treatment technologies used for management of produced water. Based on our analysis, suitable methods will be recommended for offshore waste water treatment technologies.

  9. Analyzing indicators of stream health for Minnesota streams

    Science.gov (United States)

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  10. Pollutant loads and water quality in streams of heavily populated and industrialised towns

    Science.gov (United States)

    Ntengwe, F. W.

    The availability of portable water is often taken for granted and water allowed to get polluted. Industries, settlements, farms, markets, leaking sewer lines, poor hygiene practices are all potential sources of pollution. Each pollutant has its own effect on water and the environment. A study was conducted in Kitwe Stream in order to establish whether engineering and other human activities affect water quality. Samples were collected at ten points, the first point being at the source while the tenth point was at the confluence with the Kafue River. The samples were analysed for physical, chemical and biological parameters. The results revealed high levels of concentration and loads of total suspended solids (TSS). The points with high TSS values were P4 (118 mg/l) and P6 (140 mg/l) representing daily loads of 7.74 and 8.71 tonnes, respectively. The highest values of coliform were found at points P9 (2099), P10 (2558) followed by P4 (1149), P5 (1256) and P6 (1370). High values of nitrites were found at points P4 (34 mg/l), P5 (32 mg/l), P6 (21 mg/l) and P10 (12.4 mg/l). Chlorides were also found to be high at points P4, P5 and P6 with values of 70 mg/l, 80 mg/l and 87 mg/l, respectively. These parameters exceeded the maximum contaminant level (MCL) of 100 mg/l for TSS, 1 mg/l for nitrites, 500/100 ml for coliform in Zambia. The conductivity and coliform were also found to be high (>500 μS/cm, >500). The benthic study revealed a normal diversity of invertebrates but chironomidae was found to be on average 60% of total species counted. The fish activity was high upstream and low downstream at the mouth of the stream where it joins the Kafue River. There was no fish activity at the middle points. The planktons (phytoplankton and zooplankton) count revealed a high count (15-30 per ml) in places where there was high fish activity and a low count (1-5 per ml) where there was no activity. The stream water quality was therefore affected by the human activities.

  11. Opportunities for membrane technologies in the treatment of mining and mineral process streams and effluents

    International Nuclear Information System (INIS)

    Awadalla, F.T.; Kumar, A.

    1994-01-01

    The membrane separation technologies of microfiltration, ultrafiltration, nanofiltration, and reverse osmosis are suitable for treating many dilute streams and effluents generated in mining and mineral processing. Membrane technologies are capable of treating these dilute streams in order to produce clean permeate water for recycle and a concentrate that can potentially be used for valuable metals recovery. Membrane technologies can be utilized alone, or in combination with other techniques as a polishing step, in these separation processes. A review of potential applications of membranes for the treatment of different process streams and effluents for water recycling and pollution control is given here. Although membranes may not be optimum in all applications, these technologies are recognized in the mining sector for the many potential advantages they can provide. 59 refs

  12. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  13. Factors Controlling Changes in Epilithic Algal Biomass in the Mountain Streams of Subtropical Taiwan.

    Directory of Open Access Journals (Sweden)

    Yi-Ming Kuo

    Full Text Available In upstream reaches, epilithic algae are one of the major primary producers and their biomass may alter the energy flow of food webs in stream ecosystems. However, the overgrowth of epilithic algae may deteriorate water quality. In this study, the effects of environmental variables on epilithic algal biomass were examined at 5 monitoring sites in mountain streams of the Wuling basin of subtropical Taiwan over a 5-year period (2006-2011 by using a generalized additive model (GAM. Epilithic algal biomass and some variables observed at pristine sites obviously differed from those at the channelized stream with intensive agricultural activity. The results of the optimal GAM showed that water temperature, turbidity, current velocity, dissolved oxygen (DO, pH, and ammonium-N (NH4-N were the main factors explaining seasonal variations of epilithic algal biomass in the streams. The change points of smoothing curves for velocity, DO, NH4-N, pH, turbidity, and water temperature were approximately 0.40 m s-1, 8.0 mg L-1, 0.01 mg L-1, 8.5, 0.60 NTU, and 15°C, respectively. When aforementioned variables were greater than relevant change points, epilithic algal biomass was increased with pH and water temperature, and decreased with water velocity, DO, turbidity, and NH4-N. These change points may serve as a framework for managing the growth of epilithic algae. Understanding the relationship between environmental variables and epilithic algal biomass can provide a useful approach for maintaining the functioning in stream ecosystems.

  14. Stream-water and groundwater quality in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area, Pottawatomie County, Oklahoma, 2012-13

    Science.gov (United States)

    Becker, Carol J.

    2014-01-01

    The Citizen Potawatomi Nation needs to characterize their existing surface-water and groundwater resources in and near their tribal jurisdictional area to complete a water-resource management plan. Water resources in this area include surface water from the North Canadian and Little Rivers and groundwater from the terrace and alluvial aquifers and underlying bedrock aquifers. To assist in this effort, the U.S. Geological Survey (USGS), in cooperation with the Citizen Potawatomi Nation, collected water-quality samples at 4 sites on 3 streams and from 30 wells during 2012 and 2013 in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area in central Oklahoma. Stream samples were collected eight times on the North Canadian River at the upstream USGS streamflow-gaging station North Canadian River near Harrah, Okla. (07241550); at the downstream USGS streamflow-gaging station North Canadian River at Shawnee, Okla. (07241800); and on the Little River at the USGS streamflow-gaging station Little River near Tecumseh, Okla., (07230500). Stream samples also were collected three times at an ungaged site, Deer Creek near McLoud, Okla. (07241590). Water properties were measured, and water samples were analyzed for concentrations of major ions, nutrients, trace elements, counts of fecal-indicator bacteria, and 69 organic compounds.

  15. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Science.gov (United States)

    Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  16. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Directory of Open Access Journals (Sweden)

    Caren S Goldberg

    Full Text Available Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus. We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  17. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  18. Ecological health in the Nation's streams

    Science.gov (United States)

    Carlisle, Daren M.; Woodside, Michael D.

    2013-01-01

    Aquatic biological communities, which are collections of organisms, are a direct measure of stream health because they indicate the ability of a stream to support life. This fact sheet highlights selected findings of a national assessment of stream health by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The assessment was unique in that it integrated the condition of three biological communities—algae, macroinvertebrates, and fish—as well as measures of streamflow modification, pesticides, nutrients, and other factors. At least one biological community was altered at 83 percent of assessed streams, and the occurrence of altered communities was highest in urban streams. Streamflows were modified at 86 percent of assessed streams, and increasing severity of streamflow modification was associated with increased occurrence of altered biological communities. Agricultural and urban land use in watersheds may contribute pesticides and nutrients to stream waters, and increasing concentrations of these chemicals were associated with increased occurrence of altered biological communities.

  19. Innovative Water Management Technology to Reduce Environment Impacts of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James; Rodgers, John; Alley, Bethany; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

    2013-05-15

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  20. Innovative Water Management Technology to Reduce Environmental Impacts of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James; Rodgers, John; Alley, Bethany; Beebe, Alex; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

    2013-05-15

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  1. Innovative Water Management Technology to Reduce Environment Impacts of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James W. [Clemson Univ., SC (United States); Rodgers, John H. [Clemson Univ., SC (United States); Alley, Bethany [Clemson Univ., SC (United States); Beebe, Alex [Clemson Univ., SC (United States); Coffey, Ruthanne [Clemson Univ., SC (United States); Jurinko, Kristen [Clemson Univ., SC (United States); Pardue, Michael [Clemson Univ., SC (United States); Ritter, Tina [Clemson Univ., SC (United States); Spacil, Michael M. [Clemson Univ., SC (United States)

    2013-08-08

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  2. Influence of maximum water temperature on occurrence of Lahontan cutthroat trout within streams

    Science.gov (United States)

    J. Dunham; R. Schroeter; B. Rieman

    2003-01-01

    We measured water temperature at 87 sites in six streams in two different years (1998 and 1999) to test for association with the occurrence of Lahontan cutthroat trout Oncorhynchus clarki henshawi. Because laboratory studies suggest that Lahontan cutthroat trout begin to show signs of acute stress at warm (>22°C) temperatures, we focused on the...

  3. A simple metric to predict stream water quality from storm runoff in an urban watershed.

    Science.gov (United States)

    Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S

    2010-01-01

    The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.

  4. The impact of the High Park Wildfire on stream water quality and implications for drinking water treatment

    Science.gov (United States)

    Rosario-Ortiz, F.

    2014-12-01

    The Cache La Poudre (CLP) watershed in Northern Colorado was impacted by the High Park fire, which burned from June 9th through July 1st of 2012. The CLP watershed serves as a source of drinking water for three water districts in Northern Colorado, including the City of Fort Collins. Sampling was conducted during four different storm events immediately after the fire was extinguished. The sampling was expanded through spring and summer 2013 in order to capture the flush of debris from the wildfire into the CLP River. Samples were also collected from an unburned control site for comparison. Surface water samples were analyzed for parameters including nutrients, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) characterization. In addition, bench scale treatment analyses were conducted to better understand the impacts of the wildfire on treatment processes for drinking water utilities. Lastly, leaching of stream bank sediments was conducted to determine the potential longer term inputs of burned material to the stream water. The overarching goals of the sampling campaign were to: 1) Evaluate the impact that wildfires have on the properties of DOM, specifically with respect to DBP formation and speciation (TTHM, HAA5, HAN, NDMA); 2) Establish the condition under which the source water could be effectively treated (using coagulation) to remove DBP precursors; 3) Evaluate the use of fluorescence spectroscopy as a surrogate for the concentration and reactivity of DOM in the CLP watershed; and 4) Assess the quantity and quality of DOM leached from streambed sediments. Preliminary results showed elevated DOC levels during the storm events and at wildfire impacted sites compared to the unburned site following the fire. DBP yields were higher for the four storm events following the fire when compared to yields for the control site located upstream of the burn area, and also when compared to data from a previous DBP study conducted on similar

  5. Quest for clean streams in North Carolina: An historical account of stream pollution control in North Carolina. Special report

    International Nuclear Information System (INIS)

    Howells, D.H.

    1990-11-01

    The second historical report dealing with North Carolina's water resources traces the evolution of the state's stream pollution control regulations and programs. From the colonial development of streams and rivers to power mills to the effects of land conversion for agriculture and later for commercial and industrial facilities, the report catalogs the various of stream pollution over time. Developments of waste water treatment under both state and federal laws and regulations are described. The report concluded with a look at contemporary stream pollution issues

  6. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquire water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation

  7. The Northeast Stream Quality Assessment

    Science.gov (United States)

    Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.

    2016-04-22

    In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).

  8. Lattice Boltzmann simulations of attenuation-driven acoustic streaming

    International Nuclear Information System (INIS)

    Haydock, David; Yeomans, J M

    2003-01-01

    We show that lattice Boltzmann simulations can be used to model the attenuation-driven acoustic streaming produced by a travelling wave. Comparisons are made to analytical results and to the streaming pattern produced by an imposed body force approximating the Reynolds stresses. We predict the streaming patterns around a porous material in an attenuating acoustic field

  9. Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill

    Science.gov (United States)

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Fogarty, Lisa R.; Johnson, Heather E.; Gibson, Kristen E.; Focazio, Michael J.; Schwab, Kellogg J.; Hubbard, Laura E.; Foreman, William T.

    2015-01-01

    Manure spills to streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for: fecal indicator bacteria (FIB); the fecal indicator chemicals cholesterol and coprostanol; 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence polymerase chain reaction (PCR) for viable cells; one swine-specific Escherichia coli toxin gene (STII) by quantitative PCR (qPCR); and nine human and animal viruses by qPCR, or reverse-transcriptase qPCR. Twelve days post-spill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1-2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli, were detected in water or sediment. STII increased from undetectable before, or above the spill, to 105 copies/100 mL water 12 days post-spill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells post-spill. Eighteen days post-spill porcine adenovirus and teschovirus were detected 5.6 km downstream. Sediment FIB concentrations (per gram wet weight) were greater than in water, and sediment was a continuous reservoir of genes and chemicals post-spill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days post-spill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes, and the potential for human and veterinary health consequences.

  10. Water and bed-material quality of selected streams and reservoirs in the Research Triangle area of North Carolina, 1988-94

    Science.gov (United States)

    Oblinger, C.J.; Treece, M.W.

    1996-01-01

    The Triangle Area Water Supply Monitoring Project was formed by a consortium of local governments and governmental agencies in cooperation with the U.S. Geological Survey to supplement existing data on conventional pollutants, nutrients, and metals to enable eventual determination of long-term trends; to examine spatial differences among water supplies within the region, especially differences between smaller upland sources, large multipurpose reservoirs, and run-of-river supplies; to provide tributary loading inlake data for predictive modeling of Falls of the Neuse and B. Everett Jordan reservoirs; and to establish a database for synthetic organic compounds. Water-quality sampling began in October 1988 at 35 sites located on area run-of-river and reservoir water supplies and their tributaries. Sampling has continued through 1994. Samples were analyzed for major ions, nutrients, trace metals, pesticides, and semivolatile and volatile organic compounds. Monthly concentration data, high-flow concentration data, and data on daily mean streamflow at most stream sites were used to calculate loadings of nitrogen, phosphorus, suspended sediment, and trace metals to reservoirs. Stream and lake sites were assigned to one of five site categories-- (1) rivers, (2) large multipurpose reservoirs, (3) small water-supply reservoirs, (4) streams below urban areas and wastewater-treatment plants, and (5) headwater streams--according to general site characteristics. Concentrations of nitrogen species, phosphorus species, and selected trace metals were compared by site category using nonparametric analysis of variance techniques and qualitatively (trace metals). Wastewater-treatment plant effluents and urban runoff had a significant impact on water quality compared to reservoirs and headwater streams. Streams draining these areas had more mineralized water than streams draining undeveloped areas. Moreover, median nitrogen and nitrite plus nitrate concentrations were significantly

  11. Quality and mutagenicity of water and sediment of the streams impacted by the former uranium mine area Olší–Drahonín (Czech Republic)

    International Nuclear Information System (INIS)

    Hudcová, H.; Badurová, J.; Rozkošný, M.; Sova, J.; Funková, R.; Svobodová, J.

    2013-01-01

    The water quality research performed in the years 2003–2010 demonstrated an impact of the mine water pumped from the closed Olší uranium mine and discharged from the mine water treatment plant (MWTP) and groundwater from springs in the area on the water quality of the Hadůvka stream. The water ecosystems of the lower part of the Hadůvka stream are impacted mainly by water originated from the springs located in the stream valley and drained syenit subsoil, naturally rich in uranium. Those inflows caused a very high concentration of uranium measured in the water of the stream, which exceeds the given limit value. No negative impact on the water ecosystems of the receiving Bobrůvka River was found. This reduction of impact is caused by five times higher average daily flow rate of the Bobrůvka River in comparison with the Hadůvka stream, which results in a sufficient dilution of pollution from the Hadůvka. - Highlights: ► No significant impact of former uranium mining in the Olší mine area on the water ecosystems. ► The water ecosystems impacted mainly by natural sources of uranium. ► The occurrence of mutagenic compounds in the surface water was found using Ames fluctuated test. ► The mutagenicity was repeatedly detected in sediments. ► None of the samples showed cytotoxic effects in tests with S. typhimurium or P. phosphoreum organisms.

  12. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    Energy Technology Data Exchange (ETDEWEB)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  13. Towards benchmarking an in-stream water quality model

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A method of model evaluation is presented which utilises a comparison with a benchmark model. The proposed benchmarking concept is one that can be applied to many hydrological models but, in this instance, is implemented in the context of an in-stream water quality model. The benchmark model is defined in such a way that it is easily implemented within the framework of the test model, i.e. the approach relies on two applications of the same model code rather than the application of two separate model codes. This is illustrated using two case studies from the UK, the Rivers Aire and Ouse, with the objective of simulating a water quality classification, general quality assessment (GQA, which is based on dissolved oxygen, biochemical oxygen demand and ammonium. Comparisons between the benchmark and test models are made based on GQA, as well as a step-wise assessment against the components required in its derivation. The benchmarking process yields a great deal of important information about the performance of the test model and raises issues about a priori definition of the assessment criteria.

