WorldWideScience

Sample records for stream nitrate dynamics

  1. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  2. Using Nitrate Isotopes to Distinguish Pathways along which Unprocessed Atmospheric Nitrate is Transported through Forests to Streams

    Science.gov (United States)

    Sebestyen, S. D.

    2013-12-01

    Evaluation of natural abundance oxygen and nitrogen isotopes in nitrate has revealed that atmospheric deposition of nitrate to forests sometimes has direct effects on the timing and magnitude of stream nitrate concentrations. Large amounts of unprocessed atmospheric nitrate have sometimes been found in streams during snowmelt and stormflow events. Despite increasing evidence that unprocessed atmospheric nitrate may be transported without biological processing to streams at various times and multiple locations, little has been reported about specific hydrological processes. I synthesized research findings from a number of studies in which nitrate isotopes have been measured over the past decade. Unprocessed nitrate may predominate in surficial soil waters after rainfall and snowmelt events relative to nitrate that originated from nitrification. Although transport to deep groundwater may be important in the most nitrogen saturated catchments, the transport of unprocessed atmospheric nitrate along shallow subsurface flowpaths is likely more important in many moderately N-polluted ecosystems, which predominate in the northeastern USA where most of my study sites are located. The presence of unprocessed atmospheric nitrate in surficial soils was linked to stream nitrate concentrations when large amounts of unprocessed nitrate were occasionally routed along lateral, shallow subsurface flowpaths during stormflow events. During these events, water tables rose to saturate shallow-depth soils. When catchments were drying or dryer, atmospheric nitrate was completely consumed by biological processing as flowpaths shifted from lateral to vertical transport through soils. The source areas of unprocessed atmospheric nitrate were usually limited to soils that were adjacent to streams, with little to no near-surface saturation and transport of unprocessed nitrate from more distal hillslope positions. The occasional large amounts of unprocessed atmospheric nitrate in soil water

  3. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  4. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    Science.gov (United States)

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  5. Quantifying in-stream nitrate reaction rates using continuously-collected water quality data

    Science.gov (United States)

    Matthew Miller; Anthony Tesoriero; Paul Capel

    2016-01-01

    High frequency in situ nitrate data from three streams of varying hydrologic condition, land use, and watershed size were used to quantify the mass loading of nitrate to streams from two sources – groundwater discharge and event flow – at a daily time step for one year. These estimated loadings were used to quantify temporally-variable in-stream nitrate processing ...

  6. Estimation of nitrate in aqueous discharge streams in presence of other anionic species

    International Nuclear Information System (INIS)

    Dhara, Amrita; Sonar, N.L.; Valsala, T.P.; Vishwaraj, I.

    2017-01-01

    In the PUREX process the spent fuel is dissolved in concentrated nitric acid for the recovery of U and Pu using 30% TBP solvent system. The added nitrates are reporting in the waste streams of reprocessing plant. In view of the environmental concern for nitrate discharges, it is essential to monitor the nitrate content in the radioactive waste streams. An analytical method based on nitration of salicylic acid in acidic medium was studied for its applicability in the estimation of nitrate in radioactive waste containing various other anions. The yellow colored complex formed absorbs at 410 nm in alkaline media. Interference of various anionic species like sulphide, chloride, ferrocyanide, phosphate etc present in different waste streams on the estimation of nitrate was studied. Nitrate could be estimated in radioactive waste in presence of other anionic species within an error of less than 6%. (author)

  7. Quantifying in-stream retention of nitrate at catchment scales using a practical mass balance approach.

    Science.gov (United States)

    Schwientek, Marc; Selle, Benny

    2016-02-01

    As field data on in-stream nitrate retention is scarce at catchment scales, this study aimed at quantifying net retention of nitrate within the entire river network of a fourth-order stream. For this purpose, a practical mass balance approach combined with a Lagrangian sampling scheme was applied and seasonally repeated to estimate daily in-stream net retention of nitrate for a 17.4 km long, agriculturally influenced, segment of the Steinlach River in southwestern Germany. This river segment represents approximately 70% of the length of the main stem and about 32% of the streambed area of the entire river network. Sampling days in spring and summer were biogeochemically more active than in autumn and winter. Results obtained for the main stem of Steinlach River were subsequently extrapolated to the stream network in the catchment. It was demonstrated that, for baseflow conditions in spring and summer, in-stream nitrate retention could sum up to a relevant term of the catchment's nitrogen balance if the entire stream network was considered.

  8. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    Science.gov (United States)

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  9. Interaction between land use and climate variability amplifies stream nitrate export

    Science.gov (United States)

    We investigated regional effects of urban land use change on nitrate concentrations in approximately 1,000 small streams in Maryland, U.S.A. during record drought and wet years in 2001-2003. We also investigated changes in nitrate-N export during the same time period in 8 intens...

  10. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  11. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  12. High nitrate concentrations in some Midwest United States streams in 2013 after the 2012 drought

    Science.gov (United States)

    Van Metre, Peter C.; Frey, Jeffrey W.; Musgrove, MaryLynn; Nakagaki, Naomi; Qi, Sharon L.; Mahler, Barbara J.; Wieczorek, Michael; Button, Daniel T.

    2016-01-01

    Nitrogen sources in the Mississippi River basin have been linked to degradation of stream ecology and to Gulf of Mexico hypoxia. In 2013, the USGS and the USEPA characterized water quality stressors and ecological conditions in 100 wadeable streams across the midwestern United States. Wet conditions in 2013 followed a severe drought in 2012, a weather pattern associated with elevated nitrogen concentrations and loads in streams. Nitrate concentrations during the May to August 2013 sampling period ranged from nitrate concentrations at the 100 sites were compared with May to June concentrations predicted from a regression model developed using historical nitrate data. Observed concentrations for 17 sites, centered on Iowa and southern Minnesota, were outside the 95% confidence interval of the regression-predicted mean, indicating that they were anomalously high. The sites with a nitrate anomaly had significantly higher May to June nitrate concentrations than sites without an anomaly (means, 19.8 and 3.6 mg L−1, respectively) and had higher antecedent precipitation indices, a measure of the departure from normal precipitation, in 2012 and 2013. Correlations between nitrate concentrations and watershed characteristics and nitrogen and oxygen isotopes of nitrate indicated that fertilizer and manure used in crop production, principally corn, were the dominant sources of nitrate. The anomalously high nitrate levels in parts of the Midwest in 2013 coincide with reported higher-than-normal nitrate loads in the Mississippi River.

  13. NITRATE AND NITROUS OXIDE CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    Science.gov (United States)

    We are measuring dissolved nitrate and nitrous oxide concentrations and related parameters in 17 headwater streams in the South Fork Broad River, Georgia watershed on a monthly basis. The selected small streams drain watersheds dominated by forest, pasture, residential, or mixed...

  14. A GIS-based groundwater travel time model to evaluate stream nitrate concentration reductions from land use change

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2007-01-01

    Excessive nitrate-nitrogen (nitrate) loss from agricultural watersheds is an environmental concern. A common conservation practice to improve stream water quality is to retire vulnerable row croplands to grass. In this paper, a groundwater travel time model based on a geographic information system (GIS) analysis of readily available soil and topographic variables was used to evaluate the time needed to observe stream nitrate concentration reductions from conversion of row crop land to native prairie in Walnut Creek watershed, Iowa. Average linear groundwater velocity in 5-m cells was estimated by overlaying GIS layers of soil permeability, land slope (surrogates for hydraulic conductivity and gradient, respectively) and porosity. Cells were summed backwards from the stream network to watershed divide to develop a travel time distribution map. Results suggested that groundwater from half of the land planted in prairie has reached the stream network during the 10 years of ongoing water quality monitoring. The mean travel time for the watershed was estimated to be 10.1 years, consistent with results from a simple analytical model. The proportion of land in the watershed and subbasins with prairie groundwater reaching the stream (10-22%) was similar to the measured reduction of stream nitrate (11-36%). Results provide encouragement that additional nitrate reductions in Walnut Creek are probable in the future as reduced nitrate groundwater from distal locations discharges to the stream network in the coming years. The high spatial resolution of the model (5-m cells) and its simplicity may make it potentially applicable for land managers interested in communicating lag time issues to the public, particularly related to nitrate concentration reductions over time. ?? 2007 Springer-Verlag.

  15. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  16. Triple nitrate isotopes indicate differing nitrate source contributions to streams across a nitrogen saturation gradient

    Science.gov (United States)

    Lucy A. Rose; Emily M. Elliott; Mary Beth. Adams

    2015-01-01

    Nitrogen (N) deposition affects forest biogeochemical cycles worldwide, often contributing to N saturation. Using long-term (>30-year) records of stream nitrate (NO3-) concentrations at Fernow Experimental Forest (West Virginia, USA), we classified four watersheds into N saturation stages ranging from Stage 0 (N-...

  17. Assessment of variables controlling nitrate dynamics in groundwater: is it a threat to surface aquatic ecosystems?

    Science.gov (United States)

    Rasiah, V; Armour, J D; Cogle, A L

    2005-01-01

    The impact of fertilised cropping on nitrate-N dynamics in groundwater (GW) was assessed in a catchment from piezometers installed: (i) to different depths, (ii) in different soil types, (iii) on different positions on landscape, and (iv) compared with the Australian and New Zealand Environmental and Conservation Council guideline values provided for different aquatic ecosystems. The GW and NO(3)-N concentration dynamics were monitored in 39 piezometer wells, installed to 5-90 m depth, under fertilized sugarcane (Saccharum officinarum-S) in the Johnstone River Catchment, Australia, from 1999 January through September 2002. The median nitrate-N concentration ranged from 14 to 1511 microg L(-1), and the 80th percentile from 0 to 1341 microg L(-1). In 34 out of the 39 piezometer wells the 80th percentile or 80% of the nitrate-N values were higher than 30 microg L(-1), which is the maximum trigger value provided in the ANZECC table for sustainable health of different aquatic ecosystems. Nitrate-N concentration decreased with increasing well depth, increasing depth of water in wells, and with decreasing relief on landscape. Nitrate-N was higher in alluvial soil profiles than on those formed in-situ. Nitrate-N increased with increasing rainfall at the beginning of the rainy season, fluctuated during the peak rainy period, and then decreased when the rain ceased. The rapid decrease in GW after the rains ceased suggested potential existed for nitrate-N to be discharged as lateral-flow into streams. This may contribute towards the deterioration in the health of down-stream aquatic ecosystems.

  18. Nitrate retention in a sand plains stream and the importance of groundwater discharge

    Science.gov (United States)

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon

    2011-01-01

    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  19. Nitrogen and phosphorus uptake in two Idaho (USA) headwater wilderness streams.

    Science.gov (United States)

    Davis, Jeffrey C; Minshall, G Wayne

    1999-05-01

    Nitrate and phosphate solutions were released into two reaches of two central Idaho streams to determine within- and between-stream variability in uptake lengths, uptake rates, and mass transfer coefficients. Physical and biotic stream characteristics and periphyton nitrate-uptake rates in recirculating chambers were measured to determine their influence on nutrient dynamics. Phosphate uptake length did not differ among the four reaches. There were no within-stream differences in nitrate uptake lengths but they did differ between the two streams. Long nitrate uptake lengths likely were due to instream concentrations above saturation but also may have been influenced by differences in active surface area and algal abundance. Nitrate and phosphate uptake lengths were longer, and uptake rates higher, than most other published values. However, mass transfer coefficients were comparable to measurements in other streams. Mass transfer coefficients may be a better parameter for temporal and spatial comparisons of instream nutrient dynamics, and for determining the underlying causes of variability in uptake length.

  20. Fate of acetone in an outdoor model stream with a nitrate supplement, southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1991-01-01

    The fate of acetone in an outdoor model stream to which nitrate was added as a nutrient supplement was determined. The stream, in southern Mississippi, U.S.A. was 234 m long. Water was supplied to the stream by an artesian well at about 1.21 s-1, resulting in a mean water velocity of about 0.5 m min-1. Acetone was injected continuously for 26 days resulting in concentrations of 20-40 mg l-1. A nitrate solution was injected for 21 days resulting in an instream concentration of about 1.7 mg l-1 at the upstream end of the stream. Rhodamine-WT dye was used to determine the travel time and dispersion characteristics of the stream, and t-butyl alcohol was used to determine the volatilization characteristics. Volatilization controlled the fate of acetone in the model stream. The lack of substantial bacterial degradation of acetone was contrary to expectations based on the results of laboratory degradation studies using model stream water enriched with nitrate. A possible explanation for the lack of significant degradation in the model stream may be the limited 6-h residence time of the acetone in the stream. ?? 1991.

  1. Estimating Discharge and Nonpoint Source Nitrate Loading to Streams From Three End-Member Pathways Using High-Frequency Water Quality Data

    Science.gov (United States)

    Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  2. Nitrogen concentrations in a small Mediterranean stream: 1. Nitrate 2. Ammonium

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2002-01-01

    Full Text Available The importance of storm frequency as well as the groundwater and hyporheic inputs on nitrate (NO3-N and ammonium (NH4-N levels in stream water were studied in a small perennial Mediterranean catchment, Riera Major, in northeast Spain. NO3-N concentrations ranged from 0.15 to 1.9 mg l-1. Discharge explained 47% of the annual NO3-N concentration variance, but this percentage increased to 97% when single floods were analysed. The rate of change in nitrate concentration with respect to flow, ΔNO3-N/ΔQ, ranged widely from 0 to 20 μg NO3-N s l-2. The ΔNO3-N/ΔQ values fitted to a non linear model with respect to the storm flow magnitude (ΔQ (r2=0.48, d.f.=22, P3-N/ΔQ occurred at intermediate ΔQ values, whereas low ΔNO3-N/ΔQ values occurred during severe storms (ΔQ > 400 l s-1. N3-N concentrations exhibit anticlockwise hysteresis patterns with changing flow and the patterns observed for autumnal and winter storms indicated that groundwater was the main N3-N source for stream and hyporheic water. At baseflow, NO3-N concentration in groundwater was higher (t=4.75, d.f.=29, P>0.001 and co-varied with concentrations in the stream (r=0.91, d.f.=28, P3-N concentration in hyporheic water was identical to that in stream water. The role of the hyporheic zone as source or sink for ammonium was studied hyporheic was studied comparing its concentrations in stream and hyporheic zone before and after a major storm occurred in October 1994 that removed particulate organic matter stored in sediments. Results showed high ammonium concentrations (75±28 s.d. μg NH4-N l-1 before the storm flow in the hyporheic zone. After the storm, the ammonium concentration in the hyporheic dropped by 80% (13.6±8 μg N4-N l-1 and approached to the level found in stream water (11±8 μg NH4-N l-1 indicating that indisturbed hyporheic sediments act as a source for ammonium. After the storm, the ammonium concentrations in the stream, hyporheic and groundwater zones were very

  3. Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis

    Science.gov (United States)

    Jones, Christopher S.; Wang, Bo; Schilling, Keith E.; Chan, Kung-sik

    2017-06-01

    Agricultural landscapes often leak inorganic nitrogen to the stream network, usually in the form of nitrate-nitrite (NOx-N), degrading downstream water quality on both the local and regional scales. While the spatial distribution of nitrate sources has been delineated in many watersheds, less is known about the complicated temporal dynamics that drive stream NOx-N because traditional methods of stream grab sampling are often conducted at a low frequency. Deployment of accurate real-time, continuous measurement devices that have been developed in recent years enables high-frequency sampling that provides detailed information on the concentration-discharge relation and the timing of NOx-N delivery to streams. We aggregated 15-min interval NOx-N and discharge data over a nine-year period into daily averages and then used robust statistical methods to identify how the discharge regime within an artificially-drained agricultural watershed reflected catchment hydrology and NOx-N delivery pathways. We then quantified how transport and supply limitations varied from year-to-year and how dependence of these limitations varied with climate, especially drought. Our results show NOx-N concentrations increased linearly with discharge up to an average "turning point" of 1.42 mm of area-normalized discharge, after which concentrations decline with increasing discharge. We estimate transport and supply limitations to govern 57 and 43 percent, respectively, of the NOx-N flux over the nine-year period. Drought effects on the NOx-N flux linger for multiple years and this is reflected in a greater tendency toward supply limitations in the three years following drought. How the turning point varies with climate may aid in prediction of NOx-N loading in future climate regimes.

  4. Identification of nitrate sources and discharge-depending nitrate dynamics in a mesoscale catchment

    Science.gov (United States)

    Mueller, Christin; Strachauer, Ulrike; Brauns, Mario; Musolff, Andreas; Kunz, Julia Vanessa; Brase, Lisa; Tarasova, Larisa; Merz, Ralf; Knöller, Kay

    2017-04-01

    During the last decades, nitrate concentrations in surface and groundwater have increased due to land use change and accompanying application of fertilizer in agriculture as well as increased atmospheric deposition. To mitigate nutrient impacts on downstream aquatic ecosystems, it is important to quantify potential nitrate sources, instream nitrate processing and its controls in a river system. The objective of this project is to characterize and quantify (regional) scale dynamics and trends in water and nitrogen fluxes of the entire Holtemme river catchment in central Germany making use of isotopic fingerprinting methods. Here we compare two key date sampling campaigns in 2014 and 2015, with spatially highly resolved measurements of discharge at 23 sampling locations including 11 major tributaries and 12 locations at the main river. Additionally, we have data from continuous runoff measurements at 10 locations operated by the local water authorities. Two waste water treatment plants contribute nitrogen to the Holtemme stream. This contribution impacts nitrate loads and nitrate isotopic signatures depending on the prevailing hydrological conditions. Nitrogen isotopic signatures in the catchment are mainly controlled by different sources (nitrified soil nitrogen in the headwater and manure/ effluents from WWTPs in the lowlands) and increase with raising nitrate concentrations along the main river. Nitrate loads at the outlet of the catchment are extremely different between both sampling campaigns (2014: NO3- = 97 t a-1, 2015: NO3- = 5 t a-1) which is associated with various runoff (2014: 0.8 m3 s-1, 2015: 0.2 m3 s-1). In 2015, the inflow from WWTP's raises the NO3- loads and enriches δ18O-NO3 values. Generally, oxygen isotope signatures from nitrate are more variable and are controlled by biogeochemical processes in concert with the oxygen isotopic composition of the ambient water. Elevated δ18O-NO3 in 2015 are most likely due to higher temperatures and lower

  5. An Evaluation of Nitrate, fDOM, and Turbidity Sensors in New Hampshire Streams

    Science.gov (United States)

    Snyder, Lisle; Potter, Jody D.; McDowell, William H.

    2018-03-01

    A state-of-the-art network of water quality sensors was established in 2012 to gather year-round high temporal frequency hydrochemical data in streams and rivers throughout the state of New Hampshire. This spatially extensive network includes eight headwater stream and two main stem river monitoring sites, spanning a variety of stream orders and land uses. Here we evaluate the performance of nitrate, fluorescent dissolved organic matter (fDOM), and turbidity sensors included in the sensor network. Nitrate sensors were first evaluated in the laboratory for interference by different forms of dissolved organic carbon (DOC), and then for accuracy in the field across a range of hydrochemical conditions. Turbidity sensors were assessed for their effectiveness as a proxy for concentrations of total suspended solids (TSS) and total particulate C and N, and fDOM as a proxy for concentrations of dissolved organic matter. Overall sensor platform performance was also examined by estimating percentage of data loss due to sensor failures or related malfunctions. Although laboratory sensor trials show that DOC can affect optical nitrate measurements, our validations with grab samples showed that the optical nitrate sensors provide a reliable measurement of NO3 concentrations across a wide range of conditions. Results showed that fDOM is a good proxy for DOC concentration (r2 = 0.82) but is a less effective proxy for dissolved organic nitrogen (r2 = 0.41). Turbidity measurements from sensors correlated well with TSS (r2 = 0.78), PC (r2 = 0.53), and PN (r2 = 0.51).

  6. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data

    Science.gov (United States)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  7. Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2011-10-01

    Full Text Available Subsurface lateral flow from agricultural hillslopes is often overlooked compared with overland flow and tile drain flow, partly due to the difficulties in monitoring and quantifying. The objectives of this study were to examine how subsurface lateral flow generated through soil pedons from cropped hillslopes and to quantify its contribution to nitrate loading in the streams through an agricultural catchment in the subtropical region of China. Profiles of soil water potential along hillslopes and stream hydro-chemographs in a trenched stream below a cropped hillslope and at the catchment outlet were simultaneously recorded during two rainstorm events. The dynamics of soil water potential showed positive matrix soil water potential over impermeable soil layer at 0.6 to 1.50 m depths during and after the storms, indicating soil water saturation and drainage processes along the hillslopes irrespective of land uses. The hydro-chemographs in the streams, one trenched below a cropped hillslope and one at the catchment outlet, showed that the concentrations of particulate nitrogen and phosphorus corresponded well to stream flow during the storm, while the nitrate concentration increased on the recession limbs of the hydrographs after the end of the storm. All the synchronous data revealed that nitrate was delivered from the cropped hillslope through subsurface lateral flow to the streams during and after the end of the rainstorms. A chemical mixing model based on electricity conductivity (EC and H+ concentration was successfully established, particularly for the trenched stream. The results showed that the subsurface lateral flow accounted for 29% to 45% of total stream flow in the trenched stream, responsible for 86% of total NO3-N loss (or 26% of total N loss, and for 5.7% to 7.3% of total stream flow at the catchment outlet, responsible for about 69% of total NO3-N loss (or 28% of total N

  8. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology

    Science.gov (United States)

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.

    2018-03-07

    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  9. Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream

    Science.gov (United States)

    Brian A. Pellerin; John Franco Saraceno; James B. Shanley; Stephen D. Sebestyen; George R. Aiken; Wilfred M. Wollheim; Brian A. Bergamaschi

    2012-01-01

    Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3-) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water...

  10. Coupled jump rotational dynamics in aqueous nitrate solutions.

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  11. A stable isotope tracer study of the influences of adjacent land use and riparian condition on fates of nitrate in streams

    Science.gov (United States)

    Daniel J. Sobota; Sherri L. Johnson; Stan V. Gregory; Linda R. Ashkenas

    2012-01-01

    The influence of land use on potential fates of nitrate in stream ecosystems, ranging from denitrification to storage in organic matter, has not been documented extensively. Here, we describe the Pacific Northwest component of Lotic Intersite Nitrogen eXperiment, phase II (LINX II) to examine how land-use setting influences fates of nitrate in streams.

  12. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  13. Spatial and temporal dynamics of nitrate fluxes in a mesoscale catchment

    Science.gov (United States)

    Muller, C.; Musolff, A.; Strachauer, U.; Brauns, M.; Tarasova, L.; Merz, R.; Knoeller, K.

    2017-12-01

    Spatially and temporally variable and often superimposing processes like mobilization and turnover of N-species strongly affect nitrate fluxes at catchment outlets. It remains thus challenging to determine dominant nitrate sources to derive an effective river management. Here, we combine data sets from two spatially highly resolved key-date monitoring campaigns of nitrate fluxes along a mesoscale catchment in Germany with four years of monitoring data from two representative sites within the catchment. The study area is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. Flow conditions were assessed by a hydrograph separation showing the clear dominance of base flow during both investigations. However, the absolute amounts of discharge differed significantly from each other (outlet: 1.42 m³ s-1 versus 0.43 m³ s-1). Nitrate concentration and flux in the headwater was found to be low. In contrast, nitrate loads further downstream originate from anthropogenic sources such as effluents from wastewater treatment plants (WWTP) and agricultural land use. The agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years but in terms of flux. The contrasting amounts of discharge between the years led to a strongly increased relative wastewater contribution with decreasing discharge. This was mainly manifested in elevated δ18O-NO3- values downstream from the wastewater discharge. The four-year monitoring at two sides clearly indicates the chemostatic character of the agricultural N-source and its distinct, yet stable isotopic fingerprint. Denitrification was found to play no dominant role only for controlling nitrate loads in the river. The spatially highly resolved monitoring approach helped to accurately define hot spots of nitrate inputs into the stream while the long-term information allowed a classification of the

  14. Regional Comparison of Nitrogen Export to Japanese Forest Streams

    Directory of Open Access Journals (Sweden)

    Hideaki Shibata

    2001-01-01

    Full Text Available Nitrogen (N emissions in Asian countries are predicted to increase over the next several decades. An understanding of the mechanisms that control temporal and spatial fluctuation of N export to forest streams is important not only to quantify critical loads of N, N saturation status, and soil acidification N dynamics and budgets in Japanese forested watersheds is not clear due to the lack of regional comparative studies on stream N chemistry. To address the lack of comparative studies, we measured inorganic N (nitrate and ammonium concentrations from June 2000 to May 2001 in streams in 18 experimental forests located throughout the Japanese archipelago and belonging to the Japanese Union of University Forests. N concentrations in stream water during base flow and high flow periods were monitored, and N mineralization potential in soil was measured using batch incubation experiments. Higher nitrate concentrations in stream water were present in central Japan, an area that receives high rates of atmospheric N deposition. In northern Japan, snowmelt resulted in increased nitrate concentrations in stream water. The potential net N mineralization rate was higher in surface soil than in subsurface soil, and the high potential for N mineralization in the surface soil partly contributed to the increase in nitrate concentration in stream water during a storm event. Regional differences in the atmospheric N deposition and seasonality of precipitation and high discharge are principal controls on the concentrations and variations of nitrates in stream water in forested watersheds of Japan.

  15. The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds – a review of the scientific literature

    Science.gov (United States)

    Ranalli, Anthony J.; Macalady, Donald L.

    2010-01-01

    We reviewed published studies from primarily glaciated regions in the United States, Canada, and Europe of the (1) transport of nitrate from terrestrial ecosystems to aquatic ecosystems, (2) attenuation of nitrate in the riparian zone of undisturbed and agricultural watersheds, (3) processes contributing to nitrate attenuation in riparian zones, (4) variation in the attenuation of nitrate in the riparian zone, and (5) importance of in-stream and hyporheic processes for nitrate attenuation in the stream channel. Our objectives were to synthesize the results of these studies and suggest methodologies to (1) monitor regional trends in nitrate concentration in undisturbed 1st order watersheds and (2) reduce nitrate loads in streams draining agricultural watersheds. Our review reveals that undisturbed headwater watersheds have been shown to be very retentive of nitrogen, but the importance of biogeochemical and hydrological riparian zone processes in retaining nitrogen in these watersheds has not been demonstrated as it has for agricultural watersheds. An understanding of the role of the riparian zone in nitrate attenuation in undisturbed watersheds is crucial because these watersheds are increasingly subject to stressors, such as changes in land use and climate, wildfire, and increases in atmospheric nitrogen deposition. In general, understanding processes controlling the concentration and flux of nitrate is critical to identifying and mapping the vulnerability of watersheds to water quality changes due to a variety of stressors. In undisturbed and agricultural watersheds we propose that understanding the importance of riparian zone processes in 2nd order and larger watersheds is critical. Research is needed that addresses the relative importance of how the following sources of nitrate along any given stream reach might change as watersheds increase in size and with flow: (1) inputs upstream from the reach, (2) tributary inflow, (3) water derived from the riparian zone

  16. Transport and fate of nitrate in headwater agricultural streams in Illinois.

    Science.gov (United States)

    Royer, Todd V; Tank, Jennifer L; David, Mark B

    2004-01-01

    Nitrogen inputs to the Gulf of Mexico have increased during recent decades and agricultural regions in the upper Midwest, such as those in Illinois, are a major source of N to the Mississippi River. How strongly denitrification affects the transport of nitrate (NO(3)-N) in Illinois streams has not been directly assessed. We used the nutrient spiraling model to assess the role of in-stream denitrification in affecting the concentration and downstream transport of NO(3)-N in five headwater streams in agricultural areas of east-central Illinois. Denitrification in stream sediments was measured approximately monthly from April 2001 through January 2002. Denitrification rates tended to be high (up to 15 mg N m(-2) h(-1)), but the concentration of NO(3)-N in the streams was also high (>7 mg N L(-1)). Uptake velocities for NO(3)-N (uptake rate/concentration) were lower than reported for undisturbed streams, indicating that denitrification was not an efficient N sink relative to the concentration of NO(3)-N in the water column. Denitrification uptake lengths (the average distance NO(3)-N travels before being denitrified) were long and indicated that denitrification in the streambed did not affect the transport of NO(3)-N. Loss rates for NO(3)-N in the streams were <5% d(-1) except during periods of low discharge and low NO(3)-N concentration, which occurred only in late summer and early autumn. Annually, most NO(3)-N in these headwater sites appeared to be exported to downstream water bodies rather than denitrified, suggesting previous estimates of N losses through in-stream denitrification may have been overestimated.

  17. Stream Nitrate Concentrations Diverge at Baseflow and Converge During Storms in Watersheds with Contrasting Urbanization

    Science.gov (United States)

    Carey, R. O.; Wollheim, W. M.; Mulukutla, G. K.; Cook, C. S.

    2013-12-01

    Management of non-point sources is challenging because it requires adequate quantification of non-point fluxes that are highly dynamic over time. Most fluxes occur during storms and are difficult to characterize with grab samples alone in flashy, urban watersheds. Accurate and relatively precise measurements using in situ sensor technology can quantify fluxes continuously, avoiding the uncertainties in extrapolation of infrequently collected grab samples. In situ nitrate (NO3-N) sensors were deployed simultaneously from April to December 2013 in two streams with contrasting urban land uses in an urbanizing New Hampshire watershed (80 km2). Nitrogen non-point fluxes and temporal patterns were evaluated in Beards Creek (forested: 50%; residential: 24%; commercial/institutional/transportation: 7%; agricultural: 6%) and College Brook (forested: 35%; residential: 11%; commercial/institutional/transportation: 20%; agricultural: 17%). Preliminary data indicated NO3-N concentrations in Beards Creek (mean: 0.37 mg/L) were lower than College Brook (mean: 0.60 mg/L), but both streams exhibited rapid increases in NO3-N during the beginning of storms followed by overall dilution. While baseflow NO3-N was greater in College Brook than Beards Creek, NO3-N at the two sites consistently converged during storms. This suggests that standard grab sampling may overestimate fluxes in urban streams, since short-term dilution occurred during periods of highest flow. Analyzing NO3-N flux patterns in smaller urban streams that are directly impacted by watershed activities could help to inform management decisions regarding N source controls, ultimately allowing an assessment of the interactions of climate variability and management actions.

  18. Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

    Science.gov (United States)

    Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael

    2018-01-01

    The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

  19. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    Science.gov (United States)

    Alexander, Richard B.; Böhlke, John Karl; Boyer, Elizabeth W.; David, Mark B.; Harvey, Judson W.; Mulholland, Patrick J.; Seitzinger, Sybil P.; Tobias, Craig R.; Tonitto, Christina; Wollheim, Wilfred M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  20. Thinking beyond the Bioreactor Box: Incorporating Stream Ecology into Edge-of-Field Nitrate Management.

    Science.gov (United States)

    Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R

    2016-05-01

    Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  2. Assessment of nitrate export from a high elevation watershed

    International Nuclear Information System (INIS)

    Williams, E.M.; Nodvin, S.C.

    1991-01-01

    Nitrate leaching from forest soils can be detrimental to both the forest ecosystems and stream water quality. Nitrate moving through the soil transports plant nutrients and acidifying agents, hydrogen and aluminum, and can export them to streams. In the high elevation spruce-fir forests in the Great Smoky Mountains National Park (GRSM) nitrate has been found to be leaching from the rooting zone. Streams associated with these ecosystems are poorly buffered. Therefore rapid export of nitrate from the soils to the streams could lead to episodic acidification. The purpose of the Noland Divide watershed study is to assess the levels of nitrate export from the watershed to the streams and the potential impacts of the export to the ecosystem

  3. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    Science.gov (United States)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  4. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  5. Source Areas of Water and Nitrate in a Peatland Catchment, Minnesota, USA

    Science.gov (United States)

    Sebestyen, S. D.

    2017-12-01

    In nitrogen polluted forests, stream nitrate concentrations increase and some unprocessed atmospheric nitrate may be transported to streams during stormflow events. This understanding has emerged from forests with upland mineral soils. In contrast, catchments with northern peatlands may have both upland soils and lowlands with deep organic soils, each with unique effects on nitrate transport and processing. While annual budgets show nitrate yields to be relatively lower from peatland than upland-dominated catchments, little is known about particular runoff events when stream nitrate concentrations have been higher (despite long periods with little or no nitrate in outlet streams) or the reasons why. I used site knowledge and expansive/extensive monitoring at the Marcell Experimental Forest in Minnesota, along with a targeted 2-year study to determine landscape areas, water sources, and nitrate sources that affected stream nitrate variation in a peatland catchment. I combined streamflow, upland runoff, snow amount, and frost depth data from long-term monitoring with nitrate concentration, yield, and isotopic data to show that up to 65% of stream nitrate during snowmelt of 2009 and 2010 was unprocessed atmospheric nitrate. Up to 46% of subsurface runoff from upland soils during 2009 was unprocessed atmospheric nitrate, which shows the uplands to be a stream nitrate source during 2009, but not during 2010 when upland runoff concentrations were below the detection limit. Differences are attributable to variations in water and nitrate sources. Little snow (a nitrate source), less upland runoff relative to peatland runoff, and deeper soil frost in the peatland caused a relatively larger input of nitrate from the uplands to the stream during 2009 and the peatland to the stream during 2010. Despite the near-absence of stream nitrate during much of rest of the year, these findings show an important time when nitrate transport affected downstream aquatic ecosystems, reasons

  6. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    Science.gov (United States)

    Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  7. Simulating temporal variations of nitrogen losses in river networks with a dynamic transport model unravels the coupled effects of hydrological and biogeochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Alexander, Richard [U.S. Geological Survey; Bohlke, John [U.S. Geological Survey; Boyer, Elizabeth [Pennsylvania State University; Harvey, Judson [U.S. Geological Survey; Seitzinger, Sybil [Rutgers University; Tobias, Craig [University of North Carolina, Wilmington; Tonitto, Christina [Cornell University; Wollheim, Wilfred [University of New Hampshire

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  8. Long-term changes in nitrate conditions over the 20th century in two Midwestern Corn Belt streams

    Science.gov (United States)

    Kelly, Valerie J.; Stets, Edward G.; Crawford, Charles G.

    2015-01-01

    Long-term changes in nitrate concentration and flux between the middle of the 20th century and the first decade of the 21st century were estimated for the Des Moines River and the Middle Illinois River, two Midwestern Corn Belt streams, using a novel weighted regression approach that is able to detect subtle changes in solute transport behavior over time. The results show that the largest changes in flow-normalized concentration and flux occurred between 1960 and 1980 in both streams, with smaller or negligible changes between 1980 and 2004. Contrasting patterns were observed between (1) nitrate export linked to non-point sources, explicitly runoff of synthetic fertilizer or other surface sources and (2) nitrate export presumably associated with point sources such as urban wastewater or confined livestock feeding facilities, with each of these modes of transport important under different domains of streamflow. Surface runoff was estimated to be consistently most important under high-flow conditions during the spring in both rivers. Nitrate export may also have been considerable in the Des Moines River even under some conditions during the winter when flows are generally lower, suggesting the influence of point sources during this time. Similar results were shown for the Middle Illinois River, which is subject to significant influence of wastewater from the Chicago area, where elevated nitrate concentrations were associated with at the lowest flows during the winter and fall. By modeling concentration directly, this study highlights the complex relationship between concentration and streamflow that has evolved in these two basins over the last 50 years. This approach provides insights about changing conditions that only become observable when stationarity in the relationship between concentration and streamflow is not assumed.

  9. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone

    Science.gov (United States)

    Jay P. Zarnetske; Roy Haggerty; Steven M. Wondzell; Michelle A. Baker

    2011-01-01

    Biogeochemical reactions associated with stream nitrogen cycling, such as nitrification and denitrification, can be strongly controlled by water and solute residence times in the hyporheic zone (HZ). We used a whole-stream steady state 15N-Iabeled nitrate and conservative tracer addition to investigate the spatial and temporal physiochemical...

  10. Nitrate response of a lowland catchment: On the relation between stream concentration and travel time distribution dynamics

    NARCIS (Netherlands)

    Velde, Y. van der; Rooij, G.H. de; Rozemeijer, J.C.; Geer, F.C. van; Broers, H.P.

    2010-01-01

    Nitrate pollution of surface waters is widespread in lowland catchments with intensive agriculture. For identification of effective nitrate concentration reducing measures the nitrate fluxes within catchments need to be quantified. In this paper we applied a mass transfer function approach to

  11. Stream dynamics: An overview for land managers

    Science.gov (United States)

    Burchard H. Heede

    1980-01-01

    Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.

  12. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  13. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  14. Tracing Nitrate-Nitrogen Sources and Modifications in a Stream Impacted by Various Land Uses, South Portugal

    Directory of Open Access Journals (Sweden)

    Mariela A. Yevenes

    2016-09-01

    Full Text Available The identification of nitrate-nitrogen (NO3–N origin is important in the control of surface and ground water quality. These are the main sources of available drinking water. Stable isotopes (15N and 18O for NO3–N and along with a 1-D reactive transport model were used to study the origin and processes that lead to nitrogen transformation and loss in a major stream that flows into a reservoir within an intensively cultivated catchment area (352 km2 in Alentejo-Portugal. Seasonal water samples (October–November 2008, March 2009 and September 2009 of stream surface water, wells and sediment pore water were collected. The results showed consistently increasing isotope values and decreasing NO3–N concentrations downstream. During winter (wet period, November 2008 and March 2009 slightly higher NO3–N concentrations were found in comparison to early fall (dry period: October 2008 and summer (dry period: September 2009. Isotopic composition of 15N and 18O values in surface water samples from the stream and wells indicated that the dominant NO3–N sources were derived mainly from the soil and fertilizers. There was also significant nitrification in surface water at the head of the stream. Sediment pore waters showed high NO3–N values near the sediment-water interface (reaching 25 mg·N·L−1 and NO3–N concentrations sharply decreasing with sediment depth, suggesting significant NO3–N consumption. Denitrification was also detected using the 15N signature in upstream waters, but not downstream where very low NO3–N levels were measured. In the stream, the calculated isotopic enrichment factor for NO3–N was −2.9‰ for 15N and −1.78 for 18O, this indicates that denitrification accounts for 7.8% to 48% of nitrate removal.

  15. The nitrate response of a lowland catchment: on the relation between stream concentration and travel time distribution dynamics

    NARCIS (Netherlands)

    Velde, van der Y.; Rooij, de G.H.; Rozemeijer, J.C.; Geer, van F.C.; Broers, H.P.

    2010-01-01

    Nitrate pollution of surface waters is widespread in lowland catchments with intensive agriculture. For identification of effective nitrate concentration reducing measures the nitrate fluxes within catchments need to be quantified. In this paper we applied a mass transfer function approach to

  16. Coupled Spatio-Temporal Patterns of Solute Transport, Metabolism and Nutrient Uptake in Streams

    Science.gov (United States)

    Kurz, M. J.; Schmidt, C.

    2017-12-01

    Slower flow velocities and longer residence times within stream transient storage (TS) zones facilitate interaction between solutes and microbial communities, potentially increasing local rates of metabolic activity. Multiple factors, including channel morphology and substrate, variable hydrology, and seasonal changes in biological and physical parameters, result in changes in the solute transport dynamics and reactivity of TS zones over time and space. These changes would be expected to, in turn, influence rates of whole-stream ecosystem functions such as metabolism and nutrient uptake. However, the linkages between solute transport and ecosystem functioning within TS zones, and the contribution of TS zones to whole-stream functioning, are not always so straight forward. This may be due, in part, to methodological challenges. In this study we investigated the influence of stream channel hydro-morphology and substrate type on reach (103 m) and sub-reach (102 m) scale TS and ecosystem functioning. Patterns in solute transport, metabolism and nitrate uptake were tracked from April through October in two contrasting upland streams using several methods. The two streams, located in the Harz Mountains, Germany, are characterized by differing size (0.02 vs. 0.3 m3/s), dominant stream channel substrate (bedrock vs. alluvium) and sub-reach morphology (predominance of pools, riffles and glides). Solute transport parameters and respiration rates at the reach and sub-reach scale were estimated monthly from coupled pulse injections of the reactive tracer resazurin (Raz) and conservative tracers uranine and salt. Raz, a weakly fluorescent dye, irreversibly transforms to resorufin (Rru) under mildly reducing conditions, providing a proxy for aerobic respiration. Daily rates of primary productivity, respiration and nitrate retention at the reach scale were estimated using the diel cycles in dissolved oxygen and nitrate concentrations measured by in-situ sensors. Preliminary

  17. StreamSqueeze: a dynamic stream visualization for monitoring of event data

    Science.gov (United States)

    Mansmann, Florian; Krstajic, Milos; Fischer, Fabian; Bertini, Enrico

    2012-01-01

    While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.

  18. Stream Width Dynamics in a Small Headwater Catchment

    Science.gov (United States)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  19. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    de Almeida, Valmor F.; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  20. Factoring stream turbulence into global assessments of nitrogen pollution.

    Science.gov (United States)

    Grant, Stanley B; Azizian, Morvarid; Cook, Perran; Boano, Fulvio; Rippy, Megan A

    2018-03-16

    The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  2. Exchanges across land-water-scape boundaries in urban systems: strategies for reducing nitrate pollution.

    Science.gov (United States)

    Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R

    2008-01-01

    Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.

  3. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    with DAISY, a one dimensional crop model describing soil water dynamics in the root zone, and MIKE SHE, a distributed groundwater-surface water model. The relative and combined impacts on low flows, groundwater levels, and nitrate leaching are quantified and compared to assess the water resource sensitivity...... and risk to stream ecological conditions. We find low flow and annual discharge to be most impacted by scenarios of climate change, with high variation across climate models (+/- 40% change). Doubling of current groundwater abstraction rates reduces annual discharge by approximately 20%, with higher...... flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...

  4. Are nitrate exports in stream water linked to nitrogen fluxes in decomposing foliar litter?

    Science.gov (United States)

    Kathryn B. Piatek; Mary Beth. Adams

    2011-01-01

    The central hardwood forest receives some of the highest rates of atmospheric nitrogen (N) deposition, which results in nitrate leaching to surface waters. Immobilization of N in foliar litter during litter decomposition represents a potential mechanism for temporal retention of atmospherically deposited N in forest ecosystems. When litter N dynamics switch to the N-...

  5. A Novel Image Stream Cipher Based On Dynamic Substitution

    OpenAIRE

    Elsharkawi, A.; El-Sagheer, R. M.; Akah, H.; Taha, H.

