On different types of adjustment usable to calculate the parameters of the stream power law
Demoulin, Alain; Beckers, Arnaud; Bovy, Benoît
2012-02-01
Model parameterization through adjustment to field data is a crucial step in the modeling and the understanding of the drainage network response to tectonic or climatic perturbations. Using as a test case a data set of 18 knickpoints that materialize the migration of a 0.7-Ma-old erosion wave in the Ourthe catchment of northern Ardennes (western Europe), we explore the impact of various data fitting on the calibration of the stream power model of river incision, from which a simple knickpoint celerity equation is derived. Our results show that statistical least squares adjustments (or misfit functions) based either on the stream-wise distances between observed and modeled knickpoint positions at time t or on differences between observed and modeled time at the actual knickpoint locations yield significantly different values for the m and K parameters of the model. As there is no physical reason to prefer one of these approaches, an intermediate least-rectangles adjustment might at first glance appear as the best compromise. However, the statistics of the analysis of 200 sets of synthetic knickpoints generated in the Ourthe catchment indicate that the time-based adjustment is the most capable of getting close to the true parameter values. Moreover, this fitting method leads in all cases to an m value lower than that obtained from the classical distance adjustment (for example, 0.75 against 0.86 for the real case of the Ourthe catchment), corresponding to an increase in the non-linear character of the dependence of knickpoint celerity on discharge.
Radiation streaming in power reactors. [PWR; BWR
Energy Technology Data Exchange (ETDEWEB)
Lahti, G.P.; Lee, R.R.; Courtney, J.C. (eds.)
1979-02-01
Separate abstracts are included for each of the 14 papers given at a special session on Radiation Streaming in Power Reactors held on November 15 at the American Nuclear Society 1978 Winter Meeting in Washington, D.C. The papers describe the methods of calculation, the engineering of shields, and the measurement of radiation environments within the containments of light water power reactors. Comparisons of measured and calculated data are used to determine the accuracy of computer predictions of the radiation environment. Specific computational and measurement techniques are described and evaluated. Emphasis is on radiation streaming in the annular region between the reactor vesel and the primary shield and its resultant environment within the primary containment.
Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations
International Nuclear Information System (INIS)
Clark, B.A.; Urban, W.T.; Dudziak, D.J.
1983-01-01
A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates
A Method for Calculating the Mean Orbits of Meteor Streams
Voloshchuk, Yu. I.; Kashcheev, B. L.
An examination of the published catalogs of orbits of meteor streams and of a large number of works devoted to the selection of streams, their analysis and interpretation, showed that elements of stream orbits are calculated, as a rule, as arithmetical (sometimes, weighed) sample means. On the basis of these means, a search for parent bodies, a study of the evolution of swarms generating these streams, an analysis of one-dimensional and multidimensional distributions of these elements, etc., are performed. We show that systematic errors in the estimates of elements of the mean orbits are present in each of the catalogs. These errors are caused by the formal averaging of orbital elements over the sample, while ignoring the fact that they represent not only correlated, but dependent quantities, with nonlinear, in most cases, interrelations between them. Numerous examples are given of such inaccuracies, in particular, the cases where the "mean orbit of the stream" recorded by ground-based techniques does not cross the Earth's orbit. We suggest the computation algorithm, in which the averaging over the sample is carried out at the initial stage of the calculation of the mean orbit, and only for the variables required for subsequent calculations. After this, the known astrometric formulas are used to sequentially calculate all other parameters of the stream, considered now as a standard orbit. Variance analysis is used to estimate the errors in orbital elements of the streams, in the case that their orbits are obtained by averaging the orbital elements of meteoroids forming the stream, without taking into account their interdependence. The results obtained in this analysis indicate the behavior of systematic errors in the elements of orbits of meteor streams. As an example, the effect of the incorrect computation method on the distribution of elements of the stream orbits close to the orbits of asteroids of the Apollo, Aten, and Amor groups (AAA asteroids) is examined.
International Nuclear Information System (INIS)
Zitouni, Y.
1987-04-01
In the field of shielding, the requirement of radiation transport calculations in severe conditions, characterized by irreducible three-dimensional geometries has increased the use of the Monte Carlo method. The latter has proved to be the only rigorous and appropriate calculational method in such conditions. However, further efforts at optimization are still necessary to render the technique practically efficient, despite recent improvements in the Monte Carlo codes, the progress made in the field of computers and the availability of accurate nuclear data. Moreover, the personal experience acquired in the field and the control of sophisticated calculation procedures are of the utmost importance. The aim of the work which has been carried out is the gathering of all the necessary elements and features that would lead to an efficient utilization of the Monte Carlo method used in connection with shielding problems. The study of the general aspects of the method and the exploitation techniques of the MORSE code, which has proved to be one of the most comprehensive of the Monte Carlo codes, lead to a successful analysis of an actual case. In fact, the severe conditions and difficulties met have been overcome using such a stochastic simulation code. Finally, a critical comparison between calculated and high-accuracy experimental results has allowed the final confirmation of the methodology used by us
Use of the PISCES Database: power plant aqueous stream compositions
International Nuclear Information System (INIS)
Behrens, G.P.; Orr, D.A.; Wetherold, R.G.; O'Neil, B.T.
1996-01-01
The Power Plant Integrated Systems: Chemical Emissions Studies (PISCES) Database sponsored by the Electric Power Research Institute is a powerful tool for evaluating and comparing the level of trace substances in power plant process streams. In this paper, data are presented on the level of several selected trace metals found in a few of the aqueous streams present in power plants. A brief discussion of other features of the Database is presented. The majority of the data is for coal fired power plants, with only 5% pertaining to oil and gas. Sources of pollution include: ash streams; cooling water; coal pile runoff; FGD liquids; makeup water; and wastewater. 11 refs., 10 figs., 1 tab
Calculation of Wind Power Limit adjusting the Continuation Power Flow
International Nuclear Information System (INIS)
Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio
2012-01-01
The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)
Nova Scotia Power : in-stream tidal
International Nuclear Information System (INIS)
Meade, K.
2007-01-01
The Government of Nova Scotia, the Government of New Brunswick, Nova Scotia Power and others have funded a feasibility study of North American sites for commercial instream tidal power. In July 2007, Nova Scotia Power received partial funding for a demonstration project. This presentation provided information on a demonstration plant for tidal power run by Nova Scotia Power. It discussed the benefits of the Open Hydro technology for this plant. In this simple design, the generator is on the circumference of the turbine. The design does not involve any power transmission systems or any pitching of blades. In addition, the technology is environmentally sound as it is completely shrouded, has low rotational speed, and a large open centre allows fish to pass through, and it does not require lubricants. The last benefit that was presented was the scale up of 250 kW machine deployed in a European test facility. The presentation also discussed the advantages of developing tidal power at this time. It was concluded that tidal energy has significant potential. Although it is intermittent, it is predictable and bulk power system can be scheduled to accommodate it. figs
New Three-Dimensional Neutron Transport Calculation Capability in STREAM Code
Energy Technology Data Exchange (ETDEWEB)
Zheng, Youqi [Xi' an Jiaotong University, Xi' an (China); Choi, Sooyoung; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of)
2016-10-15
The method of characteristics (MOC) is one of the best choices for its powerful capability in the geometry modeling. To reduce the large computational burden in 3D MOC, the 2D/1D schemes were proposed and have achieved great success in the past 10 years. However, such methods have some instability problems during the iterations when the neutron leakage for axial direction is large. Therefore, full 3D MOC methods were developed. A lot of efforts have been devoted to reduce the computational costs. However, it still requires too much memory storage and computational time for the practical modeling of a commercial size reactor core. Recently, a new approach for the 3D MOC calculation without transverse integration has been implemented in the STREAM code. In this approach, the angular flux is expressed as a basis function expansion form of only axial variable z. A new approach based on the axial expansion and 2D MOC sweeping to solve the 3D neutron transport equation is implemented in the STREAM code. This approach avoids using the transverse integration in the traditional 2D/1D scheme of MOC calculation. By converting the 3D equation into the 2D form of angular flux expansion coefficients, it also avoids the complex 3D ray tracing. Current numerical tests using two benchmarks show good accuracy of the new method.
On Power Stream in Motor or Drive System
Directory of Open Access Journals (Sweden)
Paszota Zygmunt
2016-12-01
Full Text Available In a motor or a drive system the quantity of power increases in the direction opposite to the direction of power flow. Energy losses and energy efficiency of a motor or drive system must be presented as functions of physical quantities independent of losses. Such quantities are speed and load. But the picture of power stream in a motor or drive system is presented in the literature in the form of traditional Sankey diagram of power decrease in the direction of power flow. The paper refers to Matthew H. Sankey’s diagram in his paper „The Thermal Efficiency of Steam Engines“ of 1898. Presented is also a diagram of power increase in the direction opposite to the direction of power flow. The diagram, replacing the Sankey’s diagram, opens a new prospect for research into power of energy losses and efficiency of motors and drive systems.
Electron stopping powers for transport calculations
International Nuclear Information System (INIS)
Berger, M.J.
1988-01-01
The reliability of radiation transport calculations depends on the accuracy of the input cross sections. Therefore, it is essential to review and update the cross sections from time to time. Even though the main interest of the author's group at NBS is in transport calculations and their applications, the group spends almost as much time on the analysis and preparation of cross sections as on the development of transport codes. Stopping powers, photon attenuation coefficients, bremsstrahlung cross sections, and elastic-scattering cross sections in recent years have claimed attention. This chapter deals with electron stopping powers (with emphasis on collision stopping powers), and reviews the state of the art as reflected by Report 37 of the International Commission on Radiation Units and Measurements
Experiments and calculations on neutron streaming through bent ducts
Energy Technology Data Exchange (ETDEWEB)
Kloosterman, J.L.; Hoogenboom, J.E. (Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.); Zsolnay, E.M.
1993-07-01
Neutron spectra in a cylindrical straight duct and in bent ducts with angles of 30deg, 60deg and 90deg have been measured by the multiple foil activation and thermoluminescence dosimetry methods. Two-dimensional discrete ordinates and three-dimensional Monte Carlo calculations are executed, and the results are compared with the measurements. The flow rate at the duct entrance calculated by the DOT3.5 code is underestimated by approximately 30 %, due to a conversion of the core and reflector geometry from XY to RZ geometry. The fast neutron flux in the ducts is underestimated by 20 % by the MORSE-SGC/S code due to a too coarse angular mesh of the source, which does not properly represent the actual angular distribution of the fast flux, which is highly peaked forwardly into the ducts. The thermal neutron flux was over-estimated by the Monte Carlo calculation. A method is proposed to calculate the angular distribution of the flow rate at the duct entrance and to calculate the source strength and the angular distribution of the flow rate at the entrance of the second leg of the duct. The results are compared with those of the transport calculations. Generally, the agreement is quite satisfactory. (author).
Verification of the DUCT-III for calculation of high energy neutron streaming
Energy Technology Data Exchange (ETDEWEB)
Masukawa, Fumihiro; Nakano, Hideo; Nakashima, Hiroshi; Sasamoto, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tayama, Ryu-ichi; Handa, Hiroyuki; Hayashi, Katsumi [Hitachi Engineering Co., Ltd., Hitachi, Ibaraki (Japan); Hirayama, Hideo [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Shin, Kazuo [Kyoto Univ., Kyoto (Japan)
2003-03-01
A large number of radiation streaming calculations under a variety of conditions are required as a part of shielding design for a high energy proton accelerator facility. Since sophisticated methods are very time consuming, simplified methods are employed in many cases. For accuracy evaluation of a simplified code DUCT-III for high energy neutron streaming calculations, two kinds of benchmark problems based on the experiments were analyzed. Through comparison of the DUCT-III calculations with both the measurements and the sophisticated Monte Carlo calculations, DUCT-III was seen reliable enough for applying to the shielding design for the Intense Proton Accelerator Facility. (author)
Verification of the DUCT-III for calculation of high energy neutron streaming
Masukawa, F; Hayashi, K; Hirayama, H; Nakano, H; Nakashima, H; Sasamoto, N; Shin, K; Tayama, R I
2003-01-01
A large number of radiation streaming calculations under a variety of conditions are required as a part of shielding design for a high energy proton accelerator facility. Since sophisticated methods are very time consuming, simplified methods are employed in many cases. For accuracy evaluation of a simplified code DUCT-III for high energy neutron streaming calculations, two kinds of benchmark problems based on the experiments were analyzed. Through comparison of the DUCT-III calculations with both the measurements and the sophisticated Monte Carlo calculations, DUCT-III was seen reliable enough for applying to the shielding design for the Intense Proton Accelerator Facility.
Linear perturbation theory for tidal streams and the small-scale CDM power spectrum
Bovy, Jo; Erkal, Denis; Sanders, Jason L.
2017-04-01
Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r matter is clumpy on the smallest scales relevant for galaxy formation.
Program system for calculating streaming neutron radiation field in reactor cavity
International Nuclear Information System (INIS)
He Zhongliang; Zhao Shu.
1986-01-01
The A23 neutron albedo data base based on Monte Carlo method well agrees with SAIL albedo data base. RSCAM program system, using Monte Carlo method with albedo approach, is used to calculate streaming neutron radiation field in reactor cavity and containment operating hall. The dose rate distributions calculated with RSCAM in square concrete duct well agree with experiments
Jet Streams as Power Generating Electrical Energy in Libya
International Nuclear Information System (INIS)
Shibani, Abdelfatah H.
2014-01-01
The supreme wind sources are extremely huge, and according to estimations, these winds can supply Libya with great quantity of electrical energy. Among the examples of contemporary engineering technologies in this field, is to create a new generation of Airborne Wind Turbines. Scientists realized that winds near the Earth's surface are too weak to provide a regular source of energy due to the presence of aerobic swirls and obstacles, which represent a source of ground friction being the cause of weakening wind power. Some consider that the Earth's surface is a totally inappropriate place for investing wind energy. As an alternative solution, we start to think about the establishment of wind farms in another place away from the Earth's surface by developing a new type that can run within the upper-air layers, precisely at jet streams areas. In comparison with fluctuating winds blowing gently near the Earth's surface, scientists estimate that the energy of jet streams increases a thousand times than that can be gathered from the most powerful winds on high hills. To be able to provide a clear picture of the possibility of energy investment of jet streams, we shall present, across the pages of this paper, an explanation of the topic through the following aspects: How do Airborne Wind Turbines' trip start, their advantages and difficulties faced, benefits and economic feasibility, General Atmospheric Circulation and jet streams. Since Libya is among the fortunate countries in the world, through which subtropical jet streams pass, we made an analysis and follow-up of daily synoptic charts, which show jet winds' speed, direction and their altitudes for a period of 60 consecutive months starting from January 1, 2003 until December 31, 2007. Also, an analysis was made of daily observational data of jet winds recorded by Tripoli Upper-air Station during the period from the beginning of March 1987 until the end of February 1989. The paper's results summarized that jet
Neutron streaming evaluation for the DREAM fusion power reactor
International Nuclear Information System (INIS)
Seki, Yasushi; Nishio, Satoshi; Ueda, Shuzo; Kurihara, Ryoichi
2000-01-01
Aiming at high degree of safety and benign environmental effect, we have proposed a tokamak fusion reactor concept called DREAM, which stands for DRastically EAsy Maintenance Reactor. The blanket structure of the reactor is made from very low activation SiC/SiC composites and cooled by non-reactive helium gas. High net thermal efficiency of about 50% is realized by 900 C helium gas and high plant availability is possible with simple maintenance scheme. In the DREAM Reactor, neutron streaming is a big problem because cooling pipes with diameter larger than 80 cm are used for blanket heat removal. Neutron streaming through the cooling pipes could cause hot spots in the superconducting magnets adjacent to the cooling pipes to shorten the magnet lifetime or increase cryogenic cooling requirement. Neutron streaming could also activate components such as gas turbine further away from the fusion plasma. The effect of neutron streaming through the helium cooling pipes was evaluated for the two types of cooling pipe extraction scheme. The result of a preliminary calculation indicates the gas turbine activation prohibits personnel access in the case of inboard pipe extraction while with additional shielding measures, limited contact maintenance is possible in the case of outboard extraction. (author)
Power calculation of grading device in desintegrator
Bogdanov, V. S.; Semikopenko, I. A.; Vavilov, D. V.
2018-03-01
This article describes the analytical method of measuring the secondary power consumption, necessitated by the installation of a grading device in the peripheral part of the grinding chamber in the desintegrator. There is a calculation model for defining the power input of the disintegrator increased by the extra power demand, required to rotate the grading device and to grind the material in the area between the external row of hammers and the grading device. The work has determined the inertia moments of a cylindrical section of the grading device with armour plates. The processing capacity of the grading device is adjusted to the conveying capacity of the auger feeder. The grading device enables one to increase the concentration of particles in the peripheral part of the grinding chamber and the amount of interaction between particles and armour plates as well as the number of colliding particles. The perforated sections provide the output of the ground material with the proper size granules, which together with the effects of armour plates, improves the efficiency of grinding. The power demand to rotate the grading device does not exceed the admissible value.
Power operation, measurement and methods of calculation of power distribution
International Nuclear Information System (INIS)
Lindahl, S.O.; Bernander, O.; Olsson, S.
1982-01-01
During the initial fuel loading of a BWR core, extensive checks and measurements of the fuel are performed. The measurements are designed to verify that the reactor can always be safely operated in compliance with the regulatory constraints. The power distribution within the reactor core is evaluated by means of instrumentation and elaborate computer calculations. The power distribution forms the basis for the evaluation of thermal limits. The behaviour of the reactor during the ordinary modes of operation as well as during transients shall be well understood and such that the integrity of the fuel and the reactor systems is always well preserved. (author)
Jet stream wind power as a renewable energy resource: little power, big impacts
Directory of Open Access Journals (Sweden)
L. M. Miller
2011-11-01
Full Text Available Jet streams are regions of sustained high wind speeds in the upper atmosphere and are seen by some as a substantial renewable energy resource. However, jet streams are nearly geostrophic flow, that is, they result from the balance between the pressure gradient and Coriolis force in the near absence of friction. Therefore, jet stream motion is associated with very small generation rates of kinetic energy to maintain the high wind velocities, and it is this generation rate that will ultimately limit the potential use of jet streams as a renewable energy resource. Here we estimate the maximum limit of jet stream wind power by considering extraction of kinetic energy as a term in the free energy balance of kinetic energy that describes the generation, depletion, and extraction of kinetic energy. We use this balance as the basis to quantify the maximum limit of how much kinetic energy can be extracted sustainably from the jet streams of the global atmosphere as well as the potential climatic impacts of its use. We first use a simple thought experiment of geostrophic flow to demonstrate why the high wind velocities of the jet streams are not associated with a high potential for renewable energy generation. We then use an atmospheric general circulation model to estimate that the maximum sustainable extraction from jet streams of the global atmosphere is about 7.5 TW. This estimate is about 200-times less than previous estimates and is due to the fact that the common expression for instantaneous wind power 12 ρv^{3} merely characterizes the transport of kinetic energy by the flow, but not the generation rate of kinetic energy. We also find that when maximum wind power is extracted from the jet streams, it results in significant
Variation of stream power with seepage in sand-bed channels
African Journals Online (AJOL)
2009-12-27
Dec 27, 2009 ... Keywords: friction slope, seepage, sediment transport, stream power, suction ... particles from the bed and on further movement of the bed load is of great ..... KNIGHTON AD (1987) River channel adjustment – the down stream.
Exploiting the Power of Relational Databases for Efficient Stream Processing
E. Liarou (Erietta); R.A. Goncalves (Romulo); S. Idreos (Stratos)
2009-01-01
textabstractStream applications gained significant popularity over the last years that lead to the development of specialized stream engines. These systems are designed from scratch with a different philosophy than nowadays database engines in order to cope with the stream applications
Modeling of immision from power plants using stream-diffusion model
International Nuclear Information System (INIS)
Kanevce, Lj.; Kanevce, G.; Markoski, A.
1996-01-01
Analyses of simple empirical and integral immision models, comparing with complex three dimensional differential models is given. Complex differential models needs huge computer power, so they can't be useful for practical engineering calculations. In this paper immision modeling, using stream-diffusion approach is presented. Process of dispersion is divided into two parts. First part is called stream part, it's near the source of the pollutants, and it's presented with defected turbulent jet in wind field. This part finished when the velocity of stream (jet) becomes equal with wind speed. Boundary conditions in the end of the first part, are initial for the second, called diffusion part, which is modeling with tri dimensional diffusion equation. Gradient of temperature, wind speed profile and coefficient of diffusion in this model must not be constants, they can change with the height. Presented model is much simpler than the complete meteorological differential models which calculates whole fields of meteorological parameters. Also, it is more complex and gives more valuable results for dispersion of pollutants from widely used integral and empirical models
Numerical Calculation of Overhead Power Lines Dynamics
Directory of Open Access Journals (Sweden)
Gogola Roman
2016-11-01
Full Text Available This paper contains results of transient analysis of airflow around the ACSR power line cross-section in unsymmetric multi-span. The forces applied to the power line are obtained from CFD simulations, where the wind induced vibration is studied. Effect of these forces to the maximal displacement of the power line and the maximal mechanical forces in the points of attachment are studied and evaluated.
Use of the Streaming Matrix Hybrid Method for discrete-ordinates fusion reactor calculations
International Nuclear Information System (INIS)
Battat, M.E.; Davidson, J.W.; Dudziak, D.J.; Thayer, G.R.
1984-01-01
The use of the discrete-ordinates method for solving two-dimensional, neutral-particle transport in fusion reactor blankets and shields is often limited by inherent inaccuracies due to the ray-effect. This effect presents a particular problem in the case of neutron streaming in the large internal void regions of a fusion reactor. A deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) has been incorporated in the two-dimensional discrete-ordinates code TRIDENT-CTR. Calculations have been performed for an actual inertial-confinement fusion (ICF) reactor design using TRIDENT-CTR both with and without the SMHM. Comparisons of the calculated fluxes indicate that substantial mitigation of the ray effect can be achieved with the SMHM. Calculations were performed for the Los Alamos FIRST STEP hybrid ICF reactor designed for tritium production. Conventional 238 U fuel rod assemblies surround the spherical steel target chamber to form an annular cylindrical blanket. An axial fuel region is included to complete the blanket
Calculation of power density with MCNP in TRIGA reactor
International Nuclear Information System (INIS)
Snoj, L.; Ravnik, M.
2006-01-01
Modern Monte Carlo codes (e.g. MCNP) allow calculation of power density distribution in 3-D geometry assuming detailed geometry without unit-cell homogenization. To normalize MCNP calculation by the steady-state thermal power of a reactor, one must use appropriate scaling factors. The description of the scaling factors is not adequately described in the MCNP manual and requires detailed knowledge of the code model. As the application of MCNP for power density calculation in TRIGA reactors has not been reported in open literature, the procedure of calculating power density with MCNP and its normalization to the power level of a reactor is described in the paper. (author)
Benchmark calculations of power distribution within assemblies
International Nuclear Information System (INIS)
Cavarec, C.; Perron, J.F.; Verwaerde, D.; West, J.P.
1994-09-01
The main objective of this Benchmark is to compare different techniques for fine flux prediction based upon coarse mesh diffusion or transport calculations. We proposed 5 ''core'' configurations including different assembly types (17 x 17 pins, ''uranium'', ''absorber'' or ''MOX'' assemblies), with different boundary conditions. The specification required results in terms of reactivity, pin by pin fluxes and production rate distributions. The proposal for these Benchmark calculations was made by J.C. LEFEBVRE, J. MONDOT, J.P. WEST and the specification (with nuclear data, assembly types, core configurations for 2D geometry and results presentation) was distributed to correspondents of the OECD Nuclear Energy Agency. 11 countries and 19 companies answered the exercise proposed by this Benchmark. Heterogeneous calculations and homogeneous calculations were made. Various methods were used to produce the results: diffusion (finite differences, nodal...), transport (P ij , S n , Monte Carlo). This report presents an analysis and intercomparisons of all the results received
Site response calculations for nuclear power plants
International Nuclear Information System (INIS)
Wight, L.H.
1975-01-01
Six typical sites consisting of three soil profiles with average shear wave velocities of 800, 1800, and 5000 ft/sec as well as two soil depths of 200 and 400 ft were considered. Seismic input to these sites was a synthetic accelerogram applied at the surface and corresponding to a statistically representative response spectrum. The response of each of these six sites to this input was calculated with the SHAKE program. The results of these calculations are presented
Numerical Calculation of the Output Power of a MHD Generator
Directory of Open Access Journals (Sweden)
Adrian CARABINEANU
2014-12-01
Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.
Calculation of transients in WWER power plant
International Nuclear Information System (INIS)
Macek, J.; Kyncl, M.
1981-01-01
A mathematical model is described for the computation of transient processes in a nuclear power plant as is the DYNAMIKA computer program. The program is used for computing two accident variants: rupture of the main steam collector and a failure of the main circulating pump. (H.S.)
Calculated CIM Power Distributions for Coil Design
International Nuclear Information System (INIS)
Hardy, B.J.
1999-01-01
Excessive bed expansion and material expulsion have occurred during experiments with the 3-inch diameter Cylindrical Induction Melter (CIM). Both events were attributed in part to the high power density in the bottom of the melter and the correspondingly high temperatures there. It is believed that the high temperatures resulted in the generation of gasses at the bottom of the bed which could not escape. The gasses released during heating and the response of the bed to gas evolution depend upon the composition of the bed
National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of calculated annual and monthly mean ocean volume transport stream function on 1 degree resolution using the WOA13 (T, S) and corresponding...
Reconstruction calculation of pin power for ship reactor core
International Nuclear Information System (INIS)
Li Haofeng; Shang Xueli; Chen Wenzhen; Wang Qiao
2010-01-01
Aiming at the limitation of the software that pin power distribution for ship reactor core was unavailable, the calculation model and method of the axial and radial pin power distribution were proposed. Reconstruction calculations of pin power along axis and radius was carried out by bicubic and bilinear interpolation and cubic spline interpolation, respectively. The results were compared with those obtained by professional reactor physical soft with fine mesh difference. It is shown that our reconstruction calculation of pin power is simple and reliable as well as accurate, which provides an important theoretic base for the safety analysis and operating administration of the ship nuclear reactor. (authors)
Calculation device for fuel power history in BWR type reactors
International Nuclear Information System (INIS)
Sakagami, Masaharu.
1980-01-01
Purpose: To enable calculations for power history and various variants of power change in the power history of fuels in a BWR type reactor or the like. Constitution: The outputs of the process computation for the nuclear reactor by a process computer are stored and the reactor core power distribution is judged from the calculated values for the reactor core power distribution based on the stored data. Data such as for thermal power, core flow rate, control rod position and power distribution are recorded where the changes in the power distribution exceed a predetermined amount, and data such as for thermal power and core flow rate are recorded where the changes are within the level of the predetermined amount, as effective data excluding unnecessary data. Accordingly, the recorded data are taken out as required and the fuel power history and the various variants in the fuel power are calculated and determined in a calculation device for fuel power history and variants for fuel power fluctuation. (Furukawa, Y.)
Sklar, Leonard; Dietrich, William E.
The simplicity and apparent mechanistic basis of the stream power river incision law have led to its wide use in empirical and theoretical studies. Here we identify constraints on its calibration and application, and present a mechanistic theory for the effects of sediment supply on incision rates which spotlights additional limitations on the applicability of the stream power law. On channels steeper than about 20%, incision is probably dominated by episodic debris flows, and on sufficiently gentle slopes, sediment may bury the bedrock and prevent erosion. These two limits bound the application of the stream power law and strongly constrain the possible combination of parameters in the law. In order to avoid infinite slopes at the drainage divide in numerical models of river profiles using the stream power law it is commonly assumed that the first grid cell is unchanneled. We show, however, that the size of the grid may strongly influence the calculated equilibrium relief. Analysis of slope-drainage area relationships for a river network in a Northern California watershed using digital elevation data and review of data previously reported by Hack reveal that non-equilibrium profiles may produce well defined slope-area relationships (as expected in equilibrium channels), but large differences between tributaries may point to disequilibrium conditions. To explore the role of variations in sediment supply and transport capacity in bedrock incision we introduce a mechanistic model for abrasion of bedrock by saltating bedload. The model predicts that incision rates reach a maximum at intermediate levels of sediment supply and transport capacity. Incision rates decline away from the maximum with either decreasing supply (due to a shortage of tools) or increasing supply (due to gradual bed alluviation), and with either decreasing transport capacity (due to less energetic particle movement) or increasing transport capacity (due less frequent particle impacts per unit bed
Neutron and gamma ray streaming calculations for the ETF neutral beam injectors
International Nuclear Information System (INIS)
Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.
1981-02-01
Two-dimensional radiation transport methods have been used to estimate the effects of neutron and gamma ray streaming on the performance of the Engineering Test Facility (ETF) neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10 -3 MW/m 3 which implies a total heat load of 2.2 x 10 -4 MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated
Strong enhancement of streaming current power by application of two phase flow
Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.
2011-01-01
We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system
International Nuclear Information System (INIS)
Efremov, V P; Demidov, B A; Ivkin, M V; Mescheryakov, A N; Petrov, V A; Potapenko, A I
2006-01-01
Collision of fast plasma streams in vacuum is investigated. Plasma streams were produced by irradiation of thin foils with a powerful pulsed electron beam. Interaction of the plasma flows was studied by using frame and streak cameras. One-dimensional numerical simulation was carried out. Application of this method for porous ICF targets and high-energy physics is discussed
Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.
2016-05-01
Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.
Power calculator for instrumental variable analysis in pharmacoepidemiology.
Walker, Venexia M; Davies, Neil M; Windmeijer, Frank; Burgess, Stephen; Martin, Richard M
2017-10-01
Instrumental variable analysis, for example with physicians' prescribing preferences as an instrument for medications issued in primary care, is an increasingly popular method in the field of pharmacoepidemiology. Existing power calculators for studies using instrumental variable analysis, such as Mendelian randomization power calculators, do not allow for the structure of research questions in this field. This is because the analysis in pharmacoepidemiology will typically have stronger instruments and detect larger causal effects than in other fields. Consequently, there is a need for dedicated power calculators for pharmacoepidemiological research. The formula for calculating the power of a study using instrumental variable analysis in the context of pharmacoepidemiology is derived before being validated by a simulation study. The formula is applicable for studies using a single binary instrument to analyse the causal effect of a binary exposure on a continuous outcome. An online calculator, as well as packages in both R and Stata, are provided for the implementation of the formula by others. The statistical power of instrumental variable analysis in pharmacoepidemiological studies to detect a clinically meaningful treatment effect is an important consideration. Research questions in this field have distinct structures that must be accounted for when calculating power. The formula presented differs from existing instrumental variable power formulae due to its parametrization, which is designed specifically for ease of use by pharmacoepidemiologists. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association
Decay Power Calculation for Safety Analysis of Innovative Reactor Systems
Energy Technology Data Exchange (ETDEWEB)
Shwageraus, E.; Fridman, E. [Department of Nuclear Engineering, Ben-Gurion University of the Negev Beer-Sheva 84105 (Israel)
2008-07-01
In this work, we verified the decay heat calculation capabilities of BGCore computer code system developed recently at Ben-Gurion University. Decay power was calculated for a typical UO{sub 2} fuel in Pressurized Water Reactor environment using BGCore code and using procedure prescribed by the ANS/ANSI-2005 standard. Very good agreement between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power as a function of time after shutdown for various reactors with innovative fuels, for which no standard procedure is currently available. Notable differences were observed for decay power of the advanced reactors as compared with conventional UO{sub 2} LWR. The observed differences suggest that the design of new reactors safety systems must be based on corresponding decay power curves for each individual case in order to assure the desired performance of such systems. (authors)
Decay Power Calculation for Safety Analysis of Innovative Reactor Systems
International Nuclear Information System (INIS)
Shwageraus, E.; Fridman, E.
2008-01-01
In this work, we verified the decay heat calculation capabilities of BGCore computer code system developed recently at Ben-Gurion University. Decay power was calculated for a typical UO 2 fuel in Pressurized Water Reactor environment using BGCore code and using procedure prescribed by the ANS/ANSI-2005 standard. Very good agreement between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power as a function of time after shutdown for various reactors with innovative fuels, for which no standard procedure is currently available. Notable differences were observed for decay power of the advanced reactors as compared with conventional UO 2 LWR. The observed differences suggest that the design of new reactors safety systems must be based on corresponding decay power curves for each individual case in order to assure the desired performance of such systems. (authors)
Formation for the calculation of reactivity without nuclear power history
International Nuclear Information System (INIS)
Suescun Diaz, Daniel; Senra Martinez, Aquilino; Carvalho Da Silva, Fernando
2007-01-01
This paper presents a new method for the solution of the inverse point kinetics equation. This method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. With the imposition of conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has very special characteristics, amongst which the possibility of using longer sampling period, and the possibility of restarting the calculation, after its interruption, allowing the calculation of reactivity in a non-continuous way. Beside that, the reactivity can be obtained independent of the nuclear power memory. (author)
Methods for tornado frequency calculation of nuclear power plant
International Nuclear Information System (INIS)
Liu Haibin; Li Lin
2012-01-01
In order to take probabilistic safety assessment of nuclear power plant tornado attack event, a method to calculate tornado frequency of nuclear power plant is introduced based on HAD 101/10 and NUREG/CR-4839 references. This method can consider history tornado frequency of the plant area, construction dimension, intensity various along with tornado path and area distribution and so on and calculate the frequency of different scale tornado. (authors)
Open Source Initiative Powers Real-Time Data Streams
2014-01-01
Under an SBIR contract with Dryden Flight Research Center, Creare Inc. developed a data collection tool called the Ring Buffered Network Bus. The technology has now been released under an open source license and is hosted by the Open Source DataTurbine Initiative. DataTurbine allows anyone to stream live data from sensors, labs, cameras, ocean buoys, cell phones, and more.
Calculation of power spectra for block coded signals
DEFF Research Database (Denmark)
Justesen, Jørn
2001-01-01
We present some improvements in the procedure for calculating power spectra of signals based on finite state descriptions and constant block size. In addition to simplified calculations, our results provide some insight into the form of the closed expressions and to the relation between the spect...
Calculations for accidents in water reactors during operation at power
International Nuclear Information System (INIS)
Blanc, H.; Dutraive, P.; Fabrega, S.; Millot, J.P.
1976-07-01
The behaviour of a water reactor on an accident occurring as the reactor is normally operated at power may be calculated through the computer code detailed in this article. Reactivity accidents, loss of coolant ones and power over-running ones are reviewed. (author)
Methodology for calculating power consumption of planetary mixers
Antsiferov, S. I.; Voronov, V. P.; Evtushenko, E. I.; Yakovlev, E. A.
2018-03-01
The paper presents the methodology and equations for calculating the power consumption necessary to overcome the resistance of a dry mixture caused by the movement of cylindrical rods in the body of a planetary mixer, as well as the calculation of the power consumed by idling mixers of this type. The equations take into account the size and physico-mechanical properties of mixing material, the size and shape of the mixer's working elements and the kinematics of its movement. The dependence of the power consumption on the angle of rotation in the plane perpendicular to the axis of rotation of the working member is presented.
Whole core calculations of power reactors by Monte Carlo method
International Nuclear Information System (INIS)
Nakagawa, Masayuki; Mori, Takamasa
1993-01-01
Whole core calculations have been performed for a commercial size PWR and a prototype LMFBR by using vectorized Monte Carlo codes. Geometries of cores were precisely represented in a pin by pin model. The calculated parameters were k eff , control rod worth, power distribution and so on. Both multigroup and continuous energy models were used and the accuracy of multigroup approximation was evaluated through the comparison of both results. One million neutron histories were tracked to considerably reduce variances. It was demonstrated that the high speed vectorized codes could calculate k eff , assembly power and some reactivity worths within practical computation time. For pin power and small reactivity worth calculations, the order of 10 million histories would be necessary. Required number of histories to achieve target design accuracy were estimated for those neutronic parameters. (orig.)
DEFF Research Database (Denmark)
Godsk, Mikkel
This paper presents a flexible model, ‘STREAM’, for transforming higher science education into blended and online learning. The model is inspired by ideas of active and collaborative learning and builds on feedback strategies well-known from Just-in-Time Teaching, Flipped Classroom, and Peer...... Instruction. The aim of the model is to provide both a concrete and comprehensible design toolkit for adopting and implementing educational technologies in higher science teaching practice and at the same time comply with diverse ambitions. As opposed to the above-mentioned feedback strategies, the STREAM...... model supports a relatively diverse use of educational technologies and may also be used to transform teaching into completely online learning. So far both teachers and educational developers have positively received the model and the initial design experiences show promise....
Development of a coupling code for PWR reactor cavity radiation streaming calculation
International Nuclear Information System (INIS)
Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.
2012-01-01
PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)
Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.
2014-03-01
Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.
Statistic method of research reactors maximum permissible power calculation
International Nuclear Information System (INIS)
Grosheva, N.A.; Kirsanov, G.A.; Konoplev, K.A.; Chmshkyan, D.V.
1998-01-01
The technique for calculating maximum permissible power of a research reactor at which the probability of the thermal-process accident does not exceed the specified value, is presented. The statistical method is used for the calculations. It is regarded that the determining function related to the reactor safety is the known function of the reactor power and many statistically independent values which list includes the reactor process parameters, geometrical characteristics of the reactor core and fuel elements, as well as random factors connected with the reactor specific features. Heat flux density or temperature is taken as a limiting factor. The program realization of the method discussed is briefly described. The results of calculating the PIK reactor margin coefficients for different probabilities of the thermal-process accident are considered as an example. It is shown that the probability of an accident with fuel element melting in hot zone is lower than 10 -8 1 per year for the reactor rated power [ru
Neutron energy spectra calculations in the low power research reactor
International Nuclear Information System (INIS)
Omar, H.; Khattab, K.; Ghazi, N.
2011-01-01
The neutron energy spectra have been calculated in the fuel region, inner and outer irradiation sites of the zero power research reactor using the MCNP-4C code and the combination of the WIMS-D/4 transport code for generation of group constants and the three-dimensional CITATION diffusion code for core analysis calculations. The neutron energy spectrum has been divided into three regions and compared with the proposed empirical correlations. The calculated thermal and fast neutron fluxes in the low power research reactor MNSR inner and outer irradiation sites have been compared with the measured results. Better agreements have been noticed between the calculated and measured results using the MCNP code than those obtained by the CITATION code. (author)
Scoping calculations of power sources for nuclear electric propulsion
International Nuclear Information System (INIS)
Difilippo, F.C.
1994-05-01
This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis
Processing of nuclear power plant waste streams containing boric acid
International Nuclear Information System (INIS)
1996-10-01
Boric acid is used in PWR type reactor's primary coolant circuit to control the neutron flux. However, boric acid complicates the control of water chemistry of primary coolant and the liquid radioactive waste produced from NPP. The purpose of this report is to provide member states with up-to-date information and guidelines for the treatment and conditioning of boric acid containing wastes. It contains chapters on: (a) characteristics of waste streams; (b) options for management of boric acid containing waste; (c) treatment/decontamination of boric acid containing waste; (d) concentration and immobilization of boric acid containing waste; (e) recovery and re-use of boric acid; (f) selected industrial processes in various countries; and (g) the influence of economic factors on process selection. 72 refs, 23 figs, 5 tabs
Reactivity calculation with reduction of the nuclear power fluctuations
International Nuclear Information System (INIS)
Suescun Diaz, Daniel; Senra Martinez, Aquilino
2009-01-01
A new formulation is presented in this paper for the calculation of reactivity, which is simpler than the formulation that uses the Laplace and Z transforms. A treatment is also made to reduce the intensity of the noise found in the nuclear power signal used in the calculation of reactivity. Two classes of different filters are used for that. This treatment is based on the fact that the reactivity can be written by using the compose Simpson's rule resulting in a sum of two convolution terms with response to the impulse that is characteristic of a linear system. The linear part is calculated by using the filter named finite impulse response filter (FIR). The non-linear part is calculated using the filter exponentially adjusted by the least squares method, which does not cause attenuation in the reactivity calculation.
Reactivity calculation with reduction of the nuclear power fluctuations
Energy Technology Data Exchange (ETDEWEB)
Suescun Diaz, Daniel [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914 RJ (Brazil)], E-mail: dsuescun@hotmail.com; Senra Martinez, Aquilino [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914 RJ (Brazil)
2009-05-15
A new formulation is presented in this paper for the calculation of reactivity, which is simpler than the formulation that uses the Laplace and Z transforms. A treatment is also made to reduce the intensity of the noise found in the nuclear power signal used in the calculation of reactivity. Two classes of different filters are used for that. This treatment is based on the fact that the reactivity can be written by using the compose Simpson's rule resulting in a sum of two convolution terms with response to the impulse that is characteristic of a linear system. The linear part is calculated by using the filter named finite impulse response filter (FIR). The non-linear part is calculated using the filter exponentially adjusted by the least squares method, which does not cause attenuation in the reactivity calculation.
The "Gravity-Powered Calculator," a Galilean Exhibit
Cerreta, Pietro
2014-01-01
The Gravity-Powered Calculator is an exhibit of the Exploratorium in San Francisco. It is presented by its American creators as an amazing device that extracts the square roots of numbers, using only the force of gravity. But if you analyze his concept construction one can not help but recall the research of Galileo on falling bodies, the inclined…
Houilleres du Bassin de Lorraine - calculation of AFC drive power
Energy Technology Data Exchange (ETDEWEB)
1979-01-01
Calculation method drawn up as a result of a test programme carried out by the CoRT working group on 'Coal and dirt clearance from the face - Face-ends' on 5 faces in the H.B.L. Describes the features of the conveyors. Presents a general formula for calculating the power requirement; how this is applied. Sets forth the experimental method for determining the formula coefficients plus annotations. Includes a table summarizing the various power factors (measured and theoretically calculated). Concludes that from the proposed methods, the best is that used by Potasses d'Alsace, on condition that certain of the coefficients are empirically validated. Includes a table giving features of the workings and the conveyors used.
Theoretical model for calculation of molecular stopping power
International Nuclear Information System (INIS)
Xu, Y.J.
1984-01-01
A modified local plasma model based on the work of Linhard-Winther, Bethe, Brown, and Walske is established. The Gordon-Kim's molecular charged density model is employed to obtain a formula to evaluate the stopping power of many useful molecular systems. The stopping power of H 2 and He gas was calculated for incident proton energy ranging from 100 KeV to 2.5 MeV. The stopping power of O 2 , N 2 , and water vapor was also calculated for incident proton energy ranging from 40 keV to 2.5 MeV. Good agreement with experimental data was obtained. A discussion of molecular effects leading to departure from Bragg's rule is presented. The equipartition rule and the effect of nuclear momentum recoiling in stopping power are also discussed in the appendix. The calculation procedure presented hopefully can easily be extended to include the most useful organic systems such as the molecules composed of carbon, nitrogen, hydrogen and oxygen which are useful in radiation protection field
Simulation and comparison of stream power in-channel and on the floodplain in a German lowland area
Directory of Open Access Journals (Sweden)
Song Song
2014-06-01
Full Text Available Extensive lowland floodplains cover substantial parts of the glacially formed landscape of Northern Germany. Stream power is recognized as a force of formation and development of the river morphology and an interaction system between channel and floodplain. In order to understand the effects of the river power and flood power, HEC-RAS models were set up for ten river sections in the Upper Stör catchment, based on a 1 m digital elevation model and field data, sampled during a moderate water level period (September, 2011, flood season (January, 2012 and dry season (April, 2012. The models were proven to be highly efficient and accurate through the seasonal roughness modification. The coefficients of determination (R2 of the calibrated models were 0.90, 0.90, 0.93 and 0.95 respectively. Combined with the continuous and long-term data support from SWAT model, the stream power both in-channel and on the floodplain was analysed. Results show that the 10-year-averaged discharge and unit stream power were around 1/3 of bankfull discharge and unit power, and the 10-year-peak discharge and unit stream power were nearly 1.6 times the bankfull conditions. Unit stream power was proportional to the increase of stream discharge, while the increase rate of unit in-channel stream power was 3 times higher than that of unit stream power on the floodplain. Finally, the distribution of the hydraulic parameters under 10-years-peak discharge conditions was shown, indicating that only 1-10% of flow stream was generated by floodplain flow, but 40-75% volume of water was located on the floodplain. The variation of the increasing rate of the stream power was dominated by the local roughness height, while the stream power distributed on the floodplain mainly depended on the local slope of the sub-catchment.
DEFF Research Database (Denmark)
Diky, Vladimir; Chirico, Robert D.; Muzny, Chris
ThermoData Engine (TDE, NIST Standard Reference Databases 103a and 103b) is the first product that implements the concept of Dynamic Data Evaluation in the fields of thermophysics and thermochemistry, which includes maintaining the comprehensive and up-to-date database of experimentally measured...... property values and expert system for data analysis and generation of recommended property values at the specified conditions along with uncertainties on demand. The most recent extension of TDE covers solvent design and multi-component process stream property calculations with uncertainty analysis...... variations). Predictions can be compared to the available experimental data, and uncertainties are estimated for all efficiency criteria. Calculations of the properties of multi-component streams including composition at phase equilibria (flash calculations) are at the heart of process simulation engines...
NORD STREAM 2 and its Soft Power – an Unfolding Playground for the European Union
Directory of Open Access Journals (Sweden)
Roxana Ioana Banciu
2016-06-01
Full Text Available This paper focuses on the Nord Stream 2 pipeline in a double reflection (Russia - the candle, Germany - the mirror handling one particular aspect that influences Russia-EU relations since the Ukrainian factor emerged as a playground for both East and West tectonic plates - namely the energy sector. It is vital for any global power to understand this approach in order to reach people’s minds, in order to emerge as leaders on the world map and to build a strong perception over a political scene. A recently debated subject is Nord Stream 2. The reason why I have chosen to explore this subject is because I am very interested in how Kremlin seeks to have an exclusive control over Eastern Europe, given the full debate in the last three years. In this thesis I will also discuss some important elements of the Russian Soft Power over Europe introducing the plot of South Stream project.
Impedance calculations for power cables to primary coolant pump motors
International Nuclear Information System (INIS)
Hegerhorst, K.B.
1977-01-01
The LOFT primary system motor generator sets are located in Room B-239 and are connected to the primary coolant pumps by means of a power cable. The calculated average impedance of this cable is 0.005323 ohms per unit resistance and 0.006025 ohms per unit reactance based on 369.6 kVA and 480 volts. The report was written to show the development of power cable parameters that are to be used in the SICLOPS (Simulation of LOFT Reactor Coolant Loop Pumping System) digital computer program as written in LTR 1142-16 and also used in the pump coastdowns for the FSAR Analysis
Behavioural differential equations : a coinductive calculus of streams, automata, and power series
J.J.M.M. Rutten (Jan)
2000-01-01
textabstractStreams, (automata and) languages, and formal power series are viewed coalgebraically. In summary, this amounts to supplying these sets with a deterministic automaton structure, which has the universal property of being final. Finality then forms the basis for both definitions and proofs
Method of calculating heat transfer in furnaces of small power
Directory of Open Access Journals (Sweden)
Khavanov Pavel
2016-01-01
Full Text Available This publication presents the experiences and results of generalization criterion equation of importance in the analysis of the processes of heat transfer and thermal calculations of low-power heat generators cooled combustion chambers. With generalizing depending estimated contribution of radiation and convective heat transfer component in the complex for the combustion chambers of small capacity boilers. Determined qualitative and quantitative dependence of the integrated radiative-convective heat transfer from the main factors working combustion chambers of small volume.
Behavioral System Level Power Consumption Modeling of Mobile Video Streaming applications
Benmoussa , Yahia; Boukhobza , Jalil; Hadjadj-Aoul , Yassine; Lagadec , Loïc; Benazzouz , Djamel
2012-01-01
National audience; Nowadays, the use of mobile applications and terminals faces fundamental challenges related to energy constraint. This is due to the limited battery lifetime as compared to the increasing hardware evolution. Video streaming is one of the most energy consuming applications in a mobile system because of its intensive use of bandwidth, memory and processing power. In this work, we aim to propose a methodology for building and validating a high level global power consumption mo...