  14. Off-Stream Watering Systems and Partial Barriers as a Strategy to Maximize Cattle Production and Minimize Time Spent in the Riparian Area.

    Science.gov (United States)

    Rawluk, Ashley A; Crow, Gary; Legesse, Getahun; Veira, Douglas M; Bullock, Paul R; González, Luciano A; Dubois, Melanie; Ominski, Kim H

    2014-10-29

    A study was conducted in 2009 at two locations in Manitoba (Killarney and Souris), Canada to determine the impact of off-stream waterers (OSW) with or without natural barriers on (i) amount of time cattle spent in the 10 m buffer created within the riparian area, referred to as the riparian polygon (RP), (ii) watering location (OSW or stream), and (iii) animal performance measured as weight gain. This study was divided into three 28-day periods over the grazing season. At each location, the pasture-which ranged from 21.0 ha to 39.2 ha in size-was divided into three treatments: no OSW nor barriers (1CONT), OSW with barriers along the stream bank to deter cattle from watering at the stream (2BARR), and OSW without barriers (3NOBARR). Cattle in 2BARR spent less time in the RP in Periods 1 (p = 0.0002), 2 (p = 0.1116), and 3 (p natural barriers on deterring cattle from the riparian area between periods and locations may be partly attributable to the environmental conditions present during this field trial as well as difference in pasture size and the ability of the established barriers to deter cattle from using the stream as a water source. Treatment had no significant effect (p > 0.05) on cow and calf weights averaged over the summer period. These results indicate that the presence of an OSW does not create significant differences in animal performance when used in extensive pasture scenarios such as those studied within the present study. Whereas the barriers did not consistently discourage watering at the stream, the results provide some indication of the efficacy of the OSW as well as the natural barriers on deterring cattle from the riparian area.

  15. Hydrography - Streams and Shorelines

    Data.gov (United States)

    California Natural Resource Agency — The hydrography layer consists of flowing waters (rivers and streams), standing waters (lakes and ponds), and wetlands -- both natural and manmade. Two separate...

  16. Assessing the suitability of stream water for five different uses and its aquatic environment.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2013-01-01

    Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.

  17. Water diffusion in cytoplasmic streaming in Elodea internodal cells under the effect of antimitotic agents.

    Science.gov (United States)

    Vorob'ev, Vladimir N; Anisimov, Alexander V; Dautova, Nailya R

    2008-07-01

    The translational displacement of the cytoplasmic water in Elodea stem cells resulting from protein motor activity was measured using the NMR method. A 24-h treatment with vincristine results in a reduction of the translational displacement of the cytoplasmic water. With a constant cytoplasmic streaming velocity, the dynamics of the translational displacement of the cytoplasmic water under the effect of taxol are characterized by a continuous increase at a concentration of 0.05 mM, and reaching a plateau at a concentration of 0.5 mM.

  18. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield

    Science.gov (United States)

    Chen, Rong; Qi, Mei; Zhang, Guohui; Yi, Chenggao

    2018-02-01

    The application of polymer flooding technology in oilfields can result in polymer content increased in produced water. This increasing made produced water quality become poor. The efficiency of produced water processing decreased significantly. Processed water quality seriously exceeded criterion’s stipulation. The presence of the polymer in produced water is the main reason for more difficulties in processing of produced water, therefore the polymer degradation technology is a key coefficient in produced water processing for polymer flooding oilfields. We evaluated several physical and chemical polymer degradation methods with the solution of separated water from polymer flooding oilfields and hydrolyzed polyacrylamide. The experiment results can provide a basis for produced water processing technologies application in polymer flooding oilfields.

  19. Seasonal and spatial variations of glyphosate residues in surface waters of El Crespo stream, Buenos Aires province, Argentina.

    Science.gov (United States)

    Perez, Debora; Okada, Elena; Aparicio, Virginia; Menone, Mirta; Costa, Jose Luis

    2017-04-01

    El Crespo stream is located inside a small watershed (52,000 Ha) which is only influenced by farming activities without urban or industrial impact. The watershed can be divided in two areas, the southern area (upstream), mainly composed of intensive crops and the northern area (downstream) used only for extensive livestock. In this sense, "El Crespo" stream in an optimal site for monitoring screening of pesticide residues. The objective of this work was to determine the seasonal and spatial variations of glyphosate (GLY), in surface waters of "El Crespo" stream. We hypothesized that in surface waters of "El Crespo" stream the levels of GLY vary depending of the season and rainfall events. The water sampling was carried out from October to June (2014-2015) in two sites: upstream (US) and downstream (DS), before and after rain events. The water samples were collected by triplicate in 1 L polypropylene bottles and stored at -20°C until analysis. GLY was extracted from unfiltered water samples with a buffer solution (100 mM Na2B4O7•10H2O/100 mM K3PO4, pH=9) and derivatized with 9-fluorenylmethylchloroformate (1 mg/mL in acetonitrile). Afterwards samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The detection limit (LD) was 0.1 μg/L and the quantification limit (QL) was 0.5 μg/L. The rainfall regime was obtained from the database of INTA Balcarce. GLY was detected in 92.3% of the analyzed samples. In the US site, were GLY is regularly applied, the highest GLY concentration was registered in October (2.15 ± 0.16 μg/L); from November to June, the GLY levels decreased from 1.97 ± 0.17 μg/L to rain falls. On the rest of the months, the rainfall events were scarce and the GLY concentrations decreased in both. These results indicated that in the El Crespo stream the GLY residues vary according the applications in the field and the rainfall regime and the DS site is probably a sump of GLY residues applied upstream in

  20. Off-Stream Watering Systems and Partial Barriers as a Strategy to Maximize Cattle Production and Minimize Time Spent in the Riparian Area

    Directory of Open Access Journals (Sweden)

    Ashley A. Rawluk

    2014-10-01

    Full Text Available A study was conducted in 2009 at two locations in Manitoba (Killarney and Souris, Canada to determine the impact of off-stream waterers (OSW with or without natural barriers on (i amount of time cattle spent in the 10 m buffer created within the riparian area, referred to as the riparian polygon (RP, (ii watering location (OSW or stream, and (iii animal performance measured as weight gain. This study was divided into three 28-day periods over the grazing season. At each location, the pasture—which ranged from 21.0 ha to 39.2 ha in size—was divided into three treatments: no OSW nor barriers (1CONT, OSW with barriers along the stream bank to deter cattle from watering at the stream (2BARR, and OSW without barriers (3NOBARR. Cattle in 2BARR spent less time in the RP in Periods 1 (p = 0.0002, 2 (p = 0.1116, and 3 (p < 0.0001 at the Killarney site compared to cattle in 3NOBARR at the same site. Cattle in 2BARR at the Souris site spent more time in the RP in Period 1 (p < 0.0001 and less time in Period 2 (p = 0.0002 compared to cattle in 3NOBARR. Cattle did use the OSW, but not exclusively, as watering at the stream was still observed. The observed inconsistency in the effectiveness of the natural barriers on deterring cattle from the riparian area between periods and locations may be partly attributable to the environmental conditions present during this field trial as well as difference in pasture size and the ability of the established barriers to deter cattle from using the stream as a water source. Treatment had no significant effect (p > 0.05 on cow and calf weights averaged over the summer period. These results indicate that the presence of an OSW does not create significant differences in animal performance when used in extensive pasture scenarios such as those studied within the present study. Whereas the barriers did not consistently discourage watering at the stream, the results provide some indication of the efficacy of the OSW as well

  1. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  2. Stream Water, Carbon and Total Nitrogen Load Responses to a Simulated Emerald Ash Borer Infestation in Black Ash Dominated Headwater Wetlands

    Science.gov (United States)

    Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.

    2017-12-01

    The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period

  3. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA

    Science.gov (United States)

    Hladik, Michelle; Kolpin, Dana W.; Kuivila, Kathryn

    2014-01-01

    Neonicotinoid insecticides are of environmental concern, but little is known about their occurrence in surface water. An area of intense corn and soybean production in the Midwestern United States was chosen to study this issue because of the high agricultural use of neonicotinoids via both seed treatments and other forms of application. Water samples were collected from nine stream sites during the 2013 growing season. The results for the 79 water samples documented similar patterns among sites for both frequency of detection and concentration (maximum:median) with clothianidin (75%, 257 ng/L:8.2 ng/L) > thiamethoxam (47%, 185 ng/L: imidacloprid (23%, 42.7 ng/L: <2 ng/L). Neonicotinoids were detected at all nine sites sampled even though the basin areas spanned four orders of magnitude. Temporal patterns in concentrations reveal pulses of neonicotinoids associated with rainfall events during crop planting, suggesting seed treatments as their likely source.

  4. Physico-chemical analyses and corrosion effect of produced water ...

    African Journals Online (AJOL)

    Physico-chemical characteristics of the composite produced water sample used for the study has a higher concentration compared with DPR standard for discharge of produced formation water into surface environment. It was assumed that the corrosion of the coupons was due to presence of high chemical matters in the ...

  5. Assessment of produced water contaminated soils to determine remediation requirements

    International Nuclear Information System (INIS)

    Clodfelter, C.

    1995-01-01

    Produced water and drilling fluids can impact the agricultural properties of soil and result in potential regulatory and legal liabilities. Produced water typically is classified as saline or a brine and affects surface soils by increasing the sodium and chloride content. Sources of produced water which can lead to problems include spills from flowlines and tank batteries, permitted surface water discharges and pit areas, particularly the larger pits including reserve pits, emergency pits and saltwater disposal pits. Methods to assess produced water spills include soil sampling with various chemical analyses and surface geophysical methods. A variety of laboratory analytical methods are available for soil assessment which include electrical conductivity, sodium adsorption ratio, cation exchange capacity, exchangeable sodium percent and others. Limiting the list of analytical parameters to reduce cost and still obtain the data necessary to assess the extent of contamination and determine remediation requirements can be difficult. The advantage to using analytical techniques is that often regulatory remediation standards are tied to soil properties determined from laboratory analysis. Surface geophysical techniques can be an inexpensive method to rapidly determine the extent and relative magnitude of saline soils. Data interpretations can also provide an indication of the horizontal as well as the vertical extent of impacted soils. The following discussion focuses on produced water spills on soil and assessment of the impacted soil. Produced water typically contains dissolved hydrocarbons which are not addressed in this discussion

  6. Experimental study of simulant melt stream-water thermal interaction in pool and narrow geometries

    International Nuclear Information System (INIS)

    Narayanan, K.S.; Jasmin Sudha, A.; Murthy, S.S.; Rao, E.H.V.M.; Lydia, G.; Das, S.K.; Harvey, J.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: Small scale experiments were carried out to investigate the thermal interaction characteristics of a few kilograms of Sn Pb, Bi and Zn as hot melt, in the film boiling region of water in an attempt to simulate a coherent fuel coolant interaction during a postulated severe accident in a nuclear reactor. Melt stream solidification and detached debris generation were studied with different melt superheat up to 200 deg. C, at different coolant temperatures of 30 deg. C, 50 deg. C, 70 deg. C, 90 deg. C, in pool geometry and in long narrow coolant column. The material was heated in an Alumina crucible and poured through a hot stainless steel funnel with a nozzle diameter of 7.7 mm, into the coolant. A stainless steel plate was used to collect the solidified mass after the interaction. Temperature monitoring was done in the coolant column close to the melt stream. The melt stream movement inside the coolant was imaged using a video camera at 25 fps. Measured melt stream entry velocity was around 1.5 m/sec. For low melt superheat and low coolant temperature, solidified porous tree like structure extended from the collector plate up to the melt release point. For water temperature of 70 deg. C, the solidified bed height at the center was found to decrease with increase in the melt superheat up to 150 deg. C. Fragmentation was found to occur when the melt superheat exceeded 200 deg. C. Particle size distribution was obtained for the fragmented debris. In 1D geometry, with 50 deg. C superheat, columnar solidification was observed with no fine debris. The paper gives the details of the results obtained in the experiments and highlights the role of Rayleigh-Taylor, Kelvin-Helmholtz instabilities and the melt physical properties on the fragmentation kinetics. (authors)

  7. Laboratory study on streaming potential for exploring underground water flow; Shitsunai jikken ni yoru ryudo den`i wo mochiita mizu michi tansa no kanosei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H; Shima, H [Oyo Corp., Tokyo (Japan)

    1997-05-27

    To investigate a possibility of exploration of underground water flow as well as to grasp the underground fluid flow by measuring streaming potential at the ground surface, some experiments were conducted using a model unit by considering the difference of permeability. For this experimental unit, water is driven by adding head difference between the polyethylene vessel filled with water and the experimental water tank. The size of water tank is 350{times}160 mm with a height of 160 mm. Twenty platinum electrodes are set on the cover of water tank. Toyoura standard sand and Kanto loam were used for the experiments. For the experiments, fluid was injected in various combined models by considering the permeability, to measure the streaming potential. As a result, it was explained by the streaming potential that the fluid flows in a form of laminar flow in the experimental water tank, and that the movement of fluid in the Kanto loam is quite slow. It was also confirmed that the streaming potential method is an effective technique for grasping the movement of fluid. 3 refs., 8 figs.

  8. Produced water reuse aiming reinjection; Reuso de agua produzida visando reinjecao

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Hora, Jairo Maynard da Fonseca; Guilherme, Claudio [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    As an oil reservoir goes aging, the BSW (water and solid content associated to the crude oil ) from the produced oil increase acutely. As this associated water is isolated from the crude oil, it presents several contaminants with concentrations above to that specified in the environmental norms for its discharge. Attending the environmental legislation, some times, is very difficult and can even enable the entire project. As the reservoir becomes old, enhance techniques are necessary to maintain the oil producing. A common recovery mechanism, called secondary recovery, is the water injection. Commonly the water for secondary recovery is not easily available. The main objective of this work is present a treatment system for produced water used in a specific field in the Northwest region. This treatment involves reinjection of this water after filtration. We will have a high environmental benefited, avoiding the discharge of produced water, highly toxic, and at the same time enhanced the oil production. In this work, we develop a method to modify the physical chemistry characteristics of the produced water and increase the treatment process efficiency. (author)

  9. Dispersal of plant fragments in small streams

    DEFF Research Database (Denmark)

    Riis, T.; Sand-Jensen, K.

    2006-01-01

    1. Streams are subject to frequent natural and anthropogenic disturbances that cause sediment erosion and loss of submerged vegetation. This loss makes downstream transport and retention of vegetative propagules on the streambed very important for re-establishing vegetation cover. We measured...... with the relative contact between the flowing water and streambed, bank and vegetation. Thus, the retention coefficients were highest (0.02-0.12 m-1) in shallow reaches with a narrow, vegetation-free flow channel. Here there were no significant differences between E. canadensis and R. peltatus. Retention...... coefficients were lowest (0.0005-0.0135 m-1) in deeper reaches with wider vegetation-free flow channels. Retention of E. canadensis was up to 16 times more likely than retention of R. peltatus. 5. Overall, the longitudinal position in the stream system of source populations of species capable of producing...

  10. Lithium recovery from shale gas produced water using solvent extraction

    International Nuclear Information System (INIS)

    Jang, Eunyoung; Jang, Yunjai; Chung, Eunhyea

    2017-01-01

    Shale gas produced water is hypersaline wastewater generated after hydraulic fracturing. Since the produced water is a mixture of shale formation water and fracturing fluid, it contains various organic and inorganic components, including lithium, a useful resource for such industries as automobile and electronics. The produced water in the Marcellus shale area contains about 95 mg/L lithium on average. This study suggests a two-stage solvent extraction technique for lithium recovery from shale gas produced water, and determines the extraction mechanism of ions in each stage. All experiments were conducted using synthetic shale gas produced water. In the first-stage, which was designed for the removal of divalent cations, more than 94.4% of Ca"2"+, Mg"2"+, Sr"2"+, and Ba"2"+ ions were removed by using 1.0 M di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant. In the second-stage, for lithium recovery, we could obtain a lithium extraction efficiency of 41.2% by using 1.5 M D2EHPA and 0.3 M tributyl phosphate (TBP). Lithium loss in the first-stage was 25.1%, and therefore, the total amount of lithium recovered at the end of the two-step extraction procedure was 30.8%. Through this study, lithium, one of the useful mineral resources, could be selectively recovered from the shale gas produced water and it would also reduce the wastewater treatment cost during the development of shale gas. - Highlights: • Lithium was extracted from shale gas produced water using an organic solvent. • Two-stage solvent extraction technique was applied. • Divalent cations were removed in the first stage by D2EHPA. • Lithium was selectively recovered in the second stage by using TBP with D2EHPA.