    2016-01-01

    Recently, many chaos-based stream cipher algorithms have been developed. Traditional chaos stream cipher is based on XORing a generated secure random number sequence based on chaotic maps (e.g. logistic map, Bernoulli Map, Tent Map etc.) with the original image to get the encrypted image, This type of stream cipher seems to be vulnerable to chosen plaintext attacks. This paper introduces a new stream cipher algorithm based on dynamic substitution box. The new algorithm uses one substitution b...

  6. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    Science.gov (United States)

    Ford, William I.; King, Kevin; Williams, Mark R.

    2018-01-01

    In landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can contribute to deleterious environmental conditions downstream. This study assessed upland and in-stream controls on baseflow nutrient concentrations in a low-gradient, tile-drained agroecosystem watershed. We conducted time-series analysis using Empirical mode decomposition of seven decade-long nutrient concentration time-series in the agricultural Upper Big Walnut Creek watershed (Ohio, USA). Four tributaries of varying drainage areas and three main-stem sites were monitored, and nutrient grab samples were collected weekly from 2006 to 2016 and analyzed for dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP). Statistically significant seasonal fluctuations were compared with seasonality of baseflow, watershed characteristics (e.g., tile-drain density), and in-stream water quality parameters (pH, DO, temperature). Findings point to statistically significant seasonality of all parameters with peak P concentrations in summer and peak N in late winter-early spring. Results suggest that upland processes exert strong control on DRP concentrations in the winter and spring months, while coupled upland and in-stream conditions control watershed baseflow DRP concentrations during summer and early fall. Conversely, upland flow sources driving streamflow exert strong control on baseflow NO3-N, and in-stream attenuation through transient and permanent pathways impacts the magnitude of removal. Regarding TN and TP, we found that TN was governed by NO3-N, while TP was governed by DRP in summer and fluvial erosion of P-rich benthic sediments during higher baseflow conditions. Findings of the study highlight the importance of coupled in-stream and upland management for mitigating eutrophic conditions during environmentally sensitive timeframes.

  7. Inverse coupling of DOC and nitrate export from soils and streams

    Science.gov (United States)

    Goodale, Christine

    2013-04-01

    Over the last two decades, nitrate concentrations in surface waters have decreased across the Northeastern United States and parts of northern Europe. Many hypotheses have been proposed to explain this decrease, but the cause remains unclear. One control may be associated with increasing abundance of dissolved organic carbon (DOC), which in turn may be a result of soil recovery from acidification. Compared across catchments, surface water NO3- decreases sharply with increasing DOC concentration. Here, we used measurements of soil and solution nitrate, DOC, and their isotopic composition (13C-DOC, 15N- and 18O-NO3) to test several related hypotheses that changing acidification affects the release of DOC and bio-available DOC (bDOC) from soil, and that variation in stocks of soil C and release of bDOC partly control NO3- export from forested catchments in New York State, USA. We examined whether DOC and NO3- are both driven by soil C processes that produce inverse coupling at the scale of soil cores as well as across catchments, through comparison of soil and surface water chemistry across nine catchments selected from long-term monitoring networks in the Catskill and Adirondack Mountains. In addition, we conducted a series of soil core leaching experiments to examine the role of acidification and recovery in driving the net production of DOC and NO3- from soils. Over 8 months, soil cores were leached biweekly with simulated rainfall solutions of varying pH (3.6 to 7.0) from additions of H2SO4, CaCO3 and NaOH. These experiments did not yield a pH-induced change in DOC quantity, but did show a change in DOC quality, in that acidified cores released more bio-available DOC with less depleted 13C-DOC than cores with experimentally increased pH. All cores leached substantial amounts of nitrate. Together, these lab- and field comparisons are being used to identify the role of soil production and consumption processes in driving cross-watershed differences in DOC and NO3

  8. Investigating Stream Metabolism and Nutrient Dynamics in Contrasting Ecosystems: The Role of Hydrologic Compartments

    Science.gov (United States)

    Gonzalez-Pinzon, R.; Riveros-Iregui, D. A.; Covino, T. P.

    2015-12-01

    The interactions between mobile and less mobile hydrologic compartments affect the quality and quantity of water in streams and aquifers, and the cycling of dissolved carbon and nutrients. As new laboratory and field techniques become available, new questions and challenges emerge, including: What do we measure, where, and for how long to fully characterize a system? and, What is the ideal cost-maintenance-benefit relationship that we should strive for to maximize knowledge gained in different field settings? We recently performed a series of field experiments to measure aquatic metabolism and nutrient dynamics in two highly contrasting hydrologic systems, i.e., 1) a wetland-stream alpine, tropical system in Colombia (South America) and 2) a dryland river continuum (1st - 5th stream orders) in New Mexico. In this presentation we discuss how multiple lines of evidence can support the analysis of key aquatic processes and how co-interpretation provides a more complete picture of stream complexity. For this analysis, we deployed YSI EXO2 and 6920 sondes, Turner Designs C-sense and C6 sensors, and Onset HOBO water quality data loggers. Parameters measured by these instruments include conductivity, temperature, dissolved oxygen, pH, turbidity, pCO2, chlorophyll-a, phycocyanin, fluorescein, CDOM, brighteners and water depth. We also injected conservative tracers (i.e., NaCl and NaBr) and the bioreactive tracer resazurin in both experimental sites, and NO3 in the dryland river continuum. NO3 was measured in-situ with Satlantic Submersible Ultraviolet Nitrate Analyzers (SUNA) sensors and in the laboratory using Ion Chromatograph techniques using stream grab samples. Our results highlight the role of both residence times and chemical fluxes in regulating the effective processing of carbon and nutrients. Our results also demonstrate that stream stimuli from controlled experiments are ideal for maximizing the information content derived from short (hours to days) and mid

  9. Nitrogen Dynamics Along a Headwater Stream Draining a Fen, Swamp, and Marsh in a Fractured Dolomite Watershed

    Science.gov (United States)

    Duval, T. P.; Waddington, J. M.

    2009-05-01

    Stream-wetland interaction has been shown to have a significant effect on nutrient cycling and downstream water quality. Additionally, connection to regional groundwater systems can dilute or enrich stream water with a number of dissolved constituents. This study demonstrates the resultant downstream change in dissolved nitrogen species as a hardwater stream emerges from a calcareous aquifer and traverses a calcareous fen, a cedar swamp, and a cattail marsh over two growing seasons, a very dry 2006 and a very wet 2007. Upon emergence at a number of groundwater seeps, the water contained appreciable nitrate levels averaging 2.72±0.42 mg NO3-N L-1, minimal organic nitrogen, and ammonium below detectable levels. Through the gently sloping calcareous fen, with a stream residence time of ~ 5 hours, NO3-N concentration decreases of 0.35 mg L-1 were observed. Concomitantly, stream recharge into the dolomite bedrock depressed stream discharge values significantly, further removing nitrate from the stream system. This resulted in the fen-bedrock system acting as an estimated net sink of 432 kg of NO3-N in the early summer of 2007, for example. In contrast, the hydrological-biogeochemical systems became decoupled through the swamp during the same period, where concentrations increased from 2.58±0.34 mg L-1 entering the swamp to 2.65±0.58 mg L-1 exiting, but streamflow decreased in general by 5 L s- 1. This resulted in the swamp, with its large depression storage, acting as a small net sink of nitrate (75 kg through the early summer), which would not be detected simply from concentration changes. The concentration-discharge relation realigned through the marsh, where significant groundwater entered the wetland, increasing both concentration and discharge, yielding a small export of 93 kg over the same time period. A series of tracer injections in each wetland type will be presented to compare the streamflow- concentration patterns with the measured nutrient spiralling

  10. Changes in stream nitrate concentrations due to land management practices, ecological succession, and climate: Developing a system approach to integrated catchment response

    Science.gov (United States)

    F. Worrall; Wayne T. Swank; T. P. Burt

    2003-01-01

    This study uses time series analysis to examine long-term stream water nitrate concentration records from a pair of forested catchments at the Coweeta Hydrologic Laboratory, North Carolina, USA. Monthly average concentrations were available from 1970 through 1997 for two forested catchments, one of which was clear-felled in 1977 and the other maintained as a control....

  11. Relationships between stream nitrate concentration and spatially distributed snowmelt in high-elevation catchments of the western U.S.

    Science.gov (United States)

    Perrot, Danielle; Molotch, Noah P.; Williams, Mark W.; Jepsen, Steven M.; Sickman, James O.

    2014-11-01

    This study compares stream nitrate (NO3-) concentrations to spatially distributed snowmelt in two alpine catchments, the Green Lakes Valley, Colorado (GLV4) and Tokopah Basin, California (TOK). A snow water equivalent reconstruction model and Landsat 5 and 7 snow cover data were used to estimate daily snowmelt at 30 m spatial resolution in order to derive indices of new snowmelt areas (NSAs). Estimates of NSA were then used to explain the NO3- flushing behavior for each basin over a 12 year period (1996-2007). To identify the optimal method for defining NSAs and elucidate mechanisms underlying catchment NO3- flushing, we conducted a series of regression analyses using multiple thresholds of snowmelt based on temporal and volumetric metrics. NSA indices defined by volume of snowmelt (e.g., snowmelt ≤ 30 cm) rather than snowmelt duration (e.g., snowmelt ≤ 9 days) were the best predictors of stream NO3- concentrations. The NSA indices were better correlated with stream NO3- concentration in TOK (average R2= 0.68) versus GLV4 (average R2= 0.44). Positive relationships between NSA and stream NO3- concentration were observed in TOK with peak stream NO3- concentration occurring on the rising limb of snowmelt. Positive and negative relationships between NSA and stream NO3- concentration were found in GLV4 with peak stream NO3- concentration occurring as NSA expands. Consistent with previous works, the contrasting NO3- flushing behavior suggests that streamflow in TOK was primarily influenced by overland flow and shallow subsurface flow, whereas GLV4 appeared to be more strongly influenced by deeper subsurface flow paths.

  12. Effects of urban stream burial on nitrogen uptake and ...

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  13. X-ray and neutron diffraction and molecular dynamics simulation of molten lithium and rubidium nitrates

    International Nuclear Information System (INIS)

    Yamaguchi, Toshio; Okada, Isao; Ohtaki, Hitoshi; Mikami, Masuhiro; Kawamura, Kazutaka

    1986-01-01

    Molecular dynamics simulations have been performed for lithium and rubidium nitrate melts at 550 and 600K, respectively, together with X-ray and neutron diffraction experiments. Simple Coulomb pair potentials with Born-type repulsions have been adopted in the simulations with a rigid body model for the nitrate ion. Structure functions derived from the X-ray and neutron experiments are well reproduced by the simulations, from which the three-dimensional cation distribution around the nitrate ion has been revealed. The self-diffusion coefficients, the velocity autocorrelation functions and the self-exchange velocities of lithium, rubidium and nitrate ions have been calculated. Anisotropic motion of nitrate ions has been found and is discussed on the basis of the structure of the melts. (author)

  14. Biological denitrification of high-nitrates wastes generated in the nuclear industry

    International Nuclear Information System (INIS)

    Francis, C.W.

    1980-01-01

    Biological denitrification appears to be one of the most effective methods to remove nitrates from wastewater streams (Christenson and Harremoes, 1975). However, most of the research and development work has been centered on removal of nitrates from sewage or agricultural drainage waters, nitrate nitrogen concentration usually less than 50 g/m 3 . Work was initiated at Oak Ridge National Laboratory (ORNL) in 1974 to test the use of biological nitrification in the removal of high concentrations of nitrate (in excess of 1.0 kg NO 3 -N/m 3 ) from uranium purification waste streams. Since then, a full-scale treatment facility, a stirred reactor, has been installed at the Y-12 plant; and a pilot-plant, using a fluidized bed, has been proposed at Portsmouth Gaseous Diffusion Plant. The objective of this manuscript is to present some applied microbiological research relating to possible constraints in biologically denitrifying certain waste streams in the nuclear industry and comparing the effectiveness of denitrification of these waste streams in three bench scale reactors, (1) a continuous flow-stirred reactor, (2) stirred bed rector, and (3) a fluidized bed reactor

  15. Ion dynamics in moltmolti melkaltal nitrates

    International Nuclear Information System (INIS)

    Kamiyama, Takashi; Nakamura, Yoshio; Shibata, Kaoru; Suzuki, Kenji.

    1993-01-01

    Quasielastic neutron scattering experiments have been performed on simple molten alkali metal nitrates, RbNO 3 and LiNO 3 . The experiments were carried out by the medium resolution inverted geometry spectrometer LAM-40 at KENS neutron scattering facility in Japan. The measured spectra are composed of narrow and broad quasielastic spectra. We assigned that the broad component corresponds to the fast intra-ionic motions in a nitrate ion. From momentum dependence of integrated intensity for this component it is found that the motion of nitrate ions in RbNO 3 melt is mainly the librational one centered C 3 axis on the ion. On the other hand the intra-ionic motion in LiNo 3 is the librational motion cnetered C 3 axis on the nitrate ion which amplitude is smaller than in RbNO 3 melt. This fact shows that the motion of nitrate ions in LiNO 3 is restricted strongly by surrounding cations. (author)

  16. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events

    Science.gov (United States)

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.

    2016-01-01

    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  17. Nondestructive, energy-dispersive, x-ray fluorescence analysis of actinide stream concentrations from reprocessed nuclear fuels

    International Nuclear Information System (INIS)

    Camp, D.C.; Ruhter, W.D.

    1979-01-01

    In one plan for reprocessing LWR spent fuel, after separation from fission products and transplutonics, part of the U and all of the Pu in a nitrate solution will form a coprocessed stream which is then evaporated and sent to a hold tank for accounting. The remaining U fraction will be purified and sent to a separate storage tank. These two streams can be monitored using x-ray fluorescence analysis. This report discusses equipment, spectra, cell calibration, and dynamic concentration measurements. 7 figures

  18. BEST Engineered Hyporheic Zones: Enhanced Hyporheic Exchange and Resazurin and Nitrate Cycling in Constructed Stream Experiments

    Science.gov (United States)

    Herzog, S.; McCray, J. E.; Higgins, C. P.

    2016-12-01

    The hyporheic zone is a hotspot for biogeochemical processing that can attenuate a variety of nonpoint source contaminants in streamwater. However, hyporheic zones in urban and agricultural streams are often degraded and poorly connected with surface water. To increase hyporheic exchange and improve water quality, we introduced engineered streambeds as a stormwater and restoration best management practice. Modifications to streambed hydraulic conductivity and reactivity are termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low-permeability sediments to drive efficient hyporheic exchange, and reactive geomedia to increase reaction rates within the hyporheic zone. This research utilized two artificial stream flumes at the Colorado School of Mines in Golden, CO. Each lined stream flume was 15m long, 0.3m wide, had 0.3m sediment depth, and was continuously dosed with recycled water at 0.25 L/s. One flume served as an all-sand control condition, the other featured BEST modules at 1m spacing with a mixture of 70/30 sand/woodchips (v/v). NaCl breakthrough curves were monitored and analyzed using STAMMT-L, a mobile-immobile exchange model, which showed greater hyporheic exchange and residence times in the BEST stream relative to the control. This result is even more apparent when the calibrated models are used to simulate longer stream reaches. Water quality samples at the reach scale also revealed greater attenuation of nitrate and transformation of the indicator compound resazurin into resorufin. Together these compounds demonstrate that BEST can attenuate contaminants that degrade under anaerobic and aerobic conditions, respectively. These experimental results were also compared to previous numerical simulations to evaluate model accuracy, and show reasonable agreement. Altogether, these results show that BEST may be an effective novel best management practice for improving streamwater quality in urban and

  19. A mobile water analysis laboratory for the study of stream nutrient and DOC dynamics

    Science.gov (United States)

    Echevarria Roman, Y.; Pullin, M. J.; Schwingle, R.; Gabrielsen, P. J.

    2013-12-01

    The dynamics of nutrient and dissolved organic carbon (DOC) quantity and composition in streams vary with season and in response to hydrologic events. Periodic grab sampling can capture some of this variation, but has also been shown to miss high flow events. Sampling during winter, during thunderstorms, and at night is difficult and sometimes hazardous. For these reasons, we have developed a mobile laboratory that autonomously determines pH, Eh, conductivity, dissolved oxygen, turbidity, nitrate, phosphate, DOC, DIC, as well as DOC fluorescence and absorbance continuously on a minutes timescale. The laboratory includes a Labview operated computer system that allows remote control and interaction with pumps, pressure, temperature, and flow sensors as well as the analytical instruments. Climate control allows for operation in winter. The design and operation of this laboratory will be presented. We will also discuss example data showing diurnal changes and responses to hydrologic events in DOC quantity and quality in the East Fork of the Jemez River, New Mexico.

  20. Sources and transformations of nitrate from streams draining varying land uses: Evidence from dual isotope analysis

    Science.gov (United States)

    Burns, Douglas A.; Boyer, E.W.; Elliott, E.M.; Kendall, C.

    2009-01-01

    Knowledge of key sources and biogeochemical processes that affect the transport of nitrate (NO3-) in streams can inform watershed management strategies for controlling downstream eutrophication. We applied dual isotope analysis of NO3- to determine the dominant sources and processes that affect NO3- concentrations in six stream/river watersheds of different land uses. Samples were collected monthly at a range of flow conditions for 15 mo during 2004-05 and analyzed for NO3- concentrations, ?? 15NNO3, and ??18ONO3. Samples from two forested watersheds indicated that NO3- derived from nitrification was dominant at baseflow. A watershed dominated by suburban land use had three ??18ONO3 values greater than +25???, indicating a large direct contribution of atmospheric NO 3- transported to the stream during some high flows. Two watersheds with large proportions of agricultural land use had many ??15NNO3 values greater than +9???, suggesting an animal waste source consistent with regional dairy farming practices. These data showed a linear seasonal pattern with a ??18O NO3:??15NNO3 of 1:2, consistent with seasonally varying denitrification that peaked in late summer to early fall with the warmest temperatures and lowest annual streamflow. The large range of ?? 15NNO3 values (10???) indicates that NO 3- supply was likely not limiting the rate of denitrification, consistent with ground water and/or in-stream denitrification. Mixing of two or more distinct sources may have affected the seasonal isotope patterns observed in these two agricultural streams. In a mixed land use watershed of large drainage area, none of the source and process patterns observed in the small streams were evident. These results emphasize that observations at watersheds of a few to a few hundred km2 may be necessary to adequately quantify the relative roles of various NO 3- transport and process patterns that contribute to streamflow in large basins. Copyright ?? 2009 by the American Society of

  1. Ammonium release from a blanket peatland into headwater stream systems

    International Nuclear Information System (INIS)

    Daniels, S.M.; Evans, M.G.; Agnew, C.T.; Allott, T.E.H.

    2012-01-01

    Hydrochemical sampling of South Pennine (UK) headwater streams draining eroded upland peatlands demonstrates these systems are nitrogen saturated, with significant leaching of dissolved inorganic nitrogen (DIN), particularly ammonium, during both stormflow and baseflow conditions. DIN leaching at sub-catchment scale is controlled by geomorphological context; in catchments with low gully densities ammonium leaching dominates whereas highly gullied catchments leach ammonium and nitrate since lower water tables and increased aeration encourages nitrification. Stormflow flux calculations indicate that: approximately equivalent amounts of nitrate are deposited and exported; ammonium export significantly exceeds atmospheric inputs. This suggests two ammonium sources: high atmospheric loadings; and mineralisation of organic nitrogen stored in peat. Downstream trends indicate rapid transformation of leached ammonium into nitrate. It is important that low-order headwater streams are adequately considered when assessing impacts of atmospheric loads on the hydrochemistry of stream networks, especially with respect to erosion, climate change and reduced precipitation. - Highlights: ► Headwaters draining eroded South Pennine (UK) peatlands are nitrogen saturated. ► Ammonium and nitrate leaching arises from aeration due to lower water tables. ► Nitrate deposition equals export during storms; ammonium export exceeds input. ► Ammonia input from high atmospheric loading and mineralisation of organic nitrogen. ► Downstream nitrogen trends indicate rapid transformation of ammonium into nitrate. - Inorganic nitrogen leaching from South Pennine peatlands is dominated by ammonium that is rapidly transformed within-streams to nitrate.

  2. Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality

    Science.gov (United States)

    Ledford, S. H.; Lautz, L. K.

    2013-12-01

    Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach

  3. Two tales of legacy effects on stream nutrient behaviour

    Science.gov (United States)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high

  4. Evaluating sources and processing of nonpoint source nitrate in a small suburban watershed in China

    Science.gov (United States)

    Han, Li; Huang, Minsheng; Ma, Minghai; Wei, Jinbao; Hu, Wei; Chouhan, Seema

    2018-04-01

    Identifying nonpoint sources of nitrate has been a long-term challenge in mixed land-use watershed. In the present study, we combine dual nitrate isotope, runoff and stream water monitoring to elucidate the nonpoint nitrate sources across land use, and determine the relative importance of biogeochemical processes for nitrate export in a small suburban watershed, Longhongjian watershed, China. Our study suggested that NH4+ fertilizer, soil NH4+, litter fall and groundwater were the main nitrate sources in Longhongjian Stream. There were large changes in nitrate sources in response to season and land use. Runoff analysis illustrated that the tea plantation and forest areas contributed to a dominated proportion of the TN export. Spatial analysis illustrated that NO3- concentration was high in the tea plantation and forest areas, and δ15N-NO3 and δ18O-NO3 were enriched in the step ponds. Temporal analysis showed high NO3- level in spring, and nitrate isotopes were enriched in summer. Study as well showed that the step ponds played an important role in mitigating nitrate pollution. Nitrification and plant uptake were the significant biogeochemical processes contributing to the nitrogen transformation, and denitrification hardly occurred in the stream.

  5. Hydrological and seasonal export mechanisms for nitrate transport from a forested catchment

    International Nuclear Information System (INIS)

    Rusjan, S; Mikos, M; Brilly, M

    2008-01-01

    Understanding of interactions between hydrological and biogeochemical responses of catchments on rainfall events is usually unclear from periodic measurements and requires tracing of the temporal dynamics of the processes. Smaller streams reflect strong connections between hydrological processes of the rainfall runoff formation and biogeochemical processes in the catchment; consequently, the responsiveness of the streamwater chemistry to changed hydrological states is very high. The study was carried out in 2007, within the 42 km 2 forested Padez catchment in the southwestern part of Slovenia, which is characterized by distinctive flushing, an almost torrential hydrological regime influenced by impermeable flysch geological settings. Recorded hydrographs which, in the hydrological and biogeochemical sense, differed substantially, disclosed a highly variable, but at the same time a strong linkage between hydrological, biogeochemical and particular topographic controls of nitrate exports from the spatial perspective of a studied catchment. The role of specific hydrological events on the nitrate mobilization proved to be important as the size of the accumulated nitrate pool available for mobilization was large throughout the observed hydrographs. The biogeochemical environment of the forest soils presumably significantly affects the size of the available nitrate pool in the studied catchment.

  6. MEKANISME SEGMENTASI LAJU BIT PADA DYNAMIC ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    Muhammad Audy Bazly

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG- DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  7. Delay in catchment nitrogen load to streams following restrictions on fertilizer application

    DEFF Research Database (Denmark)

    Vervloet, Lidwien S. C.; Binning, Philip John; Borgesen, Christen D.

    2018-01-01

    A MIKE SHE hydrological-solute transport model including nitrate reduction is employed to evaluate the delayed response in nitrogen loads in catchment streams following the implementation of nitrogen mitigation measures since the 1980s. The nitrate transport lag times between the root zone...... and the streams for the period 1950-2011 were simulated for two catchments in Denmark and compared with observational data. Results include nitrogen concentration and mass discharge to streams. By automated baseflow separation, stream discharge was separated into baseflow and drain flow components...

  8. Organic Seston Dynamics in Upland Neotropical Streams: Implications for Amphibian Declines

    Science.gov (United States)

    Peterson, S. D.; Colon-Gaud, C.; Whiles, M. R.; Hunte-Brown, M.; Connelly, S.; Kilham, S.; Pringle, C. M.; Lips, K. R.; Brenes, R.

    2005-05-01

    Organic seston represents food for filter feeders and a mechanism for downstream transport of energy and nutrients. As part of a study assessing the ecological impacts of stream-breeding anuran extirpations, we examined seston dynamics in 2 stream reaches with tadpoles (El Cope) and 2 without (Fortuna) in the Panamanian uplands. All reaches are high gradient with annual average discharge ranging from 46-102 L/s. Samples were collected multiple times per month at various discharges, sieved into fine (98μm) and very fine (1.6μm) fractions, and processed to estimate ash-free dry mass (AFDM), total C, and total N. Average annual concentrations ranged from 0.52- 2.51 mg/L (fine) and 2.04-3.14 mg/L (very fine), and total export ranged from 0.27-7,981 mg/s across all streams. On average, very fine particles comprised 78% of export from El Cope sites and 61% from Fortuna streams. Average total N export ranged from 5.32-30.53 mg/s in El Cope sites and 1.71-6.04 mg/s at Fortuna. Average particle quality (C/N) in El Cope streams was higher (7.6) than Fortuna streams (11.5). Lower export of very fine particles and lower seston quality in Fortuna streams suggests the loss of tadpoles may influence seston dynamics and quality in these systems.

  9. On the dynamics of stream piracy

    Science.gov (United States)

    Goren, L.; Willett, S. D.

    2012-04-01

    Drainage network reorganization by stream piracy is invoked repeatedly to explain the morphology of unique drainage patterns and as a possible mechanism inducing abrupt variations of sediment accumulation rates. However, direct evidence of stream piracy is usually rare, and is highly interpretation dependent. As a first step in assessing how probable capture events are and establishing the conditions that favor stream piracy versus the those that favor stable landscapes, we formulate analytically the physics of divide migration and capture events and study this formulation from a dynamical system point of view. The formulation is based on a one-dimensional topographic cross section between two channels that share a water divide. Two hillslope profiles diverge from the divide and drain into two fluvial bedrock tributaries, whose erosion rate is controlled by a stream power law. The rate of erosion at the bounding channels is thus a function of the upstream drainage area and local slope. A tectonically induced downward perturbation of the elevation of one of the bounding channels lowers the channel slope but at the same time increases the drainage area due to outward migration of the water divide. The changes in slope and area have opposing effect on the erosion rate at the bounding channels, so that the perturbation may either grow or be damped. We define the geomorphic and tectonic parameters that control the behavior of the system and find the regimes that lead to stable landscapes and to capture events.

  10. Seasonal variability in nitrate and phosphate uptake kinetics in a forested headwater stream using pulse nutrient additions

    Science.gov (United States)

    Griffiths, N. A.; Mulholland, P. J.

    2011-12-01

    We used the Tracer Additions for Spiraling Curve Characterization (TASCC) approach to quantify seasonal variability in ambient nutrient spiraling metrics and nutrient uptake kinetics in the West Fork of Walker Branch, a forested headwater stream in eastern Tennessee, USA. We performed instantaneous additions of nitrate (NO3-) and phosphate (PO4-3) separately with a conservative tracer (chloride, Cl-) during the following biologically-important time periods: autumn (during leaf fall, high organic matter [OM] standing stocks), winter (low OM standing stocks), spring (prior to canopy closure), and summer (closed canopy). We predicted that nutrient demand would be highest during autumn and spring, as OM inputs fuel heterotrophic respiration and high light availability stimulates autotrophic production, respectively. The measured ambient PO4-3 uptake rates (Vf-amb) followed our predictions, with the highest Vf-amb rates in autumn (Vf-amb = 2.8 mm/min) and spring (Vf-amb = 2.9 mm/min), and undetectable uptake in winter. Further, maximum areal PO4-3 uptake rates (Umax) were higher in autumn (Umax = 297 μg/m2/min) than spring (Umax = 106 μg/m2/min), possibly due to greater nutrient demand of heterotrophs on leaf litter accumulations. Contrary to our predictions, ambient NO3- uptake rates were highest in autumn and winter (autumn: Vf-amb = 2.8 mm/min, winter: Vf-amb = 2.4 mm/min), and lowest in spring (Vf-amb = 1.0 mm/min). The higher than expected Vf-amb rate in winter may be due to higher stream metabolism rates and thus greater nitrogen demand; the lower than expected Vf-amb rate in spring may reflect an alleviation of nitrogen demand due to high ammonium concentrations during this time. As the demand for both nitrogen and phosphorus in Walker Branch is greatest in autumn, future work will characterize how nutrient metrics change during this dynamic time period (i.e., before, during, and after leaf fall).

  11. Determination of nitrate in effluents from Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Dudwadkar, Ayushi; Kumar, Sangita D.; Reddy, A.V.R.

    2014-01-01

    Determination of nitrate concentration in the effluent samples from Uranium Extraction Plant is required before its safe discharge. As the different streams are diluted with sea water these samples contain high concentration of chloride. The large concentration of chloride poses a challenge in the determination of nitrate; hence, matrix elimination is accomplished by adopting a sample pretreatment technique. The present study was carried out to develop a simple, accurate and rapid analytical methodology for the determination of nitrate in the above matrices. The quantitative determination of nitrate was accomplished using anion exchange chromatography with conductometric detection. (author)

  12. [Characteristics and Transport Patterns of Ammonia, Nitrites, Nitrates and Inorganic Nitrogen Flux at Epikarst Springs and a Subterranean Stream in Nanshan, Chongqing].

    Science.gov (United States)

    Zhang, Yuan-zhu; He, Qiu-fang; Jiang, Yong-jun; Li, Yong

    2016-04-15

    In a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen. The concentration of inorganic nitrogen was stable in the epikarst water while it was fluctuant in the subterranean stream. Epikarst water was less affected by rainfall and sewage compared with subterranean stream. In epikarst water, the nitrate concentration was much higher than the ammonia concentration. Dissolved inorganic nitrogen, mainly from non-point source pollution related to agricultural activities, passed in and out of the epikarst water based on a series of physical; chemical and biological processes in the epikarst zone, such as ammonification, adsorption and nitrification. On the contrary, subterranean stream showed a result of NH₄⁺-N > NO₃⁻-N in dry seasons and NO₃⁻-N > NH₄⁺-N in rainy seasons. This can be due to the fact that sanitary and industrial sewage flowed into subterranean river through sinkholes, fissures and grikes in dry season. Dissolved inorganic nitrogen in subterranean river was mainly from the non-point source pollution in wet season. Non-point source pollutants entered into subterranean water by two transport ways, one by penetration along with vadose flow through fissures and grikes, and the other by conduit flow through sinkholes from the surface runoff, soil water flow and epikarst flow. The export flux of DIN was 56.05 kg · (hm² · a)⁻¹, and NH₄⁺-N and NO₃⁻-N accounted for 46.03% and 52.51%, respectively. The contributions of point-source pollution and non point-source pollution to the export flux of DIN were 25.08% and 74.92%, respectively, based on run

  13. Is nitrate an endocrine active compound in fish?

    DEFF Research Database (Denmark)

    Mose, M. P.; Kinnberg, Karin Lund; Bjerregaard, Poul

    Nitrate and nitrite taken up into fish may be reduced to NO which is known to be a signalling compound in the organism contributing to the regulation of i.e. steroid synthesis. Exposure of male rats to nitrate and nitrite results in reduced plasma concentrations of testosterone (also nitrate...... concentrations around or below the limits for drinking water). Nitrate concentrations in streams may be elevated due to releases from agricultural practices. The effects of nitrate and nitrite on endocrine relevant endpoints were investigated in zebrafish (Danio rerio) and brown trout (Salmo trutta). Zebrafish...... were exposed to nitrate and nitrite from hatch to sexual maturation (60 d) and sex ratio and vitellogenin concentrations were determined. Juvenile brown trout were exposed in a short-term experiment and the concentrations of vitellogenin were determined. The sex ratio in zebrafish was not affected...

  14. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nitrate reduction in geologically heterogeneous catchments

    DEFF Research Database (Denmark)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A.

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface...... conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root...... the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface...

  16. The nitrate response of a lowland catchment and groundwater travel times

    Science.gov (United States)

    van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans

    2010-05-01

    Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface

  17. A novel modelling approach for spatial and temporal variations in nitrate concentrations in an N-impacted UK small upland river basin

    International Nuclear Information System (INIS)

    Smart, Richard P.; Cresser, Malcolm S.; Calver, Louise J.; Clark, Matthew; Chapman, Pippa J.

    2005-01-01

    Monthly data for 11 moorland streams displaying marked seasonality and spatial variation in nitrate concentrations have been used with readily available catchment characteristics to develop a method for predicting stream water nitrate concentrations throughout an upland river network in the Lake District, UK. Over a 12-month period, a simple asymmetric truncated cosine function of day number is used to describe seasonality effects on stream water nitrate concentrations. This is then adjusted to compensate for differences in seasonality effects with catchment elevation. Occurrence of greater proportions of steeper slopes (>20 deg. -40 deg. ) in individual catchments facilitated nitrate leaching, as did increased extent of occurrence of outcropping rocks. It is shown that the spatial and temporal variation in nitrate concentration through the river network studied may therefore be effectively represented by an equation which is a function of day number, % outcropping rock and % of catchment area with a >20 deg. -40 deg. slope. - A novel model of spatial and temporal variations in stream water nitrate concentration throughout an N-impacted upland catchment is described

  18. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    Science.gov (United States)

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  19. Sustainable Strategies for the Dynamic Equilibrium of the Urban Stream, Cheonggyecheon

    Science.gov (United States)

    Seo, D.; Kwon, Y.

    2018-04-01

    Cheonggyecheon, which had been transformed into a 14-lane urban highway and a large underground sewer system, was finally converted back to an urban stream again. Its transformation has been praised as a successful example of urban downtown regeneration and beautification. It is, however, obvious that there have not been prudent ecological considerations since the project’s principal goals were to provide public recreational use and achieve maximum flood control capacity via the use of embankments. For a healthier and sustainable stream environment, Cheonggyecheon should be ecologically re-restored again, based on a dynamic equilibrium model. It must primarily establish a corridor of vegetation, an aquatic transitional zone, and install constructed wetlands nearby which support the water source. The upper streams of Cheonggyecheon should be further restored and supply natural waters. Furthermore, there ultimately needs to be de-channelization for hydrological sustainability. This would vary from merely increasing the sinuosity to thoroughly reconstruct a naturalized stream. Complete dynamic equilibrium of Cheonggyecheon can be accomplished through more fundamental sustainable strategies.

  20. Formation, Evaporation, and Hydrolysis of Organic Nitrates from Nitrate Radical Oxidation of Monoterpenes

    Science.gov (United States)

    Ng, N. L.; Takeuchi, M.; Eris, G.; Berkemeier, T.; Boyd, C.; Nah, T.; Xu, L.

    2017-12-01

    Organic nitrates play an important role in the cycling of NOx and secondary organic aerosol (SOA) formation, yet their formation mechanisms and fates remain highly uncertain. The interactions of biogenic VOCs with NO3 radicals represent a direct way for positively linking anthropogenic and biogenic emissions. Results from ambient studies suggest that organic nitrates have a relatively short lifetime, though corresponding laboratory data are limited. SOA and organic nitrates produced at night may evaporate the following morning due to increasing temperatures or dilution of semi-volatile compounds. Once formed, organic nitrates can also undergo hydrolysis in the presence of particle water. In this work, we investigate the formation, evaporation, and hydrolysis of organic nitrates generated from the nitrate radical oxidation of a-pinene, b-pinene, and limonene. Experiments are conducted in the Georgia Environmental Chamber facility (GTEC) under dry and humid conditions and different temperatures. Experiments are also designed to probe different peroxy radical pathways (RO2+HO2 vs RO2+NO3). Speciated gas-phase and particle-phase organic nitrates are continuously monitored by a Filter Inlet for Gases and AEROsols High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (FIGAERO-HR-ToF-CIMS). Bulk aerosol composition is measured by a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). A large suite of highly oxygenated gas- and particle-phase organic nitrates are formed rapidly. We find a resistance to aerosol evaporation when it is heated. The extent of organic nitrate hydrolysis in the humid experiments is evaluated. The dynamics of the speciated organic nitrates over the course of the experiments will also be discussed. Results from this chamber study provide fundamental data for understanding the dynamics of organic nitrate aerosols over its atmospheric lifetime.

  1. Evaluation of nitrate destruction methods

    International Nuclear Information System (INIS)

    Taylor, P.A.; Kurath, D.E.; Guenther, R.

    1993-01-01

    A wide variety of high nitrate-concentration aqueous mixed [radioactive and Resource Conservation and Recovery Act (RCRA) hazardous] wastes are stored at various US Department of Energy (DOE) facilities. These wastes will ultimately be solidified for final disposal, although the waste acceptance criteria for the final waste form is still being determined. Because the nitrates in the wastes will normally increase the volume or reduce the integrity of all of the waste forms under consideration for final disposal, nitrate destruction before solidification of the waste will generally be beneficial. This report describes and evaluates various technologies that could be used to destroy the nitrates in the stored wastes. This work was funded by the Department of Energy's Office of Technology Development, through the Chemical/Physical Technology Support Group of the Mixed Waste Integrated Program. All the nitrate destruction technologies will require further development work before a facility could be designed and built to treat the majority of the stored wastes. Several of the technologies have particularly attractive features: the nitrate to ammonia and ceramic (NAC) process produces an insoluble waste form with a significant volume reduction, electrochemical reduction destroys nitrates without any chemical addition, and the hydrothermal process can simultaneously treat nitrates and organics in both acidic and alkaline wastes. These three technologies have been tested using lab-scale equipment and surrogate solutions. At their current state of development, it is not possible to predict which process will be the most beneficial for a particular waste stream

  2. Nutrient uptake dynamics across a gradient of nutrient concentrations and ratios at the landscape scale

    Science.gov (United States)

    Gibson, Catherine A.; O'Reilly, Catherine M.; Conine, Andrea L.; Lipshutz, Sondra M.

    2015-02-01

    Understanding interactions between nutrient cycles is essential for recognizing and remediating human impacts on water quality, yet multielemental approaches to studying nutrient cycling in streams are currently rare. Here we utilized a relatively new approach (tracer additions for spiraling curve characterization) to examine uptake dynamics for three essential nutrients across a landscape that varied in absolute and relative nutrient availability. We measured nutrient uptake for soluble reactive phosphorous, ammonium-nitrogen, and nitrate-nitrogen in 16 headwater streams in the Catskill Mountains, New York. Across the landscape, ammonium-nitrogen and soluble reactive phosphorus had shorter uptake lengths and higher uptake velocities than nitrate-nitrogen. Ammonium-nitrogen and soluble reactive phosphorus uptake velocities were tightly correlated, and the slope of the relationship did not differ from one, suggesting strong demand for both nutrients despite the high ambient water column dissolved inorganic nitrogen: soluble reactive phosphorus ratios. Ammonium-nitrogen appeared to be the preferred form of nitrogen despite much higher nitrate-nitrogen concentrations. The uptake rate of nitrate-nitrogen was positively correlated with ambient soluble reactive phosphorus concentration and soluble reactive phosphorus areal uptake rate, suggesting that higher soluble reactive phosphorus concentrations alleviate phosphorus limitation and facilitate nitrate-nitrogen uptake. In addition, these streams retained a large proportion of soluble reactive phosphorus, ammonium-nitrogen, and nitrate-nitrogen supplied by the watershed, demonstrating that these streams are important landscape filters for nutrients. Together, these results (1) indicated phosphorus limitation across the landscape but similarly high demand for ammonium-nitrogen and (2) suggested that nitrate-nitrogen uptake was influenced by variability in soluble reactive phosphorus availability and preference for

  3. Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics.

    Science.gov (United States)

    Thomaz, Edivaldo L; Peretto, Gustavo T

    2016-04-15

    Unpaved roads are ubiquitous features that have been transforming the landscape through human history. Unpaved roads affect the water and sediment pathways through a catchment and impacts the aquatic ecosystem. In this study, we describe the effect of unpaved road on the hydrogeomorphic connectivity at the rural headwater scale. Measurement was based on the stream crossing approach, i.e., road superimposing the drainage system. We installed a Parshall flume coupled with single-stage suspended sediment sampler at each stream crossing. In addition, we displayed our monitoring scheme with an upscaling perspective from second-order to third-order stream. We concluded that the road-stream coupling dramatically changed the stream dynamic. The increase of discharge caused by roads at the headwater was 50% larger compared to unaffected streams. Additionally, suspended sediment concentration enhancement at stream crossings ranged from to 413% at second-order streams to 145% at third-order streams. The landform characteristics associated with the road network produced an important hydrogeomorphic disruption in the landscape. As a result, the sediment filter function of the riparian zone was reduced dramatically. Therefore, we recommend that projects for aquatic system restoration or conservation in rural landscape consider the role of the road network on stream dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Using High-Resolution Data to Assess Land Use Impact on Nitrate Dynamics in East African Tropical Montane Catchments

    Science.gov (United States)

    Jacobs, Suzanne R.; Weeser, Björn; Guzha, Alphonce C.; Rufino, Mariana C.; Butterbach-Bahl, Klaus; Windhorst, David; Breuer, Lutz

    2018-03-01

    Land use change alters nitrate (NO3-N) dynamics in stream water by changing nitrogen cycling, nutrient inputs, uptake and hydrological flow paths. There is little empirical evidence of these processes for East Africa. We collected a unique 2 year high-resolution data set to assess the effects of land use (i.e., natural forest, smallholder agriculture and commercial tea plantations) on NO3-N dynamics in three subcatchments within a headwater catchment in the Mau Forest Complex, Kenya's largest tropical montane forest. The natural forest subcatchment had the lowest NO3-N concentrations (0.44 ± 0.043 mg N L-1) with no seasonal variation. NO3-N concentrations in the smallholder agriculture (1.09 ± 0.11 mg N L-1) and tea plantation (2.13 ± 0.19 mg N L-1) subcatchments closely followed discharge patterns, indicating mobilization of NO3-N during the rainy seasons. Hysteresis patterns of rainfall events indicate a shift from subsurface flow in the natural forest to surface runoff in agricultural subcatchments. Distinct peaks in NO3-N concentrations were observed during rainfall events after a longer dry period in the forest and tea subcatchments. The high-resolution data set enabled us to identify differences in NO3-N transport of catchments under different land use, such as enhanced NO3-N inputs to the stream during the rainy season and higher annual export in agricultural subcatchments (4.9 ± 0.3 to 12.0 ± 0.8 kg N ha-1 yr-1) than in natural forest (2.6 ± 0.2 kg N ha-1 yr-1). This emphasizes the usefulness of our monitoring approach to improve the understanding of land use effects on riverine N exports in tropical landscapes, but also the need to apply such methods in other regions.