Correlation expansion: a powerful alternative multiple scattering calculation method
International Nuclear Information System (INIS)
Zhao Haifeng; Wu Ziyu; Sebilleau, Didier
2008-01-01
We introduce a powerful alternative expansion method to perform multiple scattering calculations. In contrast to standard MS series expansion, where the scattering contributions are grouped in terms of scattering order and may diverge in the low energy region, this expansion, called correlation expansion, partitions the scattering process into contributions from different small atom groups and converges at all energies. It converges faster than MS series expansion when the latter is convergent. Furthermore, it takes less memory than the full MS method so it can be used in the near edge region without any divergence problem, even for large clusters. The correlation expansion framework we derive here is very general and can serve to calculate all the elements of the scattering path operator matrix. Photoelectron diffraction calculations in a cluster containing 23 atoms are presented to test the method and compare it to full MS and standard MS series expansion
Sensitivity Calculation of Vanadium Self-Powered Neutron Detector
International Nuclear Information System (INIS)
Cha, Kyoon Ho
2011-01-01
Self-powered neutron detector (SPND) is being widely used to monitor the reactor core of the nuclear power plants. The SPND contains a neutron-sensitive metallic emitter surrounded by a ceramic insulator. Currently, the rhodium SPND has been used in many nuclear power plants. The lifetime of rhodium is too short (about 3∼5 years) to operate the nuclear power plant economically. The vanadium (V) SPND is also primarily sensitive to neutrons like rhodium, but is a somewhat slower reaction time as that of a rhodium SPND. The benefit of vanadium over rhodium is its low depletion rate, which is a factor of 7 times less than that of rhodium. For this reason, a vanadium SPND has been being developed to replace the rhodium SPND which is used in OPR1000. Some Monte Carlo simulations were accomplished to calculate the initial sensitivity of vanadium emitter material and alumina (Al 2 O 3 ) insulator with a cylindrical geometry. An MCNP-X code was used to simulate some factors (neutron self shielding factor and electron escape probability from the emitter) necessary to calculate the sensitivity of vanadium detector. The simulation results were compared with some theoretical and experimental values. The method presented here can be used to analyze the optimum design of the vanadium SPND
Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming
Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.
2011-01-01
Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature
Calculating the Responses of Self-Powered Radiation Detectors.
Thornton, D. A.
Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual
Effect of hemodialysis on intraocular lens power calculation.
Çalışkan, Sinan; Çelikay, Osman; Biçer, Tolga; Aylı, Mehmet Deniz; Gürdal, Canan
2016-01-01
To evaluate changes in ocular biometric parameters after hemodialysis (HD) in patients with end-stage renal disease (ESRD). Forty eyes of 40 patients undergoing HD were included in this cross-sectional study. Keratometry (K) readings, white-to-white (WTW) distance, central corneal thickness (CCT), anterior chamber depth (ACD), pupil diameter, lens thickness (LT), axial length (AL), and intraocular lens (IOL) power calculation were measured with Lenstar LS 900 (Haag Streit AG, Koeniz, Switzerland) before and after hemodialysis. Intraocular pressure (IOP) was measured with a non-contact tonometer (Tonopachy NT-530P, Nidek Co., LTD, Tokyo, Japan). Main outcomes were changes in biometric parameters after HD. Reliability of the measurements (intraclass correlation coefficients (ICCs)) and the effect size (Cohen's d) were also calculated. Mean difference in AL before and after HD was -0.041 ± 0.022 mm with ICCs > 0.90 (p 0.90 (p = 0.041 and Cohen's d = 0.20). Hemodialysis had no significant effect on K readings, WTW distance, CCT, ACD, LT, or IOP. Axial length and pupil diameter increase after HD with small effect size, while HD does not significantly affect IOL power calculations.
International Nuclear Information System (INIS)
Yoshimura, Mayumi; Yokoduka, Tetsuya
2014-01-01
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium ( 137 Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and 137 Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations ( 137 Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption. - Highlight: • Concentration of 137 Cs in brown trout was higher than in rainbow trout. • 137 Cs concentration of brown trout in a lake was higher than in a stream. • 137 Cs concentration of stream charr was higher in region with higher aerial activity. • Concentration of 137 Cs in stream charr was higher in older fish. • Difference of contamination among fishes was due to difference in diet and habitat
Energy Technology Data Exchange (ETDEWEB)
Yoshimura, Mayumi, E-mail: yoshi887@ffpri.affrc.go.jp [Kansai Research Center, Forestry and Forest Products Research Institute, Nagaikyuutaro 68, Momoyama, Fushimi, Kyoto 612-0855 (Japan); Yokoduka, Tetsuya [Tochigi Prefectural Fisheries Experimental Station, Sarado 2599, Ohtawara, Tochigi 324-0404 (Japan)
2014-06-01
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium ({sup 137}Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and {sup 137}Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations ({sup 137}Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption. - Highlight: • Concentration of {sup 137}Cs in brown trout was higher than in rainbow trout. • {sup 137}Cs concentration of brown trout in a lake was higher than in a stream. • {sup 137}Cs concentration of stream charr was higher in region with higher aerial activity. • Concentration of {sup 137}Cs in stream charr was higher in older fish. • Difference of contamination among fishes was due to difference in diet and habitat.
Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard
2016-04-01
The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by
Calculation of Industrial Power Systems Containing Induction Motors
Directory of Open Access Journals (Sweden)
Gheorghe Hazi
2014-09-01
Full Text Available The current paper proposes two methods and algorithms for determining the operating regimes of industrial electrical networks which include induction motors. The two methods presented are based on specific principles for calculating electrical networks: Newton-Raphson and Backward-Forward for iteratively determining currents and voltages. The particularity of this paper is how the driven load influences the determination of the motors operating regimes. For the industrial machines driven by motors we take into account the characteristic of the resistant torque depending on speed. In this way, at the electrical busbars to which motors are connected, the active and the reactive power absorbed are calculated as a function of voltage as opposed to a regular consumer busbar. The algorithms for the two methods are presented. Finally, a numerical study for a test network is realized and the convergence is analyzed.
Calculation of degenerated Eigenmodes with modified power method
Energy Technology Data Exchange (ETDEWEB)
Zhang, Peng; Lee, Hyun Suk; Lee, Deok Jung [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2017-02-15
The modified power method has been studied by many researchers to calculate the higher Eigenmodes and accelerate the convergence of the fundamental mode. Its application to multidimensional problems may be unstable due to degenerated or near-degenerated Eigenmodes. Complex Eigenmode solutions are occasionally encountered in such cases, and the shapes of the corresponding eigenvectors may change during the simulation. These issues must be addressed for the successful implementation of the modified power method. Complex components are examined and an approximation method to eliminate the usage of the complex numbers is provided. A technique to fix the eigenvector shapes is also provided. The performance of the methods for dealing with those aforementioned problems is demonstrated with two dimensional one group and three dimensional one group homogeneous diffusion problems.
Calculation of research reactor RA power at uncontrolled reactivity changes
International Nuclear Information System (INIS)
Cupac, S.
1978-01-01
The safety analysis of research reactor RA involves also the calculation of reactor power at uncontrolled reactivity changes. The corresponding computer code, based on Point Kinetics Model has been made. The short review of method applied for solving kinetic equations is given and several examples illustrating the reactor behaviour at various reactivity changes are presented. The results already obtained are giving rather rough picture of reactor behaviour in considered situations. This is the consequence of using simplified feed back and reactor cooling models, as well as temperature reactivity coefficients, which do not correspond to the actual reactor RA structure (which is now only partly fulfilled with 80% enriched uranium fuel). (author) [sr
Design and structural calculation of nuclear power plant mechanical components
International Nuclear Information System (INIS)
Amaral, J.A.R. do
1986-01-01
The mechanical components of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design. In this paper, it is intended to describe the design and structural calculations concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities. (Author) [pt
Investigating power factor compensation capacity calculation in medium sized industry
International Nuclear Information System (INIS)
Chudhry, M.A.; Hanif, A.
2008-01-01
There are a variety of techniques developed in order to improve the efficiency of electrical systems and reduce cost of providing electricity to the consumer. This paper presents a new technique for power-factor capacity calculation in medium-sized industrial/ commercial setups. Various loads of similar nominal power-factor are categorized and demand-factor of loads is so selected that it has engineering justifications. The developed system works on the principle of low-voltage power-factor correction, which substantially reduces electricity bill and increases loading-capacity of the electrical system. It allows commercial and industrial consumers to save on their power cost appreciably. This work utilizes software, which takes few inputs and produces numerous useful results. Adoption of this system can help the user in computing compensation-capacity, system KVA (size of transformer) and cost of compensation. A feature of this system is prediction of low PF penalty. Moreover, it also suggests the tentative payback period. (author)
Dynamic stability calculations for power grids employing a parallel computer
Energy Technology Data Exchange (ETDEWEB)
Schmidt, K
1982-06-01
The aim of dynamic contingency calculations in power systems is to estimate the effects of assumed disturbances, such as loss of generation. Due to the large dimensions of the problem these simulations require considerable computing time and costs, to the effect that they are at present only used in a planning state but not for routine checks in power control stations. In view of the homogeneity of the problem, where a multitude of equal generator models, having different parameters, are to be integrated simultaneously, the use of a parallel computer looks very attractive. The results of this study employing a prototype parallel computer (SMS 201) are presented. It consists of up to 128 equal microcomputers bus-connected to a control computer. Each of the modules is programmed to simulate a node of the power grid. Generators with their associated control are represented by models of 13 states each. Passive nodes are complemented by 'phantom'-generators, so that the whole power grid is homogenous, thus removing the need for load-flow-iterations. Programming of microcomputers is essentially performed in FORTRAN.
Correlation of Pc5 wave power inside and outside themagnetosphere during high speed streams
Directory of Open Access Journals (Sweden)
R. L. Kessel
2004-01-01
Full Text Available We show a clear correlation between the ULF wave power (Pc5 range inside and outside the Earth's magnetosphere during high speed streams in 1995. We trace fluctuations beginning 200R_{E} upstream using Wind data, to fluctuations just upstream from Earth's bow shock and in the magnetosheath using Geotail data and compare to pulsations on the ground at the Kilpisjarvi ground station. With our 5-month data set we draw the following conclusions. ULF fluctuations in the Pc5 range are found in high speed streams; they are non-Alfvénic at the leading edge and Alfvénic in the central region. Compressional and Alfvénic fluctuations are modulated at the bow shock, some features of the waveforms are preserved in the magnetosheath, but overall turbulence and wave power is enhanced by about a factor of 10. Parallel (compressional and perpendicular (transverse power are at comparable levels in the solar wind and magnetosheath, both in the compression region and in the central region of high speed streams. Both the total parallel and perpendicular Pc5 power in the solar wind (and to a lesser extent in the magnetosheath correlate well with the total Pc5 power of the ground-based H-component magnetic field. ULF fluctuations in the magnetosheath during high speed streams are common at frequencies from 1–4mHz and can coincide with the cavity eigenfrequencies of 1.3, 1.9, 2.6, and 3.4mHz, though other discrete frequencies are also often seen.
Key words. Interplanetary physics (MHD waves and turbulence – Magnetospheric physics (solar wind-magnetosphere interactions; MHD waves and instabilities
International Nuclear Information System (INIS)
Bettes, R.S.
1984-01-01
The paper discusses the real time performance calculations for the turbine cycle and reactor and steam generators of a nuclear power plant. Program accepts plant measurements and calculates performance and efficiency of each part of the cycle: reactor and steam generators, turbines, feedwater heaters, condenser, circulating water system, feed pump turbines, cooling towers. Presently, the calculations involve: 500 inputs, 2400 separate calculations, 500 steam properties subroutine calls, 200 support function accesses, 1500 output valves. The program operates in a real time system at regular intervals
Calculation of heat transfer in transversely stream-lined tube bundles with chess arrangement
International Nuclear Information System (INIS)
Migaj, V.K.
1978-01-01
A semiempirical theory of heat transfer in transversely stream-lined chess-board tube bundles has been developed. The theory is based on a single cylinder model and involves external flow parameter evaluation on the basis of the solidification principle of a vortex zone. The effect of turbulence is estimated according to experimental results. The method is extended to both average and local heat transfer coefficients. Comparison with experiment shows satisfactory agreement
Radiation streaming with SAM-CE
International Nuclear Information System (INIS)
De Gangi, N.; Cohen, M.O.; Waluschka, E.; Steinberg, H.A.
1980-01-01
The SAM-CE Monte Carlo code has been employed to calculate doses, due to neutron streaming, on the operating floor and other locations of the Millstone Unit II Nuclear Power Facility. Calculated results were compared against measured doses
Comparison of two optical biometers in intraocular lens power calculation
Directory of Open Access Journals (Sweden)
Sheng Hui
2014-01-01
Full Text Available Aims: To compare the consistency and accuracy in ocular biometric measurements and intraocular lens (IOL power calculations using the new optical low-coherence reflectometry and partial coherence interferometry. Subjects and Methods: The clinical data of 122 eyes of 72 cataract patients were analyzed retrospectively. All patients were measured with a new optical low-coherence reflectometry system, using the LENSTAR LS 900 (Haag Streit AG/ALLEGRO BioGraph biometer (Wavelight., AG, and partial coherence interferometry (IOLMaster V.5.4 [Carl Zeiss., Meditec, AG] before phacoemulsification and IOL implantation. Repeated measurements, as recommended by the manufacturers, were performed by the same examiner with both devices. Using the parameters of axial length (AL, corneal refractive power (K1 and K2, and anterior chamber depth (ACD, power calculations for AcrySof SA60AT IOL were compared between the two devices using five formulas. The target was emmetropia. Statistical analysis was performed using Statistical Package for the Social Sciences software (SPSS 13.0 with t-test as well as linear regression. A P value < 0.05 was considered to be statistically significant. Results: The mean age of 72 cataract patients was 64.6 years ± 13.4 [standard deviation]. Of the biometry parameters, K1, K2 and [K1 + K2]/2 values were significantly different between the two devices (mean difference, K1: −0.05 ± 0.21 D; K2: −0.12 ± 0.20 D; [K1 + K2]/2: −0.08 ± 0.14 D. P <0.05. There was no statistically significant difference in AL and ACD between the two devices. The correlations of AL, K1, K2, and ACD between the two devices were high. The mean differences in IOL power calculations using the five formulas were not statistically significant between the two devices. Conclusions: New optical low-coherence reflectometry provides measurements that correlate well to those of partial coherence interferometry, thus it is a precise device that can be used for the
Behavioural differential equations : a coinductive calculus of streams, automata, and power series
Rutten, Jan
2000-01-01
textabstractStreams, (automata and) languages, and formal power series are viewed coalgebraically. In summary, this amounts to supplying these sets with a deterministic automaton structure, which has the universal property of being final. Finality then forms the basis for both definitions and proofs by coinduction, the coalgebraic counterpart of induction. Coinductive definitions take the shape of what we have called behavioural differential equations, after Brzozowski's notion of input deriv...
Shield design and streaming calculations for the sodium cooled PEC reactor
International Nuclear Information System (INIS)
Prosperi, M.; Tavoni, R.; Travaglini, N.
1977-01-01
This paper summarises the shielding calculations carried out for the PEC reactor. A brief description of calculation methods and of the work carried out to set them up is given; the most representative calculations with the relative isoflux curves are also referred. A general outline is then given for the main shielding problems of the PEC reactor
International Nuclear Information System (INIS)
Childs, R.L.; Rhoades, W.A.; Williams, L.R.
1988-01-01
The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs
Directory of Open Access Journals (Sweden)
Khaoula Ghefiri
2017-06-01
Full Text Available The latest forecasts on the upcoming effects of climate change are leading to a change in the worldwide power production model, with governments promoting clean and renewable energies, as is the case of tidal energy. Nevertheless, it is still necessary to improve the efficiency and lower the costs of the involved processes in order to achieve a Levelized Cost of Energy (LCoE that allows these devices to be commercially competitive. In this context, this paper presents a novel complementary control strategy aimed to maximize the output power of a Tidal Stream Turbine (TST composed of a hydrodynamic turbine, a Doubly-Fed Induction Generator (DFIG and a back-to-back power converter. In particular, a global control scheme that supervises the switching between the two operation modes is developed and implemented. When the tidal speed is low enough, the plant operates in variable speed mode, where the system is regulated so that the turbo-generator module works in maximum power extraction mode for each given tidal velocity. For this purpose, the proposed back-to-back converter makes use of the field-oriented control in both the rotor side and grid side converters, so that a maximum power point tracking-based rotational speed control is applied in the Rotor Side Converter (RSC to obtain the maximum power output. Analogously, when the system operates in power limitation mode, a pitch angle control is used to limit the power captured in the case of high tidal speeds. Both control schemes are then coordinated within a novel complementary control strategy. The results show an excellent performance of the system, affording maximum power extraction regardless of the tidal stream input.
International Nuclear Information System (INIS)
Thomas, V.W.; Robertson, D.E.; Thomas, C.W.
1993-02-01
Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., 108m Ag, 93 Mo, 36 Cl, 10 Be, 113m Cd, 121m Sn, 126 Sn, 93m Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., 14 C, 129 I, and 99 Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments
A virtual power plant model for time-driven power flow calculations
Directory of Open Access Journals (Sweden)
Gerardo Guerra
2017-11-01
Full Text Available This paper presents the implementation of a custom-made virtual power plant model in OpenDSS. The goal is to develop a model adequate for time-driven power flow calculations in distribution systems. The virtual power plant is modeled as the aggregation of renewable generation and energy storage connected to the distribution system through an inverter. The implemented operation mode allows the virtual power plant to act as a single dispatchable generation unit. The case studies presented in the paper demonstrate that the model behaves according to the specified control algorithm and show how it can be incorporated into the solution scheme of a general parallel genetic algorithm in order to obtain the optimal day-ahead dispatch. Simulation results exhibit a clear benefit from the deployment of a virtual power plant when compared to distributed generation based only on renewable intermittent generation.
Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.
Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery
2009-06-01
For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning
Power calculation of linear and angular incremental encoders
Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.
2016-04-01
Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and
International Nuclear Information System (INIS)
Garcia, A.E.; Parkansky, D.G.
1993-01-01
In the Embalse nuclear power plant (CNE), the Regional Overpower Protection System acting on the Shutdown Systems number 1 and number 2 protects the reactor against overpowers in the reactor field for a localized peaking or a power increase in the reactor as a whole. This report summarizes the results of the critical channel power calculation for the time average powers configuration for the 380 reactor field channels. The final purpose of this work is to analyze and eventually modify the detector set points. Other reactor configurations are being analyzed. The report also presents a sensitivity analysis in order to evaluate potential sources of error and uncertainties which could affect the ROP performance. (author)
On-line calculation of 3-D power distribution
International Nuclear Information System (INIS)
Park, Y. H.; In, W. K.; Park, J. R.; Lee, C. C.; Auh, G. S.
1996-01-01
The 3-D power distribution synthesis scheme was implemented in Totally Integrated Core Operation Monitoring System (TICOMS), which is under development as the next generation core monitoring system. The on-line 3-D core power distribution obtained from the measured fixed incore detector readings is used to construct the hot pin power as well as the core average axial power distribution. The core average axial power distribution and the hot pin power of TICOMS were compared with those of the current digital on-line core monitoring system, COLSS, which construct the core average axial power distribution and the pseudo hot pin power. The comparison shows that TICOMS results in the slightly more accurate core average axial power distribution and the less conservative hot pin power. Therefore, these results increased the core operating margins. In addition, the on-line 3-D power distribution is expected to be very useful for the core operation in the future
Calculated power output from a thin iron-seeded plasma
International Nuclear Information System (INIS)
Merts, A.L.; Cowan, R.D.; Magee, N.H. Jr.
1976-02-01
Ionization equilibrium calculations are carried out for iron ions at a density of 10 12 cm -3 in a (hydrogen) plasma with electron density 10 14 cm -3 , at temperatures from 0.8 to 10 keV. The computed radiated power loss from this plasma due to the iron ions ranges from about 4 W/cm 3 at the lowest temperature to about 0.4 W/cm 3 at the highest temperature; loss rates for other electron and ion densities will scale approximately as N/sub e/N/sub Fe/10 26 . The losses are due principally to collisionally excited line radiation (especially Δn = 0 transitions) at low temperatures, and to collisionally excited Δn not equal to 0 transitions and to continuum radiative recombination at high temperatures. Spectra are also computed for diagnostic x-ray K/sub α/ (1s - 2p) transitions; the change in spectral distribution as a function of temperature agrees well with observations in the ST Tokamak. Bound-bound radiative transitions and dielectronic recombination are discussed at length in appendices; the latter process is of great importance in the establishment of ionization equilibrium, and in the excitation of K/sub α/ radiation at the lower temperatures
Radiological shielding of low power compact reactor: calculation and design
International Nuclear Information System (INIS)
Marino, Raul
2004-01-01
The development of compact reactors becoming a technology that offers great projection and innumerable use possibilities, both in electricity generation and in propulsion.One of the requirements for the operation of this type of reactor is that it must include a radiological shield that will allow for different types of configurations and that, may be moved with the reactor if it needs to be transported.The nucleus of a reactor emits radiation, mainly neutrons and gamma rays in the heat of power, and gamma radiation during the radioactive decay of fission products.This radiation must be restrained in both conditions of operation to avoid it affecting workers or the public.The combination of different materials and properties in layers results in better performance in the form of a decrease in radiation, hence causing the dosage outside the reactor, whether in operation or shut down, to fall within the allowed limits.The calculations and design of radiological shields is therefore of paramount importance in reactor design.The choice of material and the design of the shield have a strong impact on the cost and the load capacity, the latter being one of the characteristics to optimize.The imposed condition of design is that the reactor can be transported together with the decay shield in a standard container of 40 foot [es
International Nuclear Information System (INIS)
Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.
2005-09-01
The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl
A cost effective waste management methodology for power reactor waste streams
International Nuclear Information System (INIS)
Granus, M.W.; Campbell, A.D.
1984-01-01
This paper describes a computer based methodology for the selection of the processing methods (solidification/dewatering) for various power reactor radwaste streams. The purpose of this methodology is to best select the method that provides the most cost effective solution to waste management. This method takes into account the overall cost of processing, transportation and disposal. The selection matrix on which the methodology is based is made up of over ten thousand combinations of liner, cask, process, and disposal options from which the waste manager can choose. The measurement device for cost effective waste management is the concurrent evaluation of total dollars spent. The common denominator is dollars per cubic foot of the input waste stream. Dollars per curie of the input waste stream provides for proper checks and balances. The result of this analysis can then be used to assess the total waste management cost. To this end, the methodology can then be employed to predict a given number of events (processes, transportation, and disposals) and project the annual cost of waste management. For the purposes of this paper, the authors provide examples of the application of the methodology on a typical BWR at 2, 4 and 6 years. The examples are provided in 1984 dollars. Process selection is influenced by a number of factors which must be independently evaluated for each waste stream. Final processing cost is effected by the particular process efficiency and a variety of regulatory constraints. The interface between process selection and cask selection/transportation driven by the goal of placing the greatest amount of pre-processed waste in the package and remaining within the bounds of weight, volume, regulatory, and cask availability limitations. Disposal is the cost of burial and can be affected by disposal, but availability of burial space, and the location of the disposal site in relation to the generator
Input of biomass in power plants or the power generation. Calculation of the financial gap
International Nuclear Information System (INIS)
De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.
2005-09-01
The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl
Power plant reliability calculation with Markov chain models
International Nuclear Information System (INIS)
Senegacnik, A.; Tuma, M.
1998-01-01
In the paper power plant operation is modelled using continuous time Markov chains with discrete state space. The model is used to compute the power plant reliability and the importance and influence of individual states, as well as the transition probabilities between states. For comparison the model is fitted to data for coal and nuclear power plants recorded over several years. (orig.) [de
Power Production and Economical Feasibility of Tideng Tidal Stream Power Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Frigaard, Peter; Kofoed, Jens Peter
This report is a product of the contract between Aalborg University and TIDENG (by Bent Hilleke) on the evaluation and development of the TIDENG Tidal Energy Conversion System (TECS). The work has focused on the evaluation of the yearly power production of the device and its economical feasibility...
Yang, Shan; Tong, Xiangqian
2016-01-01
Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverte...
Wind power limit calculation basedon frequency deviation using Matlab
International Nuclear Information System (INIS)
Santos Fuentefria, Ariel; Salgado Duarte, Yorlandis; MejutoFarray, Davis
2017-01-01
The utilization of the wind energy for the production of electricity it’s a technology that has promoted itself in the last years, like an alternative before the environmental deterioration and the scarcity of the fossil fuels. When the power generation of wind energy is integrated into the electrical power systems, maybe take place problems in the frequency stability due to, mainly, the stochastic characteristic of the wind and the impossibility of the wind power control on behalf of the dispatchers. In this work, is make an analysis of frequency deviation when the wind power generation rise in an isolated electrical power system. This analysis develops in a computerized frame with the construction of an algorithm using Matlab, which allowed to make several simulations in order to obtain the frequency behavior for different loads and wind power conditions. Besides, it was determined the wind power limit for minimum, medium and maximum load. The results show that the greatest values on wind power are obtained in maximum load condition. However, the minimum load condition limit the introduction of wind power into the system. (author)
International Nuclear Information System (INIS)
Atwater, Joel F.; Lawrence, Gregory A.
2011-01-01
Tidal-in-Stream energy has been heralded by many as a significant potential source for clean power, a scheme where kinetic energy is extracted from tidal currents. A number of estimates have suggested that tidal power may become a sizeable fraction of overall electricity generation, however these estimates have been largely based on a resource assessment methodology that dramatically oversimplifies the physical phenomenon at play. This paper develops a model that considers the effect of energy extraction on the bulk flow, showing that tidal energy inventories that assess solely kinetic energy flux may represent both an order-of-magnitude overestimation of the resource and a significant oversimplification of regulatory impacts. The interplay between the characteristics of a flow and the regulatory and economic issues will likely limit tidal power generation to levels significantly below the physical maximums. Permitted flow reduction, turbine design and staging of development all have significant and predictable impacts on the extractible resource. Energy planners must therefore understand these relationships in order to appropriately assess the magnitude of generation that can be realistically be produced from tidal energy. - Research highlights: → Inventorying kinetic energy is not appropriate for assessing the tidal energy potential and may overestimate the resource by orders of magnitude. → The physical maximum for tidal power extraction is 38% of the total fluid power of a channel and causes a flow reduction of 42%. → Any amount of tidal power generation will reduce the flow rate in a channel. → Limiting the permitted reduction in flow significantly reduces the available resource. → Turbine efficiency is important as extraneous resistance depletes the resource without providing power generation.
Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations
Boyd, Steven J
2006-01-01
Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal str...
A simple approach to calculate active power of electrosurgical units
Directory of Open Access Journals (Sweden)
André Luiz Regis Monteiro
Full Text Available Abstract Introduction: Despite of more than a hundred years of electrosurgery, only a few electrosurgical equipment manufacturers have developed methods to regulate the active power delivered to the patient, usually around an arbitrary setpoint. In fact, no manufacturer has a method to measure the active power actually delivered to the load. Measuring the delivered power and computing it fast enough so as to avoid injury to the organic tissue is challenging. If voltage and current signals can be sampled in time and discretized in the frequency domain, a simple and very fast multiplication process can be used to determine the active power. Methods This paper presents an approach for measuring active power at the output power stage of electrosurgical units with mathematical shortcuts based on a simple multiplication procedure of discretized variables – frequency domain vectors – obtained through Discrete Fourier Transform (DFT applied on time-sampled voltage and current vectors. Results Comparative results between simulations and a practical experiment are presented – all being in accordance with the requirements of the applicable industry standards. Conclusion An analysis is presented comparing the active power analytically obtained through well-known voltage and current signals against a computational methodology based on vector manipulation using DFT only for time-to-frequency domain transformation. The greatest advantage of this method is to determine the active power of noisy and phased out signals with neither complex DFT or ordinary transform methodologies nor sophisticated computing techniques such as convolution. All results presented errors substantially lower than the thresholds defined by the applicable standards.
Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices
Energy Technology Data Exchange (ETDEWEB)
Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gribkov, V.A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Demina, E.V.; Pimenov, V.N.; Maslyaev, S.A. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Bondarenko, G.G. [National Research University Higher School of Economics (HSE), Moscow (Russian Federation); Vilemova, M.; Matejicek, J. [Institute of Plasma Physics of the CAS, Prague (Czech Republic)
2016-12-15
Highlights: • Materials perspective for use in mainstream nuclear fusion facilities were studied. • Powerful streams of hot plasma and fast ions were used to induce irradiation. • High temporal, spatial, angular and spectral resolution available in experiments. • Results of irradiation were investigated by number of analysis techniques. - Abstract: A process of irradiating and ablating solid-state targets with hot plasma and fast ion streams in two Dense Plasma Focus (DPF) devices – PF-6 and PF-1000 was examined by applying a number of diagnostics of nanosecond time resolution. Materials perspective for use in chambers of the mainstream nuclear fusion facilities (mainly with inertial plasma confinement like NIF and Z-machine), intended both for the first wall and for constructions, have been irradiated in these simulators. Optical microscopy, SEM, Atomic Emission Spectroscopy, images in secondary electrons and in characteristic X-ray luminescence of different elements, and X-ray elemental analysis, gave results on damageability for a number of materials including low-activated ferritic and austenitic stainless steels, β-alloy of Ti, as well as two types of W and a composite on its base. With an increase of the number of shots irradiating the surface, its morphology changes from weakly pronounced wave-like structures or ridges to strongly developed ones. At later stages, due to the action of the secondary plasma produced near the target materials they melted, yielding both blisters and a fracturing pattern: first along the grain and then “in-between” the grains creating an intergranular net of microcracks. At the highest values of power flux densities multiple bubbles appeared. Furthermore, in this last case the cracks were developed because of microstresses at the solidification of melt. Presence of deuterium within the irradiated ferritic steel surface nanolayers is explained by capture of deuterons in lattice defects of the types of impurity atoms
Calculation of the Magnetic Fields of the Electric Power Line
Directory of Open Access Journals (Sweden)
Patsiuk V.
2016-12-01
Full Text Available The task of calculation of per unit length parameters of multi-conductor electrical overhead transmission lines has been treated in the paper. The calculation of distribution of electric and magnetic fields has been performed by means of the finite volume method for entire span of the line. The theoretical justification of the method for calculation the parameters of electromagnetic field taking into account the change of the vector of magnetic potential along the line has been given. The problems of electrostatic and magnetostatic for a single electric conductor and unlimited long conductor with current have been solved. For the inner and total inductivities of a single conductor under the current have been obtained relationships and drawn dependences. Dependence between the speeds of light and of electromagnetic wave’s propagation has been presented. Based on the characteristics of distribution of electric and magnetic fields of multi-conductor lines has been provided the method of calculation of the matrix of own and mutual capacitances and inductivities the calculated values of per unit length parameters of compact 110 kV electric line which is in concordance with one of basic physical constant – the speed of light.
A New Power Calculation Method for Single-Phase Grid-Connected Systems
DEFF Research Database (Denmark)
Yang, Yongheng; Blaabjerg, Frede
2013-01-01
A new method to calculate average active power and reactive power for single-phase systems is proposed in this paper. It can be used in different applications where the output active power and reactive power need to be calculated accurately and fast. For example, a grid-connected photovoltaic...... system in low voltage ride through operation mode requires a power feedback for the power control loop. Commonly, a Discrete Fourier Transform (DFT) based power calculation method can be adopted in such systems. However, the DFT method introduces at least a one-cycle time delay. The new power calculation...... method, which is based on the adaptive filtering technique, can achieve a faster response. The performance of the proposed method is verified by experiments and demonstrated in a 1 kW single-phase grid-connected system operating under different conditions.Experimental results show the effectiveness...
Performance calculations for battery power supplies as laboratory research tools
International Nuclear Information System (INIS)
Scanlon, J.J.; Rolader, G.E.; Jamison, K.A.; Petresky, H.
1991-01-01
Electromagnetic Launcher (EML) research at the Air Force Armament Laboratory, Hypervelocity Launcher Branch (AFATL/SAH), Eglin AFB, has focused on developing the technologies required for repetitively launching several kilogram payloads to high velocities. Previous AFATL/SAH experiments have been limited by the available power supply resulting in small muzzle energies on the order of 100's of kJ. In an effort to advance the development of EML's, AFATL/SAH has designed and constructed a battery power supply (BPS) capable of providing several mega-Amperes of current for several seconds. This system consists of six modules each containing 2288 automotive batteries which may be connected in two different series - parallel arrangements. In this paper the authors define the electrical characteristics of the AFATL Battery Power supply at the component level
Power extraction calculation improvement when local parameters are included
Flores-Mateos, L. M.; Hartnett, M.
2016-02-01
The improvement of the tidal resource assessment will be studied by comparing two approaches in a two-dimensional, finite difference, hydrodynamic model DIVAST-ADI; in a channel of non-varying cross-sectional area that connects two large basins. The first strategy, considers a constant trust coefficient; the second one, use the local field parameters around the turbine. These parameters are obtained after applying the open channel theory in the tidal stream and after considering the turbine as a linear momentum actuator disk. The parameters correspond to the upstream and downstream, with respect to the turbine, speeds and depths; also the blockage ratio, the wake velocity and the bypass coefficients and they have already been incorporated in the model. The figure (a) shows the numerical configuration at high tide developed with DIVAST-ADI. The experiment undertakes two open boundary conditions. The first one is a sinusoidal forcing introduced as a water level located at (I, J=1) and the second one, indicate that a zero velocity and a constant water depth were kept (I, J=362); when the turbine is introduced it is placed in the middle of the channel (I=161, J=181). The influence of the turbine in the velocity and elevation around the turbine region is evident; figure (b) and (c) shows that the turbine produces a discontinuity in the depth and velocity profile, when we plot a transect along the channel. Finally, the configuration implemented reproduced with satisfactory accuracy the quasi-steady flow condition, even without presenting shock-capturing capability. Also, the range of the parameters 0.01<α 4<0.55, $0
Power and Particle Balance Calculations with Impurities in NSTX
Holland, C. G.; Maingi, R.; Owen, L. W.; Kaye, S. M.
1998-11-01
We reported the development C. Holland, et. al., Bull. Am. Phys. Soc. 42 (1997) 1927. and application R. Maingi et al., Proc. 3rd International Workshop on Spherical Tori, Sept. 3-5, 1997, St. Petersburg, Russia. of a Graphical User Interface to assess the important terms for edge and divertor plasma calculations for NSTX with the b2.5 edge plasma transport code B. Braams, Contrib. Plasma Phys. 36 (1996) 276.. The goals of those calculations were to estimate the worst case peak heat flux for plasma-facing component design, and the radiation requirements to reduce the peak heat flux. In this study we present the first simulations with intrinsic carbon impurity radiation. We find in general that the intrinsic carbon radiation should be sufficient to provide a wide operation window for the NSTX device. Details of the relative importance of heat flux transport mechanisms as determined with the GUI will be presented.
The power series method in the effectiveness factor calculations
Filipich, C. P.; Villa, L. T.; Grossi, Ricardo Oscar
2017-01-01
In the present paper, exact analytical solutions are obtained for nonlinear ordinary differential equations which appear in complex diffusionreaction processes. A technique based on the power series method is used. Numerical results were computed for a number of cases which correspond to boundary value problems available in the literature. Additionally, new numerical results were generated for several important cases. Fil: Filipich, C. P.. Universidad Tecnológica Nacional. Facultad Regiona...
Comparison of different methods of calculating pinwise power
International Nuclear Information System (INIS)
Powers, M.A.
1987-01-01
One objective of a nuclear utility is the capability to predict the peak rod power in reload core design accurately and efficiently. This capability can be utilized in the verification of vendor results and the development of utility reload methodology. The MBS code solves the diffusion equation in x-y geometry by the finite different technique. The MBS code utilizes coarser meshes but reaches the same level of accuracy as a pin-by-pin model. The CASMO code utilizes pin profiles at specified core conditions, which are superimposed on the MBS diffusion theory results for pin power predictions. Placement of the burnable poison rods in the loading pattern are crucial to minimizing peak pin power. Westinghouse utilizes a code called TURTLE, licensed by the US Nuclear Regulatory Commission and proprietary to Westinghouse. The MBS code, with macroscopic cross sections from CASMO, can be run with coarser meshes and macroscopic depletion and still reach the same level of accuracy as a pin-by-pin code such as PDQ-7 or TURTLE. The MBS input preparation is simpler than PDQ-7 or TURTLE-type input preparation
Environment-based pin-power reconstruction method for homogeneous core calculations
International Nuclear Information System (INIS)
Leroyer, H.; Brosselard, C.; Girardi, E.
2012-01-01
Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOX assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)
Power calculations using exact data simulation: A useful tool for genetic study designs
van der Sluis, S.; Dolan, C.V.; Neale, M.C.; Posthuma, D.
2008-01-01
Statistical power calculations constitute an essential first step in the planning of scientific studies. If sufficient summary statistics are available, power calculations are in principle straightforward and computationally light. In designs, which comprise distinct groups (e.g., MZ & DZ twins),
Strategies for the Use of Tidal Stream Currents for Power Generation
Orhan, Kadir; Mayerle, Roberto
2015-04-01
Indonesia is one of the priority countries in Southeast Asia for the development of ocean renewable energy facilities and The National Energy Council intends to increase the role of ocean energy significantly in the energy mix for 2010-2050. To this end, the joint German-Indonesian project "Ocean Renewable Energy ORE-12" aims at the identification of marine environments in the Indonesian Archipelago, which are suitable for the efficient generation of electric power by converter facilities. This study, within the ORE-12 project, is focused on the tidal stream currents on the straits between the Indian Ocean and Flores Sea to estimate the energy potentials and to develop strategies for producing renewable energy. FLOW module of Delft3D has been used to run hydrodynamic models for site assessment and design development. In site assessment phase, 2D models have been operated for a-month long periods and with a resolution of 500 m. Later on, in design development phase, detailed 3D models have been developed and operated for three-month long periods and with a resolution of 50 m. Bathymetric data for models have been obtained from the GEBCO_08 Grid and wind data from the Global Forecast System of NOAA's National Climatic Data Center. To set the boundary conditions of models, tidal forcing with 11 harmonic constituents was supplied from TPXO Indian Ocean Atlas (1/12° regional model) and data from HYCOM+NCODA Global 1/12° Analysis have been used to determine salinity and temperature on open boundaries. After the field survey is complete, water level time-series supplied from a tidal gauge located in the domain of interest (8° 20΄ 9.7" S, 122° 54΄ 51.9" E) have been used to verify the models and then energy potentials of the straits have been estimated. As a next step, correspondence between model outputs and measurements taken by the radar system of TerraSAR-X satellite (DLR) will be analysed. Also for the assessment of environmental impacts caused by tidal stream
International Nuclear Information System (INIS)
Sato, Satoshi
2003-09-01
In tokamak-type DT nuclear fusion reactor, there are various type slits and ducts in the blanket and the vacuum vessel. The helium production in the rewelding location of the blanket and the vacuum vessel, the nuclear properties in the super-conductive TF coil, e.g. the nuclear heating rate in the coil winding pack, are enhanced by the radiation streaming through the slits and ducts, and they are critical concern in the shielding design. The decay gamma ray dose rate around the duct penetrating the blanket and the vacuum vessel is also enhanced by the radiation streaming through the duct, and they are also critical concern from the view point of the human access to the cryostat during maintenance. In order to evaluate these nuclear properties with good accuracy, three dimensional Monte Carlo calculation is required but requires long calculation time. Therefore, the development of the effective simple design evaluation method for radiation streaming is substantially important. This study aims to establish the systematic evaluation method for the nuclear properties of the blanket, the vacuum vessel and the Toroidal Field (TF) coil taking into account the radiation streaming through various types of slits and ducts, based on three dimensional Monte Carlo calculation using the MNCP code, and for the decay gamma ray dose rates penetrated around the ducts. The present thesis describes three topics in five chapters as follows; 1) In Chapter 2, the results calculated by the Monte Carlo code, MCNP, are compared with those by the Sn code, DOT3.5, for the radiation streaming in the tokamak-type nuclear fusion reactor, for validating the results of the Sn calculation. From this comparison, the uncertainties of the Sn calculation results coming from the ray-effect and the effect due to approximation of the geometry are investigated whether the two dimensional Sn calculation can be applied instead of the Monte Carlo calculation. Through the study, it can be concluded that the
Nuclear power history calculation for subcritical systems using Euler-MacLaurin formula
International Nuclear Information System (INIS)
Henrice Junior, Edson; Goncalves, Alessandro da Cruz
2013-01-01
This paper presents an efficient method for calculating the reactivity using inverse point kinetic equation for subcritical systems by applying the Euler-MacLaurin summation formula to calculate the nuclear power history. In accordance with the accuracy of the numerical results, this method does not require a large number of points for calculation, providing accurate results with low computational cost. (author)
Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System
Directory of Open Access Journals (Sweden)
Z. Zhou
2005-12-01
Full Text Available Power losses calculation and thermal modelling for a three-phase inverter power system is presented in this paper. Aiming a long real time thermal simulation, an accurate average power losses calculation based on PWM reconstruction technique is proposed. For carrying out the thermal simulation, a compact thermal model for a three-phase inverter power module is built. The thermal interference of adjacent heat sources is analysed using 3D thermal simulation. The proposed model can provide accurate power losses with a large simulation time-step and suitable for a long real time thermal simulation for a three phase inverter drive system for hybrid vehicle applications.
Audit Calculations of LBLOCA for Ulchin Unit 1 and 2 Power Up rate
Energy Technology Data Exchange (ETDEWEB)
Kang, Donggu; Huh, Byunggil; Yoo, Seunghunl; Yang, Chaeyong; Seul, Kwangwon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2013-05-15
The KINS-Realistic Evaluation Model (KINS-REM) was developed for the independent audit calculation in 1991, and the code accuracy and statistical method have been improved. To support the licensing review and to confirm the validity of licensee's calculation, regulatory auditing calculations have been also conducted. Currently, the modification of Ulchin 1 and 2 operating license for 4.5% power up rate is under review. In this study, the regulatory audit calculation for LBLOCA of Ulchin Unit 1 and 2 with 4.5% power up rate was performed by applying KINS-REM. In this study, the regulatory audit calculation for LBLOCA of Ulchin Unit 1 and 2 with 4.5% power up rate was performed by applying KINS-REM. It is confirmed that the analysis results of LBLOCA for Ulchin 1 and 2 power up rate meets the PCT acceptance criteria.
Typical calculation and analysis of carbon emissions in thermal power plants
Gai, Zhi-jie; Zhao, Jian-gang; Zhang, Gang
2018-03-01
On December 19, 2017, the national development and reform commission issued the national carbon emissions trading market construction plan (power generation industry), which officially launched the construction process of the carbon emissions trading market. The plan promotes a phased advance in carbon market construction, taking the power industry with a large carbon footprint as a breakthrough, so it is extremely urgent for power generation plants to master their carbon emissions. Taking a coal power plant as an example, the paper introduces the calculation process of carbon emissions, and comes to the fuel activity level, fuel emissions factor and carbon emissions data of the power plant. Power plants can master their carbon emissions according to this paper, increase knowledge in the field of carbon reserves, and make the plant be familiar with calculation method based on the power industry carbon emissions data, which can help power plants positioning accurately in the upcoming carbon emissions trading market.
DataCell: Exploiting the Power of Relational Databases for Efficient Stream Processing
E. Liarou (Erietta); M.L. Kersten (Martin)
2009-01-01
htmlabstractDesigned for complex event processing, DataCell is a research prototype database system in the area of sensor stream systems. Under development at CWI, it belongs to the MonetDB database system family. CWI researchers innovatively built a stream engine directly on top of a database
Calculation of crystalline lens power in chickens with a customized version of Bennett's equation.
Iribarren, Rafael; Rozema, Jos J; Schaeffel, Frank; Morgan, Ian G
2014-03-01
This paper customizes Bennett's equation for calculating lens power in chicken eyes from refraction, keratometry and biometry. Previously published data on refraction, corneal power, anterior chamber depth, lens thickness, lens radii of curvature, axial length and eye power in chickens aged 10-90 days were used to estimate Gullstrand's lens power and Bennett's lens power for chicken eyes, and to calculate the lens equivalent refractive index. Bennett's A and B constants for the front and back surface powers of the lens were calculated for data measured from day 10 to 90 at 10 day intervals, and mean customized constants were calculated. The mean customized constants for Bennett's equation for chicks were A=0.574±0.023 and B=0.379±0.021. As found previously, lens power decreases with age in chicks, while corneal power decreases and axial length increases. The lens equivalent refractive index decreases with age from 10 to 90 days after hatching. Bennett's equation can be used to calculate lens power in chicken eyes for studies on animal myopia, using standard biometry. Copyright © 2014 Elsevier B.V. All rights reserved.
Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju
2013-12-01
The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.
Hydraulic simulation of the systems of a nuclear power plant for charges calculation in piping
International Nuclear Information System (INIS)
Masriera, N.
1990-01-01
This work presents a general description of the methodology used by the ENACE S.A. Fluids Working Group for hydraulics simulation of a nuclear power plant system for the calculation charges in piping. (Author) [es
Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics
International Nuclear Information System (INIS)
Henry, A.F.
1980-01-01
Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented
Development of a power-period calculation unit for nuclear reactor Control
International Nuclear Information System (INIS)
Martin, J.
1966-10-01
The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [fr
On the nuclear shell effects appeared in (p,t) analyzing power calculations
International Nuclear Information System (INIS)
Kubo, Ken-ichi
1980-01-01
Origin of shell effects found in two-step (p, d, t) calculation, which play an important role for understanding the observed 'anomalous' (p, t) analyzing powers, is clarified based on the selections for transferred angular momenta. (author)
Sliding Window Technique for Calculating System LOLP Contributions of Wind Power Plants
International Nuclear Information System (INIS)
Milligan, M. R.
2001-01-01
Conventional electric power generation models do not typically recognize the probabilistic nature of the power variations from wind plants. Most models allow for an accurate hourly representation of wind power output, but do not incorporate any probabilistic assessment of whether the given level of wind power will vary from its expected value. The technique presented in this paper uses this variation to calculate an effective forced-outage rate for wind power plants (EFORW). Depending on the type of wind regime undergoing evaluation, the length and diurnal characteristics of a sliding time window can be adjusted so that the EFORW is based on an appropriate time scale. The algorithm allows us to calculate the loss-of-load probability (LOLP) on an hourly basis, fully incorporating the variability of the wind resource into the calculation. This makes it possible to obtain a more accurate assessment of reliability of systems that include wind generation when system reliability is a concern
"Cloud" functions and templates of engineering calculations for nuclear power plants
Ochkov, V. F.; Orlov, K. A.; Ko, Chzho Ko
2014-10-01
The article deals with an important problem of setting up computer-aided design calculations of various circuit configurations and power equipment carried out using the templates and standard computer programs available in the Internet. Information about the developed Internet-based technology for carrying out such calculations using the templates accessible in the Mathcad Prime software package is given. The technology is considered taking as an example the solution of two problems relating to the field of nuclear power engineering.
Feng, Sheng; Wang, Shengchu; Chen, Chia-Cheng; Lan, Lan
2011-01-21
In designing genome-wide association (GWA) studies it is important to calculate statistical power. General statistical power calculation procedures for quantitative measures often require information concerning summary statistics of distributions such as mean and variance. However, with genetic studies, the effect size of quantitative traits is traditionally expressed as heritability, a quantity defined as the amount of phenotypic variation in the population that can be ascribed to the genetic variants among individuals. Heritability is hard to transform into summary statistics. Therefore, general power calculation procedures cannot be used directly in GWA studies. The development of appropriate statistical methods and a user-friendly software package to address this problem would be welcomed. This paper presents GWAPower, a statistical software package of power calculation designed for GWA studies with quantitative traits, where genetic effect is defined as heritability. Based on several popular one-degree-of-freedom genetic models, this method avoids the need to specify the non-centrality parameter of the F-distribution under the alternative hypothesis. Therefore, it can use heritability information directly without approximation. In GWAPower, the power calculation can be easily adjusted for adding covariates and linkage disequilibrium information. An example is provided to illustrate GWAPower, followed by discussions. GWAPower is a user-friendly free software package for calculating statistical power based on heritability in GWA studies with quantitative traits. The software is freely available at: http://dl.dropbox.com/u/10502931/GWAPower.zip.