  11. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  12. Assessing biogeochemical cycling and transient storage of surface water in Eastern Siberian streams using short-term solute additions

    Science.gov (United States)

    Schade, J. D.; Seybold, E.; Drake, T. W.; Bulygina, E. B.; Bunn, A. G.; Chandra, S.; Davydov, S.; Frey, K. E.; Holmes, R. M.; Sobczak, W. V.; Spektor, V. V.; Zimov, S. A.; Zimov, N.

    2009-12-01

    Recent studies highlight the role of stream networks in the processing of nutrient and organic matter inputs from the surrounding watershed. Clear evidence exists that streams actively regulate fluxes of carbon, nitrogen, and phosphorus from upland terrestrial ecosystems to downstream aquatic environments. This is of particular interest in Arctic streams because of the potential impact of permafrost thaw due to global warming on inputs of nutrients and organic matter to small streams high in the landscape. Knowledge of functional characteristics of these stream ecosystems is paramount to our ability to predict changes in stream ecosystems as climate changes. Biogeochemical models developed by stream ecologists, specifically nutrient spiraling models, provide a set of metrics that we used to assess nutrient processing rates in several streams in the Eastern Siberian Arctic. We quantified these metrics using solute addition experiments in which nitrogen and phosphorus were added simultaneously with chloride as a conservative tracer. We focused on 5 streams, three flowing across upland yedoma soils and two floodplain streams. Yedoma streams showed higher uptake of N than P, suggesting N limitation of biological processes, with large variation between these three streams in the severity of N limitation. Floodplain streams both showed substantially higher P uptake than N uptake, indicating strong P limitation. Given these results, it is probable that these two types of streams will respond quite differently to changes in nutrient and organic matter inputs as permafrost thaws. Furthermore, uptake was strongly linked to discharge and transient storage of surface water, measured using temporal patterns of the conservative tracer, with higher nutrient uptake in low discharge, high transient storage streams. Given the possibility that both discharge and nutrient inputs will increase as permafrost thaws, longer-term nutrient enrichment experiments are needed to develop

  13. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    Science.gov (United States)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  14. Coldwater fish in wadeable streams [Chapter 8

    Science.gov (United States)

    Jason B. Dunham; Amanda E. Rosenberger; Russell F. Thurow; C. Andrew Dolloff; Philip J. Howell

    2009-01-01

    Small, wadeable streams comprise the majority of habitats available to fishes in fluvial networks. Wadeable streams are generally less than 1 m deep, and fish can be sampled without the use of water craft. Cold waters are defined as having mean 7-d summer maximum water temperatures of less than 20°C and providing habitat for coldwater fishes.

  15. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    International Nuclear Information System (INIS)

    Sonesten, Lars

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  16. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Energy Technology Data Exchange (ETDEWEB)

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  17. Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data

    Science.gov (United States)

    Wang, Liping; Jiang, Weiwei; Song, Jinxi; Dou, Xinyi; Guo, Hongtao; Xu, Shaofeng; Zhang, Guotao; Wen, Ming; Long, Yongqing; Li, Qi

    2017-08-01

    Investigating the interaction of groundwater and surface water is key to understanding the hyporheic processes. The vertical water fluxes through a streambed were determined using Darcian flux calculations and vertical sediment temperature profiles to assess the pattern and magnitude of groundwater/surface-water interaction in Beiluo River, China. Field measurements were taken in January 2015 at three different stream morphologies including a meander bend, an anabranching channel and a straight stream channel. Despite the differences of flux direction and magnitude, flux directions based on vertical temperature profiles are in good agreement with results from Darcian flux calculations at the anabranching channel, and the Kruskal-Wallis tests show no significant differences between the estimated upward fluxes based on the two methods at each site. Also, the upward fluxes based on the two methods show similar spatial distributions on the streambed, indicating (1) that higher water fluxes at the meander bend occur from the center of the channel towards the erosional bank, (2) that water fluxes at the anabranching channel are higher near the erosional bank and in the center of the channel, and (3) that in the straight channel, higher water fluxes appear from the center of the channel towards the depositional bank. It is noted that higher fluxes generally occur at certain locations with higher streambed vertical hydraulic conductivity ( K v) or where a higher vertical hydraulic gradient is observed. Moreover, differences of grain size, induced by stream morphology and contrasting erosional and depositional conditions, have significant effects on streambed K v and water fluxes.

  18. Multi-scale streambed topographic and discharge effects on hyporheic at the stream network scale in confined streams

    Science.gov (United States)

    Alessandra Marzadri; Daniele Tonina; James A. McKean; Matthew G. Tiedemann; Rohan M. Benjankar

    2014-01-01

    The hyporheic zone is the volume of the streambed sediment mostly saturated with stream water. It is the transitional zone between stream and shallow-ground waters and an important ecotone for benthic species, including macro-invertebrates, microorganisms, and some fish species that dwell in the hyporheic zone for parts of their lives. Most hyporheic analyses are...

  19. Effects of stream water chemistry and tree species on release and methylation of mercury during litter decomposition.

    Science.gov (United States)

    Tsui, Martin Tsz Ki; Finlay, Jacques C; Nater, Edward A

    2008-12-01

    Foliage of terrestrial plants provides an important energy and nutrient source to aquatic ecosystems but also represents a potential source of contaminants, such as mercury (Hg). In this study, we examined how different stream water types and terrestrial tree species influenced the release of Hg from senesced litter to the water and its subsequent methylation during hypoxic litter decomposition. After laboratory incubations of maple leaf litter for 66 days, we observed 10-fold differences in dissolved Hg (DHg, tree species collected at the same site and incubated with the same source water, litter from slower decomposing species (e.g., cedar and pine) yielded higher DHg concentrations than those with more labile carbon (e.g., maple and birch). Percent MeHg, however, was relatively similar among different leaf species (i.e., 61-86%). Our study is the first to demonstrate that stream water chemistry and terrestrial plant litter characteristics are important factors determining Hg release and methylation during hypoxic litter decomposition. These results suggest that certain watershed and aquatic ecosystem properties can determine the levels of MeHg inputs during litterfall events.

  20. Water Quality, Macroinvertebrates, and Fisheries in Tailwaters and Related Streams. An Annotated Bibliography.

    Science.gov (United States)

    1981-05-01

    more rapidly available source of energy and protein below the dam than that normally present in unregulated streams. Benthic diversity was lowest at...robusta; bluehead sucker, Pantosteus delphinus; and humpback sucker, Xyrauchen texanus) in Dinosaur National Monument were con- ducted from May 1964 to...duced successfully in Dinosaur National Monument every year since impoundment. During years of high summer discharge from the dam resultant lower water

  1. Collecting Currents with Water Turbines

    Science.gov (United States)

    Allen, J.; Allen, S.

    2017-12-01

    Our science poster is inspired by Florida Atlantic University's recent program to develop three types of renewable energy. They are using water turbines and the Gulf Stream Current to produce a renewable energy source. Wave, tidal and current driven energy. Our poster is called "Collecting Currents with Water Turbines". In our science poster, the purpose was to see which turbine design could produce the most power. We tested three different variables, the number of blades (four, six, and eight), the material of the blades and the shape of the blades. To test which number of blades produced the most power we cut slits into a cork. We used plastic from a soda bottle to make the blades and then we put the blades in the cork to make the turbines. We observed each blade and how much time it took for the water turbines to pull up 5 pennies. Currently water turbines are used in dams to make hydroelectric energy. But with FAU we could understand how to harness the Gulf Stream current off Florida's coast we could soon have new forms of renewable energy.

  2. “Experimental study on water pollution tendencies around Lobuliet, Khor bou and Luri streams in Juba, South Sudan

    Directory of Open Access Journals (Sweden)

    John Leju Celestino Ladu

    2012-09-01

    Full Text Available Urbanization and population demand for resources in Juba has led to pollution of aquatic ecosystems and deteriorated water quality. The streams water samples in Juba, central equatoria state, were collected in sterile 500ml plastic containers and instantaneously experimented. The pH, total solids, total dissolved solids, alkalinity and nitrate were used for evaluation. The results were then compared with standard permissible limits. The pH for Khor bou and Luri streams ranges from 6.1 to 6.7. Lobuliet stream showed abnormal pH value ranging from 9.7 to 9.9. Alkalinity ranges from 106.67 to 1060.33 mg/l. Total dissolved solids (TDS ranges from 0.002mg/ml to 20.00mg/l. Statistical analysis using ANOVA indicated that TDS was insignificantly different (p>0.05 among the sites sampled. The nitrite level was low ranging from 0.04mg/l to 0.09mg/l. The cadmium and lead concentration ranges from 0.86mg/l to 1.92mg/l and 0.29mg/l to 0.95mg/l respectively. Analysis of variance showed the concentration of cadmium and lead were significantly different (P<0.05 among the sites sampled. Lobuliet stream had the highest concentration of heavy metals. The study concluded that pollution tendencies were attributed to the discharge of municipal and industrial effluent to the streams and if not properly tackled, may pose adverse impacts to the biogeochemical cycle.

  3. Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes

    International Nuclear Information System (INIS)

    Artigas, Joan; García-Berthou, Emili; Gómez, Nora; Romaní, Anna M; Sabater, Sergi; Bauer, Delia E; Cochero, Joaquín; Cortelezzi, Agustina; Rodrigues-Capítulo, Alberto; Castro, Maria I; Donato, John C; Colautti, Darío C; Elosegi, Arturo; Feijoó, Claudia; Giorgi, Adonis; Leggieri, Leonardo; Muñoz, Isabel

    2013-01-01

    We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6–4-fold following a before–after control–impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2–77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9–48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure. (letter)

  4. Evaluation of Jacuba stream water and industrial effluents quality by SR-TXRF

    International Nuclear Information System (INIS)

    Moreira, Silvana; Oliveira, Renato W.M.

    2005-01-01

    The pollution of the environment became everywhere of public interest of the world. The developed countries not just come being affected for the environmental problems; the developing nations also begin to suffer the serious impacts of the pollution, what elapses of the fast economic growth associated to the exploration of natural resources. This work has as objective to use the TXRF technique on the study the water quality of the Jacuba stream in Hortolandia city. (author)

  5. Evaluation of Jacuba stream water and industrial effluents quality by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Oliveira, Renato W.M. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Zucchi, Orgheda L.A.D. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The pollution of the environment became everywhere of public interest of the world. The developed countries not just come being affected for the environmental problems; the developing nations also begin to suffer the serious impacts of the pollution, what elapses of the fast economic growth associated to the exploration of natural resources. This work has as objective to use the TXRF technique on the study the water quality of the Jacuba stream in Hortolandia city. (author)

  6. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    Science.gov (United States)

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by

  7. Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin.

    Science.gov (United States)

    Kang, Joo-Hyon; Lee, Seung Won; Cho, Kyung Hwa; Ki, Seo Jin; Cha, Sung Min; Kim, Joon Ha

    2010-07-01

    This study reveals land-use factors that explain stream water quality during wet and dry weather conditions in a large river basin using two different linear models-multiple linear regression (MLR) models and constrained least squares (CLS) models. Six land-use types and three topographical parameters (size, slope, and permeability) of the watershed were incorporated into the models as explanatory variables. The suggested models were then demonstrated using a digitized elevation map in conjunction with the land-use and the measured concentration data for Escherichia coli (EC), Enterococci bacteria (ENT), and six heavy metal species collected monthly during 2007-2008 at 50 monitoring sites in the Yeongsan Watershed, Korea. The results showed that the MLR models can be a powerful tool for predicting the average concentrations of pollutants in stream water (the Nash-Sutcliffe (NS) model efficiency coefficients ranged from 0.67 to 0.95). On the other hand, the CLS models, with moderately good prediction performance (the NS coefficients ranged 0.28-0.85), were more suitable for quantifying contributions of respective land-uses to the stream water quality. The CLS models suggested that industrial and urban land-uses are major contributors to the stream concentrations of EC and ENT, whereas agricultural, industrial, and mining areas were significant sources of many heavy metal species. In addition, the slope, size, and permeability of the watershed were found to be important factors determining the extent of the contribution from each land-use type to the stream water quality. The models proposed in this paper can be considered useful tools for developing land cover guidelines and for prioritizing locations for implementing management practices to maintain stream water quality standard in a large river basin. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Watershed scale assessment of the impact of forested riparian zones on stream water quality

    Science.gov (United States)

    J. A. Webber; K. W. J. Williard; M. R. Whiles; M. L. Stone; J. J. Zaczek; D. K. Davie

    2003-01-01

    Federal and state land management agencies have been promoting forest and grass riparian zones to combat non-point source nutrient and sediment pollution of our nations' waters. The majority of research examining the effectiveness of riparian buffers at reducing nutrient and sediment inputs to streams has been conducted at the field scale. This study took a...

  9. A stream temperature model for the Peace-Athabasca River basin

    Science.gov (United States)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  10. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.

  11. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    International Nuclear Information System (INIS)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S.

    2004-01-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

  12. Chloride dynamics in a restored urban stream and the influence of road salts on water quality

    Science.gov (United States)

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services from these widely used de-icers. Preliminary analysis identified a probable connection between road salt application and a stream wat...

  13. Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment

    Science.gov (United States)

    Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia

    2018-03-01

    Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.

  14. Regional Comparison of Nitrogen Export to Japanese Forest Streams

    Directory of Open Access Journals (Sweden)

    Hideaki Shibata

    2001-01-01

    Full Text Available Nitrogen (N emissions in Asian countries are predicted to increase over the next several decades. An understanding of the mechanisms that control temporal and spatial fluctuation of N export to forest streams is important not only to quantify critical loads of N, N saturation status, and soil acidification N dynamics and budgets in Japanese forested watersheds is not clear due to the lack of regional comparative studies on stream N chemistry. To address the lack of comparative studies, we measured inorganic N (nitrate and ammonium concentrations from June 2000 to May 2001 in streams in 18 experimental forests located throughout the Japanese archipelago and belonging to the Japanese Union of University Forests. N concentrations in stream water during base flow and high flow periods were monitored, and N mineralization potential in soil was measured using batch incubation experiments. Higher nitrate concentrations in stream water were present in central Japan, an area that receives high rates of atmospheric N deposition. In northern Japan, snowmelt resulted in increased nitrate concentrations in stream water. The potential net N mineralization rate was higher in surface soil than in subsurface soil, and the high potential for N mineralization in the surface soil partly contributed to the increase in nitrate concentration in stream water during a storm event. Regional differences in the atmospheric N deposition and seasonality of precipitation and high discharge are principal controls on the concentrations and variations of nitrates in stream water in forested watersheds of Japan.

  15. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    greater. This indicates a possible tipping point in the stream temperature-water temperature relationship at which increased urbanization overpowers increasing stream thermal inertia.

  16. Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data

    Science.gov (United States)

    Fovet, O.; Humbert, G.; Dupas, R.; Gascuel-Odoux, C.; Gruau, G.; Jaffrezic, A.; Thelusma, G.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Grimaldi, C.

    2018-04-01

    The response of stream chemistry to storm is of major interest for understanding the export of dissolved and particulate species from catchments. The related challenge is the identification of active hydrological flow paths during these events and of the sources of chemical elements for which these events are hot moments of exports. An original four-year data set that combines high frequency records of stream flow, turbidity, nitrate and dissolved organic carbon concentrations, and piezometric levels was used to characterize storm responses in a headwater agricultural catchment. The data set was used to test to which extend the shallow groundwater was impacting the variability of storm responses. A total of 177 events were described using a set of quantitative and functional descriptors related to precipitation, stream and groundwater pre-event status and event dynamics, and to the relative dynamics between water quality parameters and flow via hysteresis indices. This approach led to identify different types of response for each water quality parameter which occurrence can be quantified and related to the seasonal functioning of the catchment. This study demonstrates that high-frequency records of water quality are precious tools to study/unique in their ability to emphasize the variability of catchment storm responses.