  5. Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams

    International Nuclear Information System (INIS)

    Rosa, Rodrigo dos Santos; Aguiar, Anna Carolina Fornero; Boëchat, Iola Gonçalves; Gücker, Björn

    2013-01-01

    We investigated the impacts of effluent discharge from small flow-through fish farms on stream water characteristics, the benthic invertebrate community, whole-system nitrate uptake, and ecosystem metabolism of three tropical headwater streams in southeastern Brazil. Effluents were moderately, i.e. up to 20-fold enriched in particulate organic matter (POM) and inorganic nutrients in comparison to stream water at reference sites. Due to high dilution with stream water, effluent discharge resulted in up to 2.0-fold increases in stream water POM and up to 1.8-fold increases in inorganic nutrients only. Moderate impacts on the benthic invertebrate community were detected at one stream only. There was no consistent pattern of effluent impact on whole-stream nitrate uptake. Ecosystem metabolism, however, was clearly affected by effluent discharge. Stream reaches impacted by effluents exhibited significantly increased community respiration and primary productivity, stressing the importance of ecologically sound best management practices for small fish farms in the tropics. -- Highlights: ► Fish farm effluent discharge had moderate effects on stream water quality. ► Impacts on the benthic invertebrate community occurred at one stream. ► Whole-stream nitrate uptake showed no consistent impact pattern. ► Effluents caused considerable increases in stream ecosystem metabolism. ► Compliance with best management practices is important for small fish farms. -- Moderate water pollution by small fish farms caused considerable eutrophication responses in tropical headwater streams

  6. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams

    KAUST Repository

    Qahtan, Abdulhakim Ali Ali; Wang, Suojin; Zhang, Xiangliang

    2016-01-01

    Recent developments in sensors, global positioning system devices and smart phones have increased the availability of spatiotemporal data streams. Developing models for mining such streams is challenged by the huge amount of data that cannot be stored in the memory, the high arrival speed and the dynamic changes in the data distribution. Density estimation is an important technique in stream mining for a wide variety of applications. The construction of kernel density estimators is well studied and documented. However, existing techniques are either expensive or inaccurate and unable to capture the changes in the data distribution. In this paper, we present a method called KDE-Track to estimate the density of spatiotemporal data streams. KDE-Track can efficiently estimate the density function with linear time complexity using interpolation on a kernel model, which is incrementally updated upon the arrival of new samples from the stream. We also propose an accurate and efficient method for selecting the bandwidth value for the kernel density estimator, which increases its accuracy significantly. Both theoretical analysis and experimental validation show that KDE-Track outperforms a set of baseline methods on the estimation accuracy and computing time of complex density structures in data streams.

  7. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams

    KAUST Repository

    Qahtan, Abdulhakim Ali Ali

    2016-11-08

    Recent developments in sensors, global positioning system devices and smart phones have increased the availability of spatiotemporal data streams. Developing models for mining such streams is challenged by the huge amount of data that cannot be stored in the memory, the high arrival speed and the dynamic changes in the data distribution. Density estimation is an important technique in stream mining for a wide variety of applications. The construction of kernel density estimators is well studied and documented. However, existing techniques are either expensive or inaccurate and unable to capture the changes in the data distribution. In this paper, we present a method called KDE-Track to estimate the density of spatiotemporal data streams. KDE-Track can efficiently estimate the density function with linear time complexity using interpolation on a kernel model, which is incrementally updated upon the arrival of new samples from the stream. We also propose an accurate and efficient method for selecting the bandwidth value for the kernel density estimator, which increases its accuracy significantly. Both theoretical analysis and experimental validation show that KDE-Track outperforms a set of baseline methods on the estimation accuracy and computing time of complex density structures in data streams.

  8. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.

  9. Effects of nitrate contamination and seasonal variation on the denitrification and greenhouse gas production in La Rocina stream (Doñana National Park, SW Spain)

    OpenAIRE

    Tortosa Muñoz, Germán; Galeote, David; Sánchez-Raya, Juan A.; Delgado Huertas, Antonio; Sánchez-Monedero, Miguel Ángel; Bedmar, Eulogio J.

    2011-01-01

    Climatic influence (global warming and decreased rainfall) could lead to an increase in the ecological and toxicological effects of the pollution in aquatic ecosystems, especially contamination from agricultural nitrate (NO3 −) fertilizers. Physicochemical properties of the surface waters and sediments of four selected sites varying in NO3 − concentration along La Rocina Stream, which feeds Marisma del Rocio in Do˜nana National Park (South West, Spain), were studied. Electri...

  10. Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA

    Science.gov (United States)

    Nolan, Bernard T.; Malone, Robert W.; Gronberg, Jo Ann M.; Thorp, K.R.; Ma, Liwang

    2012-01-01

    Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R2 = 0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured nitrate in 38 samples of recently recharged groundwater, yielding a Pearson’s r of 0.466 (p = 0.003). Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a previous regression model that predicted total N in streams.

  11. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    International Nuclear Information System (INIS)

    Zelazny, Miroslaw; Astel, Aleksander; Wolanin, Anna; Malek, Stanislaw

    2011-01-01

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: → We use SOM approach to explore physiochemical data for mountain waters. → Geologic structure and hydrological events impact water chemistry. → Limited leaching, typical of crystalline core, reflects in low water mineralization. → Sedimentary rocks are susceptible for leaching. → Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  12. Denitrification of nitrate waste solutions

    International Nuclear Information System (INIS)

    Michaels, S.L.; Michel, R.C.; Terpandjian, P.D.; Vora, J.N.

    1976-01-01

    Bacterial denitrification by Pseudomonas Stutzeri has been chosen as the method for removing nitrate from the effluent stream of the Y-12 uranium purification process. A model was developed to predict bacterial growth and carbon and nitrate depletion during the induction period and steady state operation. Modification of analytical procedures and automatic control of the pH in the reactor are recommended to improve agreement between the prediction of the model and experimental data. An initial carbon-to-nitrogen (C/N) mass ratio of 1.4-1.5 insures adequate population growth during the induction period. Further experiments in batch reactors and in steady state flow reactors are recommended to obtain more reliable kinetic rate constants

  13. Geopolymerization at moderate temperatures in the presence of nitrate anion

    International Nuclear Information System (INIS)

    Ofer-Rozovsky, E.; Katz, A.; Borojovich, E.J.C.; Nikolski, A.; Binyamini, A.; Arbel-Haddad, M.; Bar-Nes, G.

    2015-01-01

    In recent years, geo-polymers generated by alkali-activation of amorphous aluminosilicate sources are considered as an alternative immobilizing matrix for low-level radioactive wastes. Although such waste streams contain low concentration of radioactive species, they are often highly saline. The aim of the research project presented here was to study the effect of the high salt content on the formation and evolution of meta-kaolin-based geo-polymeric systems cured at moderate temperatures, i.e. at 40 Celsius degrees. Meta-kaolin was alkali-activated using NaOH solutions of varying concentrations, yielding H 2 O:OH - ratios of 5.5, 9.15, 13.75 and 27.5. Sodium nitrate, which is often found at high concentrations in radioactive waste streams, was added to the activation solutions. The geo-polymeric mixtures were designed so that the Na 2 O:Al 2 O 3 ratio obtained was 1.00 in nitrate-free systems, and 1.25 in nitrate-containing systems. The ratio between nitrate and hydroxide ions, [NO 3 - ]: [OH - ], was adjusted to 0.25. The samples were cured in sealed containers at 40 C. degrees for periods ranging from one week to 3 months. The products were characterized by X-Ray diffractometry and Fourier Transform Mid-Infrared spectroscopy (FTIR). Leaching tests were performed according to the American Nuclear Society procedure ANS-16.1. Ion Chromatography was used to determine the concentration of leached Na + and NO 3 - ions. The results demonstrate the influence of composition and curing times on the mineralogy of the geo-polymeric matrix. Various crystalline phases such as zeolite A, faujasite, and nitrate bearing phases, nitrate sodalite and nitrate cancrinite, were identified among the reaction products. The sequence of phase evolution in these geo-polymeric systems was elucidated. The fraction of sodium ions released from samples containing sodium nitrate during the leaching test was found to be lower than that from reference samples prepared without the nitrate salt

  14. Controls and forecasts of nitrate yields in forested watersheds: A view over mainland Portugal.

    Science.gov (United States)

    Pacheco, F A L; Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V

    2015-12-15

    A study on nitrate yields was conducted in forested watersheds of mainland Portugal. The prime goal was to rank parameters in descending order of their contribution to the export of nitrate towards streams and lakes. To attain the goal, variables like soil loss, rainfall intensity, topography, soil type, forest composition and environmental disturbances such as hardwood harvesting or wildfires were organized in a conceptual yield model. Because some parameters were potentially collinear, a robust multivariate statistical technique was selected to execute the conceptual model and perform the aforementioned ranking, namely Partial Least Squares (PLS) regression. This technique was tested with a sample of 60 forested watersheds (>70% of forest occupation), being subject to a double-validation process to ensure prediction capability. According to final regression coefficients, soil erosion seems to regulate nitrate distribution across the basins, because soil loss and type, rainfall intensity and topography explained around 60% of nitrate yield variance. The major importance of erosion is followed by a moderate role of biochemical processes such as nitrification or nutrient uptake, which accounted for approximately 15% of nitrate yield variance. In this case, deciduous forests and scrubland seem to behave as net sinks of nitrate while coniferous and mixed forests seem to act dually, as net sources or sinks. The least important parameters are the environmental disturbances, explaining no more than 5% of nitrate yield variance. The results of PLS regression were coupled in a scenario analysis with measures designed to protect soil from erosion and surface water from eutrophication. These interventions are to be implemented until 2045, according to regional plans of forest management. Considering the key role of erosion in explaining nitrate dynamics across the catchments, it was not surprising to verify that soil protection measures may reduce nitrate yields by some 35

  15. Membrane potential dynamics of populations of cortical neurons during auditory streaming

    Science.gov (United States)

    Farley, Brandon J.

    2015-01-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts. PMID:26269558

  16. Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport

    Science.gov (United States)

    Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.

    2017-12-01

    In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.

  17. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    Science.gov (United States)

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  18. How dynamic are ice-stream beds?

    Science.gov (United States)

    Davies, Damon; Bingham, Robert G.; King, Edward C.; Smith, Andrew M.; Brisbourne, Alex M.; Spagnolo, Matteo; Graham, Alastair G. C.; Hogg, Anna E.; Vaughan, David G.

    2018-05-01

    Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3-6 years apart, along a cumulative ˜ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a-1, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a-1 previously reported from repeat geophysical surveys in West Antarctica.

  19. Separation of technetium from nuclear waste stream simulants. Final report

    International Nuclear Information System (INIS)

    Strauss, S.H.

    1995-01-01

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering 99 TcO 4 - from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO 4 - ), a stable (non-radioactive) chemical surrogate for 99 TcO 4 - . Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO 4 - and TcO 4 -

  20. High-frequency DOC and nitrate measurements provide new insights into their export and their relationships to rainfall-runoff processes

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Over the past decades, stream sampling protocols for environmental tracers were often limited by logistical and technological constraints. Long-term sampling programs would typically rely on weekly sampling campaigns, while high-frequency sampling would remain restricted to a few days or hours at best. We stipulate that the currently predominant sampling protocols are too coarse to capture and understand the full amplitude of rainfall-runoff processes and its relation to water quality fluctuations. Weekly sampling protocols are not suited to get insights into the hydrological system during high flow conditions. Likewise, high frequency measurements of a few isolated events do not allow grasping inter-event variability in contributions and processes. Our working hypothesis is based on the potential of a new generation of field-deployable instruments for measuring environmental tracers at high temporal frequencies over an extended period. With this new generation of instruments we expect to gain new insights into rainfall-runoff dynamics, both at intra- and inter-event scales. Here, we present the results of one year of DOC and nitrate measurements with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH). The instrument measures the absorption spectrum from 220 to 720 nm in situ and at high frequencies and derives DOC and nitrate concentrations. The measurements were carried out at 15 minutes intervals in the Weierbach catchment (0.47 km2) in Luxemburg. This fully forested catchment is characterized by cambisol soils and fractured schist as underlying bedrock. The time series of DOC and nitrate give insights into the high frequency dynamics of stream water. Peaks in DOC concentrations are closely linked to discharge peaks that occur during or right after a rainfall event. Those first discharge peaks can be linked to fast near surface runoff processes and are responsible for a remarkable amount of DOC export. A special characterisation of

  1. Identifying nitrate sources and transformations in surface water by combining dual isotopes of nitrate and stable isotope mixing model in a watershed with different land uses and multi-tributaries

    Science.gov (United States)

    Wang, Meng; Lu, Baohong

    2017-04-01

    Nitrate is essential for the growth and survival of plants, animals and humans. However, excess nitrate in drinking water is regarded as a health hazard as it is linked to infant methemoglobinemia and esophageal cancer. Revealing nitrate characteristics and identifying its sources are fundamental for making effective water management strategies, but nitrate sources in multi-tributaries and mixed land covered watersheds remain unclear. It is difficult to determine the predominant NO3- sources using conventional water quality monitoring techniques. In our study, based on 20 surface water sampling sites for more than two years' monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3- and δ18O-NO3-) were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, East China. The results demonstrated that nitrate content in surface water was relatively low in the downstream (nitrate was observed at the source of the river in one of the sub-watersheds, which exhibited an exponential decline along the stream due to dilution, absorption by aquatic plants, and high forest cover. Although dramatically decline of nitrate occurred along the stream, denitrification was not found in surface water by analyzing δ15N-NO3- and δ18O-NO3- relationship. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage; soil nitrogen; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall) were estimated using a Bayesian isotope mixing model. Model results indicated nitrate sources varied significantly among different rainfall conditions, land use types, as well as anthropologic activities. In summary, coupling dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-, simultaneously) with a Bayesian isotope mixing model offers a useful and practical way to qualitatively analyze nitrate sources and transformations as well as

  2. Efficient Estimation of Dynamic Density Functions with Applications in Streaming Data

    KAUST Repository

    Qahtan, Abdulhakim

    2016-05-11

    Recent advances in computing technology allow for collecting vast amount of data that arrive continuously in the form of streams. Mining data streams is challenged by the speed and volume of the arriving data. Furthermore, the underlying distribution of the data changes over the time in unpredicted scenarios. To reduce the computational cost, data streams are often studied in forms of condensed representation, e.g., Probability Density Function (PDF). This thesis aims at developing an online density estimator that builds a model called KDE-Track for characterizing the dynamic density of the data streams. KDE-Track estimates the PDF of the stream at a set of resampling points and uses interpolation to estimate the density at any given point. To reduce the interpolation error and computational complexity, we introduce adaptive resampling where more/less resampling points are used in high/low curved regions of the PDF. The PDF values at the resampling points are updated online to provide up-to-date model of the data stream. Comparing with other existing online density estimators, KDE-Track is often more accurate (as reflected by smaller error values) and more computationally efficient (as reflected by shorter running time). The anytime available PDF estimated by KDE-Track can be applied for visualizing the dynamic density of data streams, outlier detection and change detection in data streams. In this thesis work, the first application is to visualize the taxi traffic volume in New York city. Utilizing KDE-Track allows for visualizing and monitoring the traffic flow on real time without extra overhead and provides insight analysis of the pick up demand that can be utilized by service providers to improve service availability. The second application is to detect outliers in data streams from sensor networks based on the estimated PDF. The method detects outliers accurately and outperforms baseline methods designed for detecting and cleaning outliers in sensor data. The

  3. Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes.

    Science.gov (United States)

    Tonin, Alan M; Gonçalves, José F; Bambi, Paulino; Couceiro, Sheyla R M; Feitoza, Lorrane A M; Fontana, Lucas E; Hamada, Neusa; Hepp, Luiz U; Lezan-Kowalczuk, Vânia G; Leite, Gustavo F M; Lemes-Silva, Aurea L; Lisboa, Leonardo K; Loureiro, Rafael C; Martins, Renato T; Medeiros, Adriana O; Morais, Paula B; Moretto, Yara; Oliveria, Patrícia C A; Pereira, Evelyn B; Ferreira, Lidiane P; Pérez, Javier; Petrucio, Mauricio M; Reis, Deusiano F; S Rezende, Renan; Roque, Nadia; Santos, Luiz E P; Siegloch, Ana E; Tonello, Gabriela; Boyero, Luz

    2017-09-07

    Riparian plant litter is a major energy source for forested streams across the world and its decomposition has repercussions on nutrient cycling, food webs and ecosystem functioning. However, we know little about plant litter dynamics in tropical streams, even though the tropics occupy 40% of the Earth's land surface. Here we investigated spatial and temporal (along a year cycle) patterns of litter inputs and storage in multiple streams of three tropical biomes in Brazil (Atlantic forest, Amazon forest and Cerrado savanna), predicting major differences among biomes in relation to temperature and precipitation regimes. Precipitation explained most of litter inputs and storage, which were generally higher in more humid biomes (litterfall: 384, 422 and 308 g m -2 y -1 , storage: 55, 113 and 38 g m -2 , on average in Atlantic forest, Amazon and Cerrado, respectively). Temporal dynamics varied across biomes in relation to precipitation and temperature, with uniform litter inputs but seasonal storage in Atlantic forest streams, seasonal inputs in Amazon and Cerrado streams, and aseasonal storage in Amazon streams. Our findings suggest that litter dynamics vary greatly within the tropics, but point to the major role of precipitation, which contrasts with the main influence of temperature in temperate areas.

  4. Removal of radioiodine species from gaseous stream on inorganic absorbents

    International Nuclear Information System (INIS)

    Vujisic, L.

    1978-11-01

    As a contribution to the development of an impregnated absorbent for the removal of airborne iodine species in the off-gas streams of nuclear facilities the adsorption of 131 l-labelled methyl iodide on impregnated alumina was investigated. Alcoa alumina H-151 was impregnated with metal nitrates (Ag, Ag+Cd, Ag+Pb) and with triethylenediamine (TEDA). The removal efficiency of CH 3 l was experimentally evaluated, as functions of relative humidity of air-stream, its temperature and flow rate and of the amount of impregnated materials. Under constant temperature, relative humidity and face velocity, the retention of CH 3 l increases as the total amount of Ag impregnation increases. In a wet air-stream the only efficient impregnation was found to be with silver nitrate. At constant temperature the CH 3 l retention decreases with increasing relative humidity or face velocity of the stream. An increase of temperature favours the CH 3 l retention. Very low retention of CH 3 l was found on TEDA impregnated alumina

  5. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  6. Large-scale environmental controls on microbial biofilms in high-alpine streams

    Directory of Open Access Journals (Sweden)

    T. J. Battin

    2004-01-01

    Full Text Available Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal, groundwater-fed (krenal and snow-fed (rhithral streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.

  7. Identification of nitrates and sulphates with dynamic SIMS

    International Nuclear Information System (INIS)

    Fichtner, M.; Goschnick, J.; Ache, H.J.

    1994-01-01

    Sputter conditions are outlined for the identification of chemically sensitive salt compounds, such as nitrates or sulphates, in multicomponent samples of environmental origin using dynamic SIMS for depth-profiling with nanoscale resolution. Sputtering with 1 keV Xe + has been found to be appropriate to enable both the emission of decisive molecular ions with enough intensity as well as substantial erosion for depth-profiling. The use of heavy projectiles reduces the destruction of chemical compounds in the surface of the solid and enhances sensitivity and identification power of SIMS. The method was applied to the analysis of urban outdoor aerosol particles to investigate the conversion of NaCl into Na 2 SO 4 or NaNO 3 by the interaction of sea salt aerosol with the atmospheric pollutants NO x and SO x . Only NaNO 3 was found in the sea salt fraction. (orig.)

  8. A shower look-up table to trace the dynamics of meteoroid streams and their sources

    Science.gov (United States)

    Jenniskens, Petrus

    2018-04-01

    Meteor showers are caused by meteoroid streams from comets (and some primitive asteroids). They trace the comet population and its dynamical evolution, warn of dangerous long-period comets that can pass close to Earth's orbit, outline volumes of space with a higher satellite impact probability, and define how meteoroids evolve in the interplanetary medium. Ongoing meteoroid orbit surveys have mapped these showers in recent years, but the surveys are now running up against a more and more complicated scene. The IAU Working List of Meteor Showers has reached 956 entries to be investigated (per March 1, 2018). The picture is even more complicated with the discovery that radar-detected streams are often different, or differently distributed, than video-detected streams. Complicating matters even more, some meteor showers are active over many months, during which their radiant position gradually changes, which makes the use of mean orbits as a proxy for a meteoroid stream's identity meaningless. The dispersion of the stream in space and time is important to that identity and contains much information about its origin and dynamical evolution. To make sense of the meteor shower zoo, a Shower Look-Up Table was created that captures this dispersion. The Shower Look-Up Table has enabled the automated identification of showers in the ongoing CAMS video-based meteoroid orbit survey, results of which are presented now online in near-real time at http://cams.seti.org/FDL/. Visualization tools have been built that depict the streams in a planetarium setting. Examples will be presented that sample the range of meteoroid streams that this look-up table describes. Possibilities for further dynamical studies will be discussed.

  9. Dynamic Programming Optimization of Multi-rate Multicast Video-Streaming Services

    Directory of Open Access Journals (Sweden)

    Nestor Michael Caños Tiglao

    2010-06-01

    Full Text Available In large scale IP Television (IPTV and Mobile TV distributions, the video signal is typically encoded and transmitted using several quality streams, over IP Multicast channels, to several groups of receivers, which are classified in terms of their reception rate. As the number of video streams is usually constrained by both the number of TV channels and the maximum capacity of the content distribution network, it is necessary to find the selection of video stream transmission rates that maximizes the overall user satisfaction. In order to efficiently solve this problem, this paper proposes the Dynamic Programming Multi-rate Optimization (DPMO algorithm. The latter was comparatively evaluated considering several user distributions, featuring different access rate patterns. The experimental results reveal that DPMO is significantly more efficient than exhaustive search, while presenting slightly higher execution times than the non-optimal Multi-rate Step Search (MSS algorithm.

  10. Simultaneous analysis of uranium and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    1978-04-01

    A direct spectrophotometric method has been developed for the determination of 20 to 200 g/l of uranium in the presence of 3 to 5 M nitric acid. A dual-wavelength analysis is used to eliminate the enhancing effect of nitrate ion on the uranium visible spectra. The precision and accuracy of the simultaneous analysis of uranium and nitrate were compared using combinations of the four uranium wavelength maxima, occurring at 426, 416, 403 and 359 nm. Calculations based on 426 and 416 nm data yielded the most accurate results. The calculated relative standard deviation of uranium and nitrate concentrations was 5.4 percent and 15.5 percent, respectively. The photometric procedure is slightly affected by temperature; an increase of one degree centigrade results in a 0.2 g/l overestimation of uranium concentration. Because the method is non-destructive, it is directly applicable to the continuous in-line analysis of dissolved uranium in aqueous fuel reprocessing streams.

  11. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    However, the effects of potassium nitrate were higher than sodium nitrate, which was due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism. In conclusion, potassium nitrate has better effect on the nitrate assimilatory ...

  12. Separation of technetium from nuclear waste stream simulants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  13. Effects of atrazine, metolachlor, carbaryl and chlorothalonil on benthic microbes and their nutrient dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel Elias

    Full Text Available Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (-1.58 NO3 µg gdm⁻¹ h⁻¹, and net assimilation of phosphate (1.34 PO4 µg gdm⁻¹ h⁻¹ and ammonium (0.03 NH4 µg gdm⁻¹ h⁻¹. Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by

  14. Using a Spectral Method to Evaluate Hyporheic Exchange and its Effect on Reach Scale Nitrate Removal.

    Science.gov (United States)

    Moren, I.; Worman, A. L. E.; Riml, J.

    2017-12-01

    Previous studies have shown that hyporheic exchange processes can be of great importance for the transport, retention and mass removal of nutrients in streams. Specifically, the flow of surface water through the hyporheic zone enhances redox-sensitive reactions such as coupled nitrification-denitrification. This self-cleaning capacity of streams can be utilized in stream restoration projects aiming to improve water quality by reconstructing the geomorphology of the streams. To optimize the effect of restoration actions we need quantitative understanding of the linkage between stream geomorphology, hyporheic exchange processes and the desired water quality targets. Here we propose an analytical, spectral methodology to evaluate how different stream geomorphologies induce hyporheic exchange on a wide range of spatial and temporal scales. Measurements of streambed topographies and surface water profiles from agricultural streams were used to calculate the average hyporheic exchange velocity and residence times and the result was compared with in-stream tracer test. Furthermore, the hyporheic exchange induced by steps in the surface water profile was derived as a comparison of the theoretical capacity of the system. Based on differences in hyporheic exchange, the mass removal of nitrate could be derived for the different geomorphologies. The maximum nitrate mass removal was found to be related to a specific Damkhöler number, which reflects that the mass removal can be either reaction or transport controlled. Therefore, although hyporheic exchange induced by steps in the surface water profile was generally larger than the hyporheic exchange in the observed natural reaches, this would not necessarily lead a larger nitrate mass removal provided that the hyporheic residence times are not long enough to facilitate denitrification processes. The study illustrates the importance to investigate a stream thoroughly before any remediation actions are implemented, specifically

  15. The effect of beaver ponds on water quality in rural coastal plain streams

    Science.gov (United States)

    Bason, Christopher W.; Kroes, Daniel; Brinson, Mark M.

    2017-01-01

    We compared water-quality effects of 13 beaver ponds on adjacent free-flowing control reaches in the Coastal Plain of rural North Carolina. We measured concentrations of nitrate, ammonium, soluble reactive phosphorus (SRP), and suspended sediment (SS) upstream and downstream of paired ponds and control reaches. Nitrate and SS concentrations decreased, ammonium concentrations increased, and SRP concentrations were unaffected downstream of the ponds and relative to the control reaches. The pond effect on nitrate concentration was a reduction of 112 ± 55 μg-N/L (19%) compared to a control-reach—influenced reduction of 28 ± 17 μg-N/L. The pond effect on ammonium concentration was an increase of 9.47 ± 10.9 μg-N/L (59%) compared to the control-reach—influenced reduction of 1.49 ± 1.37 μg-N/L. The pond effect on SS concentration was a decrease of 3.41 ± 1.68 mg/L (40%) compared to a control-reach—influenced increase of 0.56 ± 0.27 mg/L. Ponds on lower-order streams reduced nitrate concentrations by greater amounts compared to those in higher-order streams. Older ponds reduced SS concentrations by greater amounts compared to younger ponds. The findings of this study indicate that beaver ponds provide water-quality benefits to rural Coastal Plain streams by reducing concentrations of nitrate and suspended sediment.

  16. Recurrent and Dynamic Models for Predicting Streaming Video Quality of Experience.

    Science.gov (United States)

    Bampis, Christos G; Li, Zhi; Katsavounidis, Ioannis; Bovik, Alan C

    2018-07-01

    Streaming video services represent a very large fraction of global bandwidth consumption. Due to the exploding demands of mobile video streaming services, coupled with limited bandwidth availability, video streams are often transmitted through unreliable, low-bandwidth networks. This unavoidably leads to two types of major streaming-related impairments: compression artifacts and/or rebuffering events. In streaming video applications, the end-user is a human observer; hence being able to predict the subjective Quality of Experience (QoE) associated with streamed videos could lead to the creation of perceptually optimized resource allocation strategies driving higher quality video streaming services. We propose a variety of recurrent dynamic neural networks that conduct continuous-time subjective QoE prediction. By formulating the problem as one of time-series forecasting, we train a variety of recurrent neural networks and non-linear autoregressive models to predict QoE using several recently developed subjective QoE databases. These models combine multiple, diverse neural network inputs, such as predicted video quality scores, rebuffering measurements, and data related to memory and its effects on human behavioral responses, using them to predict QoE on video streams impaired by both compression artifacts and rebuffering events. Instead of finding a single time-series prediction model, we propose and evaluate ways of aggregating different models into a forecasting ensemble that delivers improved results with reduced forecasting variance. We also deploy appropriate new evaluation metrics for comparing time-series predictions in streaming applications. Our experimental results demonstrate improved prediction performance that approaches human performance. An implementation of this work can be found at https://github.com/christosbampis/NARX_QoE_release.

  17. Cesium-137 dynamics within a reactor effluent stream in South Carolina

    International Nuclear Information System (INIS)

    Shure, D.J.; Gottschalk, M.R.

    1975-01-01

    Cesium-137 dynamics were studied in a blackwater creek which had received production reactor effluents from the Savannah River Plant in South Carolina. Most 137 Cs in the water column is dissolved or in colloidal form and is believed to originate primarily through outflow from an upstream contaminated reservoir. All ecosystem components in the stream have high 137 Cs concentration factors. Radiocesium concentrations are highest in filamentous algae (332 pCi/g-dry) and suspended particulate matter (100 to 200 pCi/g). Other food chain bases had much lower 137 Cs levels. Most consumer populations averaged 10 to 50 pCi/g. Radiocesium concentrations decreased in transfers between food chain bases and primary consumers or filter feeders. Omnivores and small predators have similar 137 Cs concentrations with bioaccumulation occurring by top-carnivores. Radiocesium levels are around 100 pCi/g in largemouth bass and water snakes. Foodweb components in the stream have reached a dynamic equilibrium in 137 Cs concentrations despite a 10-year absence of reactor operations. Radiocesium levels are apparently being maintained through long-term 137 Cs cycling in the upstream reservoir and surrounding flood plain forest systems. Rainfall and other physical processes influence the seasonal 137 Cs fluctuations in stream components. (auth)

  18. Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study.

    Science.gov (United States)

    Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny

    2018-06-01

    Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine

  19. Stream dynamics between 1 AU and 2 AU: a detailed comparison of observations and theory

    International Nuclear Information System (INIS)

    Burlaga, L.; Pizzo, V.; Lazarus, A.; Gazis, P.

    1984-04-01

    A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment

  20. Bandwidth auction for SVC streaming in dynamic multi-overlay

    Science.gov (United States)

    Xiong, Yanting; Zou, Junni; Xiong, Hongkai

    2010-07-01

    In this paper, we study the optimal bandwidth allocation for scalable video coding (SVC) streaming in multiple overlays. We model the whole bandwidth request and distribution process as a set of decentralized auction games between the competing peers. For the upstream peer, a bandwidth allocation mechanism is introduced to maximize the aggregate revenue. For the downstream peer, a dynamic bidding strategy is proposed. It achieves maximum utility and efficient resource usage by collaborating with a content-aware layer dropping/adding strategy. Also, the convergence of the proposed auction games is theoretically proved. Experimental results show that the auction strategies can adapt to dynamic join of competing peers and video layers.

  1. Quantifying an aquifer nitrate budget and future nitrate discharge using field data from streambeds and well nests

    Science.gov (United States)

    Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Farrell, Kathleen M.; Mitasova, Helena

    2016-11-01

    Novel groundwater sampling (age, flux, and nitrate) carried out beneath a streambed and in wells was used to estimate (1) the current rate of change of nitrate storage, dSNO3/dt, in a contaminated unconfined aquifer, and (2) future [NO3-]FWM (the flow-weighted mean nitrate concentration in groundwater discharge) and fNO3 (the nitrate flux from aquifer to stream). Estimates of dSNO3/dt suggested that at the time of sampling (2013) the nitrate storage in the aquifer was decreasing at an annual rate (mean = -9 mmol/m2yr) equal to about one-tenth the rate of nitrate input by recharge. This is consistent with data showing a slow decrease in the [NO3-] of groundwater recharge in recent years. Regarding future [NO3-]FWM and fNO3, predictions based on well data show an immediate decrease that becomes more rapid after ˜5 years before leveling out in the early 2040s. Predictions based on streambed data generally show an increase in future [NO3-]FWM and fNO3 until the late 2020s, followed by a decrease before leveling out in the 2040s. Differences show the potential value of using information directly from the groundwater—surface water interface to quantify the future impact of groundwater nitrate on surface water quality. The choice of denitrification kinetics was similarly important; compared to zero-order kinetics, a first-order rate law levels out estimates of future [NO3-]FWM and fNO3 (lower peak, higher minimum) as legacy nitrate is flushed from the aquifer. Major fundamental questions about nonpoint-source aquifer contamination can be answered without a complex numerical model or long-term monitoring program.

  2. Nitrate Uptake Capacity and Efficiency of Upper Mississippi River Flow-Regulated Backwaters

    National Research Council Canada - National Science Library

    James, William F; Richardson, William B; Soballe, David M

    2007-01-01

    In-stream uptake and processing of nitrate nitrite-N may be improved in large river systems by increasing hydrological connectivity between the main channel and adjoining backwaters, wetlands, and floodplain areas...

  3. Carbon and nitrogen stoichiometry across stream ecosystems

    Science.gov (United States)

    Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.

    2017-12-01

    Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio

  4. The water quality of streams draining a plantation forest on gley soils: the Nant Tanllwyth, Plynlimon mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of the Nant Tanllwyth stream in the Plynlimon region of mid-Wales is related to the key hydrobiogeological controls and the effects of conifer harvesting based on an analysis of rain, cloud, stream and groundwater measurements. The results show the normal patterns of stream water quality response to hydrology. Thus, there is a high damping of atmospheric inputs due to storage in a highly heterogeneous soil and groundwater system. Correspondingly, there is a highly dynamic response for components such as calcium, bicarbonate and aluminium. This response links to the relative inputs of acidic and aluminium-bearing soil waters under high flow conditions and base enriched bicarbonate bearing waters from the groundwater areas under baseflow conditions. The introduction of a deep borehole near the main stem of the river opened up a groundwater flow route to the stream and other parts of the catchment. There were two aspects to this. Firstly, it caused a change to the stream water quality, particularly under baseflow conditions, by increasing the concentrations of calcium and magnesium and by reducing the acidity. The monitoring shows that this change has persisted for over eight years and that there is no sign of reversion to pre-borehole times. Secondly, it caused a change in the groundwater level and chemistry at a borehole on the other side of the river. This feature shows that the fracture system is of hydrogeochemical and hydrogeological complexity. The effects of conifer harvesting are remarkable. At the local scale, felling leads to the expected short term increase in nitrate, ammonium and phosphate from the disturbance of the soil and the reduction in uptake into the vegetation. Correspondingly, there is a reduction in sodium and chloride linked to reduced scavenging of atmospheric inputs from cloud water by the vegetation and also due to increased dilution potential due to reductions in transpiration by the trees. However

  5. Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferred option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.

  6. Flow-injection analysis of nitrate by reduction to nitrite and gas-phase molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, B.; Tavassoli, A. [Dept. of Chemistry, Inst. for Advanced Studies in Basic Sciences, Zanjan (Iran)

    2001-12-01

    Two flow-injection manifolds have been investigated for the determination of nitrate. These manifolds are based on the reduction of nitrate to nitrite and determination of nitrite by gas-phase molecular absorption spectrophotometry. Nitrate sample solution (300 {mu}L) which is injected to the flow line, is reduced to nitrite by reaction with hydrazine or passage through the on-line copperized cadmium (Cd-Cu) reduction column. The nitrite produced reacts with a stream of hydrochloric acid and the evolved gases are purged into the stream of O{sub 2}carrier gas. The gaseous phase is separated from the liquid phase using a gas-liquid separator and then swept into a flow-through cell which has been positioned in the cell compartment of an UV-visible spectrophotometer. The absorbance of the gaseous phase is measured at 204.7 nm. A linear relationship was obtained between the intensity of absorption signals and concentration of nitrate when Cd-Cu reduction method was used, but a logarithmic relationship was obtained when the hydrazine reduction method was used. By use of the Cd-Cu reduction method, up to 330 {mu}g of nitrate was determined. The limit of detection was 2.97 {mu}g nitrate and the relative standard deviations for the determination of 12.0, 30.0 and 150 {mu}g nitrate were 3.32, 3.87 and 3.6%, respectively. Maximum sampling rate was approximately 30 samples per hour. The Cd-Cu reduction method was applied to the determination of nitrate and the simultaneous determination of nitrate and nitrite in meat products, vegetables, urine, and a water sample. (orig.)

  7. High resolution stream water quality assessment in the Vancouver, British Columbia region: a citizen science study.

    Science.gov (United States)

    Shupe, Scott M

    2017-12-15

    Changing land cover and climate regimes modify water quantity and quality in natural stream systems. In regions undergoing rapid change, it is difficult to effectively monitor and quantify these impacts at local to regional scales. In Vancouver, British Columbia, one of the most rapidly urbanizing areas in Canada, 750 measurements were taken from a total of 81 unique sampling sites representing 49 streams located in urban, forest, and agricultural-dominant watersheds at a frequency of up to 12 times per year between 2013 and 2016. Dissolved nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations, turbidity, water temperature, pH and conductivity were measured by citizen scientists in addition to observations of hydrology, vegetation, land use, and visible stream impacts. Land cover was mapped at a 15-m resolution using Landsat 8 OLI imagery and used to determine dominant land cover for each watershed in which a sample was recorded. Regional, seasonal, and catchment-type trends in measurements were determined using statistical analyses. The relationships of nutrients to land cover varied seasonally and on a catchment-type basis. Nitrate showed seasonal highs in winter and lows in summer, though phosphate had less seasonal variation. Overall, nitrate concentrations were positively associated to agriculture and deciduous forest and negatively associated with coniferous forest. In contrast, phosphate concentrations were positively associated with agricultural, deciduous forest, and disturbed land cover and negatively associated with urban land cover. Both urban and agricultural land cover were significantly associated with an increase in water conductivity. Increased forest land cover was associated with better water quality, including lower turbidity, conductivity, and water temperature. This study showed the importance of high resolution sampling in understanding seasonal and spatial dynamics of stream water quality, made possible with the large number of

  8. Ruthenium release from thermally overheated nitric acid solution containing ruthenium nitrosyl nitrate and sodium nitrate to solidify

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Kayo; Ueda, Yasuyuki; Enokida, Youichi [Nuclear Chemical Engineering Laboratory, Nagoya University, Nagoya 4648603 (Japan)

    2016-07-01

    Radioactive ruthenium (Ru) is one of the dominant elemental species released into the environment from a fuel reprocessing plant in a hypothetical design accident due to its relatively higher fission yield and longer half-life. After the hypothetical accident assuming the loss of all electric power and cooling functions, high-level liquid waste (HLLW) may be overheated by the energetic decays of many fission products in it, and Ru may be oxidized to the volatile tetroxide, RuO{sub 4}, which is released through the off-gas pathway. At a reprocessing plant in Japan, alkaline solution from the solvent scrubbing stream is sometimes mixed with the HLLW followed by vitrification, which can be influenced by the addition of sodium nitrate to a simulated HLLW containing ruthenium nitrosyl nitrate that was experimentally evaluated on a small scale using the overheated nitric acid solution of 2 mol/dm{sup 3}, which was kept at 180 Celsius degrees in a glass evaporator placed in a thermostatic bath. The release fraction of Ru increased by approximately 30% by the addition of sodium nitrate. This may be partially explained by the existence of relatively highly concentrated nitrate ions in the liquid phase that oxidize the ruthenium species to RuO{sub 4} during the drying process. (authors)

  9. Information-Theoretic Data Discarding for Dynamic Trees on Data Streams

    Directory of Open Access Journals (Sweden)

    Christoforos Anagnostopoulos

    2013-12-01

    Full Text Available Ubiquitous automated data collection at an unprecedented scale is making available streaming, real-time information flows in a wide variety of settings, transforming both science and industry. Learning algorithms deployed in such contexts often rely on single-pass inference, where the data history is never revisited. Learning may also need to be temporally adaptive to remain up-to-date against unforeseen changes in the data generating mechanism. Online Bayesian inference remains challenged by such transient, evolving data streams. Nonparametric modeling techniques can prove particularly ill-suited, as the complexity of the model is allowed to increase with the sample size. In this work, we take steps to overcome these challenges by porting information theoretic heuristics, such as exponential forgetting and active learning, into a fully Bayesian framework. We showcase our methods by augmenting a modern non-parametric modeling framework, dynamic trees, and illustrate its performance on a number of practical examples. The end product is a powerful streaming regression and classification tool, whose performance compares favorably to the state-of-the-art.

  10. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  11. Mutual Information Based Dynamic Integration of Multiple Feature Streams for Robust Real-Time LVCSR

    Science.gov (United States)

    Sato, Shoei; Kobayashi, Akio; Onoe, Kazuo; Homma, Shinichi; Imai, Toru; Takagi, Tohru; Kobayashi, Tetsunori

    We present a novel method of integrating the likelihoods of multiple feature streams, representing different acoustic aspects, for robust speech recognition. The integration algorithm dynamically calculates a frame-wise stream weight so that a higher weight is given to a stream that is robust to a variety of noisy environments or speaking styles. Such a robust stream is expected to show discriminative ability. A conventional method proposed for the recognition of spoken digits calculates the weights front the entropy of the whole set of HMM states. This paper extends the dynamic weighting to a real-time large-vocabulary continuous speech recognition (LVCSR) system. The proposed weight is calculated in real-time from mutual information between an input stream and active HMM states in a searchs pace without an additional likelihood calculation. Furthermore, the mutual information takes the width of the search space into account by calculating the marginal entropy from the number of active states. In this paper, we integrate three features that are extracted through auditory filters by taking into account the human auditory system's ability to extract amplitude and frequency modulations. Due to this, features representing energy, amplitude drift, and resonant frequency drifts, are integrated. These features are expected to provide complementary clues for speech recognition. Speech recognition experiments on field reports and spontaneous commentary from Japanese broadcast news showed that the proposed method reduced error words by 9.2% in field reports and 4.7% in spontaneous commentaries relative to the best result obtained from a single stream.

  12. Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK

    Science.gov (United States)

    Fukuda, Masahiro; Takeda, Hironori; Kato, Hideaki E.; Doki, Shintaro; Ito, Koichi; Maturana, Andrés D.; Ishitani, Ryuichiro; Nureki, Osamu

    2015-05-01

    NarK belongs to the nitrate/nitrite porter (NNP) family in the major facilitator superfamily (MFS) and plays a central role in nitrate uptake across the membrane in diverse organisms, including archaea, bacteria, fungi and plants. Although previous studies provided insight into the overall structure and the substrate recognition of NarK, its molecular mechanism, including the driving force for nitrate transport, remained elusive. Here we demonstrate that NarK is a nitrate/nitrite antiporter, using an in vitro reconstituted system. Furthermore, we present the high-resolution crystal structures of NarK from Escherichia coli in the nitrate-bound occluded, nitrate-bound inward-open and apo inward-open states. The integrated structural, functional and computational analyses reveal the nitrate/nitrite antiport mechanism of NarK, in which substrate recognition is coupled to the transport cycle by the concomitant movement of the transmembrane helices and the key tyrosine and arginine residues in the substrate-binding site.