Directory of Open Access Journals (Sweden)
Shan Yang
2016-01-01
Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.
The calculation of proton and secondary electron stopping powers in liquid water
International Nuclear Information System (INIS)
Marouane, Abdelhak; Inchaouh, Jamal; Ouaskit, Said; Fathi, Ahmed
2012-01-01
The stopping power of energetic protons in liquid water has been calculated using a new model based on different theoretical and semi-empirical approaches. In this model, we consider the relativistic corrections along with the electronic and nuclear stopping power. The present work accounts for the different interactions made with electrons and nuclei inside the target. Interactions of the incident particle with the target's electrons dominate in the high energy regime; in the low energy regime, the interactions of the projectile with the target nuclei contribute importantly and are included in the calculation. We also compute the stopping cross sections and the stopping power of secondary electrons ejected from proton and hydrogen ionization impact, and generated by hydrogen electron loss processes. The consideration of secondary electrons' stopping power can contribute to the study of nano-dosimetry. Our results are in good agreement with existing experimental data. This calculation model can be useful for different applications in medical physics and space radiation health, such as hadron therapy for cancer treatment or radiation protection for astronauts. - Highlights: ► We discussed the stopping cross sections at the Bragg peak region of primary and secondary processes. ► We considered the corrections of incident particle energy focusing on the Rudds semi-empirical model. ► We calculated the electronic and nuclear stopping power, and we deduced the total stopping power. ► We calculated the stopping power of the secondary electrons.
An assessment of fission product data for decay power calculation in fast reactors
International Nuclear Information System (INIS)
Sridharan, M.S.; Murthy, K.P.N.
1987-01-01
A review of our present capability at IGC, Kalpakkam to predict fission product decay power in fast reactors is presented. This is accomplished by comparing our summation calculations with the calculations of others and the reported experimental measurements. Our calculations are based on Chandy code developed at our Centre. The fission product data base of Chandy is essentially drawn from the yield data compiled by Crouch (1977) and the data on halflives etc. compiled by Tobias (1973). In general, we find good agreement amongst the different calculations (within ±5%) and our calculations also compare well with experimental measurements of AKIAMA et al and MURPHY et al
Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes
Kananda, Kiki; Nazir, Refdinal
2017-12-01
One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.
Influence of FRAPCON-1 evaluation models on fuel behavior calculations for commercial power reactors
International Nuclear Information System (INIS)
Chambers, R.; Laats, E.T.
1981-01-01
A preliminary set of nine evaluation models (EMs) was added to the FRAPCON-1 computer code, which is used to calculate fuel rod behavior in a nuclear reactor during steady-state operation. The intent was to provide an audit code to be used in the United States Nuclear Regulatory Commission (NRC) licensing activities when calculations of conservative fuel rod temperatures are required. The EMs place conservatisms on the calculation of rod temperature by modifying the calculation of rod power history, fuel and cladding behavior models, and materials properties correlations. Three of the nine EMs provide either input or model specifications, or set the reference temperature for stored energy calculations. The remaining six EMs were intended to add thermal conservatism through model changes. To determine the relative influence of these six EMs upon fuel behavior calculations for commercial power reactors, a sensitivity study was conducted. That study is the subject of this paper
Calculations on heavy-water moderated and cooled natural uranium fuelled power reactors
International Nuclear Information System (INIS)
Pinedo V, J.L.
1979-01-01
One of the codes that the Instituto Nacional de Investigaciones Nucleares (Mexico) has for the nuclear reactors design calculations is the LEOPARD code. This work studies the reliability of this code in reactors design calculations which component materials are the same of the heavy water moderated and cooled, natural uranium fuelled power reactors. (author)
A simple method for calculating power based on a prior trial.
Borm, G.F.; Bloem, B.R.; Munneke, M.; Teerenstra, S.
2010-01-01
OBJECTIVE: When an investigator wants to base the power of a planned clinical trial on the outcome of another trial, the latter study may not have been reported in sufficient detail to allow this. For example, when the outcome is a change from baseline, the power calculation requires the standard
To the calculation of reduced cost capital component for power objects
International Nuclear Information System (INIS)
Andryushchenko, A.I.; Larin, E.A.
1990-01-01
The method for calculating capitalized cost component enabling comparison of alternative arrangement variants of power plant, is suggested. It is shown that in order to realize the technical-economical estimates in power industry for determination of capitalized cost component it is necessary to take into account capital construction expenditures as well as deductions for the plant dismountling and elimination of potential accidents
Axial power distribution calculation using a neural network in the nuclear reactor core
Energy Technology Data Exchange (ETDEWEB)
Kim, Y. H.; Cha, K. H.; Lee, S. H. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper is concerned with an algorithm based on neural networks to calculate the axial power distribution using excore detector signals in the nuclear reactor core. The fundamental basis of the algorithm is that the detector response can be fairly accurately estimated using computational codes. In other words, the training set, which represents relationship between detector signals and axial power distributions, for the neural network can be obtained through calculations instead of measurements. Application of the new method to the Yonggwang nuclear power plant unit 3 (YGN-3) shows that it is superior to the current algorithm in place. 7 refs., 4 figs. (Author)
Axial power distribution calculation using a neural network in the nuclear reactor core
Energy Technology Data Exchange (ETDEWEB)
Kim, Y H; Cha, K H; Lee, S H [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1998-12-31
This paper is concerned with an algorithm based on neural networks to calculate the axial power distribution using excore detector signals in the nuclear reactor core. The fundamental basis of the algorithm is that the detector response can be fairly accurately estimated using computational codes. In other words, the training set, which represents relationship between detector signals and axial power distributions, for the neural network can be obtained through calculations instead of measurements. Application of the new method to the Yonggwang nuclear power plant unit 3 (YGN-3) shows that it is superior to the current algorithm in place. 7 refs., 4 figs. (Author)
International Nuclear Information System (INIS)
Sanchez, F. A.; Blaumann, H.; Lopasso, E.; Longhino, J
2009-01-01
The maximum power of a reactor is limited by the power peaking factor. During the design stage it is calculated with neutronic calculation codes. This is not enough for ensuring its value due to modelling approximations. For the RA-6s low enrichment new core a calculus-measurement correlation method have been applied. Position and magnitude of the maximum power density estimated by calculus are used by this method. For this work 249 cooper-gold alloy (1.55% Au) wires have been distributed along the core using 19 aluminium blades. Their positions have been selected using information given by a 5 groups PUMA reactor model. Wire s activity have been measured with a HPGe detector. Gold activity have been used only for verifying the calculated core spectrum. The measured power peaking factor was 2.48±0.3 (3σ), 15% above the calculated value. About 97% of measured points had less than 20% calculation-measurement difference and about 80% had less than 10%. The power peaking factor determined by this method consolidates also the calculations models. [es
Wang, Yaping; Lin, Shunjiang; Yang, Zhibin
2017-05-01
In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.
Distribution of trace species in power plant streams: A European perspective
International Nuclear Information System (INIS)
Meij, R.
1994-01-01
In the Netherlands only pulverized coal-fired dry bottom boilers are installed. The flue gases are cleaned by high-efficiency cold-side electrostatic precipitators (ESPs) and in all large coal-fired power plants by flue-gas desulfurization (FGD) installations of the lime(stone)/gypsum process. KEMA has performed a large research program on the fate of (trace) elements at coal-fired power plants. A great deal of attention has been paid to the concentrations and distribution of trace elements in coal, in ash and in the vapor phase in the flue gases. Sixteen balance studies of coal-fired power plants, where coal imported from various countries is fired, have been performed. With the information provided by these studies the enrichment factors for the trace elements in ash and the vaporization percentage of the minor and trace elements in the flue gases have been calculated. Using these enrichment factors and vaporization percentages combined with data on the concentration in the coal, the concentrations in the ash and in the vapor phase in the flue gases can be predicted. The emission into the air of trace elements occurs in the solid state (fly ash) and in the gaseous state. The emissions in the solid state are low due to the high degree of removal in the ESPs. The emissions in the gaseous phase are, relatively speaking, more important. In an FGD both emissions are further diminished. In the next section the behavior of elements in the boiler and ESP will be discussed. The influence of the electrostatic precipitators will be reviewed the section thereafter, followed by the fate of gaseous minor and trace elements. And finally the behavior of elements in the FGD will be treated in the last section
Optimizing The Performance of Streaming Numerical Kernels On The IBM Blue Gene/P PowerPC 450
Malas, Tareq
2011-07-01
Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a formidable challenge despite the regularity of memory access. Sophisticated optimization techniques beyond the capabilities of modern compilers are required to fully utilize the Central Processing Unit (CPU). The aim of the work presented here is to improve the performance of streaming numerical kernels on high performance architectures by developing efficient algorithms to utilize the vectorized floating point units. The importance of the development time demands the creation of tools to enable simple yet direct development in assembly to utilize the power-efficient cores featuring in-order execution and multiple-issue units. We implement several stencil kernels for a variety of cached memory scenarios using our Python instruction simulation and generation tool. Our technique simplifies the development of efficient assembly code for the IBM Blue Gene/P supercomputer\\'s PowerPC 450. This enables us to perform high-level design, construction, verification, and simulation on a subset of the CPU\\'s instruction set. Our framework has the capability to implement streaming numerical kernels on current and future high performance architectures. Finally, we present several automatically generated implementations, including a 27-point stencil achieving a 1.7x speedup over the best previously published results.
A calculation technique of passing of a powerful relativistic beam through substance
International Nuclear Information System (INIS)
Pobitko, A.I.; Sal'nikov, L.I.; Sukhovitskij, E.Sh.
1995-01-01
The calculation algorithm of passing powerful relativistic beam through substance is developed. Algorithm of calculation is separated on the following problems: 1) a trial charge movement in electromagnetic field of the cylindrical geometry; 2) a computing of own electromagnetic field arising at movement of a particle heavy-current beam in a target; 3) accounting of an interaction of a beam with target atoms; 4) accounting of change of the target properties in a time; 5) geometry and construction of an iterative procedure of calculation. The calculation of passing heavy-current beams of charged particles for transient case is carried out by Monte Carlo method. A conclusion of equations of movement trial charge and technique of calculation own electromagnetic field of the powerful relativistic beam at passing through substance are resulted. 6 refs
Institute of Scientific and Technical Information of China (English)
2012-01-01
The integrated power generation system of wind, photovoltaic （PV） and energy storage is composed of several wind turbines, PV units and energy storage units. The detailed model of integrated generation is not suitable for the large-scale powe.r system simulation because of the model＇s complexity and long computation time. An equivalent method for power flow calculation and transient simulation of the integrated generation system is proposed based on actual projects, so as to establish the foundation of such integrated system simulation and analysis.
A proposal of a benchmark for calculation of the power distribution next to the absorber
International Nuclear Information System (INIS)
Temesvari, E.; Hordosy, G.; Maraczy, Cs.; Hegyi, Gy.; Kereszturi, A.
1999-01-01
A proposal of a new benchmark problem was formulated to consider the characteristics of the VVER-440 fuel assembly with enrichment zoning, i. e. to study the space dependence of the power distribution near to a control assembly. A quite detailed geometry and the material composition of the fuel and the control assemblies were modeled by the help of MCNP calculations in AEKI. The results of the MCNP calculations were built in the KARATE code system as the new albedo matrices. The comparison of the KARATE calculation results and the MCNP calculations for this benchmark is presented. (Authors)
Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster.
Olsen, Thomas
2007-02-01
This study aimed to demonstrate how the level of accuracy in intraocular lens (IOL) power calculation can be improved with optical biometry using partial optical coherence interferometry (PCI) (Zeiss IOLMaster) and current anterior chamber depth (ACD) prediction algorithms. Intraocular lens power in 461 consecutive cataract operations was calculated using both PCI and ultrasound and the accuracy of the results of each technique were compared. To illustrate the importance of ACD prediction per se, predictions were calculated using both a recently published 5-variable method and the Haigis 2-variable method and the results compared. All calculations were optimized in retrospect to account for systematic errors, including IOL constants and other off-set errors. The average absolute IOL prediction error (observed minus expected refraction) was 0.65 dioptres with ultrasound and 0.43 D with PCI using the 5-variable ACD prediction method (p ultrasound, respectively (p power calculation can be significantly improved using calibrated axial length readings obtained with PCI and modern IOL power calculation formulas incorporating the latest generation ACD prediction algorithms.
Power Consumption and Calculation Requirement Analysis of AES for WSN IoT.
Hung, Chung-Wen; Hsu, Wen-Ting
2018-05-23
Because of the ubiquity of Internet of Things (IoT) devices, the power consumption and security of IoT systems have become very important issues. Advanced Encryption Standard (AES) is a block cipher algorithm is commonly used in IoT devices. In this paper, the power consumption and cryptographic calculation requirement for different payload lengths and AES encryption types are analyzed. These types include software-based AES-CB, hardware-based AES-ECB (Electronic Codebook Mode), and hardware-based AES-CCM (Counter with CBC-MAC Mode). The calculation requirement and power consumption for these AES encryption types are measured on the Texas Instruments LAUNCHXL-CC1310 platform. The experimental results show that the hardware-based AES performs better than the software-based AES in terms of power consumption and calculation cycle requirements. In addition, in terms of AES mode selection, the AES-CCM-MIC64 mode may be a better choice if the IoT device is considering security, encryption calculation requirement, and low power consumption at the same time. However, if the IoT device is pursuing lower power and the payload length is generally less than 16 bytes, then AES-ECB could be considered.
Model calculations of the influence of population distribution on the siting of nuclear power plants
International Nuclear Information System (INIS)
Nielsen, F.; Walmod-Larsen, O.
1984-02-01
This report was prepared for a working group established in April 1981 by the Danish Environmental Protection Agency with the task of investigating siting problems of nuclear power stations in Denmark. The purpose of the working group was to study the influence of the population density around a site on nuclear power safety. The importance of emergency planning should be studied as well. In this model study two specific accident sequences were simulated on a 1000 MWe nuclear power plant. The plant was assumed to be placed in the center of two different model population distributions. The concequences for the two population distributions from the two accidents were calculated for the most frequent weather conditions. Doses to individuals were calculated for the bone marrow, lungs, gastrointestinal tract, thyroidea and for the whole body. The collective whole body doses were also calculated for the two populations considered. (author)
Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V
2015-01-01
Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.
Directory of Open Access Journals (Sweden)
E. P. Zabello
2005-01-01
Full Text Available The method is proposed to make a correction in payment for consumption of reactive energy and power which is attributed to deviation of actual activation energy losses for reactive power compensation from their standard value. It is recommended to calculate standard loss values for every voltage level and actual loss values are to be determined with the help of application of remote electronic accounting means in the current mode of power consumption.
Calculation and Simulation Study on Transient Stability of Power System Based on Matlab/Simulink
Directory of Open Access Journals (Sweden)
Shi Xiu Feng
2016-01-01
Full Text Available The stability of the power system is destroyed, will cause a large number of users power outage, even cause the collapse of the whole system, extremely serious consequences. Based on the analysis in single machine infinite system as an example, when at the f point two phase ground fault occurs, the fault lines on either side of the circuit breaker tripping resection at the same time,respectively by two kinds of calculation and simulation methods of system transient stability analysis, the conclusion are consistent. and the simulation analysis is superior to calculation analysis.
Validation of the COBRA code for dry out power calculation in CANDU type advanced fuels
International Nuclear Information System (INIS)
Daverio, Hernando J.
2003-01-01
Stern Laboratories perform a full scale CHF testing of the CANFLEX bundle under AECL request. This experiment is modeled with the COBRA IV HW code to verify it's capacity for the dry out power calculation . Good results were obtained: errors below 10 % with respect to all data measured and 1 % for standard operating conditions in CANDU reactors range . This calculations were repeated for the CNEA advanced fuel CARA obtaining the same performance as the CANFLEX fuel. (author)
Consistent calculation of the stopping power for slow ions in two-dimensional electron gases
International Nuclear Information System (INIS)
Wang, You-Nian; Ma, Teng-Gai
1997-01-01
Within the framework of quantum scattering theory, we present a consistent calculation of the stopping power for slow protons and antiprotons moving in two-dimensional electron gases. The Friedel sum rule is used to determine the screening constant in the scattering potential. For the stopping power our results are compared with that of the random-phase approximation dielectric theory and that predicted by the linear Thomas-Fermi potential. copyright 1997 The American Physical Society
FABGEN, a transient power-generation and isotope birth rate calculator
International Nuclear Information System (INIS)
Roland, H.C.
1975-04-01
A description is given of the FABGEN program, a fast-running program for calculating fuel element power-generation rates and selected fission product birth rates in a known neutron flux as functions of time. A first forward difference calculation is used, and the time step is one day. Provisions are made for including various fuel element lengths, variation of thermal flux with time, and use of different fertile isotopes. Five different fission products may be specified for birth-rate calculations. A daily summary may be output, or totals by days may be accumulated for final output. (U.S.)
Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís
2015-01-01
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore
Directory of Open Access Journals (Sweden)
Pablo Rodríguez-Lozano
Full Text Available Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1 leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2 triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel, conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been
Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices
Czech Academy of Sciences Publication Activity Database
Chernyshova, M.; Gribkov, V. A.; Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E.; Demina, E.V.; Pimenov, V. N.; Maslyaev, S. A.; Bondarenko, G.G.; Vilémová, Monika; Matějíček, Jiří
2016-01-01
Roč. 113, December (2016), s. 109-118 ISSN 0920-3796 R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 Keywords : Radiation damageability * Materials tests * Plasma focus * Plasma streams * Ion beams * Laser interferometrya Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379616306858
The calculation and simulation of the ECRH HV power supply for the HL-2A tokamak
International Nuclear Information System (INIS)
Mao Xiaohui; Li Qing; Xuan Weimin; Yao Lieying
2006-01-01
In order to satisfy the requirement of ECRH, the ECRH HV power supply (ECHV-HVPS) on the base of high voltage pulse modulation has been designed. The filter inductance in the ECHV-HVPS is much smaller than the voltage regulation power supply. Modulations are adopted in the power supply, so the short time of the leading edge and lagging edge of the pulse is achieved. The main circuit of the ECHV-HVPS is showed. The equivalent resistance and the transient response of the PS are calculated and analyzed using MATLAB, and experiment results are given. (authors)
International Nuclear Information System (INIS)
Bresard, I.; Diop, C.M.; Giancarli, L.; Gervaise, F.
1991-01-01
In the frame of the ITER tokamak project, the streaming of neutrons through pumping ducts up to the properly so called pumping system is studied. The gas evacuation device of the ITER plasma consists of a set of vacuum pumps which are located in a room which is outside the main machine building. These pumps receive the exhaust gas through several pumping ducts with a cross section of about four square meters and a length of about ten meters. Although insensitive to the magnetic field, the 14 MeV neutrons from plasma D-T thermonuclear reactions can penetrate in the divertor and reach the room pumping device by propagation through the bent ducts. Different components of this system, such as the bellows, turbomolecular pumps, etc., are irradiated and that raises radiation problems. In this study we determine, by using 3D Monte Carlo transport code TRIPOLI-2, neutron fluxes, dose rates and heatings due to neutrons which have streamed out the plasma through the bent ducts, at several points of the pumping room. Results show the neutron flux attenuation reachs a factor 10 -5 from plasma chamber to the pumping hall; the neutron heatings are estimated to 1.9x10 -3 W/cm 3 in bellow stainless steel at duct entrance, and 8x10 -7 W/cm 3 in the turbopumping stainless steel structure, inside pumping hall. The neutron fluxes obtained will be used to compute gamma source produced by radiative, inelastic process and gamma rays from formed activation products. Then, the knowledge of gamma source will allow to compute gamma dose rate and heating. The dose rates and heatings obtained will contribute to the definition of the ITER pumping system technical options and to establish pumping hall access conditions, also. (orig.)
Approximative calculation of transient short-circuit currents in power-systems
Energy Technology Data Exchange (ETDEWEB)
Heuck, K; Rosenberger, R; Dettmann, K D; Kegel, R
1986-08-01
The paper shows that it is approximatively possible to calculate the transient short-circuit currents for symmetrical and asymmetrical faults in power-systems. For that purpose a simple equivalent network is found. Its error of approximation is small. For the important maximum short-circuit current limits of error are pointed out compared to VDE 0102.
Kolega, Marija Škara; Kovačević, Suzana; Čanović, Samir; Pavičić, Ana Didović; Bašić, Jadranka Katušić
2015-03-01
Postoperative refractive outcome largely depends on the accuracy of calculating power of implanted IOL. Lens power calculation can be done by conventional ultrasound biometry and partial coherence laser interferometry (IOL Master). The aim was to compare the accuracy of IOL power calculations using conventional ultrasound biometry and partial coherence laser interferometry.40 eyes were included in this prospective randomized trial. Twenty eyes underwent IOL master and 20 eyes had aplanation ultrasound biometry. There were included only eyes with age-related cataract and postoperative natural visual acuity (VA) 0.7. Visual acuity was performed 6 weeks after cataract surgery. After 6 weeks best natural visual acuity were 0.9 (± 0.1) in IOL-Master group and 0.85 (± 0.15) in ultrasound biometry. The postoperative mean absolute refractive error was 0.75 (± 0.5) D for ultrasound biometry and 0.50 (± 0.50) D for IOL-Master. Optical biometry with the IOL-Master proved to be slightly more accurate than ultrasound biometry for IOL power calculation.
Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning
Li, Zhushan
2014-01-01
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
Fossil imprint of a powerful flare at the galactic center along the Magellanic stream
Energy Technology Data Exchange (ETDEWEB)
Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Maloney, Philip R. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Sutherland, Ralph S. [Mount Stromlo Observatory, Australia National University, Woden, ACT 2611 (Australia); Madsen, G. J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)
2013-11-20
The Fermi satellite discovery of the gamma-ray emitting bubbles extending 50° (10 kpc) from the Galactic center has revitalized earlier claims that our Galaxy has undergone an explosive episode in the recent past. We now explore a new constraint on such activity. The Magellanic Stream is a clumpy gaseous structure free of stars trailing behind the Magellanic Clouds, passing over the south Galactic pole (SGP) at a distance of at least 50-100 kpc from the Galactic center. Several groups have detected faint Hα emission along the Magellanic Stream (1.1 ± 0.3 × 10{sup –18} erg cm{sup –2} s{sup –1} arcsec{sup –2}) which is a factor of five too bright to have been produced by the Galactic stellar population. The brightest emission is confined to a cone with half angle θ{sub 1/2} ≈ 25° roughly centered on the SGP. Time-dependent models of Stream clouds exposed to a flare in ionizing photon flux show that the ionized gas must recombine and cool for a time interval T{sub o} = 0.6 – 2.9 Myr for the emitted Hα surface brightness to drop to the observed level. A nuclear starburst is ruled out by the low star formation rates across the inner Galaxy, and the non-existence of starburst ionization cones in external galaxies extending more than a few kiloparsecs. Sgr A{sup *} is a more likely candidate because it is two orders of magnitude more efficient at converting gas to UV radiation. The central black hole (M {sub •} ≈ 4 × 10{sup 6} M {sub ☉}) can supply the required ionizing luminosity with a fraction of the Eddington accretion rate (f{sub E} ∼ 0.03-0.3, depending on uncertain factors, e.g., Stream distance) typical of Seyfert galaxies. In support of nuclear activity, the Hα emission along the Stream has a polar angle dependence peaking close to the SGP. Moreover, it is now generally accepted that the Stream over the SGP must be farther than the Magellanic Clouds. At the lower halo gas densities, shocks become too ineffective and are unlikely to
International Nuclear Information System (INIS)
Lim, Chang Hyun; Jung Yeon Sang; Joo Han Gyu
2012-01-01
It was generally known that the Doppler feedback effect computed by most industrial reactor analysis codes is underestimated than the actual values. Part of the underestimation was attributed to the neglect of the resonance upscattering during the slowing down calculation. On the contrary, the edge peaked power profile noted in burned fuel pins due to more plutonium buildup at the periphery of fuel pellets might lead to smaller power defects than the predicted values obtained with a flat profile. This work is to mitigate these problems with a direct whole core calculation code nTRACER which is capable of handling ringwise depletion as well as incorporating nonuniform power profiles inside a fuel pellet
Calculation methods of reactivity using derivatives of nuclear power and Filter fir
International Nuclear Information System (INIS)
Diaz, Daniel Suescun
2007-01-01
This work presents two new methods for the solution of the inverse point kinetics equation. The first method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. Applying some conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has special characteristics, amongst which the possibility of using different sampling periods, and the possibility of restarting the calculation, after its interruption associated it with a possible equipment malfunction, allowing the calculation of reactivity in a non-continuous way. Apart from this reactivity can be obtained with or without dependency on the nuclear power memory. The second method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. The reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. In this method it can be pointed out that the linear part is equivalent to a filter named Finite Impulse Response (Fir). The Fir filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive way. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way. The proposed methods were validated using signals with random noise and showing the relationship between the reactivity difference and the degree of the random noise. (author)
Directory of Open Access Journals (Sweden)
V. N. Radkevich
2016-01-01
Full Text Available The indicators of power consumption of lighting devices based on LEDs are studied depending on the supplied voltage. For the lamp and floodlight with LEDs active and reactive power, current and power factor as a function of voltage (which value changed in the range 200–245 V were experimentally determined. The analysis of experimental data demonstrated that due to the drivers in the specified voltage range the active power consumed by light devices remains practically unchanged. The reactive power of LED devices depends on the supplied voltage and is capacitive in its nature. In contrast with gas-discharge light sources the LED devices under study do not consume reactive power, but generate it. With the change of the supplied voltage from 200 to 245 V the value of the generated reactive power increases to 60 % for the floodlight and 50 % for the lamp. The LED floodlight has a low coefficient of active power. The current consumed by the floodlight has increased by 22 %, and by the lamp – by 13 %. The formulas for determining the maximum value of the length of the calculated section of single-phase group lines were developed, taking into account specific source data. LED light sources tend to feed by electric power by single-phase group lines. The number of lamps connected to single-phase lines is regulated by normative documents. Bearing this in mind as well as the small power of LED sources single-phase group lines are usually performed with conductors of the smallest possible cross section. The limit values of the length of the calculated section that correspond to a predetermined loss of voltage in line with ambient temperature from 15 to 60 °С were determined for them. The calculations demonstrated that for group lines that feed the LEDs, the choice of conductor cross-sections in accordance with permissible voltage loss is not critical. The determinant factor for the choice of the cross-section of the conductors of group electrical
Fradi, Aniss
The ability to allocate the active power (MW) loading on transmission lines and transformers, is the basis of the "flow based" transmission allocation system developed by the North American Electric Reliability Council. In such a system, the active power flows must be allocated to each line or transformer in proportion to the active power being transmitted by each transaction imposed on the system. Currently, this is accomplished through the use of the linear Power Transfer Distribution Factors (PTDFs). Unfortunately, no linear allocation models exist for other energy transmission quantities, such as MW and MVAR losses, MVAR and MVA flows, etc. Early allocation schemes were developed to allocate MW losses due to transactions to branches in a transmission system, however they exhibited diminished accuracy, since most of them are based on linear power flow modeling of the transmission system. This thesis presents a new methodology to calculate Energy Transaction Allocation factors (ETA factors, or eta factors), using the well-known process of integration of a first derivative function, as well as consistent and well-established mathematical and AC power flow models. The factors give a highly accurate allocation of any non-linear system quantity to transactions placed on the transmission system. The thesis also extends the new ETA factors calculation procedure to restructure a new economic dispatch scheme where multiple sets of generators are economically dispatched to meet their corresponding load and their share of the losses.
International Nuclear Information System (INIS)
Yu, L.H.
1998-01-01
Recent advances in self-amplified spontaneous emission (SASE) experiments stimulate interest in quantitative comparison of measurements with theory. In this paper we show that the widely used simulation code TDA3D, developed by Tran and Wurtele [Comput. Phys. Commun. 54, 263 (1989)] even though a single frequency code, can be used to determine the output power in the SASE process with excellent approximation in the exponential growth regime. The method applies when the gain is not very high, which is a special advantage, because when the gain is not very high, the analytical calculation is particularly difficult since the exponential growing term does not dominate. The analysis utilizes a scaling relation between the output power and the number of simulation particles in the code TDA3D: left-angle P right-angle=N λ ' /N λ left-angle P ' right-angle, where left-angle P right-angle is the output power and N λ is the line density of the electrons, while left-angle P ' right-angle is the calculated output power using a line density N λ ' of the number of simulation particles in the code TDA3D. Because of the scaling property, the number of simulation particles can be taken to be many orders of magnitude less than the actual experiment. Comparison of our results with experiment yields new insight into the SASE process. copyright 1998 The American Physical Society
Directory of Open Access Journals (Sweden)
Palukuru NAGENDRA
2010-12-01
Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.
Material streams in the fuel supply to and disposal of waste from nuclear power stations
International Nuclear Information System (INIS)
Merz, E.
1990-01-01
The nuclear fuel cycle is characterized by specifically small, but complex material streams. The fresh fuel derived from natural uranium is fed into the cycle at the stage of fuel element fabrication, while at the end stage, waste from spent fuel element reprocessing, or non-reprocessible fuel elements, are taken out of the cycle and prepared for ultimate disposal. The alternative methods of waste management, reprocessing or direct ultimate disposal, are an issue of controversial debate with regard to their differences in terms of supply policy, economic and ecological aspects. (orig.) [de
International Nuclear Information System (INIS)
Serov, I.V.; Hoogenboom, J.E.
1996-01-01
A technique for the statistical confluence of any number of possibly correlated informational sources employed in reactor analysis can be used to improve the estimates of physical quantities given by the sources taken separately. The formulas of the presented technique being based on multivariate Bayesian conditioning are general and can be employed in different applications. Insight into the nature of the informational source allows different types of data associated with the source to be improved. Estimation of biases, variances and correlation coefficients for the systematic and statistical errors associated with the informational sources is reliable confluence, but pays off by providing optimal estimates. The technique of the calculational and experimental information confluence is applied to the determination of the power distribution and burnup for the research reactor HOR of the Delft University of Technology. The code system CONHOR carries out all the stages of the calculation for the HOR reactor, using an existing code for static core calculations and burnup calculations. (author)
Energy Technology Data Exchange (ETDEWEB)
Serov, I.V.; Hoogenboom, J.E. [Interuniversitair Reactor Inst., Delft (Netherlands)
1996-05-01
A technique for the statistical confluence of any number of possibly correlated informational sources employed in reactor analysis can be used to improve the estimates of physical quantities given by the sources taken separately. The formulas of the presented technique being based on multivariate Bayesian conditioning are general and can be employed in different applications. Insight into the nature of the informational source allows different types of data associated with the source to be improved. Estimation of biases, variances and correlation coefficients for the systematic and statistical errors associated with the informational sources is reliable confluence, but pays off by providing optimal estimates. The technique of the calculational and experimental information confluence is applied to the determination of the power distribution and burnup for the research reactor HOR of the Delft University of Technology. The code system CONHOR carries out all the stages of the calculation for the HOR reactor, using an existing code for static core calculations and burnup calculations. (author).
Analysis of offsite dose calculation methodology for a nuclear power reactor
International Nuclear Information System (INIS)
Moser, D.M.
1995-01-01
This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected
Unit operations used to treat process and/or waste streams at nuclear power plants
International Nuclear Information System (INIS)
Godbee, H.W.; Kibbey, A.H.
1980-01-01
Estimates are given of the annual amounts of each generic type of LLW [i.e., Government and commerical (fuel cycle and non-fuel cycle)] that is generated at LWR plants. Many different chemical engineering unit operations used to treat process and/or waste streams at LWR plants include adsorption, evaporation, calcination, centrifugation, compaction, crystallization, drying, filtration, incineration, reverse osmosis, and solidification of waste residues. The treatment of these various streams and the secondary wet solid wastes thus generated is described. The various treatment options for concentrates or solid wet wastes, and for dry wastes are discussed. Among the dry waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting and shredding. Organic materials [liquids (e.g., oils or solvents) and/or solids], could be incinerated in most cases. The filter sludges, spent resins, and concentrated liquids (e.g., evaporator concentrates) are usually solidified in cement, or urea-formaldehyde or unsaturated polyester resins prior to burial. Incinerator ashes can also be incorporated in these binding agents. Asphalt has not yet been used. This paper presents a brief survey of operational experience at LWRs with various unit operations, including a short discussion of problems and some observations on recent trends
Methodology and conclusions of activation calculations of WWER-440 type nuclear power plants
Energy Technology Data Exchange (ETDEWEB)
Babcsány, Boglárka, E-mail: boglarka.babcsany@reak.bme.hu; Czifrus, Szabolcs; Fehér, Sándor
2015-04-01
Highlights: • Activation calculation of two WWER-440 type nuclear power plants. • Detailed description of the applied activation calculation methodology. • Graphical results for total activity and waste index categorization. • General conclusions for activation applicable in the case of PWR reactors. - Abstract: Activation calculations for two nuclear power plants of WWER-440 type have been performed by the authors in order to assist the decommissioning planning by assessing the radioactive inventory present at the time of and at different times after the final shutdown. According to related international literature and studies performed earlier by the authors, considering the activity more than 99% of this inventory is concentrated in the materials directly surrounding the reactor core, where the predominant evolution of radionuclides is generated by neutron induced nuclear reactions. In order to obtain the highest possible accuracy in modelling, three-dimensional Monte Carlo neutron transport calculations were performed. Besides the methods and models applied to these analyses, the paper also summarizes the results that can be generally applied to such nuclear power plant types. At the time of shutdown, the total activity of the stainless steel components is about 6 × 10{sup 16} Bq and 1.3 × 10{sup 17} Bq for the two NPPs considered. The biological shielding concrete constitutes approximately 7 × 10{sup 13} Bq and 1.1 × 10{sup 14} Bq.
International Nuclear Information System (INIS)
Majer, P.
1990-01-01
The fundamentals are outlined of the discounted value flows method, which is used in industrial countries for calculating the specific electricity production costs. Actual calculations were performed for the first two units of the Temelin nuclear power plant. All costs associated with the construction, operation and decommissioning of this nuclear power plant were taken into account. With a high degree of certainty, the specific production costs of the Temelin nuclear power plant will lie within the range of 0.32 to 0.36 CSK/kWh. Nearly all results of the sensitivity analysis performed for the possible changes in the input values fall within this range. An increase in the interest rate to above 8% is an exception; this, however, can be regarded as rather improbable on a long-term basis. Sensitivity analysis gave evidence that the results of the electricity production cost calculations for the Temelin nuclear power plant can be considered sufficiently stable. (Z.M.). 7 figs., 2 tabs., 14 refs
International Nuclear Information System (INIS)
Ondra, Frantisek; Daniska, Vladimir; Rehak, Ivan; Necas, Vladimir
2009-01-01
The aim of the article is a development of analytical methodology for evaluation of input data inaccuracies impact on calculation of cost and other output decommissioning parameters. This methodology is based on analytical model calculations using the OMEGA code and taking into account the probability of input data inaccuracies occurrence also. To achieve about mentioned aim, the article identifies possible sources of input data inaccuracies and analyzes their level of impact on output parameters. Then the methodology for calculation of input parameters inaccuracies impact is developed, based on analytical model calculation. The model calculation takes into consideration output parameters impact on cost and other decommissioning output parameters in analytical way. The methodology used in model calculations is original, more over it implements the international standardized structure (IAEA, OECD/NEA, EC) [6] of decommissioning cost for the first time. A probabilistic occurrence of input data inaccuracies is taken into consideration and implemented in the methodology developed. A correction factors matrix for evaluation of input data inaccuracies impact on decommissioning output parameters is set up. The matrix contains parameters based on model calculations using the proposed methodology. Finally the methodology for application of correction factor matrix is proposed and tested; the methodology is used for calculation of contingency in the standardized structure which reflected the level of input data inaccuracies. The cost for individual decommissioning projects for common nuclear power plants are in the range 300 - 500 mil. EUR. Contingencies are from 10% to 30%, depending on the level of detailed during preparation of decommissioning projects. A implementation about mentioned methodology in the OMEGA code improves the accuracy of contingency. Consequently it makes calculated contingency more trustworthy and makes calculated decommissioning cost closer to reality
Motor power calculation for driving conveyor chain in gamma irradiator BATAN 2x250 k curie
International Nuclear Information System (INIS)
Ari Satmoko; Syamsurrijal Ramdja; Sutomo Budihardjo
2010-01-01
Recently, an Irradiator BATAN 2X250 k Curie for agricultural product is under design. The installation is provided by the gamma source about 2x250 k Curie. Agricultural products are carried into carriers and these carriers are hanged on the conveyor chain. The chain moves into a radiation chamber following the trajectoire. The chain is drived by motor. For this reason, the calculation is performed to determine the motor power. After resolving the force equilibrium equation, the force and power of the motor needed to drive the chain are obtained. Numerical method by using V Basic language is used to resolve the equation. The calculation result shows the correlation between friction coefficient and motor power. From the evaluation, it is decided that the friction coefficient should be less than 0,015. By this friction, the motor power is about 3. 13 k Watt. From the evaluation, it is also obtained that the radius of the curve trajectory shall not be too small. Combination between high friction and small curve radius could lead to the locked condition in which high power motor are not be able to move the conveyor chain). (author)
Finite element method used in strength calculations of nuclear power plant pressure vessels
International Nuclear Information System (INIS)
Hanulak, E.
1987-01-01
A software system based on the use of the finite element method in linear and nonlinear elastomechanics was developed for assessing the strength and service life of steam generators and pressurizers for WWER type nuclear power plants. The individual programs are briefly described. They are written in FORTRAN IV, some modules are in ASSEMBLER. Programs EGUSAP, NEANKO, ROSYNA are designed for the calculation of stress and deformation, programs ROSYNA, NEANKO and NTEPLO are used for the calculation of temperature fields. Programs SPOJ and STATES are used for assessing the strength and service life of screw joints and other nodes of the WWER-440 type steam generators and pressurizers. (Z.M.)
Preliminary results on food consumption rates for off-site dose calculation of nuclear power plants
International Nuclear Information System (INIS)
Lee, Gab Bock; Chung, Yang Geun; Bang, Sun Young; Kang, Duk Won
2005-01-01
The Internal dose by food consumption mostly account for radiological dose of public around nuclear power plants(NPP). But, food consumption rate applied to off-site dose calculation in Korea which is the result of field investigation around Kori NPP by the KAERI in 1988. is not reflected of the latest dietary characteristics. The Ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. To update the food consumption rates of the maximum individual, the analysis of the national food investigation results and field surveys around nuclear power plant sites have been carried out
International Nuclear Information System (INIS)
Valentine, T.E.; Mihalczo, J.T.
1996-01-01
One primary concern for design of safety systems for reactors is the time response of external detectors to changes in the core. This paper describes a way to estimate the time delay between the core power production and the external detector response using Monte Carlo calculations and suggests a technique to measure the time delay. The Monte Carlo code KENO-NR was used to determine the time delay between the core power production and the external detector response for a conceptual design of the Advanced Neutron Source (ANS) reactor. The Monte Carlo estimated time delay was determined to be about 10 ms for this conceptual design of the ANS reactor
Directory of Open Access Journals (Sweden)
Zina Zhang
2017-01-01
Full Text Available Purpose: To compare the outcomes of intraoperative wavefront aberrometry versus optical biometry alone for intraocular lens (IOL power calculation in eyes undergoing cataract surgery with monofocal IOL implantation. Methods: Preoperative data were obtained with the IOLMaster. Intraoperative aphakic measurements and IOL power calculations were obtained in some patients with the optiwave refractive analysis (ORA system. Analysis was performed to determine the accuracy of monofocal IOL power prediction and postoperative manifest refraction at 1 month of the ORA versus IOLMaster. Results: Two hundred and ninety-five eyes reviewed, 61 had only preoperative IOLMaster measurements and 234 had both IOLMaster and ORA measurements. Of these 234 eyes, 6 were excluded, 107 had the same recommended IOL power by ORA and IOLMaster. Sixty-four percent of these eyes were within ±0.5D. 95 eyes had IOL power implantation based on ORA instead of IOLMaster. Seventy percent of these eyes were within ±0.5D of target refraction. 26 eyes had IOL power chosen based on IOLMaster predictions instead of ORA. Sixty-five percent were within ±0.5D. In the group with IOLMaster without ORA measurements, 80% of eyes were within ±0.5D of target refraction. The absolute error was statistically smaller in those eyes where the ORA and IOLMaster recommended the same IOL power based on preoperative target refraction compared to instances in which IOL selection was based on ORA or IOLMaster alone. Neither prediction errors were statistically different between the ORA and IOLMaster alone. Conclusion: Intraoperative wavefront aberrometry with the ORA system provides postoperative refractive results comparable to conventional biometry with the IOLMaster for monofocal IOL selection.
Calculation of the local power peaking near WWER-440 control assemblies with Hf plates
International Nuclear Information System (INIS)
Hegyi, Gy.; Hordosy, G.; Kereszturi, A.; Maraszy, Cs.; Temesvari, E.
2003-01-01
The original coupler design of the WWER-440 assemblies had the following well known deficiency: The relatively large amount of water in the coupler between the absorber and fuel port of the control assembly can cause undesirably sharp power peaking in the fuel rods next to the coupler. The power peaking can be especially high after control rod withdrawal when the coupler reached low burnup level region of the adjacent assembly. The modernized coupler design overcomes the original problem by applying a thin Hf plate in the critical region. The very complicated structure of the coupler requires the verification of the core design methods by high precision 3D Monte Carlo calculations. The paper presents an MCNP reference calculation on the control rod coupler benchmark with Hf absorber plates. The benchmark solution with the KARATE-440 code system is also presented. The need for treating the Hf burnout in the reflector region is investigated (Authors)
Calculation of the power factor using the neutron diffusion hybrid equation
International Nuclear Information System (INIS)
Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino
2013-01-01
Highlights: ► A neutron diffusion hybrid equation with an external neutron source was used. ► Nodal expansion method to obtain the neutron flux was used. ► Nuclear power factors in each fuel element in the reactor core were calculated. ► The results obtained were very accurate. -- Abstract: In this paper, we used a neutron diffusion hybrid equation with an external neutron source to calculate nuclear power factors in each fuel element in the reactor core. We used the nodal expansion method to obtain the neutron flux for a given control rods bank position. The results were compared with results obtained for eigenvalue problem near criticality condition and fixed source problem during the start-up of the reactor, where external neutron sources are extremely important for the stabilization of external neutron detectors.
Erosion corrosion in power plant piping systems - Calculation code for predicting wall thinning
International Nuclear Information System (INIS)
Kastner, W.; Erve, M.; Henzel, N.; Stellwag, B.
1990-01-01
Extensive experimental and theoretical investigations have been performed to develop a calculation code for wall thinning due to erosion corrosion in power plant piping systems. The so-called WATHEC code can be applied to single-phase water flow as well as to two-phase water/steam flow. Only input data which are available to the operator of the plant are taken into consideration. Together with a continuously updated erosion corrosion data base the calculation code forms one element of a weak point analysis for power plant piping systems which can be applied to minimize material loss due to erosion corrosion, reduce non-destructive testing and curtail monitoring programs for piping systems, recommend life-extending measures. (author). 12 refs, 17 figs
Calculation of the stopping power and the path of charged particles in matter. Application example
International Nuclear Information System (INIS)
Barre, Bertrand; Du Lieu, Pierre
1969-05-01
The path of a charged particle in matter is calculated by integrating the stopping power of the medium against this particle. Depending on the energy of the particle, stopping powers are calculated using Lindhard, Bethe, or semi-empirical smoothing solutions. After exposing recent theories in this field, the authors present a Fortran subroutine which performs these various operations, and covers all energy domains. This routine is available for operation on IBM 360; it uses a magnetic tape library that can take into account experimental results. The subprogram presentation, leaving the user the option of entering the data and using the results at his discretion, allows a particularly flexible use. At the end of this note, some considerations on possible further improvements in the program, and a bibliography of the articles that have dealt with the question from a theoretical or an experimental point of view are discussed [fr
Calculation of Savannah River K Reactor Mark-22 assembly LOCA/ECS power limits
International Nuclear Information System (INIS)
Fischer, S.R.; Farman, R.F.; Birdsell, S.A.
1992-01-01
This paper summarizes the results of TRAC-PF1/MOD3 calculations of Mark-22 fuel assembly of loss-of-coolant accident/emergency cooling system (LOCA/ECS) power limits for the Savannah River Site (SRS) K Reactor. This effort was part of a larger effort undertaken by the Los Alamos National Laboratory for the US Department of Energy to perform confirmatory power limits calculations for the SRS K Reactor. A method using a detailed three-dimensional (3D) TRAC model of the Mark-22 fuel assembly was developed to compute LOCA/ECS power limits. Assembly power was limited to ensure that no point on the fuel assembly walls would exceed the local saturation temperature. The detailed TRAC model for the Mark-22 assembly consisted of three concentric 3D vessel components which simulated the two targets, two fuel tubes, and three main flow channels of the fuel assembly. The model included 100% eccentricity between the assembly annuli and a 20% power tilt. Eccentricity in the radial alignment of the assembly annuli arises because axial spacer ribs that run the length of the fuel and targets are used. Wall-shear, interfacial-shear, and wall heat-transfer correlations were developed and implemented in TRAC-PF1/MOD3 specifically for modeling flow and heat transfer in the narrow ribbed annuli encountered in the Mark-22 fuel assembly design. We established the validity of these new constitutive models using separate-effects benchmarks. TRAC system calculations of K Reactor indicated that the limiting ECS-phase accident is a double-ended guillonite break in a process water line at the pump discharge (i.e., a PDLOCA). The fuel assembly with the minimum cooling potential is identified from this system calculation. Detailed assembly calculations then were performed using appropriate boundary conditions obtained from this limiting system LOCA. Coolant flow rates and pressure boundary conditions were obtained from this system calculation and applied to the detailed assembly model
Correction of the calculation of beam loading based in the RF power diffusion equation
International Nuclear Information System (INIS)
Silva, R. da.
1980-01-01
It is described an empirical correction based upon experimental datas of others authors in ORELA, GELINA and SLAC accelerators, to the calculation of the energy loss due to the beam loading effect as stated by the RF power diffusion equation theory an accelerating structure. It is obtained a dependence of this correction with the electron pulse full width half maximum, but independent of the electron energy. (author) [pt
The Davidson Method as an alternative to power iterations for criticality calculations
International Nuclear Information System (INIS)
Subramanian, C.; Van Criekingen, S.; Heuveline, V.; Nataf, F.; Have, P.
2011-01-01
The Davidson method is implemented within the neutron transport core solver parafish to solve k-eigenvalue criticality transport problems. The parafish solver is based on domain decomposition, uses spherical harmonics (P_N method) for angular discretization, and nonconforming finite elements for spatial discretization. The Davidson method is compared to the traditional power iteration method in that context. Encouraging numerical results are obtained with both sequential and parallel calculations. (author)
POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs
International Nuclear Information System (INIS)
Hardie, R.W.
1982-02-01
POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case
Malas, Tareq Majed Yasin
2012-05-21
Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a challenge despite the regularity of memory access. Sophisticated optimization techniques are required to fully utilize the CPU. We propose a new method for constructing streaming numerical kernels using a high-level assembly synthesis and optimization framework. We describe an implementation of this method in Python targeting the IBM® Blue Gene®/P supercomputer\\'s PowerPC® 450 core. This paper details the high-level design, construction, simulation, verification, and analysis of these kernels utilizing a subset of the CPU\\'s instruction set. We demonstrate the effectiveness of our approach by implementing several three-dimensional stencil kernels over a variety of cached memory scenarios and analyzing the mechanically scheduled variants, including a 27-point stencil achieving a 1.7× speedup over the best previously published results. © The Author(s) 2012.
Twitter and Non-Elites: Interpreting Power Dynamics in the Life Story of the (#)BRCA Twitter Stream.