  17. Heavy metal contamination of stream water and sediment in the Taejon area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Woong [Paichai University, Taejon (Korea, Republic of); Lee, Hyun Koo [Chungnam National University, Taejon (Korea, Republic of)

    1996-08-31

    Associated with the rapid pace of overpopulation and industrialization is the increase of municipal and industrial wastewater and heavy metal contamination from these point sources have received much attention in the Taejon area. To reduce the environmental problems, 21 stream sediments from Gap-chun, Yudeung-chun, Yusung-chun and Keum river have been analyzed for Cd, Cu, Pb and Zn. The results show that heavy metal concentrations are high in sediments from the Sintanjin and Taehwa Industrial Complex area with particular reference to 1388 {mu}g/g Cu in the stream sediment of Yusung-chun. When the geochemical map drawn from the Kriging technique of these data are compared with the industrialization and urbanization index map, high concentrations of heavy metals are found in stream sediments in industrialized areas resulting from the accumulation of heavy metals from the polluting factories. Concentrations of Cu in sediments from the Taehwa Industrial Complex area and those of Zn in sediments from the Sintanjin Complex area higher than EPA standard in the U.S.A and may be the potential sources of pollution in Keum river with possible implications to human health. For the speciation of Cu, Pb and Zn, the high proportions of exchangeable phase of Cu and Zn in stream sediments indicate that the metals originate not from parent materials but from wastewater and exist as the adsorbed phase on the surface of sediments. These metals are easily dissolved into the water by the reaction and relative amounts of easily dissolved phase of metals are in the order of Cu = Zn > Pb. (author). 17 refs., 4 tabs., 7 figs.

  18. Reclamation of potable water from mixed gas streams

    Science.gov (United States)

    Judkins, Roddie R; Bischoff, Brian L; Debusk, Melanie Moses; Narula, Chaitanya

    2013-08-20

    An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.

  19. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  20. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Fay, W.M.; Sargent, K.A.; Cook, J.R.

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation

  1. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  2. Development of device producing electrolyzed water for home care

    International Nuclear Information System (INIS)

    Umimoto, K; Nagata, S; Yanagida, J

    2013-01-01

    When water containing ionic substances is electrolyzed, electrolyzed water with strong bactericidal ability due to the available chlorine(AC) is generated on the anode side. Slightly acidic to neutral electrolyzed water (pH 6.5 to 7.5) is physiological pH and is suitable for biological applications. For producing slightly acidic to neutral electrolyzed water simply, a vertical-type electrolytic tank with an asymmetric structure was made. As a result, a small amount of strongly alkaline water was generated in the upper cathodic small chamber, and a large amount of weakly acidic water generated in the lower anodic large chamber. The pH and AC concentration in solutin mixed with both electrolyzed water were 6.3 and 39.5 ppm, respectively, This solution was slightly acidic to neutral electrolyzed water and had strong bactericidal activity. This device is useful for producing slightly acidic to neutral electrolyzed water as a disinfectant to employ at home care, when considering economic and environmental factors, since it returns to ordinary water after use.

  3. Produced Water Reuse Considerations for In-Situ Recovery: a Case Development

    Energy Technology Data Exchange (ETDEWEB)

    Kus, J.; Card, R.

    1984-01-01

    Steam-assisted methods for in-situ recovery in Canada typically operate at steam to oil ratios of approximately 3 to 1 and generate in the order of 2 to 5 barrels of produced water per barrel of production. To raise the large quantities of steam required for reservoir stimulation, once-through type steam generators are most commonly used. They are typically designed to produce about 80 per cent quality steam from soft, oil-free feedwater. Suncor Inc operates a cyclic steam injection pilot project near Fort Kent, Alberta. In the early 1980s, Suncor planned an expansion of the 180 m/sup 3//d (1,130 bbl/d) facility to 800 m/sup 3//d (5,000 bbl/d). The expansion necessitated the development of a reliable water supply. Preliminary investigations into the feasibility of reusing produced water as the sole source of supply for the project expansion revealed this to be a costly and technically high risk option, given the specific produced water characteristics. As a result, an innovative alternative was developed to use a blend of produced water and municipal effluent from a nearby town as the water supply. This paper presents the rationale for the selection of this unique water supply and the process design considerations for the resulting water treatment system.

  4. Environmental impact of coal ash on tributary streams and nearshore water or Lake Erie. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, K.G.

    1978-08-01

    The environmental impact of coal ash disposal at a landfill site in north-central Chautauqua County, New York was studied from June 1975 through July 1977. Water samples taken from wells, ponds, and streams at 67 sites were analyzed for specific conductance, pH, alkalinity, arsenic, calcium, cadmium, chloride, chromium, copper, iron, magnesium, manganese, potassium, selenium, sodium, sulfate and zinc. Evidence suggests that ponds at the landfill were high in Ca, Fe, Mg, Mn, and SO/sub 4/ compared to control pands. A stream adjacent to the site contained greater Mn (207 ug/1) and SO/sub 4/ (229 ppm) than control streams. Shallow alkaline test wells in the landfill had elevated As, Ca, and Se. Acid-neutral test wells had elevated As, Ca, Cr, Mg and Mn. Household wells in the vicinity of the landfill showed no evident contamination from the landfill. Average iron concentrations in the biota were tripled, and manganese concentrations doubled in biota affected by the coal ash dump. However, any effects of the disposal area on the distribution of the biota could not be separated from effects of varying environment factors such as water movements, substrate composition and food availability. No harmful effects could be demonstrated on the biota in the creek which flowed past the disposal area.

  5. Biological Monitoring Using Macroinvertebrates as Bioindicators of Water Quality of Maroaga Stream in the Maroaga Cave System, Presidente Figueiredo, Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Christiane Brito Uherek

    2014-01-01

    Full Text Available Aquatic environments are being modified by anthropogenic activities regarding their biological, physical, and chemical conditions; even pristine aquatic ecosystems can be threatened. This study focused on the biological monitoring of Maroaga Stream—a first order stream located in an Environmental Protection Area in the Amazon using the Biological Monitoring Working Party (BMWP Score System. The BMWP Score System revealed that the Maroaga Stream was a Class I stream (score of 138 points, indicating clean or not significantly altered water quality. The results suggest the adequate environmental conditions and ecological responses of the Maroaga Stream.

  6. Stream water chemistry after two forest fertilizations with Skog Vital in central Sweden

    International Nuclear Information System (INIS)

    Ring, E.; Nohrstedt, H.Oe.

    1993-05-01

    A study was made of the impact of forest fertilization (non-nitrogenous mix) on the water chemistry of two streams, which drain catchment areas in east Haerjedalen in Sweden. In summer 1990, part of one of the catchment areas was fertilized by tractor at a dose of 0.6 tonnes per hectare, and part of the other by helicopter at a dose of 0.5 tonnes per hectare. The fertilizer contained base cations, sulphur, phosphorus, zinc and boron. Water samples were taken at a water-sampling station upstream of the treated area and at a water-sampling station downstream of the treated area. A total of 30 samples were made and the water was analysed for pH, alkalinity, nitrogen, phosphorus, base cations, aluminium and sulphate. Discharge was both measured and simulated, the latter using a runoff model. An estimate was made of the additional leaching resulting from fertilization. 13 refs, 12 figs, 6 tabs

  7. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    Science.gov (United States)

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  8. The effects of road crossings on prairie stream habitat and function

    Science.gov (United States)

    Bouska, Wesley W.; Keane, Timothy; Paukert, Craig P.

    2010-01-01

    Improperly designed stream crossing structures may alter the form and function of stream ecosystems and habitat and prohibit the movement of aquatic organisms. Stream sections adjoining five concrete box culverts, five low-water crossings (concrete slabs vented by one or multiple culverts), and two large, single corrugated culvert vehicle crossings in eastern Kansas streams were compared to reference reaches using a geomorphologic survey and stream classification. Stream reaches were also compared upstream and downstream of crossings, and crossing measurements were used to determine which crossing design best mimicked the natural dimensions of the adjoining stream. Four of five low-water crossings, three of five box culverts, and one of two large, single corrugated pipe culverts changed classification from upstream to downstream of the crossings. Mean riffle spacing upstream at low-water crossings (8.6 bankfull widths) was double that of downstream reaches (mean 4.4 bankfull widths) but was similar upstream and downstream of box and corrugated pipe culverts. There also appeared to be greater deposition of fine sediments directly upstream of these designs. Box and corrugated culverts were more similar to natural streams than low-water crossings at transporting water, sediments, and debris during bankfull flows.

  9. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    Pandey, Pramod K; Soupir, Michelle L; Ikenberry, Charles

    2014-01-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  10. Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics.

    Science.gov (United States)

    Thomaz, Edivaldo L; Peretto, Gustavo T

    2016-04-15

    Unpaved roads are ubiquitous features that have been transforming the landscape through human history. Unpaved roads affect the water and sediment pathways through a catchment and impacts the aquatic ecosystem. In this study, we describe the effect of unpaved road on the hydrogeomorphic connectivity at the rural headwater scale. Measurement was based on the stream crossing approach, i.e., road superimposing the drainage system. We installed a Parshall flume coupled with single-stage suspended sediment sampler at each stream crossing. In addition, we displayed our monitoring scheme with an upscaling perspective from second-order to third-order stream. We concluded that the road-stream coupling dramatically changed the stream dynamic. The increase of discharge caused by roads at the headwater was 50% larger compared to unaffected streams. Additionally, suspended sediment concentration enhancement at stream crossings ranged from to 413% at second-order streams to 145% at third-order streams. The landform characteristics associated with the road network produced an important hydrogeomorphic disruption in the landscape. As a result, the sediment filter function of the riparian zone was reduced dramatically. Therefore, we recommend that projects for aquatic system restoration or conservation in rural landscape consider the role of the road network on stream dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Stream habitat structure influences macroinvertebrate response to pesticides

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2012-01-01

    Agricultural pesticide contamination in surface waters is increasingly threatening to impair the surface water ecosystems. Agricultural streams are furthermore often heavily maintained to optimise the transport of water away from fields. The physical habitat degradation that result from heavy...... stream maintenance probably introduce additional stress that may act in concert with pesticide stress. We surveyed pesticide contamination and macroinvertebrate community structure in 14 streams along a gradient of expected pesticide exposure. A paired-reach approach was applied to differentiate...... the effects of pesticides between sites with degraded and more undisturbed physical properties. The effect of pesticides on macroinvertebrate communities (measured as the relative abundance of SPEcies At Risk) was increased at stream sites with degraded physical habitats primarily due to the absence...

  12. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence

    Science.gov (United States)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.

    2017-12-01

    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  13. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    Science.gov (United States)

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period

  14. The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream

    Directory of Open Access Journals (Sweden)

    I. A. Malcolm

    2004-01-01

    Full Text Available The spatio-temporal variability of stream water temperatures was investigated at six locations on the Girnock Burn (30km2 catchment, Cairngorms, Scotland over three hydrological years between 1998 and 2002. The key site-specific factors affecting the hydrology and climatology of the sampling points were investigated as a basis for physical process inference. Particular emphasis was placed on assessing the effects of riparian forest in the lower catchment versus the heather moorland riparian zones that are spatially dominant in the upper catchment. The findings were related to river heat budget studies that provided process detail. Gross changes in stream temperature were affected by the annual cycle of incoming solar radiation and seasonal changes in hydrological and climatological conditions. Inter-annual variation in these controlling variables resulted in inter-annual variability in thermal regime. However, more subtle inter-site differences reflected the impact of site-specific characteristics on various components of the river energy budget. Inter-site variability was most apparent at shorter time scales, during the summer months and for higher stream temperatures. Riparian woodland in the lower catchment had a substantial impact on thermal regime, reducing diel variability (over a period of 24 hours and temperature extremes. Observed inter-site differences are likely to have a substantial effect on freshwater ecology in general and salmonid fish in particular. Keywords: temperature, thermal regime, forest, salmon, hydrology, Girnock Burn, Cairngorm

  15. Minimizing water consumption when producing hydropower

    Science.gov (United States)

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  16. Effect of deforestation on stream water chemistry in the Skrzyczne massif (the Beskid Śląski Mountains in southern Poland).

    Science.gov (United States)

    Kosmowska, Amanda; Żelazny, Mirosław; Małek, Stanisław; Siwek, Joanna Paulina; Jelonkiewicz, Łukasz

    2016-10-15

    The purpose of the study was to identify the factors affecting stream water chemistry in the small mountain catchments deforested to varying degrees, from 98.7 to 14.1%, due to long-term acid deposition. Water samples were collected monthly in 2013 and 2014 from 17 streams flowing across three distinct elevation zones in the Skrzyczne massif (Poland): Upper, Middle and Lower Forest Zone. Chemical and physical analyses, including the pH, electrical conductivity (EC), total mineral content (Mt), water temperature, and the concentrations of Ca(2+), Mg(2+), Na(+), K(+), HCO3(-), SO4(2-), Cl(-), and NO3(-), were conducted. Based on Principal Component Analysis (PCA), the most important factor affecting water chemistry was human impact associated with changes in pH, SO4(2-) concentration, and the concentration of most of the main ions. The substantial acidity of the studied environment contributed to the exclusion of natural factors, associated with changes in discharge, from the list of major factors revealed by PCA. All of the streams were characterized by very low EC, Mt, and low concentrations of the main ions such as Ca(2+) and HCO3(-). This is the effect of continuous leaching of solutes from the soils by acidic precipitation. The lowest parameter values were measured for the streams situated in the Upper Forest Zone, which is associated with greater acid deposition at the higher elevations. In the streams located in the Upper Forest Zone, a higher percentage of SO4(2-) occurred than in the streams situated in the Middle and Lower Forest Zones. However, the largest share of SO4(2-) was measured in the most deforested catchment. The saturation of the studied deforested catchment with sulfur compounds is reflected by a positive correlation between SO4(2-) and discharge. Hence, a forest acts as a natural buffer that limits the level of acidity in the natural environment caused by acidic atmospheric deposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The effect of the runoff size on the pesticide concentration in runoff water and in FOCUS streams simulated by PRZM and TOXSWA.

    Science.gov (United States)

    Adriaanse, Paulien I; Van Leerdam, Robert C; Boesten, Jos J T I

    2017-04-15

    Within the European Union the exposure of aquatic organisms to pesticides is assessed by simulations with the so-called FOCUS Surface Water Scenarios. Runoff plays an important role in these scenarios. As little is known about the effect of runoff size on the exposure, we investigated the effect of runoff size on the concentration in the runoff water and in streams simulated with the PRZM and TOXSWA models for two FOCUS runoff scenarios. For weakly sorbing pesticides (K F,oc runoff water decreased exponentially with increasing daily runoff size. The runoff size hardly affected the pesticide concentration in the runoff water of strongly sorbing pesticides (K F,oc ≥1000Lkg -1 ). For weakly sorbing pesticides the concentration in the FOCUS stream reached a maximum at runoff sizes of about 0.3 to 1mm. The concentration increased rapidly when the runoff size increased from 0 to 0.1mm and gradually decreased when runoff exceeded 1mm. For strongly sorbing pesticides the occurrence of the maximum concentration in the stream is clearly less pronounced and lies approximately between 1 and 20mm runoff. So, this work indicates that preventing small runoff events (e.g. by vegetated buffer strips) reduces exposure concentrations strongly for weakly sorbing pesticides. A simple metamodel was developed for the ratio between the concentrations in the stream and in the runoff water. This model predicted the ratios simulated by TOXSWA very well and it demonstrated that (in addition to runoff size and concentration in runoff) the size of the pesticide-free base flow and pesticide treatment ratio of the catchment determine the stream concentration to a large extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Physically Based Analytical Model to Describe Effective Excess Charge for Streaming Potential Generation in Water Saturated Porous Media

    Science.gov (United States)

    Guarracino, L.; Jougnot, D.

    2018-01-01

    Among the different contributions generating self-potential, the streaming potential is of particular interest in hydrogeology for its sensitivity to water flow. Estimating water flux in porous media using streaming potential data relies on our capacity to understand, model, and upscale the electrokinetic coupling at the mineral-solution interface. Different approaches have been proposed to predict streaming potential generation in porous media. One of these approaches is the flux averaging which is based on determining the excess charge which is effectively dragged in the medium by water flow. In this study, we develop a physically based analytical model to predict the effective excess charge in saturated porous media using a flux-averaging approach in a bundle of capillary tubes with a fractal pore size distribution. The proposed model allows the determination of the effective excess charge as a function of pore water ionic concentration and hydrogeological parameters like porosity, permeability, and tortuosity. The new model has been successfully tested against different set of experimental data from the literature. One of the main findings of this study is the mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by several researchers. The proposed model also highlights the link to other lithological properties, and it is able to reproduce the evolution of effective excess charge with electrolyte concentrations.