  13. Differentiating between anthropogenic and geological sources of nitrate using multiple geochemical tracers

    Science.gov (United States)

    Linhoff, B.; Norton, S.; Travis, R.; Romero, Z.; Waters, B.

    2017-12-01

    Nitrate contamination of groundwater is a major problem globally including within the Albuquerque Basin in New Mexico. Ingesting high concentrations of nitrate (> 10 mg/L as N) can lead to an increased risk of cancer and to methemoglobinemia in infants. Numerous anthropogenic sources of nitrate have been identified within the Albuquerque Basin including fertilizers, landfills, multiple sewer pipe releases, sewer lagoons, domestic septic leach fields, and a nitric acid line outfall. Furthermore, groundwater near ephemeral streams often exhibits elevated NO3 concentrations and high NO3/Cl ratios incongruous with an anthropogenic source. These results suggest that NO3 can be concentrated through evaporation beneath ephemeral streams and mobilized via irrigation or land use change. This study seeks to use extensive geochemical analyses of groundwater and surface water to differentiate between various sources of NO3 contamination. The U.S. Geological Survey collected 54 groundwater samples from wells and six samples from ephemeral streams from within and from outside of areas of known nitrate contamination. To fingerprint the sources of nitrate pollution, samples were analyzed for major ions, trace metals, nutrients, dissolved gases, δ15N and δ18O in NO3, δ15N within N2 gas, and, δ2H and δ18O in H2O. Furthermore, most sites were sampled for artificial sweeteners and numerous contaminants of emerging concern including pharmaceutical drugs, caffeine, and wastewater indicators. This study will also investigate the age distribution of groundwater and the approximate age of anthropogenic NO3 contamination using 3He/4He, δ13C, 14C, 3H, as well as pharmaceutical drugs and artificial sweeteners with known patent and U.S. Food and Drug Administration approval dates. This broad suite of analytes will be used to differentiate between naturally occurring and multiple anthropogenic NO3 sources, and to potentially determine the approximate date of NO3 contamination.

  14. Assessing the chemical contamination dynamics in a mixed land use stream system.

    Science.gov (United States)

    Sonne, Anne Th; McKnight, Ursula S; Rønde, Vinni; Bjerg, Poul L

    2017-11-15

    results emphasize that future investigations should include multiple compounds and stream compartments, and highlight the need for holistic approaches when risk assessing these dynamic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Jin [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Ryu, Jong-Sik [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Mayer, Bernhard [Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Lee, Kwang-Sik, E-mail: kslee@kbsi.re.kr [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Lee, Sin-Woo [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geology, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-07-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO{sub 3} were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO{sub 4} were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4}) verified that the SO{sub 4} in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ{sup 15}N{sub NO3} and δ{sup 18}O{sub NO3}) indicated that NO{sub 3} in JS is attributable to nitrification of soil organic matter but that NO{sub 3} in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ{sup 34}S{sub SO4} and δ{sup 15}N{sub NO3}. This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes

  16. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    International Nuclear Information System (INIS)

    Shin, Woo-Jin; Ryu, Jong-Sik; Mayer, Bernhard; Lee, Kwang-Sik; Lee, Sin-Woo

    2014-01-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO 3 were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO 4 were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ 34 S SO4 and δ 18 O SO4 ) verified that the SO 4 in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ 15 N NO3 and δ 18 O NO3 ) indicated that NO 3 in JS is attributable to nitrification of soil organic matter but that NO 3 in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ 34 S SO4 and δ 15 N NO3 . This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes controlling the water chemistry of streams draining watersheds having different

  17. Denitration of Savannah River Plant waste streams

    International Nuclear Information System (INIS)

    Orebaugh, E.G.

    1976-07-01

    Partial denitration of waste streams from Savannah River Plant separations processes was shown to significantly reduce the quantity of waste solids to be stored as an alkaline salt cake. The chemical processes involved in the denitration of nonradioactive simulated waste solutions were studied. Chemical and instrumental analytical techniques were used to define both the equilibrium concentrations and the variation of reactants and products in the denitration reaction. Mechanisms were proposed that account for the complicated chemical reactions observed in the simulated waste solutions. Metal nitrates can be denitrated by reaction with formic acid only by the release of nitric acid from hydrolysis or formate complexation of metal cations. However, eventual radiolysis of formate salts or complexes results in the formation of biocarbonate and makes complexation-denitration a nonproductive means of reducing waste solids. Nevertheless, destruction of nitrate associated with free acid and easily hydrolyzable cations such as iron, mercury, and zirconium can result in greater than 30 percent reduction in waste solids from five SRP waste streams

  18. Understanding the relationship between DOC and nitrate export and dominant rainfall-runoff processes through long-term high frequency measurements

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2016-04-01

    Over the past decades, stream sampling protocols for hydro-geochemical parameters were often limited by logistical and technological constraints. While long-term monitoring protocols were typically based on weekly sampling intervals, high frequency sampling was commonly limited to a few single events. In our study, we combined high frequency and long-term measurements to understand the DOC and nitrate behaviour and dynamics for different runoff events and seasons. Our study area is the forested Weierbach catchment (0.47 km2) in Luxembourg. The fractured schist bedrock is covered by cambisol soils. The runoff response of the catchment is characterized by a double peak behaviour. A first discharge peak occurs during or right after a rainfall event (triggered by fast near surface runoff generation processes), while a second delayed peak lasts several days (generated by subsurface flow/ shallow groundwater flow). Peaks in DOC concentrations are closely linked to the first discharge peak, whereas nitrate concentrations follow the second peak. Our observations were carried out with the field deployable instrument spectro::lyser (scan Messtechnik GmbH). This instrument relies on the principles of UV-Vis spectrometry and measures DOC and nitrate concentrations. The measurements were carried out at a high frequency of 15 minutes in situ in the Weierbach creek for more than two years. In addition, a long-term validation was carried out with data obtained from the analysis of water collected with automatic samplers. The long-term, high-frequency measurements allowed us to calculate a complete and detailed balance of DOC and nitrate export over two years. Transport behaviour of the DOC and nitrate showed different dynamics between the first and second hydrograph peaks. DOC is mainly exported during first peaks, while nitrate is mostly exported during the delayed second peaks. In combination with other measurements in the catchment, the long and detailed observations have

  19. Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes

    OpenAIRE

    Tonin, Alan M.; Gon?alves, Jos? F.; Bambi, Paulino; Couceiro, Sheyla R. M.; Feitoza, Lorrane A. M.; Fontana, Lucas E.; Hamada, Neusa; Hepp, Luiz U.; Lezan-Kowalczuk, V?nia G.; Leite, Gustavo F. M.; Lemes-Silva, Aurea L.; Lisboa, Leonardo K.; Loureiro, Rafael C.; Martins, Renato T.; Medeiros, Adriana O.

    2017-01-01

    Riparian plant litter is a major energy source for forested streams across the world and its decomposition has repercussions on nutrient cycling, food webs and ecosystem functioning. However, we know little about plant litter dynamics in tropical streams, even?though the tropics occupy 40% of the Earth?s land surface. Here we investigated spatial and temporal (along a year cycle) patterns of litter inputs and storage in multiple streams of three tropical biomes in Brazil (Atlantic forest, Ama...

  20. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  1. Transformation of nitrogen and distribution of nitrogen-related bacteria in a polluted urban stream.

    Science.gov (United States)

    Jiao, Y; Jin, W B; Zhao, Q L; Zhang, G D; Yan, Y; Wan, J

    2009-01-01

    Most researchers focused on either nitrogen species or microbial community for polluted urban stream while ignoring the interaction between them and its effect on nitrogen transformation, which restricted the rational selection of an effective and feasible remediation technology. Taking Buji stream in Shenzhen (China) as target stream, the distribution of nitrogen-related bacteria was investigated by most probable number (MPN) besides analysis of nitrogen species etc. The nitrogen-related bacteria in sediment were 10(2) times richer than those in water. Owing to their faster growth, the MPN of ammonifying bacteria and denitrifying bacteria were 10(5) and 10(2) times higher than those of nitrifying bacteria, respectively. The ammonifying bacteria numbers were significantly related to BOD5 in water, while nitrifying bacteria in sediment correlated well with nitrate in water. Thus, nitrification occurred mainly in sediment surface and was limited by low proportion of nitrifying bacteria. The denitrifying bacteria in sediment had good relationship with BOD5 and nitrite and nitrate in water. Low DO and rich organic compounds were beneficial to denitrification but unfavourable to nitrification. Denitrification was restricted by low nitrite and nitrate concentration. These results could be served as a reference for implementing the remediation scheme of nitrogen polluted urban stream.

  2. Stream carbon dynamics in low-gradient headwaters of a forested watershed

    Science.gov (United States)

    April Bryant-Mason; Y. Jun Xu; Johnny M. Grace

    2013-01-01

    Headwater streams drain more than 70 percent of the total watershed area in the United States. Understanding of carbon dynamics in the headwater systems is of particular relevance for developing best silvicultural practices to reduce carbon export. This study was conducted in a low-gradient, predominantly forested watershed located in the Gulf Coastal Plain region, to...

  3. Sediment denitrification and nitrification is enhanced by the presence of macrophytes in a restored agricultural stream, Black Earth Creek, WI USA

    Science.gov (United States)

    Restoration of habitats that support microbial processing can enhance nitrate removal in agricultural streams. Macrophytes are common both in-stream and in the wetted fringe of agricultural stream systems, but are often removed in restoration to increase stream velocity or stabil...

  4. Evaluation of groundwater and stream quality characteristics in the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Key words: Evaluation, vicinity, stream quality, nitrate, Nigeria. ..... An assessment of the health and social economic implications of sachet water in Ibadan: A ... wastwater using the QUAL2E water quality model. Chemospere ...

  5. Real-time continuous nitrate monitoring in Illinois in 2013

    Science.gov (United States)

    Warner, Kelly L.; Terrio, Paul J.; Straub, Timothy D.; Roseboom, Donald; Johnson, Gary P.

    2013-01-01

    Many sources contribute to the nitrogen found in surface water in Illinois. Illinois is located in the most productive agricultural area in the country, and nitrogen fertilizer is commonly used to maximize corn production in this area. Additionally, septic/wastewater systems, industrial emissions, and lawn fertilizer are common sources of nitrogen in urban areas of Illinois. In agricultural areas, the use of fertilizer has increased grain production to meet the needs of a growing population, but also has resulted in increases in nitrogen concentrations in many streams and aquifers (Dubrovsky and others, 2010). The urban sources can increase nitrogen concentrations, too. The Federal limit for nitrate nitrogen in water that is safe to drink is 10 milligrams per liter (mg/L) (http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm, accessed on May 24, 2013). In addition to the concern with nitrate nitrogen in drinking water, nitrogen, along with phosphorus, is an aquatic concern because it feeds the intensive growth of algae that are responsible for the hypoxic zone in the Gulf of Mexico. The largest nitrogen flux to the waters feeding the Gulf of Mexico is from Illinois (Alexander and others, 2008). Most studies of nitrogen in surface water and groundwater include samples for nitrate nitrogen collected weekly or monthly, but nitrate concentrations can change rapidly and these discrete samples may not capture rapid changes in nitrate concentrations that can affect human and aquatic health. Continuous monitoring for nitrate could inform scientists and water-resource managers of these changes and provide information on the transport of nitrate in surface water and groundwater.

  6. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach

    International Nuclear Information System (INIS)

    Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun

    2014-01-01

    Nitrate (NO 3 − ) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ 15 N-NO 3 − and δ 18 O-NO 3 − ) was applied to identify diffused NO 3 − inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO 3 − sources (atmospheric deposition, AD; NO 3 − derived from soil organic matter nitrification, NS; NO 3 − derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M and S) were identified. NO 3 − concentrations in the stream during the rainy season [mean ± standard deviation (SD) = 2.5 ± 0.4 mg/L] were lower than those during the dry season (mean ± SD = 4.0 ± 0.5 mg/L), whereas the δ 18 O-NO 3 − values during the rainy season (mean ± SD = + 12.3 ± 3.6‰) were higher than those during the dry season (mean ± SD = + 0.9 ± 1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO 3 − resulted in the high δ 18 O values during the rainy season, whereas NS and M and S were the dominant NO 3 − sources during the dry season. A Bayesian model was used to determine the contribution of each NO 3 − source to total stream NO 3 − . Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO 3 − source throughout the year. M and S contributed more NO 3 − during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO 3 − in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO 3 − sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin. - Highlights: • The isotopic characteristics of potential NO 3 − sources were identified. • Mixing with atmospheric NO 3 − resulted

  7. Mercury and methylmercury dynamics in the hyporheic zone of an Oregon stream

    Science.gov (United States)

    Hinkle, Stephen R.; Bencala, Kenneth E.; Wentz, Dennis A.; Krabbenhoft, David P.

    2014-01-01

    The role of the hyporheic zone in mercury (Hg) cycling has received limited attention despite the biogeochemically active nature of this zone and, thus, its potential to influence Hg behavior in streams. An assessment of Hg geochemistry in the hyporheic zone of a coarse-grained island in the Coast Fork Willamette River in Oregon, USA, illustrates the spatially dynamic nature of this region of the stream channel for Hg mobilization and attenuation. Hyporheic flow through the island was evident from the water-table geometry and supported by hyporheic-zone chemistry distinct from that of the bounding groundwater system. Redox-indicator species changed abruptly along a transect through the hyporheic zone, indicating a biogeochemically reactive stream/hyporheic-zone continuum. Dissolved organic carbon (DOC), total Hg, and methylmercury (MeHg) concentrations increased in the upgradient portion of the hyporheic zone and decreased in the downgradient region. Total Hg (collected in 2002 and 2003) and MeHg (collected in 2003) were correlated with DOC in hyporheic-zone samples: r2=0.63 (total Hg-DOC, 2002), 0.73 (total Hg-DOC, 2003), and 0.94 (MeHg-DOC, 2003). Weaker Hg/DOC association in late summer 2002 than in early summer 2003 may reflect seasonal differences in DOC reactivity. Observed correlations between DOC and both total Hg and MeHg reflect the importance of DOC for Hg mobilization, transport, and fate in this hyporheic zone. Correlations with DOC provide a framework for conceptualizing and quantifying Hg and MeHg dynamics in this region of the stream channel, and provide a refined conceptual model of the role hyporheic zones may play in aquatic ecosystems.

  8. Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts

    Science.gov (United States)

    AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...

  9. Tracing the source and fate of nitrate in contemporary mixed land-use surface water systems

    Science.gov (United States)

    Stewart, S. D.; Young, M. B.; Horton, T. W.; Harding, J. S.

    2011-12-01

    Nitrogenous fertilizers increase agricultural productivity, ultimately feeding the planet. Yet, it is possible to have too much of a good thing, and nitrogen is no exception. When in excess nitrogen has been shown to accelerate eutrophication of water bodies, and act as a chronic toxin (e.g. methemoglobinemia). As land-use intensity continues to rise in response to increases in agricultural productivity, the risk of adverse effects of nitrogen loading on surface water bodies will also increase. Stable isotope proxies are potential tracers of nitrate, the most common nitrogenous phase in surface waters. Applying stable isotope proxies therefore presents an opportunity to identify and manage sources of excess nitrogen before aquatic systems are severely degraded. However, the heterogeneous nature of potential pollution sources themselves, and their distribution with a modified catchment network, make understanding this issue highly complex. The Banks Peninsula, an eroded late tertiary volcanic complex located on the east coast of the South Island New Zealand, presents a unique opportunity to study and understand the sources and fates of nitrate within streams in a contemporary mixed land-use setting. Within this small geographic area there a variety of agricultural activities are practiced, including: heavily fertilized golf courses; stands of regenerating native forest; and areas of fallow gorse (Ulex europaeus; a invasive N-fixing shrub). Each of these landuse classes has its own unique nitrogen budget. Multivariate analysis was used on stream nitrate concentrations to reveal that stream reaches dominated by gorse had significantly higher nitrate concentrations than other land-use classes. Nitrate δ15N & δ18O data from these sites show strong covariance, plotting along a distinct fractionation line (r2 = 0.96). This finding facilitates interpretation of what processes are controlling nitrate concentration within these systems. Further, complementary aquatic

  10. The role of dynamic surface water-groundwater exchange on streambed denitrification in a first-order, low-relief agricultural watershed

    Science.gov (United States)

    Rahimi, Mina; Essaid, Hedeff I.; Wilson, John T.

    2015-12-01

    The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.

  11. Nitrate removal through combination of nanofiltration and electrocatalysis; Nitratentfernung durch Kombination von Nanofiltration und Elektrokatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Roehricht, M.; Stadlbauer, E.A.; Happel, H. [Fachhochschule Giessen (Germany). Zentrum fuer Umwelttechnik

    1999-07-01

    In a new process combination, nitrate-containing ground water is first of all separated by nanofiltration into a concentrate stream (some 25 %) and a largely nitrate-free permeate (75 %). Then the enriched nitrate in the concentrate is converted into nitrogen by means of electrocatalytic nitrate reduction. Whereas, in nanofiltration, a concentration takes place, electrocatalytic nitrate reduction is a process by which nitrate is converted into elemental nitrogen and, thus, removed. Nanofiltration is a membrane separating process making use of 'open' reverse osmosis membranes, which are characterized by high flow but also reduced retention. (orig.) [German] In einer neuen Verfahrenskombination wird das nitrathaltige Grundwasser zuerst durch Nanofiltration in einen Konzentratstrom (ca. 25%) und ein weitgehend nitratfreies Permeat (75%) aufgeteilt. Im Konzentrat wird dann mittels Elektrokatalytischer Nitratreduktion (EKN) das angereicherte Nitrat zu Stickstoff umgewandelt. Waehrend bei der Nanofiltration eine Aufkonzentrierung erfolgt, wird durch die Elektrokatalytische Nitratreduktion das Nitrat in elementaren Stickstoff umgewandelt und so entfernt. Die Nanofiltration ist ein Membrantrennverfahren, bei dem 'offene' Umkehrosmosemembranen eingesetzt werden, die einen hohen Fluss aber auch eine verminderte Rueckhaltung aufweisen. (orig.)

  12. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  13. Structure and dynamics of propylammonium nitrate-acetonitrile mixtures: An intricate multi-scale system probed with experimental and theoretical techniques

    Science.gov (United States)

    Campetella, Marco; Mariani, Alessandro; Sadun, Claudia; Wu, Boning; Castner, Edward W.; Gontrani, Lorenzo

    2018-04-01

    In this article, we report the study of structural and dynamical properties for a series of acetonitrile/propylammonium nitrate mixtures as a function of their composition. These systems display an unusual increase in intensity in their X-ray diffraction patterns in the low-q regime, and their 1H-NMR diffusion-ordered NMR spectroscopy (DOSY) spectra display unusual diffusivities. However, the magnitude of both phenomena for mixtures of propylammonium nitrate is smaller than those observed for ethylammonium nitrate mixtures with the same cosolvent, suggesting that the cation alkyl tail plays an important role in these observations. The experimental X-ray scattering data are compared with the results of molecular dynamics simulations, including both ab initio studies used to interpret short-range interactions and classical simulations to describe longer range interactions. The higher level calculations highlight the presence of a strong hydrogen bond network within the ionic liquid, only slightly perturbed even at high acetonitrile concentration. These strong interactions lead to the symmetry breaking of the NO3 - vibrations, with a splitting of about 88 cm-1 in the ν3 antisymmetric stretch. The classical force field simulations use a greater number of ion pairs, but are not capable of fully describing the longest range interactions, although they do successfully account for the observed concentration trend, and the analysis of the models confirms the nano-inhomogeneity of these kinds of samples.

  14. Structure and dynamics of propylammonium nitrate-acetonitrile mixtures: An intricate multi-scale system probed with experimental and theoretical techniques.

    Science.gov (United States)

    Campetella, Marco; Mariani, Alessandro; Sadun, Claudia; Wu, Boning; Castner, Edward W; Gontrani, Lorenzo

    2018-04-07

    In this article, we report the study of structural and dynamical properties for a series of acetonitrile/propylammonium nitrate mixtures as a function of their composition. These systems display an unusual increase in intensity in their X-ray diffraction patterns in the low-q regime, and their 1 H-NMR diffusion-ordered NMR spectroscopy (DOSY) spectra display unusual diffusivities. However, the magnitude of both phenomena for mixtures of propylammonium nitrate is smaller than those observed for ethylammonium nitrate mixtures with the same cosolvent, suggesting that the cation alkyl tail plays an important role in these observations. The experimental X-ray scattering data are compared with the results of molecular dynamics simulations, including both ab initio studies used to interpret short-range interactions and classical simulations to describe longer range interactions. The higher level calculations highlight the presence of a strong hydrogen bond network within the ionic liquid, only slightly perturbed even at high acetonitrile concentration. These strong interactions lead to the symmetry breaking of the NO 3 - vibrations, with a splitting of about 88 cm -1 in the ν 3 antisymmetric stretch. The classical force field simulations use a greater number of ion pairs, but are not capable of fully describing the longest range interactions, although they do successfully account for the observed concentration trend, and the analysis of the models confirms the nano-inhomogeneity of these kinds of samples.

  15. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    Science.gov (United States)

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  16. Nitrate and ammonium levels of some water bodies and their ...

    African Journals Online (AJOL)

    The present study examined the nitrate (NO3-) and ammonium (NH4+) levels of Rivers Wouri and Dibamba and some streams that feed them. The interaction of NO3- and NH4+ with some soil properties was also investigated. It was necessitated by the usage of these rivers for livelihood, despite the deposition of discharges ...

  17. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  18. Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data

    Science.gov (United States)

    Fovet, O.; Humbert, G.; Dupas, R.; Gascuel-Odoux, C.; Gruau, G.; Jaffrezic, A.; Thelusma, G.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Grimaldi, C.

    2018-04-01

    The response of stream chemistry to storm is of major interest for understanding the export of dissolved and particulate species from catchments. The related challenge is the identification of active hydrological flow paths during these events and of the sources of chemical elements for which these events are hot moments of exports. An original four-year data set that combines high frequency records of stream flow, turbidity, nitrate and dissolved organic carbon concentrations, and piezometric levels was used to characterize storm responses in a headwater agricultural catchment. The data set was used to test to which extend the shallow groundwater was impacting the variability of storm responses. A total of 177 events were described using a set of quantitative and functional descriptors related to precipitation, stream and groundwater pre-event status and event dynamics, and to the relative dynamics between water quality parameters and flow via hysteresis indices. This approach led to identify different types of response for each water quality parameter which occurrence can be quantified and related to the seasonal functioning of the catchment. This study demonstrates that high-frequency records of water quality are precious tools to study/unique in their ability to emphasize the variability of catchment storm responses.

  19. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams

    Science.gov (United States)

    Stephen F. Jane; Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Michael K. Schwartz; Winsor H. Lowe; Benjamin H. Letcher; Andrew R. Whiteley

    2014-01-01

    Environmental DNA (eDNA) detection has emerged as a powerful tool for monitoring aquatic organisms, but much remains unknown about the dynamics of aquatic eDNA over a range of environmental conditions. DNA concentrations in streams and rivers will depend not only on the equilibrium between DNA entering the water and DNA leaving the system through degradation, but also...

  20. Aminoethyl nitrate – the novel super nitrate?

    Science.gov (United States)

    Bauersachs, Johann

    2009-01-01

    Long-term use of most organic nitrates is limited by development of tolerance, induction of oxidative stress and endothelial dysfunction. In this issue of the BJP, Schuhmacher et al. characterized a novel class of organic nitrates with amino moieties (aminoalkyl nitrates). Aminoethyl nitrate was identified as a novel organic mononitrate with high potency but devoid of induction of mitochondrial oxidative stress. Cross-tolerance to nitroglycerin or the endothelium-dependent agonist acetylcholine after in vivo treatment was not observed. Like all nitrates, aminoethyl nitrate induced vasorelaxation by activation of soluble guanylate cyclase. Thus, in contrast to the prevailing view, high potency in an organic nitrate is not necessarily accompanied by induction of oxidative stress or endothelial dysfunction. This work from Daiber's group is an important step forward in the understanding of nitrate bioactivation, tolerance phenomena and towards the development of better organic nitrates for clinical use. PMID:19732062

  1. Hyporheic Passive Flux Meters Reveal Inverse Vertical Zonation and High Seasonality of Nitrogen Processing in an Anthropogenically Modified Stream (Holtemme, Germany)

    Science.gov (United States)

    Kunz, Julia Vanessa; Annable, Michael D.; Rao, Suresh; Rode, Michael; Borchardt, Dietrich

    2017-12-01

    Transformation and retention of nitrogen and other biologically reactive solutes in the hyporheic zones of running water contribute to an essential ecosystem service. However, the synoptic impact of intense agricultural or urban land-uses, elevated nutrient loading, flow alterations, riparian clear-cutting, and channelization on the source-sink behavior of solutes in hyporheic zones remains largely uncharacterized and unquantified. Therefore, we studied nutrient dynamics in a hydromorphologically and chemically modified stream reach using a new monitoring approach allowing the simultaneous measurement of nutrient and water flux through a screened area in the subsurface of rivers (hyporheic passive flux meter, HPFM). With HPFMs we directly assessed time-integrated lateral hyporheic nitrate fluxes during early spring and midsummer covering different temperature and discharge regimes. Contrary to our expectations, higher stream discharge coincided with substantially lower hyporheic exchange rates. While in streams featuring a natural morphology, bed form induced exchange commonly increases with surface flow, the influence of groundwater level was dominant in this reach. Furthermore, in contrast to less impacted environments, where progressive substrate depletion with depths reduces metabolic rates in the subsurface, we identified not the upper, but the intermediate layer of the hyporheic zone as hot spot of nutrient turnover. Overall, the hyporheic zone at the study site functioned partly as nitrate source, partly as a sink. Neither of the commonly used determinants redox state and residence time could explain this source or sink function. Our results give clear evidence to carefully transfer the knowledge of hyporheic zone processes from "natural" systems to anthropologically modified streams.

  2. Transport and transformation of nitrate in a riparian wetland

    DEFF Research Database (Denmark)

    Petersen, Rasmus Jes; Prinds, Christian; Iversen, Bo Vangsø

    Even though riparian wetlands have been intensively studied during the past 30 years these areas still function as a “black box” with regards to removal of nitrogen input from surrounding areas. To comply with regulations of the European Water Framework Directive, Danish agriculture is to reduce....... Depending on the saturation state of the wetland soils and the amount of water entering during precipitation events, a part of the water infiltrates into the wetland sediments and travels towards the stream. Some of the infiltrated water may be caught by drains within the wetland soils and transported...... directly to the stream. The remaining water can be either evapotranspired or transported directly to the stream via overland flow. Preliminary results show an efficient denitrification of nitrate infiltrating into the studied wetland soils. The nitrogen removal efficiency at different drain outlets seems...

  3. Biological processes for environmental control of effluent streams in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Hancher, C.W.; Strandberg, G.W.; Scott, C.D.

    1978-01-01

    Nitrates and radioactive heavy metals need to be removed from aqueous effluent streams in the fuel cycle. Biological methods are being developed for reducing nitrate or nitrite to N 2 gas and for decreasing dissolved metal concentration to less than 1 g/m 3 . Fluidized-bed denitrification bioreactors are being tested. Removal of uranium from solution by Saccharomyces cerevisiae and Pseudomonas aeruginosa was studied

  4. In-Stream Sediment Dynamics for predicted environmental concentration calculations of plant protection products in the FOCUSSW Scenarios

    Science.gov (United States)

    Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard

    2016-04-01

    The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by

  5. Isotopic Evidence of Nitrate Sources and its Relationship to Algae in the San Joaquin River, California

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.

    2007-12-01

    Many competing demands have been placed on the San Joaquin River including deep water shipping, use as agricultural and drinking water, transport of agricultural and urban runoff, and recreation. These long-established demands limit the management options and increase the importance of understanding the river dynamics. The relationships among sources of water, nitrate, and algae in the San Joaquin River must be understood before management decisions can be made to optimize aquatic health. Isotopic analyses of water samples collected along the San Joaquin River in 2005-2007 have proven useful in assessing these relationships: sources of nitrate, the productivity of the San Joaquin River, and the relationship between nitrate and algae in the river. The San Joaquin River receives water locally from wetlands and agricultural return flow, and from three relatively large tributaries whose headwaters are in the Sierra Nevada. The lowest nitrate concentrations occur during periods of high flow when the proportion of water from the Sierra Nevada is relatively large, reflecting the effect of dilution from the big tributaries and indicating that a large fraction of the nitrate is of local origin. Nitrogen isotopes of nitrate in the San Joaquin River are relatively high (averaging about 12 per mil), suggesting a significant source from animal waste or sewage and/or the effects of denitrification. The d15N of nitrate varies inversely with concentration, indicating that these high isotopic values are also a local product. The d15N values of nitrate from most of the local tributaries is lower than that in the San Joaquin suggesting that nitrate from these tributaries does not account for a significant fraction of nitrate in the river. The source of the non-tributary nitrate must be either small unmeasured surface inputs or groundwater. To investigate whether groundwater might be a significant source of nitrate to the San Joaquin River, groundwater samples are being collected

  6. Nitrate Removal from Aqueous Solutions Using Almond Charcoal Activated with Zinc Chloride

    Directory of Open Access Journals (Sweden)

    Mohsen Arbabi

    2017-10-01

    Full Text Available Background & Aims of the Study: Nitrate is one of the most important contaminants in aquatic environments that can leached to water resources from various sources such as sewage, fertilizers and decomposition of organic waste. Reduction of nitrate to nitrite in infant’s blood stream can cause “blue baby” disease in infants. The aim of this study was to evaluate the nitrate removal from aqueous solutions using modified almond charcoal with zinc chloride. Materials &Methods: This study is an experimental survey. At the first charcoal almond skins were prepared in 5500C and then modified with ZnCl2. Morphologies and characterization of almond shell charcoal were evaluated by using FTIR, EDX, BET and FESEM. Adsorption experiments were conducted with 500 ml sample in Becker. The nitrate concentration removal, contact time, pH and charcoal dosage were investigated. The central composite design method was used to optimizing the nitrate removal process. The results analyzed with ANOVA test. Results: The best condition founded in 48 min, 1250 ppm, 125 mg/l and 3 for retention time, primary nitrate concentration, charcoal dosage and pH respectively. The results showed that the nitrate removal decreases with increasing pH. Modification of skin charcoal is show increasing of nitrate removal from aquatic solution. Conclusion: In this study, the maximum nitrate removal efficiency for raw charcoal and modified charcoal was determined 15.47% and 62.78%, respectively. The results showed that this method can be used as an effective method for removing nitrate from aqueous solutions.

  7. Electrochemical processing of nitrate waste solutions

    International Nuclear Information System (INIS)

    Genders, D.; Weinberg, N.; Hartsough, D.

    1992-01-01

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F - ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions

  8. Impact of ammonium nitrate and sodium nitrate on tadpoles of Alytes obstetricans.

    Science.gov (United States)

    Garriga, Núria; Montori, A; Llorente, G A

    2017-07-01

    The presence of pesticides, herbicides and fertilisers negatively affect aquatic communities in general, and particularly amphibians in their larval phase, even though sensitivity to pollutants is highly variable among species. The Llobregat Delta (Barcelona, Spain) has experienced a decline of amphibian populations, possibly related to the reduction in water quality due to the high levels of farming activity, but also to habitat loss and alteration. We studied the effects of increasing ammonium nitrate and sodium nitrate levels on the survival and growth rate of Alytes obstetricans tadpoles under experimental conditions. We exposed larvae to increasing concentrations of nitrate and ammonium for 14 days and then exposed them to water without pollutants for a further 14 days. Only the higher concentrations of ammonium (>33.75 mg/L) caused larval mortality. The growth rate of larvae was reduced at ≥22.5 mg/L NH 4 + , although individuals recovered and even increased their growth rate once exposure to the pollutant ended. The effect of nitrate on growth rate was detected at ≥80 mg/L concentrations, and the growth rate reduction in tadpoles was even observed during the post-exposure phase. The concentrations of ammonium with adverse effects on larvae are within the range levels found in the study area, while the nitrate concentrations with some adverse effect are close to the upper range limit of current concentrations in the study area. Therefore, only the presence of ammonium in the study area is likely to be considered of concern for the population of this species, even though the presence of nitrate could cause some sublethal effects. These negative effects could have an impact on population dynamics, which in this species is highly sensitive to larval mortality due to its small clutch size and prolonged larval period compared to other anuran amphibians.

  9. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  10. Effect of residential development on stream phosphorus dynamics in headwater suburbanizing watersheds of southern Ontario, Canada.

    Science.gov (United States)

    Duval, Tim P

    2018-10-01

    Suburban landscapes are known to have degraded water quality relative to natural settings, including increased total phosphorus (TP) levels; however, the effect of subdivision construction activities on stream TP dynamics are less understood. This study measured TP and its constituents particulate, dissolved organic, and dissolved inorganic phosphorus (PP, DOP, and DIP, respectively) in two headwater streams of contrasting urbanization activity to examine whether the land-use conversion process itself contributed to TP concentrations and export. The nested watershed undergoing significant active residential community construction contained large areas of cleared former agricultural field and associated sediment mounds with elevated soil TP (~1000 mg kg -1 ), and twice as many stormwater management (SWM) ponds than the watershed with completed suburban communities. Daily stream sampling for six months revealed limited differences in TP between urbanized and urbanizing watersheds regardless of season or stream flow condition; however, the forms of TP varied significantly. The proportion of TP as DOP was consistently higher in the urbanizing stream relative to the urban stream, which was in line with significant decreases in DOP concentration as proportion of cleared former agricultural land decreased and density of SWM ponds increased. The DOP, and to a lesser extent DIP and PP, dynamics resulted in a 2.5× greater areal export of TP from a small watershed actively being suburbanized during the study period compared to the larger watershed with greater land urbanized 3-5 years ago. The results of this study suggest stream TP concentrations are relatively unresponsive to active versus established suburban cover, but the forms of TP can be quite different, and the period of home construction can increase phosphorus (P) delivery to and export through nearby streams. This information can aid land managers and urban planners update best management practices to

  11. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Thomas, Steve [University of Nebraska; Webster, Jackson [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Crenshaw, Chelsea [University of New Mexico, Albuquerque; Peterson, Chris G. [Loyola University

    2008-01-01

    Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of {sup 15}N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in {sup 15}N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; {micro}g N {center_dot} m{sup -2} {center_dot} s{sup -1}) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v{sub f}; mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.

  12. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams.

    Science.gov (United States)

    Valett, H M; Thomas, S A; Mulholland, P J; Webster, J R; Dahm, C N; Fellows, C S; Crenshaw, C L; Peterson, C G

    2008-12-01

    Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of 15N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in 15N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; microg N x m(-2) x s(-1)) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v(f); mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.

  13. Dynamics in species composition of stream fish assemblages: environmental variability and nested subsets

    Science.gov (United States)

    Christopher M. Taylor; Melvin L. Warren

    2001-01-01

    Stream landscapes are highly variable in space and time and, like terrestrial landscapes, the resources they contain are patchily distributed. Organisms may disperse among patches to fulfill life-history requirements, but biotic and abiotic factors may limit patch or locality occupancy. Thus, the dynamics of immigration and extinction determine, in part, the local...

  14. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams

    International Nuclear Information System (INIS)

    Graham, David W.; Trippett, Clare; Dodds, Walter K.; O'Brien, Jonathan M.; Banner, Eric B.K.; Head, Ian M.; Smith, Marilyn S.; Yang, Richard K.; Knapp, Charles W.

    2010-01-01

    Denitrification is a process that reduces nitrogen levels in headwaters and other streams. We compared nirS and nirK abundances with the absolute rate of denitrification, the longitudinal coefficient of denitrification (i.e., K den , which represents optimal denitrification rates at given environmental conditions), and water quality in seven prairie streams to determine if nir-gene abundances explain denitrification activity. Previous work showed that absolute rates of denitrification correlate with nitrate levels; however, no correlation has been found for denitrification efficiency, which we hypothesise might be related to gene abundances. Water-column nitrate and soluble-reactive phosphorus levels significantly correlated with absolute rates of denitrification, but nir-gene abundances did not. However, nirS and nirK abundances significantly correlated with K den , as well as phosphorus, although no correlation was found between K den and nitrate. These data confirm that absolute denitrification rates are controlled by nitrate load, but intrinsic denitrification efficiency is linked to nirS and nirK gene abundances. - Denitrification efficiency best correlated to nirS and nirK gene abundances.

  15. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    International Nuclear Information System (INIS)

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands

  16. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams

    OpenAIRE

    Valett, H. M.; Thomas, S. A.; Mulholland, P. J.; Webster, J. R.; Dahm, C. N.; Fellows, C. S.; Crenshaw, C. L.; Peterson, C. G.

    2008-01-01

    Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of (15)N as nitrate in six streams differing in riparian-stream ...

  17. Phosphorus dynamics in lowland streams as a response to climatic, hydrological and agricultural land use gradients

    DEFF Research Database (Denmark)

    Goyenola, G.; Meerhoff, M.; Teixeira-de Mello, F.

    2015-01-01

    contrasting climate and hydrological regimes (temperate Denmark and subtropical Uruguay). We applied two alternative nutrient sampling programmes (high frequency composite sampling and low frequency instantaneous-grab sampling) and three alternative methods to estimate exported P from the catchments. A source...... apportionment model was applied to evaluate the contribution derived from point and diffuse sources in all four catchments studied. Climatic and hydrological characteristics of catchments expressed as flow responsiveness (flashiness), exerted control on catchment and stream TP dynamics, having consequences......Climate and hydrology are relevant control factors for determining the timing and amount of nutrient losses from agricultural fields to freshwaters. In this study, we evaluated the effect of agricultural intensification on the concentrations, dynamics and export of phosphorus (P) in streams in two...

  18. Phase extraction equilibria in systems rare earth (3) nitrates-ammonium nitrate-water-trialkylmethylammonium nitrate

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Puzikov, E.A.

    1995-01-01

    The distribution of rare earth metals (3) between aqueous and organic phases in the systems rare earth metal (3) (praseodymium-lutetium (3), yttrium (3)) nitrate-ammonium nitrate-water-trialkylmethylammonium (kerosene diluent nitrate has been studied. It is shown that in organic phase di- and trisolvates of metals (3) with tralkylmethylammonium nitrate are formed. The influence of concentration of rare earth metal (3) nitrate and ammonium nitrate on the values of extraction concentrational constants has been ascertained: they decrease with increase in the ordinal number of lanthanide (3). 11 refs., 4 figs. 1 tab

  19. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  20. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-05-01

    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase

  1. Nitrate leaching as a confounding factor in chemical recovery from acidification in UK upland waters

    International Nuclear Information System (INIS)

    Curtis, C.J.; Evans, C.D.; Helliwell, R.C.; Monteith, D.T.

    2005-01-01

    Over the period 1988-2002, data from 18 of the 22 lakes and streams in the UK Acid Waters Monitoring Network (AWMN) show clear trends of declining excess sulphate concentrations in response to reductions in sulphur deposition, but fewer trends in increasing pH or alkalinity. There has been no significant decline in the deposition of total nitrogen over the same period, and no sites show a trend in nitrate concentration. Peak nitrate concentrations have already surpassed excess sulphate on occasion in half of the AWMN sites. Furthermore, current understanding of terrestrial N saturation processes suggests that nitrate leaching from soils may increase, even under a constant N deposition load. Best-case projections indicate that nitrate will overtake sulphate as the major excess acid anion in many sites within 10 years, while worst-case predictions with steady-state models suggest that in the longer-term, nitrate could become the dominant excess acid anion in most of the UK. - With declining excess sulphate, nitrate will become the dominant agent of continued anthropogenic acidification in many UK upland waters within a decade

  2. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L. Leaves by Near-Infrared Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao-Yu Yang

    2017-11-01

    Full Text Available Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L. leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg. Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  3. Coupled stream and population dynamics: Modeling the role beaver (Castor canadensis) play in generating juvenile steelhead (Oncorhynchus mykiss) habitat

    Science.gov (United States)

    Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.

    2013-12-01

    Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly

  4. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  5. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.

    Science.gov (United States)

    Krause, Stefan; Jacobs, Joerg; Voss, Anja; Bronstert, Axel; Zehe, Erwin

    2008-01-15

    In many European lowland rivers and riparian floodplains diffuse nutrient pollution is causing a major risk for the surface waters and groundwater to not achieve a good status as demanded by the European Water Framework Directive. In order to delimit the impact of diffuse nutrient pollution substantial and often controversial changes in landuse and management are under discussion. In this study we investigate the impact of two complex scenarios considering changes in landuse and land management practices on the nitrate loads of a typical lowland stream and the riparian groundwater in the North German Plains. Therefore the impacts of both scenarios on the nitrate dynamics, the attenuation efficiency and the nitrate exchange between groundwater and surface water were investigated for a 998.1 km(2) riparian floodplain of the Lower and Central Havel River and compared with the current conditions. Both scenarios target a substantial improvement of the ecological conditions and the water quality in the research area but promote different typical riparian landscape functions and consider a different grade of economical and legal feasibility of the proposed measures. Scenario 1 focuses on the optimisation of conservation measures for all natural resources of the riparian floodplain, scenario 2 considers measures in order to restore a good status of the water bodies mainly. The IWAN model was setup for the simulation of water balance and nitrate dynamics of the floodplain for a perennial simulation period of the current landuse and management conditions and of the scenario assumptions. The proposed landuse and management changes result in reduced rates of nitrate leaching from the root zone into the riparian groundwater (85% for scenario 1, 43% for scenario 2). The net contributions of nitrate from the floodplain can be reduced substantially for both scenarios. In case of scenario 2 a decrease by 70% can be obtained. For scenario 1 the nitrate exfiltration rates to the

  6. Nitrate biosensors and biological methods for nitrate determination.

    Science.gov (United States)

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mineral Grains, Dimples, and Hot Volcanic Organic Streams: Dynamic Geological Backstage of Macromolecular Evolution.