Vicari, Stefania
2017-09-01
In May 2013 and March 2015, actress Angelina Jolie wrote in the New York Times about her choice to undergo preventive surgery. In her two op-eds, she explained that - as a carrier of the BRCA1 gene mutation - preventive surgery was the best way to lower her heightened risk of developing breast and ovarian cancer. By applying a digital methods approach to BRCA-related tweets from 2013 and 2015, before, during, and after the exposure of Jolie's story, this study maps and interprets Twitter discursive dynamics at two time points of the BRCA Twitter stream. Findings show an evolution in curation and framing dynamics occurring between 2013 and 2015, with individual patient advocates replacing advocacy organizations as top curators of BRCA content and coming to prominence as providers of specialist illness narratives. These results suggest that between 2013 and 2015, Twitter went from functioning primarily as an organization-centered news reporting mechanism, to working as a crowdsourced specialist awareness system. This article advances a twofold contribution. First, it points at Twitter's fluid functionality for an issue public and suggests that by looking at the life story-rather than at a single time point-of an issue-based Twitter stream, we can track the evolution of power roles underlying discursive practices and better interpret the emergence of non-elite actors in the public arena. Second, the study provides evidence of the rise of activist cultures that rely on fluid, non-elite, collective, and individual social media engagement.
Audit Calculations of ATWS for Ulchin Unit 1 and 2 Power Uprate
Energy Technology Data Exchange (ETDEWEB)
Lee, Jun Soo; Huh, Byung Gil; Choi, Yong Seog; Seul, Kwang Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2013-10-15
In this study, the regulatory audit calculation for ATWS of Ulchin Unit 1 and 2 with 4.5% power uprate was performed to support the licensing review and to confirm the validity of licensee's calculation. In order to simulate the transient behavior of ATWS initiated by a loss of feed water, the systems of Ulchin Unit 1 and 2 was modeled with MARS-KS 1.3. In this study, the regulatory audit calculation of ATWS for Ulchin 1 and 2 with 4.5% power uprating and 99% MTC in the specific cycle designs was performed. It is conformed that the analysis results of ATWS for Ulchin 1 and 2 power uprate meets the RCS pressure acceptance criteria. An anticipated transient accompanied by a failure in the Reactor Trip System (RTS) to shut down the reactor is defined as an Anticipated Transient Without Scram (ATWS). Under certain postulated conditions, the ATWS could lead to Reactor Coolant system (RCS) pressure boundary fracture and/or core damage. For a conventional pressurized water reactor (PWR), the temperature corresponding to the NSSC notice No.2013.09(Performance Criteria for ECCS of the Pressurized Water Reactor Nuclear Power Plants), 1204 .deg. C and the pressure corresponding to the ASME Boiler and Pressure Vessel Code service level C stress, 221.5 bar is assumed to be an unacceptable plant condition against ATWS, above which the RCS pressure boundary could deform to the point of inoperability and the safe shutdown by injection of borated water could be challenged. Such potentially excessive RCS overpressure may occur in the ATWS initiated from a loss of heat sink. Currently, the modification of Ulchin 1 and 2 operating license for 4.5% power uprate is under review.
Calculation of the Power Peaking Factor Using CFNN and Its Uncertainty Analysis
Energy Technology Data Exchange (ETDEWEB)
Back, Ju Hyun; Kim, Dong Yeong; Yoo, Kwae Hwan; Choi, Geon Pil; Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)
2016-05-15
The local power density (LPD) and DNBR must be calculated in order to perform the main functions of the core protection calculator (CPC) and the core operation limit supervisory system (COLSS). CPC and COLSS play a role in the protection and monitoring systems of the optimized power reactor 1000 (OPR1000) and the advanced power reactor 1400 (APR1400). LPD should be estimated accurately to prevent fuel rods from melting. LPD at the hottest part of the core is called the power peaking factor (PPF, F{sub q} ). LPD at the hottest part of the core is more important than LPD at any other position in a reactor core. DNBR and PPF are the most important factors that must be continuously monitored from a safety aspect. The aim of the study is to calculate PPF in a reactor core by a cascaded fuzzy neural networks (CFNN) model according to operating conditions. The operation condition is reactor power, core inlet temperature, pressurizer pressure, mass flowrate, axial shape index (ASI), and variety of control rod position. The proposed CFNN model that is a PPF estimation algorithm is verified by using the nuclear and thermal data acquired from numerical simulations of OPR1000. The CFNN regression models were optimized by using the data set prepared as training data and tested by using verification data. The developed CFNN models were applied to the OPR 1000. As a result, the RMS error of the estimated PPF values is below 0.05%. In addition, their uncertainty was analyzed by a bootstrap method using 100 sampled development data sets.
Influential parameters for designing and power consumption calculating of cumin mower
Energy Technology Data Exchange (ETDEWEB)
Mahmoodi, E.; Jafari, A. [Tehran Univ., Karaj (Iran, Islamic Republic of). Dept. of Agricultural Machinery Engineering
2010-07-01
This paper reported on a study in which the consuming power and design of cumin mowers was calculated. The parameters required for calculating power consumption and designing of cumin mowers were measured along with some engineering properties of cumin stems. These included shearing and bending tests on cumin stem and specifying the coefficient of friction between mower knives and cumin stem. The relationships between static and dynamic friction forces being exerted on mower runners by soil with normal load were determined along with the factor affecting soil moisture. Some of the other parameters that are important for calculating the power consumption and design of an optimized mower include harvest moisture content; maximum and average of cumin stem diameter; maximum bio-yield point of force and maximum ultimate point of force in the cutting; average energy required to cut a stem; maximum elasticity module; maximum bending rupture force; average energy required for bending a stem; friction coefficient between the stem and knife edge; relation between bio-yield force, failure force, elasticity and diameter in the cutting; relation between rupture forces and diameter in the bending; and mower weight.
Directory of Open Access Journals (Sweden)
Erin Peterson
2014-01-01
Full Text Available This paper describes the STARS ArcGIS geoprocessing toolset, which is used to calcu- late the spatial information needed to fit spatial statistical models to stream network data using the SSN package. The STARS toolset is designed for use with a landscape network (LSN, which is a topological data model produced by the FLoWS ArcGIS geoprocessing toolset. An overview of the FLoWS LSN structure and a few particularly useful tools is also provided so that users will have a clear understanding of the underlying data struc- ture that the STARS toolset depends on. This document may be used as an introduction to new users. The methods used to calculate the spatial information and format the final .ssn object are also explicitly described so that users may create their own .ssn object using other data models and software.
Preliminary reactor physics calculations for Exxon LWR fuel testing in the power burst facility
International Nuclear Information System (INIS)
Olson, W.O.; Nigg, D.W.
1981-05-01
The PFB reactor is being considered as an irradiation facility to test LWR fuel rods for Exxon Nuclear Company. Requested test conditions are 18 kW/ft axial peak steady state power in 2.5% initial enrichment, 20,000 MWd/Tu exposed rods. Multigroup transport theory calculations (S/sub n/ and Monte Carlo) showed that this was unattainable in the standard PBF test loop. Thus, a flux multiplier was developed in the form of a Zr-2-clad 0.15-inch thick cylindrical shell of 35% enriched, 88% T.D. UO 2 replacing the flow divider, surrounding the rod within the in-pile tube in PFB. With this flux multiplier installed and assuming an average water density of 0.86 g/cm 3 within the test loop, a Figure of Merit (FOM) for a single-rod test assembly of 0.86 kW/ft-MW +- 5% (at 95% confidence level) was calculated. This FOM is the axial peak linear test rod power per megawatt of reactor power. A reactor power of about 21 megawatts will therefore be required to supply the requested linear test rod axial peak heating rate of 18 kW/ft
EBRPOCO - a program to calculate detailed contributions of power reactivity components of EBR-II
International Nuclear Information System (INIS)
Meneghetti, D.; Kucera, D.A.
1981-01-01
The EBRPOCO program has been developed to facilitate the calculations of the power coefficients of reactivity of EBR-II loadings. The program enables contributions of various components of the power coefficient to be delineated axially for every subassembly. The program computes the reactivity contributions of the power coefficients resulting from: density reduction of sodium coolant due to temperature; displacement of sodium coolant by thermal expansions of cladding, structural rods, subassembly cans, and lower and upper axial reflectors; density reductions of these steel components due to temperature; displacement of bond-sodium (if present) in gaps by differential thermal expansions of fuel and cladding; density reduction of bond-sodium (if present) in gaps due to temperature; free axial expansion of fuel if unrestricted by cladding or restricted axial expansion of fuel determined by axial expansion of cladding. Isotopic spatial contributions to the Doppler component my also be obtained. (orig.) [de
Directory of Open Access Journals (Sweden)
A.V. Erisov
2016-05-01
Full Text Available Purpose. Simplification of accounting ratio to determine the magnetic field strength of electric power lines, and assessment of their environmental safety. Methodology. Description of the transmission lines of the magnetic field by using techniques of spatial harmonic analysis in the cylindrical coordinate system is carried out. Results. For engineering calculations of electric power lines magnetic field with sufficient accuracy describes their first spatial harmonic magnetic field. Originality. Substantial simplification of the definition of the impact of the construction of transmission line poles on the value of its magnetic field and the bands of land alienation sizes. Practical value. The environmentally friendly projection electric power lines on the level of the magnetic field.
Corneal Anterior Power Calculation for an IOL in Post-PRK Patients.
De Bernardo, Maddalena; Iaccarino, Stefania; Cennamo, Michela; Caliendo, Luisa; Rosa, Nicola
2015-02-01
After corneal refractive surgery, there is an overestimation of the corneal power with the devices routinely used to measure it. Therefore, the objective of this study was to determine whether, in patients who underwent photorefractive keratectomy (PRK), it is possible to predict the earlier preoperative anterior corneal power from the postoperative (PO) posterior corneal power. A comparison is made using a formula published by Saiki for laser in situ keratomileusis patients and a new one calculated specifically from PRK patients. The Saiki formula was tested in 98 eyes of 98 patients (47 women) who underwent PRK for myopia or myopic astigmatism. Moreover, anterior and posterior mean keratometry (Km) values from a Scheimpflug camera were measured to obtain a specific regression formula. The mean (±SD) preoperative Km was 43.50 (±1.39) diopters (D) (range, 39.25 to 47.05 D). The mean (±SD) Km value calculated with the Saiki formula using the 6 months PO posterior Km was 42.94 (±1.19) D (range, 40.34 to 45.98 D) with a statistically significant difference (p PRK in our patients, the posterior Km was correlated with the anterior preoperative one by the following regression formula: y = -4.9707x + 12.457 (R² = 0.7656), where x is PO posterior Km and y is preoperative anterior Km, similar to the one calculated by Saiki. Care should be taken in using the Saiki formula to calculate the preoperative Km in patients who underwent PRK.
Neutronic calculations for the reactor pressure vessel of Atucha I nuclear power plant
International Nuclear Information System (INIS)
Lerner, Ana M.; Madariaga, Marcelo R.
1999-01-01
In 1974 a surveillance program for the Atucha I nuclear power plant pressure vessel was initiated which included the construction of different types of specimens, distributed in 30 irradiation capsules located under the core at the lower part of some of the fuel channels. The capsules containing the irradiated specimens were withdrawn in two stages; the first set (SET 1) of 15 specimens in 1980 and the second one (SET 2) of the remaining 15, in 1987. Both fracture mechanic tests and dosimetry analysis were carried out by the designer (KWU) for SET1 and by the owner National Atomic Energy Commission (CNEA) for SET2. The calculations performed in the case of SET1 showed that there was a significant spectrum difference between the position where the specimens had been and the reactor pressure vessel (RPV) - inner surface (IS). It was established that the ratio of thermal flux (E 1 MeV) varied, approximately, from 1000 to 10 from the irradiation position to the RPV- IS. The purpose of this report is to show the calculations recently performed at the Nuclear Regulatory Authority, with particular emphasis on the difference in the results generated by the modification to sightly enriched fuel. A simplified 1-D calculations show that there is a slight increase (4% approximately) in the flux along the whole energy range. As it has already been mentioned, this is due, more than to the isotopic composition of the new fuel, to the difference in power density spatial distribution, which is a consequence of a different fuel management, necessary to preserve operational limits below their maximum allowed values with the same total thermal power generated. More detailed calculations are nevertheless foreseen in order to verify these first results. (author)
Cheng, Chih-Wen; Hua, Jian; Hwang, Daw-Shang
2017-10-01
An important marine pollution issue identified by the International Maritime Organization (IMO) is NO x emissions; however, the stipulated method for determining the NO x certification value does not reflect the actual high emission factors of slow-speed two-stroke diesel engines over long-term slow steaming. In this study, an accurate method is presented for calculating the NO x emission factors and total amount of NO x emissions by using the actual power probabilities of the diesel engines in four types of bulk carriers. The proposed method is suitable for all types and purposes of diesel engines, is not restricted to any operating modes, and is highly accurate. Moreover, it is recommended that the IMO-stipulated certification value calculation method be modified accordingly to genuinely reduce the amount of NO x emissions. The successful achievement of this level of reduction will help improve the air quality, especially in coastal and port areas, and the health of local residents. As per the IMO, the NO x emission certification value of marine diesel engines having a rated power over 130 kW must be obtained using specified weighting factor (WF)-based calculation. However, this calculation fails to represent the current actual situation. Effective emission reductions of 6.91% (at sea) and 31.9% (in ports) were achieved using a mathematical model of power probability functions. Thus, we strongly recommend amending the certification value of NO x Technical Code 2008 (NTC 2008) by removing the WF constraints, such that the NO x emissions of diesel engines is lower than the Tier-limits at any load level to obtain genuine NO x emission reductions.
A nodal method of calculating power distributions for LWR-type reactors with square fuel lattices
International Nuclear Information System (INIS)
Hoeglund, Randolph.
1980-06-01
A nodal model is developed for calculating the power distribution in the core of a light water reactor with a square fuel lattice. The reactor core is divided into a number of more or less cubic nodes and a nodal coupling equation, which gives the thermal power density in one node as a function of the power densities in the neighbour nodes, is derived from the neutron diffusion equations for two energy groups. The three-dimensional power distribution can be computed iteratively using this coupling equation, for example following the point Jacobi, the Gauss-Seidel or the point successive overrelaxation scheme. The method has been included as the neutronic model in a reactor core simulation computer code BOREAS, where it is combined with a thermal-hydraulic model in order to make a simultaneous computation of the interdependent power and void distributions in a boiling water reactor possible. Also described in this report are a method for temporary one-dimensional iteration developed in order to accelerate the iterative solution of the problem and the Haling principle which is widely used in the planning of reloading operations for BWR reactors. (author)
International Nuclear Information System (INIS)
Moch Djoko Birmano; Imam Bastori
2008-01-01
The study for calculating the economic and financing of Nuclear Power Plant (NPP) and conventional power plant using spreadsheet Innovation has been done. As case study, the NPP of PWR type of class 1050 MWe is represented by OPR-1000 (Optimized Power Reactor, 1000 MWe) and the conventional plant of class 600 MWe, is coal power plant (Coal PP). The purpose of the study is to assess the economic and financial feasibility level of OPR-1000 and Coal PP. The study result concludes that economically, OPR-1000 is more feasible compared to Coal PP because its generation cost is cheaper. Whereas financially, OPR-1000 is more beneficial compared to Coal PP because the higher benefit at the end of economic lifetime (NPV) and the higher ratio of benefit and cost (B/C Ratio). For NPP and Coal PP, the higher Discount Rate (%) is not beneficial. NPP is more sensitive to the change of discount rate compared to coal PP, whereas Coal PP is more sensitive to the change of power purchasing price than NPP. (author)
International Nuclear Information System (INIS)
Liu Yang; Cai Qi; Lin Xiaoling
2011-01-01
Based on the operation characteristics of the nuclear power unit, the radioactive inventory of activated parts was calculated by ORIGEN2, and the effects of bum-up, operation mode and power change on the radioactive inventory for activated parts were analyzed. The results indicated that the radioactive inventory grew with the increasing of burn-up, and when the actual operation time was longer than the effective operation time, the increasing rate of nuclide activity approximated the burn-up increasing; Radioactive inventory of activated parts was influenced directly by the operation modes of the nuclear power unit, and under same reactor load, operation power and bum-up, the radioactive inventory for non-continuous operation mode is less than that for the continuous operation mode. Effects of operation modes on radioactive inventory reversed with half life of nuclides. Under same bum-up and longer operation time, the effect of operation power change on the radioactive inventory is not obvious, (authors)
International Nuclear Information System (INIS)
Dawahra, S.; Khattab, K.
2011-01-01
Highlights: → The MCNP4C code was used to calculate the power distribution in 3-D geometry in the MNSR reactor. → The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. → The minimum power was found in the fuel ring number 9 and was 79.9 W. → The total power in the total fuel rods was 30.9 kW. - Abstract: The Monte Carlo method, using the MCNP4C code, was used in this paper to calculate the power distribution in 3-D geometry in the fuel rods of the Syrian Miniature Neutron Source Reactor (MNSR). To normalize the MCNP4C result to the steady state nominal thermal power, the appropriate scaling factor was defined to calculate the power distribution precisely. The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. The minimum power was found in the fuel ring number 9 and was 79.9 W. The total power in the total fuel rods was 30.9 kW. This result agrees very well with nominal power reported in the reactor safety analysis report which equals 30 kW. Finally, the peak power factors, which are defined as the ratios between the maximum to the average and the maximum to the minimum powers were calculated to be 1.18 and 1.31 respectively.
International Nuclear Information System (INIS)
Mochamad Nasrullah; Sudi Arianto
2005-01-01
Nuclear power plant as one alternative power plant for Indonesia is expected to attract interest of investors to invest in electricity sector. Calculation of investment cost and electricity tariff is a nearly necessary Information needed by investors. Spread sheet calculations on construction cost including Interest During Construction and escalation as well as financial viability are implemented. Result of the study show that overnight cost before escalation is US $ 2.682.865.200,- and after IDC and escalation it becomes US $ 3.795.712.088 or 1.807,5 US$/k We. Levelized Tariff is at around 4,57 cents/kWh. Levelized Tariff is 3,5 cents/kWh not feasible to the project of because all financial parameter show negative value. The project is financially feasible if calculated levelized tariff within arrange of 4,0 cents/kWh-5,5 cents/kWh. The most profitable tariff for investor is within arrange of 4,87 cents/kWh - 5,11 cents/kWh. (author)
Robust and Imperceptible Watermarking of Video Streams for Low Power Devices
Ishtiaq, Muhammad; Jaffar, M. Arfan; Khan, Muhammad A.; Jan, Zahoor; Mirza, Anwar M.
With the advent of internet, every aspect of life is going online. From online working to watching videos, everything is now available on the internet. With the greater business benefits, increased availability and other online business advantages, there is a major challenge of security and ownership of data. Videos downloaded from an online store can easily be shared among non-intended or unauthorized users. Invisible watermarking is used to hide copyright protection information in the videos. The existing methods of watermarking are less robust and imperceptible and also the computational complexity of these methods does not suit low power devices. In this paper, we have proposed a new method to address the problem of robustness and imperceptibility. Experiments have shown that our method has better robustness and imperceptibility as well as our method is computationally efficient than previous approaches in practice. Hence our method can easily be applied on low power devices.
Williams, P Stephen
2016-05-01
Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.
Calculation of pellet radial power distributions with a Monte Carlo burnup code
International Nuclear Information System (INIS)
Suzuki, Motomu; Yamamoto, Toru; Nakata, Tetsuo
2010-01-01
The Japan Nuclear Energy Safety Organization (JNES) has been working on an irradiation test program of high-burnup MOX fuel at Halden Boiling Water Reactor (HBWR). MOX and UO 2 fuel rods had been irradiated up to about 64 GWd/t (rod avg.) as a Japanese utilities research program (1st phase), and using those fuel rods, in-situ measurement of fuel pellet centerline temperature was done during the 2nd phase of irradiation as the JNES test program. As part of analysis of the temperature data, power distributions in a pellet radial direction were analyzed by using a Monte Carlo burnup code MVP-BURN. In addition, the calculated results of deterministic burnup codes SRAC and PLUTON for the same problem were compared with those of MVP-BURN to evaluate their accuracy. Burnup calculations with an assembly model were performed by using MVP-BURN and those with a pin cell model by using SRAC and PLUTON. The cell pitch and, therefore, fuel to moderator ratio in the pin cell calculation was determined from the comparison of neutron energy spectra with those of MVP-BURN. The fuel pellet radial distributions of burnup and fission reaction rates at the end of the 1st phase irradiation were compared between the three codes. The MVP-BURN calculation results show a large peaking in the burnup and fission rates in the pellet outer region for the UO 2 and MOX pellets. The SRAC calculations give very close results to those of the MVP-BURN. On the other hand, the PLUTON calculations show larger burnup for the UO 2 and lower burnup for the MOX pellets in the pellet outer region than those of MVP-BURN, which lead to larger fission rates for the UO 2 and lower fission rates for the MOX pellets, respectively. (author)
Power distribution and fuel depletion calculation for a PWR, using LEOPARD and CITATION codes
International Nuclear Information System (INIS)
Batista, J.L.
1982-01-01
By modifying LEOPARD a new program, LEOCIT, has been developed in which additional subroutines prepare cross-section libraries in 1, 2 or 4 energy groups and subsequently record these on disc or tape in a format appropriate for direct input to the CITATION code. Use of LEOCIT in conjunction with CITATION is demonstrated by simulating the first depletion cycle of Angra Unit 1. In these calculations two energy groups are used in 1/4, X - Y geometry to give the soluble boron curve, the fuel depletion and the point to point power distribution in Angra 1. Finally relevant results obtained here are compared with those published by Westinghouse, CNEN and Furnas and recommendations are made to improve the system of neutronic calculation developed in this work. (Author) [pt
Fuel consumption and greenhouse gas calculator for diesel and biodiesel-powered vehicles
Energy Technology Data Exchange (ETDEWEB)
NONE
2008-07-01
Factors that influence fuel consumption include environmental conditions, maintenance, poor driving techniques, and driving speed. Developed by Natural Resources Canada, the SmartDriver training programs were designed to help fleet managers, drivers, and instructors to learn methods of improving fuel economy. This fuel consumption and greenhouse gas (GHG) calculator for diesel and biodiesel-powered vehicles provides drivers with a method of calculating fuel consumption rates when driving. It includes a log-book in which to record odometer readings and a slide-rule in which to determine the litres of fuel used during a trip. The scale showed the number of kg of GHGs produced by burning a particular amount of fuel for both biodiesel and diesel fuels. 1 fig.
International Nuclear Information System (INIS)
Zhang, Xiaoguang; Varga, Kalman; Pantelides, Sokrates T
2007-01-01
Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations, but have not so far been adapted for quantum transport problems with open boundary conditions. Here we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method is demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data
International Nuclear Information System (INIS)
Alvarez, M.C.; Garzon, L.
1990-01-01
In this paper a practical dispersion model is presented, which permits to calculate, in Spain, the concentration of natural radionuclides released to the atmosphere from coal power plants. To apply the model it is necessary to know the following data: emission rates, dry deposition velocity, scavenging coefficient, mixing layer height, together with climatological frequency data relating to wind speed and wind direction (to determinate trajectories from a given source) in the areas examined. Meteorological data can be obtained from meteorological stations across Spain. (Author)
International Nuclear Information System (INIS)
Kophazi, J.; Czifrus, Sz.; Feher, S.; Por, G.
2001-01-01
The paper describes the measurement of the delayed signal of a Rh emitter Self Powered Neutron Detector (SPND) separately from other signal components originating from (n-gamma-e), (background gamma-e) and other effects. In order to separate the delayed signal, the detector was removed from the reactor core and placed to an adequately distant location during the measurement, where the radiation from the core was negligible. The experiment was carried out on the 100kW light water tank-type reactor of Technical University of Budapest and the results of the measurement were compared with the results of Monte Carlo calculations.(author)
Application of ultrasonic inspection data in strength calculations for nuclear power plant equipment
International Nuclear Information System (INIS)
Ovchinnikov, A.V.; Rivkin, E.Yu.; Vasilchenko, G.S.; Zvezdin, Yu.I.
1991-01-01
Several kinds of test specimens were produced with three types of defects of defined sizes and positions in the particular localities of weld joints. Such specimens have been used for defect parameter characterization by ultrasonic testing. The principles for schematization of such defects and the formulae for the stress intensity factor calculations for elliptical and semielliptical cracks have been worked out. Methods for defining the sizes of defect which are acceptable have been designed for use for use on operational nuclear power plant equipment and take account of the mutual effects of the force, thermal and residual stresses. The method can be used in the brittle, transitional and tough material state. (author)
CPU time reduction strategies for the Lambda modes calculation of a nuclear power reactor
Energy Technology Data Exchange (ETDEWEB)
Vidal, V.; Garayoa, J.; Hernandez, V. [Universidad Politecnica de Valencia (Spain). Dept. de Sistemas Informaticos y Computacion; Navarro, J.; Verdu, G.; Munoz-Cobo, J.L. [Universidad Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear; Ginestar, D. [Universidad Politecnica de Valencia (Spain). Dept. de Matematica Aplicada
1997-12-01
In this paper, we present two strategies to reduce the CPU time spent in the lambda modes calculation for a realistic nuclear power reactor.The discretization of the multigroup neutron diffusion equation has been made using a nodal collocation method, solving the associated eigenvalue problem with two different techniques: the Subspace Iteration Method and Arnoldi`s Method. CPU time reduction is based on a coarse grain parallelization approach together with a multistep algorithm to initialize adequately the solution. (author). 9 refs., 6 tabs.
Approximate techniques for calculating gamma ray dose rates in nuclear power plants
International Nuclear Information System (INIS)
Lahti, G.P.
1986-01-01
Although today's computers have made three-dimensional discrete ordinates transport codes a virtual reality, there is still a need for approximate techniques for estimating radiation environments. This paper discusses techniques for calculating gamma ray dose rates in nuclear power plants where Compton scattering is the dominant attenuation mechanism. The buildup factor method is reviewed; its use and misuse are discussed. Several useful rules-of-thumb are developed. The paper emphasizes the need for understanding the fundamental physics and draws heavily on the old, classic references
Improvement of Power Flow Calculation with Optimization Factor Based on Current Injection Method
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level and R/X ratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.
A power spectrum approach to tally convergence in Monte Carlo criticality calculation
International Nuclear Information System (INIS)
Ueki, Taro
2017-01-01
In Monte Carlo criticality calculation, confidence interval estimation is based on the central limit theorem (CLT) for a series of tallies from generations in equilibrium. A fundamental assertion resulting from CLT is the convergence in distribution (CID) of the interpolated standardized time series (ISTS) of tallies. In this work, the spectral analysis of ISTS has been conducted in order to assess the convergence of tallies in terms of CID. Numerical results obtained indicate that the power spectrum of ISTS is equal to the theoretically predicted power spectrum of Brownian motion for tallies of effective neutron multiplication factor; on the other hand, the power spectrum of ISTS of a strongly correlated series of tallies from local powers fluctuates wildly while maintaining the spectral form of fractional Brownian motion. The latter result is the evidence of a case where a series of tallies are away from CID, while the spectral form supports normality assumption on the sample mean. It is also demonstrated that one can make the unbiased estimation of the standard deviation of sample mean well before CID occurs. (author)
Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect
Razavi, Rouzbeh; Fleury, Martin; Ghanbari, Mohammed
2008-12-01
Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality.
Nodal methods for calculating nuclear reactor transients, control rod patterns, and fuel pin powers
International Nuclear Information System (INIS)
Cho, Byungoh.
1990-01-01
Nodal methods which are used to calculate reactor transients, control rod patterns, and fuel pin powers are investigated. The 3-D nodal code, STORM, has been modified to perform these calculations. Several numerical examples lead to the following conclusions: (1) By employing a thermal leakage-to-absorption ratio (TLAR) approximation for the spatial shape of the thermal fluxes for the 3-D Langenbuch-Maurer-Werner (LMW) and the superprompt critical transient problems, the convergence of the conventional two-group scheme is accelerated. (2) By employing the steepest-ascent hill climbing search with heuristic strategies, Optimum Control Rod Pattern Searcher (OCRPS) is developed for solving control rod positioning problem in BWRs. Using the method of approximation programming the objective function and the nuclear and thermal-hydraulic constraints are modified as heuristic functions that guide the search. The test calculations have demonstrated that, for the first cycle of the Edwin Hatch Unit number-sign 2 reactor, OCRPS shows excellent performance for finding a series of optimum control rod patterns for six burnup steps during the operating cycle. (3) For the modified two-dimensional EPRI-9R problem, the least square second-order polynomial flux expansion method was demonstrated to be computationally about 30 times faster than a fine-mesh finite difference calculation in order to achieve comparable accuracy for pin powers. The basic assumption of this method is that the reconstructed flux can be expressed as a product of an assembly form function and a second-order polynomial function
Energy Technology Data Exchange (ETDEWEB)
Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-17
The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operating scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi
Development of Internet algorithms and some calculations of power plant COP
Ustjuzhanin, E. E.; Ochkov, V. F.; Znamensky, V. E.
2017-11-01
sharing: a) SW that is used to design power plants, for an example, Code - GTP_1(Z,R,Y) and b) client functions those are aimed to determine R properties of the working fluid at fixed points of the thermodynamic cycle. The program let us calculate energy criteria, Z, including the internal coefficient of performance (COP) for a power plant. We have discussed OI resources, among them OI resource that includes Code - GTP_1(Z,R,Y) and connected with a complex power plant included: i) several gas turbines, i) several compressors etc.
Energy Technology Data Exchange (ETDEWEB)
Ödén, Jakob [Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176, Sweden and Department of Medical Radiation Physics, Stockholm University and Karolinska Institutet, Stockholm SE-17176 (Sweden); Zimmerman, Jens; Nowik, Patrik; Poludniowski, Gavin, E-mail: gavin.poludniowski@karolinska.se [Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176 (Sweden); Bujila, Robert [Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176, Sweden and Department of Physics, Royal Institute of Technology, Stockholm SE-10691 (Sweden)
2015-09-15
Purpose: The quantitative effects of assumptions made in the calculation of stopping-power ratios (SPRs) are investigated, for stoichiometric CT calibration in proton therapy. The assumptions investigated include the use of the Bethe formula without correction terms, Bragg additivity, the choice of I-value for water, and the data source for elemental I-values. Methods: The predictions of the Bethe formula for SPR (no correction terms) were validated against more sophisticated calculations using the SRIM software package for 72 human tissues. A stoichiometric calibration was then performed at our hospital. SPR was calculated for the human tissues using either the assumption of simple Bragg additivity or the Seltzer-Berger rule (as used in ICRU Reports 37 and 49). In each case, the calculation was performed twice: First, by assuming the I-value of water was an experimentally based value of 78 eV (value proposed in Errata and Addenda for ICRU Report 73) and second, by recalculating the I-value theoretically. The discrepancy between predictions using ICRU elemental I-values and the commonly used tables of Janni was also investigated. Results: Errors due to neglecting the correction terms to the Bethe formula were calculated at less than 0.1% for biological tissues. Discrepancies greater than 1%, however, were estimated due to departures from simple Bragg additivity when a fixed I-value for water was imposed. When the I-value for water was calculated in a consistent manner to that for tissue, this disagreement was substantially reduced. The difference between SPR predictions when using Janni’s or ICRU tables for I-values was up to 1.6%. Experimental data used for materials of relevance to proton therapy suggest that the ICRU-derived values provide somewhat more accurate results (root-mean-square-error: 0.8% versus 1.6%). Conclusions: The conclusions from this study are that (1) the Bethe formula can be safely used for SPR calculations without correction terms; (2
International Nuclear Information System (INIS)
Ödén, Jakob; Zimmerman, Jens; Nowik, Patrik; Poludniowski, Gavin; Bujila, Robert
2015-01-01
Purpose: The quantitative effects of assumptions made in the calculation of stopping-power ratios (SPRs) are investigated, for stoichiometric CT calibration in proton therapy. The assumptions investigated include the use of the Bethe formula without correction terms, Bragg additivity, the choice of I-value for water, and the data source for elemental I-values. Methods: The predictions of the Bethe formula for SPR (no correction terms) were validated against more sophisticated calculations using the SRIM software package for 72 human tissues. A stoichiometric calibration was then performed at our hospital. SPR was calculated for the human tissues using either the assumption of simple Bragg additivity or the Seltzer-Berger rule (as used in ICRU Reports 37 and 49). In each case, the calculation was performed twice: First, by assuming the I-value of water was an experimentally based value of 78 eV (value proposed in Errata and Addenda for ICRU Report 73) and second, by recalculating the I-value theoretically. The discrepancy between predictions using ICRU elemental I-values and the commonly used tables of Janni was also investigated. Results: Errors due to neglecting the correction terms to the Bethe formula were calculated at less than 0.1% for biological tissues. Discrepancies greater than 1%, however, were estimated due to departures from simple Bragg additivity when a fixed I-value for water was imposed. When the I-value for water was calculated in a consistent manner to that for tissue, this disagreement was substantially reduced. The difference between SPR predictions when using Janni’s or ICRU tables for I-values was up to 1.6%. Experimental data used for materials of relevance to proton therapy suggest that the ICRU-derived values provide somewhat more accurate results (root-mean-square-error: 0.8% versus 1.6%). Conclusions: The conclusions from this study are that (1) the Bethe formula can be safely used for SPR calculations without correction terms; (2
Impact of Uncertainty on Calculations for Recovery from Loss of Offsite Power
International Nuclear Information System (INIS)
Kelly, Dana L.
2010-01-01
Uncertainty, both aleatory and epistemic, can have a significant impact on estimated probabilities of recovering from loss of offsite power within a specified time window, and such probabilities are an input to risk-informed decisions as to the significance of inspection findings in the U.S. Nuclear Regulatory Commission's Reactor Oversight Process. In particular, the choice of aleatory model for offsite power recovery time can have a significant impact on the estimated nonrecovery probability, especially if epistemic uncertainty regarding parameters in the aleatory model is accounted for properly. In past and current analyses, such uncertainty has largely been ignored. This paper examines the impact of both aleatory and epistemic uncertainty on the results, using modern open-source Bayesian inference software, which implements Markov chain Monte Carlo sampling. It includes examples of time-dependent convolution calculations to show the impact that uncertainty can have on this increasingly frequent type of calculation, also. The results show that the 'point estimate' result, which is an input to risk-informed decisions, can easily be uncertain by a factor of 10 if both aleatory and epistemic uncertainties are considered. The paper also illustrates the use of Bayesian model selection criteria to aid in the choice of aleatory model.
International Nuclear Information System (INIS)
Licks, Leticia A.; Pires, Marcal
2008-01-01
This work intends to evaluate the emissions of carbon dioxide (CO 2 ) emitted by the burning of fossil coal in Brazil. So, a detailed methodology is proposed for calculation of CO 2 emissions from the carbon emission coefficients specific for the Brazilian carbons. Also, the using of secondary fuels (fuel oil and diesel oil) were considered and the power generation for the calculation of emissions and efficiencies of each power plant as well. The obtained results indicate carbon emissions for the year 2002 approximately of the order of 1,794 Gg, with 20% less than the obtained by the official methodology (MCT). Such differences are related to the non consideration of the humidity containment of the coals as well as the using of generic coefficients not adapted to the Brazilian coals. The obtained results indicate the necessity to review the emission inventories and the modernization of the burning systems aiming the increase the efficiency and reduction of the CO 2 and other pollutants, as an alternative for maintaining the sustainable form of using the fossil coal in the country
A case study and critical assessment in calculating power usage effectiveness for a data centre
International Nuclear Information System (INIS)
Brady, Gemma A.; Kapur, Nikil; Summers, Jonathan L.; Thompson, Harvey M.
2013-01-01
Highlights: • A case study PUE calculation is carried out on a data centre by using open source specifications. • The PUE metric does not drive improvements in the efficiencies of IT processes. • The PUE does not fairly represent energy use; an increase in IT load can lead to a decrease in the PUE. • Once a low PUE is achieved, power supply efficiency and IT load have the greatest impact on its value. - Abstract: Metrics commonly used to assess the energy efficiency of data centres are analysed through performing and critiquing a case study calculation of energy efficiency. Specifically, the metric Power Usage Effectiveness (PUE), which has become a de facto standard within the data centre industry, will be assessed. This is achieved by using open source specifications for a data centre in Prineville, Oregon, USA provided by the Open Compute Project launched by the social networking company Facebook. The usefulness of the PUE metric to the IT industry is critically assessed and it is found that whilst it is important for encouraging lower energy consumption in data centres, it does not represent an unambiguous measure of energy efficiency
Tokamak plasma power balance calculation code (TPC code) outline and operation manual
International Nuclear Information System (INIS)
Fujieda, Hirobumi; Murakami, Yoshiki; Sugihara, Masayoshi.
1992-11-01
This report is a detailed description on the TPC code, that calculates the power balance of a tokamak plasma according to the ITER guidelines. The TPC code works on a personal computer (Macintosh or J-3100/ IBM-PC). Using input data such as the plasma shape, toroidal magnetic field, plasma current, electron temperature, electron density, impurities and heating power, TPC code can determine the operation point of the fusion reactor (Ion temperature is assumed to be equal to the electron temperature). Supplied flux (Volt · sec) and burn time are also estimated by coil design parameters. Calculated energy confinement time is compared with various L-mode scaling laws and the confinement enhancement factor (H-factor) is evaluated. Divertor heat load is predicted by using simple scaling models (constant-χ, Bohm-type-χ and JT-60U empirical scaling models). Frequently used data can be stored in a 'device file' and used as the default values. TPC code can generate 2-D mesh data and the POPCON plot is drawn by a contour line plotting program (CONPLT). The operation manual about CONPLT code is also described. (author)
International Nuclear Information System (INIS)
Molina, G.
1985-01-01
Utilization of nuclear energy to produce or generate electricity is a growing practice in the world, since it represent an economic and safe option to replace fossil fuels. During operation of nuclear power plants, radioactive materials are produced. A small fraction of these material are released to environment in the form of liquid or gaseous effluents. Estimation of radiation doses causing by effluents release has three purposes. During design phase of a nuclear station it is useful to adapt the wastes treatment systems to acceptable limits. During licensing phase, the regulator organism verifies the design of nuclear station effectuating estimation of doses. Finally, during operation of a nuclear station, before every unload of radioactive effluents, radiation doses should be evaluate in order to fulfill technical specifications, which limit the release of radioactive materials to environment. 1. To perform calculations of individual doses due to liquid radioactive effluents unload in units 1 and 2 of Laguna Verde nuclear power plant (In licensing phase). 2. To perform a parametric study of the effect of unload recirculation over individual dose, since recirculation has two principal effects: thermodynamical effects in nuclear station and radioactivity concentration, the last can affect the fullfilment of dose limits. 3. To perform the calculation of collective doses causes by unloads of liquid effluents within a radius of 80 Kms. of nuclear station caused by unload of liquid radioactive effluents during normal operation of nuclear power plant and does not include doses caused during accident conditions. In Mexico the organism in charge of regulation of peaceful uses of nuclear energy is Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) and for Laguna Verde licensing, the regulations of country who manufactured the reactor was adopted, it is to say United States of America. In Appendix 'C' units used along this work are explained. Unless another
Ramji, Hasnain; Moore, Johnny; Moore, C B Tara; Shah, Sunil
2016-04-01
To optimise intraocular lens (IOL) power calculation techniques for a segmental multifocal IOL, LENTIS™ MPlus(®) (Oculentis GmbH, Berlin, Germany) and assess outcomes. A retrospective consecutive non-randomised case series of patients receiving the MPlus(®) IOL following cataract surgery or clear lens extraction was performed at a privately owned ophthalmic hospital, Midland Eye, Solihull, UK. Analysis was undertaken of 116 eyes, with uncomplicated lens replacement surgery using the LENTIS™ MPlus(®) lenses. Pre-operative biometry data were stratified into short (<22.00 mm) and long axial lengths (ALs) (≥22.00 mm). IOL power predictions were calculated with SRK/T, Holladay I, Hoffer Q, Holladay II and Haigis formulae and compared to the final manifest refraction. These were compared with the OKULIX ray tracing method and the stratification technique suggested by the Royal College of Ophthalmologists (RCOphth). Using SRK/T for long eyes and Hoffer Q for short eyes, 64% achieved postoperative subjective refractions of ≤±0.25 D, 83%≤±0.50 D and 93%≤±0.75 D, with a maximum predictive error of 1.25D. No specific calculation method performed best across all ALs; however for ALs under 22 mm Hoffer Q and Holliday I methods performed best. Excellent but equivalent overall refractive results were found between all biometry methods used in this multifocal IOL study. For eyes with ALs under 22 mm Hoffer Q and Holliday I performed best. Current techniques mean that patients are still likely to need top up glasses for certain situations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.
2010-01-01
Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The
Water hammer calculation and analysis in main feedwater system of PWR nuclear power plants
International Nuclear Information System (INIS)
Wang Xin; Han Weishi
2010-01-01
The main feedwater system of a nuclear power plant is an important part in ensuring the cooling of the steam generator. Moreover, it is the main pipe section where water hammers frequently occur. Studying the regular patterns of water hammers to the main feedwater system is significant to the stable operation of the system. The paper focuses on the study of water hammers through Flowmaster's transient calculating function to establish a mathematical model with boundary conditions such as a feedwater pump, control valves, etc.; calculation of the water hammers pressure when feedwater pumps and control valves shut down; exporting the instantaneous change in solution of pressure. Combined with engineering practical examples, the conclusions verify the viability of calculating the water hammers pressure through Flowmaster's transient function, increasing the periods of closure of control valves and feedwater pumps control water hammers effectively, changing the intervals of closing signals to feedwater pumps and control valves to relieve hydraulic impact. This could be a guideline for practical engineering design and system optimization. (authors)
Fundamental damper power calculation of the 56 MHz SRF cavity for RHIC
International Nuclear Information System (INIS)
Wu, Q.; Bellavia, S.; Ben-Zvi, I.; Grau, M.; Miglionico, G.; Pai, C.
2011-01-01
At each injection period during RHIC's operation, the beam's frequency sweeps across a wide range, and some of its harmonics will cross the frequency of the 56MHz SRF cavity. To avoid excitation of the cavity at these times, we designed a fundamental damper for the quarter-wave resonator to damp the cavity heavily. The power extracted by the fundamental damper should correspond to the power handling ability of the system at all stages. In this paper, we discuss the power output from the fundamental damper when it is fully extracted, inserted, and any intermediate point. A Fundamental Damper (FD) will greatly reduce the cavity's Q factor to ∼300 during the acceleration phase of the beam. However, when the beam is at store and the FD is removed, the cavity is excited by both the yellow and the blue beams at 2 x 0.3A to attain the required 2MV voltage across its gap. The cavity then is operated to increase the luminosity of the RHIC experiments. Table 1 lists the parameters of the FD. Figure 1 shows the configuration of the FD fully inserted into the 56MHz SRF cavity; this complete insertion is defined as the start location (0cm) of FD simulation, an assumption we make throughout this paper. The power consumed by the cavity while maintaining the beam's energy and its orbit is compensated by the 28MHz accelerating cavities in the storage ring. The power dissipation of the external load is dynamic with respect to the position of the FD during its extraction. As a function of the external Q and the EM field in the cavity, the power should peak with the FD at a certain vertical location. Our calculation of the power extracted is detailed in the following sections. Figure 2 plots the frequency change in the cavity, and the external Q against the changes in position of the FD. The location of the FD is selected carefully such that the frequency will approach the designed working point from the lower side only. The loaded Q of the cavity is 223 when the FD is fully
Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza
2015-05-01
This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
BEAVRS full core burnup calculation in hot full power condition by RMC code
International Nuclear Information System (INIS)
Liu, Shichang; Liang, Jingang; Wu, Qu; Guo, JuanJuan; Huang, Shanfang; Tang, Xiao; Li, Zeguang; Wang, Kan
2017-01-01
Highlights: • TMS and thermal scattering interpolation were developed to treat cross sections OTF. • Hybrid coupling system was developed for HFP burnup calculation of BEAVRS benchmark. • Domain decomposition was applied to handle memory problem of full core burnup. • Critical boron concentration with burnup by RMC agrees with the benchmark results. • RMC is capable of multi-physics coupling for simulations of nuclear reactors in HFP. - Abstract: Monte Carlo method can provide high fidelity neutronics analysis of different types of nuclear reactors, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. However, nuclear reactors are complex systems with multi-physics interacting and coupling. MC codes can couple with depletion solver and thermal-hydraulics (T/H) codes simultaneously for the “transport-burnup-thermal-hydraulics” coupling calculations. MIT BEAVRS is a typical “transport-burnup-thermal-hydraulics” coupling benchmark. In this paper, RMC was coupled with sub-channel code COBRA, equipped with on-the-fly temperature-dependent cross section treatment and large-scale detailed burnup calculation based on domain decomposition. Then RMC was applied to the full core burnup calculations of BEAVRS benchmark in hot full power (HFP) condition. The numerical tests show that domain decomposition method can achieve the consistent results compared with original version of RMC while enlarging the computational burnup regions. The results of HFP by RMC agree well with the reference values of BEAVRS benchmark and also agree well with those of MC21. This work proves the feasibility and accuracy of RMC in multi-physics coupling and lifecycle simulations of nuclear reactors.
Bilotta, Gary S; Burnside, Niall G; Turley, Matthew D; Gray, Jeremy C; Orr, Harriet G
2017-01-01
Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies.
International Nuclear Information System (INIS)
Serov, I.V.; Hoogenboom, J.E.
1994-01-01
Physical quantities can be obtained by utilizing different informational sources. The available information is usually associated with systematic and statistical errors. If the informational sources are utilized simultaneously, then it is possible to obtain posterior estimates of the quantities with better statistical properties than exhibited by any prior estimates. The general technique for confluence of any number possibly dependent informational sources can be developed. Insight into the nature of the informational source allows different types of data associated with the source to be improved. The formulas of the technique are presented and applied to the power distribution determination for research reactor HOR of the Delft University of Technology, employing calculational and experimental data. (authors). 5 refs., 1 tab., 5 figs
Energy Technology Data Exchange (ETDEWEB)
Guerrero, A. F., E-mail: afguerreror@uqvirtual.edu.co [Departamento de Física, Universidad Del Quindío Cra 15 # 12N Armenia, Quindío (Colombia); Mesa, J., E-mail: jmesa@ibb.unesp.br [Instituto de Biociências de Botucatu da UNESP Distrito de Rubião Jr. s/n°, 18618-000, Botucatu, SP (Brazil)
2016-07-07
Because of the behavior that charged particles have when they interact with biological material, proton therapy is shaping the future of radiation therapy in cancer treatment. The planning of radiation therapy is made up of several stages. The first one is the diagnostic image, in which you have an idea of the density, size and type of tumor being treated; to understand this it is important to know how the particles beam interacts with the tissue. In this work, by using de Lindhard formalism and the Y.R. Waghmare model for the charge distribution of the proton, the electronic stopping power (SP) for a proton beam interacting with a liquid water target in the range of proton energies 10{sup 1} eV - 10{sup 10} eV taking into account all the charge states is calculated.
Sensor response time calculation with no stationary signals from a Nuclear Power Plant
International Nuclear Information System (INIS)
Vela, O.; Vallejo, I.
1998-01-01
Protection systems in a Nuclear Power Plant have to response in a specific time fixed by design requirements. This time includes the event detection (sensor delay) and the actuation time system. This time is obtained in refuel simulating the physics event, which trigger the protection system, with an electric signal and measuring the protection system actuation time. Nowadays sensor delay is calculated with noise analysis techniques. The signals are measured in Control Room during the normal operation of the Plant, decreasing both the cost in time and personal radioactive exposure. The noise analysis techniques require stationary signals but normally the data collected are mixed with process signals that are no stationary. This work shows the signals processing to avoid no-stationary components using conventional filters and new wavelets analysis. (Author) 2 refs
Calculation and reduction of the sound emissions of overhead power lines
International Nuclear Information System (INIS)
Straumann, U.
2007-01-01
In this dissertation, Ulrich Straumann of the Swiss Federal Institute of Technology in Zurich, Switzerland, discusses the reduction of sound emissions from overhead power lines. Corona-discharges occur during wet weather or when foggy or icing conditions prevail. Apart from these wide-band crackling noises, low-frequency, tonal emissions also occur. The CONOR (Corona Noise Reduction) project examined these emissions at a frequency of twice the mains frequency and looked for economically feasible solutions to the problems caused by them. The source of these emissions and the mechanisms causing them are discussed. Also, ways of calculating their strength are presented. The effects of varying cable geometry and construction are discussed, as are hydrophilic coatings that could be used to reduce sound emissions.