  19. Water resources data for Florida, water year 1992. Volume 1B. Northeast Florida ground water. Water-data report (Annual) October 1, 1991-September 30, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Water resources data for the 1992 for northeast Florida include continuous or daily discharge for 140 streams, periodic discharge for 10 streams, miscellaneous discharge for 14 streams, continuous or daily stage for 32 streams, continuous or daily tide stage for 3 sites, periodic stage for 23 streams, peak discharge for 3 streams, and peak stage for 11 streams; continuous or daily elevations for 36 lakes, periodic elevations for 47 lakes; continuous ground-water levels for 75 wells, periodic ground-water levels for 123 wells, and miscellaneous water-level measurements for 864 wells; and quality-of-water data for 38 surface-water sites and 66 wells

  20. Hydraulic Properties related to Stream Reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E. C.; Wallace, J. R. [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  1. Hydraulic properties related to stream reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E C; Wallace, J R [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  2. Present and past Gulf Stream variability in a cold-water coral area off Cape Lookout, West Atlantic

    Science.gov (United States)

    Mienis, F.; Pedersen, A.; Duineveld, G.; Seidenkrantz, M.; Fischel, A.; Matos, L.; Bane, J. M.; Frank, N.; Hebbeln, D.; Ross, S.

    2012-12-01

    Cold-water coral mounds are common on the SE slope of the US from Florida to Cape Hatteras between depths of 400-600 m. All coral areas lie in the vicinity of the Gulf Stream, which is characterized by strong currents transporting relatively warm water northwards. Thus far little is known about the recent and past environmental conditions inside the cold-water coral habitats on the SE US slope and particularly the effect of changing patterns of the Gulf Stream. Near Cape Lookout, which is the northern most cold-water coral area on the SE US slope, cold-water corals have formed mounds up to 60 m high with a tear drop shape, which are oriented in a SSW-NNE direction. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. Two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Furthermore, a 3.6 m long piston core was collected in 2010 during a cruise with the R.V. Pelagia. This pistoncore was used to determine the changes of current strength through time, using foraminiferal counts, stable oxygen and carbon isotopes on foraminifera, XRF and magnetic susceptibility measurements. Cold-water coral fragments were dated with U/Th and foraminifera from the same depth interval were dated with C14. Bottom landers have recorded a number of events that are characterized by of peaks in temperature and salinity, coinciding with increased flow and turbidity. The current during these events was directed to the NNE. During some of these events temperature rose up to 9 degrees in one day. The temporary replacement of the colder bottom water by warm (and saline) water in combination with the strong currents to the NNE

  3. Organic and inorganic compounds in the water streams of the paper machine; Haitta-ainevirrat ja -tasot paperikoneella - PMST 01

    Energy Technology Data Exchange (ETDEWEB)

    Tervonen, P.; Edelmann, K.; Kaijaluoto, S. [VTT Energy, Jyvaeskylae (Finland)

    1998-12-31

    The tightening standards for environmental protection set forth in legislation and the green consideration has reduced the environmental load of the paper and pulp industry significantly during recent years. Paper mills have decreased their water consumption by increasing internal circulation and by improving external effluent treatment. The consequence is that the concentrations of organic and inorganic dissolved and colloidal substances in the paper mill waters have risen. The fresh water consumption of paper machine can be decreased by cleaning the different water streams from the wire- and press-section and by lowering the amount of organic and inorganic materials led to paper machine water. In this case also water from mechanical pulping process and pulp itself should be cleaned. In this project the water use of modern paper machine and stream connections are studied. In addition flows, interactions and retention of dissolved and colloidal materials in the wet end of the paper machine are investigated. By utilizing this knowledge accurate simulation models of paper machine wet end can be created. With this model the various methods and technologies for controlling the harmful components in paper machine wet end are analyzed. (orig.)

  4. Organic and inorganic compounds in the water streams of the paper machine; Haitta-ainevirrat ja -tasot paperikoneella - PMST 01

    Energy Technology Data Exchange (ETDEWEB)

    Tervonen, P; Edelmann, K; Kaijaluoto, S [VTT Energy, Jyvaeskylae (Finland)

    1999-12-31

    The tightening standards for environmental protection set forth in legislation and the green consideration has reduced the environmental load of the paper and pulp industry significantly during recent years. Paper mills have decreased their water consumption by increasing internal circulation and by improving external effluent treatment. The consequence is that the concentrations of organic and inorganic dissolved and colloidal substances in the paper mill waters have risen. The fresh water consumption of paper machine can be decreased by cleaning the different water streams from the wire- and press-section and by lowering the amount of organic and inorganic materials led to paper machine water. In this case also water from mechanical pulping process and pulp itself should be cleaned. In this project the water use of modern paper machine and stream connections are studied. In addition flows, interactions and retention of dissolved and colloidal materials in the wet end of the paper machine are investigated. By utilizing this knowledge accurate simulation models of paper machine wet end can be created. With this model the various methods and technologies for controlling the harmful components in paper machine wet end are analyzed. (orig.)

  5. Data report: Illinois, Indiana, Kentucky, Tennessee, and Ohio. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Sargent, K.A.; Cook, J.R.; Fay, W.M.

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Illinois, Indiana, Kentucky, Tennessee, and Ohio. The following sample types were collected in each state: Illinois - 716 stream sediment, 1046 ground water, 337 stream water; Indiana - 126 stream sediment, 443 ground water, 111 stream water; Kentucky - 4901 stream sediment, 6408 ground water, 3966 stream water; Tennessee - 3309 stream sediment, 3574 ground water, 1584 stream water; Ohio - 1214 stream sediment, 2049 ground water, 1205 stream water. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 248 sediment samples from Tennessee. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation

  6. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  7. Effects of land use change on streamflow and stream water quality of a coastal catchment

    CSIR Research Space (South Africa)

    Petersen, Chantel R

    2017-01-01

    Full Text Available Main stream length (km) 28.4 19.46 Main stream slope (%) 3.4 2.6 Drainage density (km/km2) 2.51 3.59 Length of overland flow (km) 0.19 0.139   Figure 1    Figure 1 Catchments of the Touws and Duiwe Rivers 141 http://dx.doi.org/10.4314/wsa.v43i1... catchment throughout the period examined (Fig. 2a, Table 3), as the natural forest areas were formally protected from the 142 http://dx.doi.org/10.4314/wsa.v43i1.16 Available on website http://www.wrc.org.za ISSN 1816-7950 (Online) = Water SA Vol. 43 No. 1...

  8. Putting produced water to a useful purpose : regulatory gaps and other concerns

    International Nuclear Information System (INIS)

    Kwasniak, A.J.

    2006-01-01

    This presentation discussed issues related to produced water from oil and gas activities and its use and disposal in Alberta. The province is in danger of a water shortage, and studies have shown that runoff volumes in the South Saskatchewan River Basin (SSRB) are below average. A recent assessment of 33 river reaches in the SSRB has shown that 31 river reaches are approaching ecologically unacceptable values. Water produced from coalbed methane (CBM) activities will be only marginally saline or non-saline, and CBM activities are expected to increase in the region in order to supplement Alberta's dwindling natural gas supplies. Approximately 10 per cent of the CBM wells drilled in 2004 targeted seams that contained water. Approximately 50,000 more CBM wells will be drilled in Alberta in the next decade. While water conservation will help to address the situation, the re-use of produced water in processing technologies will help to reduce the impact of oil and gas activities in the province. However, regulatory difficulties may prevent produced water from being re-used. It is not currently known whether operators require a water rights permit to produce water. Regulatory obligations concerning damage to aquifers and water discharges are also unclear. The Water Act currently requires statutory authorizations for diversions of water. If the water is non-saline, then the operator is required to obtain a licence to divert produced water from its source. It was concluded that clear legislation is needed to determine if water can be re-used after it is brought to the surface. The introduction of an American-style beneficial rights use was recommended. refs., tabs., figs

  9. Effects of geothermal energy utilization on stream biota and water quality at The Geysers, California. Final report. [Big Sulphur, Little Sulphur, Squaw, and Pieta Creeks

    Energy Technology Data Exchange (ETDEWEB)

    LeGore, R.S.

    1975-01-01

    The discussion is presented under the following section headings: biological studies, including fish, insects, and microbiology; stream hydrology; stream water quality, including methods and results; the contribution of tributaries to Big Sulphur Creek, including methods, results, and tributary characterization; standing water at wellheads; steam condensate quality; accidental discharges; trout spawning bed quality; major conclusions; list of references; and appendices. It is concluded that present operational practices at Geysers geothermal field do not harm the biological resources in adjacent streams. The only effects of geothermal development observed during the study were related to operational accidents. (JGB)

  10. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  11. Purification of produced waters in oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Niyazov, R S; Baikov, U M

    1970-01-01

    Experience has shown that a single step water-conditioning process cannot be used to prepare Bashkirian produced waters for underground injection. In the single-step process, the water is passed through horizontal or vertical settling basins to remove solids. This system does not work when suspended solids increase above 200 to 500 mg/liter. The required quality of injection water can be obtained by filtering the water through sand at flow velocities of 5 to 10 m/hr. The filter has a sand layer 0.6 to 1 m thick, composed of 0.35 to 1.0 mm sand. Water entering the filters should not contain more than 100 to 150 mg/liter of oil products. The filters are backwashed at velocity of 10 to 15 m/hr and rates of 12 to 16 liters/sec sq m for 10 to 15 min. Clean water is used in backwashing. When surfactant is added to the backwash water, the filter cycle lasts longer.

  12. The trace element analysis in freshwater fish species, water and sediment in Iyidere stream (Rize-Turkey).

    Science.gov (United States)

    Verep, Bulent; Mutlu, Cengiz; Apaydin, Gokhan; Cevik, Ugur

    2012-07-15

    Many environmental problems like dam construction, agricultural debris, flooding and industrial establishments threaten Iyidere stream (Rize, Turkey) on the southeastern coast of the Black Sea (Turkey). The trace element concentrations in water, fish and sediments in lyidere stream (Rize, Turkey) were investigated in this study. The concentration of six different elements in ten freshwater fish species and sediment was determined using energy dispersive X-ray fluorescence method. A radioisotope excited X-ray fluorescence analysis using the method of multiple standard addition is applied for the elemental analysis of fish and sediments. Water samples for trace metals were analyzed using standard spectrophotometry methods. A qualitative analysis of spectral peaks showed that ten different freshwater fish samples (Chondrostoma colchicum, Chalcalburnus chalcoides, Salmo trutta labrax, Alburnoides bipunctatus, Leuciscus cephalus, Barbus taurus escherichia, Capoeta tinca, Neogobius kessleri, Rutilus frisii, Lampetra lanceolata) and sediment contained phosphorus (P), sulphur (S), chlorine (Cl), potassium (K), calcium (Ca) and titanium (Ti). Heavy metals as toxic elements for biota (Pb, Cd, Hg, Zn and Mn etc.) were not detected in fish, water and sediments. Thus, It can be declared that freshwater fish of Iyidere does not contains health risks for consumers in terms of metal pollution.

  13. Analysis of trace dicyandiamide in stream water using solid phase extraction and liquid chromatography UV spectrometry.

    Science.gov (United States)

    Qiu, Huidong; Sun, Dongdi; Gunatilake, Sameera R; She, Jinyan; Mlsna, Todd E

    2015-09-01

    An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction. The extraction procedure (including loading, washing, and eluting) used a flow rate of 1.0mL/min, and dicyandiamide was eluted with 20mL of a methanol/acetonitrile mixture (V/V=2:3), followed by pre-concentration using nitrogen evaporation and analysis with high performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV). Sample extraction was carried out using a Waters Sep-Pak AC-2 Cartridge (with activated carbon). Separation was achieved on a ZIC(®)-Hydrophilic Interaction Liquid Chromatography (ZIC-HILIC) (50mm×2.1mm, 3.5μm) chromatography column and quantification was accomplished based on UV absorbance. A reliable linear relationship was obtained for the calibration curve using standard solutions (R(2)>0.999). Recoveries for dicyandiamide ranged from 84.6% to 96.8%, and the relative standard deviations (RSDs, n=3) were below 6.1% with a detection limit of 5.0ng/mL for stream water samples. Copyright © 2015. Published by Elsevier B.V.

  14. Principles for urban stormwater management to protect stream ecosystems

    Science.gov (United States)

    Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela

    2016-01-01

    Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly

  15. Is it possible to treat produced water for recycle and beneficial reuse?

    Energy Technology Data Exchange (ETDEWEB)

    Hum, F.; Tsang, P.; Kantzas, A.; Harding, T. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2005-11-01

    In 2003, the oil and gas industry in Alberta injected 0.3 billion cubic metres of produced water into disposal wells. This paper addressed the issue of using the large volume of produced water for recycling and make water reuse a sustainable activity in Alberta to reduce fresh water demand. Although produced water represents a potential resource for recycling and beneficial reuse, it must first be treated to meet water quality criteria and regulatory guidelines for specific applications. A comprehensive technical and economic review of water treatment technologies was presented. Commonly used and new water desalination technologies were reviewed and key challenges associated with the recycling of produced water were identified. It was shown that water treatment processes are commercially available and that they are not prohibitively expensive. However, the cost of implementing treating processes to meet drinking water quality guidelines is about 3 times the current cost of municipal water supply in Alberta. For that reason, it is more feasible to recycle waste water for agricultural or petroleum applications, such as waterflooding. The water quality guidelines for these other purposes are less stringent than for drinking water and there is also growing public resistance for industry to use fresh water for commercial use. 42 refs., 3 tabs., 14 figs.

  16. Desalination of Produced Water via Gas Hydrate Formation and Post Treatment

    OpenAIRE

    Niu, Jing

    2012-01-01

    This study presents a two-step desalination process, in which produced water is cleaned by forming gas hydrate in it and subsequently dewatering the hydrate to remove the residual produced water trapped in between the hydrate crystals. All experiments were performed with pressure in the range of 450 to 800psi and temperature in the range of -1 to 1°C using CO? as guest molecule for the hydrate crystals. The experiments were conducted using artificial produced waters containing different amoun...

  17. Evaluation of the Physico-Chemical Properties of Produced Water ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Samples were obtained at different periods within two months. Produced water ... sometimes, naturally occurring radioactive materials .... particular sample of soil, water, or air (Khatib and ... several other elements in solution particularly Barium.

  18. Stream Deniable-Encryption Algorithms

    Directory of Open Access Journals (Sweden)

    N.A. Moldovyan

    2016-04-01

    Full Text Available A method for stream deniable encryption of secret message is proposed, which is computationally indistinguishable from the probabilistic encryption of some fake message. The method uses generation of two key streams with some secure block cipher. One of the key streams is generated depending on the secret key and the other one is generated depending on the fake key. The key streams are mixed with the secret and fake data streams so that the output ciphertext looks like the ciphertext produced by some probabilistic encryption algorithm applied to the fake message, while using the fake key. When the receiver or/and sender of the ciphertext are coerced to open the encryption key and the source message, they open the fake key and the fake message. To disclose their lie the coercer should demonstrate possibility of the alternative decryption of the ciphertext, however this is a computationally hard problem.

  19. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    Science.gov (United States)

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  20. Impact of Water Usage on the Hydrology of Streams in the Mill River Watershed, Massachusetts

    Science.gov (United States)

    Newton, R. M.; Rhodes, A. L.; Pufall, A.; Bradstreet, E.; Katchpole, S.; Mattison, E.; Woods, R.