    Science.gov (United States)

    Skoblikow, Nikolai E; Zimin, Andrei A

    2018-04-01

    The hypothesis of hot volcanic organic stream as the most probable and geologically plausible environment for abiogenic polycondensation is proposed. The primary synthesis of organic compounds is considered as result of an explosive volcanic (perhaps, meteorite-induced) eruption. The eruption was accompanied by a shock wave propagating in the primeval atmosphere and resulting in the formation of hot cloud of simple organic compounds-aldehydes, alcohols, amines, amino alcohols, nitriles, and amino acids-products, which are usually obtained under the artificial conditions in the spark-discharge experiments. The subsequent cooling of the organic cloud resulted in a gradual condensation and a serial precipitation of organic compounds (in order of decreasing boiling point values) into the liquid phase forming a hot, viscous and muddy organic stream (named "lithorheos"). That stream-even if the time of its existence was short-is considered here as a geologically plausible environment for abiogenic polycondensation. The substances successively prevailing in such a stream were cyanamide, acetamide, formamide, glycolonitrile, acetonitrile. An important role was played by mineral (especially, phosphate-containing) grains (named "lithosomes"), whose surface was modified with heterocyclic nitrogen compounds synthesized in the course of eruption. When such grains got into hot organic streams, their surface catalytic centers (named "lithozymes") played a decisive role in the emergence, facilitation and maintenance of prebiotic reactions and key processes characteristic of living systems. Owing to its cascade structure, the stream was a factor underlying the formation of mineral-polymeric aggregates (named "lithocytes") in the small natural streambed cavities (dimples)-as well as a factor of their further spread within larger geological locations which played a role of chemo-ecological niches. All three main stages of prebiotic evolution (primary organic synthesis

  8. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  9. COGEMA Experience in Uranous Nitrate Preparation

    International Nuclear Information System (INIS)

    Tison, E.; Bretault, Ph.

    2006-01-01

    Separation and purification of plutonium by PUREX process is based on a sequence of extraction and back extraction which requires reducing plutonium Pu IV (extractable form) into Pu III (inextractable form) Different reducers can be used to reduce Pu IV into Pu III. Early plants such as that for Magnox fuel at Sellafield used ferrous sulfamate while UP 1 at Marcoule used uranous sulfamate. These reducers are efficient and easy to prepare but generates ferric and/or sulphate ions and so complicates management of the wastes from the plutonium purification cycle. Recent plants such as UP3 and UP2 800 at La Hague, THORP at Sellafield, and RRP at Rokkasho Mura (currently under tests) use uranous nitrate (U IV) stabilized by hydrazinium nitrate (N 2 H 5 NO 3 ) and hydroxyl ammonium nitrate (HAN). In the French plants, uranous nitrate is used in U-Pu separation and alpha barrier and HAN is used in Pu purification. Compared to sulfamate, U IV does not generate extraneous chemical species and uranyl nitrate (U VI) generated by reducing Pu IV follows the main uranium stream. More over uranous nitrate is prepared from reprocessed purified uranyl nitrate taken at the outlet of the reprocessing plant. Hydrazine and HAN offer the advantage to be salt-free reagents. Uranous nitrate can be generated either by electrolysis or by catalytic hydrogenation process. Electrolytic process has been implemented in early plant UP 1 at Marcoule (when changing reducer from uranous sulfamate to uranous nitrate) and was used again in UP2 plant at La Hague. However, the electrolytic process presented several disadvantages such as a low conversion rate and problems associated with the use of mercury. Electrolysis cells with no mercury were developed for the Eurochemic plant in Belgium and then implemented in the first Japanese reprocessing plant in Tokai-Mura. But finally, in 1975, the electrolytic process was abandoned in favor of the catalytic hydrogenation process developed at La Hague. The

  10. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia).

    Science.gov (United States)

    Mas-Pla, Josep; Menció, Anna

    2018-04-11

    Climate change will affect the dynamics of the hydrogeological systems and their water resources quality; in particular nitrate, which is herein taken as a paradigmatic pollutant to illustrate the effects of climate change on groundwater quality. Based on climatic predictions of temperature and precipitation for the horizon of 2021 and 2050, as well as on land use distribution, water balances are recalculated for the hydrological basins of distinct aquifer systems in a western Mediterranean region as Catalonia (NE Spain) in order to determine the reduction of available water resources. Besides the fact that climate change will represent a decrease of water availability, we qualitatively discuss the modifications that will result from the future climatic scenarios and their impact on nitrate pollution according to the geological setting of the selected aquifers. Climate effects in groundwater quality are described according to hydrological, environmental, socio-economic, and political concerns. Water reduction stands as a major issue that will control stream-aquifer interactions and subsurface recharge, leading to a general modification of nitrate in groundwater as dilution varies. A nitrate mass balance model provides a gross estimation of potential nitrate evolution in these aquifers, and it points out that the control of the fertilizer load will be crucial to achieve adequate nitrate content in groundwater. Reclaimed wastewater stands as local reliable resource, yet its amount will only satisfy a fraction of the loss of available resources due to climate change. Finally, an integrated management perspective is necessary to avoid unplanned actions from private initiatives that will jeopardize the achievement of sustainable water resources exploitation under distinct hydrological scenarios.

  11. Seasonal dynamics of ichthyodiversity in a hill stream of the Darjeeling Himalaya, West Bengal, india

    Directory of Open Access Journals (Sweden)

    M.L. Acharjee

    2014-12-01

    Full Text Available The small torrential spring-fed hill-stream Relli in the Darjeeling Himalaya of West Bengal was studied from March 2007 to February 2009 to assess seasonal dynamics and diversity of fish populations.  The study revealed that the stream sustained 25 rheophilic cold water fish species from 15 genera and five families having ornamental, food and sport value.  Seven omnivorous species were abundantly found, and the array of juveniles and sub adults suggests this stream is used as a breeding and nursery ground for some species.  The stream harboured fish with unique modifications such as adhesive structures.  Analysis of monthly data indicate that abundance and diversity indices increased slightly during April–May and sharply during October–November, indicating significant seasonal variations with the low diversity observed during monsoon months reflecting environmental stresses.  Evenness was high in all sampling sites, and inversely related to the dominance index of ichthyofauna.  The density and diversity of fish assemblages along the gradient of the stream may be interrupted due to anthropogenic disturbances.  Our study provides baseline data which may be helpful for conservation and management of fish species, and in formulating fishery policy. 

  12. The Role of Stream Water Carbon Dynamics and Export in the Carbon Balance of a Tropical Seasonal Rainforest, Southwest China

    Science.gov (United States)

    Zhou, Wen-Jun; Zhang, Yi-Ping; Schaefer, Douglas A.; Sha, Li-Qing; Deng, Yun; Deng, Xiao-Bao; Dai, Kai-Jie

    2013-01-01

    A two-year study (2009 ∼ 2010) was carried out to investigate the dynamics of different carbon (C) forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN), southwest China. The seasonal volumetric weighted mean (VWM) concentrations of total inorganic C (TIC) and dissolved inorganic C (DIC) were higher, and particulate inorganic C (PIC) and organic C (POC) were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC) and dissolved organic C (DOC) were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT), only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC) export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha−1 yr−1, about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest. PMID:23437195

  13. The role of stream water carbon dynamics and export in the carbon balance of a tropical seasonal rainforest, southwest China.

    Directory of Open Access Journals (Sweden)

    Wen-Jun Zhou

    Full Text Available A two-year study (2009 ~ 2010 was carried out to investigate the dynamics of different carbon (C forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN, southwest China. The seasonal volumetric weighted mean (VWM concentrations of total inorganic C (TIC and dissolved inorganic C (DIC were higher, and particulate inorganic C (PIC and organic C (POC were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC and dissolved organic C (DOC were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT, only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha(-1 yr(-1, about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest.

  14. Evaluation of consequence due to higher hydrazine content in partitioning stream of PUREX process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. Suresh [Bhabha Atomic Research Centre, Mumbai (India). Special Nuclear Recycle Facility

    2016-07-01

    Hydrazine nitrate is being used as a stabilizer for U(IV) as well as Pu(III) during partitioning of Pu in PUREX process by scavenging the nitrous acid present along with nitric acid. As hydrazine hydrate as well as its salts have been successfully used for scrubbing of degradation products of TBP to aqueous phase, experiments were conducted to evaluate the consequence of hydrazine content during Pu partitioning. It was observed that higher amount of hydrazine nitrate along with uranous nitrate in the partitioning stream of PUREX process leads to build up of DBP in aqueous phase and resulted in precipitation of Pu.

  15. The chemistry, waste form development, and properties of the Nitrate to Ammonia and Ceramic (NAC) process

    International Nuclear Information System (INIS)

    Mattus, A.J.; Lee, D.D.; Youngblood, E.L.; Walker, J.F. Jr.; Tiegs, T.N.

    1994-01-01

    A process for the conversion of alkaline, aqueous nitrate wastes to ammonia gas at low temperature, based upon the use of the active metal reductant aluminum, has been developed at the Oak Ridge National Laboratory (ORNL). The process is also well suited for the removal of low-level waste (LLW) radioelements and hazardous metals which report to the solid, alumina-based by-product. ne chemistry of the interaction of aluminum powders with nitrate, and other waste stream metals is presented

  16. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L.; Bovi, D.; Guidoni, L.

    2016-01-01

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm −1 ), where the vibrational motions involve the NH 3 + group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm −1 where the antisymmetric stretching mode (ν 3 ) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D 3h symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.

  17. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L., E-mail: lorenzo.gontrani@uniroma1.it [Dipartimento di Chimica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Bovi, D. [Dipartimento di Fisica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Guidoni, L. [Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, I-67100 L’Aquila (Italy)

    2016-07-14

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm{sup −1}), where the vibrational motions involve the NH{sub 3}+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm{sup −1} where the antisymmetric stretching mode (ν{sub 3}) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D{sub 3h} symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.

  18. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition

    Science.gov (United States)

    Sabo, Robert D.; Scanga, Sara E.; Lawrence, Gregory B.; Nelson, David M.; Eshleman, Keith N.; Zabala, Gabriel A.; Alinea, Alexandria A.; Schirmer, Charles D.

    2016-01-01

    Recent reports suggest that decreases in atmospheric nitrogen (N) deposition throughout Europe and North America may have resulted in declining nitrate export in surface waters in recent decades, yet it is unknown if and how terrestrial N cycling was affected. During a period of decreased atmospheric N deposition, we assessed changes in forest N cycling by evaluating trends in tree-ring δ15N values (between 1980 and 2010; n = 20 trees per watershed), stream nitrate yields (between 2000 and 2011), and retention of atmospherically-deposited N (between 2000 and 2011) in the North and South Tributaries (North and South, respectively) of Buck Creek in the Adirondack Mountains, USA. We hypothesized that tree-ring δ15N values would decline following decreases in atmospheric N deposition (after approximately 1995), and that trends in stream nitrate export and retention of atmospherically deposited N would mirror changes in tree-ring δ15N values. Three of the six sampled tree species and the majority of individual trees showed declining linear trends in δ15N for the period 1980–2010; only two individual trees showed increasing trends in δ15N values. From 1980 to 2010, trees in the watersheds of both tributaries displayed long-term declines in tree-ring δ15N values at the watershed scale (R = −0.35 and p = 0.001 in the North and R = −0.37 and p <0.001 in the South). The decreasing δ15N trend in the North was associated with declining stream nitrate concentrations (−0.009 mg N L−1 yr−1, p = 0.02), but no change in the retention of atmospherically deposited N was observed. In contrast, nitrate yields in the South did not exhibit a trend, and the watershed became less retentive of atmospherically deposited N (−7.3% yr−1, p < 0.001). Our δ15N results indicate a change in terrestrial N availability in both watersheds prior to decreases in atmospheric N deposition, suggesting that decreased atmospheric N deposition was not the sole driver of

  19. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    Science.gov (United States)

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate

  20. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  1. DOC:NO3- ratios and NO3- uptake in forested headwater streams

    Science.gov (United States)

    Rodríguez-Cardona, Bianca; Wymore, Adam S.; McDowell, William H.

    2016-01-01

    The underlying mechanisms driving the coupled interactions between inorganic nitrogen uptake and dissolved organic matter are not well understood, particularly in surface waters. To determine the relationship between dissolved organic carbon (DOC) quantity and nitrate (NO3-) uptake kinetics in streams, we performed a series of NO3- Tracer Additions for Spiraling Curve Characterization experiments in four streams within the Lamprey River Watershed, New Hampshire, across a range in background DOC concentrations (1-8 mg C/L). Experiments were performed throughout the 2013 and 2014 growing seasons. Across streams and experimental dates, ambient uptake velocity (Vf) correlated positively with increasing DOC concentrations and DOC:NO3- ratios but was only weakly negatively associated with NO3- concentrations. Ambient NO3- Vf was unrelated to pH, light, temperature, dissolved oxygen, and Specific Ultraviolet Absorbance at 254 nm. Although there were general tendencies across the entire Lamprey River Watershed, individual sites behaved differently in their uptake kinetics. NO3- uptake dynamics in the Lamprey River Watershed are most strongly influenced by DOC concentrations rather than NO3- concentrations or physicochemical parameters, which have been identified as regional- to continental-scale drivers in previous research. Understanding the fundamental relationships between dissolved organic matter and inorganic nutrients will be important as global and climatic changes influence the delivery and production of DOC and NO3- in aquatic ecosystems.

  2. Supporting Dynamic Adaptive Streaming over HTTP in Wireless Meshed Networks using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...

  3. The dynamics of fish populations in the Palancar stream,a small tributary of the river Guadalquivir, Spain

    Science.gov (United States)

    Bravo, Ramón; Soriguer, Mila C.; Villar, Noelia; Hernando, José A.

    2001-02-01

    The relationship between flooding and changes in the size distribution of fish populations in the Palancar stream confirms observations in other rivers. On average, density decreased by 36.2 % and biomass increased by 14.5 %, passing from a period of severe drought to one of heavier than normal rains. Precipitation is the most important of the many factors affecting the populations of the Palancar stream; the most evident changes all occurred after the drought. During the drought period, the marked seasonal fluctuation in flow was the most important factor regulating the population dynamics. Fish density and biomass varied in proportion to the water volume. During the rainy period, the studied section of the river was found to be an important reproduction and nursery area, with juveniles and individuals of reproduction age dominating. The presence of Micropterus salmoides, an introduced piscivorous species, is another factor affecting the population dynamics in the Palancar stream. The observed absence of age 0+ individuals of the dominant populations is considered a direct effect of predation.

  4. Contribution of wetlands to nitrate removal at the watershed scale

    Science.gov (United States)

    Hansen, Amy T.; Dolph, Christine L.; Foufoula-Georgiou, Efi; Finlay, Jacques C.

    2018-02-01

    Intensively managed row crop agriculture has fundamentally changed Earth surface processes within the Mississippi River basin through large-scale alterations of land cover, hydrology and reactive nitrogen availability. These changes have created leaky landscapes where excess agriculturally derived nitrate degrades riverine water quality at local, regional and continental scales. Individually, wetlands are known to remove nitrate but the conditions under which multiple wetlands meaningfully reduce riverine nitrate concentration have not been established. Only one region of the Mississippi River basin—the 44,000 km2 Minnesota River basin—still contains enough wetland cover within its intensively agriculturally managed watersheds to empirically address this question. Here we combine high-resolution land cover data for the Minnesota River basin with spatially extensive repeat water sampling data. By clearly isolating the effect of wetlands from crop cover, we show that, under moderate-high streamflow, wetlands are five times more efficient per unit area at reducing riverine nitrate concentration than the most effective land-based nitrogen mitigation strategies, which include cover crops and land retirement. Our results suggest that wetland restorations that account for the effects of spatial position in stream networks could provide a much greater benefit to water quality then previously assumed.

  5. Scrubbing of iodine from gas streams with mercuric nitrate-conversion of mercuric iodate product to barium iodate for fixation in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.C.; Moore, J.G.; Morgan, M.T.

    1980-06-01

    A bench-scale model of a mercuric nitrate scrubber for removal of iodine from off-gas streams was constructed and operated in conjunction with a mercuric iodate-to-barium iodate conversion system to determine the feasibility of total recycle of all processing solutions. The two main aspects of the system examined were (1) the extent of contamination of the barium iodate product, and (2) the effect of cross-contamination of various process solutions on the efficiency of the process. The experimental evidence obtained indicates that, with appropriate control, all solutions can be recycled without significant contamination of the product that would be harmful to the host concrete or to the environment. Mercury contamination was found to be less than or equal to 0.5 wt % of the barium iodate product. The most significant effect on system efficiency was determined to be barium hydroxide contamination of the sodium hydroxide solution used to convert mercuric iodate to sodium iodate. A mole ratio of barium hydroxide to sodium hydroxide of about 1:225 caused a decrease in conversion efficiency of about 45%.

  6. Summary Report of Comprehensive Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively) at Los Alamos National Laboratory (LANL). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of adding zeolite currently planned for implementation at LANL’s Waste Characterization, Reduction, and Repackaging Facility (WCRRF). The course of this work verified the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that WypAlls, cheesecloth, and Celotex absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). Sensitivity testing and an analysis were conducted to evaluate the waste form for reactivity. Tests included subjecting surrogate material to mechanical impact, friction, electrostatic discharge and thermal insults. The testing confirmed that the waste does not exhibit the characteristic of

  7. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    Science.gov (United States)

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  8. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Liu, Zhanfei; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Yu, Chendi; Wang, Rong; Jiang, Xiaofen

    2016-01-01

    Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium, remains unexplored in these habitats. Here, we use isotope-tracing and molecular approaches simultaneously to show that both nitrate-reduction activities and associated functional bacterial abundances are enhanced at the sediment-tidal water interface and at the tide-induced groundwater fluctuating layer. This pattern suggests that tidal pumping may sustain dissimilatory nitrate reduction in intertidal zones. The tidal effect is supported further by nutrient profiles, fluctuations in nitrogen components over flood-ebb tidal cycles, and tidal simulation experiments. This study demonstrates the importance of tides in regulating the dynamics of dissimilatory nitrate-reducing pathways and thus provides new insights into the biogeochemical cycles of nitrogen and other elements in intertidal marshes. PMID:26883983

  9. Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations

    Energy Technology Data Exchange (ETDEWEB)

    Bradac, Philippe [Eawag, Swiss Federal Institute of Aquatic Science and Technology, P.O. Box 611, CH-8600 Duebendorf (Switzerland); ETH, Swiss Federal Institute of Technology, Department of Environmental Sciences, CH-8092 Zurich (Switzerland); Wagner, Bettina; Kistler, David; Traber, Jacqueline; Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Sigg, Laura, E-mail: laura.sigg@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, P.O. Box 611, CH-8600 Duebendorf (Switzerland); ETH, Swiss Federal Institute of Technology, Department of Environmental Sciences, CH-8092 Zurich (Switzerland)

    2010-03-15

    Accumulation of cadmium in periphyton was investigated under field conditions while Cd concentration and speciation were dynamically varying in a small stream during rain events. Speciation in water was determined in situ by diffusion gradient in thin-films (DGT) and by modeling of complexation with fulvic acids. During the rain events, dissolved Cd concentrations increased from 0.17 nM to 0.27-0.36 nM, and 70-97% were DGT-labile. Cd content in periphyton closely followed Cd concentrations in water, despite higher concentrations of Zn and Mn, and may be controlled by either free or DGT-labile Cd concentrations. Decrease of Cd content in periphyton after the rain events was slower than the decrease of Cd concentration in water. Concentrations of Zn, Mn, Cu, Pb and Fe in periphyton also followed the dynamic variations of metal concentrations in water. Repeated exposure of periphyton to elevated dissolved Cd may lead to Cd accumulation. - Cadmium accumulation in periphyton was examined in a small stream during rain events in relation to Cd speciation.

  10. Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations

    International Nuclear Information System (INIS)

    Bradac, Philippe; Wagner, Bettina; Kistler, David; Traber, Jacqueline; Behra, Renata; Sigg, Laura

    2010-01-01

    Accumulation of cadmium in periphyton was investigated under field conditions while Cd concentration and speciation were dynamically varying in a small stream during rain events. Speciation in water was determined in situ by diffusion gradient in thin-films (DGT) and by modeling of complexation with fulvic acids. During the rain events, dissolved Cd concentrations increased from 0.17 nM to 0.27-0.36 nM, and 70-97% were DGT-labile. Cd content in periphyton closely followed Cd concentrations in water, despite higher concentrations of Zn and Mn, and may be controlled by either free or DGT-labile Cd concentrations. Decrease of Cd content in periphyton after the rain events was slower than the decrease of Cd concentration in water. Concentrations of Zn, Mn, Cu, Pb and Fe in periphyton also followed the dynamic variations of metal concentrations in water. Repeated exposure of periphyton to elevated dissolved Cd may lead to Cd accumulation. - Cadmium accumulation in periphyton was examined in a small stream during rain events in relation to Cd speciation.

  11. Long-term patterns and short-term dynamics of stream solutes and suspended sediment in a rapidly weathering tropical watershed

    Science.gov (United States)

    Shanley, James B.; McDowell, William H.; Stallard, Robert F.

    2011-07-01

    The 326 ha Río Icacos watershed in the tropical wet forest of the Luquillo Mountains, northeastern Puerto Rico, is underlain by granodiorite bedrock with weathering rates among the highest in the world. We pooled stream chemistry and total suspended sediment (TSS) data sets from three discrete periods: 1983-1987, 1991-1997, and 2000-2008. During this period three major hurricanes crossed the site: Hugo in 1989, Hortense in 1996, and Georges in 1998. Stream chemistry reflects sea salt inputs (Na, Cl, and SO4), and high weathering rates of the granodiorite (Ca, Mg, Si, and alkalinity). During rainfall, stream composition shifts toward that of precipitation, diluting 90% or more in the largest storms, but maintains a biogeochemical watershed signal marked by elevated K and dissolved organic carbon (DOC) concentration. DOC exhibits an unusual "boomerang" pattern, initially increasing with flow but then decreasing at the highest flows as it becomes depleted and/or vigorous overland flow minimizes contact with watershed surfaces. TSS increased markedly with discharge (power function slope 1.54), reflecting the erosive power of large storms in a landslide-prone landscape. The relations of TSS and most solute concentrations with stream discharge were stable through time, suggesting minimal long-term effects from repeated hurricane disturbance. Nitrate concentration, however, increased about threefold in response to hurricanes then returned to baseline over several years following a pseudo first-order decay pattern. The combined data sets provide insight about important hydrologic pathways, a long-term perspective to assess response to hurricanes, and a framework to evaluate future climate change in tropical ecosystems.

  12. Riparian zone hydrology and biogeochemistry as a function of stream evolution stage in glaciated landscapes of the US Northeast

    Science.gov (United States)

    Rook, S. P.; Vidon, P.; Walter, M. T.

    2011-12-01

    The management of riparian buffer strips is often regarded as one of the most economical and sustainable methods of managing non-point source pollution and water quality. However, current riparian management often follows a 'one size fits all' design, which fails to recognize the complexity of the many biogeochemical processes that regulate pollutant transformation and retention in these systems. This study addresses two critical gaps in knowledge: (1) How carbon, nitrogen, phosphorous, and iron cycles interact with one another (rather than individually). (2) How stream channel geometry and evolution regulate these nutrient cycles and greenhouse gas (GHG) dynamics in the near stream zone. This project specifically explores the hydrological and biogeochemical functioning of riparian zones across a gradient of stream meander evolution stages, with the primary goal of understanding and predicting potential interactions between nutrient dynamics in these systems. Key research questions include: (1) How does stream meander curvature affect riparian zone hydrology? (2) How does stream meander curvature influence riparian zone biogeochemistry? (3) What relationships exist among N, P, Fe, and GHG dynamics? We instrumented three riparian sites near Ithaca, NY, with a dense network of wells, piezometers, and static chambers. These sites represent three riparian zones along three evolution stages of stream meanders: an inner meander, a straight stream section, and an outer bend of the stream with an oxbow lake formation. In spring through fall 2011, water samples and gas samples were collected at a tri-weekly bases at each of the three sites. Water samples were analyzed for oxidation-reduction potential, dissolved oxygen, temperature, FeII/FeIII, nutrients (NO3-, NH4+, PO43-) and dissolved organic carbon (DOC). GHG fluxes at the soil-atmosphere interface were measured for N2O, CO2, and CH4 gases. We predict that stream curvature will significantly affect groundwater flow

  13. Density and electrical conductivity of molten salts. Comparative study of binary mixtures of alkali nitrates with silver nitrate and with thallium nitrate; Densite et conductibilite de sels fondus. Etude comparative des melanges binaires nitrates alcalins-nitrate d'argent et nitrates alcalins-nitrate de thallium

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, S [Commissariat a l' Energie Atomique Saclay (France). Centre d' Etudes Nucleaires

    1967-10-01

    The choice of methods and the number of measurements made enable us to give results on the density and electrical conductivity of molten binary mixtures, alkali nitrate and silver nitrate, and alkali nitrate and thallium nitrate, in the form of equations. The deviations from linearity of the volume and the molar conductivity are determined by calculating the corresponding excess values whose variations are analyzed as a function of the Tobolsky parameter. The absence of any relationship in the sign of the entropy and the excess volume is justified. It is shown that the silver and thallium nitrates, in contrast to the thermodynamic properties, behave as the alkali nitrates in so far as the excess conductivity is concerned. This result is confirmed by the study of changes in the activation enthalpy for the partial molar conductivity; this study also shows the particular behaviour of lithium nitrate. (author) [French] Le choix des methodes et le nombre de mesures effectuees nous permettent de donner les resultats de densite et de conductibilite electrique des melanges fondus binaires nitrate alcalin-nitrate d'argent et nitrate alcalin-nitrate de thallium sous forme d'equations. Les ecarts a la linearite des isothermes de volume et de conductibilite molaire sont precises en calculant les grandeurs d'exces correspondantes dont les variations sont analysees en fonction du parametre de Tobolsky. Nous justifions l'absence de relation de signe entre l'entropie et le volume d'exces. Nous montrons que les nitrates d'argent et de thallium, vis-a-vis de la conductibilite d'exces, contrairement aux proprietes thermodynamiques, se conduisent comme les nitrates alcalins. Ce resultat est confirme par l'etude des variations des enthalpies d'activation de conductibilite partielle molaire qui met d'autre part en evidence le comportement particulier du nitrate de lithium. (auteur)

  14. Sensitivity Sampling Over Dynamic Geometric Data Streams with Applications to $k$-Clustering

    OpenAIRE

    Song, Zhao; Yang, Lin F.; Zhong, Peilin

    2018-01-01

    Sensitivity based sampling is crucial for constructing nearly-optimal coreset for $k$-means / median clustering. In this paper, we provide a novel data structure that enables sensitivity sampling over a dynamic data stream, where points from a high dimensional discrete Euclidean space can be either inserted or deleted. Based on this data structure, we provide a one-pass coreset construction for $k$-means %and M-estimator clustering using space $\\widetilde{O}(k\\mathrm{poly}(d))$ over $d$-dimen...

  15. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  16. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G. C.; Pickworth, L.; De Grouchy, P.; Skidmore, J.; Khoory, E.; Suttle, L.; Bennett, M.; Hare, J. D.; Clayson, T.; Bland, S. N.; Smith, R. A.; Stuart, N. H.; Patankar, S.; Robinson, T. S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); and others

    2016-05-15

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.

  17. Methods and Sources of Data Used to Develop Selected Water-Quality Indicators for Streams and Ground Water for EPA's 2007 Report on the Environment: Science Report

    Science.gov (United States)

    Baker, Nancy T.; Wilson, John T.; Moran, Michael J.

    2008-01-01

    The U.S. Geological Survey (USGS) was one of numerous governmental agencies, private organizations, and the academic community that provided data and interpretations for the U.S. Environmental Protection Agency?s (USEPA) 2007 Report on the Environment: Science Report. This report documents the sources of data and methods used to develop selected water?quality indicators for the 2007 edition of the report compiled by USEPA. Stream and ground?water?quality data collected nationally in a consistent manner as part of the USGS?s National Water?Quality Assessment Program (NAWQA) were provided for several water?quality indicators, including Nitrogen and Phosphorus in Streams in Agricultural Watersheds; Pesticides in Streams in Agricultural Watersheds; and Nitrate and Pesticides in Shallow Ground Water in Agricultural Watersheds. In addition, the USGS provided nitrate (nitrate plus nitrite) and phosphorus riverine load estimates calculated from water?quality and streamflow data collected as part of its National Stream Water Quality Accounting Network (NASQAN) and its Federal?State Cooperative Program for the Nitrogen and Phosphorus Discharge from Large Rivers indicator.

  18. River-groundwater connectivity and nutrient dynamics in a mesoscale catchment

    Science.gov (United States)

    Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico

    2017-04-01

    Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest

  19. Modelling the Emergence and Dynamics of Perceptual Organisation in Auditory Streaming

    Science.gov (United States)

    Mill, Robert W.; Bőhm, Tamás M.; Bendixen, Alexandra; Winkler, István; Denham, Susan L.

    2013-01-01

    dynamics of human perception in auditory streaming. PMID:23516340

  20. Nitrate in Polluted Mountainous Catchments with Mediterranean Climates

    Directory of Open Access Journals (Sweden)

    Thomas Meixner

    2001-01-01

    Full Text Available The mountains of southern California receive some of the highest rates of nitrogen (N deposition in the world (~40 kg ha�1 year�1. These high rates of deposition have translated into consistently high levels of nitrate (NO3� in some streams of the San Bernardino Mountains. However, not all streams are exhibiting these high levels of NO3�. Perennial streams have high NO3� concentrations (~200 [b.mu ]moles l�1 while ephemeral streams do not (~20 [b.mu ]moles l�1. This difference points to groundwater as the source of the NO3� observed in streams. Furthermore, the evidence indicates a differential impact of N deposition on terrestrial and aquatic systems in Mediterranean climates, with aquatic systems being impacted more quickly. The primary reason for this difference involves the asynchrony between the time that atmospheric deposition occurs (summer, the time period of maximum soil NO3� availability and leaching (winter, and the time of maximum plant N demand (spring. Our results indicate that semiarid Mediterranean climate systems behave differently from more humid systems in that, because of this asynchrony, aquatic systems may not be indicative of changes in terrestrial ecosystem response. These differences lead us to the conclusion that the extrapolation of impacts from humid to Mediterranean climates is problematic and the concept of N saturation may need to be revisited for semiarid and seasonally dry systems.

  1. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  2. Seasonal variations in the nitrogen isotope composition of Okinotori coral in the tropical western Pacific: A new proxy for marine nitrate dynamics

    Science.gov (United States)

    Yamazaki, Atsuko; Watanabe, Tsuyoshi; Ogawa, Nanako O.; Ohkouchi, Naohiko; Shirai, Kotaro; Toratani, Mitsuhiro; Uematsu, Mitsuo

    2011-12-01

    To demonstrate the utility of coral skeletons as a recorder of nitrate dynamics in the surface ocean, we collected coral skeletons of Porites lobata and determined their nitrogen isotope composition (δ15Ncoral) from 2002 to 2006. Skeletons were collected at Okinotori Island in southwestern Japan, far from any sources of terrestrial nitrogen. Nitrogen isotope compositions along the growth direction were determined at 800 μm intervals (˜1 month resolution) and compared against the skeletal carbon isotope composition (δ13Ccoral-carb), barium/calcium ratio (Ba/Ca), and Chlorophyll-a concentration (Chl-a). From 2002 to 2004, ratios of the δ15Ncoral varied between +0.8 and +8.3‰ with inverse variation to SST (r = -0.53). Ba/Ca ratios and Chl-a concentrations were also observed to be high during seasons with low SST. These results suggested that the vertical mixing that occurs during periods of low SST carries nutrients from deeper water (δ15NDIN; +5˜+6‰) to the sea surface. In 2005 onward, δ15Ncoral and Ba/Ca ratios also had positive peaks even in high SST during periods of transient upwelling caused by frequent large typhoons (maximum wind speed 30 m/s). In addition, low δ15Ncoral (+0.8˜+2.0‰) four months after the last typhoon implied nitrogen fixation because of the lack of typhoon upwelling through the four years record of δ15Ncoral. Variations in the δ13Ccoral-carb and δ15Ncoral were synchronized, suggesting that nitrate concentration could control zooxanthellae photosynthesis. Our results suggested that δ15Ncoral holds promise as a proxy for reconstructing the transport dynamics of marine nitrate and thus also a tool for estimating nitrate origins in the tropical and subtropical oceans.

  3. Seasonal patterns in nutrients, carbon, and algal responses in wadeable streams within three geographically distinct areas of the United States, 2007-08

    Science.gov (United States)

    Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.

    2012-01-01

    The U.S. Geological Survey determined seasonal variability in nutrients, carbon, and algal biomass in 22 wadeable streams over a 1-year period during 2007 or 2008 within three geographically distinct areas in the United States. The three areas are the Upper Mississippi River Basin (UMIS) in Minnesota, the Ozark Plateaus (ORZK) in southern Missouri and northern Arkansas, and the Upper Snake River Basin (USNK) in southern Idaho. Seasonal patterns in some constituent concentrations and algal responses were distinct. Nitrate concentrations were greatest during the winter in all study areas potentially because of a reduction in denitrification rates and algal uptake during the winter, along with reduced surface runoff. Decreases in nitrate concentrations during the spring and summer at most stream sites coincided with increased streamflow during the snowmelt runoff or spring storms indicating dilution. The continued decrease in nitrate concentrations during summer potentially is because of a reduction in nitrate inputs (from decreased surface runoff) or increases in biological uptake. In contrast to nitrate concentrations, ammonia concentrations varied among study areas. Ammonia concentration trends were similar at UMIS and USNK sampling sites with winter peak concentrations and rapid decreases in ammonia concentrations by spring or early summer. In contrast, ammonia concentrations at OZRK sampling sites were more variable with peak concentrations later in the year. Ammonia may accumulate in stream water in the winter under ice and snow cover at the UMIS and USNK sites because of limited algal metabolism and increased mineralization of decaying organic matter under reducing conditions within stream bottom sediments. Phosphorus concentration patterns and the type of phosphorus present changes with changing hydrologic conditions and seasons and varied among study areas. Orthophosphate concentrations tended to be greater in the summer at UMIS sites, whereas total

  4. The systems lanthanum (cerium, samarium) nitrate-tetramethyl-ammonium nitrate-water

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Semenova, Eh.B.

    1984-01-01

    The method of cross sections at 25 and 50 deg C has been applied to study solubility in the systems lanthanum nitrate-tetramethyl ammonium nitrate-water (1), cesium (3) nitrate-tetramethyl ammonium nitrate-water (2) and samarium nitrate-tetramethyl ammonium nitrate-water (3). Crystallization fields of congruently dissolving compounds with 1:3 ratio of salt components (in system 1) and 1:2 ratio (in systems 2 and 3) are found in the systems. New solid phases are separated preparatively and subjected to chemical, differential thermal and IR spectroscopic analyses. Compositions of formed compounds are compared with the compositions known for nitrates of other representatives of light lanthanides

  5. Clearcutting affects stream chemistry in the White Mountains of New Hampshire

    Science.gov (United States)

    C. Wayne Martin; Robert S. Pierce; Gene E. Likens; F. Herbert Bormann; F. Herbert Bormann

    1986-01-01

    Commercial clearcutting of northern hardwood forests changed the chemistry of the streams that drained from them. By the second year after cutting, specific conductance doubled, nitrate increased tenfold, calcium tripled, and sodium, magnesium, and potassium doubled. Chloride and ammonium did not change; sulfate decreased. Concentrations of most ions returned to...

  6. Recycle and biodestruction of hazardous nitrate wastes

    International Nuclear Information System (INIS)

    Napier, J.M.; Kosinski, F.E.

    1987-01-01

    The US Department of Energy (DOE) owns the Oak Ridge Y-12 Plant located in Oak Ridge, Tennessee. The plant is operated for DOE by Martin Marietta Energy Systems, Inc. One of the plant's functions involves the purification and recycling of uranium wastes. The uranium recycle operation uses nitric acid in a solvent extraction purification process, and a waste stream containing nitric acid and other impurities is generated. Before 1976 the wastes were discarded into four unlined percolation ponds. In 1976, processes were developed and installed to recycle 50% of the wastes and to biologically decompose the rest of the nitrates. In 1983 process development studies began for in situ treatment of the four percolation ponds, and the ponds were treated and discharged by May 1986. The treatment processes involved neutralization and precipitation to remove metallic impurities, followed by anaerobic denitrification to reduce the 40,000 ug/g nitrate concentration to less than 50 ug/g. The final steps included flocculation and filtration. Approximately 10 million gallons of water in the ponds were treated and discharged

  7. Selective Nitrate Recognition by a Halogen‐Bonding Four‐Station [3]Rotaxane Molecular Shuttle

    Science.gov (United States)

    Barendt, Timothy A.; Docker, Andrew; Marques, Igor; Félix, Vítor

    2016-01-01

    Abstract The synthesis of the first halogen bonding [3]rotaxane host system containing a bis‐iodo triazolium‐bis‐naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo‐triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion–rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the 1H NMR anion binding results. PMID:27436297

  8. The ytterbium nitrate-quinoline (piperidine) nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.; Zhuravlev, E.F.

    1985-01-01

    Using the method of cross sections the solubility of solid phases in the ytterbium nitrate-quinoline nitrate - water (1) and ytterbium nitrate-piperidine nitrate-water (2) systems is studied at 25 and 50 deg C. It is established, that in system 1 congruently melting compound of the composition Yb(NO 3 ) 3 x2C 9 H 7 NxHNO 3 x3H 2 O is formed. The new solid phase has been isolated as a preparation and subjected to chemical X-ray diffraction, differential thermal and IR spectroscopic analyses. Isotherms of system 2 in the studied range of concentrations and temperatures consist of two branches, corresponding to crystallization of tetruaqueous ytterbi um nitrate and nitric acid piperidine

  9. Assessing environmental impacts on stream water quality: the use of cumulative flux and cumulative flux difference approaches to deforestation of the Hafren Forest, mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A method for examining the impacts of disturbance on stream water quality based on paired catchment “controlâ€? and “responseâ€? water quality time series is described in relation to diagrams of cumulative flux and cumulative flux difference. The paper describes the equations used and illustrates the patterns expected for idealised flux changes followed by an application to stream water quality data for a spruce forested catchment, the Hore, subjected to clear fell. The water quality determinands examined are sodium, chloride, nitrate, calcium and acid neutralisation capacity. The anticipated effects of felling are shown in relation to reduction in mist capture and nitrate release with felling as well as to the influence of weathering and cation exchange mechanisms, but in a much clearer way than observed previously using other approaches. Keywords: Plynlimon, stream, Hore, acid neutralisation capacity, calcium, chloride, nitrate, sodium, cumulative flux, flux

  10. Electrochemical processing of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

  11. Lanthanum (samarium) nitrate-4-aminoantipyrine nitrate-water systems

    International Nuclear Information System (INIS)

    Starikova, L.I.; Zhuravlev, E.F.

    1985-01-01

    Using the isothermal method of cross-sections at 50 deg C systems lanthanum nitrate-4-aminoantipyrine nitrate-water (1), samarium nitrate-4-aminoantipyrine nitrate-water (2), are studied. Isotherms of system 1 consist of two crystallization branches of initial salt components. In system 2 formation of congruently soluble compounds of the composition Sm(No) 3 ) 3 xC 11 H 13 ON 3 xHNO 3 is established. Analytical, X-ray phase and thermogravimetric analysis of the isolated binary salt are carried out

  12. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  13. Neodymium nitrate-tetraethylammonium nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.

    1987-01-01

    Method of isothermal cross sections at 25 and 50 deg C is used to study solid phase solubility in the neodymium nitrate-tetraethylammonium nitrate-water system. Crystallization fields of congruently soluble compounds, the salt component ratio being 1:1:4H 2 O and 1:3:2H 2 O are detected. New solid phases are preparatively obtained and subjected to chemical, differential thermal, IR spectroscopic and X-ray diffraction analyses. The obtained compounds are acido-complexes in which nitrate groups enter into the first coordination sphere

  14. Combining Empirical Relationships with Data Based Mechanistic Modeling to Inform Solute Tracer Investigations across Stream Orders

    Science.gov (United States)

    Herrington, C.; Gonzalez-Pinzon, R.; Covino, T. P.; Mortensen, J.

    2015-12-01

    Solute transport studies in streams and rivers often begin with the introduction of conservative and reactive tracers into the water column. Information on the transport of these substances is then captured within tracer breakthrough curves (BTCs) and used to estimate, for instance, travel times and dissolved nutrient and carbon dynamics. Traditionally, these investigations have been limited to systems with small discharges (turbidity (e.g., nitrate signals with SUNA instruments or fluorescence measures) and/or high total dissolved solids (e.g., making prohibitively expensive the use of salt tracers such as NaCl) in larger systems. Additionally, a successful time-of-travel study is valuable for only a single discharge and river stage. We have developed a method to predict tracer BTCs to inform sampling frequencies at small and large stream orders using empirical relationships developed from multiple tracer injections spanning several orders of magnitude in discharge and reach length. This method was successfully tested in 1st to 8th order systems along the Middle Rio Grande River Basin in New Mexico, USA.

  15. On the analysis of mercuric nitrate in flue gas by GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Edwin S.; Sharma, Ramesh K.; Pavlish, John H. [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND 58202 (United States)

    2002-11-01

    Recent research has demonstrated that in a simulated flue gas stream containing NO{sub 2} and SO{sub 2} elemental mercury is initially captured on a carbon or manganese oxide sorbent. After approximately an hour, however, mercury breaks through relatively rapidly, and the volatile form of mercury emitted is an oxidized species. The volatile mercury species emitted from a granular MnO{sub 2} sorbent was trapped in an impinger containing cold acetonitrile. Subsequent evaporation of 95% of the acetonitrile in a Kuderna-Danish apparatus and gas chromatography (GC) of the concentrate resulted in a single mercury-containing GC peak at 5.5 min; the retention time and mass spectrum of this compound matched exactly those of a standard mercury(II) nitrate hydrate, Hg(NO{sub 3}){sub 2}.H{sub 2}O dissolved in acetonitrile. The volatile mercury component analyzed from injection of this standard solution was shown to be a form of methylmercury that is produced in the GC column by reaction of the highly reactive mercury nitrate with the methylsiloxane GC phase. Because the on-column derivatization reaction seems to be unique to mercury nitrate, the GC-MS (gas chromatography-mass spectroscopic) analysis provides strong evidence for identification of the trapped oxidized mercury species as mercury nitrate although, because the nitrate becomes detached from the mercury atom in the on-column reaction, the identity is not proven. (orig.)

  16. [The effect of nitrates on the outcome of acute experimental ischemic stroke].