Yamamura, Hideho; Sato, Ryohei; Iwata, Yoshiharu
Global efforts toward energy conservation, increasing data centers, and the increasing use of IT equipments are leading to a demand in reduced power consumption of equipments, and power efficiency improvement of power supply units is becoming a necessity. MOSFETs are widely used for their low ON-resistances. Power efficiency is designed using time-domain circuit simulators, except for transformer copper-loss, which has frequency dependency which is calculated separately using methods based on skin and proximity effects. As semiconductor technology reduces the ON-resistance of MOSFETs, frequency dependency due to the skin effect or proximity effect is anticipated. In this study, ON-resistance of MOSFETs are measured and frequency dependency is confirmed. Power loss against rectangular current pulse is calculated. The calculation method for transformer copper-loss is expanded to MOSFETs. A frequency function for the resistance model is newly developed and parametric calculation is enabled. Acceleration of calculation is enabled by eliminating summation terms. Using this method, it is shown that the frequency dependent component of the measured MOSFETs increases the dissipation from 11% to 32% at a switching frequency of 100kHz. From above, this paper points out the importance of the frequency dependency of MOSFETs' ON-resistance, provides means of calculating its pulse losses, and improves loss calculation accuracy of SMPSs.
Calculation methods for simulation and modelling of nuclear power plant accidents
International Nuclear Information System (INIS)
Zurita Centelles, A.
1985-01-01
The study deals with the development of calculation procedures for the determination of transient operating conditions in pressurized water reactors, which present the following characteristics: application of largely analytic methods for the description of primary circuit components; strict modular structure of the program for the easy exchange of component models; applicability of different component models according to the applicable case; large valid ranges of application of the thermodynamic variables of state in the transient models; in case of necessity exchange possibility of slip, pressure drop and heat transmission correlations as well as other functions; application in the dynamic components analyses of the anglo-saxon lumped parameter suitable for the system instrumentation. With these calculation procedures it is possible to analyse the effect of a certain selection of transients - up to reaching turbine tripout and reactor emergency shutdown - in the individual primary circuit components. These transients may be generally classified amongst the heat rejection and heat input modifications in the secondary circuit, in the coolant or in the reactivity balance and power distribution. (orig.) [de
Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method
Directory of Open Access Journals (Sweden)
Yimei Wang
2018-04-01
Full Text Available To meet the increasing wind power forecasting (WPF demands of newly built wind farms without historical data, physical WPF methods are widely used. The computational fluid dynamics (CFD pre-calculated flow fields (CPFF-based WPF is a promising physical approach, which can balance well the competing demands of computational efficiency and accuracy. To enhance its adaptability for wind farms in complex terrain, a WPF method combining wind turbine clustering with CPFF is first proposed where the wind turbines in the wind farm are clustered and a forecasting is undertaken for each cluster. K-means, hierarchical agglomerative and spectral analysis methods are used to establish the wind turbine clustering models. The Silhouette Coefficient, Calinski-Harabaz index and within-between index are proposed as criteria to evaluate the effectiveness of the established clustering models. Based on different clustering methods and schemes, various clustering databases are built for clustering pre-calculated CFD (CPCC-based short-term WPF. For the wind farm case studied, clustering evaluation criteria show that hierarchical agglomerative clustering has reasonable results, spectral clustering is better and K-means gives the best performance. The WPF results produced by different clustering databases also prove the effectiveness of the three evaluation criteria in turn. The newly developed CPCC model has a much higher WPF accuracy than the CPFF model without using clustering techniques, both on temporal and spatial scales. The research provides supports for both the development and improvement of short-term physical WPF systems.
Calculation of coal power plant cost on agricultural and material building impact of emission
International Nuclear Information System (INIS)
Mochamad Nasrullah; Wiku Lulus Widodo
2016-01-01
Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)
Kobayashi, Y; Narazaki, K; Akagi, R; Nakagaki, K; Kawamori, N; Ohta, K
2013-09-01
For achieving accurate and safe measurements of the force and power exerted on a load during resistance exercise, the Smith machine has been used instead of free weights. However, because some Smith machines possess counterweights, the equation for the calculation of force and power in this system should be different from the one used for free weights. The purpose of this investigation was to calculate force and power using an equation derived from a dynamic equation for a Smith machine with counterweights and to determine the differences in force and power calculated using 2 different equations. One equation was established ignoring the effect of the counterweights (Method 1). The other equation was derived from a dynamic equation for a barbell and counterweight system (Method 2). 9 female collegiate judo athletes performed bench throws using a Smith machine with a counterweight at 6 different loading conditions. Barbell displacement was recorded using a linear position transducer. The force and power were subsequently calculated by Methods 1 and 2. The results showed that the mean and peak power and force in Method 1 were significantly lower relative to those of Method 2 under all loading conditions. These results indicate that the mean and peak power and force during bench throwing using a Smith machine with counterweights would be underestimated when the calculations used to determine these parameters do not account for the effect of counterweights. © Georg Thieme Verlag KG Stuttgart · New York.
Actinides record, power calculations and activity for present isotopes in the spent fuel of a BWR
International Nuclear Information System (INIS)
Enriquez C, P.; Ramirez S, J. R.; Lucatero, M. A.
2012-10-01
The administration of spent fuel is one of the more important stages of the nuclear fuel cycle, and this has become a problem of supreme importance in countries that possess nuclear reactors. Due to this in this work, the study on the actinides record and present fission products to the discharge of the irradiated fuel in a light water reactor type BWR is shown, to quantify the power and activity that emit to the discharge and during the cooling time. The analysis was realized on a fuel assembly type 10 x 10 with an enrichment average of 3.69 wt % in U-235 and the assembly simulation assumes four cycles of operation of 18 months each one and presents an exposition of 47 G Wd/Tm to the discharge. The module OrigenArp of the Scale 6 code is the computation tool used for the assembly simulation and to obtain the results on the actinides record presents to the fuel discharge. The study covers the following points: a) Obtaining of the plutonium vector used in the fuel production of mixed oxides, and b) Power calculation and activity for present actinides to the discharge. The results presented in this work, correspond at the same time immediate of discharge (0 years) and to a cooling stage in the irradiated fuel pool (5 years). (Author)
Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.
Vaeth, Michael; Skovlund, Eva
2004-06-15
For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Valdetaro, Eduardo Damianik, E-mail: valdtar@eletronuclear.gov.br [ELETRONUCLEAR - ELETROBRAS, Angra dos Reis, RJ (Brazil). Angra 2 Operating Dept.; Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear
2011-07-01
In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in
International Nuclear Information System (INIS)
Valdetaro, Eduardo Damianik; Coordenacao dos Programas de Pos-Graduacao de Engenharia; Schirru, Roberto
2011-01-01
In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in
International Nuclear Information System (INIS)
Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki
2009-01-01
The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)
Maneval, Daniel; Bouchard, Hugo; Ozell, Benoît; Després, Philippe
2018-01-01
The equivalent restricted stopping power formalism is introduced for proton mean energy loss calculations under the continuous slowing down approximation. The objective is the acceleration of Monte Carlo dose calculations by allowing larger steps while preserving accuracy. The fractional energy loss per step length ɛ was obtained with a secant method and a Gauss-Kronrod quadrature estimation of the integral equation relating the mean energy loss to the step length. The midpoint rule of the Newton-Cotes formulae was then used to solve this equation, allowing the creation of a lookup table linking ɛ to the equivalent restricted stopping power L eq, used here as a key physical quantity. The mean energy loss for any step length was simply defined as the product of the step length with L eq. Proton inelastic collisions with electrons were added to GPUMCD, a GPU-based Monte Carlo dose calculation code. The proton continuous slowing-down was modelled with the L eq formalism. GPUMCD was compared to Geant4 in a validation study where ionization processes alone were activated and a voxelized geometry was used. The energy straggling was first switched off to validate the L eq formalism alone. Dose differences between Geant4 and GPUMCD were smaller than 0.31% for the L eq formalism. The mean error and the standard deviation were below 0.035% and 0.038% respectively. 99.4 to 100% of GPUMCD dose points were consistent with a 0.3% dose tolerance. GPUMCD 80% falloff positions (R80 ) matched Geant’s R80 within 1 μm. With the energy straggling, dose differences were below 2.7% in the Bragg peak falloff and smaller than 0.83% elsewhere. The R80 positions matched within 100 μm. The overall computation times to transport one million protons with GPUMCD were 31-173 ms. Under similar conditions, Geant4 computation times were 1.4-20 h. The L eq formalism led to an intrinsic efficiency gain factor ranging between 30-630, increasing with the prescribed accuracy of simulations. The
International Nuclear Information System (INIS)
Dawahra, S.; Khattab, K.
2012-01-01
The Monte Carlo method, using the MCNP4C code, was used in this paper to calculate the power distribution in 3-D geometry in the fuel rods of the Syrian Miniature Neutron Source Reactor (MNSR). To normalize the MCNP4C result to the steady state nominal thermal power, the appropriate scaling factor was defined to calculate the power distribution precisely. The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. The minimum power was found in the fuel ring number 9 and was 79.9 W. The total power in the total fuel rods was 30.9 k W. This result agrees very well with nominal power reported in the reactor safety analysis report which equals 30 k W. Finally, the peak power factors, which are defined as the ratios between the maximum to the average and the maximum to the minimum powers were calculated to be 1.18 and 1.31 respectively. (author)
DP-THOT - a calculational tool for bundle-specific decay power based on actual irradiation history
International Nuclear Information System (INIS)
Johnston, S.; Morrison, C.A.; Albasha, H.; Arguner, D.
2005-01-01
A tool has been created for calculating the decay power of an individual fuel bundle to take account of its actual irradiation history, as tracked by the fuel management code SORO. The DP-THOT tool was developed in two phases: first as a standalone executable code for decay power calculation, which could accept as input an entirely arbitrary irradiation history; then as a module integrated with SORO auxiliary codes, which directly accesses SORO history files to retrieve the operating power history of the bundle since it first entered the core. The methodology implemented in the standalone code is based on the ANSI/ANS-5.1-1994 formulation, which has been specifically adapted for calculating decay power in irradiated CANDU reactor fuel, by making use of fuel type specific parameters derived from WIMS lattice cell simulations for both 37 element and 28 element CANDU fuel bundle types. The approach also yields estimates of uncertainty in the calculated decay power quantities, based on the evaluated error in the decay heat correlations built-in for each fissile isotope, in combination with the estimated uncertainty in user-supplied inputs. The method was first implemented in the form of a spreadsheet, and following successful testing against decay powers estimated using the code ORIGEN-S, the algorithm was coded in FORTRAN to create an executable program. The resulting standalone code, DP-THOT, accepts an arbitrary irradiation history and provides the calculated decay power and estimated uncertainty over any user-specified range of cooling times, for either 37 element or 28 element fuel bundles. The overall objective was to produce an integrated tool which could be used to find the decay power associated with any identified fuel bundle or channel in the core, taking into account the actual operating history of the bundles involved. The benefit is that the tool would allow a more realistic calculation of bundle and channel decay powers for outage heat sink planning
International Nuclear Information System (INIS)
Tian Yong; Zhang Longqiang; Yang Zhen; Yu Bin
2014-01-01
In order to ensure a long-term reliable operation of the DCS cabinet's 220 V AC power cable, it was needed to confirm whether the conductor temperature rise of power cable meet the requirement of the cable specification. Based on the actual data in site and the theory of numerical heat transfer, conservative model was established, and the conductor temperature was calculated. The calculation results show that the cable arrangement on the cable tray will not lead to the conductor temperature rise of power cable over than the required temperature in technical specification. (authors)
Bilotta, Gary S; Burnside, Niall G; Gray, Jeremy C; Orr, Harriet G
2016-01-01
The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon-Salmo salar, number of >1 year old Atlantic salmon, number of brown trout-Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (pcomposition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies.
International Nuclear Information System (INIS)
Brik, A.
2009-01-01
In the first decade of June 2008, during the power commissioning of the reactor at the Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant (BOP) needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields calculation error in the core of Mochovce-1 reactor operating with varying load. (author)
International Nuclear Information System (INIS)
Brik, A.
2009-01-01
In the first decade of June 2008, during the power commissioning of the reactor at Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system's database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields' calculation error in the core of Mochovce-1 reactor operating with varying load. (Authors)
Malas, Tareq Majed Yasin; Ahmadia, Aron; Brown, Jed; Gunnels, John A.; Keyes, David E.
2012-01-01
Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution
International Nuclear Information System (INIS)
Artemov, V.G.; Ivanov, A.S.; Kuznetsov, A.N.; Shemaev, Yu.P.
2015-01-01
The method of calculating the pin-wise power distribution by a combined method has been tested using the example of calculating the maneuvering regime. The combined method makes it possible to clarify the behavior of the linear fuel element load in comparison with the results of the superposition method in fuel assemblies with the regulator of the control and protection system in the boundaries of the control groups. The use of prepared on the basis of the results of macro calculation of the pin-wise characteristics, including 135Xe and 135I concentrations, allows to perform an adequate fine-grid calculation of the pin-wise power distribution without expensive calculation of feedbacks on a fine grid, which limits the application of a direct method for solving practical problems [ru
Energy Technology Data Exchange (ETDEWEB)
Miyashita, J. [Nihon University, Tokyo (Japan). College of Science and Technology
1998-04-05
Tethering cable was investigated as a part of a research of jet stream power generation using balloon and kite. Recently, there appeared new materials with light and high strength properties, such as carbon and polyamide resin. When these are used as tethering cables, flying ability of tethered bodies is remarkably improved. Tethered balloon at the altitude of 6500 feet and large-scale kite at the altitude of 5000 m are proposed for the idea of jet stream power generation. A computer program was developed for determining the flying ability of a kite, to calculate it. Similarity rule was also determined by the dimensional analysis. For a kite with a tethering cable having uniform diameter and specific gravity, the similarity can be obtained when two kinds of similarity rules are satisfied. One is (length of tethering cable/width of kite wing)times(dynamic pressure of air/tensile strength of cable){sup 1/2}=(constant). Another is (length of tethering cable)times(density of cable/tensile strength of cable)=(constant). Since the maximum height is in proportion to (strength/specific gravity) of the cable, it increases drastically using high performance materials. It is affected by the aerodynamic performance of the kite and the safety factor of strength of the cable. 4 refs., 45 figs., 2 tabs.
Streams with Strahler Stream Order
Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...
Biryuk, V. V.; Tsapkova, A. B.; Larin, E. A.; Livshiz, M. Y.; Sheludko, L. P.
2018-01-01
A set of mathematical models for calculating the reliability indexes of structurally complex multifunctional combined installations in heat and power supply systems was developed. Reliability of energy supply is considered as required condition for the creation and operation of heat and power supply systems. The optimal value of the power supply system coefficient F is based on an economic assessment of the consumers’ loss caused by the under-supply of electric power and additional system expences for the creation and operation of an emergency capacity reserve. Rationing of RI of the industrial heat supply is based on the use of concept of technological margin of safety of technological processes. The definition of rationed RI values of heat supply of communal consumers is based on the air temperature level iside the heated premises. The complex allows solving a number of practical tasks for providing reliability of heat supply for consumers. A probabilistic model is developed for calculating the reliability indexes of combined multipurpose heat and power plants in heat-and-power supply systems. The complex of models and calculation programs can be used to solve a wide range of specific tasks of optimization of schemes and parameters of combined heat and power plants and systems, as well as determining the efficiency of various redundance methods to ensure specified reliability of power supply.
International Nuclear Information System (INIS)
Pina, C.M. de
1981-01-01
One of the most important part in neutronics calculations is the study of core behavior with inserted control rods. The first stage of this calculations consists in generating equivalent microscopic cross sections for the basic cells containing fuel or absorbed material. The cross sections will be then adjusted. The choice of parameters that help in those adjustments, were obtained by the comparisons of data coming from the control rod supercell calculations with the Hammer and Citation computer codes. The effect of those adjustments in core integral parameters was evaluated; in this work only the core power two-dimensional distribution calculations with the D bank completely inserted, is studied. (E.G.) [pt
Computerization of off-site dose calculations at two nuclear power plants
International Nuclear Information System (INIS)
Lei, W.; Robertson, C.E.; Moore, G.T.; Rawls, B.E.; Sipp, J.R.
1988-01-01
The Brunswick Nuclear Project (BNP) consists of two boiling water reactors designed to generate a total net output of 1642 MWe. Unit 2 achieved commercial production in 1975, and Unit 1 began commercial operation in 1977. The Harris nuclear Project (HNP) is an 860 MWe pressurized water reactor that entered commercial operation in May of 1987. both plant sites are operated by Carolina Power and Light Company (CP and L). During January 1984, BNP replaced its older effluent technical specifications (part of the plant's original license) with the newer generation of Radiological Effluent Technical Specifications (RETS) mandated by the U.S. Nuclear Regulatory Commission. The RETS for HNP were integrated directly into this initial technical specifications. The initial version of the ODCM for BNP was drafted by a vendor and then extensively rewritten by the plant staff. The manual for HNP was drafted by CP and L corporate staff. At the outset, it was realized how impractical it would be to attempt to manually perform all of the dose calculations and keep the necessary records. The alternative-computerization-required extensive in-plant and corporate efforts to identify the computing resources (hardware) needed, create the software for ODCM implementation, and test, verify, validate, and document the software. This paper discusses these efforts
Proskuryakov, K. N.
2017-11-01
Created new scientific direction: “Diagnosis, prognosis and prevention of vibration - acoustic resonances in the nuclear power plant (NPP) equipment. The possibility of using methods for calculating and analyzing electric oscillation systems in the study of the properties of acoustic systems with a two-phase medium is proved, based on the similarity of the differential equations describing the state of these systems. Is shown that the developed methods can be used to predict and prevent the occurrence of vibration - acoustic resonances in the NPP equipment. Is shown that the volume of pressurizer at NPPs with VVER and PWR as well as boiling water reactor that exploded at Japan’s NPP Fukushima Daiichi is a Helmholtz resonator, which contain water and steam volumes and able many times increases the impact on them of outside periodic oscillations. Paper presents most important results published long before the severe accidents at NPPs Three Mile Island (TMI), Chernobyl and Fukushima Daiichi that could be used for the prediction of a severe accident scenario, identification of measuring data and process control in order to minimize the damage. Worked out results also could be useful in another industrial technologies based on applications of single and two-phase flows.
Nuclear power and global warming: a first cost-benefit calculation
International Nuclear Information System (INIS)
Hope, C.
1994-01-01
This paper investigates the costs and benefits of a modest nuclear power programme in the European Union to combat the threat of global warming. The nuclear programme is found to bring a double benefit. The first and more obvious benefit is that the economic impacts of global warming are reduced. The second benefit is counter-intuitive; most people would expect it to be a cost. It comes from the stimulus to the economy from the construction of the nuclear plant, which, with the recycling of carbon tax revenues, offsets its construction and operating costs, and may even cause consumers' expenditure to rise. Calculations in this paper show that over the period to 2100 the mean net present value of the first benefit is 6 billion European Currency Units (ECU; 1 ECU is about Dollars 1), while the second benefit has a mean net present value of 159 billion ECU. However both benefits, particularly the second, are still very uncertain, to the extent that even their sign is not yet definitely established. (author)
Using radar wind profilers and RASS data to calculate power plant plume rise and transport
International Nuclear Information System (INIS)
Ping, Y.J.; Gaynor, J.E.
1994-01-01
As the number of 915-MHz radar wind profilers and radio acoustic sounding systems (RASS) increases, their number of uses also increases. These systems have demonstrated particular utility in air quality studies and, more specifically, in complex terrain. One data set from the radar profilers that has not, to date, been utilized to any large extent is represented by the temperature profiles derived from the RASS. Normally, these profiles represent a 5-min average every hour with a height resolution of about 60 m, a minimum range of about 100 m, and a maximum range of about 1.5 km, although this varies substantially with meterological conditions. Such profiles have several potential applications. Among them are determinations of mixing height and stability. In this work, we use the stability, along with the hour-averaged wind profiles, to estimate plume rise heights at a power plant site in Laughlin, Nevada, about 200 km south of Lake Mead. The profiles are first stratified according to season and synoptic categories so that the calculated plume rise heights could be separated by background transport conditions. The data were taken during Project Measurement of Haze and Visual Effects (MOHAVE), which took place in 1992. This project is briefly discussed in the next section, along with the instrumentation and data used in this study
Using radar wind profilers and RASS data to calculate power plant plume rise and transport
Energy Technology Data Exchange (ETDEWEB)
Ping, Y.J. [Univ. of Colorado, Boulder, CO (United States); Gaynor, J.E. [NOAA/ERL Wave Propagation Lab., Boulder, CO (United States)
1994-12-31
As the number of 915-MHz radar wind profilers and radio acoustic sounding systems (RASS) increases, their number of uses also increases. These systems have demonstrated particular utility in air quality studies and, more specifically, in complex terrain. One data set from the radar profilers that has not, to date, been utilized to any large extent is represented by the temperature profiles derived from the RASS. Normally, these profiles represent a 5-min average every hour with a height resolution of about 60 m, a minimum range of about 100 m, and a maximum range of about 1.5 km, although this varies substantially with meterological conditions. Such profiles have several potential applications. Among them are determinations of mixing height and stability. In this work, we use the stability, along with the hour-averaged wind profiles, to estimate plume rise heights at a power plant site in Laughlin, Nevada, about 200 km south of Lake Mead. The profiles are first stratified according to season and synoptic categories so that the calculated plume rise heights could be separated by background transport conditions. The data were taken during Project Measurement of Haze and Visual Effects (MOHAVE), which took place in 1992. This project is briefly discussed in the next section, along with the instrumentation and data used in this study.
Analysis of the reduced wake effect for available wind power calculation during curtailment
Sanchez Perez Moreno, S.; Ummels, B. C.; Zaayer, M B
2017-01-01
With the increase of installed wind power capacity, the contribution of wind power curtailment to power balancing becomes more relevant. Determining the available power during curtailment at the wind farm level is not trivial, as curtailment changes the wake effects in a wind farm. Current best
Yost, Dillon C.; Yao, Yi; Kanai, Yosuke
2017-09-01
In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.
Ladd, David E.; Law, George S.
2007-01-01
The U.S. Geological Survey (USGS) provides streamflow and other stream-related information needed to protect people and property from floods, to plan and manage water resources, and to protect water quality in the streams. Streamflow statistics provided by the USGS, such as the 100-year flood and the 7-day 10-year low flow, frequently are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. In addition to streamflow statistics, resource managers often need to know the physical and climatic characteristics (basin characteristics) of the drainage basins for locations of interest to help them understand the mechanisms that control water availability and water quality at these locations. StreamStats is a Web-enabled geographic information system (GIS) application that makes it easy for users to obtain streamflow statistics, basin characteristics, and other information for USGS data-collection stations and for ungaged sites of interest. If a user selects the location of a data-collection station, StreamStats will provide previously published information for the station from a database. If a user selects a location where no data are available (an ungaged site), StreamStats will run a GIS program to delineate a drainage basin boundary, measure basin characteristics, and estimate streamflow statistics based on USGS streamflow prediction methods. A user can download a GIS feature class of the drainage basin boundary with attributes including the measured basin characteristics and streamflow estimates.
International Nuclear Information System (INIS)
Berger, M.J.
1993-01-01
A PC package is documented for calculating stopping powers and ranges of electrons, protons and helium ions in matter for energies from 1 keV up to 10 GeV. Stopping powers and ranges for electrons can be calculated for any element, compound or mixture. Stopping powers and ranges of protons and helium ions can be calculated for 74 materials (26 elements and 48 compounds and mixtures). The files are stored on two HD diskettes in compressed form. Both executable files for IBM PC and Fortran-77 source files are provided. All three programs require 5.2 Mb of disk space. This set of two diskettes with detailed documentation is available upon request, cost free, from the IAEA Nuclear Data Section. (author). 25 refs, 4 tabs
International Nuclear Information System (INIS)
Haffner, D.R.
1976-01-01
1 - Description of problem or function: PACTOLUS is a code for computing nuclear power costs using the discounted cash flow method. The cash flows are generated from input unit costs, time schedules and burnup data. CLOTHO calculates and communicates to PACTOLUS mass flow data to match a specified load factor history. 2 - Method of solution: Plant lifetime power costs are calculated using the discounted cash flow method. 3 - Restrictions on the complexity of the problem - Maxima of: 40 annual time periods into which all costs and mass flows are accumulated, 20 isotopic mass flows charged into and discharged from the reactor model
International Nuclear Information System (INIS)
Medrano Asensio, Gregorio.
1976-06-01
A detailed power distribution calculation in a large power reactor requires the solution of the multigroup 3D diffusion equations. Using the finite difference method, this computation is too expensive to be performed for design purposes. This work is devoted to the single channel continous synthesis method: the choice of the trial functions and the determination of the mixing functions are discussed in details; 2D and 3D results are presented. The method is applied to the calculation of the IAEA ''Benchmark'' reactor and the results obtained are compared with a finite element resolution and with published results [fr
International Nuclear Information System (INIS)
Petitcolas, H.; Besson, A.; Bevilacqua, A.; Cosoli, G.
1984-09-01
Eight samples, which represent different materials used in testing reactors, were irradiated in the device ''CYRANO'' placed in the water reflector at different distances from the reactor core. The power dissipated in the device was measured by the ''CYRANO'' equipment itself, whereas the calorimeter juxtaposed served to monitor the gamma flux. Parallel to each experiment, the power deposited in the samples, the device materials and the calorimeter was calculated by the code MERCURE 4. The measured values were compared with the calculated ones, both in relative and in absolute values, for each sample and for each distance in the reflector. The comparison shows very good agreement [fr
Trujillo, Francisco Javier; Knoerzer, Kai
2011-11-01
High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Calculation of core axial power shapes using alternating conditional expectation algorithm
International Nuclear Information System (INIS)
Lee, Eun Ki; Kim, Yong Hee; Cha, Kune Ho; Park, Moon Kyu
1998-01-01
We have introduced the alternating conditional expectation (ACE) algorithm in the method of reconstructing 20 node axial power shapes from five level detector powers. The ACE algorithm was used to find the optimal relationships between each plane power and normalized five detector powers. The obtained all optimal transformations had simple forms to be represented with polynomials. The reference axial power shapes and simulated detector powers were drawn out of the 3-dimensional results of Reactor Operation and Control Simulation (ROCS) code for various core states. By the ACE algorithm, we obtained the optimal relationship between dependent variable plane power, y, and independent variable detector powers, {Di, i=1,...,5 without any preprocessing, where a total of ≅3490 data sets per each cycle of YongGwang Nuclear (YGN) Power Plant units 3 and 4 are used. To test the validity and accuracy of the new method, about 21,200 cases of reconstructed axial power shapes are compared to original ROCS axial power shapes, and they are also contrasted with those obtained by Fourier fitting method (FFM). The average error of root mean square (rms), axial peak (DFZ), and axial shape index (DASI) of our new method for total 21204 data cases are 0.81%, 0.51% and 0.00204, while FFM 2.29%, 2.37% and 0.00264, respectively. The evaluation results for the data sets not used in the ACE transformations also show that the accuracy of new method is much better than that of FFM
DEFF Research Database (Denmark)
Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak
2016-01-01
A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...
Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro
2016-04-01
Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected
ORIGEN2.1 Cycle Specific Calculation of Krsko Nuclear Power Plant Decay Heat and Core Inventory
International Nuclear Information System (INIS)
Vukovic, J.; Grgic, D.; Konjarek, D.
2010-01-01
This paper presents ORIGEN2.1 computer code calculation of Krsko Nuclear Power Plant core for Cycle 24. The isotopic inventory, core activity and decay heat are calculated in one run for the entire core using explicit depletion and decay of each fuel assembly. Separate pre-ori application which was developed is utilized to prepare corresponding ORIGEN2.1 inputs. This application uses information on core loading pattern to determine fuel assembly specific depletion history using 3D burnup which is obtained from related PARCS computer code calculation. That way both detailed single assembly calculations as well as whole core inventory calculations are possible. Because of the immense output of the ORIGEN2.1, another application called post-ori is used to retrieve and plot any calculated property on the basis of nuclide, element, summary isotope or group of elements for activation products, actinides and fission products segments. As one additional possibility, with the post-ori application it is able to calculate radiotoxicity from calculated ORIGEN2.1 inventory. The results which are obtained using the calculation model of ORIGEN2.1 computer code are successfully compared against corresponding ORIGEN-S computer code results.(author).
Directory of Open Access Journals (Sweden)
Elsa Tavernier
Full Text Available We aimed to examine the extent to which inaccurate assumptions for nuisance parameters used to calculate sample size can affect the power of a randomized controlled trial (RCT. In a simulation study, we separately considered an RCT with continuous, dichotomous or time-to-event outcomes, with associated nuisance parameters of standard deviation, success rate in the control group and survival rate in the control group at some time point, respectively. For each type of outcome, we calculated a required sample size N for a hypothesized treatment effect, an assumed nuisance parameter and a nominal power of 80%. We then assumed a nuisance parameter associated with a relative error at the design stage. For each type of outcome, we randomly drew 10,000 relative errors of the associated nuisance parameter (from empirical distributions derived from a previously published review. Then, retro-fitting the sample size formula, we derived, for the pre-calculated sample size N, the real power of the RCT, taking into account the relative error for the nuisance parameter. In total, 23%, 0% and 18% of RCTs with continuous, binary and time-to-event outcomes, respectively, were underpowered (i.e., the real power was 90%. Even with proper calculation of sample size, a substantial number of trials are underpowered or overpowered because of imprecise knowledge of nuisance parameters. Such findings raise questions about how sample size for RCTs should be determined.
Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna
2018-02-01
Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.
Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna
2018-01-01
Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.
Kressig, A.
2017-12-01
BACKGROUND The Greenhouse Gas Protocol (GHGP), Scope 2 Guidance standardizes how companies measure greenhouse gas emissions from purchased or independently generated electricity (called "scope 2 emissions"). Additionally, the interlinkages between industrial or commercial (nonresidential) energy requirements and water demands have been studied extensively, mostly at the national or provincial scale, focused on industries involved in power generation. However there is little guidance available for companies to systematically and effectively quantify water withdrawals and consumption (herein referred to as "water demand") associated with purchased or acquired electricity(what we call "Scope 2 Water"). This lack of guidance on measuring a company's water demand from electricity use is due to a lack of data on average consumption and withdrawal rates of water associated with purchased electricity. OBJECTIVE There is growing demand from companies in the food, beverage, manufacturing, information communication and technology, and other sectors for a methodology to quantify Scope 2 water demands. By understanding Scope 2 water demands, companies could evaluate their exposure to water-related risks associated with purchased or acquired electricity, and quantify the water benefits of changing to less water-intensive sources of electricity and energy generation such as wind and solar. However, there has never been a way of quantifying Scope 2 Water consumption and withdrawals for a company across its international supply chain. Even with interest in understanding exposure to water related risk and measuring water use reductions, there has been no quantitative way of measuring this information. But WRI's Power Watch provides the necessary data to allow for the Scope 2 Water accounting, because it will provide water withdrawal and consumption rates associated with purchased electricity at the power plant level. By calculating the average consumption and withdrawal rates per
Calculation of nuclide inventory, decay power, activity and dose rates for spent nuclear fuel
International Nuclear Information System (INIS)
Haakansson, Rune
2000-03-01
The nuclide inventory was calculated for a BWR and a PWR fuel element, with burnups of 38 and 55 MWd/kg uranium for the BWR fuel, and 42 and 60 MWd/kg uranium for the PWR fuel. The calculations were performed for decay times of up to 300,000 years. Gamma and neutron dose rates have been calculated at a distance of 1 m from a bare fuel element and outside the spent fuel canister. The calculations were performed using the CASMO-4 code
Energy Technology Data Exchange (ETDEWEB)
Kim, Jangyeol; Son, Kwangseop; Lee, Youngjun; Cheon, Sewoo; Cha, Kyoungho; Lee, Jangsoo; Kwon, Keechoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
We confirmed that the coverage criteria for a safety-grade optical modem of a Core Protection Calculator is satisfactory using a traceability analysis matrix between high-level requirements and lower-level system test case data set. This paper describes the test environment, test components and items, a traceability analysis, and system tests as a result of system verification and validation based on Software Requirement Specifications (SRS) for a safety-grade optical modem of a Core Protection Calculator (CPC) in a Korea Standard Nuclear Power Plant (KSNP), and Software Design Specifications (SDS) for a safety-grade optical modem of a CPC in a KSNP. All tests were performed according to the test plan and test procedures. Functional testing, performance testing, event testing, and scenario based testing for a safety-grade optical modem of a Core Protection Calculator in a Korea Standard Nuclear Power Plant as a thirty-party verifier were successfully performed.
Directory of Open Access Journals (Sweden)
Q. Cheng
2010-10-01
Full Text Available This contribution introduces a fractal filtering technique newly developed on the basis of a spectral energy density vs. area power-law model in the context of multifractal theory. It can be used to map anisotropic singularities of geochemical landscapes created from geochemical concentration values in various surface media such as soils, stream sediments, tills and water. A geochemical landscape can be converted into a Fourier domain in which the spectral energy density is plotted against the area (in wave number units, and the relationship between the spectrum energy density (S and the area (A enclosed by the above-threshold spectrum energy density can be fitted by power-law models. Mixed geochemical landscape patterns can be fitted with different S-A power-law models in the frequency domain. Fractal filters can be defined according to these different S-A models and used to decompose the geochemical patterns into components with different self-similarities. The fractal filtering method was applied to a geochemical dataset from 7,349 stream sediment samples collected from Gejiu mineral district, which is famous for its word-class tin and copper production. Anomalies in three different scales were decomposed from total values of the trace elements As, Sn, Cu, Zn, Pb, and Cd. These anomalies generally correspond to various geological features and geological processes such as sedimentary rocks, intrusions, fault intersections and mineralization.
Vermont Center for Geographic Information — Physical measurements and attributes of stream crossing structures and adjacent stream reaches which are used to provide a relative rating of aquatic organism...
Directory of Open Access Journals (Sweden)
Mirko Grljušić
2015-05-01
Full Text Available The aim of this research was to investigate the possibility of a combined heat & power (CHP plant, using the waste heat from a Suezmax-size oil tanker’s main engine, to meet all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency, combined with a supercritical Organic Rankine cycle (ORC system, was selected to supply the auxiliary power, using R245fa or R123 as the working fluid. The system analysis showed that such a plant can meet all heat and electrical power requirements at full load, with the need to burn only a small amount of supplementary fuel in a heat recovery steam generator (HRSG when the main engine operates at part load. Therefore, it is possible to increase the overall thermal efficiency of the ship’s power plant by more than 5% when the main engine operates at 65% or more of its specified maximum continuous rating (SMCR.
DEFF Research Database (Denmark)
Gao, Ming-zhi; Chen, Min; Jin, Cheng
2013-01-01
Parallel operation of distributed generation is an important topic for microgrids, which can provide a highly reliable electric supply service and good power quality to end customers when the utility is unavailable. However, there is a well-known limitation: the power sharing accuracy between...
Fast calculation of electrical transients in power systems after a change of topology
Thomas, R.
2017-01-01
A power system is composed of various components such as generators, transformers, transmission lines, switching devices and loads. They have their mathematical model and graphical representation. Sometimes, a power system’s change of topology occurs due to events like short circuits, lightning
International Nuclear Information System (INIS)
Edy-Sulistyono
1996-01-01
Burn up dependence of fission gas released and variation power analysis have been conducted using FEMXI-IV computer code program for Pressure Water Reactor Fuel During steady-state condition. The analysis result shows that the fission gas release is sensitive to the fuel temperature, the increasing of burn up and power in the fuel element under irradiation experiment
International Nuclear Information System (INIS)
Latkowski, J.F.; Sanz, J.; Vujic, J.L.
1996-01-01
Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ''steady state'' (SS) or ''equivalent steady state'' (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used
ECT Team, Purdue
2007-01-01
Akamai offers world-class streaming media services that enable Internet content providers and enterprises to succeed in today's Web-centric marketplace. They deliver live event Webcasts (complete with video production, encoding, and signal acquisition services), streaming media on demand, 24/7 Webcasts and a variety of streaming application services based upon their EdgeAdvantage.
International Nuclear Information System (INIS)
Pogosbekyan, L.R.; Lysov, D.A.; Bronitskii, L.L.
1993-01-01
Numerical simulators and information systems that support nuclear reactor operators must have fast models to estimate how fuel reloads and control rod displacement affect neutron and power distributions in the core. The consequences of reloads and control rod displacement cannot be evaluated correctly without considering local automatic control-rod operations in maintaining the radial power distribution. Fast three-dimensional models to estimate the effects of reloads and displacement of the control and safety rods have already been examined. I.V. Zonov et al. used the following assumptions in their calculational model: (1) the full-scale problem could be reduced a three-dimensional fragment of a locally perturbed core, and (2) the boundary conditions of the fragment and its total power were constant. The last assumption considers approximately how local automatic control rods stabilize the radial power distribution, but three dimensional calculations with these rods are not considered. These assumptions were introduced to obtain high computational speed. I.L. Bronitskii et al. considered in more detail how moving the local automatic control rods affect the power dimensional in the three-dimensional fragment, because, with on-line monitoring of the reload process, information on control rod positions is periodically renewed, and the calculations are done in real time. This model to predict the three-dimensional power distribution to (1) do a preliminary reload analysis, and (2) prepare the core for reloading did not consider the effect of perturbations from the local automatic control rods. Here we examine a model of a stationary neutron distribution. On one hand it gives results in an acceptable computation time; on the other it is a full-scale three-dimensional model and considers how local automatic control rods affect both the radial and axial power distribution
The Impact of Harmonics Calculation Methods on Power Quality Assessment in Wind Farms
DEFF Research Database (Denmark)
Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth
2010-01-01
Different methods of calculating harmonics in measurements obtained from offshore wind farms are shown in this paper. Appropriate data processing methods are suggested for harmonics with different origin and nature. Enhancements of discrete Fourier transform application in order to reduce...... measurement data processing errors are proposed and compared with classical methods. Comparison of signal processing methods for harmonic studies is presented and application dependent on harmonics origin and nature recommended. Certain aspects related to magnitude and phase calculation in stationary...... measurement data are analysed and described. Qualitative indices of measurement data harmonic analysis in order to assess the calculation accuracy are suggested and used....
Directory of Open Access Journals (Sweden)
R.V. Zaitsev
2016-09-01
Full Text Available Purpose. To ensure maximum production of electric power by photovoltaic vacilities, in addition to using highly efficient photovoltaic modules equipped with solar radiation concentrators must use a highly effective power take-off system. This paper is inscribed to solving the problem of a highly efficient and economic power take-off system development. Methodology. To solving the problem, we implemented three stages. On the first stage examines the dependence of electrical power from the intensity of the incident solar radiation. Based on this, the second stage is calculated the DC-DC converter resonant circuit and its working parameters, and developed circuit diagram of DC-DC converter. On the third stage, we carry out an analysis of power take-off system with step up DC-DC converter working. Results. In this paper, we carry out the analysis of working efficiency for photovoltaic facility power take-off system with step-up boost converter. The result of such analysis show that the efficiency of such system in a wide range of photovoltaic energy module illumination power is at 0.92, whereas the efficiency of classic power take-off systems does not exceed 0.70. Achieved results allow designing a circuit scheme of a controlled bridge resonant step-up converter with digital control. Proposed scheme will ensure reliable operation, fast and accurate location point of maximum power and conversion efficiency up to 0.96. Originality. Novelty of proposed power take-off system solution constitute in implementation of circuit with DC-DC converters, which as it shown by results of carrying out modeling is the most effective. Practical value. Practical implementation of proposed power take-off system design will allow reducing losses in connective wires and increasing the efficiency of such a system up to 92.5% in wide range of photovoltaic energy modules illumination.
Directory of Open Access Journals (Sweden)
Mikulović Jovan Č.
2014-01-01
Full Text Available A methodology for calculation of overvoltages in transformer windings, based on a numerical method of inverse Laplace transform, is presented. Mathematical model of transformer windings is described by partial differential equations corresponding to distributed parameters electrical circuits. The procedure of calculating overvoltages is applied to windings having either isolated neutral point, or grounded neutral point, or neutral point grounded through impedance. A comparative analysis of the calculation results obtained by the proposed numerical method and by analytical method of calculation of overvoltages in transformer windings is presented. The results computed by the proposed method and measured voltage distributions, when a voltage surge is applied to a three-phase 30 kVA power transformer, are compared. [Projekat Ministartsva nauke Republike Srbije, br. TR-33037 i br. TR-33020
Directory of Open Access Journals (Sweden)
Niancheng Zhou
2018-03-01
Full Text Available Short-circuit current level of power grid will be increased with high penetration of VSC-based renewable energy, and a strong coupling between transient fault process and control strategy will change the fault features. The full current expression of VSC-based renewable energy was obtained according to transient characteristics of short-circuit current. Furtherly, by analyzing the closed-loop transfer function model of controller and current source characteristics presented in steady state during a fault, equivalent circuits of VSC-based renewable energy of fault transient state and steady state were proposed, respectively. Then the correctness of the theory was verified by experimental tests. In addition, for power grid with VSC-based renewable energy, superposition theorem was used to calculate AC component and DC component of short-circuit current, respectively, then the peak value of short-circuit current was evaluated effectively. The calculated results could be used for grid planning and design, short-circuit current management as well as adjustment of relay protection. Based on comparing calculation and simulation results of 6-node 500 kV Huainan power grid and 35-node 220 kV Huaisu power grid, the effectiveness of the proposed method was verified.
Calculation methods for analysing nuclear power plant accidents and its qualification
International Nuclear Information System (INIS)
Sacco, W.
1986-01-01
A methodology of transient and accident analyses able to carried out calculations for all transients and accidents required to support operation and operation licensing of Angra-1 reactor reload, is presented. (M.C.K.) [pt
3-D ASE calculation for high power output XeCl excimer lasers
International Nuclear Information System (INIS)
Tu Qinfen; Zhang Jianquan; Wu Baosheng
1996-01-01
The 3-dimensional ASE calculation for electron beam pumping XeCl excimer laser is presented by M-C method. In the model wall-reflected ASE is included. This calculation also includes non-saturable absorption and mirror that reflect ASE flux back into the active gain medium. Results show optimum scaling of injected flux. It can provide theoretical basis and experimental references for experiments on excimer lasers, and be extrapolated to any other type of laser
Kaswin, Godefroy; Rousseau, Antoine; Mgarrech, Mohamed; Barreau, Emmanuel; Labetoulle, Marc
2014-04-01
To evaluate the agreement in axial length (AL), keratometry (K), anterior chamber depth (ACD) measurements; intraocular lens (IOL) power calculations; and predictability using a new partial coherence interferometry (PCI) optical biometer (AL-Scan) and a reference (gold standard) PCI optical biometer (IOLMaster 500). Service d'Ophtalmologie, Hopital Bicêtre, APHP Université, Paris, France. Evaluation of a diagnostic device. One eye of consecutive patients scheduled for cataract surgery was measured. Biometry was performed with the new biometer and the reference biometer. Comparisons were performed for AL, average K at 2.4 mm, ACD, IOL power calculations with the Haigis and SRK/T formulas, and postoperative predictability of the devices. A P value less than 0.05 was statistically significant. The study enrolled 50 patients (mean age 72.6 years±4.2 SEM). There was a good correlation between biometers for AL, K, and ACD measurements (r=0.999, r=0.933, and r=0.701, respectively) and between IOL power calculation with the Haigis formula (r=0.972) and the SRK/T formula (r=0.981). The mean absolute error (MAE) in IOL power prediction was 0.42±0.08 diopter (D) with the new biometer and 0.44±0.08 D with the reference biometer. The MAE was 0.20 D with the Haigis formula and 0.19 with the SRK/T formula (P=.36). The new PCI biometer provided valid measurements compared with the current gold standard, indicating that the new device can be used for IOL power calculations for routine cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Aydogdu, K.
1998-01-01
Nine components determine the moderator-system heat load during full-power operation and during a reactor power transient in a CANDU reactor. The components that contribute to the total moderator-system heat load at any time consist of the heat generated in the calandria tubes, guide tubes and reactivity mechanisms, moderator and reflector; the heat transferred from calandria shell, the inner tubesheets and the fuel channels; and the heat gained from moderator pumps and heat lost from piping. The contributions from each of these components will vary with time during a reactor transient. The sources of heat that arise from the deposition of nuclear energy can be divided into two categories, viz., a) the neutronic component (which is directly proportional to neutronic power), which includes neutron energy absorption, prompt-fission gamma absorption and capture gamma absorption; and b) the fission-product decay-gamma component, which also varies with time after initiation of the transient. An equation was derived to calculate transient heat loads to the moderator. The equation includes two independent variables that are the neutronic power and fission-product decay-gamma power fractions during the transient and a constant term that represents the heat gained from moderator pumps and heat lost from piping. The calculated heat load in the moderator during steady-state full-power operation for a CANDU 6 reactor was compared with available measurements from the Point Lepreau, Wolsong 1 and Gentilly-2 nuclear generating stations. The calculated and measured values were in reasonably good agreement. (author)
International Nuclear Information System (INIS)
Scott Ingram, W.; Robertson, Daniel; Beddar, Sam
2015-01-01
Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent
International Nuclear Information System (INIS)
Ferreira, C.R.
1984-01-01
It is presented the absorption-production nodal method for steady and dynamical calculations in one-dimension and one group energy. It was elaborated the NOD1D computer code (in FORTRAN-IV language). Calculations of neutron flux and power distributions, burnup, effective multiplication factors and critical boron concentration were made with the NOD1D code and compared with results obtained through the CITATION code, which uses the finite difference method. The nuclear constants were produced by the LEOPARD code. (M.C.K.) [pt
Tsujimura, Maki; Onda, Yuichi; Hada, Manami; Ishwar, Pun; Abe, Yutaka
2013-04-01
Due to Fukushima Dai-ichi Nuclear power plant accident occurred in March 2011, large amount of radionuclides was released into the atmosphere and was fallen onto ground by rainfall. Few researches have monitored radioactive cesium dynamics in whole hydrological cycle system such as groundwater, soil water, spring water and stream water. Thus, the purpose of this study is to monitor concentration of radioactive cesium in those waters in time series in the headwaters. We have performed an intensive monitoring at three small mountainous catchments in Yamakiya district, Kawamata town, Fukushima prefecture, locating 35 km northwest from Fukushima Dai-ichi Nuclear Power Plant since June 2011, also we consider the movement of radioactive cesium and its relation with the hydrological cycle.
International Nuclear Information System (INIS)
Shaw, P.M.
1983-04-01
The computer code SARTEMP2, an extended version of the original SARTEMP program, which calculates the power and temperatures in a transport flask during a hypothetical criticality accident is described. The accident arises, it is assumed, during the refilling of the flask with water, bringing the system to delayed critical. As the water level continues to rise, reactivity is added causing the power to rise, and thus temperatures in the fuel, clad and water to increase. The point kinetics equations are coupled to the one-dimensional heat conduction equation. The model used, the method of solution of the equations and the input data required are given. (author)
International Nuclear Information System (INIS)
Cardile, F.P.; Bangart, R.L.; Collins, J.T.
1978-06-01
The Intergovernmental Maritime Consultative Organization IMCO) is currently preparing guidelines concerning the safety of nuclear-powered merchant ships. An important aspect of these guidelines is the determination of the releases of radioactive material in effluents from these ships and the control exercised by the ships over these releases. To provide a method for the determination of these releases, the NRC staff has developed a computerized model, the NMS-GEFF Code, which is described in the following chapters. The NMS-GEFF Code calculates releases of radioactive material in gaseous effluents for nuclear-powered merchant ships using pressurized water reactors
Directory of Open Access Journals (Sweden)
I. V. Kachanov
2014-01-01
Full Text Available Due to balance of external and internal force capacities a variation quasistatic problem has been solved in the paper. The problem allows to determine optimum values of α and β angles in the accepted field of sliding lines when destruction pressure takes on a minimum value pmin. It has been ascertained that the minimum pressure pmin which is necessary for destruction of a corrosion layer is registered at stream compression coefficient λ = 0,063 and the pressure is equal to 8-17 MPa for the investigated speed range v = 80-140 m/s.