    2001-05-01

    Removal of surface water for municipal water supplies has reduced base flow in two tributary streams to the Mill River in Whately Massachusetts. This reduction in the flow of high quality water from these tributaries reduces the amount of dilution of high anthropogenic chemical loads in the main branch of the Mill River leading to high concentrations of chloride and sulfate. The city of Northampton, operates a reservoir on West Brook that removes an average of 5,700 m3/day. West Brook occupies a 28.4 km2 watershed underlain by Paleozoic igneous and metamorphic rocks that are mainly overlain by thin deposits of Pleistocene till. There are isolated areas of stratified drift in the area of the reservoir and where West Brook enters into the area formerly occupied by Glacial Lake Hitchcock. The reservoir (0.35 km2 in area) lies within the upper third of the subcatchment and is primarily fed by Avery Brook (7.6 km2 watershed). Although the reservoirs watershed represent about one third of the West Brook watershed, high water demands limit the release of water from the reservoir to periods of high flow associated with intense rainfall or snowmelt events. A comparison of unit hydrographs from Avery Brook, upstream of the reservoir with those from West Brook near where it enters the Mill River show significant lower discharges downstream (1mm/day). A comparison of flow duration curves show that discharges below the reservoir are dramatically lower during low flow conditions. The town of South Deerfield operates a reservoir on Roaring Brook that removes approximately 3,800 m3/day. Roaring Brook occupies a 14.0 km2 watershed that is similar in geology to West Brook. The reservoir is located on the downstream section of the brook just above where it enters the Mill River. Unlike the Northampton reservoir, water is almost continually released from the reservoir although the rate does fluctuate greatly. Data from a gage station located just downstream of the dam show rapid

  1. Vermont EPSCoR Streams Project: Engaging High School and Undergraduate Students in Watershed Research

    Science.gov (United States)

    Ray, E.; McCabe, D.; Sheldon, S.; Jankowski, K.; Haselton, L.; Luck, M.; van Houten, J.

    2009-12-01

    The Vermont EPSCoR Streams Project engages a diverse group of undergraduates, high school students, and their teachers in hands-on water quality research and exposes them to the process of science. The project aims to (1) recruit students to science careers and (2) create a water quality database comprised of high-quality data collected by undergraduates and high school groups. The project is the training and outreach mechanism of the Complex Systems Modeling for Environmental Problem Solving research program, an NSF-funded program at the University of Vermont (UVM) that provides computational strategies and fresh approaches for understanding how natural and built environments interact. The Streams Project trains participants to collect and analyze data from streams throughout Vermont and at limited sites in Connecticut, New York, and Puerto Rico. Participants contribute their data to an online database and use it to complete individual research projects that focus on the effect of land use and precipitation patterns on selected measures of stream water quality. All undergraduates and some high school groups are paired with a mentor, who is either a graduate student or a faculty member at UVM or other college. Each year, undergraduate students and high school groups are trained to (1) collect water and macroinvertebrate samples from streams, (2) analyze water samples for total phosphorus, bacteria, and total suspended solids in an analytical laboratory, and/or (3) use geographic information systems (GIS) to assess landscape-level data for their watersheds. After training, high school groups collect samples from stream sites on a twice-monthly basis while undergraduates conduct semi-autonomous field and laboratory research. High school groups monitor sites in two watersheds with contrasting land uses. Undergraduate projects are shaped by the interests of students and their mentors. Contribution to a common database provides students with the option to expand the

  2. Water quality assessment of the Eastern Iowa Basins: Basic water chemistry of rivers and streams, 1996-98

    Science.gov (United States)

    Barnes, Kimberlee K.

    2001-01-01

    The U.S. Geological Survey began data-collection activities in the Eastern Iowa Basins study unit of the National Water-Quality Assessment Program in September 1995 with the purpose of determining the status and trends in water quality of water from the Wapsipinicon, Cedar, Iowa, and Skunk River basins. From March 1996 through September 1998, monthly surface-water samples were collected from 11 sites on the study's rivers and streams representing three distinct physiographic regions, the Des Moines Lobe, the Iowan Surface, the Southern Iowa Drift Plain, and one subregion, the Iowan Karst. These water samples were analyzed for basic water chemistry, including, but not limited to the following cations: sodium, potassium, magnesium, calcium, and silica; anions: chloride, fluoride, sulfate, and bicarbonate; and two metals - iron and maganese. Although none of the concentrations of the constituents exceeded health advisories or drinking-water regulations, extremely high or low concentrations could potentially affect aquatic life. Calcium, magnesium, and potassium are essential elements for both plant and animal life; manganese is an essential element in plant metabolism; and silica is important in the growth of diatom algae. Calcium had the largest median concentration of 61 milligrams per liter (mg/L) of the cations, and the largest maximum concentration of 100 mg/L. Bicarbonate had the largest median concentration of 210 mg/L of the anions, and the largest maximum concentration of 400 mg/L.

  3. Costs of Stream Maintenance Works in the Poznań District

    Directory of Open Access Journals (Sweden)

    Piotr Stachowski

    2017-12-01

    Full Text Available Water reclamation works, especially those related to stream maintenance, are necessary wherever their lack may cause a risk to the natural environment, as well as human life and property. This paper presents the assessment of the maintenance costs on natural and regulated streams in the years 2010-2016 in the Poznań district. In the analysed years, the costs for works on streams and water-drainage constructions amounted to an average of 1,214,800 PLN per year, which in terms of a 1km stream is approximately 3,575 PLN/km per year. Higher maintenance costs occurred on the regulated streams, where the average cost of a 1 km stream was approximately 7,042 PLN. Moreover, high costs were noted in the works on unregulated streams, where the average cost was approximately 8,948 PLN. The amount of public funding for the maintenance and current operation was quite insufficient, as it covered only 4.2% of the annual average demand. The positive trend is nearly a 6-fold increase in funds for current maintenance compared to the year 2010, when a flood occurred. The results of the conducted analyses indicate the cognitive need and purpose, as well as the economic importance, to establish water reclamation monitoring, as well as develop the existing IT system for recording water reclamation works and water management in agriculture.

  4. A field study of selected U.S. Geological Survey analytical methods for measuring pesticides in filtered stream water, June - September 2012

    Science.gov (United States)

    Martin, Jeffrey D.; Norman, Julia E.; Sandstrom, Mark W.; Rose, Claire E.

    2017-09-06

    U.S. Geological Survey monitoring programs extensively used two analytical methods, gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry, to measure pesticides in filtered water samples during 1992–2012. In October 2012, the monitoring programs began using direct aqueous-injection liquid chromatography tandem mass spectrometry as a new analytical method for pesticides. The change in analytical methods, however, has the potential to inadvertently introduce bias in analysis of datasets that span the change.A field study was designed to document performance of the new method in a variety of stream-water matrices and to quantify any potential changes in measurement bias or variability that could be attributed to changes in analytical methods. The goals of the field study were to (1) summarize performance (bias and variability of pesticide recovery) of the new method in a variety of stream-water matrices; (2) compare performance of the new method in laboratory blank water (laboratory reagent spikes) to that in a variety of stream-water matrices; (3) compare performance (analytical recovery) of the new method to that of the old methods in a variety of stream-water matrices; (4) compare pesticide detections and concentrations measured by the new method to those of the old methods in a variety of stream-water matrices; (5) compare contamination measured by field blank water samples in old and new methods; (6) summarize the variability of pesticide detections and concentrations measured by the new method in field duplicate water samples; and (7) identify matrix characteristics of environmental water samples that adversely influence the performance of the new method. Stream-water samples and a variety of field quality-control samples were collected at 48 sites in the U.S. Geological Survey monitoring networks during June–September 2012. Stream sites were located across the United States and included sites in agricultural and urban land

  5. Assessment of physicochemical quality of sachet water produced in ...

    African Journals Online (AJOL)

    Fifty (50) brands of sachet water produced from bore hole and tap water in five (5) local government areas of Kano metropolis were analysed for physicochemical quality. Ten (10) brands of sachet water were sampled from each of the five (5) local government areas of; Nasarawa, Tarauni, Gwale, Kumbotso and Ungogo.

  6. Method of producing deuterium-oxide-enriched water

    International Nuclear Information System (INIS)

    Mandel, H.

    1976-01-01

    A method and apparatus for producing deuterium-oxide-enriched water (e.g., as a source of deuterium-rich gas mixtures) are disclosed wherein the multiplicity of individual cooling cycles of a power plant are connected in replenishment cascade so that fresh feed water with a naturally occurring level of deuterium oxide is supplied to replace the vaporization losses, sludge losses and withdrawn portion of water in a first cooling cycle, the withdrawn water being fed as the feed water to the subsequent cooling cycle or stage and serving as the sole feed-water input to the latter. At the end of the replenishment-cascade system, the withdrawn water has a high concentration of deuterium oxide and may serve as a source of water for the production of heavy water or deuterium-enriched gas by conventional methods of removing deuterium oxide or deuterium from the deuterium-oxide-enriched water. Each cooling cycle may form part of a thermal or nuclear power plant in which a turbine is driven by part of the energy and air-cooling of the water takes place in the atmosphere, e.g., in a cooling tower

  7. Application of nanotechnologies for solving ecological problems on produced water utilization

    International Nuclear Information System (INIS)

    Hajiyev, S.K.; Kalbaliyeva, E.S.; Kazimov, F.K.

    2010-01-01

    Utilization of produced water is connected with the problems of its purification, repeated use and following the corresponding ecological requirements.Constant growth of the amount of produced water in extracted fluid and contaminating components require improvement of existing methods of utilization and development of advanced technologies. In the result of development of nanocomposites on the base of metallic nanoparticles it has been achieved significant improvement of purification efficiency of produced water, as well as decrease of surface tension, viscosity, increase of corrosion resistance and protection against salt deposition.

  8. Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams

    International Nuclear Information System (INIS)

    Rosa, Rodrigo dos Santos; Aguiar, Anna Carolina Fornero; Boëchat, Iola Gonçalves; Gücker, Björn

    2013-01-01

    We investigated the impacts of effluent discharge from small flow-through fish farms on stream water characteristics, the benthic invertebrate community, whole-system nitrate uptake, and ecosystem metabolism of three tropical headwater streams in southeastern Brazil. Effluents were moderately, i.e. up to 20-fold enriched in particulate organic matter (POM) and inorganic nutrients in comparison to stream water at reference sites. Due to high dilution with stream water, effluent discharge resulted in up to 2.0-fold increases in stream water POM and up to 1.8-fold increases in inorganic nutrients only. Moderate impacts on the benthic invertebrate community were detected at one stream only. There was no consistent pattern of effluent impact on whole-stream nitrate uptake. Ecosystem metabolism, however, was clearly affected by effluent discharge. Stream reaches impacted by effluents exhibited significantly increased community respiration and primary productivity, stressing the importance of ecologically sound best management practices for small fish farms in the tropics. -- Highlights: ► Fish farm effluent discharge had moderate effects on stream water quality. ► Impacts on the benthic invertebrate community occurred at one stream. ► Whole-stream nitrate uptake showed no consistent impact pattern. ► Effluents caused considerable increases in stream ecosystem metabolism. ► Compliance with best management practices is important for small fish farms. -- Moderate water pollution by small fish farms caused considerable eutrophication responses in tropical headwater streams

  9. Biological water-quality assessment of selected streams in the Milwaukee Metropolitan Sewerage District Planning Area of Wisconsin, 2007

    Science.gov (United States)

    Scudder Eikenberry, Barbara C.; Bell, Amanda H.; Sullivan, Daniel J.; Lutz, Michelle A.; Alvarez, David A.

    2010-01-01

    Changes in the water quality of stream ecosystems in an urban area may manifest in conspicuous ways, such as in murky or smelly streamwater, or in less conspicuous ways, such as fewer native or pollution-sensitive organisms. In 2004, and again in 2007, the U.S. Geological Survey sampled stream organisms—algae, invertebrates, and fish—in 14 Milwaukee area streams to assess water quality as part of the ongoing Milwaukee Metropolitan Sewerage District (MMSD) Corridor Study. In addition, passive-sampling devices (SPMDs, “semipermeable membrane devices”) were deployed at a subset of sites in order to evaluate the potential exposure of stream organisms to certain toxic chemicals. Results of the 2007 sampling effort are the focus of this report. Results of sampling from 2007 are compared with results from 2004. The water quality of sampled streams was assessed by evaluating biological-assemblage data, metrics computed from assemblage data, and an aggregate bioassessment ranking method that combined data for algae, invertebrates, and fish. These data contain information about the abundance (number) of different species in each group of stream organisms and the balance between species that can or cannot tolerate polluted or disturbed conditions. In 2007, the highest numbers of algal, invertebrate, and fish species were found at the Milwaukee River at Milwaukee, the largest sampled site. Algal results indicated water quality concerns at 10 of the 14 sampled sites due to the occurrence of nuisance algae or low percentages of pollution-sensitive algae. When compared to 2004, total algal biovolume was higher in 2007 at 12 of 14 sites, due mostly to more nuisance green algae from unknown causes. Results of several metrics, including the Hilsenhoff Biotic Index (HBI-10), suggest that invertebrate assemblages in the Little Menomonee River, Underwood Creek, and Honey Creek were poorer quality in 2007 compared to 2004. Six sites received “very poor” quality ratings for

  10. Method for excluding salt and other soluble materials from produced water

    Science.gov (United States)

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  11. APPLICATION OF DIATOMS TO ASSESS THE QUALITY OF THE WATERS OF THE BARYCZKA STREAM, LEFT-SIDE TRIBUTARY OF THE RIVER SAN

    Directory of Open Access Journals (Sweden)

    Teresa Noga

    2013-07-01

    Full Text Available The Baryczka stream is a small (about 20 km long, left bank tributary of the River San (Podkarpackie Voivodeship. Studies on diversity of diatom communities using OMNIDIA software were conducted in 2010 and 2011. Diatomaceous indices IPS, GDI and TDI and Van Dam et al. classification system were used for water quality assessment. Planothidium lanceolatum, Cocconeis placentula var. lineata, Achnanthidium minutissimum var. minutissimum, Nitzschia linearis, Rhoicosphenia abbreviata, Navicula lanceolata and Naicula gregaria were the most numerous. Values of the IPS index indicate good water quality (II–III class. Based on the GDI index, waters of the Baryczka stream were classified to III class water quality. The TDI index indicated poor and bad ecological state on the most sampling sites. On all sampling sites alaliphilous (pH>7 diatoms taxa predominated. The most common were eutraphentic and hypereutraphentic diatoms. With respect to trophy, it was shown that α- and β-mesosaprobous diatoms were the most common (III and II class water quality.

  12. From soil water to surface water – how the riparian zone controls element transport from a boreal forest to a stream

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2017-06-01

    Full Text Available Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr and other parameters such as sulfate and total organic carbon (TOC. The results showed that the concentrations of most investigated elements increased substantially (up to 60 times as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the

  13. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.

    1994-01-01

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  14. Effect of Strip Mining on Water Quality in Small Streams in Eastern Kentucky, 1967-1975

    Science.gov (United States)

    Kenneth L. Dyer; Willie R. Curtis

    1977-01-01

    Eight years of streamflow data are analyzed to show the effects of strip mining on chemical quality of water in six first-order streams in Breathitt County, Kentucky. All these watersheds were unmined in August, 1967, but five have since been strip mined. The accumulated data from this case history study indicate that strip mining causes large increases in the...

  15. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  16. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2012-08-01

    Full Text Available Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  17. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  18. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness

    Science.gov (United States)

    Nusslé, Sébastien; Matthews, Kathleen R.; Carlson, Stephanie M.

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two “resting” meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a “resting” state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change. PMID:26565706

  19. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  20. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    Science.gov (United States)

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.

  1. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    Science.gov (United States)

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.

  2. 7Q10 flows for SRS streams

    International Nuclear Information System (INIS)

    Chen, K.F.

    1996-01-01

    The Environmental Transport Group of the Environmental Technology Section was requested to predict the seven-day ten-year low flow (7Q10 flow) for the SRS streams based on historical stream flow records. Most of the historical flow records for the SRS streams include reactor coolant water discharged from the reactors and process water released from the process facilities. The most straight forward way to estimate the stream daily natural flow is to subtract the measured upstream reactor and/or facility daily effluents from the measured downstream daily flow. Unfortunately, this method does not always work, as indicated by the fact that sometimes the measured downstream volumetric flow rates are lower than the reactor effluent volumetric flow rates. For those cases that cannot be analyzed with the simple subtracting method, an alternative method was used to estimate the stream natural flows by statistically separating reactor coolant and process water flow data. The correlation between the calculated 7Q10 flows and the watershed areas for Four Mile Branch and Pen Branch agrees with that calculated by the USGS for Upper Three Runs and Lower Three Runs Creeks. The agreement between these two independent calculations lends confidence to the 7Q10 flow calculations presented in this report

  3. Barium in produced water: Is it a toxicological hazard to the marine environment?

    International Nuclear Information System (INIS)

    Neff, J.M.