    Science.gov (United States)

    Kuzenkov, V S; Krushinskiĭ, A L; Reutov, V P

    2012-01-01

    Effects of nitrates NaNO(3), KNO(3), Mg(NO(3)) 2 on animals (Wistar rats) were studied on the basis of the experimental model of ischemic stroke induced by the occlusion of two carotid arteries. The animals were divided into two groups: the main group (n=60) and the control group (n=30). Three series of experiments were conducted. In each experiment, the rats of the main group were treated with one of nitrates and the control group was treated with physiological solution. It has been shown that nitrates exert either positive or negative effect depending on the cation type, nitrate concentration and the duration of their action on the dynamics of neurologic disturbances. Conditions of the development of neuroprotective effect of nitrates are discussed.

  17. Ambient groundwater flow diminishes nitrogen cycling in streams

    Science.gov (United States)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  18. ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    I Made Oka Widyantara

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG-DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  19. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    Science.gov (United States)

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  20. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.

    Science.gov (United States)

    Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N

    2005-05-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  1. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    Science.gov (United States)

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-05

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Water Quality in Tortum Stream and its Tributaries (Erzurum/Turkey

    Directory of Open Access Journals (Sweden)

    Mine KÖKTÜRK

    2015-04-01

    Full Text Available This study was undertaken with the aim of determining the effects of domestic waste and hydroelectric dams on water quality in the Tortum Stream and its tributaries. Water samples were taken monthly from nine sampling points of Tortum Stream and its tributaries between July 2012 and May 2013. Analyzed for temperature (°C, pH, dissolved oxygen (DO, total suspended solids (TSS, alkalinity, Ca, total hardness, sulfate (SO4, ammonia-nitrogen (N-NH3−, nitrite-nitrogen (N-NO2− and nitrate nitrogen (N-NO3− as well as total phosphorus (TP, total orthophosphate (TO, total iron and silica (SiO2 were carried out. Physical and chemical characteristics of Tortum Stream and its tributaries which were examined according to the Water Framework Directive and the Water Pollution Control Regulations. It can be said that the stream has a low water quality standard except for water temperature, dissolved oxygen and sulfate. The results showed that Tortum Stream and tributaries are under threat because of domestic waste, fertilizers and hydroelectric constructions.

  3. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    Science.gov (United States)

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present Stream

  4. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008

    Science.gov (United States)

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.

    2013-01-01

    Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater

  5. Impact of sampling strategy on stream load estimates in till landscape of the Midwest

    Science.gov (United States)

    Vidon, P.; Hubbard, L.E.; Soyeux, E.

    2009-01-01

    Accurately estimating various solute loads in streams during storms is critical to accurately determine maximum daily loads for regulatory purposes. This study investigates the impact of sampling strategy on solute load estimates in streams in the US Midwest. Three different solute types (nitrate, magnesium, and dissolved organic carbon (DOC)) and three sampling strategies are assessed. Regardless of the method, the average error on nitrate loads is higher than for magnesium or DOC loads, and all three methods generally underestimate DOC loads and overestimate magnesium loads. Increasing sampling frequency only slightly improves the accuracy of solute load estimates but generally improves the precision of load calculations. This type of investigation is critical for water management and environmental assessment so error on solute load calculations can be taken into account by landscape managers, and sampling strategies optimized as a function of monitoring objectives. ?? 2008 Springer Science+Business Media B.V.

  6. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    Science.gov (United States)

    Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  7. Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate

    Science.gov (United States)

    Zentel, Tobias; Overbeck, Viviane; Michalik, Dirk; Kühn, Oliver; Ludwig, Ralf

    2018-02-01

    The properties of the hydrogen bonds in ethylammonium nitrate (EAN) are analyzed by using molecular dynamics simulations and infrared as well as nuclear magnetic resonance experiments. EAN features a flexible three-dimensional network of hydrogen bonds with moderate strengths, which makes it distinct from related triethylammonium-based ionic liquids. First, the network’s flexibility is manifested in a not very pronounced correlation of the hydrogen bond geometries, which is caused by rapid interchanges of bonding partners. The large flexibility of the network also leads to a substantial broadening of the mid-IR absorption band, with the contributions due to N-H stretching motions ranging from 2800 to 3250 cm-1. Finally, the different dynamics are also seen in the rotational correlation of the N-H bond vector, where a correlation time as short as 16.1 ps is observed.

  8. The multi-stream flows and the dynamics of the cosmic web

    International Nuclear Information System (INIS)

    Shandarin, Sergei F.

    2011-01-01

    A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computationally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. Ideally in the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in the Zel'dovich approximation and in the N-body simulation of the ΛCDM model. The effect of numerical noise is discussed. The web identified by the new method has been compared with the web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggests that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web

  9. The multi-stream flows and the dynamics of the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Shandarin, Sergei F., E-mail: sergei@ku.edu [Department of Physics and Astronomy, University of Kansas, 10082 Malott Hall, 1251 Wescoe Hall Dr, Lawrence, Kansas, 66045 (United States)

    2011-05-01

    A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computationally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. Ideally in the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in the Zel'dovich approximation and in the N-body simulation of the ΛCDM model. The effect of numerical noise is discussed. The web identified by the new method has been compared with the web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggests that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web.

  10. Contamination of water in Oliwski Stream after the flood in 2016

    Directory of Open Access Journals (Sweden)

    Matej-Łukowicz Karolina

    2017-01-01

    Full Text Available In the article pollution of stream waters with surface runoff from an urbanized area caused by an extremely high rainfall is discussed. The analyzes were carried out after the rainfall of the depth 152 mm which took place in Gdańsk on 14th and 15th July 2016. This extreme rainfall caused urban flooding, damage of several retention ponds and pollution of surface waters. In the article the results of physical and chemical analyzes of the water samples from Oliwski Stream, inflowing to the Gulf of Gdańsk at the beach in Jelitkowo, are presented. The samples were collected at six points along the Stream in order to evaluate potential pollution sources. The results of the study indicated elevated concentrations of phosphorus compounds and nitrates (V. Additionally, the concentrations of total suspended solids (TSS, solids granulometry and grain size distribution along the stream was investigated.

  11. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  12. Stream chemistry responses to four range management strategies in eastern Oregon.

    Science.gov (United States)

    A.R. Tiedemann; D.A. Higgins; T.M. Quigley; H.R. Sanderson

    1989-01-01

    Responses of stream chemistry parameters, nitrate-N (NO3-N), phosphate (PO4), calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), and hydrogen ion activity (pH) were measured on 13 wildland watersheds managed at four different grazing strategies. Range management strategies tested were (A) no grazing, (B) grazing without control of livestock distribution (8.2 ha/...

  13. Biodegradation of isopropanol and acetone under denitrifying conditions by Thauera sp. TK001 for nitrate-mediated microbially enhanced oil recovery.

    Science.gov (United States)

    Fida, Tekle Tafese; Gassara, Fatma; Voordouw, Gerrit

    2017-07-15

    Amendment of reservoir fluid with injected substrates can enhance the growth and activity of microbes. The present study used isopropyl alcohol (IPA) or acetone to enhance the indigenous anaerobic nitrate-reducing bacterium Thauera sp. TK001. The strain was able to grow on IPA or acetone and nitrate. To monitor effects of strain TK001 on oil recovery, sand-packed columns containing heavy oil were flooded with minimal medium at atmospheric or high (400psi) pressure. Bioreactors were then inoculated with 0.5 pore volume (PV) of minimal medium containing Thauera sp. TK001 with 25mM of acetone or 22.2mM of IPA with or without 80mM nitrate. Incubation without flow for two weeks and subsequent injection with minimal medium gave an additional 17.0±6.7% of residual oil in place (ROIP) from low-pressure bioreactors and an additional 18.3% of ROIP from the high-pressure bioreactors. These results indicate that acetone or IPA, which are commonly used organic solvents, are good substrates for nitrate-mediated microbial enhanced oil recovery (MEOR), comparable to glucose, acetate or molasses, tested previously. This technology may be used for coupling biodegradation of IPA and/or acetone in waste streams to MEOR where these waste streams are generated in close proximity to an oil field. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Using solvent extraction to process nitrate anion exchange column effluents

    International Nuclear Information System (INIS)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses

  15. Using solvent extraction to process nitrate anion exchange column effluents

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

  16. Effects of groundwater-flow paths on nitrate concentrations across two riparian forest corridors

    Science.gov (United States)

    Speiran, Gary K.

    2010-01-01

    Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/L beneath fields to 2 mg/L beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/L to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.

  17. Gas dynamic virtual nozzle for generation of microscopic droplet streams

    Energy Technology Data Exchange (ETDEWEB)

    DePonte, D P; Weierstall, U; Schmidt, K; Warner, J; Starodub, D; Spence, J C H; Doak, R B [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)], E-mail: dandeponte@gmail.com

    2008-10-07

    As shown by Ganan-Calvo (1998 Phys. Rev. Lett. 80 285-8), a free liquid jet can be compressed in diameter through gas dynamic forces exerted by a coaxially co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, essentially immune to clogging and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single-file droplet streams are generated by triggering the device with a piezoelectric actuator.

  18. Oxygen isotope dynamics of atmospheric nitrate over the Antarctic plateau: First combined measurements of ozone and nitrate 17O-excess (Δ17O)

    Science.gov (United States)

    Vicars, William; Savarino, Joël; Erbland, Joseph; Preunkert, Susanne; Jourdain, Bruno; Frey, Markus; Gil, Jaime; Legrand, Michel

    2013-04-01

    Variations in the isotopic composition of atmospheric nitrate (NO3-) provide novel indicators for important processes in boundary layer chemistry, often acting as source markers for reactive nitrogen (NOx = NO + NO2) and providing both qualitative and quantitative constraints on the pathways that determine its fate. Stable isotope ratios of nitrate (δ15N, δ17O, δ18O) offer direct insight into the nature and magnitude of the fluxes associated with different processes, thus providing unique information regarding phenomena that are often difficult to quantify from concentration measurements alone. The unique and distinctive 17O-excess (Δ17O = δ17O - 0.52 × δ18O ) of ozone (O3), which is transferred to NOx via oxidation reactions in the atmosphere, has been found to be a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O-excess within the NOx cycle is critical in polar areas where there exists the possibility of extending atmospheric interpretations to the glacial/interglacial time scale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C, Antarctica during December 2011 to January 2012. Sampling was conducted within the framework of the OPALE (Oxidant Production over Antarctic Land and its Export) project, thus providing an opportunity to combine our isotopic observations with a wealth of meteorological and chemical data, including in-situ concentration measurements of the gas-phase precursors involved in nitrate production (NOx, O3, OH, HO2, etc.). Furthermore, nitrate isotope analysis has been combined in this study for the first time with parallel observations of the transferrable Δ17O of surface ozone, which was measured concurrently at Dome C using our recently developed analytical approach. This unique dataset has allowed for a direct comparison of observed Δ17O(NO3-) values to those that are

  19. The systems cerium(3) (samarium) nitrate-quinoline nitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Zhuravlev, E.F.; Semenova, Eh.B.

    1982-01-01

    Using the method of cross sections at 25 and 50 deg C the solubility in the systems cerium (3) nitrate-quinoline nitrate-water and samarium nitrate-quinoline nitrate-water has been studied. It is established that in the systems during chemical interaction of components congruently melting compounds of the composition: Ce(NO 3 ) 2 x2[C 9 H 7 NxHNO 3 ]x6H 2 O and Sm(NO 3 ) 3 x2[C 9 H 7 NxHNO 3 ]x2H 2 O are formed. New solid phases are separated preparatively and are subjected to chemical, differential thermal and IR spectroscopic analyses. The investigation results are compared with similar ones for nitrates of other representatives of lanthanide group

  20. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  1. Measurement of dynamic adsorption coefficient of Xe on coconut charcoal in CO2 streams by gas-solid chromatography

    International Nuclear Information System (INIS)

    Sun Xinxi; Huang Yuying; Li Wangchang

    1984-01-01

    This paper presents a method for measuring the dynamic adsorption coefficients of Xe on coconut charcoal II-2 in CO 2 carrier streams by SP-2305E gas chromatograph with the thermal conductivity cell. The adsorption column is made of stainless steel (diameter 4 x 240 mm) packed with 60-80 mesh coconut charcoal II-2. The CO 2 content in carrier streams is about 87%. Three groups of data of Xe dynamic adsorption coefficient were obtained at temperature 15.5 deg C, 31.5 deg C and 50.5 deg C by pulse injection respectively. Another group was obtained at temperature approx. 16 deg C by continueous injection. In addition, adsorption isotherms and adsorption isometrics were determined. In this experimental system, the adsorption heat of Xe on coconut charcoal II-2 is 2820 cal/mole

  2. Influence of Soils, Riparian Zones, and Hydrology on Nutrients, Herbicides, and Biological Relations in Midwestern Agricultural Streams

    Science.gov (United States)

    Porter, S.

    2001-12-01

    Chemical, biological, and habitat conditions were characterized in 70 streams in the upper Mississippi River basin during August 1997, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The study was designed to evaluate algal and macroinvertebrate responses to high agricultural intensity in relation to nonpoint sources of nutrients and herbicides, characteristics of basin soils, wooded-riparian vegetation, and hydrology. Concentrations and forms of nutrients, herbicides and their metabolites, and seston constituents varied significantly with regional differences in soil properties, ground and surface water relations, density of riparian trees, and precedent rainfall-runoff conditions. Dissolved nitrate concentrations were relatively low in streams with high algal productivity; however, nitrate concentrations increased with basin water yield, which was associated with the regional distribution of rainfall during the month prior to the study. Stream productivity and respiration were positively correlated with seston (phytoplankton) chlorophyll concentrations, which were significantly larger in streams in areas with poorly drained soils and low riparian-tree density. Concentrations of dissolved phosphorus were low in streams where periphyton biomass was high. Periphyton biomass was relatively larger in streams with clear water and low abundance of macroinvertebrates that consume algae. Periphyton biomass decreased rapidly with modest increases in the abundance of scrapers such as snails and certain mayfly taxa. Differences in dissolved oxygen, organic carbon, stream velocity, and precedent hydrologic conditions explained much of the variance in macroinvertebrate community structure. The overall number of macroinvertebrate species and number of mayfly, caddisfly, and stonefly (EPT) taxa that are sensitive to organic enrichment were largest in streams with moderate periphyton biomass, in areas with moderately-well drained soils

  3. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    Science.gov (United States)

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (pnitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  4. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    Science.gov (United States)

    Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.

    2010-01-01

    National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future

  5. Stream Phosphorus Dynamics Along a Suburbanizing Gradient in Southern Ontario, Canada

    Science.gov (United States)

    Duval, T. P.

    2017-12-01

    While it is well known that urban streams are subject to impaired water quality relative to natural analogues, far less research has been directed at stream water quality during the process of (sub-) urbanization. This study determines the role of housing construction activities in Brampton, Canada on the concentration and flux of phosphorus (P) of a headwater stream. Prior to development the stream was engineered with a riffle-pool sequence, riparian plantings, and a floodplain corridor that was lined with sediment fencing. Stream sites were sampled daily over a period of six months at locations representing varying stages of subdivision completion (upper site -active construction; middle site -finished construction and natural vegetation; lower site -finished construction and active construction). A nearby urban stream site developed ten years prior to this study was selected as a reference site. There were no differences in total phosphorus (TP) levels or flux between the suburbanizing and urban streams; however, the forms of P differed between sites. The urban stream TP load was dominated by particulate phosphorus (PP) while suburbanizing stream P was mainly in the dissolved organic phosphorus (DOP) form. The importance of DOP to TP flux increased with the onset of the growing season. TP levels in all stream segments frequently exceeded provincial water quality guidelines during storm events but were generally low during baseflow conditions. During storm events PP and total suspended solid levels in the suburbanizing stream reached levels of the urban stream due to sediment fence failure at several locations along the construction-hillslope interface. Along the suburbanizing gradient, the hydrological connection to a mid-reach zone of no-construction activity / fallow field and native forest resulted in significantly lower P levels than the upper suburbanizing stream site. This suggests that stream channel design features as well as timing of construction

  6. Ultrasound-driven Viscous Streaming, Modelled via Momentum Injection

    Directory of Open Access Journals (Sweden)

    James PACKER

    2008-12-01

    Full Text Available Microfluidic devices can use steady streaming caused by the ultrasonic oscillation of one or many gas bubbles in a liquid to drive small scale flow. Such streaming flows are difficult to evaluate, as analytic solutions are not available for any but the simplest cases, and direct computational fluid dynamics models are unsatisfactory due to the large difference in flow velocity between the steady streaming and the leading order oscillatory motion. We develop a numerical technique which uses a two-stage multiscale computational fluid dynamics approach to find the streaming flow as a steady problem, and validate this model against experimental results.

  7. Parsimonious Hydrologic and Nitrate Response Models For Silver Springs, Florida

    Science.gov (United States)

    Klammler, Harald; Yaquian-Luna, Jose Antonio; Jawitz, James W.; Annable, Michael D.; Hatfield, Kirk

    2014-05-01

    Silver Springs with an approximate discharge of 25 m3/sec is one of Florida's first magnitude springs and among the largest springs worldwide. Its 2500-km2 springshed overlies the mostly unconfined Upper Floridan Aquifer. The aquifer is approximately 100 m thick and predominantly consists of porous, fractured and cavernous limestone, which leads to excellent surface drainage properties (no major stream network other than Silver Springs run) and complex groundwater flow patterns through both rock matrix and fast conduits. Over the past few decades, discharge from Silver Springs has been observed to slowly but continuously decline, while nitrate concentrations in the spring water have enormously increased from a background level of 0.05 mg/l to over 1 mg/l. In combination with concurrent increases in algae growth and turbidity, for example, and despite an otherwise relatively stable water quality, this has given rise to concerns about the ecological equilibrium in and near the spring run as well as possible impacts on tourism. The purpose of the present work is to elaborate parsimonious lumped parameter models that may be used by resource managers for evaluating the springshed's hydrologic and nitrate transport responses. Instead of attempting to explicitly consider the complex hydrogeologic features of the aquifer in a typically numerical and / or stochastic approach, we use a transfer function approach wherein input signals (i.e., time series of groundwater recharge and nitrate loading) are transformed into output signals (i.e., time series of spring discharge and spring nitrate concentrations) by some linear and time-invariant law. The dynamic response types and parameters are inferred from comparing input and output time series in frequency domain (e.g., after Fourier transformation). Results are converted into impulse (or step) response functions, which describe at what time and to what magnitude a unitary change in input manifests at the output. For the

  8. Nitrates of rare earths

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Pushkina, L.Ya.

    1984-01-01

    The systematization of experimental data with account of the last achievements in the field of studying the RE nitrate properties is realized. The methods of production, solubility in aqueous solutions structure, thermodynamic characteristics and thermal stability of nitrate hydrates, RE anhydrous and basic nitrates are considered. The data on RE nirtrate complexing in aqueous solutions are given. Binary nitrates, nitrate solvates and RE nitrate adducts with organic compounds are described. The use of RE nitrates in the course of RE production, in the processes of separation and fine cleaning of RE preparations is considered

  9. Challenges with nitrate therapy and nitrate tolerance: prevalence, prevention, and clinical relevance.

    Science.gov (United States)

    Thadani, Udho

    2014-08-01

    Nitrate therapy has been an effective treatment for ischemic heart disease for over 100 years. The anti-ischemic and exercise-promoting benefits of sublingually administered nitrates are well established. Nitroglycerin is indicated for the relief of an established attack of angina and for prophylactic use, but its effects are short lived. In an effort to increase the duration of beneficial effects, long-acting orally administered and topical applications of nitrates have been developed; however, following their continued or frequent daily use, patients soon develop tolerance to these long-acting nitrate preparations. Once tolerance develops, patients begin losing the protective effects of the long-acting nitrate therapy. By providing a nitrate-free interval, or declining nitrate levels at night, one can overcome or reduce the development of tolerance, but cannot provide 24-h anti-anginal and anti-ischemic protection. In addition, patients may be vulnerable to occurrence of rebound angina and myocardial ischemia during periods of absent nitrate levels at night and early hours of the morning, and worsening of exercise capacity prior to the morning dose of the medication. This has been a concern with nitroglycerin patches but not with oral formulations of isosorbide-5 mononitrates, and has not been adequately studied with isosorbide dinitrate. This paper describes problems associated with nitrate tolerance, reviews mechanisms by which nitrate tolerance and loss of efficacy develop, and presents strategies to avoid nitrate tolerance and maintain efficacy when using long-acting nitrate formulations.

  10. Data on nitrate and nitrate of Taham dam in Zanjan (Iran

    Directory of Open Access Journals (Sweden)

    Mohammadreza Massoudinejad

    2018-04-01

    Full Text Available In recent years, contamination of water resources, with pollutants such as nitrate and nitrite, has significantly increased. These compounds can have harmful effects on human health, especially children such as methemoglobinemia. The main objective of this study was to measure the concentration of nitrate and nitrite and its health-risk assessment in the rivers entering Taham dam in Zanjan. USEPA Method was used to assess the health-risk of nitrate and nitrite. According to the obtained results, the concentration of nitrate and nitrite was in the range of 0.51–14.93 mg/l and 0.001–0.061 mg/l, respectively. According to the results, the mean of the CDI for nitrate and nitrite was 9.52*10−2 and 3.63*10−4 mg/kg/day, respectively. Furthermore, the mean HI for nitrate and nitrite was 5.97*10−2 and 3.63*10−3, respectively. The concentration of nitrate and nitrite in rivers was lower than the WHO and Iran guidelines. Based on the results, the HI value in all samples was less than 1 which indicating the non-carcinogenic effects of nitrate and nitrite in these rivers. Keywords: Nitrate, Nitrite, Water quality, Dam

  11. Do nitrates differ?

    Science.gov (United States)

    Fung, H.-L.

    1992-01-01

    1 The organic nitrates all share a common biochemical and physiological mechanism of action. 2 The organic nitrates differ substantially in their pharmacologic potency and pharmacokinetics. In vitro potency differences appear larger than the corresponding in vivo activities. 3 The duration of action of organic nitrates, after a single immediate-release dose, is governed by the pharmacokinetics of the drug. However, the duration of action of available sustained-release preparations, whatever the nitrate or formulation, is limited to about 12 h, due to the development of pharmacologic tolerance. 4 Nitrates do not appear to differ in their production of undesirable effects. PMID:1633079

  12. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  13. Electrochemical processing of nitrate waste solutions. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

  14. Preparation of acid deficient solutions of uranyl nitrate and thorium nitrate by steam denitration

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1996-01-01

    Acid deficient heavy metal (HM) nitrate solutions are often required in the internal gelation processes for nuclear fuel fabrication. The stoichiometric HM-nitrate solutions are needed in a sol-gel process for fuel fabrication. A method for preparing such nitrate solutions with a controlled molar ratio of nitrate/metal by denitration of acid-excess nitrate solutions was developed. The denitration was conducted by bubbling a nitrate solution with a mixture of steam+Ar. It was found that steam was more effective for the denitration than Ar. The acid deficient uranyl nitrate solution with nitrate/U=1.55 was yielded by steam bubbling, while not by only Ar bubbling. As for thorium nitrate, acid deficient solutions of nitrate/Th≥3.1 were obtained by steam bubbling. (author)

  15. Nutrient Retention in Restored Streams and Floodplains: A ...

    Science.gov (United States)

    Abstract: Excess nitrogen (N) and phosphorus (P) from human activities have contributed to degradation of coastal waters globally. A growing body of work suggests that hydrologically restoring streams and floodplains in agricultural and urban watersheds has potential to increase nitrogen and phosphorus retention, but rates and mechanisms have not yet been synthesized and compared across studies. We conducted a review of nutrient retention within hydrologically reconnected streams and floodplains including 79 studies. Overall, 62% of results were positive, 26% were neutral, and 12% were negative. The studies we reviewed used a variety of methods to analyze nutrients cycling. We did a further intensive meta-analysis on nutrient spiraling studies because this method was the most consistent and comparable between studies. A meta-analysis of 240 experimental additions of ammonium (NH4+), nitrate (NO3-), and soluble reactive phosphorus (SRP) was synthesized from 15 nutrient spiraling studies. Overall, we found that rates of uptake were variable along stream reaches over space and time. Our results indicate that the size of the stream restoration (total surface area) and hydrologic residence time can be key drivers in influencing N and P uptake at broader watershed scales or along the urban watershed continuum. Excess nitrogen and phosphorus from human activities contributes to the degradation of water quality in streams and coastal areas nationally and globally.

  16. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Science.gov (United States)

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  17. Mercury removal from SRP radioactive waste streams using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.; Ebra, M.A.

    1986-01-01

    Mercury is present in varying concentrations in some Savannah River Plant (SRP) waste streams as a result of its use as a catalyst in the dissolution of fuel elements composed of uranium-aluminum alloys. It may be desirable to remove mercury from these streams before treatment of the waste for incorporation in glass for long-term storage. The glass forming process will also create waste from which mercury will have to be removed. The goal of mercury would be to eliminate ultimate emission of the toxic substance into the environment. This paper describes tests that demonstrate the feasibility of using a specific cation exchange resin, Duolite GT-73 for the removal of mercury from five waste streams generated at the SRP. Two of these streams are dilute; one is the condensate from a waste evaporator while the other is the effluent from an effluent treatment plant now under development. The three other streams are related to the Defense Waste Processing Facility (DWPF) that is being built at SRP. One of these streams is a concentrated salt solution (principally sodium nitrate and sodium hydroxide) that constitutes the soluble fraction of SRP waste and contains 20% mercury in the waste. The second stream is a slurry of the insoluble components in SRP waste and contains 80% of the mercury. The third stream is the offgas condensate from the glass melter system in the DWPF

  18. In situ observation on the dynamic process of evaporation and crystallization of sodium nitrate droplets on a ZnSe substrate by FTIR-ATR.

    Science.gov (United States)

    Zhang, Qing-Nuan; Zhang, Yun; Cai, Chen; Guo, Yu-Cong; Reid, Jonathan P; Zhang, Yun-Hong

    2014-04-17

    Sodium nitrate is a main component of aging sea salt aerosol, and its phase behavior has been studied repeatedly with wide ranges observed in the efflorescence relative humidity (RH) in particular. Studies of the efflorescence dynamics of NaNO3 droplets deposited on a ZnSe substrate are reported, using an in situ Fourier transform infrared attenuated total reflection (FTIR-ATR) technique. The time-dependence of the infrared spectra of NaNO3 aerosols accompanying step changes in RH have been measured with high signal-to-noise ratio. From the IR difference spectra recorded, changes of the time-dependent absorption peak area of the O-H stretching band (ν-OH, ∼3400 cm(-1)) and the nitrate out-of-plane bending band (ν2-NO3(-), ∼836 cm(-1)) are obtained. From these measurements, changes in the IR signatures can be attributed to crystalline and solution phase nitrate ions, allowing the volume fraction of the solution droplets that have crystallized to be determined. Then, using these clear signatures of the volume fraction of droplets that have yet to crystallize, the homogeneous and heterogeneous nucleation kinetics can be studied from conventional measurements using a steady decline in RH. The nucleation rate measurements confirm that the rate of crystallization in sodium nitrate droplets is considerably less than in ammonium sulfate droplets at any particular degree of solute supersaturation, explaining the wide range of efflorescence RHs observed for sodium nitrate in previous studies. We demonstrate that studying nucleation kinetics using the FTIR-ATR approach has many advantages over brightfield imaging studies on smaller numbers of larger droplets or measurements made on single levitated particles.

  19. Dynamical heterogeneities of rotational motion in room temperature ionic liquids evidenced by molecular dynamics simulations

    Science.gov (United States)

    Usui, Kota; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore

    2018-05-01

    Room temperature ionic liquids (RTILs) have been shown to exhibit spatial heterogeneity or structural heterogeneity in the sense that they form hydrophobic and ionic domains. Yet studies of the relationship between this structural heterogeneity and the ˜picosecond motion of the molecular constituents remain limited. In order to obtain insight into the time scales relevant to this structural heterogeneity, we perform molecular dynamics simulations of a series of RTILs. To investigate the relationship between the structures, i.e., the presence of hydrophobic and ionic domains, and the dynamics, we gradually increase the size of the hydrophobic part of the cation from ethylammonium nitrate (EAN), via propylammonium nitrate (PAN), to butylammonium nitrate (BAN). The two ends of the organic cation, namely, the charged Nhead-H group and the hydrophobic Ctail-H group, exhibit rotational dynamics on different time scales, evidencing dynamical heterogeneity. The dynamics of the Nhead-H group is slower because of the strong coulombic interaction with the nitrate counter-ionic anions, while the dynamics of the Ctail-H group is faster because of the weaker van der Waals interaction with the surrounding atoms. In particular, the rotation of the Nhead-H group slows down with increasing cationic chain length, while the rotation of the Ctail-H group shows little dependence on the cationic chain length, manifesting that the dynamical heterogeneity is enhanced with a longer cationic chain. The slowdown of the Nhead-H group with increasing cationic chain length is associated with a lower number of nitrate anions near the Nhead-H group, which presumably results in the increase of the energy barrier for the rotation. The sensitivity of the Nhead-H rotation to the number of surrounding nitrate anions, in conjunction with the varying number of nitrate anions, gives rise to a broad distribution of Nhead-H reorientation times. Our results suggest that the asymmetry of the cations and the

  20. Residence time, chemical and isotopic analysis of nitrate in the groundwater and surface water of a small agricultural watershed in the Coastal Plain, Bucks Branch, Sussex County, Delaware

    Science.gov (United States)

    Clune, John W.; Denver, Judith M.

    2012-01-01

    Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.

  1. Seasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cups.

    Science.gov (United States)

    Kabala, Cezary; Karczewska, Anna; Gałka, Bernard; Cuske, Mateusz; Sowiński, Józef

    2017-07-01

    The aims of the study were to analyse the concentration of nitrate and ammonium ions in soil solutions obtained using MacroRhizon miniaturized composite suction cups under field conditions and to determine potential nitrogen leaching from soil fertilized with three types of fertilizers (standard urea, slow-release urea, and ammonium nitrate) at the doses of 90 and 180 kg ha -1 , applied once or divided into two rates. During a 3-year growing experiment with sugar sorghum, the concentration of nitrate and ammonium ions in soil solutions was the highest with standard urea fertilization and the lowest in variants fertilized with slow-release urea for most of the months of the growing season. Higher concentrations of both nitrogen forms were noted at the fertilizer dose of 180 kg ha -1 . One-time fertilization, at both doses, resulted in higher nitrate concentrations in June and July, while dividing the dose into two rates resulted in higher nitrate concentrations between August and November. The highest potential for nitrate leaching during the growing season was in July. The tests confirmed that the miniaturized suction cups MacroRhizon are highly useful for routine monitoring the concentration of nitrate and ammonium ions in soil solutions under field conditions.

  2. Phosphorus dynamics in a woodland stream ecosystem: a study of nutrient spiralling

    International Nuclear Information System (INIS)

    Newbold, J.D.; Elwood, J.W.; O'Neill, R.V.; Sheldon, A.L.

    1983-01-01

    To describe spiralling in Walker Branch, a first-order woodland stream in Tennessee, we released 32 PO 4 to the stream water and measured its uptake from the water and then followed its dynamics in coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), aufwuchs, grazers, shredders, collectors, net-spinning filter feeders, and predators over a 6-week period. Rates of transfer among compartments and rates of downstream transport were estimated by fitting a partial differential equation model of the ecosystem to the data. With the resulting coefficients, the model was run to steady state to estimate standing stocks and fluxes of exchangeable phosphorus. Phosphorus moved downstream at an average velocity of 10.4 m/d, cycling once every 18.4 d. The average downstream distance associated with one cycle was therefore 190 m (10.4 m/d x 18.4 d). Spiralling length, at steady state, is approximately the ratio of the total downstream flux of phosphorus per unit width of stream (720 mg.d -1 .m -1 ) to the rate of P uptake from the water (3.90 mg.m -2 .d -1 ). CPOM accounted for 60% of the uptake, FPOM for 35%, and aufwuchs for 5%. Turnover times of P in particulates ranged from 5.6 to 6.7 d, except for FPOM, which showed a slower turnover time of 99 d. Of the P uptake from water by particulates, 2.8% was transferred to consumers, while the remainder returned directly to the water. About 30% of the consumer uptake, in turn, was transferred to predators. The small consumer turnover length reflected low consumer uptake of P from particulates and slow downstream drift velocity (0.013 m/d). In spite of the low rate of phosphorus uptake, the combined consumer-and-predator community accounted for 25% of the standing stock of exchangeable P in the stream. The retentiveness of this community is attributable both to the low drift rate and to a long turnover time (152 d) for P within the community

  3. Nutrient dynamics across a dissolved organic carbon and burn gradient in central Siberia

    Science.gov (United States)

    Rodriguez-Cardona, B.; Coble, A. A.; Prokishkin, A. S.; Kolosov, R.; Spencer, R. G.; Wymore, A.; McDowell, W. H.

    2016-12-01

    In stream ecosystems, dissolved organic carbon (DOC) and nitrogen (N) processing are tightly linked. In temperate streams, greater DOC concentrations and higher DOC:NO3- ratios promote the greatest nitrate (NO3-) uptake. However, less is known about this relationship in other biomes including the arctic which is undergoing changes due to climate change contributing to thawing of permafrost and alterations in biogeochemical cycles in soils and streams. Headwater streams draining into the N. Tunguska River in the central Siberian plateau are affected by forest fires but little is known about the aquatic biogeochemical implications in both a thawing and burning landscape. There are clear patterns between carbon concentration and fire history where generally DOC concentration in streams decrease after fires and older burn sites have shown greater DOC concentrations and more bioavailable DOC that could promote greater heterotrophic uptake of NO3-. However, the relationship between nutrient dynamics, organic matter composition, and fire history in streams is not very clear. In order to assess the influence of organic matter composition and DOC concentration on nutrient uptake in arctic streams, we conducted a series of short-term nutrient addition experiments following the tracer addition for spiraling curve characterization (TASCC) method, consisting of NO3- and NH4++PO43- additions, across 4 streams that comprise a fire gradient that spans 3- >100 years since the last burn with DOC concentrations ranging between 12-23 mg C/L. We hypothesized that nutrient uptake would be greatest in older burn sites due to greater DOC concentrations and availability. We will specifically examine how nutrient uptake relates to DOC concentration and OM composition (analyzed via FTICR-MS) across the burn gradient. Across the four sites DOC concentration and DOC:NO3- ratios decreased from old burn sites to recently burned sites. Results presented here can elucidate on the potential impacts

  4. Using lumped modelling for providing simple metrics and associated uncertainties of catchment response to agricultural-derived nitrates pollutions

    Science.gov (United States)

    RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.

    2013-12-01

    The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the

  5. Tracing the fate of atmospheric nitrate deposited onto a forest ecosystem in Eastern Asia using Δ17O

    Directory of Open Access Journals (Sweden)

    I. Noguchi

    2010-02-01

    Full Text Available The stable isotopic compositions of nitrate in precipitation (wet deposition and groundwater (spring, lake, and stream water were determined for the island of Rishiri, Japan, so as to use the 17O anomalies (Δ17O to trace the fate of atmospheric nitrate that had deposited onto the island ecosystem, which is a representative background forest ecosystem for eastern Asia. The deposited nitrate had large 17O anomalies with Δ17O values ranging from +20.8‰ to +34.5‰ (n = 32 with +26.2‰ being the annual average. The maximum Δ17O value of +34.5‰, obtained for precipitation on the 23rd to 24th of February 2007, was an extraordinarily large value among values for all samples of precipitation in Rishiri. Most nitrate in the sample might have been produced via NO3 radical in a highly polluted air mass that had been supplied from megacities on the eastern coast of the Asian continent. On the other hand, nitrate in groundwater had small Δ17O values ranging from +0.9‰ to 3.2‰ (n = 19, which corresponds to an mixing ratio of atmospheric nitrate to total nitrate of (7.4±2.6%. Comparing the inflow and outflow of atmospheric nitrate in groundwater within the island, we estimated that the direct drainage accounts for (8.8±4.6% of atmospheric nitrate that has deposited on the island and that the residual portion has undergone biological processing before being exported from the forest ecosystem.

  6. Recent (2008-10) concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone, south-central Texas, and their potential relation to urban development in the contributing zone

    Science.gov (United States)

    Mahler, Barbara J.; Musgrove, MaryLynn; Herrington, Chris; Sample, Thomas L.

    2011-01-01

    During 2008–10, the U.S. Geological Survey, in cooperation with the City of Austin, the City of Dripping Springs, the Barton Springs/Edwards Aquifer Conservation District, the Lower Colorado River Authority, Hays County, and Travis County, collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge well [YD–58–50–704] and Buda well [LR–58–58–403]), and the main orifice of Barton Springs in Austin, Texas, with the objective of characterizing concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone. The Barton Springs zone is in south-central Texas, an area undergoing rapid growth in population and in land area affected by development, with associated increases in wastewater generation. Over a period of 17 months, during which the hydrologic conditions transitioned from dry to wet, samples were collected routinely from the streams, wells, and spring and, in response to storms, from the streams and spring; some or all samples were analyzed for nitrate, nitrogen and oxygen isotopes of nitrate, and waste­water compounds. The median nitrate concentrations in routine samples from all sites were higher in samples collected during the wet period than in samples collected during the dry period, with the greatest difference for stream samples (0.05 milligram per liter during the dry period to 0.96 milligram per liter for the wet period). Nitrate concentrations in recent (2008–10) samples were elevated relative to concentrations in historical (1990–2008) samples from streams and from Barton Springs under medium- and high-flow conditions. Recent nitrate concentrations were higher than historical concentrations at the Marbridge well but the reverse was true at the Buda well. The elevated concentrations likely are related to the cessation of dry conditions coupled with increased nitrogen loading in the

  7. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.

    Science.gov (United States)

    Zeiger, Sean J; Hubbart, Jason A

    2016-12-01

    There is an ongoing need to validate the accuracy of predictive model simulated pollutant yields, particularly from multiple-land-use (i.e. forested, agricultural, and urban) watersheds. However, there are seldom sufficient observed data sets available that supply requisite spatial and temporal resolution and coupled multi-parameter constituents for rigorous model performance assessment. Four years of hydroclimate and water quality data were used to validate SWAT model estimates of monthly stream flow, suspended sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen from 5 nested-scale gauging sites located in a multiple-land-use watershed of the central USA. The uncalibrated SWAT model satisfactorily simulated monthly stream flow with Nash-Sutcliffe efficiency (NSE) values ranging from 0.50 near the headwaters, to 0.75 near the watershed outlet. However, the uncalibrated model did not accurately simulate monthly sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen with NSE valuesSWAT model to multiple gauging sites within the watershed improved estimates of monthly stream flow (NSE=0.83), sediment (NSE=0.78), total phosphorus (NSE=0.81), nitrate (NSE=0.90), and total inorganic nitrogen (NSE=0.86). However, NSE values were model performance decreased for sediment, nitrate, and total inorganic nitrogen during the validation period with NSE valuesSWAT model to multiple gauging sites and provide guidance to SWAT model (or similar models) users wishing to improve model performance at multiple scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    Science.gov (United States)

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.

  9. Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study

    Directory of Open Access Journals (Sweden)

    A. H. Aubert

    2013-04-01

    Full Text Available High-frequency, long-term and multisolute measurements are required to assess the impact of human pressures on water quality due to (i the high temporal and spatial variability of climate and human activity and (ii the fact that chemical solutes combine short- and long-term dynamics. Such data series are scarce. This study, based on an original and unpublished time series from the Kervidy-Naizin headwater catchment (Brittany, France, aims to determine solute transfer processes and dynamics that characterise this strongly human-impacted catchment. The Kervidy-Naizin catchment is a temperate, intensive agricultural catchment, hydrologically controlled by shallow groundwater. Over 10 yr, five solutes (nitrate, sulphate, chloride, and dissolved organic and inorganic carbon were monitored daily at the catchment outlet and roughly every four months in the shallow groundwater. The concentrations of all five solutes showed seasonal variations but the patterns of the variations differed from one solute to another. Nitrate and chloride exhibit rather smooth variations. In contrast, sulphate as well as organic and inorganic carbon is dominated by flood flushes. The observed nitrate and chloride patterns are typical of an intensive agricultural catchment hydrologically controlled by shallow groundwater. Nitrate and chloride originating mainly from organic fertilisers accumulated over several years in the shallow groundwater. They are seasonally exported when upland groundwater connects with the stream during the wet season. Conversely, sulphate as well as organic and inorganic carbon patterns are not specific to agricultural catchments. These solutes do not come from fertilisers and do not accumulate in soil or shallow groundwater; instead, they are biogeochemically produced in the catchment. The results allowed development of a generic classification system based on the specific temporal patterns and source locations of each solute. It also considers the

  10. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  11. Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer.

    Science.gov (United States)

    Cerro, Itsasne; Antigüedad, Iñaki; Srinavasan, Raghavan; Sauvage, Sabine; Volk, Martin; Sanchez-Perez, José Miguel

    2014-01-01

    The study area (Alegria watershed, Basque Country, Northern Spain) considered here is influenced by an important alluvial aquifer that plays a significant role in nitrate pollution from agricultural land use and management practices. Nitrates are transported primarily from the soil to the river through the alluvial aquifer. The agricultural activity covers 75% of the watershed and is located in a nitrate-vulnerable zone. The main objective of the study was to find land management options for water pollution abatement by using model systems. In a first step, the SWAT model was applied to simulate discharge and nitrate load in stream flow at the outlet of the catchment for the period between October 2009 and June 2011. The LOADEST program was used to estimate the daily nitrate load from measured nitrate concentration. We achieved satisfactory simulation results for discharge and nitrate loads at monthly and daily time steps. The results revealed clear variations in the seasons: higher nitrate loads were achieved for winter (20,000 kg mo NO-N), and lower nitrate loads were simulated for the summer (model was used to evaluate the long-term effects of best management practices (BMPs) for a 50-yr period by maintaining actual agricultural practices, reducing fertilizer application by 20%, splitting applications (same total N but applied over the growing period), and reducing 20% of the applied fertilizer amount and splitting the fertilizer doses. The BMPs were evaluated on the basis of local experience and farmer interaction. Results showed that reducing fertilizer amounts by 20% could lead to a reduction of 50% of the number of days exceeding the nitrate concentration limit value (50 mg L) set by the European Water Framework Directive. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Nitrate pollution of a karstic groundwater system in Svaty Jan Pod Skalou, Czech Republic

    International Nuclear Information System (INIS)

    Buzek, F.; Kadlecova, R.; Zak, K.