Applications of supercomputing and the utility industry: Calculation of power transfer capabilities
International Nuclear Information System (INIS)
Jensen, D.D.; Behling, S.R.; Betancourt, R.
1990-01-01
Numerical models and iterative simulation using supercomputers can furnish cost-effective answers to utility industry problems that are all but intractable using conventional computing equipment. An example of the use of supercomputers by the utility industry is the determination of power transfer capability limits for power transmission systems. This work has the goal of markedly reducing the run time of transient stability codes used to determine power distributions following major system disturbances. To date, run times of several hours on a conventional computer have been reduced to several minutes on state-of-the-art supercomputers, with further improvements anticipated to reduce run times to less than a minute. In spite of the potential advantages of supercomputers, few utilities have sufficient need for a dedicated in-house supercomputing capability. This problem is resolved using a supercomputer center serving a geographically distributed user base coupled via high speed communication networks
International Nuclear Information System (INIS)
Ribeiro, Franciane; Mazer, Amanda Cristina; Hormaza, Joel Mesa
2016-01-01
In order to calculate the stopping power of protons, there are many very successful models at high energies, which are extrapolated to low-energy regions. From the point of view of application of proton beam in cancer treatment is just this low energy region the most relevant due to the dose deposition profile in depth for protons. In this work, we present a calculation of the stopping power of protons in a water target using the dielectric formalism in MELF-GOS approach. The results when compared to other models show good agreement for energies above 100 keV and lower values below this energy. This result should impact the range of values of protons and the Bragg peak position. (author)
Problems in calculating reactor model (primary circuit) for nuclear power plant diagnostics
International Nuclear Information System (INIS)
Markov, P.
1986-01-01
Some results are presented of the calculation of eigen-vibrations of the system of WWER-440 nuclear reactor vessels in a vacuum and in a liquid. Computer code BOSOR 4 has been written for calculating forced vibrations of shells with axial symmetry and of a simplified system of reactor vessels. A description is given of this code, which is based on the so-called energy method of finite differences. Briefly discussed is the feasibility of applying the results of the latest computation techniques in the diagnostics of the major components of a nuclear reactor. (Z.M.)
Basis calculation of phase cross section library in a low power fast reactor neutronic simulation
International Nuclear Information System (INIS)
Jachic, J.
1993-09-01
In order to implement the utilization of the efficient multidimensional cubic SPLINE interpolation, we determine the phase library bases for net like relevant state components. A generic cubic surface and a weighted plane pertinent alternative interpolating methods used capable to generate cross sections values for fixed coordinates from cell code calculated data points is used. It is verified that the phase library bases increases or decrease smoothly and monotonically with the spectrum asymmetry and total flux buckling. This justifies its use in cross section updating avoiding cell calculations. (author)
Calculation of high power relativistic beams with consideration of collision effects
International Nuclear Information System (INIS)
Sveshnikov, V.M.
1986-01-01
This paper considers the numerical calculation of relativistic charged particle beams moving in axisymmetric systems in which the presence of a residual neutral gas is possible. It is essential to consider phenomena related to collisions between charged particles and neutrals. Algorithms are constructed for numerical modeling of ionization processes within the framework of the ERA program complex. Solutions of model and practical problems are presented as examples. Such problems were studied where ionization processes were considered by a more complex method requiring a greater volume of calculations but valid at lower pressures
An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers
Ahmet Y. Arabul; Ibrahim Senol; Fatma Keskin Arabul; Mustafa G. Aydeniz; Yasemin Oner; Gokhan Kalkan
2016-01-01
In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which ar...
International Nuclear Information System (INIS)
Quintana, E.E.; Tossi, M.H.; Telleria, D.M.
1990-01-01
Collective doses produced during the normal working of the Atucha I Nuclear Power Plant are calculated using annual atmospheric factors. This work studies the behaviour of the dilution factors in different periods of the year in order to fit the calculated dose model applying factors from seasonal, monthly or weekly periods. The Radiation Protection Group of the C.N.E.A. have carried out continuous environmental monitoring in the surroundings of the Atucha I Nuclear Power Plant. These studies include the measurement of air tritium concentration, radionuclide that is found principally as tritiated water vapour. This isotope, normally released by the nuclear power plant was used as a tracer to assess the atmospheric dilution factors. Factors were calculated by two methods: an experimental one, based on environmental measurements of the tritium concentration in the surroundings of the nuclear power plant and another one by applying a theoretical model based on information from the micrometeorological tower located in the mentioned place. To carry out the environmental monitoring, four monitoring stations in the surroundings of the power plant were chosen. Three of them are approximately one kilometer from the plant and the fourth is 7.5 km away, near the city of Lima. To condense and collect the atmospheric water vapour, an overcooling system was used. The measurement was performed by liquid scintillation counting, previous alkaline electrolytical enrichment of the samples. The theoretical model uses hourly values of direction and wind intensity, as well as the atmospheric dispersive properties. Values obtained during the period 1976 to 1988 allowed, applying statistical tests, to validate the theoretical model and to observe seasonal variation of the dilution factors throughout the same year and between different years. Finally, results and graphics are presented showing that the behaviour of the dilution factors in different periods of the year. It is recommended to
Thermal-hydraulic calculation and analysis for QNPP (Qinshan Nuclear Power Plant) containment
International Nuclear Information System (INIS)
Xie Hui; Zhou Jie; He Yingchao
1993-01-01
Three containment thermal-hydraulic codes CONTEMPT-LT/028, CONTEMPT-4/MOD3 and COMPARE are used to compute and analyse the Qinshan Nuclear Power Plant (QNPP) containment response under LOCA or MSLB conditions. An evaluation of the capability of containment of QNPP is given
International Nuclear Information System (INIS)
Moeller, M.P.; Scherpelz, R.I.; Desrosiers, A.E.
1982-01-01
This work analyzes the sensitivity of calculated doses to critical assumptions for offsite consequences following a PWR-2 accident at a nuclear power reactor. The calculations include three radiation dose pathways: internal dose resulting from inhalation, external doses from exposure to the plume, and external doses from exposure to contaminated ground. The critical parameters are the time period of integration for internal dose commitment and the duration of residence on contaminated ground. The data indicate the calculated offsite whole body dose will vary by as much as 600% depending upon the parameters assumed. When offsite radiation doses determine the size of emergency planning zones, this uncertainty has significant effect upon the resources allocated to emergency preparedness
Directory of Open Access Journals (Sweden)
Lin Yang
2018-01-01
Full Text Available In this paper, the calculation of the conductor temperature is related to the temperature sensor position in high-voltage power cables and four thermal circuits—based on the temperatures of insulation shield, the center of waterproof compound, the aluminum sheath, and the jacket surface are established to calculate the conductor temperature. To examine the effectiveness of conductor temperature calculations, simulation models based on flow characteristics of the air gap between the waterproof compound and the aluminum are built up, and thermocouples are placed at the four radial positions in a 110 kV cross-linked polyethylene (XLPE insulated power cable to measure the temperatures of four positions. In measurements, six cases of current heating test under three laying environments, such as duct, water, and backfilled soil were carried out. Both errors of the conductor temperature calculation and the simulation based on the temperature of insulation shield were significantly smaller than others under all laying environments. It is the uncertainty of the thermal resistivity, together with the difference of the initial temperature of each radial position by the solar radiation, which led to the above results. The thermal capacitance of the air has little impact on errors. The thermal resistance of the air gap is the largest error source. Compromising the temperature-estimation accuracy and the insulation-damage risk, the waterproof compound is the recommended sensor position to improve the accuracy of conductor-temperature calculation. When the thermal resistances were calculated correctly, the aluminum sheath is also the recommended sensor position besides the waterproof compound.
Ensor, Joie; Burke, Danielle L; Snell, Kym I E; Hemming, Karla; Riley, Richard D
2018-05-18
Researchers and funders should consider the statistical power of planned Individual Participant Data (IPD) meta-analysis projects, as they are often time-consuming and costly. We propose simulation-based power calculations utilising a two-stage framework, and illustrate the approach for a planned IPD meta-analysis of randomised trials with continuous outcomes where the aim is to identify treatment-covariate interactions. The simulation approach has four steps: (i) specify an underlying (data generating) statistical model for trials in the IPD meta-analysis; (ii) use readily available information (e.g. from publications) and prior knowledge (e.g. number of studies promising IPD) to specify model parameter values (e.g. control group mean, intervention effect, treatment-covariate interaction); (iii) simulate an IPD meta-analysis dataset of a particular size from the model, and apply a two-stage IPD meta-analysis to obtain the summary estimate of interest (e.g. interaction effect) and its associated p-value; (iv) repeat the previous step (e.g. thousands of times), then estimate the power to detect a genuine effect by the proportion of summary estimates with a significant p-value. In a planned IPD meta-analysis of lifestyle interventions to reduce weight gain in pregnancy, 14 trials (1183 patients) promised their IPD to examine a treatment-BMI interaction (i.e. whether baseline BMI modifies intervention effect on weight gain). Using our simulation-based approach, a two-stage IPD meta-analysis has meta-analysis was appropriate. Pre-specified adjustment for prognostic factors would increase power further. Incorrect dichotomisation of BMI would reduce power by over 20%, similar to immediately throwing away IPD from ten trials. Simulation-based power calculations could inform the planning and funding of IPD projects, and should be used routinely.
Design and Strength Calculations of the Tripod Support Structure for Offshore Power Plant
Directory of Open Access Journals (Sweden)
Dymarski C.
2015-01-01
Full Text Available The support structure being the object of the analysis presented in the article is Tripod. According to the adopted assumptions, it is a foundation gravitationally set in the water region of 60 m in depth, not fixed to the seabed, which can be used for installing a 7MW wind turbine. Due to the lack of substantial information on designing and strength calculations of such types of structures in the world literature, authors have made an attempt to solve this problem within the framework of the abovementioned project. In the performed calculations all basic loads acting on the structure were taken into account, including: the self mass of the structure, the masses of the ballast, the tower and the turbine, as well as hydrostatic forces, and aero- and hydrodynamic forces acting on the entire object in extreme operating conditions.
Calculation of gas Bremsstrahlung power from straight sections of storage ring at SSRF
International Nuclear Information System (INIS)
Hua Zhengdong; Xu Xunjiang; Fang Keming; Xu Jiaqiang
2008-01-01
The Shanghai Synchrotron Radiation Facility (SSRF) is a third-generation synchrotron radiation light source with 3.5 GeV in energy, which is composed of the linear accelerator, the booster and the storage ring. The storage ring provides 16 standard straight sections of 6.5 m and 4 long straight sections of 12 meters. Gas Bremsstrahlung (GB) produced by the interaction of the stored beam with the residual gas molecules in straight section, which is so intense and has a very small angular that the GB spectra, the GB power and the GB power distribution should be known. The characters of GB are studied by means of Fluka Monte Carlo code. Our result shows agreement with those obtained by the experiential formulae. (authors)
Directory of Open Access Journals (Sweden)
Finch Stephen J
2005-04-01
Full Text Available Abstract Background Phenotype error causes reduction in power to detect genetic association. We present a quantification of phenotype error, also known as diagnostic error, on power and sample size calculations for case-control genetic association studies between a marker locus and a disease phenotype. We consider the classic Pearson chi-square test for independence as our test of genetic association. To determine asymptotic power analytically, we compute the distribution's non-centrality parameter, which is a function of the case and control sample sizes, genotype frequencies, disease prevalence, and phenotype misclassification probabilities. We derive the non-centrality parameter in the presence of phenotype errors and equivalent formulas for misclassification cost (the percentage increase in minimum sample size needed to maintain constant asymptotic power at a fixed significance level for each percentage increase in a given misclassification parameter. We use a linear Taylor Series approximation for the cost of phenotype misclassification to determine lower bounds for the relative costs of misclassifying a true affected (respectively, unaffected as a control (respectively, case. Power is verified by computer simulation. Results Our major findings are that: (i the median absolute difference between analytic power with our method and simulation power was 0.001 and the absolute difference was no larger than 0.011; (ii as the disease prevalence approaches 0, the cost of misclassifying a unaffected as a case becomes infinitely large while the cost of misclassifying an affected as a control approaches 0. Conclusion Our work enables researchers to specifically quantify power loss and minimum sample size requirements in the presence of phenotype errors, thereby allowing for more realistic study design. For most diseases of current interest, verifying that cases are correctly classified is of paramount importance.
Kirgiz, Ahmet; Atalay, Kurşat; Kaldirim, Havva; Cabuk, Kubra Serefoglu; Akdemir, Mehmet Orcun; Taskapili, Muhittin
2017-08-01
The purpose of this study was to compare the keratometry (K) values obtained by the Scheimpflug camera combined with placido-disk corneal topography (Sirius) and optical biometry (Lenstar) for intraocular lens (IOL) power calculation before the cataract surgery, and to evaluate the accuracy of postoperative refraction. 50 eyes of 40 patients were scheduled to have phacoemulsification with the implantation of a posterior chamber intraocular lens. The IOL power was calculated using the SRK/T formula with Lenstar K and K readings from Sirius. Simulated K (SimK), K at 3-, 5-, and 7-mm zones from Sirius were compared with Lenstar K readings. The accuracy of these parameters was determined by calculating the mean absolute error (MAE). The mean Lenstar K value was 44.05 diopters (D) ±1.93 (SD) and SimK, K at 3-, 5-, and 7-mm zones were 43.85 ± 1.91, 43.88 ± 1.9, 43.84 ± 1.9, 43.66 ± 1.85 D, respectively. There was no statistically significant difference between the K readings (P = 0.901). When Lenstar was used for the corneal power measurements, MAE was 0.42 ± 0.33 D, but when simK of Sirius was used, it was 0.37 ± 0.32 D (the lowest MAE (0.36 ± 0.32 D) was achieved as a result of 5 mm K measurement), but it was not statistically significant (P = 0.892). Of all the K readings of Sirius and Lenstar, Sirius 5-mm zone K readings were the best in predicting a more precise IOL power. The corneal power measurements with the Scheimpflug camera combined with placido-disk corneal topography can be safely used for IOL power calculation.
2012-08-01
regenerative braking or simulated engine braking . AVL Hybrid Control System (HCU) coordinates and controls all system components as laid out in Figure... regenerative and friction brakes with a 34% dead-band on the brake pedal. Table 2 gives a summary and comparison of simulation results in terms of kg of...2012 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM POWER AND MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 14-16, MICHIGAN AN
The control-and-instrumentation system of the IEA zero power reactor and its reliability calculation
International Nuclear Information System (INIS)
Peluso, M.A.V.
1978-01-01
The control-and instrumentation system for the Instituto de Energia Atomica Zero Power Reactor is described and the design criteria are presented and discussed. The reliability analysis for the reactor protection system was performed using the fault tree method. This was done using a computer code based on the Monte Carlo simulation. That code is an adaptation of the SAFTE-I, for the IBM 360/155 IEA Computer. (Author) [pt
Collisional-radiative switching - A powerful technique for converging non-LTE calculations
Hummer, D. G.; Voels, S. A.
1988-01-01
A very simple technique has been developed to converge statistical equilibrium and model atmospheric calculations in extreme non-LTE conditions when the usual iterative methods fail to converge from an LTE starting model. The proposed technique is based on a smooth transition from a collision-dominated LTE situation to the desired non-LTE conditions in which radiation dominates, at least in the most important transitions. The proposed approach was used to successfully compute stellar models with He abundances of 0.20, 0.30, and 0.50; Teff = 30,000 K, and log g = 2.9.
Graph theoretical models for calculating the reliablility of power plants. Pt. 4
International Nuclear Information System (INIS)
Vetterkind, D.W.
1978-01-01
With the aid of mathematical formalisms from the theory of stochastical networks, approximation equations are derived for the expectation value as well as for the scattering of period-related availability of series systems consisting of deteriorating and/or non-deteriorating components. In this context, successive operating times of deteriorating components are described by the time-dependent Poisson process while successive operating times of non-deteriorating components are described by the time-independent Poisson process. In addition provision is made in the model to include in the calculation an existing trend of the expectation value of components successive failure times. (orig./RW) [de
Calculating Nuclear Power Plant Vulnerability Using Integrated Geometry and Event/Fault-Tree Models
International Nuclear Information System (INIS)
Peplow, Douglas E.; Sulfredge, C. David; Sanders, Robert L.; Morris, Robert H.; Hann, Todd A.
2004-01-01
Since the events of September 11, 2001, the vulnerability of nuclear power plants to terrorist attacks has become a national concern. The results of vulnerability analysis are greatly influenced by the computational approaches used. Standard approximations used in fault-tree analysis are not applicable for attacks, where high component failure probabilities are expected; two methods that do work with high failure probabilities are presented. Different blast modeling approaches can also affect the end results. Modeling the structural details of facility buildings and the geometric layout of components within the buildings is required to yield meaningful results
A method to calculate the effect of heterogeneous composition on bundle power
Energy Technology Data Exchange (ETDEWEB)
Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-09-01
In the DUPIC fuel cycle, the spent pressurized water reactor (PWR) fuel is used in a Canada deuterium uranium (CANDU) reactor. Depending on the initial condition and burnup history of PWR fuel, the DUPIC fuel composition varies accordingly. In order to see the effect of the fuel composition, a simple and fast method was developed and applied to the DUPIC fuel. This report discusses the method developed to predict the effect of heterogeneous fuel composition on the bundle power. (author). 3 refs., 5 tabs.
Calculation of the optimum fuel distribution which maximizes the power output of a reactor
International Nuclear Information System (INIS)
Santos, W.N. dos.
1979-01-01
Using optimal control techniques, the optimum fuel distribution - which maximizes the power output of a thermal reactor - is obtained. The nuclear reactor is described by a diffusion theory model with four energy groups and by assuming plane geometry. Since the analytical solution is impracticable, by using a perturbation method, a FORTRAN program was written, in order to obtain the numerical solution. Numerical results, for a thermal reactor light water moderated, non reflected, are shown. The fissile fuel material considered is Uranium-235. (Author) [pt
Jack E. Williams; Gordon H. Reeves
2006-01-01
Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...
In vivo Comet assay – statistical analysis and power calculations of mice testicular cells
DEFF Research Database (Denmark)
Hansen, Merete Kjær; Sharma, Anoop Kumar; Dybdahl, Marianne
2014-01-01
is to provide curves for this statistic outlining the number of animals and gels to use. The current study was based on 11 compounds administered via oral gavage in three doses to male mice: CAS no. 110-26-9, CAS no. 512-56-1, CAS no. 111873-33-7, CAS no. 79-94-7, CAS no. 115-96-8, CAS no. 598-55-0, CAS no. 636....... A linear mixed-effects model was fitted to the summarized data and the estimated variance components were used to generate power curves as a function of sample size. The statistic that most appropriately summarized the within-sample distributions was the median of the log-transformed data, as it most...... consistently conformed to the assumptions of the statistical model. Power curves for 1.5-, 2-, and 2.5-fold changes of the highest dose group compared to the control group when 50 and 100 cells were scored per gel are provided to aid in the design of future Comet assay studies on testicular cells....
International Nuclear Information System (INIS)
Xu, Liang; Yuan, Jingqi
2015-01-01
Thermodynamic properties of the working fluid and the flue gas play an important role in the thermodynamic calculation for the boiler design and the operational optimization in power plants. In this study, a generic approach to online calculate the thermodynamic properties of the flue gas is proposed based on its composition estimation. It covers the full operation scope of the flue gas, including the two-phase state when the temperature becomes lower than the dew point. The composition of the flue gas is online estimated based on the routinely offline assays of the coal samples and the online measured oxygen mole fraction in the flue gas. The relative error of the proposed approach is found less than 1% when the standard data set of the dry and humid air and the typical flue gas is used for validation. Also, the sensitivity analysis of the individual component and the influence of the measurement error of the oxygen mole fraction on the thermodynamic properties of the flue gas are presented. - Highlights: • Flue gas thermodynamic properties in coal-fired power plants are online calculated. • Flue gas composition is online estimated using the measured oxygen mole fraction. • The proposed approach covers full operation scope, including two-phase flue gas. • Component sensitivity to the thermodynamic properties of flue gas is presented.
International Nuclear Information System (INIS)
Nguyen Tuan Khai; Hoang Van Khanh; Phan Quoc Vuong; Tran Viet Phu; Tran Vinh Thanh; Nguyen Thi Mai Huong; Nguyen Thi Dung; Le Tran Chung; Nguyen Minh Tuan; Tran Quoc Duong
2014-01-01
The project aims at nuclear human resource development and enhancement in research capability in reactor physics and kinetics at Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat). The main research items of the project can be summarized as follows: i) Considering possibility on using modern calculation techniques and methods in investigating neutronic characteristics and neutronics-thermal hydraulics coupling. This item is proposed to carry out based on international collaboration with Prof. Le Trong Thuy, San Jose University, US; ii) Carrying out the collaborative activities in research and training between Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat); iii) Opening two-week training course on nuclear reactor engineering (25 Nov - 12 Dec 2013) in collaboration with Japan Atomic Energy Agency (JAEA). (author)
Energy Technology Data Exchange (ETDEWEB)
Sher, R. [Rudolph Sher Associates, Stanford, CA (United States); Li, J. [Polestar Applied Technology, Inc., Los Altos, CA (United States)
1995-02-01
NAUAHYGROS is a computer code to calculate the behavior of fission product and other aerosol particles in the containment of a nuclear reactor following a severe accident. It is an extension of the German code NAUA, which has been in widespread use for many years. Early versions of NAUA treated various aerosol phenomena in dry atmospheres, including aerosol agglomeration, diffusion (plateout), and settling processes. Later versions added treatments of steam condensation on particles in saturated or supersaturated containment atmospheres. The importance of these condensation effects on aerosol removal rates was demonstrated in large scale simulated containment tests. The additional features incorporated in NAUAHYGROS include principally a treatment of steam condensation on hygroscopic aerosols, which can grow as a result of steam condensation even in superheated atmospheres, and improved modelling of steam condensation on the walls of the containment. The code has been validated against the LACE experiments.
International Nuclear Information System (INIS)
Dorning, J.J.
1991-01-01
A simultaneous pin lattice cell and fuel bundle homogenization theory has been developed for use with nodal diffusion calculations of practical reactors. The theoretical development of the homogenization theory, which is based on multiple-scales asymptotic expansion methods carried out through fourth order in a small parameter, starts from the transport equation and systematically yields: a cell-homogenized bundled diffusion equation with self-consistent expressions for the cell-homogenized cross sections and diffusion tensor elements; and a bundle-homogenized global reactor diffusion equation with self-consistent expressions for the bundle-homogenized cross sections and diffusion tensor elements. The continuity of the angular flux at cell and bundle interfaces also systematically yields jump conditions for the scaler flux or so-called flux discontinuity factors on the cell and bundle interfaces in terms of the two adjacent cell or bundle eigenfunctions. The expressions required for the reconstruction of the angular flux or the 'de-homogenization' theory were obtained as an integral part of the development; hence the leading order transport theory angular flux is easily reconstructed throughout the reactor including the regions in the interior of the fuel bundles or computational nodes and in the interiors of the pin lattice cells. The theoretical development shows that the exact transport theory angular flux is obtained to first order from the whole-reactor nodal diffusion calculations, done using the homogenized nuclear data and discontinuity factors, is a product of three computed quantities: a ''cell shape function''; a ''bundle shape function''; and a ''global shape function''. 10 refs
International Nuclear Information System (INIS)
Mosteller, R.D.; Hall, R.A.; Lancaster, D.B.; Young, E.H.; Gavin, P.H.; Robertson, S.T.
1998-01-01
The contents of ANS 19.11, the standard for ''Calculation and Measurement of the Moderator Temperature Coefficient of Reactivity in Water-Moderated Power Reactors,'' are described. The standard addresses the calculation of the moderator temperature coefficient (MTC) both at standby conditions and at power. In addition, it describes several methods for the measurement of the at-power MTC and assesses their relative advantages and disadvantages. Finally, it specifies a minimum set of documentation requirements for compliance with the standard
Directory of Open Access Journals (Sweden)
Cosmin Ursoniu
2015-09-01
Full Text Available Scada (supervisory control and data acquisition is a complex system that supervises and controls an industrial process and performs several functions. A human machine interface will also be presented and how the process in a power plant is controlled and supervised through it by the operator. The main screen will be described (which is a global view of the hydro unit and what the operator can see and what he can press to control the power plants process also a few more screens will be presented for auxiliary installations and it will be described what the operator can see and what he can do to control the installation.
Directory of Open Access Journals (Sweden)
Cosmin Ursoniu
2015-09-01
Full Text Available Scada (supervisory control and data acquisition is a complex system that supervises and control an industrial process and performs several functions. A human machine interface will also be presented and how the process in a power plant is controlled and supervised through it by the operator. The main screen will be described (which is a global view of the hydro unit and what the operator can see and what he can press to control the power plants process also a few more screens will be presented for auxiliary installations and it will be described what the operator can see and what he can do to control the installation.
International Nuclear Information System (INIS)
Fernandez-Varea, J.M.; Mayol, R.; Salvat, F.; Liljequist, D.
1992-11-01
The numerical calculation of electron inelastic mean free path and stopping power from an optical-data model recently proposed by Fernandez-Varea et al. is described in detail. Explicit expressions for the one-electron total cross sections of the two-modes model of the free-electron gas and the δ-oscillator are derived. The inelastic mean free path and the stopping power are obtained as integrals of these one-electron total cross sections weighted by the optical as integrals of these one-electron total cross sections weighted by the optical oscillator strength. The integrals can be easily evaluated, with a selected accuracy, by using the FORTRAN 77 subroutine GABQ described here, which implements a 20-points Gauss adaptive bipartition quadrature method. Source listings of FORTRAN 77 subroutines to compute the one-electron total cross sections are also given
International Nuclear Information System (INIS)
Chen Fubing; Dong Yujie; Zheng Yanhua; Shi Lei; Zhang Zuoyi
2009-01-01
Within the framework of a Coordinated Research Project on Evaluation of High Temperature Gas-Cooled Reactor Performance (CRP-5) initiated by the International Atomic Energy Agency (IAEA), the calculation of steady-state temperature distribution of the 10 MW High Temperature Gas-Cooled Reactor-Test Module (HTR-10) under its initial full power experimental operation has been defined as one of the benchmark problems. This paper gives the investigation results obtained by different countries who participate in solving this benchmark problem. The validation works of the THERMIX code used by the Institute of Nuclear and New Energy Technology (INET) are also presented. For the benchmark items defined in this CRP, various calculation results correspond well with each other and basically agree the experimental results. Discrepancies existing among various code results are preliminarily attributed to different methods, models, material properties, and so on used in the computations. Temperatures calculated by THERMIX for the measuring points in the reactor internals agree well with the experimental values. The maximum fuel center temperatures calculated by the participants are much lower than the limited value of 1,230degC. According to the comparison results of code-to-code as well as code-to-experiment, THERMIX is considered to reproduce relatively satisfactory results for the CRP-5 benchmark problem. (author)
Energy Technology Data Exchange (ETDEWEB)
Anderson, D W
1973-04-15
Assessments of the ability of UK methods and data developed primarily for the low enriched uranium cycle to simulate thorium cycle HTRs haye been extended to cover reactivity and power distributions in commercial size reactors. The Fort St. Vrain 330 MW(E) HTR being built in the United States by Gulf General Atomic has been chosen as a convenient object for such a study since detailed design information together with the results of GGA's own calculations have been published. The results obtained are in good agreement with those obtained by GGA and indicate that both thorium and low enriched cycle HTRs can be adequately modelled with UK data and methods.
In vivo Comet assay--statistical analysis and power calculations of mice testicular cells.
Hansen, Merete Kjær; Sharma, Anoop Kumar; Dybdahl, Marianne; Boberg, Julie; Kulahci, Murat
2014-11-01
The in vivo Comet assay is a sensitive method for evaluating DNA damage. A recurrent concern is how to analyze the data appropriately and efficiently. A popular approach is to summarize the raw data into a summary statistic prior to the statistical analysis. However, consensus on which summary statistic to use has yet to be reached. Another important consideration concerns the assessment of proper sample sizes in the design of Comet assay studies. This study aims to identify a statistic suitably summarizing the % tail DNA of mice testicular samples in Comet assay studies. A second aim is to provide curves for this statistic outlining the number of animals and gels to use. The current study was based on 11 compounds administered via oral gavage in three doses to male mice: CAS no. 110-26-9, CAS no. 512-56-1, CAS no. 111873-33-7, CAS no. 79-94-7, CAS no. 115-96-8, CAS no. 598-55-0, CAS no. 636-97-5, CAS no. 85-28-9, CAS no. 13674-87-8, CAS no. 43100-38-5 and CAS no. 60965-26-6. Testicular cells were examined using the alkaline version of the Comet assay and the DNA damage was quantified as % tail DNA using a fully automatic scoring system. From the raw data 23 summary statistics were examined. A linear mixed-effects model was fitted to the summarized data and the estimated variance components were used to generate power curves as a function of sample size. The statistic that most appropriately summarized the within-sample distributions was the median of the log-transformed data, as it most consistently conformed to the assumptions of the statistical model. Power curves for 1.5-, 2-, and 2.5-fold changes of the highest dose group compared to the control group when 50 and 100 cells were scored per gel are provided to aid in the design of future Comet assay studies on testicular cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Calculation of DPA in the Reactor Internal Structural Materials of Nuclear Power Plant
International Nuclear Information System (INIS)
Kim, Yong Deong; Lee, Hwan Soo
2014-01-01
The embrittlement is mainly caused by atomic displacement damage due to irradiations with neutrons, especially fast neutrons. The integrity of the reactor internal structural materials has to be ensured over the reactor life time, threatened by the irradiation induced displacement damage. Accurate modeling and prediction of the displacement damage is a first step to evaluate the integrity of the reactor internal structural materials. Traditional approaches for analyzing the displacement damage of the materials have relied on tradition model, developed initially for simple metals, Kinchin and Pease (K-P), and the standard formulation of it by Norgett et al. , often referred to as the 'NRT' model. An alternative and complementary strategy for calculating the displacement damage is to use MCNP code. MCNP uses detailed physics and continuous-energy cross-section data in its simulations. In this paper, we have performed the evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling and compared with predictions results of displacement damage using the classical NRT model. The evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling has been performed. The maximum value of the DPA rate was occurred at the baffle side of the reactor internal where the node has the maximum neutron flux
Energy Technology Data Exchange (ETDEWEB)
Voigt, B
1982-02-19
The possibilities are shown how input parameters are determined for reliability computations. This is done for the components of a transmission system and the evaluated failure statistics of an electric utility company. The following parameters of high interest to reliability engineering are treated: dependence of the failure frequency on the system's cable length, distribution of failure intervals of cables with different voltage levels, followerd by a study of influencing variables due to daily or seasonal fluctuations. Possibilities are pointed out of computing the system reliability on the basis of component parameters, and a method is presented that can be applied in the planning stage as well as during operation of energy transmission systems. Finally, the calculation of a real sub-net of a given energy supply is presented. The methodology of fault-tree analysis, implemented in several, different computer programs, is the input parameter of this section. This method is applied to determine minimum interface structures of a system, to simulating the TOP event in the fault tree and, in the method presented here, to determining the structural significance of components within a system.
International Nuclear Information System (INIS)
Ueki, Taro
2010-01-01
The noise propagation of tallies in the Monte Carlo power method can be represented by the autoregressive moving average process of orders p and p-1 (ARMA(p,p-1)], where p is an integer larger than or equal to two. The formula of the autocorrelation of ARMA(p,q), p≥q+1, indicates that ARMA(3,2) fitting is equivalent to lumping the eigenmodes of fluctuation propagation in three modes such as the slow, intermediate and fast attenuation modes. Therefore, ARMA(3,2) fitting was applied to the real standard deviation estimation of fuel assemblies at particular heights. The numerical results show that straightforward ARMA(3,2) fitting is promising but a stability issue must be resolved toward the incorporation in the distributed version of production Monte Carlo codes. The same numerical results reveal that the average performance of ARMA(3,2) fitting is equivalent to that of the batch method in MCNP with a batch size larger than one hundred and smaller than two hundred cycles for a 1100 MWe pressurized water reactor. The bias correction of low lag autocovariances in MVP/GMVP is demonstrated to have the potential of improving the average performance of ARMA(3,2) fitting. (author)
Energy Technology Data Exchange (ETDEWEB)
Guang, D.
1992-01-01
The electrostatic charges and charge distributions on individual flyash particles were experimentally measured in situ at four power stations in New South Wales and in the laboratory with an Electrostatic Charge Classifier. The global charge of these flyashes was also measured. The electrostatic charge on flyash particles of four power stations was found to be globally native. The median charge on the flyash particles varies linearly with particle diameter for all four flyashes. The electrostatic charge on the Tallawarra flyash particles was found to increase after passage through the air heater having huge metal surface areas, suggesting that triboelectrification was the primary charging mechanism for flyash particles. Distinctly different characteristics of the electrostatic charge, particle size and particle shape were found between the Eraring and the Tallawarra flyashes. The spherical Eraring ash has the highest proportion of lines and positively charged particles, but the lowest global charge level among the four flyashes. In contrast, the Tallawarra flyash has just the opposite. It is the distinct characteristics of the flyashes from Eraring and Tallawarra power stations that are responsible for the significant differences in their baghouse performance. The napping feature on the surface of the filter bags used in the Eraring and Tallawarra power stations provides an upstream surface of low fibre density above the fabric bulk. This feature presents and advantage to highly charged particles, like the Tallawarra flyash particles. Highly charged particles tend to deposit on such an upstream surface resulting in a porous dust cake with much less contact areas with the fabric medium than would otherwise be formed. This cake is easy to remove and provides less resistance to the gas flow. After singeing the naps on the filter bag surface at the Eraring power station, the problems of high pressure drop and retention of dust cake on the bas surface have been resolved.
High performance stream computing for particle beam transport simulations
International Nuclear Information System (INIS)
Appleby, R; Bailey, D; Higham, J; Salt, M
2008-01-01
Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed
Directory of Open Access Journals (Sweden)
Ashish Mitra
2014-01-01
Full Text Available Efficacy of intraocular lens power calculation formulas in a subset of Indian myopic population. Retrospectively reviewed 43 patients who underwent phacoemulsification with high axial length (AL (>24.5 mm, range 24.75-32.35 mm. The power of the implanted intraocular lens (IOL was used to calculate the predicted post-operative refractive error by four formulas: Sanders-Retzlaff-Kraff (SRK II, SRK/T, Holladay 1, and Hoffer Q. The predictive accuracy of the formulas was analyzed by comparing the difference between the "actual" and "predicted" postoperative refractive errors. Repeated measures analysis of variance (ANOVA tests were done to have pair-wise comparisons between the formulas and P < 0.05 was considered significant. A subcategory of axial length 24.5-26.5 mm was also tested. Holladay 1, Hoffer Q and SRK/T formulas showed a slight tendency toward resultant hyperopia, with mean error of +0.24 diopters (D, +0.58 D, and +0.92 D, respectively. The Holladay 1 formula provided the best predictive result overall.
Energy Technology Data Exchange (ETDEWEB)
Nasrazadani, Zahra; Salimi, Raana; Askari, Afrooz; Khorsandi, Jamshid; Mirvakili, Mohammad; Mashayekh, Mohammad [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Esfahan (Iran, Islamic Republic of)
2017-02-15
The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18-20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)-CITATON codes. To investigate the criticality of this core, the effective multiplication factor (Keff) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of D2O, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.
Kansas Data Access and Support Center — Digital representation of the map accompanying the "Kansas stream and river fishery resource evaluation" (R.E. Moss and K. Brunson, 1981.U.S. Fish and Wildlife...
Suppression of acoustic streaming in tapered pulse tubes
International Nuclear Information System (INIS)
Olson, J.R.; Swift, G.W.
1998-01-01
In a pulse tube cryocooler, the gas in the pulse tube can be thought of as an insulating piston, transmitting pressure and velocity from the cold heat exchanger to the hot end of the pulse tube. Unfortunately, convective heat transfer can carry heat from the hot end to the cold end and reduce the net cooling power. Here, the authors discuss one driver of such convection: steady acoustic streaming as generated by interactions between the boundary and the oscillating pressure, velocity, and temperature. Using a perturbation method, they have derived an analytical expression for the streaming in a tapered pulse tube with axially varying mean temperature in the acoustic boundary layer limit. The calculations showed that the streaming depends strongly on the taper angle, the ratio of velocity and pressure amplitudes, and the phase between the velocity and pressure, but it depends only weakly on the mean temperature profile and is independent of the overall oscillatory amplitude. With the appropriate tapering of the tube, streaming can be eliminated for a particular operating condition. Experimentally, the authors have demonstrated that an orifice pulse tube cryocooler with the calculated zero-streaming taper has more cooling power than one with either a cylindrical tube or a tapered pulse tube with twice the optimum taper angle
International Nuclear Information System (INIS)
Toshio, S.; Kazuo, A.
1983-01-01
A model for calculating the power distribution and the control rod worth in fast reactors has been developed. This model is based on the influence function method. The characteristics of the model are as follows: 1. Influence functions for any changes in the control rod insertion ratio are expressed by using an influence function for an appropriate control rod insertion in order to reduce the computer memory size required for the method. 2. A control rod worth is calculated on the basis of a one-group approximation in which cross sections are generated by bilinear (flux-adjoint) weighting, not the usual flux weighting, in order to reduce the collapse error. 3. An effective neutron multiplication factor is calculated by adjoint weighting in order to reduce the effect of the error in the one-group flux distribution. The results obtained in numerical examinations of a prototype fast reactor indicate that this method is suitable for on-line core performance evaluation because of a short computing time and a small memory size
International Nuclear Information System (INIS)
Sanda, T.; Azekura, K.
1983-01-01
A model for calculating the power distribution and the control rod worth in fast reactors has been developed. This model is based on the influence function method. The characteristics of the model are as follows: Influence functions for any changes in the control rod insertion ratio are expressed by using an influence function for an appropriate control rod insertion in order to reduce the computer memory size required for the method. A control rod worth is calculated on the basis of a one-group approximation in which cross sections are generated by bilinear (flux-adjoint) weighting, not the usual flux weighting, in order to reduce the collapse error. An effective neutron multiplication factor is calculated by adjoint weighting in order to reduce the effect of the error in the one-group flux distribution. The results obtained in numerical examinations of a prototype fast reactor indicate that this method is suitable for on-line core performance evaluation because of a short computing time and a small memory size
International Nuclear Information System (INIS)
Namestek, L.; Khorvat, D; Shvets, J.; Kunz, Eh.
1976-01-01
A method of calculating the doses of external and internal person irradiation in the nuclear power plant vicinity under conditions of normal operation and accident situations has been described. The main difference between the above method and methods used up to now is the use of a new antropomorphous representation of a human body model together with all the organs. The antropomorphous model of human body and its organs is determined as a set of simple solids, coordinates of disposistion of the solids, sizes, masses, densities and composition corresponding the genuine organs. The use of the Monte-Carlo method is the second difference. The results of the calculations according to the model suggested can be used for determination: a critical group of inhabitans under conditions of normal plant operation; groups of inhabitants most subjected to irradiation in the case of possible accident; a critical sector with a maximum collective dose in the case of an accident; a critical radioisotope favouring the greatest contribution to an individual equivalent dose; critical irradiation ways promoting a maximum contribution to individual equivalent doses; cumulative collective doses for the whole region or for a chosen part of the region permitting to estimate a population dose. The consequent method evoluation suggests the development of separate units of the calculationg program, critical application and the selection of input data of physical, plysiological and ecological character and improvement of the calculated program for the separate concrete events [ru
Directory of Open Access Journals (Sweden)
Khambhiphant B
2016-07-01
Full Text Available Bharkbhum Khambhiphant,1 Suganlaya Sasiwilasagorn,2 Nattida Chatbunchachai,3 Krit Pongpirul2,4 1Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 2Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, 3Department of Ophthalmology, Samut Prakan Hospital, Samut Prakan, Thailand; 4Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA Purpose: The purpose of this study was to evaluate the effect of pupillary dilation on the Haigis formula-calculated intraocular lens (IOL power and ocular biometry measurements by using IOLMaster®. Methods: A prospective study was performed for biometry measurements of 373 eyes of 192 healthy subjects using the IOLMaster at the outpatient department of King Chulalongkorn Memorial Hospital from February 2013 to July 2013. The axial length (AL, anterior chamber depth (ACD, keratometry (K, and IOL power were measured before and after 1% tropicamide eye drop instillation. The Haigis formula was used in the IOL power calculation with the predicted target to emmetropia. Each parameter was compared by a paired t-test prior to and after pupillary dilation. Bland–Altman plots were also used to determine the agreement between each parameter. Results: The mean age of the subjects was 53.74±14.41 years (range 18–93 years. No differences in AL (P=0.03, steepest K (P=0.42, and flattest K (P=0.41 were obtained from the IOLMaster after pupillary dilation. However, ACD and IOL power were significantly different postdilation (P<0.01 and P<0.01, respectively. In ACD and IOL power measurements, the concordance rates were 93.03% and 97.05% within 95% limits of agreement (-0.48 to 0.26 mm and -1.09 to 0.88 D, respectively in the Bland–Altman plots. Conclusion: Biometry measurements in the cycloplegic stage should be considered in the IOL formulas that use parameters other than AL and K. Keywords: Haigis
Using of CFD software for setting the location of water stream micro turbines
Directory of Open Access Journals (Sweden)
Borsuk Łukasz
2016-01-01
Full Text Available The aim of this work was to estimate the efficiency of CFD software in calculating flow velocity magnitude in natural water streams. These kinds of estimations are essential for setting the locations of water stream micro turbines. These devices can be useful to provide electricity in areas remote from power generating facilities or as backup power supply in case of power grid failure. The analysed water stream has length of 100 m and its average slope was approximately 10%. Water velocity varies in the range from 0.5 m3*s−1 to 5 m3*s−1. Additionally, the influence of ground roughness on the stream velocity was also an important factor. Results proved to be satisfactory. In the analysed stream, velocities were in a range which allows the proposed micro turbine to be effective. Calculation grid created by CFD software did not have many areas which may raise doubts. Also, the influence of changes in the ground roughness factor was noticeable. Preliminary CFD simulations allow to estimate where in the stream the micro turbine will be most efficient. On the other hand, despite these calculations, profitability and return on the investment still can be questionable.
Huang, David; Tang, Maolong; Wang, Li; Zhang, Xinbo; Armour, Rebecca L.; Gattey, Devin M.; Lombardi, Lorinna H.; Koch, Douglas D.
2013-01-01
Purpose: To use optical coherence tomography (OCT) to measure corneal power and improve the selection of intraocular lens (IOL) power in cataract surgeries after laser vision correction. Methods: Patients with previous myopic laser vision corrections were enrolled in this prospective study from two eye centers. Corneal thickness and power were measured by Fourier-domain OCT. Axial length, anterior chamber depth, and automated keratometry were measured by a partial coherence interferometer. An OCT-based IOL formula was developed. The mean absolute error of the OCT-based formula in predicting postoperative refraction was compared to two regression-based IOL formulae for eyes with previous laser vision correction. Results: Forty-six eyes of 46 patients all had uncomplicated cataract surgery with monofocal IOL implantation. The mean arithmetic prediction error of postoperative refraction was 0.05 ± 0.65 diopter (D) for the OCT formula, 0.14 ± 0.83 D for the Haigis-L formula, and 0.24 ± 0.82 D for the no-history Shammas-PL formula. The mean absolute error was 0.50 D for OCT compared to a mean absolute error of 0.67 D for Haigis-L and 0.67 D for Shammas-PL. The adjusted mean absolute error (average prediction error removed) was 0.49 D for OCT, 0.65 D for Haigis-L (P=.031), and 0.62 D for Shammas-PL (P=.044). For OCT, 61% of the eyes were within 0.5 D of prediction error, whereas 46% were within 0.5 D for both Haigis-L and Shammas-PL (P=.034). Conclusions: The predictive accuracy of OCT-based IOL power calculation was better than Haigis-L and Shammas-PL formulas in eyes after laser vision correction. PMID:24167323
Simulation and analysis of main steam control system based on heat transfer calculation
Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai
2018-05-01
In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.
Karunaratne, Nicholas
2013-12-01
To compare the accuracy of the Pentacam Holladay equivalent keratometry readings with the IOL Master 500 keratometry in calculating intraocular lens power. Non-randomized, prospective clinical study conducted in private practice. Forty-five consecutive normal patients undergoing cataract surgery. Forty-five consecutive patients had Pentacam equivalent keratometry readings at the 2-, 3 and 4.5-mm corneal zone and IOL Master keratometry measurements prior to cataract surgery. For each Pentacam equivalent keratometry reading zone and IOL Master measurement the difference between the observed and expected refractive error was calculated using the Holladay 2 and Sanders, Retzlaff and Kraff theoretic (SRKT) formulas. Mean keratometric value and mean absolute refractive error. There was a statistically significantly difference between the mean keratometric values of the IOL Master, Pentacam equivalent keratometry reading 2-, 3- and 4.5-mm measurements (P variance). There was no statistically significant difference between the mean absolute refraction error for the IOL Master and equivalent keratometry readings 2 mm, 3 mm and 4.5 mm zones for either the Holladay 2 formula (P = 0.14) or SRKT formula (P = 0.47). The lowest mean absolute refraction error for Holladay 2 equivalent keratometry reading was the 4.5 mm zone (mean 0.25 D ± 0.17 D). The lowest mean absolute refraction error for SRKT equivalent keratometry reading was the 4.5 mm zone (mean 0.25 D ± 0.19 D). Comparing the absolute refraction error of IOL Master and Pentacam equivalent keratometry reading, best agreement was with Holladay 2 and equivalent keratometry reading 4.5 mm, with mean of the difference of 0.02 D and 95% limits of agreement of -0.35 and 0.39 D. The IOL Master keratometry and Pentacam equivalent keratometry reading were not equivalent when used only for corneal power measurements. However, the keratometry measurements of the IOL Master and Pentacam equivalent keratometry reading 4.5 mm may be
International Nuclear Information System (INIS)
Kim, H. Y.; Joo, H. G.; Kim, K. S.; Kim, G. Y.; Jang, M. H.
2003-01-01
The reactivity and power distribution errors of the HELIOS/MASTER core calculation under power generating conditions are assessed using a whole core transport code DeCART. For this work, the cross section tablesets were generated for a medium sized PWR following the standard procedure and two group nodal core calculations were performed. The test cases include the HELIOS calculations for 2-D assemblies at constant thermal conditions, MASTER 3D assembly calculations at power generating conditions, and the core calculations at HZP, HFP, and an abnormal power conditions. In all these cases, the results of the DeCART code in which pinwise thermal feedback effects are incorporated are used as the reference. The core reactivity, assemblywise power distribution, axial power distribution, peaking factor, and thermal feedback effects are then compared. The comparison shows that the error of the HELIOS/MASTER system in the core reactivity, assembly wise power distribution, pin peaking factor are only 100∼300 pcm, 3%, and 2%, respectively. As far as the detailed pinwise power distribution is concerned, however, errors greater than 15% are observed
Rao, S. T.; Krishnaswamy, J.; Bhalla, R. S.
2017-12-01
Alteration of natural flow regimes is considered as a major threat to freshwater fish assemblages as it disturbs the water quality and micro-habitat features of rivers. Small hydro-power (SHP), which is being promoted as a clean and green substitute for large hydro-power generation, alters the natural flow regime of head-water streams by flow diversion and regulation. The effects of altered flow regime on tropical stream fish assemblages, driven by seasonality induced perturbations to water quality and microhabitat parameters are largely understudied. My study examined the potential consequences of flow alteration by SHPs on fish assemblages in two tributaries of the west-flowing Yettinahole River which flows through the reserved forests of Sakleshpur in the Western Ghats of Karnataka. The flow in one of the tributaries followed natural flow regime while the other comprised three regimes: a near-natural flow regime above the dam, rapidly varying discharge below the dam and a dewatered regime caused by flow diversion. The study found that the altered flow regime differed from natural flow regime in terms of water quality, microhabitat heterogeneity and fish assemblage response, each indicative of the type of flow alteration. Fish assemblage in the natural flow regime was characterized by a higher catch per site, a strong association of endemic and trophic specialist species. The flow regime above the dam was found to mimic some components of the natural flow regime, both ecological and environmental. Non endemic, generalist and pool tolerant species were associated with the dewatered regime. There was a lack of strong species-regime association and an overall low catch per site for the flow regulated regime below the dam. This study highlights the consequences of altered flows on the composition of freshwater fish assemblages and portrays the potential of freshwater fish as indicators of the degree and extent of flow alteration. The study recommends the need for
International Nuclear Information System (INIS)
Hussein, M.S.; Bonin, H.W.; Lewis, B.J.