    1993-01-01

    Produced water is a complex aqueous mixture of organic and inorganic chemicals that often is generated in large volumes as a by-product of production of oil and gas. Produced water from offshore oil production platforms sometimes is treated to remove particulate oil and then discharged to the ocean. Barium often is the most abundant inorganic chemical, other than the dominant sea salts, in produced water. Some concern has been expressed that the large amounts of barium discharged to the ocean in produced water may have adverse effects on marine biological communities. The ecological risks associated with discharge to the ocean in produced water may have adverse effects on marine biological communities. The ecological risks associated with discharge to the ocean of barium in produced water were evaluated. Concentrations of barium in produced water from different sources range from less than 1.0 to about 2,000 mg/L, and are inversely correlated with concentrations of sulfate. Concentrations of barium in the ocean usually are in the range of 10 to 20 μg/L; the ocean is undersaturated with respect to barite (BaSO 4 ). During mixing and dilution of a produced water plume in the ocean, barium reacts with the abundant sulfate in seawater and precipitates as barite. Barite is completely nontoxic to marine organisms. Because of the high concentration of sulfate in the ocean, ionic barium can not reach concentrations high enough to be toxic to marine organisms

  4. Uranium concentrations in stream waters and sediments from selected sites in the eastern Seward Peninsula, Koyukuk, and Charley River areas, and across South-Central Alaska

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Hill, D.E.

    1978-04-01

    During the summer of 1975, a 6-week reconnaissance was conducted in widespread areas of Alaska as part of the National Uranium Resource Evaluation (NURE) program; Water, stream sediment, and bedrock samples were taken from the eastern Seward Peninsula, from north of Koyukuk River, from the Charley River area, and from across south central Alaska. This report contains the LASL uranium determinations resulting from fluorometric analysis of the water samples and delayed-neutron counting of the stream sediment samples. Results of total uranium for 611 water and 641 sediment samples, from 691 stream locations, are presented. Overlays showing the numbered sample locations and graphically portraying the concentrations of uranium in water and stream sediment samples, at 1:250,000 scale for use with existing National Topographic Map Series (NTMS) sheets and published geologic maps, are provided as plates. The main purposes of this work are to make the uranium data available to the public in the standard computer format used in the NURE Hydrogeochemical and Stream Sediment Reconnaissance (i.e., with a DOE sample number giving the latitude and longitude of each sample location) and to provide uranium concentration overlays at the standard scale of 1:250,000 adopted by the DOE for the NURE program. It also allows a plausible explanation of differences between the uranium values for sediment as determined by acid dissolution/extraction/fluorometry and by delayed-neutron counting that were noted in the earlier report

  5. Effects of physical and biogeochemical processes on aquatic ecosystems at the groundwater-surface water interface: An evaluation of a sulfate-impacted wild rice stream in Minnesota (USA)

    Science.gov (United States)

    Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.

    2015-12-01

    Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and

  6. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis.

    Science.gov (United States)

    Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi

    2016-05-01

    Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters

    Data.gov (United States)

    U.S. Environmental Protection Agency — In vitro bioactivity concentrations and chemical concentrations of estrogens, androgens, and glucocorticoids from a nationwide screen of United States stream water...

  8. Assessing environmental impacts on stream water quality: the use of cumulative flux and cumulative flux difference approaches to deforestation of the Hafren Forest, mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A method for examining the impacts of disturbance on stream water quality based on paired catchment “controlâ€? and “responseâ€? water quality time series is described in relation to diagrams of cumulative flux and cumulative flux difference. The paper describes the equations used and illustrates the patterns expected for idealised flux changes followed by an application to stream water quality data for a spruce forested catchment, the Hore, subjected to clear fell. The water quality determinands examined are sodium, chloride, nitrate, calcium and acid neutralisation capacity. The anticipated effects of felling are shown in relation to reduction in mist capture and nitrate release with felling as well as to the influence of weathering and cation exchange mechanisms, but in a much clearer way than observed previously using other approaches. Keywords: Plynlimon, stream, Hore, acid neutralisation capacity, calcium, chloride, nitrate, sodium, cumulative flux, flux

  9. Environmental DNA method for estimating salamander distribution in headwater streams, and a comparison of water sampling methods.

    Science.gov (United States)

    Katano, Izumi; Harada, Ken; Doi, Hideyuki; Souma, Rio; Minamoto, Toshifumi

    2017-01-01

    Environmental DNA (eDNA) has recently been used for detecting the distribution of macroorganisms in various aquatic habitats. In this study, we applied an eDNA method to estimate the distribution of the Japanese clawed salamander, Onychodactylus japonicus, in headwater streams. Additionally, we compared the detection of eDNA and hand-capturing methods used for determining the distribution of O. japonicus. For eDNA detection, we designed a qPCR primer/probe set for O. japonicus using the 12S rRNA region. We detected the eDNA of O. japonicus at all sites (with the exception of one), where we also observed them by hand-capturing. Additionally, we detected eDNA at two sites where we were unable to observe individuals using the hand-capturing method. Moreover, we found that eDNA concentrations and detection rates of the two water sampling areas (stream surface and under stones) were not significantly different, although the eDNA concentration in the water under stones was more varied than that on the surface. We, therefore, conclude that eDNA methods could be used to determine the distribution of macroorganisms inhabiting headwater systems by using samples collected from the surface of the water.

  10. Producing deuterium-enriched products

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing an enriched deuterium product from a gaseous feed stream of mixed hydrogen and deuterium, comprises: (a) combining the feed stream with gaseous bromine to form a mixture of the feed stream and bromine and exposing the mixture to an electrical discharge effective to form deuterium bromide and hydrogen bromide with a ratio of D/H greater than the ratio of D/H in the feed stream; and (b) separating at least a portion of the hydrogen bromide and deuterium bromide from the mixture. (author)

  11. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition

    Directory of Open Access Journals (Sweden)

    Jacob D. Hosen

    2017-08-01

    Full Text Available Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition

  12. Stream Phosphorus Dynamics Along a Suburbanizing Gradient in Southern Ontario, Canada

    Science.gov (United States)

    Duval, T. P.

    2017-12-01

    While it is well known that urban streams are subject to impaired water quality relative to natural analogues, far less research has been directed at stream water quality during the process of (sub-) urbanization. This study determines the role of housing construction activities in Brampton, Canada on the concentration and flux of phosphorus (P) of a headwater stream. Prior to development the stream was engineered with a riffle-pool sequence, riparian plantings, and a floodplain corridor that was lined with sediment fencing. Stream sites were sampled daily over a period of six months at locations representing varying stages of subdivision completion (upper site -active construction; middle site -finished construction and natural vegetation; lower site -finished construction and active construction). A nearby urban stream site developed ten years prior to this study was selected as a reference site. There were no differences in total phosphorus (TP) levels or flux between the suburbanizing and urban streams; however, the forms of P differed between sites. The urban stream TP load was dominated by particulate phosphorus (PP) while suburbanizing stream P was mainly in the dissolved organic phosphorus (DOP) form. The importance of DOP to TP flux increased with the onset of the growing season. TP levels in all stream segments frequently exceeded provincial water quality guidelines during storm events but were generally low during baseflow conditions. During storm events PP and total suspended solid levels in the suburbanizing stream reached levels of the urban stream due to sediment fence failure at several locations along the construction-hillslope interface. Along the suburbanizing gradient, the hydrological connection to a mid-reach zone of no-construction activity / fallow field and native forest resulted in significantly lower P levels than the upper suburbanizing stream site. This suggests that stream channel design features as well as timing of construction

  13. Using Video to Communicate Scientific Findings -- Habitat Connections in Urban Streams

    Science.gov (United States)

    Harned, D. A.; Moorman, M.; Fitzpatrick, F. A.; McMahon, G.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film examining effects of urbanization on stream habitat. "Habitat Connections in Urban Streams" explores how urbanization changes some of the physical features that provide in-stream habitat and examines examples of stream restoration projects designed to improve stream form and function. The "connections" theme is emphasized, including the connection of in-stream habitats from the headwaters to the stream mouth; connections between stream habitat and the surrounding floodplains, wetlands and basin; and connections between streams and people-- resource managers, public officials, scientists, and the general public. Examples of innovative stream restoration projects in Baltimore Maryland; Milwaukee, Wisconsin; and Portland Oregon are shown with interviews of managers, engineers, scientists, and others describing the projects. The film is combined with a website with links to extended film versions of the stream-restoration project interviews. The website and films are an example of USGS efforts aimed at improving science communication to a general audience. The film is available for access from the EUSE website: http://water.usgs.gov/nawqa/urban/html/podcasts.html. Additional films are

  14. Produced water reinjection in Campos Basin; Reinjecao de agua produzida na Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Roberta A.; Furtado, Claudio J.A.; Luz Junior, Euripedes B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    To manage the increasing volume of produced water became one of the main challenges in the petroleum industry. PWRI (produced water re-injection) leads to a decrease operational cost in platforms, an increase in liquid flow rates on the topside facilities and a decrease in surface disposal of water. Nowadays in Brazilian fields for every barrel of produced oil three barrels of water need to be handled. PWRI is a process that has been widely diffused in many fields in the world. The main advantages of the PWRI are to reduce collected water, to decrease or eliminate surface disposal of produced water, and to help oil recovery. On the other hand, PWRI tends to increase corrosion when inappropriate materials in tubing and pipelines are used; increase souring potential due to the amount of nutrients for bacteria in the produced water; increase scale formation when sea-water and produced water are mixed and increase formation damage. Even in reservoirs with good qualities in terms of permeability and porosity, the poor quality of the reinjection water decreases injectivity. To minimize injectivity loss some requirements are important: to avoid solids in the produced water system, to inject above fracture propagation pressure to maintain injectivity whenever possible, to use compatible the chemical products for oil-water separation to avoid the formation solids-oil agglomerates. (author)

  15. Stream water quality in coal mined areas of the lower Cheat River Basin, West Virginia and Pennsylvania, during low-flow conditions, July 1997

    Science.gov (United States)

    Williams, Donald R.; Clark, Mary E.; Brown, Juliane B.

    1999-01-01

    IntroductionThe Cheat River Basin is in the Allegheny Plateau and Allegheny Mountain Sections of the Appalachian Plateau Physiographic Province (Fenneman, 1946) and is almost entirely within the state of West Virginia. The Cheat River drains an area of 1,422 square miles in Randolph, Tucker, Preston, and Monongalia Counties in West Virginia and Fayette County in Pennsylvania. From its headwaters in Randolph County, W.Va., the Cheat River flows 157 miles north to the Pennsylvania state line, where it enters the Monongahela River. The Cheat River drainage comprises approximately 19 percent of the total Monongahela River Basin. The Cheat River and streams within the Cheat River Basin are characterized by steep gradients, rock channels, and high flow velocities that have created a thriving white-water rafting industry for the area. The headwaters of the Cheat River contain some of the most pristine and aesthetic streams in West Virginia. The attraction to the area, particularly the lower part of the Cheat River Basin (the lower 412 square miles of the basin), has been suppressed because of poor water quality. The economy of the Lower Cheat River Basin has been dominated by coal mining over many decades. As a result, many abandoned deep and surface mines discharge untreated acid mine drainage (AMD), which degrades water quality, into the Cheat River and many of its tributary streams. Approximately 60 regulated mine-related discharges (West Virginia Department of Environmental Protection, 1996) and 185 abandoned mine sites (U.S. Office of Surface Mining, 1998) discharge treated and untreated AMD into the Cheat River and its tributaries.The West Virginia Department of Environmental Protection (WVDEP) Office of Abandoned Mine Lands and Reclamation (AML&R) has recently completed several AMD reclamation projects throughout the Cheat River Basin that have collectively improved the mainstem water quality. The AML&R office is currently involved in acquiring grant funds and

  16. Scientific stream pollution analysis

    National Research Council Canada - National Science Library

    Nemerow, Nelson Leonard

    1974-01-01

    A comprehensive description of the analysis of water pollution that presents a careful balance of the biological,hydrological, chemical and mathematical concepts involved in the evaluation of stream...

  17. Occurrence of carbapenemase-producing bacteria in coastal recreational waters.

    Science.gov (United States)

    Montezzi, Lara Feital; Campana, Eloiza Helena; Corrêa, Laís Lisboa; Justo, Livia Helena; Paschoal, Raphael Paiva; da Silva, Isabel Lemos Vieira Dias; Souza, Maria do Carmo Maciel; Drolshagen, Marcia; Picão, Renata Cristina

    2015-02-01

    The spread of carbapenemase-producing Gram-negative rods is an emerging global problem. Although most infections due to carbapenemase producers are limited to healthcare institutions, reports of the occurrence of clinically relevant carbapenemase producers in sewage and polluted rivers are increasingly frequent. Polluted rivers flowing to oceans may contaminate coastal waters with multidrug-resistant bacteria, potentially threatening the safety of recreational activities in these locations. Here we assessed the occurrence of carbapenemase producers in water from touristic beaches located in Rio de Janeiro, Brazil, showing distinct pollution patterns. The presence of enterobacteria was noted, including the predominantly environmental genus Kluyvera spp., producing either Klebsiella pneumoniae carbapenemase (KPC) or Guyana extended-spectrum (GES)-type carbapenemases and often associated with quinolone resistance determinants. An Aeromonas sp. harbouring blaKPC and qnrS was also observed. These findings strengthen the role of aquatic matrices as reservoirs and vectors of clinically relevant antimicrobial-resistant bacteria, with potential to favour the spread of these resistance threats throughout the community. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  18. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  19. Accounting for intracell flow in models with emphasis on water table recharge and stream-aquifer interaction: 1. Problems and concepts

    Science.gov (United States)

    Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.

    1989-01-01

    Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by

  20. Vegetal test-system investigation on cytotoxicity of water from urban streams located in the northeastern region of Maringá, Paraná State, Brazil - doi: 10.4025/actascibiolsci.v33i1.4924 Vegetal test-system investigation on cytotoxicity of water from urban streams located in the northeastern region of Maringá, Paraná State, Brazil - doi: 10.4025/actascibiolsci.v33i1.4924

    Directory of Open Access Journals (Sweden)

    Marcus Eduardo Kamide Gonçalves

    2011-02-01

    Full Text Available The increase in consumption of water, the destruction of riparian forests and the pollution caused by humans, have severely degraded several water resources. Numerous stream crisscross the city of Maringá, Paraná state, Brazil and most of their sources are scattered through the urban region. Current analysis assesses the cytotoxic potential of water from the Corregozinho, Isalto, Morangueira and Ozório streams, located within the high-populated northeastern region of Maringá, inside the urban perimeter. Root meristematic cells of Allium cepa were used as test-system. The roots of onion were prepared by Feulgen’s reaction and stained with Schiff's reagent. Results showed that there were no statistically significant changes evaluated by the chi-square test on the rates of cell division in cells of Allium cepa roots treated with the water of the streams when compared to data from controls. However, further analyses should be undertaken at different times for a periodic assessment of conditions in the streams, coupled with an awareness of the population on the environment.The increase in consumption of water, the destruction of riparian forests and the pollution caused by humans, have severely degraded several water resources. Numerous stream crisscross the city of Maringá, Paraná state, Brazil and most of their sources are scattered through the urban region. Current analysis assesses the cytotoxic potential of water from the Corregozinho, Isalto, Morangueira and Ozório streams, located within the high-populated northeastern region of Maringá, inside the urban perimeter. Root meristematic cells of Allium cepa were used as test-system. The roots of onion were prepared by Feulgen’s reaction and stained with Schiff's reagent. Results showed that there were no statistically significant changes evaluated by the chi-square test on the rates of cell division in cells of Allium cepa roots treated with the water of the streams when compared to

  1. Removal of organic pollutants from produced water using Fenton oxidation

    Directory of Open Access Journals (Sweden)

    Afzal Talia

    2018-01-01

    Full Text Available Produced water (PW is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L, [H2O2]/[Fe2+] molar ratio (2 to 75, and reaction time (30 to 200 minutes, on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O and hydrogen peroxide (H2O2 were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  2. Removal of organic pollutants from produced water using Fenton oxidation

    Science.gov (United States)

    Afzal, Talia; Hasnain Isa, Mohamed; Mustafa, Muhammad Raza ul

    2018-03-01

    Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  3. Challenging the myths: the mid-stream asset provider's view

    International Nuclear Information System (INIS)

    Findlay, R.