    1998-01-01

    Due to increasing agricultural activity after the 1960's both shallow and deep water resources in the Czech Republic including karstic systems have been contaminated by infiltrating nitrate. Nitrate content of one of the largest spring (19L/s) now varies from 50 to 60 mg/L. To specify the sources of nitrate pollution and collect sufficient data for the prediction of possible future development, flow dynamics, chemical and isotopic composition (δ 18 O in water, δ 15 N in nitrate) were monitored in the spring and precipitation together with potential sources of pollution (fertilizers, solutes in soil profile). Observed data were modelled by a simple mixing cell model to specify system parameters (volume and mean residence time). (author)

  13. Understanding the physical dynamics and ecological interactions in tidal stream energy environments

    Science.gov (United States)

    Fraser, Shaun; Williamson, Benjamin J.; Nikora, Vladimir; Scott, Beth E.

    2017-04-01

    Tidal stream energy devices are intended to operate in energetic physical environments characterised by high flows and extreme turbulence. These environments are often of ecological importance to a range of marine species. Understanding the physical dynamics and ecological interactions at fine scales in such sites is essential for device/array design and to understand environmental impacts. However, investigating fine scale characteristics requires high resolution field measurements which are difficult to attain and interpret, with data often confounded by interference related to turbulence. Consequently, field observations in tidal stream energy environments are limited and require the development of specialised analysis methods and so significant knowledge gaps are still present. The seabed mounted FLOWBEC platform is addressing these knowledge gaps using upward facing instruments to collect information from around marine energy infrastructure. Multifrequency and multibeam echosounder data provide detailed information on the distribution and interactions of biological targets, such as fish and diving seabirds, while simultaneously recording the scales and intensity of turbulence. Novel processing methodologies and instrument integration techniques have been developed which combine different data types and successfully separates signal from noise to reveal new evidence about the behaviour of mobile species and the structure of turbulence at all speeds of the tide and throughout the water column. Multiple platform deployments in the presence and absence of marine energy infrastructure reveal the natural characteristics of high energy sites, and enable the interpretation of the physical and biological impacts of tidal stream devices. These methods and results are relevant to the design and consenting of marine renewable energy technologies, and provide novel information on the use of turbulence for foraging opportunities in high energy sites by mobile species.

  14. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  15. Effects of golf course construction and operation on water chemistry of headwater streams on the Precambrian Shield

    International Nuclear Information System (INIS)

    Winter, Jennifer G.; Dillon, Peter J.

    2005-01-01

    To investigate the effects of golf course construction and operation on the water chemistry of Shield streams, we compared the water chemistry in streams draining golf courses under construction (2) and in operation (5) to streams in forested reference locations and to upstream sites where available. Streams were more alkaline and higher in base cation and nitrate concentrations downstream of operational golf courses. Levels of these parameters and total phosphorus increased over time in several streams during golf course construction through to operation. There was evidence of inputs of mercury to streams on two of the operational courses. Nutrient (phosphorus and nitrogen) concentrations were significantly related to the area of unmanaged vegetation in a 30 x 30 m area on either side of the sampling sites, and to River Bank Quality Index scores, suggesting that maintaining vegetated buffers along the stream on golf courses will reduce in-stream nutrient concentrations. - Golf course construction and operation had a significant impact on alkalinity, nitrogen and base cation concentrations of streams

  16. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration*

    Science.gov (United States)

    Olah, George A.; Narang, Subhash C.; Olah, Judith A.

    1981-01-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an α-nitronaphthalene to β-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (σ complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity. PMID:16593026

  17. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration.

    Science.gov (United States)

    Olah, G A; Narang, S C; Olah, J A

    1981-06-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an alpha-nitronaphthalene to beta-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (sigma complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity.

  18. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Application of a coupled ecosystem-chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed

    Science.gov (United States)

    Hartman, M.D.; Baron, Jill S.; Ojima, D.S.

    2007-01-01

    Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change. ?? 2006 Elsevier B.V. All rights reserved.

  20. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    Science.gov (United States)

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  1. MITIGASI PELINDIAN NITRAT PADA TANAH INCEPTISOL MELALUI PEMANFAATAN BAHAN NITRAT INHIBITOR ALAMI

    Directory of Open Access Journals (Sweden)

    Joko Pramono

    2012-05-01

    Full Text Available Mitigation of Nitrate Leaching in Inceptisol Soil Through the Use of Natural Nitrate Inhibitor ABSTRAK Pelindian NO3- merupakan salah satu mekanisme kehilangan N dalam aktivitas pertanian, yang dapat berdampak terhadap pencemaran lingkungan. Tujuan dari penelitian adalah untuk mengetahui penggunaan bahan alami sebagai nitrat inhibitor terhadap pelindian nitrat pada tanah Inceptisol. Pada penelitian ini diuji tiga jenis bahan nitrat inhibitor (NI alami yang berasal dari; serbuk biji Mimba (SBM, serbuk kulit kayu bakau (SKKB, dan serbuk daun kopi (SDK,yang dikombinasikan dengan tiga taraf dosis NI, yaitu: 20 %, 30 % dan 40 % dari urea yang diberikan, dan ditambah satu perlakuan kontrol tanpa NI. Bahan nitrat inhibitor diberikan bersama urea pada permukaan tanah dalam pot percobaan yang telah dibasahi dengan air suling. Hasil penelitian menunjukkan bahwa bahan NI yang berbeda memberikan respon terhadap penghambatan nitrifi kasi yang berbeda. Bahan NI yang berasal dari serbuk biji mimba memberikan tingkat penghambatan tertinggi sebesar (25,6 %, serbuk kulit kayu bakau sebesar (19,1 %, dan serbuk daun kopi sebesar 11,8 %. Bahan NI alami mampu menghambat nitrifi kasi melalui penghambatan pertumbuhan bakteri nitrifi kasi (pengoksida ammonium yang bersifat sementara pada kisaran 7-14 hari setelah aplikasi. Perlakuan berbagai bahan dan dosis NI mampu menekan pelindian nitrat rata-rata pada kisaran antara 56,6 sampai 62,8 % dan berbeda sangat nyata terhadap perlakuan kontrol tanpa NI. Bahan NI yang mampu menurunkan rata-rata pelindian nitrat pada pengamatan 14 hari setelah aplikasi tertinggi adalah SBM sebesar 74,15 %. Dosis optimal dua bahan NI terpilih yang menunjukkan kinerja penghambatan nitrifi kasi terbaik (SBM dan SKKB pada 7 hsa, masing-masing 18,30 % (R2 = 0,694 dan 21,67 % (R2=0.691 dari dosis urea yang diberikan. Kata kunci: Nitrifi kasi, nitrat inhibitor, pelindian nitrat ABSTRACT NO3 - leaching is one mechanism of N reduction in agricultural

  2. Checking for Circular Dependencies in Distributed Stream Programs

    Science.gov (United States)

    2011-08-29

    extensions to express new complexities more conve- nient. Teleport messaging ( TMG ) in the StreamIt language [30] is an example. 1.1 StreamIt Language...dynamicities to an FIR computation Thies et al. in [30] give a TMG model for distributed stream pro- grams. TMG is a mechanism that implements control...messages for stream graphs. The TMG mechanism is designed not to interfere with original dataflow graphs’ structures and scheduling, therefore a key

  3. Extent and causes of 3D spatial variations in potential N mineralization and the risk of ammonium and nitrate leaching from an N-impacted permanent grassland near York, UK

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, Muhammad [Environment Department, University of York, Heslington Road, York, North Yorkshire YO10 5DD (United Kingdom)], E-mail: mr548@york.ac.uk; Mian, Ishaq A. [Environment Department, University of York, Heslington Road, York, North Yorkshire YO10 5DD (United Kingdom)], E-mail: iam501@york.ac.uk; Cresser, Malcolm S. [Environment Department, University of York, Heslington Road, York, North Yorkshire YO10 5DD (United Kingdom)], E-mail: msc5@york.ac.uk

    2008-12-15

    Changes in the dynamics of inorganic N species transformations with depth have been investigated for seven soil profiles from a nitrogen-impacted ancient grassland on a nature reserve outside York in the UK, using incubation experiments. In five of the profiles, both ammonification and nitrification are occurring below the rooting zone, probably partly in response to the low C:N ratio in the soils. This contributes to elevated nitrate concentrations found in an adjacent stream. Accumulation of ammonium during incubation in the sub-soils of these five profiles suggests a high probability of ammonium leaching down the profiles as ammonium inputs and outputs at a given depth approach equilibrium. This ammonium may also be nitrified at depth. However, in the two profiles with the most acidic surface horizons, net mineralization was negligible or negative; some initial ammonium-N and ammonium-N produced during incubation were nitrified, so the loss in ammonium-N was closely balanced by nitrate-N production. - Inorganic N species transformations in sub-soils of N-impacted acid grassland contribute to N leaching.

  4. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1986-01-01

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  5. CO2 dynamics along Danish lowland streams

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Stæhr, Peter Anton

    2012-01-01

    conditions except during calm summer nights. Piston velocity from 0.4 to 21.6 cm h−1 was closely related to current velocity permitting calculation of evasion rates for entire streams. CO2 evasion rates were highest in midstream reaches (170–1,200 mmol m−2 day−1) where CO2-rich soil water entered fast stream...

  6. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.

    Science.gov (United States)

    Sebok, Eva; Engesgaard, Peter; Duque, Carlos

    2017-08-24

    This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.

  7. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  8. Impact of Sulfide on Nitrate Conversion in Eutrophic Nitrate-Rich Marine Sludge

    DEFF Research Database (Denmark)

    Schwermer, Carsten U.; Krieger, Bärbel; Lavik, Gaute

    2006-01-01

    IMPACT OF SULFIDE ON NITRATE CONVERSION IN EUTROPHIC NITRATE-RICH MARINE SLUDGE C.U. Schwermer 1, B.U. Krieger 2, G. Lavik 1, A. Schramm 3, J. van Rijn 4, D. de Beer 1, D. Minz 5, E. Cytryn 4, M. Kuypers 1, A. Gieseke 1 1 Max Planck Institute for Marine Microbiology, Bremen, Germany; 2 Dept...... nitrate conversion from denitrification to dissimilatory nitrate-reduction to ammonium (DNRA). In situ microsensor profiling in stagnant sludge revealed the typical stratification of nitrate reduction on top of sulfate reduction. Increasing the bulk nitrate concentration lead to a downward shift....... Our results show that the presence of sulfide generally decreased growth rates but increased N2O production. We conclude that sulfide plays a key role in causing incomplete denitrification, presumably by inhibiting the N2O reductase, and enhancing DNRA compared to denitrification.  ...

  9. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings.

    Science.gov (United States)

    Engelsberger, Wolfgang R; Schulze, Waltraud X

    2012-03-01

    Nitrogen is an essential macronutrient for plant growth and development. Inorganic nitrogen and its assimilation products control various metabolic, physiological and developmental processes. Although the transcriptional responses induced by nitrogen have been extensively studied in the past, our work here focused on the discovery of candidate proteins for regulatory events that are complementary to transcriptional changes. Most signaling pathways involve modulation of protein abundance and/or activity by protein phosphorylation. Therefore, we analyzed the dynamic changes in protein phosphorylation in membrane and soluble proteins from plants exposed to rapid changes in nutrient availability over a time course of 30 min. Plants were starved of nitrogen and subsequently resupplied with nitrogen in the form of nitrate or ammonium. Proteins with maximum change in their phosphorylation level at up to 5 min after nitrogen resupply (fast responses) included GPI-anchored proteins, receptor kinases and transcription factors, while proteins with maximum change in their phosphorylation level after 10 min of nitrogen resupply (late responses) included proteins involved in protein synthesis and degradation, as well as proteins with functions in central metabolism and hormone metabolism. Resupply of nitrogen in the form of nitrate or ammonium resulted in distinct phosphorylation patterns, mainly of proteins with signaling functions, transcription factors and transporters. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  10. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    International Nuclear Information System (INIS)

    Dodds, J.N.; UNOCAL, Brea, CA

    1994-07-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na 2 NiFe(CN) 6 , and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300 degrees C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ''hot spot'' show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions

  11. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  12. Local geology determines responses of stream producers and fungal decomposers to nutrient enrichment: A field experiment.

    Science.gov (United States)

    Mykrä, Heikki; Sarremejane, Romain; Laamanen, Tiina; Karjalainen, Satu Maaria; Markkola, Annamari; Lehtinen, Sirkku; Lehosmaa, Kaisa; Muotka, Timo

    2018-04-16

    We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.

  13. Switch of flow direction in an Antarctic ice stream.

    Science.gov (United States)

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  14. Fast-turnaround alkyl nitrate measurements during the PROPHET 1998 summer intensive

    Science.gov (United States)

    Ostling, Kristi; Kelly, Brendan; Bird, Stephen; Bertman, Steven; Pippin, Margaret; Thornberry, Troy; Carroll, Mary Anne

    2001-10-01

    An automated gas chromatographic system for making fast-turnaround measurements of alkyl nitrates was developed and tested. Every 30 min, samples were automatically acquired on a 1/16-inch OD Tenax trap made from fused silica-lined stainless steel tubing and injected by thermal desorption into the gas chromatograph. The system exhibited good chromatographic resolution, minimal breakthrough, and on-trap stability for C3-C5 nitrates. The detection limit of the instrument was Biological Station in northern Michigan during the summer of 1998 from July 15 to August 22. Ambient results show a significant dynamic range with absolute levels affected by air mass history and pollution sources. The sum of measured C3-C5 alkyl nitrates obtained during this intensive ranged from 3.45 to 65.8 pptv, with a mean of 18.6 pptv and contributed 1% on average to total NOy, with a range of 0.5% to 3%. Differences in the contribution to NOy are found when the data are filtered according to air mass origin. A positive relationship between n-propyl nitrate and peroxypropionyl nitrate was observed over the course of the intensive.

  15. Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer

    NARCIS (Netherlands)

    Zhang, Y.-C.; Prommer, H.; Broers, H.P.; Slomp, C.P.; Greskowiak, J.; Van Der Grift, B.; Van Cappellen, P.

    2013-01-01

    Leaching of nitrate from agricultural land to groundwater and the resulting nitrate pollution are a major environmental problem worldwide. Its impact is often mitigated in aquifers hosting sufficiently reactive reductants that can promote autotrophic denitrification. In the case of pyrite acting as

  16. Model-Based Integration and Analysis of Biogeochemical and Isotopic Dynamics in a Nitrate-Polluted Pyritic Aquifer

    NARCIS (Netherlands)

    Zhang, Y.C.; Prommer, H.; Slomp, C.P.; Broers, H.P.; van der Grift, B.; Passier, H.F.; Greskowiak, J.; Boettcher, M.E.; van Capellen, P.

    2013-01-01

    Leaching of nitrate from agricultural land to groundwater and the resulting nitrate pollution are a major environmental problem worldwide. Its impact is often mitigated in aquifers hosting sufficiently reactive reductants that can promote autotrophic denitrification. In the case of pyrite acting as

  17. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  18. A Distributed Flocking Approach for Information Stream Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Intelligence analysts are currently overwhelmed with the amount of information streams generated everyday. There is a lack of comprehensive tool that can real-time analyze the information streams. Document clustering analysis plays an important role in improving the accuracy of information retrieval. However, most clustering technologies can only be applied for analyzing the static document collection because they normally require a large amount of computation resource and long time to get accurate result. It is very difficult to cluster a dynamic changed text information streams on an individual computer. Our early research has resulted in a dynamic reactive flock clustering algorithm which can continually refine the clustering result and quickly react to the change of document contents. This character makes the algorithm suitable for cluster analyzing dynamic changed document information, such as text information stream. Because of the decentralized character of this algorithm, a distributed approach is a very natural way to increase the clustering speed of the algorithm. In this paper, we present a distributed multi-agent flocking approach for the text information stream clustering and discuss the decentralized architectures and communication schemes for load balance and status information synchronization in this approach.

  19. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    Dey, T.K.; Bindal, R.C.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na 2 SO 4 , CaCl 2 and MgSO 4 ) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl 2 and low rejection for Na 2 SO 4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  20. Investigation of paramagnetic saturation in lanthanum manganese nitrate

    NARCIS (Netherlands)

    Flokstra, Jakob; Meijer, H.C.; Bots, G.J.C.; Verheij, W.A.; van der Marel, L.C.

    1973-01-01

    Paramagnetic saturation of lanthanum manganese nitrate, La2Mn3(NO3)12·24H2O, has been investigated at liquid He temperatures in a static as well as a dynamical way. With the aid of the molecular-field theory the Casimir and Du Pré dispersion and absorption curves are adapted explicitly to the

  1. Ternary systems, consist of erbium nitrates, water and nitrates of pyridines, quinolines

    International Nuclear Information System (INIS)

    Starikova, L.I.; Zhuravlev, E.F.; Khalfina, L.R.

    1979-01-01

    At 25 and 50 deg C investigated is solubility of solid phases in ternary water salt systems: erbium nitrate-pyridine nitrate-water; erbium nitrate-quinoline nitrate-water. Formation of congruently soluble compounds of the Er(NO 3 ) 3 x2C 5 H 5 NxHNO 3 , Er(NO 3 ) 3 x2C 9 H 7 NxHNO 3 x4H 2 O composition is established. X-ray phase and thermogravimetric analyses have been carried out

  2. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  3. Density and electrical conductivity of molten salts. Comparative study of binary mixtures of alkali nitrates with silver nitrate and with thallium nitrate

    International Nuclear Information System (INIS)

    Brillant, S.

    1968-01-01

    The choice of methods and the number of measurements made enable us to give results on the density and electrical conductivity of molten binary mixtures, alkali nitrate and silver nitrate, and alkali nitrate and thallium nitrate, in the form of equations. The deviations from linearity of the volume and the molar conductivity are determined by calculating the corresponding excess values whose variations are analyzed as a function of the Tobolsky parameter. The absence of any relationship in the sign of the entropy and the excess volume is justified. It is shown that the silver and thallium nitrates, in contrast to the thermodynamic properties, behave as the alkali nitrates in so far as the excess conductivity is concerned. This result is confirmed by the study of changes in the activation enthalpy for the partial molar conductivity; this study also shows the particular behaviour of lithium nitrate. (author) [fr

  4. Response of non-added solutes during nutrient addition experiments in streams

    Science.gov (United States)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  5. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?

    Science.gov (United States)

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei

    2016-10-01

    the use of approximately 42 kg N ha(-1) yr(-1) of nitrate from groundwater, which would gradually improve the groundwater quality. Future field studies on nitrate leaching in this area are suggested to investigate water and N dynamics under irrigation rates near 490 mm per season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  7. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress.

    Science.gov (United States)

    Daiber, Andreas; Münzel, Thomas

    2015-10-10

    Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.

  8. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    Science.gov (United States)

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  9. Efficiency of nitrate uptake in spinach : impact of external nitrate concentration and relative growth rate on nitrate influx and efflux

    NARCIS (Netherlands)

    Ter Steege, MW; Stulen, [No Value; Wiersema, PK; Posthumus, F; Vaalburg, W

    1999-01-01

    Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with N-13- and N-15-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration.

  10. Nitrogen dynamics in stream wood samples incubated with [14C]lignocellulose and potassium[15N]nitrate

    International Nuclear Information System (INIS)

    Aumen, N.G.; Bottomley, P.J.; Gregory, S.V.

    1985-01-01

    Surface wood samples obtained from a Douglas fir log incubated in vitro with [ 14 C]lignocellulose in a defined mineral salts medium supplemented with 10 mg of N liter -1 of 15 N-labeled NO 3 - (50 atom % 15 N). Evolution of 14 CO 2 , distribution and isotopic dilution of 15 N, filtrate N concentrations, and the rates of denitrification, N 2 fixation, and respiration were measured at 6, 12, and 18 days of incubation. The organic N content of the lignocellulose-wood sample mixture had increased from 132 μg of N to a maximum of 231 μg of N per treatment after 6 days of incubation. Rates of [ 14 C]lignocellulose decomposition were greatest during the first 6 days and then began to decline over the remaining 12 days. Total CO 2 evolution was also highest at day 6 and declined steadily over the remaining duration of the incubation. Filtrate NH 4 + -N increased from background levels to a final value of 57 μg of N per treatment. Filtrate NO 3 - N completely disappeared by day 6, and organic N showed a slight decline between days 12 and 18. The majority of the 15 N that could be recovered appeared in the particulate organic fraction by day 6 (41 μg of N), and the filtrate NH 4 + N fraction contained 11 μg of 15 N by day 18. The 15 N enrichment values of the filtrate NH 4 + and the inorganic N associated with the particulate fraction had increased to approximately 20 atom % 15 N by 18 days of incubation, whereas the particulate organic fraction reached its highest enrichment by day 6. Measurements of N 2 fixation and denitrification indicated an insignificant gain or loss of N from the experimental system by these processes. The data show that woody debris in stream ecosystems might function as a rapid and efficient sink for exogenous N, resulting in stimulation of wood decomposition and subsequent activation of other N cycling processes

  11. Nitrates and nitrites intoxications’ management

    Directory of Open Access Journals (Sweden)

    Alexandra Trif

    2007-12-01

    Full Text Available The study pointed out the major sources for clinical and subclinical intoxications with nitrates/nitrites (drinking water and nitrates containing fertilizers, circumstances that determine fertilizers to became sources of intoxication (excessive fertilization/consecutive high level of nitrates in fodders, free access of animals to the fertilizers, administration into the diet instead of natrium chloride, factors that determine high nitrates accumulation in fodders despite optimal fertilization (factors related to the plants, soil, clime, harvest methods, storage, agrotechnical measures, nitrates/nitrites toxicity (over 45 ppm nitrates in drinking water, over 0.5 g nitrate/100 g D.M fodder/diet, the factors that influence nitrates/nitrites toxicity ( species, age, rate of feeding, diet balance especially energetically, pathological effects and symptoms (irritation and congestions on digestive tract, resulting diarrhoea, transformation of hemoglobin into methemoglobin determining severe respiratory insufficiency, vascular collapse, low blood pressure inthe acute nitrates intoxication; hypotiroidism, hypovitaminosis A, reproductive disturbances(abortion, low rate of fertility, dead born offspring, diarrhoea and/or respiratory insufficiency in new born e.g. calves, immunosuppression, decrease of milk production in chronic intoxication. There were presented some suggestions concerning management practices to limit nitrate intoxication (analyze of nitrates/nitrites in water and fodders, good management of the situation of risk ,e .g. dilution of the diet with low nitrate content fodders, feeding with balanced diet in energy, protein, minerals and vitamins, accommodation to high nitrate level diet, avoid grazing one week after a frost period, avoid feeding chop green fodders stored a couple of days, monitoring of health status of animals fed with fodders containing nitrates at risk level, a.o..

  12. Sodium nitrate-cerium nitrate-water ternary system at 25 deg C

    International Nuclear Information System (INIS)

    Fedorenko, T.P.; Onishchenko, M.K.

    1978-01-01

    Solubility isotherm of sodium nitrate-cerium nitrate-water system at 25 deg C consists of three crystallization branches of initial salts and double compound of the composition 2NaNO 3 xCe(NO 3 ) 3 x2H 2 O. Sodium nitrate introduced in the solution strengthens complexing. Physico-chemical characteristics are in a good agreement with solubility curve

  13. Characterization and monitoring of 300 Area facility liquid waste streams: 1994 Annual report

    International Nuclear Information System (INIS)

    Manke, K.L.; Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Julya, J.L.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.; Vogel, H.R.

    1995-04-01

    This report summarizes the results of characterizing and monitoring the following sources during calendar year 1994: liquid waste streams from Buildings 306, 320, 324, 326, 331, and 3720 in the 300 Area of Hanford Site and managed by the Pacific Northwest Laboratory; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe). Data were collected from March to December before the sampling system installation was completed. Data from this initial part of the program are considered tentative. Samples collected were analyzed for chemicals, radioactivity, and general parameters. In general, the concentrations of chemical and radiological constituents and parameters in building wastewaters which were sampled and analyzed during CY 1994 were similar to historical data. Exceptions were the occasional observances of high concentrations of chloride, nitrate, and sodium that are believed to be associated with excursions that were occurring when the samples were collected. Occasional observances of high concentrations of a few solvents also appeared to be associated with infrequent building r eases. During calendar year 1994, nitrate, aluminum, copper, lead, zinc, bis(2-ethylhexyl) phthalate, and gross beta exceeded US Environmental Protection Agency maximum contaminant levels

  14. Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011

    Directory of Open Access Journals (Sweden)

    J. L. Fry

    2013-09-01

    Full Text Available At the Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS field campaign in the Colorado front range, July–August 2011, measurements of gas- and aerosol-phase organic nitrates enabled a study of the role of NOx (NOx = NO + NO2 in oxidation of forest-emitted volatile organic compounds (VOCs and subsequent aerosol formation. Substantial formation of peroxy- and alkyl-nitrates is observed every morning, with an apparent 2.9% yield of alkyl nitrates from daytime RO2 + NO reactions. Aerosol-phase organic nitrates, however, peak in concentration during the night, with concentrations up to 140 ppt as measured by both optical spectroscopic and mass spectrometric instruments. The diurnal cycle in aerosol fraction of organic nitrates shows an equilibrium-like response to the diurnal temperature cycle, suggesting some reversible absorptive partitioning, but the full dynamic range cannot be reproduced by thermodynamic repartitioning alone. Nighttime aerosol organic nitrate is observed to be positively correlated with [NO2] × [O3] but not with [O3]. These observations support the role of nighttime NO3-initiated oxidation of monoterpenes as a significant source of nighttime aerosol. Nighttime production of organic nitrates is comparable in magnitude to daytime photochemical production at this site, which we postulate to be representative of the Colorado front range forests.

  15. Hierarchical spatial structure of stream fish colonization and extinction

    Science.gov (United States)

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  16. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    International Nuclear Information System (INIS)

    Argerich, A; Greathouse, E; Johnson, S L; Sebestyen, S D; Rhoades, C C; Knoepp, J D; Adams, M B; Likens, G E; Campbell, J L; McDowell, W H; Scatena, F N; Ice, G G

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among sites across the USA. We found both increasing and decreasing trends in monthly flow-weighted stream nitrate and ammonium concentrations. At a subset of the catchments, we found that the length and period of analysis influenced whether trends were positive, negative or non-significant. Trends also differed among neighboring catchments within several Experimental Forests, suggesting the importance of catchment-specific factors in determining nutrient exports. Over the longest time periods, trends were more consistent among catchments within sites, although there are fewer long-term records for analysis. These findings highlight the critical value of long-term, uninterrupted stream chemistry monitoring at a network of sites across the USA to elucidate patterns of change in nutrient concentrations at minimally disturbed forested sites. (letter)

  17. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or

  18. Reprocessing method of ceramic nuclear fuels in low-melting nitrate molten salts

    International Nuclear Information System (INIS)

    Brambilla, G.; Caporali, G.; Zambianchi, M.

    1976-01-01

    Ceramic nuclear fuel is reprocessed through a method wherein the fuel is dispersed in a molten eutectic mixture of at least two alkali metal nitrates and heated to a temperature in the range between 200 and 300 0 C. That heated mixture is then subjected to the action of a gaseous stream containing nitric acid vapors, preferably in the presence of a catalyst such as sodium fluoride. Dissolved fuel can then be precipitated out of solution in crystalline form by cooling the solution to a temperature only slightly above the melting point of the bath

  19. Understanding the nitrate coordination to Eu3+ ions in solution by potential of mean force calculations

    International Nuclear Information System (INIS)

    Duvail, M.; Guilbaud, Ph.

    2011-01-01

    Coordination of nitrate anions with lanthanoid cations (Ln 3+ ) in water, methanol and octanol-1 has been studied by means of molecular dynamics simulations with explicit polarization. Potential of mean force (PMF) profiles have been calculated for a mono-complex of lanthanoid nitrate (Ln(NO 3 ) 2+ ) in these solvents using umbrella-sampling molecular dynamics. In pure water, no difference in the nitrato coordination to lanthanoids (Nd 3+ , Eu 3+ and Dy 3+ ) is observed, i.e. the nitrate anion prefers the monodentate coordination, which promotes the salt dissociation. Then, the influence of the nature of the solvating molecules on the nitrato coordination to Eu 3+ has been investigated. PMF profiles point out that both monodentate and bidentate coordinations are stable in neat methanol, while in neat octanol, only the bidentate one is. MD simulations of Eu(NO 3 ) 3 in water-octanol mixtures with different concentrations of water have been then performed and confirm the importance of the water molecules' presence on the nitrate ion's coordination mode. (authors)

  20. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  1. Stream instability countermeasures applied at Kansas Department of Transportation highway structures.

    Science.gov (United States)

    2008-11-01

    This project considered stream instability countermeasures used by the Kansas Department of Transportation (KDOT) to protect the highway infrastructure at stream crossings from changes due to the dynamic nature of streams. Site visits were made to 13...

  2. THE DAWNING OF THE STREAM OF AQUARIUS IN RAVE

    International Nuclear Information System (INIS)

    Williams, M. E. K.; Steinmetz, M.; De Jong, R. S.; Minchev, I.; Sharma, S.; Bland-Hawthorn, J.; Parker, Q. A.; Seabroke, G. M.; Helmi, A.; Freeman, K. C.; Binney, J.; Bienayme, O.; Campbell, R.; Fulbright, J. P.; Gibson, B. K.; Gilmore, G. F.; Grebel, E. K.; Munari, U.; Navarro, J. F.; Reid, W.

    2011-01-01

    We identify a new, nearby (0.5kpc ∼ 0 0 and -70 0 0 , with heliocentric line-of-sight velocities V los ∼ -200 km s -1 . The members are outliers in the radial velocity distribution, and the overdensity is statistically significant when compared to mock samples created with both the Besancon Galaxy model and newly developed code Galaxia. The metallicity distribution function and isochrone fit in the log g-T eff plane suggest that the stream consists of a 10 Gyr old population with [M/H] ∼ -1.0. We explore relations to other streams and substructures, finding that the stream cannot be identified with known structures: it is a new, nearby substructure in the Galaxy's halo. Using a simple dynamical model of a dissolving satellite galaxy, we account for the localization of the stream. We find that the stream is dynamically young and therefore likely the debris of a recently disrupted dwarf galaxy or globular cluster. The Aquarius stream is thus a specimen of ongoing hierarchical Galaxy formation, rare for being right in the solar suburb.

  3. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or without

  4. Tracing nitrate-nitrogen sources and modifications in a stream impacted by various land uses, South Portugal

    NARCIS (Netherlands)

    Yevenes, M.A.; Soetaert, K.; Mannaerts, C.M.

    2016-01-01

    The identification of nitrate-nitrogen (NO3-N) origin is important in the control of surface and ground water quality. These are the main sources of available drinking water. Stable isotopes (15N and 18O) for NO3-N and along with a 1-D reactive transport model were used to study the origin and

  5. Tracing Nitrate-Nitrogen Sources and Modifications in a Stream Impacted by Various Land Uses, South Portugal

    NARCIS (Netherlands)

    Yevenes, M.A.; Soetaert, K.; Mannaerts, C.M.

    2016-01-01

    The identification of nitrate-nitrogen (NO3–N) origin is important in the control of surfaceand ground water quality. These are the main sources of available drinking water. Stable isotopes(15N and 18O) for NO3–N and along with a 1-D reactive transport model were used to study the originand

  6. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Science.gov (United States)

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  7. Nitrate transport and transformation processes in unsaturated porous media

    Science.gov (United States)

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil

  8. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  9. Regional meteorological drivers and long term trends of winter-spring nitrate dynamics across watersheds in northeastern North America

    Science.gov (United States)

    Crossman, Jill; Eimers, M Catherine; Casson, Nora J.; Burns, Douglas A.; Campbell, John L.; Likens, Gene E; Mitchell, Myron J; Nelson, Sarah J.; Shanley, James B.; Watmough, Shaun A.; Webster, Kara L

    2016-01-01

    This study evaluated the contribution of winter rain-on-snow (ROS) events to annual and seasonal nitrate (N-NO3) export and identified the regional meteorological drivers of inter-annual variability in ROS N-NO3 export (ROS-N) at 9 headwater streams located across Ontario, Canada and the northeastern United States. Although on average only 3.3 % of annual precipitation fell as ROS during winter over the study period, these events contributed a significant proportion of annual and winter N-NO3 export at the majority of sites (average of 12 and 42 %, respectively); with the exception of the most northern catchment, where total winter precipitation was exceptionally low (average 77 mm). In years with a greater magnitude of ROS events, the timing of the peak N-NO3 export period (during spring melt) was redistributed to earlier in the year. Variability in ROS frequency and magnitude amongst sites was high and a generalised linear model demonstrated that this spatial variability could be explained by interactive effects between regional and site-specific drivers. Snowpack coverage was particularly important for explaining the site-specific ROS response. Specifically, ROS events were less common when higher temperatures eliminated snow cover despite increasing the proportion of winter rainfall, whereas ROS event frequency was greater at sites where sufficient snow cover remained. This research suggests that catchment response to changes in N deposition is sensitive to climate change; a vulnerability which appears to vary in intensity throughout the seasonally snow-covered temperate region. Furthermore, the sensitivity of stream N-NO3 export to ROS events and potential shifts (earlier) in the timing of N-NO3 export relative to other nutrients affect downstream nutrient stoichiometry and the community composition of phytoplankton and other algae.

  10. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  11. Interaction in triple systems of neodymium nitrate, water and nitrates of trimethylammonium and tetramethylammonium

    International Nuclear Information System (INIS)

    Boeva, M.K.; Zhuravlev, E.F.

    1977-01-01

    At 20 and 40 deg C the mutual solubility is studied in systems neodymium nitrate-water-trimethylamine nitrate and neodymium nitrate-water-tetramethylammonium nitrate. It has been established that the above systems belong to those with chemical interaction of the components. The compounds have been isolated preparatively, their composition has been confirmed analytically, and their thermal behaviour studied

  12. Nitrate accumulation in spinach

    NARCIS (Netherlands)

    Steingröver, Eveliene Geertruda

    1986-01-01

    Leafy vegetables, like spinach, may contain high concentrations of nitrate. In the Netherlands, about 75% of mean daily intake of nitrate orginates from the consumption of vegatables. Hazards to human health are associated with the reduction of nitrate to nitrite. Acute nitrite poisoning causes

  13. In-stream nutrient uptake kinetics along stream size and development gradients in a rapidly developing mountain resort watershed

    Science.gov (United States)

    Covino, T.; McGlynn, B.; McNamarra, R.; Gardner, K.

    2012-04-01

    Land use / land cover (LULC) change including mountain resort development often lead to increased nutrient loading to streams, however the potential influence on stream ecosystem nutrient uptake kinetics and transport remain poorly understood. Given the deleterious impacts elevated nutrient loading can have on aquatic ecosystems, it is imperative to improve understanding of nutrient retention capacities across stream scales and watershed development intensities. We performed seventeen nutrient addition experiments on six streams across the West Fork Gallatin Watershed, Montana, USA, to quantify nitrogen (N) uptake kinetics and retention dynamics across stream sizes (1st to 4th order) and along a mountain resort development gradient. We observed that stream N uptake kinetics and spiraling parameters varied across streams of different development intensity and scale. In more developed watersheds we observed a fertilization affect, however, none of the streams exhibited saturation with respect to N. Additionally, we observed that elevated loading led to increased biomass and retentive capacities in developed streams that helped maintain export at low levels during baseflow. Our results indicate that LULC can enhance in-stream uptake of limiting nutrients and highlight the value of characterizing uptake kinetic curves from ambient to saturation.

  14. Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions

    Science.gov (United States)

    Covino, T. P.; McGlynn, B. L.; McNamara, R.

    2009-12-01

    Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.

  15. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    Science.gov (United States)

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  16. Multi-stream portrait of the Cosmic web

    Science.gov (United States)

    Ramachandra, Nesar; Shandarin, Sergei

    2016-03-01

    We report the results of the first study of the multi-stream environment of dark matter haloes in cosmological N-body simulations in the ΛCDM cosmology. The full dynamical state of dark matter can be described as a three-dimensional sub-manifold in six-dimensional phase space - the dark matter sheet. In our study we use a Lagrangian sub-manifold x = x (q , t) (where x and q are co-moving Eulerian and Lagrangian coordinates respectively), which is dynamically equivalent to the dark matter sheet but is more convenient for numerical analysis. Our major results can be summarized as follows. At the resolution of the simulation, the cosmic web represents a hierarchical structure: each halo is embedded in the filamentary framework of the web predominantly at the filament crossings, and each filament is embedded in the wall like fabric of the web at the wall crossings. Locally, each halo or sub-halo is a peak in the number of streams field. The number of streams in the neighbouring filaments is higher than in the neighbouring walls. The walls are regions where number of streams is equal to three or a few. Voids are uniquely defined by the local condition requiring to be a single-stream flow region.

  17. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    Science.gov (United States)

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  18. Orientation study of northern Arkansas. National Uranium Resource Evaluation program. Hydrogeochemical and stream-sediment reconnaissance

    International Nuclear Information System (INIS)

    Steele, K.F.

    1982-08-01

    Samples of ground water, stream water, and sediment were collected at 335 sites for an orientation study of northern Arkansas. Each stream site consisted of both sediment and stream water (if available), and each sediment sample was sieved to produce four size fractions for analysis. The orientation area included all or parts of Benton, Carroll, Madison, and Washington Counties. Several black shales, including the Chattanooga Shale, crop out in this area, and the Sylamore Sandstone Member has local radiation anomalies. The following analyses were performed for all water samples (both ground water and stream water): pH, conductivity, total alkalinity, temperature, nitrate, ammonia, phosphate and sulfate. Additional water was collected, filtered, and reacted with a resin that was then analyzed by neutron activation analysis for U, Br, Cl, F, Mn, Na, Al, and Dy. In addition, ground water samples were analyzed for He. The stream sediments were analyzed by neutron activation for U, Th, Hf, Ce, Fe, Mn, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu

  19. Nitrate radical oxidation of γ-terpinene: hydroxy nitrate, total organic nitrate, and secondary organic aerosol yields

    Science.gov (United States)

    Slade, Jonathan H.; de Perre, Chloé; Lee, Linda; Shepson, Paul B.

    2017-07-01

    Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield = 4(+1/-3) %, total ON yield = 14(+3/-2) %, and SOA yield ≤ 10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography-mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest.

  20. Integrative Dynamic Reconfiguration in a Parallel Stream Processing Engine

    DEFF Research Database (Denmark)

    Madsen, Kasper Grud Skat; Zhou, Yongluan; Cao, Jianneng

    2017-01-01

    Load balancing, operator instance collocations and horizontal scaling are critical issues in Parallel Stream Processing Engines to achieve low data processing latency, optimized cluster utilization and minimized communication cost respectively. In previous work, these issues are typically tackled...... solution called ALBIC, which support general jobs. We implement the proposed techniques on top of Apache Storm, an open-source Parallel Stream Processing Engine. The extensive experimental results over both synthetic and real datasets show that our techniques clearly outperform existing approaches....

  1. High temperature interaction studies on equimolar nitrate mixture of uranyl nitrate hexahydrate and gadolinium nitrate hexahydrate

    International Nuclear Information System (INIS)

    Kalekar, Bhupesh B.; Raje, Naina; Reddy, A.V.R.

    2015-01-01

    Rare earths including gadolinium form a sizeable fraction of the fission products in the nuclear fission of fissile material in the reactor. These fission products can interact with uranium dioxide fuel and can form various compounds which can alter the thermal behavior of the fuel. The mixed oxide formed due to the high temperature interactions of mixture of uranyl nitrate hexahydrate (UNH) and gadolinium nitrate hexahydrate (GdNH) has been studied using thermal and X- ray diffraction techniques. The equimolar mixture of UNH and GdNH was prepared by mixing the weighed amount of individual nitrates and grinding gently with mortar and pestle. Thermogravimetry (TG) measurements were carried out by separately heating 100 mg of mixture and individual nitrates at heating rate of 10°C min -1 using Netzsch thermal analyzer (Model No.: STA 409 PC Luxx) in high purity nitrogen atmosphere with a flow rate of 120 mL min -1 . The XRD measurement was carried out on a Philips X-ray diffractometer (Model PW1710) using nickel-filtered Cu-Kα radiation

  2. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    Energy Technology Data Exchange (ETDEWEB)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif, E-mail: e.erhan@gyte.edu.tr

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 {mu}g/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: Black-Right-Pointing-Pointer K{sub 3}Fe(CN){sub 6} has been used for the first time as mediator for nitrate reductase. Black-Right-Pointing-Pointer Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. Black-Right-Pointing-Pointer Analytical parameters were better than standard nitrate analysis methods.

  3. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    International Nuclear Information System (INIS)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44–1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: ► K 3 Fe(CN) 6 has been used for the first time as mediator for nitrate reductase. ► Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. ► Analytical parameters were better than standard nitrate analysis methods.

  4. Stream biogeochemical resilience in the age of Anthropocene

    Science.gov (United States)

    Dong, H.; Creed, I. F.