2014-01-01
The most recent versions of the Monte Carlo-based probabilistic transport code MCNP6 and the continuous energy reactor physics burnup calculation code Serpent allow for a 3-D geometry calculation accounting for the detailed geometry without unit-cell homogenization. These two codes are used to calculate the axial and radial flux and power distributions for a CANDU6 GENTILLY-2 nuclear reactor core with 37-element fuel bundles. The multiplication factor, actual flux distribution and power density distribution were calculated by using a tally combination for MCNP6 and detector analysis for Serpent. Excellent agreement was found in the calculated flux and power distribution. The Serpent code is most efficient in terms of the computational time. (author)
Energy Technology Data Exchange (ETDEWEB)
Hussein, M.S.; Bonin, H.W., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada)
2014-07-01
The most recent versions of the Monte Carlo-based probabilistic transport code MCNP6 and the continuous energy reactor physics burnup calculation code Serpent allow for a 3-D geometry calculation accounting for the detailed geometry without unit-cell homogenization. These two codes are used to calculate the axial and radial flux and power distributions for a CANDU6 GENTILLY-2 nuclear reactor core with 37-element fuel bundles. The multiplication factor, actual flux distribution and power density distribution were calculated by using a tally combination for MCNP6 and detector analysis for Serpent. Excellent agreement was found in the calculated flux and power distribution. The Serpent code is most efficient in terms of the computational time. (author)
International Nuclear Information System (INIS)
Doron, E.; Ohaion, H.; Asculai, E.
1985-05-01
A software package intended for the assessments of risks resulting from accidental release of radioactive materials from a nuclear power plant is presented. The models and the various programs based on them, are described. The work includes detailed operating instructions for the various programs, as well as instructions for the preparation of the necessary input data. Various options are described for additions and changes to the programs with the aim of extending their usefulness to more general cases from the aspects of meteorology and pollution sources. finally, a sample calculation that enables the user to test the proper functioning of the whole package, as well as his own proficiency in its use, is given. (author)
Energy Technology Data Exchange (ETDEWEB)
Maennel, W. [Friedrich-Alexander-Univ., Erlangen-Nuernberg (Germany). Betriebswirtschafliches Inst.
2004-04-01
Utilities insist that contrary to the opinions of the Federal Cartel Office and network users, distribution network operation is a high-risk enterprise. The contribution starts by listing typical relevant risks in power distribution and then proceeds to discussing risk factors one by one. Empirical findings generated with the Capital Asset Pricing Mode (CAPM) prove that the conservative approach for calculating the risk-based surcharges laid down in the VV II plus agreement is appropriate. (orig./CB) [German] Entgegen der Auffassung von Bundeskartellbehoerden und Netznutzern ist das stark anlagenintensive Netzgeschaeft mit bedeutsamen Unternehmerrisiken behaftet, deren Ueberwaelzung nur begrenzt moeglich ist. Ausgehend von generell bedeutsamen und typischen Unternehmerrisiken im Stromverteilungssektor beschaeftigt sich der Artikel mit den direkt auf die Eigenkapitalverzinsung einwirkenden Risikofaktoren. Mit dem Capital Asset Pricing Mode (CAPM) genierierte empirische Befunde bestaetigen die konservativen Wagniszuschlaege in der VV II plus. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Autti, O.
2013-11-01
The construction of human-controlled watercourses to meet the need for hydroelectric power has substantially changed freshwater ecosystems, as well as the cultural dynamics of local communities along the Kemi River. At the moment there are 21 hydropower plants in the Kemi River basin, and further building is still topical. The construction of hydropower plants gave benefits but it also caused damages to the people living along the Kemi River. It was a deathblow to salmon migration. The alteration of the river has radically changed the water environment, the landscape and the usage of the river environment. The processed conflicts and paid compensations are always connected to economic losses, but the river has also many other aspects and meanings from the viewpoint of a riverman. The planning and building of hydroelectric plants took place at the same time with other significant events in northern Finland. The rise of the forestry industry, the Second World War, post-war reconstruction and structural changes in society framed the electrification of northern rivers. The transformation from an agrarian society to a service and information society happened unusually fast in Finland. It involved every aspect of local people's lives, as the physical environment, local culture, social relations, means of income and the surrounding society changed in a short period of time. In my research I examine the changes caused by the electrification of the Kemi River in their temporal and spatial context. The focus is on the perspectives of local people and their personal relationships with the environment, but on the other hand also on the power relations within various actor groups. From my interview data I have identified four different adaptation strategies: compliant builders, those in denial, resigned bystanders and opposing resisters. These strategies may be found overlapping in the stories of the interviewees. Local residents have had an opportunity to realign
Note on the power divergence in lattice calculations of ΔI=1/2 K→ππ amplitudes at MK=Mπ
International Nuclear Information System (INIS)
Golterman, Maarten; Lin, C.-J. David; Pallante, Elisabetta
2004-01-01
In this Brief Report, we clarify a point concerning the power divergence in lattice calculations of ΔI=1/2 K→ππ decay amplitudes. There have been worries that this divergence might show up in the Minkowski amplitudes at M K =M π with all the mesons at rest. Here we demonstrate, via an explicit calculation in leading-order chiral perturbation theory, that the power divergence is absent at the above kinematic point, as predicted by CPS symmetry
International Nuclear Information System (INIS)
Verduzco, Laura E.; Duffey, Michael R.; Deason, Jonathan P.
2007-01-01
At this time, hydrogen-based power plants and large hydrogen production facilities are capital intensive and unable to compete financially against hydrocarbon-based energy production facilities. An option to overcome this problem and foster the introduction of hydrogen technology is to introduce small and medium-scale applications such as residential and community hydrogen refueling units. Such units could potentially be used to generate both electricity and heat for the home, as well as hydrogen fuel for the automobile. Cost modeling for the integration of these three forms of energy presents several methodological challenges. This is particularly true since the technology is still in the development phase and both the financial and the environmental cost must be calculated using mainly secondary sources. In order to address these issues and aid in the design of small and medium-scale hydrogen systems, this study presents a computer model to calculate financial and environmental costs of this technology using different hydrogen pathways. The model can design and compare hydrogen refueling units against hydrocarbon-based technologies, including the 'gap' between financial and economic costs. Using the methodology, various penalties and incentives that can foster the introduction of hydrogen-based technologies can be added to the analysis to study their impact on financial cost
International Nuclear Information System (INIS)
Crabol, B.; Romeo, E.; Nester, K.
1992-01-01
In case of an accident in a nuclear power plant near the French-German border different schemes for dispersion calculations in both countries will currently be applied. An intercomparison of these schemes initiated from the German-French Commission for the safety of nuclear installations (DFK) revealed in some meteorological situations large differences in the resulting concentrations for radionuclides. An ad hoc working group was installed by the DFK with the mandate to analyse the reasons for the different model results and also to consider new theoretical concepts. The working group has agreed to apply a Gaussian puff model for emergency response calculations. The results of the model based on turbulence parameterization via similarity approach or spectral theory - have been compared with tracer experiments for different emission heights and atmospheric stability regimes. As a reference the old modelling approaches have been included in the study. The simulations with the similarity approach and the spectral theory show a slightly better agreement to the measured concentration data than the schemes used in the past. Instead of diffusion categories both new approaches allow a continuous characterization of the atmospheric dispersion conditions. Because the spectral approach incorporates the sampling time of the meteorological data as an adjustable parameter thereby offering the possibility to adjust the dispersion model to different emission scenarios this turbulence parameterization scheme will be foreseen as the basis for a joint French-German puff model
Directory of Open Access Journals (Sweden)
N. J. Milardovich
2014-10-01
Full Text Available A numerical investigation on the harmonic disturbances in low-voltage cables feeding large LED loads is reported. A frequency domain analysis on several commercially-available LEDs was performed to investigate the signature of the harmonic current injected into the power system. Four-core cables and four single-core cable arrangements (three phases and neutral of small, medium, and large conductor cross sections, with the neutral conductor cross section approximately equal to the half of the phase conductors, were examined. The cables were modelled by using electromagnetic finite-element analysis software. High harmonic power losses (up to 2.5 times the value corresponding to an undistorted current of the same rms value of the first harmonic of the LED current were found. A generalized ampacity model was employed for re-rating the cables. It was found that the cross section of the neutral conductor plays an important role in the derating of the cable ampacity due to the presence of a high-level of triplen harmonics in the distorted current. The ampacity of the cables should be derated by about 40 %, almost independent of the conductor cross sections. The calculation have shown that an incoming widespread use of LED lamps in lighting could create significant additional harmonic losses in the supplying low-voltage lines, and thus more severely harmonic emission limits should be defined for LED lamps.
Model calculations of the chemical processes occurring in the plume of a coal-fired power plant
Energy Technology Data Exchange (ETDEWEB)
Meagher, J F; Luria, M
1982-02-01
Computer simulations of the homogeneous, gas phase chemical reactions which occur in the plume of a coal-fired power plant were conducted in an effort to understand the influence of various environmental parameters on the production of secondary pollutants. Input data for the model were selected to reproduce the dilution of a plume from a medium-sized power plant. The environmental conditions chosen were characteristic of those found during mid-August in the south-eastern United States. Under most conditions examined, it was found that hydroxyl radicals were the most important species in the homogeneous conversion of stack gases into secondary pollutants. Other free radicals, such as HO/sub 2/ and CH/sub 3/O/sub 2/, exceeded the contribution of HO radicals only when high background hydrocarbon concentrations are used. The conversion rates calculated for the oxidation of SO/sub 2/ to SO/sub 4//sup 2 -/ in these plumes were consistent with those determined experimentally. The concentrations and relative proportions of NO/sub x/ (from the power plant) and reactive hydrocarbons (from the background air) determine, to a large extent, the plume reactivity. Free radical production is suppressed during the initial stages of dilution due to the high NO/sub x/ levels. Significant dilution is required before a suitable mix is attained which can sustain the free radical chain processes common to smog chemistry. In most cases, the free radical concentrations were found to pass through maxima and return to background levels. Under typical summertime conditions, the hyroxyl radical concentration was found to reach a maximum at a HC/NO/sub x/ ratio of approximately 20.
Dynamical modeling of tidal streams
International Nuclear Information System (INIS)
Bovy, Jo
2014-01-01
I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.
Directory of Open Access Journals (Sweden)
J. S. Kwang
2017-12-01
Full Text Available Landscape evolution models often utilize the stream power incision model to simulate river incision: E = KAmSn, where E is the vertical incision rate, K is the erodibility constant, A is the upstream drainage area, S is the channel gradient, and m and n are exponents. This simple but useful law has been employed with an imposed rock uplift rate to gain insight into steady-state landscapes. The most common choice of exponents satisfies m ∕ n = 0.5. Yet all models have limitations. Here, we show that when hillslope diffusion (which operates only on small scales is neglected, the choice m ∕ n = 0.5 yields a curiously unrealistic result: the predicted landscape is invariant to horizontal stretching. That is, the steady-state landscape for a 10 km2 horizontal domain can be stretched so that it is identical to the corresponding landscape for a 1000 km2 domain.
Energy Technology Data Exchange (ETDEWEB)
Martin, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)
1966-10-01
The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [French] L'appareil etudie est un ensemble de calcul digital permettant d'elaborer et d'afficher numeriquement la periode et la puissance, d'un reacteur nucleaire lors de son fonctionnement depuis le demarrage jusqu'a la puissance nominale. Il traite en temps reel, de facon continue, les impulsions en provenance d'une chambre de fission. Grace a l'utilisation systematique d'une technique de calcul, la determination d'un logarithme a base 2 par approximation lineaire, un nombre reduit d'elements est utilise. La precision obtenue sur la periode est de l'ordre de 14 pour cent, le temps de reponse de l'ordre de la valeur de la periode calculee. Un ordre de grandeur de la puissance (30 pour cent) est donne a chaque cycle de calcul ainsi que des seuils de puissance necessaires au controle. (auteur)
International Nuclear Information System (INIS)
Silva, M
2006-01-01
The Atucha I Nuclear Power Plant (CNA-I) has enough room to store its spent fuel (SF) in damp in its two pool houses until the middle of 2015.Before that date there is the need to have an interim dry storage system for spent fuel that would make possible to empty at least one of the pools, whether to keep the plant operating if its useful life is extended, or to be able to empty the reactor core in case of decommissioning.Nucleolectrica Argentina S.A. (NA-SA) and the Comision Nacional de Energia Atomica (CNEA), due to their joint responsibility in the management of the SF, have proposed interim dry storage systems.These systems have to be evaluated in order to choose one of them by the end of 2006.In this work the Monte Carlo code MCNP was used to make the criticality and shielding calculations corresponding to the model proposed by CNEA.This model suggests the store of sealed containers with 36 or 37 SF in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.The results of the criticality calculations indicates that the solutions of SF proposed have widely fulfilled the requirements of subcriticality, even in supposed extreme accidental situations.Regarding the transference cask, the SF dose rate estimations allow us to make a feedback for the design aiming to the geometry and shielding improvements.Regarding the store modules, thicknesses ranges of concrete walls are suggested in order to fulfill the dose requirements stated by the Autoridad Regulatoria Nuclear Argentina [es
Energy Technology Data Exchange (ETDEWEB)
Goluoglu, S.
2001-01-11
Transportation of low-enriched uranium (LEU) and mixed-oxide (MOX) assemblies to and within the VVER-1000-type Balakovo Nuclear Power Plant is investigated. Effective multiplication factors for fresh fuel assemblies on the railroad platform, fresh fuel assemblies in the fuel transportation vehicle, and fresh fuel assemblies in the spent fuel storage pool are calculated. If there is no absorber between the units, the configurations with all MOX assemblies result in higher effective multiplication factors than the configurations with all LEU assemblies when the system is dry. When the system is flooded, the configurations with all LEU assemblies result in higher effective multiplication factors. For normal operating conditions, effective multiplication factors for all configurations are below the presumed upper subcritical limit of 0.95. For an accident condition of a fully loaded fuel transportation vehicle that is flooded with low-density water (possibly from a fire suppression system), the presumed upper subcritical limit is exceeded by configurations containing LEU assemblies.
Energy Technology Data Exchange (ETDEWEB)
Osmani, O; Duvenbeck, A; Akcoeltekin, E; Meyer, R; Schleberger, M [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany); Lebius, H [CIMAP, blvd Henri Becquerel, 14070 Caen (France)], E-mail: marika.schleberger@uni-due.de
2008-08-06
In recent experiments the irradiation of insulators of perovskite type with swift (E{approx}100 MeV) heavy ions under glancing incidence has been shown to provide a unique means to generate periodically arranged nanodots at the surface. The physical origin of these patterns has been suggested as stemming from a highly anisotropic electron density distribution within the bulk. In order to show the relevance of the electron density distribution of the target we present a model calculation for the system Xe{sup 23+} {yields} SrTiO{sub 3} that is known to produce the aforementioned surface modifications. On the basis of the Lindhard model of electronic stopping, we employ highly-resolved ab initio electron density data to describe the conversion of kinetic energy into excitation energy along the ion track. The primary particle dynamics are obtained via integration of the Newtonian equations of motion that are governed by a space- and time-dependent frictional force originating from Lindhard stopping. The analysis of the local electronic stopping power along the ion track reveals a pronounced periodic structure. The periodicity length varies strongly with the particular choice of the polar angle of incidence and is directly correlated to the experimentally observed formation of periodic nanodots at insulator surfaces.
International Nuclear Information System (INIS)
Sublet, J.
1998-01-01
The calculation of activation inventories is a key input to virtually all aspects of the safety and environmental assessment of fusion power devices, such as ITER. For the licensing of such devices, regulatory authorities will require proof that the calculations of activation, and calculations to which activation quantities are inputs, are either correct or conservative. An important aspect of activation is decay heat power. In fusion power plants, decay power arises after shutdown from the energy released in the decay of the products of neutron activation, mainly from gamma and beta rays. Computation of the decay power is performed by sophisticated computer codes which solve the large number of coupled differential equations which govern the generation and decay chains for the many nuclides involved. They rely on a large volume of nuclear data, both neutron activation cross-sections and radioactive decay data. Validation of decay power code predictions by means of direct comparison with integral data measurements of sample structural materials under fusion-typical neutron spectra generates confidence in the decay power values calculated. It also permits an assessment of the adequacy of the methods and nuclear data and indicates any inaccuracy or omission that may have led to erroneous results. No experimental data on decay power existed for fusion reactor structural materials and irradiation conditions before a series of experiments were performed using the Fusion Neutron Source FNS facility at the Japan Atomic Energy Research Institute JAERI. Fusion relevant material samples were irradiated in a simulated D-T neutron field for times up to 7 hours and the decay power so generated measured for cooling times up to three months. Using the highly sensitive Whole Energy Absorption Spectrometer (WEAS) method, both β and γ rays decay energies were measured at selected cooling times as early as one minute after the irradiation ended. Coupled to the experiments, and at
International Nuclear Information System (INIS)
Kim, J. O.; Kim, J. K.
1997-01-01
Relative power density distributions of the Kori unit 1 pressurized water reactor calculated by Monte Carlo modeling with the MCNP code. The Kori unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starting with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system coverages to a κ value of 1.00039 ≥ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root mean square error of 2.159%. (author)
International Nuclear Information System (INIS)
Guimaraes, A.C.F.; Goes, A.G.
1988-12-01
The ''RASO'', an activity and operational situation report for Angra 1, is transmitted daily by phone to CNEN by inspectors living at Angra 1 site, anal shows the parameters about the operational status of the nuclear power plant. In the period of 26.10.88 to 04.12.88 a discretized power serie was determined for greater time intervals than the original serie, and then new concentrations were calculated using origem 2 computer code. (author) [pt
International Nuclear Information System (INIS)
Stepanov, V.I.; Koryagin, A.V.; Ruzankov, V.N.
1988-01-01
Computer-aided design system for a complex of problems concerning calculation and analysis of engineering and economical indices of NPP power units is described. In the system there are means for automated preparation and debugging of data base software complex, which realizes th plotted algorithm in the power unit control system. Besides, in the system there are devices for automated preparation and registration of technical documentation
Heo, Seo Weon; Kim, Hyungsuk
2010-05-01
An estimation of ultrasound attenuation in soft tissues is critical in the quantitative ultrasound analysis since it is not only related to the estimations of other ultrasound parameters, such as speed of sound, integrated scatterers, or scatterer size, but also provides pathological information of the scanned tissue. However, estimation performances of ultrasound attenuation are intimately tied to the accurate extraction of spectral information from the backscattered radiofrequency (RF) signals. In this paper, we propose two novel techniques for calculating a block power spectrum from the backscattered ultrasound signals. These are based on the phase-compensation of each RF segment using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio (SNR). The simulation results with uniform numerical phantoms demonstrate that the proposed method estimates local attenuation coefficients within 1.57% of the actual values while the conventional methods estimate those within 2.96%. The proposed method is especially effective when we deal with the signal reflected from the deeper depth where the SNR level is lower or when the gated window contains a small number of signal samples. Experimental results, performed at 5MHz, were obtained with a one-dimensional 128 elements array, using the tissue-mimicking phantoms also show that the proposed method provides better estimation results (within 3.04% of the actual value) with smaller estimation variances compared to the conventional methods (within 5.93%) for all cases considered. Copyright 2009 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Carvalho, Monaco [PETROBRAS, Rio de Janeiro, RJ (Brazil)
1998-07-01
In this paper, is presented a new theoretical approach developed in order to determine by direct method, non iterative, the load flow among the N bus bar of a generic power system. This method has been used to, from a single line simplified system of a typical industrial substation, used in the petroleum and by products storage and transportation facilities, calculate the voltage drops at bus bars and motors terminals from starting of the electric motors, after defining active and reactive power expressions flowing among bus bars, as a function of their voltages, impedance of connecting cables and of the loads connected to them. (author)
Neutron streaming analysis for shield design of FMIT Facility
International Nuclear Information System (INIS)
Carter, L.L.
1980-12-01
Applications of the Monte Carlo method have been summarized relevant to neutron streaming problems of interest in the shield design for the FMIT Facility. An improved angular biasing method has been implemented to further optimize the calculation of streaming and this method has been applied to calculate streaming within a double bend pipe
International Nuclear Information System (INIS)
Geske, G.
1979-01-01
With the aid of two effective material parameters a simple expression is presented for the Bethe-Bloch-formula for the calculation of the collision stopping power of materials for fast electrons. The formula has been modified in order to include the density effect. The derivation was accomplished in connection with a formalism given by Kim. It was shown that the material dependence on the collision stopping power is entirely comprehended by the density and two effective material parameters. Thus a simple criterion is given for the comparison of materials as to their collision stopping power
Shchinnikov, P. A.; Safronov, A. V.
2014-12-01
General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.
Calculation of Thomson scattering spectral fits for interpenetrating flows
Energy Technology Data Exchange (ETDEWEB)
Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)
2014-12-15
Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.
International Nuclear Information System (INIS)
Bhatnagar, S.; Mahecha, J.
2008-09-01
We have employed the framework of Bethe-Salpeter equation under Covariant Instantaneous Ansatz to calculate the leptonic decay constants of unequal mass pseudoscalar mesons. In the Dirac structure of BS wave function, the covariants are incorporated from their complete set in accordance with a recently proposed power counting rule, order-by-order in powers of inverse of meson mass. The decay constants are calculated incorporating both Leading Order (LO) as well as Next-to-leading Order (NLO) Dirac covariants. The contribution of both LO as well as NLO covariants to decay constants are studied in detail in this paper. The results are found to improve dramatically, and hence validating the power counting rule which also provides a practical means of incorporating Dirac covariants in the BS wave function of a hadron. (author)
Transformation of QSPA plasma streams in longitudinal magnetic field
International Nuclear Information System (INIS)
Makhlaj, V.A.; Bandura, A.N.; Chebotarev, V.V.; Kulik, N.V.; Wuerz, H.
2002-01-01
The main aim of this work is analysis of efficiency of QSPA powerful plasma streams transportation in longitudinal magnetic field in dependence on operational mode of accelerator and plasma stream parameters
Energy Technology Data Exchange (ETDEWEB)
Diaz, Daniel Suescun
2007-07-01
This work presents two new methods for the solution of the inverse point kinetics equation. The first method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. Applying some conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has special characteristics, amongst which the possibility of using different sampling periods, and the possibility of restarting the calculation, after its interruption associated it with a possible equipment malfunction, allowing the calculation of reactivity in a non-continuous way. Apart from this reactivity can be obtained with or without dependency on the nuclear power memory. The second method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. The reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. In this method it can be pointed out that the linear part is equivalent to a filter named Finite Impulse Response (Fir). The Fir filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive way. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way. The proposed methods were validated using signals with random noise and showing the relationship between the reactivity difference and the degree of the random noise. (author)
DEFF Research Database (Denmark)
Chen, Shuheng; Hu, Weihao; Chen, Zhe
2014-01-01
Based on generalized chain-table storage structure (GCTSS), a novel power flow method is proposed, which can be used to solve the power flow of weakly meshed distribution networks with multiple distributed generators (DGs). GCTSS is designed based on chain-table technology and its target is to de......Based on generalized chain-table storage structure (GCTSS), a novel power flow method is proposed, which can be used to solve the power flow of weakly meshed distribution networks with multiple distributed generators (DGs). GCTSS is designed based on chain-table technology and its target...... is to describe the topology of radial distribution networks with a clear logic and a small memory size. The strategies of compensating the equivalent currents of break-point branches and the reactive power outputs of PV-type DGs are presented on the basis of superposition theorem. Their formulations...... are simplified to be the final multi-variable linear functions. Furthermore, an accelerating factor is applied to the outer-layer reactive power compensation for improving the convergence procedure. Finally, the proposed power flow method is performed in program language VC++ 6.0, and numerical tests have been...
Fan, Chunpeng; Zhang, Donghui
2012-01-01
Although the Kruskal-Wallis test has been widely used to analyze ordered categorical data, power and sample size methods for this test have been investigated to a much lesser extent when the underlying multinomial distributions are unknown. This article generalizes the power and sample size procedures proposed by Fan et al. ( 2011 ) for continuous data to ordered categorical data, when estimates from a pilot study are used in the place of knowledge of the true underlying distribution. Simulations show that the proposed power and sample size formulas perform well. A myelin oligodendrocyte glycoprotein (MOG) induced experimental autoimmunce encephalomyelitis (EAE) mouse study is used to demonstrate the application of the methods.
International Nuclear Information System (INIS)
Albendea, M.
2014-01-01
Iberdrola is developing a new application to calculate the inventory of radiological material, then of a hypothetical accident, with the name of inventory. This application allows you to calculate the inventory isotopic, analysers and accurate thermal of all or part of the nucleus of the plant of Cofrentes, even of any single element, based on its history of irradiation and specific periods of decay, since the reactor at any time after the shutdown. (Author)
International Nuclear Information System (INIS)
Karlberg, O.
1995-02-01
Doses to critical groups from the activity released from swedish reactors were modelled in 1983. In this report these calculations are compared to doses calculated (using the same assumptions as in the 1983 model) from the activity measured in the water recipient. The study shows that the model overestimates activity in biota and sediments, which was expected, since the model was constructed to be conservative. 13 refs, 5 figs, 6 tabs
Directory of Open Access Journals (Sweden)
Ronald de Vlaming
2017-01-01
Full Text Available Large-scale genome-wide association results are typically obtained from a fixed-effects meta-analysis of GWAS summary statistics from multiple studies spanning different regions and/or time periods. This approach averages the estimated effects of genetic variants across studies. In case genetic effects are heterogeneous across studies, the statistical power of a GWAS and the predictive accuracy of polygenic scores are attenuated, contributing to the so-called 'missing heritability'. Here, we describe the online Meta-GWAS Accuracy and Power (MetaGAP calculator (available at www.devlaming.eu which quantifies this attenuation based on a novel multi-study framework. By means of simulation studies, we show that under a wide range of genetic architectures, the statistical power and predictive accuracy provided by this calculator are accurate. We compare the predictions from the MetaGAP calculator with actual results obtained in the GWAS literature. Specifically, we use genomic-relatedness-matrix restricted maximum likelihood to estimate the SNP heritability and cross-study genetic correlation of height, BMI, years of education, and self-rated health in three large samples. These estimates are used as input parameters for the MetaGAP calculator. Results from the calculator suggest that cross-study heterogeneity has led to attenuation of statistical power and predictive accuracy in recent large-scale GWAS efforts on these traits (e.g., for years of education, we estimate a relative loss of 51-62% in the number of genome-wide significant loci and a relative loss in polygenic score R2 of 36-38%. Hence, cross-study heterogeneity contributes to the missing heritability.
Kolotkov, Gennady A.; Penin, Sergei
2017-11-01
The paper examines an update of comparative analysis of radionuclides released into the atmosphere from Beloyarsk nuclear power plant with fast-neutron reactor for nine years in a row, from 2008 to 2016. It has been shown that the main radionuclides throw out into the atmosphere from Beloyarsk nuclear power plant are beta-active radionuclides. Based on data releases of the RPA "Typhoon", it has been conclude that radiation situation become worse insignificantly; beside on the new reactor BN-800 was put in operation in 2016. Using Spencer-Fano's equation, it was carried out the summary spectrum of emitted radionuclides. On example of Beloyarsk nuclear power plant, it was considered a question about ability of remote detection of raised radioactivity in the atmospheric radioactive plume. It has been shown that it possible to detect raised radioactivity in the emission plume from Beloyarsk nuclear power plant.
International Nuclear Information System (INIS)
Ahmed, S. A.; Peter, J. K.; Semmler, W.; Shultis, J. K.
2007-01-01
By measuring neutron fluxes at different locations throughout a core, it's possible to derive the power-density profile P k (W cm - 3), at an axial depth z of fuel rod k. Micro-pocket fission detectors (MPFD) have been fabricated to perform such in-core neutron flux measurements. The purpose of this study is to develop a mathematical model to obtain axial power density distributions in the fuel rods from the in-core responses of the MPFDs
Energy Technology Data Exchange (ETDEWEB)
Fomina, V N; Titova, E Ya; Migai, V K; Bystrov, P G; Pis' mennyi, E N [Vsesoyuznyi Teplotekhnicheskii Institut (USSR)
1991-06-01
Comparatively evaluates methods for determination of optimum design of extended-surface tubes used in water walls of boilers fired with coal and other fuels in commercial power plants in the USSR. The standard calculation methods introduced in 1973 and other methods developed and tested by individual research institutes of the USSR are described. New and original formulae based on the results of physical and mathematical modeling are evaluated. Heat transfer from flue gases to water walls is analyzed. Arrangement of tube banks, design of extended-surface tubes and other factors that influence heat transfer are considered. Evaluations show that from among the analyzed calculation methods the method developed by the KPI institute is superior to others (it is most accurate and universal). Investigations show that the coefficient of thermal efficiency of the economizers (1st and 2nd stage) of boilers fired with coal amounts to about 0.85. The coefficient considers effects of buildup on the economizer tubes. Use of the method is explained on example of boilers fired with black coal from the Ehkibastuz. 13 refs.
International Nuclear Information System (INIS)
Holladay, D.W.
1979-01-01
Emphasis was focused on the operating parameters that most strongly affected the optimization of the processes used to treat actual process or feed streams which simulated actual compositions occurring at nuclear facilities. These parameters included gas superficial velocity, temperature, types of organic and inorganic contaminants, relative humidity, iodine feed-gas concentration, iodine species, column design (for both acid-scrub and solid sorbent-based processes), sorbent particle size, run time, intense radiation (solid sorbents only), and scrub-acid concentration. The most promising acid-scrub process for removal of iodine species from off-gases appears to be Iodox. The most promising solid sorbent for removal of iodine species from off-gases is the West German Ag-KTB--AgNO 3 -impregnated amorphous silicic acid. The tandem silver mordenite--lead mordenite sorbent system is also quite attractive. Only a limited number of processes have thus far been studied for removal of iodine species from low-level liquid waste streams. The most extensive successful operating experience has been obtained with anion exchange resins utilized at nuclear power reactors. Bench-scale engineering tests have indicated that the best process for removal of all types of iodine species from liquid waste streams may be treatment on a packed bed containing a mixture of sorbents with affinity for both elemental and anionic species of iodine. 154 references, 7 figures, 21 tables
Directory of Open Access Journals (Sweden)
Niancheng Zhou
2014-08-01
Full Text Available The influence of electric vehicle charging stations on power grid harmonics is becoming increasingly significant as their presence continues to grow. This paper studies the operational principles of the charging current in the continuous and discontinuous modes for a three-phase uncontrolled rectification charger with a passive power factor correction link, which is affected by the charging power. A parameter estimation method is proposed for the equivalent circuit of the charger by using the measured characteristic AC (Alternating Current voltage and current data combined with the charging circuit constraints in the conduction process, and this method is verified using an experimental platform. The sensitivity of the current harmonics to the changes in the parameters is analyzed. An analytical harmonic model of the charging station is created by separating the chargers into groups by type. Then, the harmonic current amplification caused by the shunt active power filter is researched, and the analytical formula for the overload factor is derived to further correct the capacity of the shunt active power filter. Finally, this method is validated through a field test of a charging station.
Froud, Robert; Rajendran, Dévan; Patel, Shilpa; Bright, Philip; Bjørkli, Tom; Eldridge, Sandra; Buchbinder, Rachelle; Underwood, Martin
2017-06-01
A systematic review of nonspecific low back pain trials published between 1980 and 2012. To explore what proportion of trials have been powered to detect different bands of effect size; whether there is evidence that sample size in low back pain trials has been increasing; what proportion of trial reports include a sample size calculation; and whether likelihood of reporting sample size calculations has increased. Clinical trials should have a sample size sufficient to detect a minimally important difference for a given power and type I error rate. An underpowered trial is one within which probability of type II error is too high. Meta-analyses do not mitigate underpowered trials. Reviewers independently abstracted data on sample size at point of analysis, whether a sample size calculation was reported, and year of publication. Descriptive analyses were used to explore ability to detect effect sizes, and regression analyses to explore the relationship between sample size, or reporting sample size calculations, and time. We included 383 trials. One-third were powered to detect a standardized mean difference of less than 0.5, and 5% were powered to detect less than 0.3. The average sample size was 153 people, which increased only slightly (∼4 people/yr) from 1980 to 2000, and declined slightly (∼4.5 people/yr) from 2005 to 2011 (P pain trials and the reporting of sample size calculations may need to be increased. It may be justifiable to power a trial to detect only large effects in the case of novel interventions. 3.
Sarracino, Marcello
1941-01-01
The present article deals with what is considered to be a simpler and more accurate method of determining, from the results of bench tests under approved rating conditions, the power at altitude of a supercharged aircraft engine, without application of correction formulas. The method of calculating the characteristics at altitude, of supercharged engines, based on the consumption of air, is a more satisfactory and accurate procedure, especially at low boost pressures.
Vysotskaya, Anna; Kolvakh, Oleg; Stoner, Greg
2016-01-01
The aim of this paper is to describe the innovative teaching approach used in the Southern Federal University, Russia, to teach accounting via a form of matrix mathematics. It thereby contributes to disseminating the technique of teaching to solve accounting cases using mutual calculations to a worldwide audience. The approach taken in this course…
International Nuclear Information System (INIS)
Lima Filho, R.M.; Oliveira, L.F.S. de
1984-01-01
A general method for the calculation of the time evolution of source terms related to irradiated fuel is presented. Some applications are discussed which indicated that the method can provide important informations for the engineering design and safety analysis of a temporary storage facility of irradiated fuel elements. (Author) [pt
Directory of Open Access Journals (Sweden)
Ryouhei eIshii
2014-06-01
Full Text Available Frontal midline theta rhythm (Fmθ appears widely distributed over medial prefrontal areas in EEG recordings, indicating focused attention. Although mental calculation is often used as an attention-demanding task, little has been reported on calculation-related activation in Fmθ experiments. In this study we used spatially filtered MEG and permutation analysis to precisely localize cortical generators of the magnetic counterpart of Fmθ, as well as other sources of oscillatory activity associated with mental calculation processing (i.e., arithmetic subtraction. Our results confirmed and extended earlier EEG/MEG studies indicating that Fmθ during mental calculation is generated in the dorsal anterior cingulate and adjacent medial prefrontal cortex. Mental subtraction was also associated with gamma event-related synchronization, as an index of activation, in right parietal regions subserving basic numerical processing and number-based spatial attention. Gamma event-related desynchronization appeared in the right lateral prefrontal cortex, likely representing a mechanism to interrupt neural activity that can interfere with the ongoing cognitive task.
Odenthal, M.T.; Eggink, C.A.; Melles, G.R.J.; Pameyer, J.H.; Geerards, A.J.; Beekhuis, W.H.
2002-01-01
OBJECTIVES: To describe the refractive results of cataract surgery after photorefractive keratectomy (PRK) for patients with myopia, and to find a more accurate method to predict intraocular lens (IOL) power in these cases. DESIGN: Nonrandomized, retrospective clinical study. PATIENTS AND METHODS:
International Nuclear Information System (INIS)
Kokhanenko, I.K.; Zajtsev, A.A.
1993-01-01
A method for plasma anomalous heating by SHF radiation with variable power characteristics is considered. On the base of automodel system theory it is shown a possibility of providing for controlled plasma burning in a mode with 'sharpening'. Anomalous phenomena, appeared in experimental investigations of the SHF discharge, are explained
International Nuclear Information System (INIS)
Cheong, Jae Hak
2017-01-01
In order to review if present detection limits of radionuclides in liquid effluent from nuclear power plants are effective enough to warrant compliance with regulatory discharge limits, a risk-based approach is developed to derive a new detection limit for each radionuclide based on radiological criteria. Equations and adjustment factors are also proposed to discriminate the validity of the detection limits for multiple radionuclides in the liquid effluent with or without consideration of the nuclide composition. From case studies to three nuclear power plants in Korea with actual operation data from 2006 to 2015, the present detection limits have turned out to be effective for Hanul Unit 1 but may not be sensitive enough for Kori Unit 1 (8 out of 14 radionuclides) and Wolsong Unit 1 (9 out of 42 radionuclides). However, it is shown that the present detection limits for the latter two nuclear power plants can be justified, if credit is given to the radionuclide composition. Otherwise, consideration should be given to adjustment of the present detection limits. The risk-based approach of this study can be used to determine the validity of established detection limits of a specific nuclear power plant. (author)
International Nuclear Information System (INIS)
Garcia H, Carlos R.; Milian, Daniel
1997-01-01
In this paper the most remarkable results obtained in Cuba, for the Juragua Nuclear Power Plant (JNPP) in core fuel management, are shown. The main characteristic of the codes used to solve the usual sequence of neutron-physical calculations available in our code library are reported. The codes validation was based on estimative of their accuracy by inter comparing calculated and WWER-440 NPP's operation data. A brief summary of the extensive calculations carried out for the JNPP Preliminary Safety Report elaboration is presented. This report is one of the requisites demanded by the Cuban Nuclear Agency for issuing the General Permission for restart works in the plant. (author). 12 refs., 4 figs., 6 tabs
International Nuclear Information System (INIS)
Tan Zhenyu; Xia Yueyuan; Liu Xiangdong; Zhao Mingwen; Zhang Liming
2009-01-01
A new calculation of the stopping powers (SP) and inelastic mean free paths (IMFP) for electrons in toluene at energies below 10 keV has been presented. The calculation is based on the dielectric model and on an empirical evaluation approach of optical energy loss function (OELF). The reliability for the evaluated OELFs of several hydrocarbons with available experimental optical data has been systematically checked. For toluene, using the empirical OELF, the evaluated mean ionization potential, is compared with that given by Bragg's rule, and the calculated SP at 10 keV is also compared with the Bethe-Bloch prediction. The present results for SP and IMFP provide an alternative basic data for the study on the energy deposition of low-energy electrons transport through toluene, and also show that the method used in this work may be a good one for evaluating the SP and IMFP for hydrocarbons
International Nuclear Information System (INIS)
Thomasz, E.; Salas, C.A.
1987-01-01
The specific purpose of the study was to determine the experimental ratio between the reading of dosimeters used by the personnel of the Embalse nuclear power plant and the 'real' dose absorbed by the worker in different organs. An anthropomorphic phantom ALDERSON internal and externally loaded with approximately 150 TLD crystals was used. This phantom was placed in five enclosures that were usually occupied by workers of the Embalse nuclear power plant. In this way, the average dose per organ and the effective equivalent dosis in each enclosure could be calculated and compared with the personal dosimeters placed over the thorax and the conversion factor rem/rem for each enclosure was determined. The average factor resulting from the five considered enclosures was 0.73 rem/rem. This means that the personal dosimeters over value the real dosis absorbed by the personnel of the Embalse nuclear power plant in approximately 37%. (Author)
International Nuclear Information System (INIS)
2000-01-01
Systems loaded with plutonium in the form of mixed-oxide (MOX) fuel show somewhat different neutronic characteristics compared with those using conventional uranium fuels. In order to maintain adequate safety standards, it is essential to accurately predict the characteristics of MOX-fuelled systems and to further validate both the nuclear data and the computation methods used. A computation benchmark on power distribution within fuel assemblies to compare different techniques used in production codes for fine flux prediction in systems partially loaded with MOX fuel was carried out at an international level. It addressed first the numerical schemes for pin power reconstruction, then investigated the global performance including cross-section data reduction methods. This report provides the detailed results of this second phase of the benchmark. The analysis of the results revealed that basic data still need to be improved, primarily for higher plutonium isotopes and minor actinides. (author)
International Nuclear Information System (INIS)
England, T.R.; Wilson, W.B.
1980-03-01
Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis
Energy Technology Data Exchange (ETDEWEB)
England, T.R.; Wilson, W.B.
1979-10-01
Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis.
International Nuclear Information System (INIS)
England, T.R.; Wilson, W.B.
1979-10-01
Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis
Directory of Open Access Journals (Sweden)
Antonio A. Martínez García
2015-04-01
Full Text Available La regulación de la tensión es el modo más elemental de control de los Sistemas Eléctricos de Potencia que mejora la estabilidad y la estabilidad transitoria. La introducción de reguladores de tensión muy rápidos facilita la capacidad del sistema de generar acciones que conserven su estabilidad (incremento del torque sincronizante. No obstante, estos dispositivos disminuyen el amortiguamiento del sistema. La forma más económica de mejorar el amortiguamiento de las oscilaciones mecánicas de las unidades generadoras se logra con la adición de un control suplementario agregado en el sistema de excitación, que se conoce como estabilizador de potencia (PSS, por sus siglas en inglés Power System Stabilizer. En el presente trabajo se utilizan las posibilidades del paquete PSAT para seleccionar la mejor ubicación y ajustar PSS en un sistema longitudinal sencillo de dos áreas, similar al caso del Sistema Eléctrico de la República de Cuba. Normally, voltage regulation is the primary mode of control, which improves voltage and transient stability. The introduction of generator´s fast voltage regulators improves Electrical Power Systems ability to generate synchronizing torque to maintain stability. These control devices have a negative effect in damping system oscillations. Supplementary control in generator’s voltage regulators (PSS is the most economic solution to improve system damping. This supplementary control is obtained using power system dampers. PSAT abilities are used in order to obtain setting of this supplementary control in a simple longitudinal two areas system, similar to Cuban Electric Power System.
International Nuclear Information System (INIS)
Kulacsy, K.; Lux, I.
1997-01-01
A new, approximate method is given to calculate the in-core flux from the current of SPNDs, with a delay of only a few seconds. The stability of this stepwise algorithm is proven to be satisfactory, and the results of tests performed both on synthetic and on real data are presented. The reconstructed flux is found to follow both steady state and transient fluxes well. (author)
Calculations of total fusion power and spatial distribution of emissivity for a D-T thermal plasma
International Nuclear Information System (INIS)
Batistoni, P.; Pillon, M.
1987-01-01
The preliminary project of a diagnostic tool to measure the neutron emissivity profile for NET (Next European Torus) with an array of collimators is presented. With the help of a neutron transport code the maximum possible number of collimators, compatible with the crosstalk noise and the space available in the NET 2.2.B is determined within these constraints. An array of 17 collimators can be used, and some experimental results are simulated using a Monte Carlo code. These results are analyzed and an inversion procedure is used to obtain the emissivity profile and evaluate the total fusion power. The results show that the total fusion power can be measured within 10% for different emission profiles
Energy Technology Data Exchange (ETDEWEB)
Djukanovic, M [Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE inc., Cleveland, OH (United States)
1992-10-01
In heavily stressed power systems, post-fault transient voltage dips can lead to undesired tripping of industrial drives and large induction motors. The lowest transient voltage dips occur when fault clearing times are less than critical ones. In this paper, we propose a new iterative analytical methodology to obtain more accurate estimates of voltage dips at maximum angular swing in direct transient stability analysis. We also propose and demonstrate the possibility of storing the results of these computations in the associative memory (AM) system, which exhibits remarkable generalization capabilities. Feature-based models stored in the AM can be utilized for fast and accurate prediction of the location, duration and the amount of the worst voltage dips, thereby avoiding the need and cost for lengthy time-domain simulations. Numerical results obtained using the example of the New England power system are presented to illustrate our approach. (Author)
International Nuclear Information System (INIS)
Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Beekes, M.; Cleijne, J.W.
2005-09-01
A number of new initiatives in which bio-oil is used in stand-alone plants for power generation has been reviewed. The question to be answered is whether the reference case for stand alone biomass projects based on burning of wood chips can still be considered representative for the costs and benefits in this category. ECN, in cooperation with KEMA, have determined the financial gap between the costs and benefits of projects in which bio-oil is used in stand alone plants for power generation. The ranges and reference case for bio-oil in stand alone applications show that these projects have a substantially lower financial gap than the current reference case based on wood chips [nl
International Nuclear Information System (INIS)
Linn, M.A.; Schmoyer, R.E.
1993-01-01
The Nuclear Regulatory Commission (NRC) is in the process of promulgating a proposed rule 10 CFR Part 54, ''Requirements for Renewal of Operating Licensees for Nuclear Power Plants,'' which will allow licenses to renew the operating licenses on their nuclear power plants for an additional 20 years beyond the original 40-year limit. A Generic Environmental Impact Statement (GEIS) prepared by the Oak Ridge National Laboratory (ORNL) in conjunction with and for the Nuclear Regulatory Commission to assess the environmental issues associated with this proposed rule. The evaluation of the environmental impact from postulated severe accidents was included in the GEIS. During this evaluation of postulated severe accidents, a method was developed to estimate the public health consequences of atmospheric releases from severe accidents that is much simpler to use than existing consequence computer codes. From the results of this work, it is concluded that the simplified methodology does provide reasonable and conservative estimates of public risk from atmospheric releases from severe accidents
International Nuclear Information System (INIS)
Niklaus, F.; Korteniemi, V.
1996-01-01
At the Department of Energy Technology at Lappeenranta University of Technology a CATHARE model of one unit of the St. Petersburg (RBMK) nuclear power plant has been generated. The investigations have been done in order to understand better the thermal-hydraulic behaviour of RBMK type reactors and in order to see how far the French thermal-hydraulic safety code CATHARE can predict the physical phenomena during various RBMK transients. (12 refs.)
Cheng, Chih-Wen; Hua, Jian; Hwang, Daw-Shang
2017-12-07
In this study, the nitrogen oxide (NO x ) emission factors and total NO x emissions of two groups of post-Panamax container ships operating on a long-term slow-steaming basis along Euro-Asian routes were calculated using both the probability density function of engine power levels and the NO x emission function. The main engines of the five sister ships in Group I satisfied the Tier I emission limit stipulated in MARPOL (International Convention for the Prevention of Pollution from Ships) Annex VI, and those in Group II satisfied the Tier II limit. The calculated NO x emission factors of the Group I and Group II ships were 14.73 and 17.85 g/kWhr, respectively. The total NO x emissions of the Group II ships were determined to be 4.4% greater than those of the Group I ships. When the Tier II certification value was used to calculate the average total NO x emissions of Group II engines, the result was lower than the actual value by 21.9%. Although fuel consumption and carbon dioxide (CO 2 ) emissions were increased by 1.76% because of slow steaming, the NO x emissions were markedly reduced by 17.2%. The proposed method is more effective and accurate than the NO x Technical Code 2008. Furthermore, it can be more appropriately applied to determine the NO x emissions of international shipping inventory. The usage of operating power probability density function of diesel engines as the weighting factor and the NO x emission function obtained from test bed for calculating NO x emissions is more accurate and practical. The proposed method is suitable for all types and purposes of diesel engines, irrespective of their operating power level. The method can be used to effectively determine the NO x emissions of international shipping and inventory applications and should be considered in determining the carbon tax to be imposed in the future.
Energy Technology Data Exchange (ETDEWEB)
Blokhin, A.I.; Ivanov, A.P.; Korobeinikov, V.V.; Lunev, V.P.; Manokhin, V.N.; Khorasanov, G.L. [SSC RF A. I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Kaluga Region (Russian Federation)
2000-03-01
A new type of safe fast reactor with lead coolant was proposed in Russia. The use of coolants with low moderating properties is one of the ways to get a hard neutron spectrum and an increase in the burning of Np-237, Am-243 and other miner actinides(MA) fissionable preferentially in the fast reactor. The stable lead isotope, Pb-208, is proposed as the one of such coolants. The neutron inelastic scattering cross-section of Pb-208 is 3.0-3.5 times less than the one of other lead isotopes. Calculation of the MA transmutation rates in the standard BN-type fast reactor with different coolants is performed by Monte-Carlo method using Code MMKFK. Six various models are simulated for the fast reactor blanket with different kinds of fuel and coolant. The fast reactor with natural-lead coolant practically does not differ from the reactor with sodium coolant relative to MA incineration. The use of Pb-208 as a coolant in the fast reactor results in increasing incineration of MA from 18 to 26% in comparison with a usual fast reactor. Calculation of induced radioactivity was performed using the FISPACT-3 inventory code, also. The results include total induced radioactivity and dose rate for initial material composition and selected long-lived radionuclides. The calculations show that the coolant consisting of lead isotope, Pb-206, or Pb-207, can be considered as the low-activation one because it does not practically contain long-lived toxic radionuclides. (M. Suetake)
International Nuclear Information System (INIS)
Moraes, Leonardo R.C.; Alves Filho, Hermes; Barros, Ricardo C.