    1996-01-01

    The term 'mid-stream asset business' implies custom processing and gathering, meaning that a gas producer sells his gas at the wellhead, thereby transferring the business of gathering, processing and marketing of the gas and liquids to a third party. The concept is popular in the United States, but is not yet common in Canada. In Canada, producers own the gas gathering and processing systems. The mid-stream asset business was claimed to be more user friendly than the old custom processing business. Three myths about the mid-stream asset business were challenged: (1) all the risk is on the producer, the processor takes no risk, (2) the mid-stream asset business is an expensive means of financing further exploration, and (3) owning and operating gathering and processing facilities is an integral part of a producer's business. Arguments were brought forth to dispel these myths and to emphasize that a processor should be prepared to accept risks associated with the commodity, prices, production and operations. To be operationally effective, the producer's flexibility and strategic advantages must approach the same level as if he were the owner of the facility

  4. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  5. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    Science.gov (United States)

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.

  6. Surface-water quantity and quality, aquatic biology, stream geomorphology, and groundwater-flow simulation for National Guard Training Center at Fort Indiantown Gap, Pennsylvania, 2002-05

    Science.gov (United States)

    Langland, Michael J.; Cinotto, Peter J.; Chichester, Douglas C.; Bilger, Michael D.; Brightbill, Robin A.

    2010-01-01

    Base-line and long-term monitoring of water resources of the National Guard Training Center at Fort Indiantown Gap in south-central Pennsylvania began in 2002. Results of continuous monitoring of streamflow and turbidity and monthly and stormflow water-quality samples from two continuous-record long-term stream sites, periodic collection of water-quality samples from five miscellaneous stream sites, and annual collection of biological data from 2002 to 2005 at 27 sites are discussed. In addition, results from a stream-geomorphic analysis and classification and a regional groundwater-flow model are included. Streamflow at the facility was above normal for the 2003 through 2005 water years and extremely high-flow events occurred in 2003 and in 2004. Water-quality samples were analyzed for nutrients, sediments, metals, major ions, pesticides, volatile and semi-volatile organic compounds, and explosives. Results indicated no exceedances for any constituent (except iron) above the primary and secondary drinking-water standards or health-advisory levels set by the U.S. Environmental Protection Agency. Iron concentrations were naturally elevated in the groundwater within the watershed because of bedrock lithology. The majority of the constituents were at or below the method detection limit. Sediment loads were dominated by precipitation due to the remnants of Hurricane Ivan in September 2004. More than 60 percent of the sediment load measured during the entire study was transported past the streamgage in just 2 days during that event. Habitat and aquatic-invertebrate data were collected in the summers of 2002-05, and fish data were collected in 2004. Although 2002 was a drought year, 2003-05 were above-normal flow years. Results indicated a wide diversity in invertebrates, good numbers of taxa (distinct organisms), and on the basis of a combination of metrics, the majority of the 27 sites indicated no or slight impairment. Fish-metric data from 25 sites indicated results

  7. Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment.

    Directory of Open Access Journals (Sweden)

    Jeremy J Piggott

    Full Text Available Changes to land use affect streams through nutrient enrichment, increased inputs of sediment and, where riparian vegetation has been removed, raised water temperature. We manipulated all three stressors in experimental streamside channels for 30 days and determined the individual and pair-wise combined effects on benthic invertebrate and algal communities and on leaf decay, a measure of ecosystem functioning. We added nutrients (phosphorus+nitrogen; high, intermediate, natural and/or sediment (grain size 0.2 mm; high, intermediate, natural to 18 channels supplied with water from a nearby stream. Temperature was increased by 1.4°C in half the channels, simulating the loss of upstream and adjacent riparian shade. Sediment affected 93% of all biological response variables (either as an individual effect or via an interaction with another stressor generally in a negative manner, while nutrient enrichment affected 59% (mostly positive and raised temperature 59% (mostly positive. More of the algal components of the community responded to stressors acting individually than did invertebrate components, whereas pair-wise stressor interactions were more common in the invertebrate community. Stressors interacted often and in a complex manner, with interactions between sediment and temperature most common. Thus, the negative impact of high sediment on taxon richness of both algae and invertebrates was stronger at raised temperature, further reducing biodiversity. In addition, the decay rate of leaf material (strength loss accelerated with nutrient enrichment at ambient but not at raised temperature. A key implication of our findings for resource managers is that the removal of riparian shading from streams already subjected to high sediment inputs, or land-use changes that increase erosion or nutrient runoff in a landscape without riparian buffers, may have unexpected effects on stream health. We highlight the likely importance of intact or restored buffer

  8. A method to assess longitudinal riverine connectivity in tropical streams dominated by migratory biota

    Science.gov (United States)

    Crook, K.E.; Pringle, C.M.; Freeman, Mary C.

    2009-01-01

    1. One way in which dams affect ecosystem function is by altering the distribution and abundance of aquatic species. 2. Previous studies indicate that migratory shrimps have significant effects on ecosystem processes in Puerto Rican streams, but are vulnerable to impediments to upstream or downstream passage, such as dams and associated water intakes where stream water is withdrawn for human water supplies. Ecological effects of dams and water withdrawals from streams depend on spatial context and temporal variability of flow in relation to the amount of water withdrawn. 3. This paper presents a conceptual model for estimating the probability that an individual shrimp is able to migrate from a stream's headwaters to the estuary as a larva, and then return to the headwaters as a juvenile, given a set of dams and water withdrawals in the stream network. The model is applied to flow and withdrawal data for a set of dams and water withdrawals in the Caribbean National Forest (CNF) in Puerto Rico. 4. The index of longitudinal riverine connectivity (ILRC), is used to classify 17 water intakes in streams draining the CNF as having low, moderate, or high connectivity in terms of shrimp migration in both directions. An in-depth comparison of two streams showed that the stream characterized by higher water withdrawal had low connectivity, even during wet periods. Severity of effects is illustrated by a drought year, where the most downstream intake caused 100% larval shrimp mortality 78% of the year. 5. The ranking system provided by the index can be used as a tool for conservation ecologists and water resource managers to evaluate the relative vulnerability of migratory biota in streams, across different scales (reach-network), to seasonally low flows and extended drought. This information can be used to help evaluate the environmental tradeoffs of future water withdrawals. ?? 2008 John Wiley & Sons, Ltd.

  9. Sources and preparation of data for assessing trends in concentrations of pesticides in streams of the United States, 1992–2010

    Science.gov (United States)

    Martin, Jeffrey D.; Eberle, Michael; Nakagaki, Naomi

    2011-01-01

    This report updates a previously published water-quality dataset of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through September 2010 at stream-water sites of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program and the National Stream Quality Accounting Network (NASQAN) were compiled, reviewed, selected, and prepared for trend analysis. The principal steps in data review for trend analysis were to (1) identify analytical schedule, (2) verify sample-level coding, (3) exclude inappropriate samples or results, (4) review pesticide detections per sample, (5) review high pesticide concentrations, and (6) review the spatial and temporal extent of NAWQA pesticide data and selection of analytical methods for trend analysis. The principal steps in data preparation for trend analysis were to (1) select stream-water sites for trend analysis, (2) round concentrations to a consistent level of precision for the concentration range, (3) identify routine reporting levels used to report nondetections unaffected by matrix interference, (4) reassign the concentration value for routine nondetections to the maximum value of the long-term method detection level (maxLT-MDL), (5) adjust concentrations to compensate for temporal changes in bias of recovery of the gas chromatography/mass spectrometry (GCMS) analytical method, and (6) identify samples considered inappropriate for trend analysis. Samples analyzed at the USGS National Water Quality Laboratory (NWQL) by the GCMS analytical method were the most extensive in time and space and, consequently, were selected for trend analysis. Stream-water sites with 3 or more water years of data with six or more samples per year were selected for pesticide trend analysis. The selection criteria described in the report produced a dataset of 21

  10. A comparison of high-resolution specific conductance-based end-member mixing analysis and a graphical method for baseflow separation of four streams in hydrologically challenging agricultural watersheds

    Science.gov (United States)

    Kronholm, Scott C.; Capel, Paul D.

    2015-01-01

    Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end-member mixing analysis that used high-resolution specific conductance measurements (SC-EMMA) were used to estimate daily and average long-term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC-EMMA is strongly related to the choice of slowflow and fastflow end-member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end-members. There were substantial discrepancies among the BFI and SC-EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC-EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present.

  11. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal).

    Science.gov (United States)

    Antunes, I M H R; Neiva, A M R; Albuquerque, M T D; Carvalho, P C S; Santos, A C T; Cunha, Pedro P

    2018-02-01

    The Alto da Várzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41-186 µS/cm; TDS = 33-172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H 2 (AsO 4 ) - and H(AsO 4 ) 2- . Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH) 3 (CO 3 ) - , Th(OH) 2 (CO 3 ) and Th(OH) 2 (CO 3 ) 2 2- , which increase water Th contents. Uranium occurs predominantly as UO 2 CO 3 , but CaUO 2 (CO 3 ) 3 2- and CaUO 2 (CO 3 ) 3 also occur, decreasing its mobility in water. The waters are contaminated in NO 2 - , Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.

  12. Mercury concentration in black flies Simulium spp. (Diptera, Simuliidae) from soft-water streams in Ontario, Canada

    International Nuclear Information System (INIS)

    Harding, K.M.; Gowland, J.A.; Dillon, P.J.

    2006-01-01

    Total Hg in Simulium spp. (Diptera, Simuliidae) was measured in 17 soft-water streams in the District of Muskoka and Haliburton County (Ontario, Canada) during 2003 and 2004. Black flies contained 0.07-0.64 μg/g total Hg (dry weight). The methylmercury concentration was measured in 6 samples of the 17, and ranged from 58% to 93% of total Hg. The concentration of total Hg is much higher than has been found in other filter feeding insects, and represents a significant potential source of Hg to fish. Mercury concentrations in Simulium spp. at different sites were strongly positively correlated with dissolved organic carbon, and the proportion of land within each catchment that was wetland. There was also a strong negative correlation with pH. By examining Hg concentration in filter feeding insects we have found a significant entry point for Hg and MeHg into the food web. - Accumulation of total mercury by black fly larvae is affected by stream pH, DOC and wetland area in the stream catchment

  13. Mercury concentration in black flies Simulium spp. (Diptera, Simuliidae) from soft-water streams in Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Harding, K.M. [Trent University, 1600 West Bank Drive, Peterborough, ON K9J 7B8 (Canada); Gowland, J.A. [Trent University, 1600 West Bank Drive, Peterborough, ON K9J 7B8 (Canada); Dillon, P.J. [Trent University, 1600 West Bank Drive, Peterborough, ON K9J 7B8 (Canada)]. E-mail: pdillon@trentu.ca

    2006-10-15

    Total Hg in Simulium spp. (Diptera, Simuliidae) was measured in 17 soft-water streams in the District of Muskoka and Haliburton County (Ontario, Canada) during 2003 and 2004. Black flies contained 0.07-0.64 {mu}g/g total Hg (dry weight). The methylmercury concentration was measured in 6 samples of the 17, and ranged from 58% to 93% of total Hg. The concentration of total Hg is much higher than has been found in other filter feeding insects, and represents a significant potential source of Hg to fish. Mercury concentrations in Simulium spp. at different sites were strongly positively correlated with dissolved organic carbon, and the proportion of land within each catchment that was wetland. There was also a strong negative correlation with pH. By examining Hg concentration in filter feeding insects we have found a significant entry point for Hg and MeHg into the food web. - Accumulation of total mercury by black fly larvae is affected by stream pH, DOC and wetland area in the stream catchment.

  14. Novel Insights Linking Ecological Health to Biogeochemical Hotspots across the Groundwater-Surface Water Interface in Mixed Land Use Stream Systems

    Science.gov (United States)

    McKnight, U. S.; Sonne, A. T.; Rasmussen, J. J.; Rønde, V.; Traunspurger, W.; Höss, S.; Bjerg, P. L.

    2017-12-01

    Increasing modifications in land use and water management have resulted in multiple stressors impacting freshwater ecosystems globally. Chemicals with the potential to impact aquatic habitats are still often evaluated individually for their adverse effects on ecosystem health. This may lead to critical underestimations of the combined impact caused by interactions occurring between stressors not typically evaluated together, e.g. xenobiotic groundwater pollutants and trace metals. To address this issue, we identified sources and levels of chemical stressors along a 16-km groundwater-fed stream corridor (Grindsted, Denmark), representative for a mixed land use stream system. Potential pollution sources included two contaminated sites (factory, landfill), aquaculture, wastewater/industrial discharges, and diffuse sources from agriculture and urban areas. Ecological status was determined by monitoring meiobenthic and macrobenthic invertebrate communities.The stream was substantially impaired by both geogenic and anthropogenic sources of metals throughout the investigated corridor, with concentrations close to or above threshold values for barium, copper, lead, nickel and zinc in the stream water, hyporheic zone and streambed sediment. The groundwater plume from the factory site caused elevated concentrations of chlorinated ethenes, benzene and pharmaceuticals in both the hyporheic zone and stream, persisting for several km downstream. Impaired ecological conditions, represented by a lower abundance of meiobenthic individuals, were found in zones where the groundwater plume discharges to the stream. The effect was only pronounced in areas characterized by high xenobiotic organic concentrations and elevated dissolved iron and arsenic levels - linked to the dissolution of iron hydroxides caused by the degradation of xenobiotic compounds in the plume. The results thus provide ecological evidence for the interaction of organic and inorganic chemical stressors, which may

  15. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  16. Groundwater flux estimation in streams: A thermal equilibrium approach

    Science.gov (United States)

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon

    2018-06-01

    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.

  17. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    Science.gov (United States)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in

  18. Produced water irrigation changes the soil mesofauna community in a semiarid agroecosystem.

    Science.gov (United States)

    Ferreira, Raimundo Nonato Costa; Weber, Olmar Baller; Crisóstomo, Lindbergue Araujo

    2015-08-01

    The scarcity of water in semiarid regions requires alternative sources for irrigation to improve agricultural production. Here, we aimed to evaluate the effects of produced water from oil exploration on the structure of soil mesofauna during the dry and rainy seasons in irrigated sunflower and castor bean fields in a Brazilian semiarid region. Three irrigation treatments were applied on plots cultivated with castor beans and sunflowers: produced water treated by filtration (filtrated) or treated by reverse osmosis (reverse osmosis) and groundwater. The mesofauna under the biofuel crops was collected and identified during the dry and rainy seasons. Although the abundance and richness of the total fauna did not differ between seasons in sunflower plots, the community was altered. In castor beans, the abundance, richness, and community of mesofauna observed in plots irrigated with produced water differed from the groundwater treatment. Irrigation with produced water promotes important changes in soil fauna community that justify their assessment for the maintenance and monitoring of agroecosystems.

  19. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  20. Uncertainty of solute flux estimation in ungauged small streams: potential implications for input-output nutrient mass balances at stream reach scale

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2005-01-01

    Full Text Available Input-output mass balances within stream reaches provide in situ estimates of stream nutrient retention/release under a wide spectrum of hydrological conditions. Providing good estimates of the mass balances for nutrients depends on precise hydrological monitoring and good chemical characterisation of stream water at the input and output ends of the stream reach. There is a need to optimise the hydrological monitoring and the frequencies of water sampling to yield precise annual mass balances, so as to avoid undue cost - high resolution monitoring and subsequent chemical analysis can be labour intensive and costly. In this paper, simulation exercises were performed using a data set created to represent the instantaneous discharge and solute dynamics at the input and output ends of a model stream reach during a one year period. At the output end, stream discharge and water chemistry were monitored continuously, while the input end was assumed to be ungauged; water sampling frequency was changed arbitrarily. Instantaneous discharge at the ungauged sampling point was estimated with an empirical power model linking the discharge to the catchment area (Hooper, 1986. The model thus substitutes for the additional gauge station. Simulations showed that 10 days was the longest chemical sampling interval which could provide reach annual mass balances of acceptable precision. Presently, the relationship between discharge and catchment area is usually assumed to be linear but simulations indicate that small departures from the linearity of this relationship could cause dramatic changes in the mass balance estimations.