2017-01-01
Accelerator Driven Systems (ADS) are sub-critical systems stabilized by stationary external sources of neutrons. A system is subcritical when the removal by absorption and leakage exceeds the production by fission and tends to shut down. On the other hand, any subcritical system can be stabilized by including time-independent external sources of neutrons. The goal of this work is to determine the intensity of uniform and isotropic sources of neutrons that must be added inside all fuel regions of a subcritical system so that it becomes stabilized, generating a prescribed distribution of electric power. A computer program has been developed in Java language to estimate the intensity of stationary sources of neutrons that must be included in the fuel regions to drive the subcritical system with a fixed power distribution prescribed by the user. The mathematical model used to achieve this goal was the energy multigroup, slab-geometry neutron transport equation in the discrete ordinates (S N ) formulation and the response matrix method was applied to solve the forward and the adjoint S N problems. Numerical results are given to verify the present. (author)
Energy Technology Data Exchange (ETDEWEB)
Moraes, Leonardo R.C.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: lrcmoraes@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: ricardob@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Programa de Pós-Graduação em Modelagem Computacional
2017-07-01
Accelerator Driven Systems (ADS) are sub-critical systems stabilized by stationary external sources of neutrons. A system is subcritical when the removal by absorption and leakage exceeds the production by fission and tends to shut down. On the other hand, any subcritical system can be stabilized by including time-independent external sources of neutrons. The goal of this work is to determine the intensity of uniform and isotropic sources of neutrons that must be added inside all fuel regions of a subcritical system so that it becomes stabilized, generating a prescribed distribution of electric power. A computer program has been developed in Java language to estimate the intensity of stationary sources of neutrons that must be included in the fuel regions to drive the subcritical system with a fixed power distribution prescribed by the user. The mathematical model used to achieve this goal was the energy multigroup, slab-geometry neutron transport equation in the discrete ordinates (S{sub N}) formulation and the response matrix method was applied to solve the forward and the adjoint S{sub N} problems. Numerical results are given to verify the present. (author)
Directory of Open Access Journals (Sweden)
Maria Eriksson
2017-10-01
Full Text Available One of the most prominent features of digital music services is the provision of personalized music recommendations that come about through the profiling of users and audiences. Based on a range of "bot experiments," this article investigates if, and how, gendered patterns in music recommendations are provided by the streaming service Spotify. While our experiments did not give any strong indications that Spotify assigns different taste profiles to male and female users, the study showed that male artists were highly overrepresented in Spotify's music recommendations; an issue which we argue prompts users to cite hegemonic masculine norms within the music industries. Although the results should be approached as historically and contextually contingent, we argue that they point to how gender and gendered tastes may be constituted through the interplay between users and algorithmic knowledge-making processes, and how digital content delivery may maintain and challenge gender relations and gendered power differentials within the music industries. Seen through the lens of critical research on software, music and gender performativity, the experiments thus provide insights into how gender is shaped and attributed meaning as it materializes in contemporary music streams.
Mahant, A. K.; Rao, P. S.; Misra, S. C.
1994-07-01
In the calculational model developed by Warren and Shah for the computation of the gamma sensitivity ( Sγ) it has been observed that the computed Sγ value is quite sensitive to the space charge distribution function assumed for the insulator region and the energy of the gamma photons. The Sγ of SPNDs with Pt, Co and V emitters (manufactured by Thermocoax, France) has been measured at 60Co photon energy and a good correlation between the measured and computed values has been obtained using a composite space charge density function (CSCD), the details of which are presented in this paper. The arguments are extended for evaluating the Sγ values of several SPNDs for which Warren and Shah reported the measured values for a prompt fission gamma spectrum obtained in a swimming pool reactor. These results are also discussed.
Directory of Open Access Journals (Sweden)
Henry Bastidas Mora
2011-09-01
Full Text Available This article presents an analysis of electrical distribution theory for 60Hz-lines operating at low voltage, particularly underground lines and residential indoor installations. Such distribution lines’ behaviour is observed as a function of frequency to consider any advantages regarding the potential use of power transmission lines (PTL for transmitting telecommunication signals. A method for computing the secondary parameters is proposed which has been based on the primary parameters, namely inductance, capacitance, conductance and resistance. The secondary parameters so obtained were characteristic impedance, propagation constant (together with its real value and the attenuation constant. Conductor configurations, insulation materials and gauges commonly used in Colombia were verified for such low-voltage lines. A mathematical model is proposed as a theoretical tool for analysing and predicting characteristic impedance pattern and the attenuations which occur at high frequencies, thereby complementing our group’s previous work. Conclusions are drawn, together with a perspective regarding future work and applications.
Directory of Open Access Journals (Sweden)
Ariel Santos Fuentefria
2012-07-01
Full Text Available La integración de la energía eólica en los sistemas eléctricos puede provocar problemas de estabilidad ligados fundamentalmente a la variación aleatoria del viento y que se reflejan en la tensión y la frecuencia del sistema. Por lo que conocer el Límite de Potencia Eólica (LPE que puede insertarse en la red sin que esta pierda la estabilidad es un aspecto de extrema importancia, en el cual se han realizando métodos de cálculo para encontrar dicho límite. Estos métodos se desarrollan teniendo en cuenta las restricciones del sistema en estado estacionario, en estado dinámico o ambos. En el siguiente trabajo se desarrolla un método para el cálculo de LPE teniendo en cuenta las restricciones en estado estacionario del sistema. El método propuesto se basa en un análisis de flujo continuado, complementado con el método de Producción Mínima de Potencia Activa, desarrollado en la bibliografía. Se prueba en el sistema eléctrico de la Isla de la Juventud, Cuba y se usa elsoftware libre PSAT para la realización de estos estudios. The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very importantmatter. Existing In bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT.
Energy Technology Data Exchange (ETDEWEB)
Vermeeren, L. [SCK/CEN, B-2400 Mol (Belgium)
2001-07-01
Self-powered neutron detectors (SPND) are well suited to monitor continuously the neutronic operating conditions of driver fuel of research reactors and to follow its burnup evolution. This is of particular importance when advanced or new MTR fuel designs need to be qualified. We have developed a detailed MCNP-4B based Monte Carlo approach for the calculation of neutron sensitivities of SPNDs. Results for the neutron sensitivity of a Rh SPND are in excellent agreement with experimental data recently obtained at the BR2 research reactor. A critical comparison of the Monte Carlo results with results from standard analytical methods reveals an important deficiency of the analytical methods in the description of the electron transport efficiency. Our calculation method allows a reliable on-line determination of the absolute in-pile neutron flux. (author)
International Nuclear Information System (INIS)
Basanskii, E.G.; Bondarenko, A.G.; Gavrilov, A.L.; Kudryashov, N.A.; Kul'zhik, M.N.; Pokrovskii, S.M.
1992-01-01
Accurate prediction of the development of processes which accompany severe accidents at nuclear power plants requires models of specific physical-chemical processes and the entire set of physical-chemical transformations. Developed here are two-dimensional methods for calculating the penetration of radionuclides into the soil through a break which arises in a buried part of the containment shell or the concrete foundation plate due to interactions with the melted core as a result of its complete destruction. The method discussed here for reducing the transport of radionuclides by a steam-gas mixture to a system of ordinary differential equations allows well-developed algorithms to be used effectively for calculating kinetics and radioactive decay-chain transformations in the examined problems. 10 refs., 3 figs
Energy Technology Data Exchange (ETDEWEB)
Canders, W R
1982-07-13
The dissertation discusses the calculation and design of flywheel energy storage systems with electromechanical power converters and composite-fibre flywheels. For this purpose, the main load criteria for centrifugal and pressure loads on flywheel rings of unidirectional laminates are determined, and criteria are given for the dimensioning of flywheel rings. The fast rotational speed of the flywheel dominates the design of the driving motor. As an example, the calculation of a permanent-magnet-excited external rotor motor is described. Special consideration is given to the close correlation between stator current density and ampere bars per cm, and rotor strength. The findings are illustrated by design examples, by an example from the field of vehicle construction, and by experimental studies on composite-fibre flywheels and a driving motor with a high rotational speed.
International Nuclear Information System (INIS)
Vermeeren, L.
2001-01-01
Self-powered neutron detectors (SPND) are well suited to monitor continuously the neutronic operating conditions of driver fuel of research reactors and to follow its burnup evolution. This is of particular importance when advanced or new MTR fuel designs need to be qualified. We have developed a detailed MCNP-4B based Monte Carlo approach for the calculation of neutron sensitivities of SPNDs. Results for the neutron sensitivity of a Rh SPND are in excellent agreement with experimental data recently obtained at the BR2 research reactor. A critical comparison of the Monte Carlo results with results from standard analytical methods reveals an important deficiency of the analytical methods in the description of the electron transport efficiency. Our calculation method allows a reliable on-line determination of the absolute in-pile neutron flux. (author)
Stream II-V5: Revision Of Stream II-V4 To Account For The Effects Of Rainfall Events
International Nuclear Information System (INIS)
Chen, K.
2010-01-01
STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.
International Nuclear Information System (INIS)
Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.
1992-01-01
The advanced propulsion group at Pratt ampersand Whitney has developed a nuclear thermal rocket concept, the XNR2000, for use on lunear, Mars, and deep-space planetary missions. The XNR2000 engine is powered by a fast spectrum cermet-fueled nuclear reactor that heats up hydrogen propellant to a maximum of 2850 K. An expander cycle is used to deliver 12 kg/s hydrogen to the core, producing 25,000 lb f thrust at 944 s of specific impulse. The reactor comprises a beryllium-reflected outer annulus core and an inner core with the hydrogen propellant entering from the bottom of the outer core and exiting from the bottom part of the inner core to the thrust chamber. Both the outer and inner cores are loaded with prismatic cermet fuel elements. The baseline XNR2000 reactor core consists of 90 fuel elements in the outer core and 61 in the inner core, arranged in the pattern. This paper focuses on the neutronic analysis of the baseline XNR2000 reactor
International Nuclear Information System (INIS)
Zuzek, P.; Baird, W.F.; International Joint Commission, Ottawa, ON
2008-01-01
This presentation discussed an automated flood and erosion prediction system designed for the upstream sections of the Moses-Saunders power dam. The system included a wave prediction component along with 3-D maps, hourly run-ups, geographic information system (GIS) tools and a hazard analysis tool. Parcel, reach, township, and county databases were used to populate the system. The prediction system was used to develop detailed study sites of shore units in the study area. Shoreline classes included sand and cohesive buffs, low banks, coarse beaches, and cobble or boulder lags. Time series plots for Lake Ontario water and wave levels were presented. Great Lakes ice cover data were also included in the system as well as erosion predictions from 1961 to 1995. The system was also used to develop bluff recession equations and cumulative recession analyses for different regulation plans. Cumulative bluff recession and protection requirements were outlined. Screenshots of the flood and erosion prediction system interface were also included. tabs., figs
DEFF Research Database (Denmark)
Elmholdt, Claus Westergård; Fogsgaard, Morten
2016-01-01
and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable....... It is thus a central point that power is not necessarily something that breaks down and represses. On the contrary, an explicit focus on the dynamics of power in relation to creativity can be productive for the organisation. Our main focus is to elaborate the implications of this for practice and theory...
U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...
Prioritized Contact Transport Stream
Hunt, Walter Lee, Jr. (Inventor)
2015-01-01
A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.
Motion of shocks through interplanetary streams
International Nuclear Information System (INIS)
Burlaga, L.F.; Scudder, J.D.
1975-01-01
A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model
Directory of Open Access Journals (Sweden)
Szolnoki Gergely
2016-01-01
Full Text Available The main purpose of this consumer study was firstly to calculate the economic importance, in term of purchasing power, of visitors in the German wine growing region Rheingau, and secondly to examine their demographic and behavioural characteristics, as well as their the motivation using segmentation approach. In the framework of a face-to-face survey, conducted between April and May 2015, a total of 1,555 tourists were interviewed at 18 different locations in the Rheingau. Four wine tourist types were identified by using cluster analysis: 1 Wine and Rheingau lovers, who have a high interest in wine and visit the region several times a year; 2 wine-oriented tourists, who use the culinary offerings of the Rheingau with pleasure but do not come to the region very often; 3 new visitors, who come to the region mainly because of the nature and history; and 4 foreign tourists, who have less knowledge about the Rheingau and buy less wine in the region. With the help of the purchasing power calculation, we can state that approximately 18 % of the total production is purchased directly in the region by tourists.
Productivity of Stream Definitions
Endrullis, Jörg; Grabmayer, Clemens; Hendriks, Dimitri; Isihara, Ariya; Klop, Jan
2007-01-01
We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continuously in such a way that a uniquely determined stream is obtained as the limit. Whereas productivity is undecidable
Productivity of stream definitions
Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.
2008-01-01
We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas
Tegen, Suzanne Isabel Helmholz
This dissertation introduces new techniques for calculating and comparing statewide economic impacts from new coal, natural gas and wind power plants, as well as from demand-side management programs. The impetus for this work was two-fold. First, reviews of current literature and projects revealed that there was no standard way to estimate statewide economic impacts from new supply- and demand-side electricity options. Second, decision-makers who were interviewed stated that they were overwhelmed with data in general, but also lacked enough specific information about economic development impacts to their states from electricity, to make informed choices. This dissertation includes chapters on electricity decision-making and on economic impacts from supply and demand. The supply chapter compares different electricity options in three states which vary in natural resource content: Arizona, Colorado and Michigan. To account for differing capacity factors, resources are compared on a per-megawatt-hour basis. The calculations of economic impacts from new supply include: materials and labor for construction, operations, maintenance, fuel extraction, fuel transport, as well as property tax, financing and landowner revenues. The demand-side chapter compares residential, commercial and industrial programs in Iowa. Impact calculations include: incremental labor and materials for program planning, installation and operations, as well as sales taxes and electricity saved. Results from supply-side calculations in the three states analyzed indicate that adding new wind power can have a greater impact to a state's economy than adding new gas or coal power due to resource location, taxes and infrastructure. Additionally, demand-side management programs have a higher relative percentage of in-state dollar flow than supply-side solutions, though demand-side programs typically involve fewer MWh and dollars than supply-side generation. Methods for this dissertation include researching
Energy Technology Data Exchange (ETDEWEB)
Zhu, J [University of Adelaide, Adelaide, SA (Australia); Penfold, S [University of Adelaide, Adelaide, SA (Australia); Royal Adelaide Hospital, Adelaide, SA (Australia)
2015-06-15
Purpose: To investigate the robustness of dual energy CT (DECT) and single energy CT (SECT) proton stopping power calibration techniques and quantify the associated errors when imaging a phantom differing in chemical composition to that used during stopping power calibration. Methods: The CIRS tissue substitute phantom was scanned in a CT-simulator at 90kV and 140kV. This image set was used to generate a DECT proton SPR calibration based on a relationship between effective atomic number and mean excitation energy. A SECT proton SPR calibration based only on Hounsfield units (HUs) was also generated. DECT and SECT scans of a second phantom of known density and chemical composition were performed. The SPR of the second phantom was calculated with the DECT approach (SPR-DECT),the SECT approach (SPR-SECT) and finally the known density and chemical composition of the phantom (SPR-ref). The DECT and SECT image sets were imported into the Pinnacle{sup 3} research release of proton therapy treatment planning. The difference in dose when exposed to a common pencil beam distribution was investigated. Results: SPR-DECT was found to be in better agreement with SPR-ref than SPR- SECT. The mean difference in SPR for all materials was 0.51% for DECT and 6.89% for SECT. With the exception of Teflon, SPR-DECT was found to agree with SPR-ref to within 1%. Significant differences in calculated dose were found when using the DECT image set or the SECT image set. Conclusion: The DECT calibration technique was found to be more robust to situations in which the physical properties of the test materials differed from the materials used during SPR calibration. Furthermore, it was demonstrated that the DECT and SECT SPR calibration techniques can Result in significantly different calculated dose distributions.
Energy Technology Data Exchange (ETDEWEB)
Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Kondo, Yoshikazu; Noguchi, Yoshikazu [PESCO Co.Ltd. (Korea, Republic of)
2013-07-01
For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)
International Nuclear Information System (INIS)
Schaffner, B.; Pedroni, E.
1998-01-01
The precision in proton radiotherapy treatment planning depends on the accuracy of the information used to calculate the stopping power properties of the tissues in the patient's body. This information is obtained from computed tomography (CT) images using a calibration curve to convert CT Hounsfield units into relative proton stopping power values. The validity of a stoichiometric method to create the calibration curve has been verified by measuring pairs of Hounsfield units and stopping power values for animal tissue samples. It was found that the agreement between measurement and calibration curve is better than 1% if beam hardening effects in the acquisition of the CT images can be neglected. The influence of beam hardening effects on the quantitative reading of the CT measurements is discussed and an estimation for the overall range precision of proton beams is given. It is expected that the range of protons in the human body can be controlled to better than ±1.1% of the water equivalent range in soft tissue and ±1.8% in bone, which translates into a range precision of about 1-3 mm in typical treatment situations. (author)
A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000
Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.
2004-01-01
The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a
Variance reduction techniques for 14 MeV neutron streaming problem in rectangular annular bent duct
Energy Technology Data Exchange (ETDEWEB)
Ueki, Kotaro [Ship Research Inst., Mitaka, Tokyo (Japan)
1998-03-01
Monte Carlo method is the powerful technique for solving wide range of radiation transport problems. Its features are that it can solve the Boltzmann`s transport equation almost without approximation, and that the complexity of the systems to be treated rarely becomes a problem. However, the Monte Carlo calculation is always accompanied by statistical errors called variance. In shielding calculation, standard deviation or fractional standard deviation (FSD) is used frequently. The expression of the FSD is shown. Radiation shielding problems are roughly divided into transmission through deep layer and streaming problem. In the streaming problem, the large difference in the weight depending on the history of particles makes the FSD of Monte Carlo calculation worse. The streaming experiment in the 14 MeV neutron rectangular annular bent duct, which is the typical streaming bench mark experiment carried out of the OKTAVIAN of Osaka University, was analyzed by MCNP 4B, and the reduction of variance or FSD was attempted. The experimental system is shown. The analysis model by MCNP 4B, the input data and the results of analysis are reported, and the comparison with the experimental results was examined. (K.I.)
Benthic invertebrate fauna, small streams
J. Bruce Wallace; S.L. Eggert
2009-01-01
Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...
Energy Technology Data Exchange (ETDEWEB)
Podewils, Christoph
2012-05-15
With the new reimbursement regulations, it has become increasingly difficult to calculate the profitability of a solar power system. This contribution identifies critical aspects and shows how profitability can be achieved in spite of legal restrictions.
Methods for removing radioactive isotopes from contaminated streams
International Nuclear Information System (INIS)
Hoy, D.R.; Hickey, T.N.; Spulgis, I.S.; Parish, H.C.
1979-01-01
Methods for removing radioactive isotopes from contaminated gas streams for use in atmospheric containment and cleanup systems in nuclear power plants are provided. The methods provide for removal of radioactive isotopes from a first portion of the contaminated stream, separated from the remaining portion of the stream, so that adsorbent used to purify the first portion of the contaminated stream by adsorption of the radioactive isotopes therefrom can be tested to determine the adsorbing efficacy of the generally larger portion of adsorbent used to purify the remaining portion of the stream
Interplanetary stream magnetism: Kinematic effects
International Nuclear Information System (INIS)
Burlaga, L.F.; Barouch, E.
1976-01-01
The particle density, and the magnetic field intensity and direction, are calculated for volume elements of the solar wind as a function of the initial magnetic field direction, Phi 0 , and the initial speed gradient, (deltaV/deltaR) 0 . It is assumed that the velocity is constant and radial. These assumptions are approximately valid between approx.0.1 and 1.0 AU for many streams. Time profiles of n, B, and V are calculated for corotating streams, neglecting effects of pressure gradients. The compression and rarefaction of B depend sensitively on Phi 0 . By averaging over a typical stream, it is found that approx.r -2 , whereas does not vary in a simple way, consistent with deep space observations. Changes of field direction may be very large, depending on the initial angle; but when the initial angle at 0.1 Au is such that the base of the field line corotates with the Sun, the spiral angle is the preferred direction at 1 AU. The theory is also applicable to nonstationary flows
Energy Technology Data Exchange (ETDEWEB)
Delto, Ralf; Winterholer, Benoit; Bender, Dieter [AREVA NP, Erlangen (Germany); Kierkegaard, Jesper [Vattenfall Nuclear Fuel AB, Vallingby (Sweden); Loberg, John [Uppsala Univ. (Sweden). Dept. of Applied Nuclear Physics
2010-05-15
For a deeper investigation of the pellet cladding interaction (PCI) phenomenon in BWRs a detailed knowledge of the pin power distribution in the vicinity of the control blade (CB) tip is required. The spatial resolution of nodal-core simulators like MICROBURN-B2 is normally not fine enough to give reliable information on the linear heat generation rate (LHGR) on a scaling of 1 cm and is not capable of describing the control rod handle precisely. Such fine-resolution LHGR calculations have been performed with MCNP in order to better understand the PCI phenomenon in BWRs. Two cases have been studied which correspond to two loading strategies in two different plants. These cases also have different CB geometry, different burnup of the fuel assemblies (FA) in the controlled cell and different void level. (orig.)
International Nuclear Information System (INIS)
Delto, Ralf; Winterholer, Benoit; Bender, Dieter; Kierkegaard, Jesper; Loberg, John
2010-01-01
For a deeper investigation of the pellet cladding interaction (PCI) phenomenon in BWRs a detailed knowledge of the pin power distribution in the vicinity of the control blade (CB) tip is required. The spatial resolution of nodal-core simulators like MICROBURN-B2 is normally not fine enough to give reliable information on the linear heat generation rate (LHGR) on a scaling of 1 cm and is not capable of describing the control rod handle precisely. Such fine-resolution LHGR calculations have been performed with MCNP in order to better understand the PCI phenomenon in BWRs. Two cases have been studied which correspond to two loading strategies in two different plants. These cases also have different CB geometry, different burnup of the fuel assemblies (FA) in the controlled cell and different void level. (orig.)
International Nuclear Information System (INIS)
Borresen, S.
1995-01-01
A simplified, finite-difference diffusion scheme for a three-dimensional calculation of the gross power distribution in the core of a boiling water reactor (BWR) is presented. Results obtained in a series of one- and two-dimensional test cases indicate that this method may be of sufficient accuracy and simplicity for implementation in BWR-simulator computer programs. Computer requirements are very modest; thus, only 3N memory locations are required for in-core treatment of the inner iteration in the solution of a problem with N mesh points. The mesh width may be chosen equal to the fuel assembly pitch. Input data are in the form of conventional 2-group diffusion parameters. It is concluded that the method presented has definite advantages in comparison with the nodal coupling method. (author)
International Nuclear Information System (INIS)
Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.
1978-01-01
Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma
International Nuclear Information System (INIS)
Tahir, N A; Weick, H; Iwase, H
2005-01-01
A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump
International Nuclear Information System (INIS)
Chen, K.F.
1996-01-01
The Environmental Transport Group of the Environmental Technology Section was requested to predict the seven-day ten-year low flow (7Q10 flow) for the SRS streams based on historical stream flow records. Most of the historical flow records for the SRS streams include reactor coolant water discharged from the reactors and process water released from the process facilities. The most straight forward way to estimate the stream daily natural flow is to subtract the measured upstream reactor and/or facility daily effluents from the measured downstream daily flow. Unfortunately, this method does not always work, as indicated by the fact that sometimes the measured downstream volumetric flow rates are lower than the reactor effluent volumetric flow rates. For those cases that cannot be analyzed with the simple subtracting method, an alternative method was used to estimate the stream natural flows by statistically separating reactor coolant and process water flow data. The correlation between the calculated 7Q10 flows and the watershed areas for Four Mile Branch and Pen Branch agrees with that calculated by the USGS for Upper Three Runs and Lower Three Runs Creeks. The agreement between these two independent calculations lends confidence to the 7Q10 flow calculations presented in this report
International Nuclear Information System (INIS)
Bjoerk, Peter; Knoeoes, Tommy; Nilsson, Per
2004-01-01
The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm 2 ), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber
Björk, Peter; Knöös, Tommy; Nilsson, Per
2004-10-07
The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm2), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber hampers
International Nuclear Information System (INIS)
Howell, C.R.; Tornow, W.; Murphy, K.; Pfuetzner, H.G.; Roberts, M.L.; Li, A.; Felsher, P.D.; Walter, R.L.; Slaus, I.; Treado, P.A.; Koike, Y.
1987-01-01
High-accuracy analyzing-power A y (θ) data for n-d elastic scattering at 12 MeV have been measured using the polarized-neutron facilities at the Triangle Universities Nuclear Laboratory (TUNL). The present data have been combined with previous n-d measurements at 10, 12, and 14.1 MeV to form the highest-accuracy A y (θ) data set for n-d elastic scattering below 20 MeV. These data are compared to recent Faddeev-based neutron-deuteron (n-d) calculations which use the Paris and Bonn equivalent separable potentials PEST and BEST, as well as Doleschall's representation of the P- and D-wave nucleon-nucleon interactions. None of these models adequately describe the data in the angular region around the maximum of A y (θ). Possible reasons for the discrepancies are discussed. The sensitivity of the present Faddeev-based calculations to various angular momentum components of the nucleon-nucleon interaction are examined. (Auth.)
Three-dimensional calculations for a 4 kA, 3.5 MV, 2 microsecond injector with asymmetric power feed
Directory of Open Access Journals (Sweden)
Thomas P. Hughes
1999-11-01
Full Text Available The DARHT-2 accelerator under construction at Los Alamos National Laboratory requires a long flattop (2μs 2–4 kA, 3.5 MV, low-emittance electron beam source. The injector is being constructed at Lawrence Berkeley National Laboratory and consists of a large-area thermionic cathode mounted atop a vertical column. The 90° bend between the horizontally emitted beam and the column produces dipole and higher-pole fields which must be corrected. In addition, the fast rise of the current flowing into the vacuum tank excites rf modes which cause transverse oscillations of the beam centroid. We have modeled these effects with the 3D electromagnetic code LSP. The code has models for pulsed power transmission lines, space-charge-limited emission and transport of charged particles, externally applied magnetic fields, and frequency-dependent absorption of rf. We calculate the transverse displacement of the beam as a function of time during the current pulse, and the positioning and thickness of ferrite absorber needed to damp the rf modes. The numerical results are compared to analytic calculations.
基于韦伯模型的风场储能容量计算%Storage Capacity Calculation of Wind Power Based on Weibull Model
Institute of Scientific and Technical Information of China (English)
王树超
2013-01-01
Wind speed model and wind generator output model are analyzed by applying Weibull function to set up wind speed distribution model and the concept of probability theory to calculate the power capacity of energy storage system . The ratio of wind energy and storage capacity is reasonable and meets requirement of energy system by means of stimula -tion experiment .Under the condition of satisfying China ’ s wind power grid standard , the energy storage scale should be minimized and be verified by actual wind farm data .%分析了风电场风速的模型、风力发电机输出模型，运用韦伯函数建立风速分布模型，采用概率论期望的思想，计算储能系统功率容量。通过模拟仿真实验，得出满足电力系统要求的合理风储比。在满足我国风电并网标准的条件下，尽可能地减小储能系统规模，并利用实际风电场数据加以分析验证。
International Nuclear Information System (INIS)
Andersson, S.; Stepniewski, M.
1991-01-01
The 3-D BWR Dynamics Code RAMONA-3D is used for a study of power and flow fluctuations at conditions close to observed limit-cycle out-of-phase oscillations during the start-up stability test at the Oskarshamn 3 internal pump BWR. The purpose of the work, which is sponsored by the Swedish Nuclear Inspectorate, SKI, is to see if the observed first order azimuthal oscillations can be reproduced in a simulation using no a-priori information on the oscillation pattern when setting up the model. The experimental data contain dynamic information on the local neutron flux at 32 LPRM detector locations and the inlet flow to 8 fuel channels. The oscillation patterns, i.e. amplitudes and phases at the resonance frequency for local power and flow, are evaluated by direct Fourier transformation of small time slices of the data. A large RAMONA-3B model, using 350 and 268 channels in the neutronic and hydraulic models respectively, each divided into 25 axial nodes, was used for the analyses. The agreement between measured and calculated local flux and flow oscillation frequency and patterns at the limit-cycle threshold is excellent, taking into account the limitations of the half-core model used
International Nuclear Information System (INIS)
Jasso G, J.; Diaz S, A.; Mendoza G, G.; Sainz M, E.; Garcia de la C, F. M.
2014-10-01
The growth and the cracks propagation by fatigue are a typical degradation mechanism that is presented in the nuclear industry as in the conventional industry; the unstable propagation of a crack can cause the catastrophic failure of a metallic component even with high ductility; for this reason, activities of programmed maintenance have been established in the industry using inspection and visual techniques and/or ultrasound with an established periodicity allowing to follow up to these growths, controlling the undesirable effects; however, these activities increase the operation costs; and in the peculiar case of the nuclear industry, they increase the radiation exposure to the participant personnel. The use of mathematical processes that integrate concepts of uncertainty, material properties and the probability associated to the inspection results, has been constituted as a powerful tool of evaluation of the component reliability, reducing costs and exposure levels. In this work the evaluation of the failure probability by cracks growth preexisting by fatigue is presented, in pipes of a Reactor Core Isolation Cooling system (Rcic) in a nuclear power station. The software WinPRAISE 07 (Piping Reliability Analysis Including Seismic Events) was used supported in the probabilistic fracture mechanics principles. The obtained values of failure probability evidenced a good behavior of the analyzed pipes with a maximum order of 1.0 E-6, therefore is concluded that the performance of the lines of these pipes is reliable even extrapolating the calculations at 10, 20, 30 and 40 years of service. (Author)
Zhang, Xiaole; Efthimiou, George; Wang, Yan; Huang, Meng
2018-04-01
Radiation from the deposited radionuclides is indispensable information for environmental impact assessment of nuclear power plants and emergency management during nuclear accidents. Ground shine estimation is related to multiple physical processes, including atmospheric dispersion, deposition, soil and air radiation shielding. It still remains unclear that whether the normally adopted "infinite plane" source assumption for the ground shine calculation is accurate enough, especially for the area with highly heterogeneous deposition distribution near the release point. In this study, a new ground shine calculation scheme, which accounts for both the spatial deposition distribution and the properties of air and soil layers, is developed based on point kernel method. Two sets of "detector-centered" grids are proposed and optimized for both the deposition and radiation calculations to better simulate the results measured by the detectors, which will be beneficial for the applications such as source term estimation. The evaluation against the available data of Monte Carlo methods in the literature indicates that the errors of the new scheme are within 5% for the key radionuclides in nuclear accidents. The comparisons between the new scheme and "infinite plane" assumption indicate that the assumption is tenable (relative errors within 20%) for the area located 1 km away from the release source. Within 1 km range, the assumption mainly causes errors for wet deposition and the errors are independent of rain intensities. The results suggest that the new scheme should be adopted if the detectors are within 1 km from the source under the stable atmosphere (classes E and F), or the detectors are within 500 m under slightly unstable (class C) or neutral (class D) atmosphere. Otherwise, the infinite plane assumption is reasonable since the relative errors induced by this assumption are within 20%. The results here are only based on theoretical investigations. They should
Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics
Marcé, R.; Armengol, J.
2009-07-01
One of the fundamental problems of using large-scale biogeochemical models is the uncertainty involved in aggregating the components of fine-scale deterministic models in watershed applications, and in extrapolating the results of field-scale measurements to larger spatial scales. Although spatial or temporal lumping may reduce the problem, information obtained during fine-scale research may not apply to lumped categories. Thus, the use of knowledge gained through fine-scale studies to predict coarse-scale phenomena is not straightforward. In this study, we used the nutrient uptake metrics defined in the Nutrient Spiralling concept to formulate the equations governing total phosphorus in-stream fate in a deterministic, watershed-scale biogeochemical model. Once the model was calibrated, fitted phosphorus retention metrics where put in context of global patterns of phosphorus retention variability. For this purpose, we calculated power regressions between phosphorus retention metrics, streamflow, and phosphorus concentration in water using published data from 66 streams worldwide, including both pristine and nutrient enriched streams. Performance of the calibrated model confirmed that the Nutrient Spiralling formulation is a convenient simplification of the biogeochemical transformations involved in total phosphorus in-stream fate. Thus, this approach may be helpful even for customary deterministic applications working at short time steps. The calibrated phosphorus retention metrics were comparable to field estimates from the study watershed, and showed high coherence with global patterns of retention metrics from streams of the world. In this sense, the fitted phosphorus retention metrics were similar to field values measured in other nutrient enriched streams. Analysis of the bibliographical data supports the view that nutrient enriched streams have lower phosphorus retention efficiency than pristine streams, and that this efficiency loss is maintained in a wide
Energy Technology Data Exchange (ETDEWEB)
Jorde, K.
1997-12-31
The study was intended to develop a model versatile enough to permit quantification of various water demand scenarios in connection with operation of riverine hydroelectric power plants. Specific emphasis was to be placed on defining the minimum instream flow to be maintained in river segments because of the elementary significance to flowing water biocinoses. Based on fictitious minimum water requirements, various scenarious were simulated for flow regimes depending on power plant operation, so as to establish a system for comparative analysis and evaluation of resulting economic effects on power plant efficiency on the one hand, and the ecologic effects on the aquatic habitat. The information derived was to serve as a basis for decision-making for regulatory purposes. For this study, the temporal and spatial variability of the flow regime at the river bed in a river segment was examined for the first time. Based on this information, complemented by information obtained from habitat simulations, a method was derived for determination of ecologic requirements and their incorporation into regulatory water management provisions. The field measurements were carried out with the FST hemisphere as a proven and most efficient and reliable method of assessing flow regimes at river beds. Evaluation of the measured instream flow data characterising three morphologically different segments of diverted rivers was done with the CASIMIR computer code. The ASS models derived were used for comparative assessment of existing regulatory provisions and recommended amendments determining required minimum instream flow in diverted rivers. The requirements were defined taking as a basis data obtained for three different years. (orig./CB) [Deutsch] Ziel der Arbeit war die Entwicklung eines Modellverfahrens, das flexibel die Quantifizierung unterschiedlicher Nutzansprueche an Laufwasserkraftanlagen ermoeglicht. Insbesondere der Erhalt einer gewissen Dynamik, die fuer
Energy Technology Data Exchange (ETDEWEB)
Jorde, K
1998-12-31
The study was intended to develop a model versatile enough to permit quantification of various water demand scenarios in connection with operation of riverine hydroelectric power plants. Specific emphasis was to be placed on defining the minimum instream flow to be maintained in river segments because of the elementary significance to flowing water biocinoses. Based on fictitious minimum water requirements, various scenarious were simulated for flow regimes depending on power plant operation, so as to establish a system for comparative analysis and evaluation of resulting economic effects on power plant efficiency on the one hand, and the ecologic effects on the aquatic habitat. The information derived was to serve as a basis for decision-making for regulatory purposes. For this study, the temporal and spatial variability of the flow regime at the river bed in a river segment was examined for the first time. Based on this information, complemented by information obtained from habitat simulations, a method was derived for determination of ecologic requirements and their incorporation into regulatory water management provisions. The field measurements were carried out with the FST hemisphere as a proven and most efficient and reliable method of assessing flow regimes at river beds. Evaluation of the measured instream flow data characterising three morphologically different segments of diverted rivers was done with the CASIMIR computer code. The ASS models derived were used for comparative assessment of existing regulatory provisions and recommended amendments determining required minimum instream flow in diverted rivers. The requirements were defined taking as a basis data obtained for three different years. (orig./CB) [Deutsch] Ziel der Arbeit war die Entwicklung eines Modellverfahrens, das flexibel die Quantifizierung unterschiedlicher Nutzansprueche an Laufwasserkraftanlagen ermoeglicht. Insbesondere der Erhalt einer gewissen Dynamik, die fuer
Inventory of miscellaneous streams
International Nuclear Information System (INIS)
Lueck, K.J.
1995-09-01
On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column
Hydrography - Streams and Shorelines
California Natural Resource Agency — The hydrography layer consists of flowing waters (rivers and streams), standing waters (lakes and ponds), and wetlands -- both natural and manmade. Two separate...
International Nuclear Information System (INIS)
Ivanov, K.G.; Mikerina, N.V.
1977-01-01
A comparison is made between the hydromagnetic structure of the interplanetary plasma flux from the powerful solar flare occurred on 4.08.1972 and the magnetic storm of 4-5.08.1972. The geomagnetic effects of the head impact layer of the interplanetary flux are being considered. The world-wide disturbances being most intensive in the Polar regions corresponded to the elements of the substructure of the impact layer. These disturbances are interpreted as the superposition of magnetic fields from reconnection currents on the magnetopause and in the neutral layer of the magnetosphere trail. The qualitative description of the effects under investigation has been made on the assumption that the magnetopause is a rotational impact wave
International Nuclear Information System (INIS)
Fondeur, F; Michael Poirier, M; Samuel Fink, S
2007-01-01
Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring
Potential stream density in Mid-Atlantic US watersheds.
Elmore, Andrew J; Julian, Jason P; Guinn, Steven M; Fitzpatrick, Matthew C
2013-01-01
Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts.
South Stream Project and the Ukrainian Factor
Directory of Open Access Journals (Sweden)
Roxana Ioana Banciu
2015-03-01
Full Text Available The paper seeks to develop an analysis of the South Stream project in view of the Ukrainian crisis. We cannot put aside the internal factor as Ukraine is facing serious internal issues such as corruption and instability, therefore Russia’s invasion of Ukraine can not be simply ignored in this pipeline project. The article uses mostly facts that happened throughout last years, as well as for and against declarations in the case of the South Stream project and its mother Russia. When we hear about South Stream, we think of Russia and since 2007, this pipeline has encouraged Putin’s faith in energy superpower. A good point to start with was to gather all declarations since then and cover all actions that regard the South Stream game. In Russian foreign policy for the South Stream race, Soft Power was used more than enough and it has recently made room for Hard Power, which is the Ukraine never ending episode. Insights of the South Stream story have been lately related both softly and hardly, this is the reason why I have chosen to analyse both sides in order to complete the energy landscape.
Pattern Discovery and Change Detection of Online Music Query Streams
Li, Hua-Fu
In this paper, an efficient stream mining algorithm, called FTP-stream (Frequent Temporal Pattern mining of streams), is proposed to find the frequent temporal patterns over melody sequence streams. In the framework of our proposed algorithm, an effective bit-sequence representation is used to reduce the time and memory needed to slide the windows. The FTP-stream algorithm can calculate the support threshold in only a single pass based on the concept of bit-sequence representation. It takes the advantage of "left" and "and" operations of the representation. Experiments show that the proposed algorithm only scans the music query stream once, and runs significant faster and consumes less memory than existing algorithms, such as SWFI-stream and Moment.
Muehlbauer, Jeffrey D; Collins, Scott F; Doyle, Martin W; Tockner, Klement
2014-01-01
The magnitude of cross-ecosystem resource subsidies is increasingly well recognized; however, less is known about the distance these subsidies travel into the recipient landscape. In streams and rivers, this distance can delimit the "biological stream width," complementary to hydro-geomorphic measures (e.g., channel banks) that have typically defined stream ecosystem boundaries. In this study we used meta-analysis to define a "stream signature" on land that relates the stream-to-land subsidy to distance. The 50% stream signature, for example, identifies the point on the landscape where subsidy resources are still at half of their maximum (in- or near-stream) level. The decay curve for these data was best fit by a negative power function in which the 50% stream signature was concentrated near stream banks (1.5 m), but a non-trivial (10%) portion of the maximum subsidy level was still found > 0.5 km from the water's edge. The meta-analysis also identified explanatory variables that affect the stream signature. This improves our understanding of ecosystem conditions that permit spatially extensive subsidy transmission, such as in highly productive, middle-order streams and rivers. Resultant multivariate models from this analysis may be useful to managers implementing buffer rules and conservation strategies for stream and riparian function, as they facilitate prediction of the extent of subsidies. Our results stress that much of the subsidy remains near the stream, but also that subsidies (and aquatic organisms) are capable of long-distance dispersal into adjacent environments, and that the effective "biological stream width" of stream and river ecosystems is often much larger than has been defined by hydro-geomorphic metrics alone. Limited data available from marine and lake sources overlap well with the stream signature data, indicating that the "signature" approach may also be applicable to subsidy spatial dynamics across other ecosystems.
Shen, Chenyang; Li, Bin; Chen, Liyuan; Yang, Ming; Lou, Yifei; Jia, Xun
2018-04-01
Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual-energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi-energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary-based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation. A dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non-negative combination of only a few tissues in the dictionary. We formulated this as a non-convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies. Average errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method. The proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy. © 2018 American Association of Physicists in Medicine.
LHCb trigger streams optimization
Derkach, D.; Kazeev, N.; Neychev, R.; Panin, A.; Trofimov, I.; Ustyuzhanin, A.; Vesterinen, M.
2017-10-01
The LHCb experiment stores around 1011 collision events per year. A typical physics analysis deals with a final sample of up to 107 events. Event preselection algorithms (lines) are used for data reduction. Since the data are stored in a format that requires sequential access, the lines are grouped into several output file streams, in order to increase the efficiency of user analysis jobs that read these data. The scheme efficiency heavily depends on the stream composition. By putting similar lines together and balancing the stream sizes it is possible to reduce the overhead. We present a method for finding an optimal stream composition. The method is applied to a part of the LHCb data (Turbo stream) on the stage where it is prepared for user physics analysis. This results in an expected improvement of 15% in the speed of user analysis jobs, and will be applied on data to be recorded in 2017.
Partial Key Grouping: Load-Balanced Partitioning of Distributed Streams
Nasir, Muhammad Anis Uddin; Morales, Gianmarco De Francisci; Garcia-Soriano, David; Kourtellis, Nicolas; Serafini, Marco
2015-01-01
We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce PARTIAL KEY GROUPING (PKG), a new stream partitioning scheme that adapts the classical “power of two choices” to a distributed streaming setting by leveraging two novel techniques: key splitting and local load estimation. In so doing, it achieves better load balancing than key grouping while being more scalable than shuffle grouping. We test PKG on severa...
Drummond, J.
The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential
Energy Technology Data Exchange (ETDEWEB)
Bach, D. R.; Bistline, J. A.; Bunch, S. I.; Cerbone, R. J.; Feiner, F.; Skolnik, W.; Slovacek, R. E.; Weinstein, S. [Knolls Atomic Tower Laboratory, Schenectady, NY (United States)
1964-02-15
At the Knolls Atomic Power Laboratory an intensive programme of experimentation and related calculations has been underway to assess the adequacy of computational methods and nuclear data for hydrogenous systems. The programme has three general aspects: (1) Clean critical experiments with solid homogeneous fuel having a high metal-to-hydrogen volume ratio; (2) clean, plate-fuel critical experiments covering a large range of core dimension, metal-to-water ratio, fuel density and temperature; (3) prompt-neutron decay constant and steady-state spectrum measurements on subcritical systems in the same range of composition. The fuel elements for the solid homogeneous experiments are pressed compacts of ZrO{sub 2}, and highly enriched UO{sub 2}, powders uniformly mixed with paraffin. Reflector blocks With the same ZrO{sub 2}-to-paraffin ratio as the fuel blocks allow reflected cores to be constructed having uniform slowing down characteristics. The mechanics of the critical assembly are such that critical configurations are simple rectangular parallelepipeds with no channels for safety or control rods. Critical size studies of fast-leakage dominated systems (bare and reflected) have been performed and comparisons made with standard two-and three-dimensional, few-group computer programmes. In general the calculated criticality constants using the most recent nuclear data are about 3% high. The plate experiments described covered the range from room temperature to 560 Degree-Sign F and 1200 psi. To eliminate the complication of control-rod effects a determination of the temperature at which the core was critical was made with the control rods almost completely withdrawn. With the currently available crosssection information the calculated criticality is consistently high by about 2% over the whole range of experiments. Calculations of the decay constants made by the 1/v poison removal technique using standard few-group diffusion codes employing group-dependent boundary
Energy Technology Data Exchange (ETDEWEB)
Caillet, C; Deat, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
1. Introduction: the present paper is devoted to analog simulation of problems related to nuclear reactors other than the simulation of the kinetic equations which is well known. 2. Thermodynamic problems: various problems relative to temperature evolution in a reactor, in a pipe, in an exchanger, in a turbine, are studied, and simulation techniques used by earlier authors are critically reviewed. 3. Pipe simulators: it is shown that this problem can be solved by the use of specialized simulators which will be described and analysed. 4. Rotating machine simulators: the particular aspect of rotating machine calculations introducing frequent use of diagrams is emphasized. A simulator requiring both digital and analogue methods is described. 5. The study of a nuclear power station: as an example it is proposed to discuss problems a rising in connection with the preceding elements (a, b, c, d) when simulating the behaviour of large nuclear plants. The part played by ordinary computing elements for the simulation of the different servomechanism transfer functions is considered and process of regulation is outlined. 6. Conclusion: the necessity of the use of high quality simulators and computers is underlined and the accuracy of the solutions is discussed. (author)Fren. [French] 1. Cinetique des reacteurs: la simulation des equations cinetiques d'un reacteur nucleaire ne pose desormais plus de probleme. II est donc possible de faire le point des differentes applications de la technique analogique dans ce domaine. 2. Les problemes thermodynamiques: on discute les differents problemes poses par l'evolution des temperatures dans un reacteur, dans une tuyauterie, dans un echangeur, dans une turbine, et on passe en revue les techniques de simulation proposees jusqu'a ce jour. 3s simulateurs de tuyauteries: on montre comment les differents problemes poses ci-dessus peuvent etre resolus, pour une classe tres vaste de reacteurs par l'emploi de simulateurs speciaux que l
Hendricks, R. C.; Steinetz, B. M.; Zaretsky, E. V.; Athavale, M. M.; Przekwas, A. J.
2004-01-01
The issues and components supporting the engine power stream are reviewed. It is essential that companies pay close attention to engine sealing issues, particularly on the high-pressure spool or high-pressure pumps. Small changes in these systems are reflected throughout the entire engine. Although cavity, platform, and tip sealing are complex and have a significant effect on component and engine performance, computational tools (e.g., NASA-developed INDSEAL, SCISEAL, and ADPAC) are available to help guide the designer and the experimenter. Gas turbine engine and rocket engine externals must all function efficiently with a high degree of reliability in order for the engine to run but often receive little attention until they malfunction. Within the open literature statistically significant data for critical engine components are virtually nonexistent; the classic approach is deterministic. Studies show that variations with loading can have a significant effect on component performance and life. Without validation data they are just studies. These variations and deficits in statistical databases require immediate attention.
International Nuclear Information System (INIS)
Sajnar, P.; Fiala, J.
1983-01-01
The problems are discussed of the mathematical description and simulation of temperature fields in annealing the closing weld of the steam generator jacket of the WWER 440 nuclear power plant. The basic principles are given of induction annealing, the method of calculating temperature fields is indicated and the mathematical description is given of boundary conditions on the outer and inner surfaces of the steam generator jacket for the computation of temperature fields arising during annealing. Also described are the methods of determining the temperature of exposed parts of heat exchange tubes inside the steam generator and the technical possibilities are assessed of the annealing equipment from the point of view of its computer simulation. Five alternatives are given for the computation of temperature fields in the area around the weld for different boundary conditions. The values are given of maximum differences in the temperatures of the metal in the annealed part of the steam generator jacket which allow the assessment of individual computation variants, this mainly from the point of view of observing the course of annealing temperature in the required width of the annealed jacket of the steam generator along both sides of the closing weld. (B.S.)