    2017-12-01

    Recent evidence indicates that biogeochemical cycles are being pushed beyond the tolerance limits of the earth system in the age of the Anthropocene placing terrestrial and aquatic ecosystems at risk. Here, we explored the question: Is there empirical evidence of global atmospheric changes driving losses in stream biogeochemical resilience towards a new normal? Stream biogeochemical resilience is the process of returning to equilibrium conditions after a disturbance and can be measured using three metrics: reactivity (the highest initial response after a disturbance), return rate (the rate of return to equilibrium condition after reactive changes), and variance of the stationary distribution (the signal to noise ratio). Multivariate autoregressive models were used to derive the three metrics for streams along a disturbance gradient - from natural systems where global drivers would dominate, to relatively managed or modified systems where global and local drivers would interact. We observed a loss of biogeochemical resilience in all streams. The key biogeochemical constituent(s) that may be driving loss of biogeochemical resilience were identified from the time series of the stream biogeochemical constituents. Non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals were analyzed to determine if there was an increase in SD over time that would indicate a pending shift towards a new normal. We observed that nitrate-N and total phosphorus showed behaviours indicative of a pending shift in natural and managed forest systems, but not in agricultural systems. This study provides empirical support that stream ecosystems are showing signs of exceeding planetary boundary tolerance levels and shifting towards a "new normal" in response to global changes, which can be exacerbated by local management activities. Future work will consider

  5. Purification of alkali metal nitrates

    Science.gov (United States)

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  6. Modelling nitrogen dynamics and distributions in the River Tweed, Scotland: an application of the INCA model

    Directory of Open Access Journals (Sweden)

    H. P. Jarvie

    2002-01-01

    Full Text Available The INCA (Integrated Nitrogen in Catchments model was applied to the River Tweed in the Scottish Borders, a large-scale (4400km2, spatially heterogeneous catchment, draining a wide range of agricultural land-use types, and which contributes approximately 20% of UK river flows to the North Sea. The model was calibrated for the first four years' data record (1994 to 1997 and tested over the following three years (1998 to 2000. The model calibration and testing periods incorporated a high degree of variability in climatic conditions and river flows within the Tweed catchment. The ability of the INCA model to reproduce broad-scale spatial patterns and seasonal dynamics in river flows and nitrate concentrations suggests that the processes controlling first order variability in river water nitrate concentrations have been represented successfully within the model. The tendency of the model to overestimate summer/early autumn baseflow nitrate concentrations during dry years may be linked to the operation of aquatic plant uptake effects. It is, therefore, suggested that consideration be given to incorporating a spatially and temporally variable in-stream plant uptake term for the application of INCA to lowland eutrophic rivers. Scenarios to examine possible impacts of environmental change on nitrate concentrations on the Tweed are examined. These include the effects of (i implementing different recommendations for fertiliser use and land use change under the Nitrate Sensitive Areas (NSA Scheme and the Scottish Code of Good Agricultural Practice, (ii worst case scenario changes linked to a dramatic reduction in livestock numbers as a result of a crisis in UK livestock farming and (iii changes in atmospheric nitrogen deposition. Keywords: Nitrate, nitrogen, modelling, Tweed, INCA

  7. Spatially-Distributed Stream Flow and Nutrient Dynamics Simulations Using the Component-Based AgroEcoSystem-Watershed (AgES-W) Model

    Science.gov (United States)

    Ascough, J. C.; David, O.; Heathman, G. C.; Smith, D. R.; Green, T. R.; Krause, P.; Kipka, H.; Fink, M.

    2010-12-01

    The Object Modeling System 3 (OMS3), currently being developed by the USDA-ARS Agricultural Systems Research Unit and Colorado State University (Fort Collins, CO), provides a component-based environmental modeling framework which allows the implementation of single- or multi-process modules that can be developed and applied as custom-tailored model configurations. OMS3 as a “lightweight” modeling framework contains four primary foundations: modeling resources (e.g., components) annotated with modeling metadata; domain specific knowledge bases and ontologies; tools for calibration, sensitivity analysis, and model optimization; and methods for model integration and performance scalability. The core is able to manage modeling resources and development tools for model and simulation creation, execution, evaluation, and documentation. OMS3 is based on the Java platform but is highly interoperable with C, C++, and FORTRAN on all major operating systems and architectures. The ARS Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Project Plan provides detailed descriptions of ongoing research studies at 14 benchmark watersheds in the United States. In order to satisfy the requirements of CEAP WAS Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model development approach was initiated to take advantage of OMS3 modeling framework capabilities. Specific objectives of this study were to: 1) disaggregate and refactor various agroecosystem models (e.g., J2K-S, SWAT, WEPP) and implement hydrological, N dynamics, and crop growth science components under OMS3, 2) assemble a new modular watershed scale model for fully-distributed transfer of water and N loading between land units and stream channels, and 3) evaluate the accuracy and applicability of the modular watershed model for estimating stream flow and N dynamics. The

  8. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  9. Assessing the chemical contamination dynamics in a mixed land use stream system

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo; McKnight, Ursula S.; Rønde, Vinni

    2017-01-01

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production......, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical...... stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality...

  10. Americium removal from nitric acid waste streams

    International Nuclear Information System (INIS)

    Muscatello, A.C.; Navratil, J.D.

    1986-01-01

    Separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve americium removal from nitric acid (7M) waste streams generated by plutonium purification operations. Partial neutralization of the acid waste followed by solid supported liquid membranes (SLM) are useful in transferring and concentrating americium from nitrate solutions. Specifically, DHDECMP (dihexyl-N,N-diethylcarbamoylmethylphosphonate) supported on Accurel polypropylene hollow fibers assembled in modular form transfers >95% of the americium from high nitrate (6.9M), low acid (0.1M) feeds into 0.25M oxalic acid stripping solution. Maximum permeabilities were observed to be 0.001 cm/sec, consistent with typical values for other systems. The feed:strip volume ratio shows an inverse relationship to the fraction of metal ion transferred. Cation exchangers may be used to concentrate americium from the strip solution. Furthermore, O0D (iB)CMPO (or CMPO) (octylphenyl-N-N-diisobutylcarbamoylmethylphosphine oxide) has been tested in an extraction chromatography mode. Preliminary results show CMPO to be effective in removing americium if the feed is neutralized to 1.0M acidity and iron(III) is complexed with 0.20M oxalic acid. 3 figs

  11. Waterproofing Materials for Ammonium Nitrate

    OpenAIRE

    R.S. Damse

    2004-01-01

    This study explores the possibility of overcoming the problem of hygroscopicity of ammonium nitrate by coating the particles with selected waterproofing materials. Gravimetric analysis ofthe samples of ammonium nitrate coated with eight different waterproofing materials, vis-a-vis, uncoated ammonium nitrate, were conducted at different relative humidity and exposuretime. The results indicate that mineral jelly is the promising waterproofing material for ammonium nitrate among the materials te...

  12. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    International Nuclear Information System (INIS)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R.

    2004-01-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales

  13. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales.

  14. Impacts of management and climate change on nitrate leaching in a forested karst area.

    Science.gov (United States)

    Dirnböck, Thomas; Kobler, Johannes; Kraus, David; Grote, Rüdiger; Kiese, Ralf

    2016-01-01

    Forest management and climate change, directly or indirectly, affect drinking water resources, both in terms of quality and quantity. In this study in the Northern Limestone Alps in Austria we have chosen model calculations (LandscapeDNDC) in order to resolve the complex long-term interactions of management and climate change and their effect on nitrogen dynamics, and the consequences for nitrate leaching from forest soils into the karst groundwater. Our study highlights the dominant role of forest management in controlling nitrate leaching. Both clear-cut and shelterwood-cut disrupt the nitrogen cycle to an extent that causes peak concentrations and high fluxes into the seepage water. While this effect is well known, our modelling approach has revealed additional positive as well as negative impacts of the expected climatic changes on nitrate leaching. First, we show that peak nitrate concentrations during post-cutting periods were elevated under all climate scenarios. The maximal effects of climatic changes on nitrate concentration peaks were 20-24 mg L(-1) in 2090 with shelterwood or clear-cut management. Second, climate change significantly decreased the cumulative nitrate losses over full forest rotation periods (by 10-20%). The stronger the expected temperature increase and precipitation decrease (in summer), the lesser were the observed nitrate losses. However, mean annual seepage water nitrate concentrations and cumulative nitrate leaching were higher under continuous forest cover management than with shelterwood-cut and clear-cut systems. Watershed management can thus be adapted to climate change by either reducing peak concentrations or long-term loads of nitrate in the karst groundwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hydrogeological and multi-isotopic approach to define nitrate pollution and denitrification processes in a coastal aquifer (Sardinia, Italy)

    Science.gov (United States)

    Pittalis, Daniele; Carrey, Raul; Da Pelo, Stefania; Carletti, Alberto; Biddau, Riccardo; Cidu, Rosa; Celico, Fulvio; Soler, Albert; Ghiglieri, Giorgio

    2018-02-01

    Agricultural coastal areas are frequently affected by the superimposition of various processes, with a combination of anthropogenic and natural sources, which degrade groundwater quality. In the coastal multi-aquifer system of Arborea (Italy)—a reclaimed morass area identified as a nitrate vulnerable zone, according to Nitrate Directive 91/676/EEC—intensive agricultural and livestock activities contribute to substantial nitrate contamination. For this reason, the area can be considered a bench test for tuning an appropriate methodology aiming to trace the nitrate contamination in different conditions. An approach combining environmental isotopes, water quality and hydrogeological indicators was therefore used to understand the origins and attenuation mechanisms of nitrate pollution and to define the relationship between contaminant and groundwater flow dynamics through the multi-aquifer characterized by sandy (SHU), alluvial (AHU), and volcanic hydrogeological (VHU) units. Various groundwater chemical pathways were consistent with both different nitrogen sources and groundwater dynamics. Isotope composition suggests a mixed source for nitrate (organic and synthetic fertilizer), especially for the AHU and SHU groundwater. Moreover, marked heterotrophic denitrification and sulfate reduction processes were detected; although, for the contamination related to synthetic fertilizer, the attenuation was inefficient at removing NO3 - to less than the human consumption threshold of 50 mg/L. Various factors contributed to control the distribution of the redox processes, such as the availability of carbon sources (organic fertilizer and the presence of lagoon-deposited aquitards), well depth, and groundwater flow paths. The characterization of these processes supports water-resource management plans, future actions, and regulations, particularly in nitrate vulnerable zones.

  16. Coupling nutrient uptake and energy flow in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Thomas, Steve [University of Nebraska

    2006-08-01

    Nutrient cycling and energy flow in ecosystems are tightly linked through the metabolic processes of organisms. Greater uptake of inorganic nutrients is expected to be associated with higher rates of metabolism [gross primary production (GPP) and respiration (R)], due to assimilatory demand of both autotrophs and heterotrophs. However, relationships between uptake and metabolism should vary with the relative contribution of autochthonous and allochthonous sources of organic matter. To investigate the relationship between metabolism and nutrient uptake, we used whole-stream and benthic chamber methods to measure rates of nitrate-nitrogen (NO{sub 3}-N) uptake and metabolism in four headwater streams chosen to span a range of light availability and therefore differing rates of GPP and contributions of autochthonous carbon. We coupled whole-stream metabolism with measures of NO{sub 3}-N uptake conducted repeatedly over the same stream reach during both day and night, as well as incubating benthic sediments under both light and dark conditions. NO{sub 3}-N uptake was generally greater in daylight compared to dark conditions, and although day-night differences in whole-stream uptake were not significant, light-dark differences in benthic chambers were significant at three of the four sites. Estimates of N demand indicated that assimilation by photoautotrophs could account for the majority of NO{sub 3}-N uptake at the two sites with relatively open canopies. Contrary to expectations, photoautotrophs contributed substantially to NO{sub 3}-N uptake even at the two closed-canopy sites, which had low values of GPP/R and relied heavily on allochthonous carbon to fuel R.

  17. Contextualizing Wetlands Within a River Network to Assess Nitrate Removal and Inform Watershed Management

    Science.gov (United States)

    Czuba, Jonathan A.; Hansen, Amy T.; Foufoula-Georgiou, Efi; Finlay, Jacques C.

    2018-02-01

    Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network-based model that quantifies nitrate-nitrogen and organic carbon concentrations through a wetland-river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data-rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013-2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed-scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.

  18. Chemical and isotopic evolution of a layered eastern U.S. snowpack and its relation to stream-water composition

    Science.gov (United States)

    Shanley, J.B.; Kendall, C.; Albert, M.R.; Hardy, J.P.

    1995-01-01

    The chemical, isotopic, and morphologic evolution of a layered snowpack was investigated during the winter of 1993-94 at Sleepers River Research Watershed in Danville, Vermont. The snowpack was monitored at two small basins: a forested basin at 525 m elevation, and an agricultural basin at 292 m elevation. At each site, the snowpack morphology was characterized and individual layers were sampled seven times during the season. Nitrate and 8d18O profiles in the snowpack remained relatively stable until peak accumulation in mid-March, except near the snow surface, where rain-on-snow events caused water and nitrate movement down to impeding ice layers. Subsequently, water and nitrate moved more readily through the ripening snowpack. As the snowpack evolved, combined processes of preferential ion elution, isotopic fractionation, and infiltration of isotopically heavy rainfall caused the pack to become depleted in solutes and isotopically enriched. The release of nitrate and isotopically depleted water was reflected in patterns of nitrate concentrations and ??18O of meltwater and stream water. Results supported data from the previous year which suggested that streamflow in the forested basin during snowmelt was dominated by groundwater discharge.

  19. Point-Source Contributions to the Water Quality of an Urban Stream

    Science.gov (United States)

    Little, S. F. B.; Young, M.; Lowry, C.

    2014-12-01

    Scajaquada Creek, which runs through the heart of the city of Buffalo, is a prime example of the ways in which human intervention and local geomorphology can impact water quality and urban hydrology. Beginning in the 1920's, the Creek has been partially channelized and connected to Buffalo's combined sewer system (CSS). At Forest Lawn Cemetery, where this study takes place, Scajaquada Creek emerges from a 3.5-mile tunnel built to route stream flow under the city. Collocated with the tunnel outlet is a discharge point for Buffalo's CSS, combined sewer outlet (CSO) #53. It is at this point that runoff and sanitary sewage discharge regularly during rain events. Initially, this study endeavored to create a spatial and temporal picture for this portion of the Creek, monitoring such parameters as conductivity, dissolved oxygen, pH, temperature, and turbidity, in addition to measuring Escherichia coli (E. coli) concentrations. As expected, these factors responded directly to seasonality, local geomorphology, and distance from the point source (CSO #53), displaying a overall, linear response. However, the addition of nitrate and phosphate testing to the study revealed an entirely separate signal from that previously observed. Concentrations of these parameters did not respond to location in the same manner as E. coli. Instead of decreasing with distance from the CSO, a distinct periodicity was observed, correlating with a series of outflow pipes lining the stream banks. It is hypothesized that nitrate and phosphate occurring in this stretch of Scajaquada Creek originate not from the CSO, but from fertilizers used to maintain the lawns within the subwatershed. These results provide evidence of the complexity related to water quality issues in urban streams as a result of point- and nonpoint-source hydrologic inputs.

  20. Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado front range

    Science.gov (United States)

    Miller, Matthew P.; McKnight, Diane M.; Cory, R.M.; Williams, Mark W.; Runkel, Robert L.

    2006-01-01

    The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (?? ??? 10-3 s -1). Parallel factor analysis of fluorescence spectra was used to quantify the redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (?? = 6.5 ?? 10-3 s -1) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (?? = 1.2 ?? 10-3 s-1) and production of nitrate (?? = -1.0 ?? 10-3 s-1) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale. ?? 2006 American Chemical Society.

  1. Criticality parameters for uranyl nitrate or plutonium nitrate systems in tributyl phosphate/kerosine and water

    International Nuclear Information System (INIS)

    Weber, W.

    1985-01-01

    This report presents the calculated values of smallest critical masses and volumina and neutron physical parameters for uranyl nitrate (3, 4, 5% U-235) or plutonium nitrate (5% Pu-240), each in a 30 per cent solution of tributyl phosphate (TBP)/kerosine. For the corresponding nitrate-water solutions, newly calculated results are presented together with a revised solution density model. A comparison of the data shows to what extent the criticality of nitrate-TBP/kerosine systems can be assessed on the basis of nitrate-water parameters, revealing that such data can be applied to uranyl nitrate/water systems, taking into account that the smallest critical mass of uranyl nitrate-TBP/kerosine systems, up to a 5 p.c. U-235 enrichment, is by 4.5 p.c. at the most smaller than that of UNH-water solutions. Plutonium nitrate (5% Pu-240) in the TBP/kerosine solution will have a smallest critical mass of up to 7 p.c. smaller, as compared with the water data. The suitability of the computing methods and cross-sections used is verified by recalculating experiments carried out to determine the lowest critical enrichment of uranyl nitrate. The calculated results are well in agreement with experimental data. The lowest critical enrichment is calculated to be 2.10 p.c. in the isotope U-235. (orig.) [de

  2. Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults.

    Science.gov (United States)

    Jonvik, Kristin L; Nyakayiru, Jean; Pinckaers, Philippe Jm; Senden, Joan Mg; van Loon, Luc Jc; Verdijk, Lex B

    2016-05-01

    Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 μmol/L; beetroot juice: 597 ± 23 μmol/L; rocket salad beverage: 584 ± 24 μmol/L; spinach beverage: 584 ± 23 μmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate

  3. Raman spectroscopic study of the aging and nitration of actinide processing anion-exchange resins in concentrated nitric acid

    International Nuclear Information System (INIS)

    Buscher, C. T.; Donohoe, R. J.; Mecklenburg, S. L.; Berg, J. M.; Tait, C. D.; Huchton, K. M.; Morris, D. E.

    1999-01-01

    Degradation of two types of anion exchange resins, Dowex 11 and Reillex HPQ, from the action of concentrated nitric acid (4 to 12 M) and radiolysis [from depleted uranium as UO 2 2+ nitrate species and 239 Pu as Pu(IV) nitrate species] was followed as a function of time with Raman vibrational spectroscopy. Elevated temperatures (∼50 degree sign C) were used in the absence of actinide metal loading to simulate longer exposures of the resin to a HNO 3 process stream and waste storage conditions. In the absence of actinide loading, only minor changes in the Dowex resin at acid concentrations ≤10 M were observed, while at 12 M acid concentration, the emergence of a Raman peak at 1345 cm-1 indicates the addition of nitro functional groups to the resin. Similar studies with the Reillex resin show it to be more resistant to nitric acid attack at all acid concentrations. Incorporation of weakly radioactive depleted uranium as the UO 2 2+ nitrate species to the ion-exchange sites of Dowex 11 under differing nitric acid concentrations (6 to 12 M) at room temperature showed no Raman evidence of resin degradation or nitration, even after several hundred days of contact. In contrast, Raman spectra for Dowex 11 in the presence of 239 Pu as Pu(IV) nitrate species reveal numerous changes indicating resin alterations, including a new mode at 1345 cm-1 consistent with a Pu(IV)-nitrate catalyzed addition of nitro groups to the resin backbone. (c) 2000 Society for Applied Spectroscopy

  4. Contaminant Dynamics and Trends in Hyperalkaline Urban Streams

    Science.gov (United States)

    Riley, Alex; Mayes, William

    2015-04-01

    Streams in post-industrial urban areas can have multiple contemporary and historic pressures impacting upon their chemical and ecological status. This paper presents analysis of long term data series (up to 36 years in length) from two small streams in northern England (catchment areas 0.5-0.6km2). Around 3.5 million m3 of steel making slags and other wastes were deposited in the headwater areas of the Howden Burn and Dene Burn in northeast England up to the closure of the workings in the early 1980s. This has led to streams draining from the former workings which have a hyperalkaline ambient pH (mean of 10.3 in both streams), elevated alkalinity (up to 487 mg/L as CaCO3) from leaching of lime and other calcium oxides / silicates within the slag, and enrichment of some trace elements (e.g. aluminium (Al), lithium (Li) and zinc (Zn)) including those which form oxyanions mobile at high pH such as vanadium (V). The high ionic strength of the waters and calcium enrichment also leads to waters highly supersaturated with calcium carbonate. Trace contaminant concentrations are strongly positively correlated, and concentrations generally diminish with increased flow rate suggesting the key source of metals in the system is the highly alkaline groundwater draining from the slag mounds. Some contaminants (notably Cr and ammonium) increase with high flow suggesting sources related to urban runoff and drainage from combined sewer overflows into one of the catchments. Loading estimates instream show that many of the contaminants (e.g. Al, V and Zn) are rapidly attenuated in secondary calcium carbonate-dominated deposits that precipitate vigorously on the streambeds with rates of up to 250 g CaCO3/m2/day. These secondary sinks limit the mobility of many contaminants in the water column, while concentrations in secondary deposits are relatively low given the rapid rates at which Ca is also attenuated. Long-term trend analysis showed modest declines in calcium and alkalinity over

  5. Microbial and biogeochemical responses to projected future nitrate enrichment in the California upwelling system

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2014-11-01

    Full Text Available Coastal California is a dynamic upwelling region where nitrogen (N and iron (Fe can both limit productivity and influence biogeochemistry over different spatial and temporal scales. With global change, the flux of nitrate from upwelling is expected to increase over the next century, potentially driving additional oceanic regions toward Fe limitation. In this study we explored the effect of changes in Fe/N ratio on native phytoplankton from five currently Fe-replete sites near the major California upwelling centers at Bodega Bay and Monterey Bay using nutrient addition incubation experiments. Despite the high nitrate levels (13-30 M in the upwelled water, phytoplankton at three of the five sites showed increased growth when 10 M nitrate was added. None of the sites showed enhanced growth following addition of 10 nM Fe. Nitrate additions favored slow sinking single-celled diatoms over faster sinking chain-forming diatoms, suggesting that future increases in nitrate flux could affect carbon and silicate export and alter grazer populations. In particular, solitary cells of Cylindrotheca were more abundant than the toxin-producing genus Pseudonitzschia following nitrate addition. These responses suggest the biogeochemistry of coastal California could change in response to future increases in nitrate, and multiple stressors like ocean acidification and hypoxia may further result in ecosystem shifts.

  6. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  7. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    OpenAIRE

    Samuelsson, M O

    1985-01-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sod...

  8. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Satya N., E-mail: satyanarayantripathy@gmail.com; Wojnarowska, Zaneta; Knapik, Justyna; Paluch, Marian [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland); Shirota, Hideaki [Department of Nanomaterial Science and Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Biswas, Ranjit [Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India)

    2015-05-14

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup −1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  9. Dimensional stability under wet curing of mortars containing high amounts of nitrates and phosphates

    International Nuclear Information System (INIS)

    Benard, P.; Cau Dit Coumes, C.; Garrault, S.; Nonat, A.; Courtois, S.

    2008-01-01

    Investigations were carried out in order to solidify in cement some aqueous streams resulting from nuclear decommissioning processes and characterized by a high salinity (300 g/L), as well as important concentrations of nitrate (150-210 g/L) and phosphate ions (0-50 g/L). Special attention was paid to the influence of these compounds on the dimensional variations under wet curing of simulated solidified waste forms. The length changes of mortars containing nitrate salts only (KNO 3 , NaNO 3 ) were shown to be governed by a concentration effect which involved osmosis: the higher their concentration in the mixing solution, the higher the swelling. The expansion of mortars containing high amounts of phosphates (≥ 30 g/L in the mixing solution) was preceded by a shrinkage which increased with the phosphate concentration, and which could be suppressed by seeding the cement used with hydroxyapatite crystals. This transitory shrinkage was attributed to the conversion into hydroxyapatite of a precursor readily precipitated in the cement paste after mixing

  10. Twitter and Non-Elites: Interpreting Power Dynamics in the Life Story of the (#)BRCA Twitter Stream.

    Science.gov (United States)

    Vicari, Stefania

    2017-09-01

    In May 2013 and March 2015, actress Angelina Jolie wrote in the New York Times about her choice to undergo preventive surgery. In her two op-eds, she explained that - as a carrier of the BRCA1 gene mutation - preventive surgery was the best way to lower her heightened risk of developing breast and ovarian cancer. By applying a digital methods approach to BRCA-related tweets from 2013 and 2015, before, during, and after the exposure of Jolie's story, this study maps and interprets Twitter discursive dynamics at two time points of the BRCA Twitter stream. Findings show an evolution in curation and framing dynamics occurring between 2013 and 2015, with individual patient advocates replacing advocacy organizations as top curators of BRCA content and coming to prominence as providers of specialist illness narratives. These results suggest that between 2013 and 2015, Twitter went from functioning primarily as an organization-centered news reporting mechanism, to working as a crowdsourced specialist awareness system. This article advances a twofold contribution. First, it points at Twitter's fluid functionality for an issue public and suggests that by looking at the life story-rather than at a single time point-of an issue-based Twitter stream, we can track the evolution of power roles underlying discursive practices and better interpret the emergence of non-elite actors in the public arena. Second, the study provides evidence of the rise of activist cultures that rely on fluid, non-elite, collective, and individual social media engagement.

  11. Nitrate leaching index

    Science.gov (United States)

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  12. A Distributed Dynamic Super Peer Selection Method Based on Evolutionary Game for Heterogeneous P2P Streaming Systems

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2013-01-01

    Full Text Available Due to high efficiency and good scalability, hierarchical hybrid P2P architecture has drawn more and more attention in P2P streaming research and application fields recently. The problem about super peer selection, which is the key problem in hybrid heterogeneous P2P architecture, is becoming highly challenging because super peers must be selected from a huge and dynamically changing network. A distributed super peer selection (SPS algorithm for hybrid heterogeneous P2P streaming system based on evolutionary game is proposed in this paper. The super peer selection procedure is modeled based on evolutionary game framework firstly, and its evolutionarily stable strategies are analyzed. Then a distributed Q-learning algorithm (ESS-SPS according to the mixed strategies by analysis is proposed for the peers to converge to the ESSs based on its own payoff history. Compared to the traditional randomly super peer selection scheme, experiments results show that the proposed ESS-SPS algorithm achieves better performance in terms of social welfare and average upload rate of super peers and keeps the upload capacity of the P2P streaming system increasing steadily with the number of peers increasing.

  13. Controls on methane concentrations and fluxes in streams draining human-dominated landscapes

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.

    2016-01-01

    Streams and rivers are active processors of carbon, leading to significant emissions of CO2 and possibly CH4 to the atmosphere. Patterns and controls of CH4 in fluvial ecosystems remain relatively poorly understood. Furthermore, little is known regarding how major human impacts to fluvial ecosystems may be transforming their role as CH4 producers and emitters. Here, we examine the consequences of two distinct ecosystem changes as a result of human land use: increased nutrient loading (primarily as nitrate), and increased sediment loading and deposition of fine particles in the benthic zone. We did not find support for the hypothesis that enhanced nitrate loading down-regulates methane production via thermodynamic or toxic effects. We did find strong evidence that increased sedimentation and enhanced organic matter content of the benthos lead to greater methane production (diffusive + ebullitive flux) relative to pristine fluvial systems in northern Wisconsin (upper Midwest, USA). Overall, streams in a human-dominated landscape of southern Wisconsin were major regional sources of CH4 to the atmosphere, equivalent to ~20% of dairy cattle emissions, or ~50% of a landfill’s annual emissions. We suggest that restoration of the benthic environment (reduced fine deposits) could lead to reduced CH4 emissions, while decreasing nutrient loading is likely to have limited impacts to this ecosystem process.

  14. DISTRIBUSI NITRAT, OKSIGEN TERLARUT, DAN SUHU DI PERAIRAN SOCAH-KAMAL KABUPATEN BANGKALAN

    Directory of Open Access Journals (Sweden)

    Dewy Septiyanti Yolanda

    2016-11-01

    Full Text Available Kondisi dan dinamika perairan laut sangat dipengaruhi oleh beberapa parameter, diantaranya adalah parameter fisika, kimia, biologi, dan lain sebagainya. Diantara parameter penting tersebut adalah nitrat, oksigen terlarut, dan suhu. Ketiga parameter ini penting karena berpengaruh terhadap kondisi dan kualitas perairan, khususnya di perairan Socah, Kecamatan Kamal, Kabupaten Bangkalan. Tujuan penelitian ini adalah untuk mengetahui karakteristik dan distribusi nitrat, oksigen terlarut, dan suhu di perairan Socah-Kamal Kabupaten Bangkalan. Penelitian dilakukan pada bulan Oktober 2014 dengan 10 titik sampling. Analisa nitrat dianalisa dengan menggunakan spektrofotometri dengan panjang gelombang 410 nm dilakukan di Laboratorium Ilmu Kelautan Universitas Trunojoyo Madura. Hasil analisa menunjukkan konsentrasi nitrat berkisar 0.002-0.022 mg/l, oksigen terlarut berkisar 6,01-9,04 mg/l, dan suhu permukaan berkisar 29.0-32,7˚C. Hasil analisa menunjukkan kondisi baik dan cocok untuk kehidupan biota laut sesuai standar baku mutu yang sudah ditetapkan oleh Kementrian Negara Lingkungan Hidup (KMNLH.Kata Kunci : Nitrat, Oksigen Terlarut, Suhu, Perairan Socah-KamalDISTRIBUTION OF NITRATE, DISSOLVED OXYGEN AND TEMPERATURE IN SOCAH WATERS, DISTRICT OF KAMAL, BANGKALANThe conditions and the dynamics of ocean waters is influenced by several parameters, including the parameters of physics, chemistry, biology, and others. Among the important parameters are nitrates, dissolved oxygen, and temperature. Those parameters are important because it affects the quality and condition of the waters, particularly in Socah waters, District of Kamal, Bangkalan. The purpose of this study was to determine the characteristics and distribution of nitrate, dissolved oxygen, and temperature in the Socah waters, Kamal, Bangkalan. The study was conducted in October 2014 with 10 sampling points. Nitrate was analyzed using spectrophotometry with a wavelength of 410 nm performed at the

  15. On the wake structure in streaming complex plasmas

    International Nuclear Information System (INIS)

    Ludwig, Patrick; Kählert, Hanno; Bonitz, Michael; Miloch, Wojciech J

    2012-01-01

    The theoretical description of complex (dusty) plasmas requires multiscale concepts that adequately incorporate the correlated interplay of streaming electrons and ions, neutrals and dust grains. Knowing the effective dust-dust interaction, the multiscale problem can be effectively reduced to a one-component plasma model of the dust subsystem. The goal of this paper is a systematic evaluation of the electrostatic potential distribution around a dust grain in the presence of a streaming plasma environment by means of two complementary approaches: (i) a high-precision computation of the dynamically screened Coulomb potential from the dynamic dielectric function and (ii) full 3D particle-in-cell simulations, which self-consistently include dynamical grain charging and nonlinear effects. The range of applicability of these two approaches is addressed. (paper)

  16. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone.

    Science.gov (United States)

    Wang, L; Butcher, A S; Stuart, M E; Gooddy, D C; Bloomfield, J P

    2013-10-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the 'store' of nitrate and its potentially long travel time in the unsaturated and saturated zones. However, this time lag is rarely considered in current water nitrate management and policy development. The aim of this study was to develop a catchment-scale integrated numerical method to investigate the nitrate lag time in the groundwater system, and the Eden Valley, UK, was selected as a case study area. The method involves three models, namely the nitrate time bomb-a process-based model to simulate the nitrate transport in the unsaturated zone (USZ), GISGroundwater--a GISGroundwater flow model, and N-FM--a model to simulate the nitrate transport in the saturated zone. This study answers the scientific questions of when the nitrate currently in the groundwater was loaded into the unsaturated zones and eventually reached the water table; is the rising groundwater nitrate concentration in the study area caused by historic nitrate load; what caused the uneven distribution of groundwater nitrate concentration in the study area; and whether the historic peak nitrate loading has reached the water table in the area. The groundwater nitrate in the area was mainly from the 1980s to 2000s, whilst the groundwater nitrate in most of the source protection zones leached into the system during 1940s-1970s; the large and spatially variable thickness of the USZ is one of the major reasons for unevenly distributed groundwater nitrate concentrations in the study area; the peak nitrate loading around 1983 has affected most of the study area. For areas around the Bowscar, Beacon Edge, Low Plains, Nord Vue

  17. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  18. Structural Responses of a Stream Community to a Channel Relocation Using a Natural Channel Design Approach

    Science.gov (United States)

    Jack, J.; Word, D.; Daniel, W.; Pritchard, S.; Parola, A.; Vesely, B.

    2005-05-01

    Streams have been heavily impacted by historical and contemporary management practices. Restorations are seen as a way to enhance stream ecosystem integrity, but there are few restoration sites where pre- and post-restoration data are available to assess "success." In 2003, a channelized reach of Wilson Creek (Kentucky, USA) was relocated using a natural channel design approach. We compared the structural and functional responses of the stream pre- and post restoration/relocation at sites within Wilson and two reference streams. Despite the construction disturbance, water chemistry parameters such as nitrate and turbidity were nearly identical at sampling stations above and below the relocation for 2003-2004. Macroinvertebrate colonization of the relocation sites was rapid, with communities dominated by Cheumatopsyche, Perlesta and Baetis. Assessments of CPOM transport indicated that the new stream channel is more retentive of leaf and woody debris material than the pre-restoration Wilson sites or unrestored reference stream sites. The restoration of suitable habitat and the presence of "source populations" for colonization may compensate for even large-scale (but short-term) construction disturbance. More research is needed to assess the balance between the disturbance impacts of restoration installation and the long term benefits of stream ecological improvement.

  19. Agricultural nitrate pollution

    DEFF Research Database (Denmark)

    Anker, Helle Tegner

    2015-01-01

    Despite the passing of almost 25 years since the adoption of the EU Nitrates Directive, agricultural nitrate pollution remains a major concern in most EU Member States. This is also the case in Denmark, although a fairly strict regulatory regime has resulted in almost a 50 per cent reduction...

  20. Negative feedback loops leading to nitrate homeostasis and oscillatory nitrate assimilation in plants and fungi.

    OpenAIRE

    Huang, Yongshun

    2011-01-01

    Master's thesis in Biological Chemistry Nitrate is an important nutrient for plants and fungi. For plants it has been shown that cytosolic nitrate levels are under homeostatic control. Here we describe two networks that can obtain robust, i.e. perturbation independent, homeostatic behavior in cytosolic nitrate concentration. One of the networks, a member in the family of outflow controllers, is based on a negative feedback loop containing a nitrate-induced activation of a controller molecu...

  1. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010.

    Science.gov (United States)

    Mast, M Alisa

    2013-11-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970-2010 and 1990-2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO₂ emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  2. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010

    Science.gov (United States)

    Mast, M. Alisa

    2013-01-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970–2010 and 1990–2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO2 emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  3. Hydrologic control of nitrogen removal, storage, and export in a mountain stream

    Science.gov (United States)

    Hall, R.O.; Baker, M.A.; Arp, C.D.; Kocha, B.J.

    2009-01-01

    Nutrient cycling and export in streams and rivers should vary with flow regime, yet most studies of stream nutrient transformation do not include hydrologic variability. We used a stable isotope tracer of nitrogen (15N) to measure nitrate (NO3) uptake, storage, and export in a mountain stream, Spring Creek, Idaho, U.S.A. We conducted two tracer tests of 2-week duration during snowmelt and baseflow. Dissolved and particulate forms of 15N were monitored over three seasons to test the hypothesis that stream N cycling would be dominated by export during floods, and storage during low flow. Floods exported more N than during baseflow conditions; however, snowmelt floods had higher than expected demand for NO{3 because of hyporheic exchange. Residence times of benthic N during both tracer tests were longer than 100 d for ephemeral pools such as benthic algae and wood biofilms. Residence times were much longer in fine detritus, insects, and the particulate N from the hyporheic zone, showing that assimilation and hydrologic storage can be important mechanisms for retaining particulate N. Of the tracer N stored in the stream, the primary form of export was via seston during periods of high flows, produced by summer rainstorms or spring snowmelt the following year. Spring Creek is not necessarily a conduit for nutrients during high flow; hydrologic exchange between the stream and its valley represents an important storage mechanism.

  4. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.

    Science.gov (United States)

    Lin, Shan-Hua; Kuo, Hui-Fen; Canivenc, Geneviève; Lin, Choun-Sea; Lepetit, Marc; Hsu, Po-Kai; Tillard, Pascal; Lin, Huey-Ling; Wang, Ya-Yun; Tsai, Chyn-Bey; Gojon, Alain; Tsay, Yi-Fang

    2008-09-01

    Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-beta-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect root-to-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.

  5. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    tank farm by eliminating all recycle transfers to the tank farm except a small purge stream. The test program performed by the Savannah River National Laboratory (SRNL) consisted of four phases: (1) Radioactive characterization of the recycle streams, (2) OLI modeling, (3) simulant testing, and (4) radioactive testing. The evaluation determined that the operation of a dedicated recycle evaporator is feasible, but some technical and operational issues must be resolved. These issues are incorporation of the higher solids from the cleaning solution, foaming during the evaporation process, and higher than acceptable levels of mercury, nitrate, I-129, and organic carbon in the condensate for some of the potential recycle streams. This paper will focus on the simulant testing

  6. Nitrate reduction in geologically heterogeneous catchments — A framework for assessing the scale of predictive capability of hydrological models

    International Nuclear Information System (INIS)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A.; Christensen, Britt S.B.; Clausen, Thomas; Dalgaard, Esben; Effersø, Flemming; Ernstsen, Vibeke; Gertz, Flemming; Hansen, Anne Lausten; He, Xin; Jacobsen, Brian H.; Jensen, Karsten Høgh; Jørgensen, Flemming; Jørgensen, Lisbeth Flindt; Koch, Julian; Nilsson, Bertel; Petersen, Christian; De Schepper, Guillaume; Schamper, Cyril

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30–50 m and 2 m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the

  7. Nitrate reduction in geologically heterogeneous catchments — A framework for assessing the scale of predictive capability of hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Refsgaard, Jens Christian, E-mail: jcr@geus.dk [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Auken, Esben [Department of Earth Sciences, Aarhus University (Denmark); Bamberg, Charlotte A. [City of Aarhus (Denmark); Christensen, Britt S.B. [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Clausen, Thomas [DHI, Hørsholm (Denmark); Dalgaard, Esben [Department of Earth Sciences, Aarhus University (Denmark); Effersø, Flemming [SkyTEM Aps, Beder (Denmark); Ernstsen, Vibeke [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Gertz, Flemming [Knowledge Center for Agriculture, Skejby (Denmark); Hansen, Anne Lausten [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); He, Xin [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Jacobsen, Brian H. [Department of Food and Resource Economics, University of Copenhagen (Denmark); Jensen, Karsten Høgh [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); Jørgensen, Flemming; Jørgensen, Lisbeth Flindt [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Koch, Julian [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); Nilsson, Bertel [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Petersen, Christian [City of Odder (Denmark); De Schepper, Guillaume [Université Laval, Québec (Canada); Schamper, Cyril [Department of Earth Sciences, Aarhus University (Denmark); and others

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30–50 m and 2 m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the

  8. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations

    Science.gov (United States)

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E.; Geelhoed, Jeanine S.; Strous, Marc

    2017-01-01

    Summary For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate‐reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate‐ and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24‐12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ‘USabulitectum silens’ and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate‐reducing microbial communities and their adaptation to a dynamic environment. PMID:28836729

  9. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    Science.gov (United States)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  10. Dynamics of physicochemical parameter concentrations in the Graniczna Woda stream water

    Directory of Open Access Journals (Sweden)

    Żarnowiec Wioletta

    2017-12-01

    Full Text Available The paper presents variability of physicochemical parameter concentrations and determined the potential and chemical status of water in the Graniczna Woda stream, the right bank tributary to the Stoła River. The stream catchment area of 41.5 km2 is covered mainly by forests. A lowland stream flows through part of the Upper Silesia Industrial Region through three districts. A biological-mechanical municipal sewage treatment plant operates in the area of Miasteczko Śląskie, as well as a factory sewage treatment plant of Zinc Plant. The data base used in the papers consisted of the results obtained from the Provincial Inspectorate of the Environmental Protection in Katowice, monthly analyses of water samples collected in the years 2009–2013 in the control-measurement points located by the mouth of the Stoła River. 34 physicochemical indices were analyzed in the paper. Statistically significant upward trends were determined over the period of investigations for values of electrical conductivity (EC, total suspended solids, Cl, SO4, NO2-N and Zn in the stream water. Statistically significant downward trend was noted for total hardness. It was stated that both the potential and chemical status o the stream water were below good. Exceeded limit values for quality class II determined for oxygen and organic indices (chemical oxygen demand COD-Mn, total organic carbon TOC, salinity (EC, SO4, Cl, Ca, hardness and biogenic indices and substances particularly harmful for aquatic environment (Zn, Tl as well as exceeded allowable heavy metal concentrations may evidence a constant inflow of heavy metals to the aquatic environment of the Graniczna Woda stream from municipal and industrial sewage.

  11. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    Science.gov (United States)

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Nutrient Flux from Mediterranean Coastal Streams: Carpinteria Valley, California

    Science.gov (United States)

    Robinson, T. H.; Leydecker, A.; Melack, J. M.; Keller, A. A.

    2003-12-01

    Along the southern California coast, near Santa Barbara, California, we are measuring nutrient export from specific land uses and developing a model to predict nutrient export at a watershed scale. The area is characterized by a Mediterranean-like climate and short steep catchments producing flashy runoff. The six land uses include chaparral, avocado orchards, greenhouse agriculture, open-field nurseries, and residential and commercial development. Sampling sites are located on defined drainages or storm drains that collect runoff from relatively homogeneous areas representing each land use. Stream water samples are taken once a week during the rainy season, every two weeks during the dry season and every one to four hours during storms. Samples are analyzed for ammonium, nitrate, phosphate, total dissolved nitrogen and particulate nitrogen and phosphorus. Intensive sampling at the thirteen sites of the study was conducted throughout Water Year (WY) 2002 and 2003. We determine discharge from measurements of stage derived from pressure transducers at all sampling sites. This information is then converted to flux at a high temporal resolution. Wet and dry season sampling has shown that nitrate baseflow concentrations vary over three orders of magnitude, from a few micromoles per liter in undeveloped catchments, to a few 100 æmol/L in agricultural and urban watersheds, to 1000 æmol/L where intensive "greenhouse" agriculture dominates. Nitrate loading ranged from a few moles per hectare per storm at undeveloped and residential sites to hundreds at the greenhouse site. Phosphate concentrations show a similar, but smaller, variation from 1 to 100 æmol/L, although the loading is comparable at 1-100 moles/ha-storm. Stormflow concentrations fluctuate with the storm hydrograph: phosphate increases with flow, while nitrate typically decreases due to dilution from runoff probably from impervious surfaces. Nitrate export patterns indicate a marked difference between land use

  13. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH 3 , hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH 4 NO 3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO 3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  14. On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale

    Science.gov (United States)

    Amorisco, N. C.

    2015-06-01

    I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent

  15. Impact of Strontium Nitrate and Sodium Permanganate Addition on Solid-Liquid Separation of SRS High Level Waste

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2002-01-01

    As a pretreatment step for the caustic side solvent extraction (CSSX) flowsheet, the process contacts the incoming salt solution containing entrained sludge with monosodium titanate (MST) to adsorb strontium and actinides. An operation filters the resulting slurry to remove the sludge and MST. Previous work for the River Protection Program at Hanford suggests that addition of strontium nitrate and sodium permanganate for strontium and actinide removal, rather than MST, improves the filtration rate for comparable waste streams

  16. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  17. Tradeoffs between Maize Silage Yield and Nitrate Leaching in a Mediterranean Nitrate-Vulnerable Zone under Current and Projected Climate Scenarios

    Science.gov (United States)

    Basso, Bruno; Giola, Pietro; Dumont, Benjamin; Migliorati, Massimiliano De Antoni; Cammarano, Davide; Pruneddu, Giovanni; Giunta, Francesco

    2016-01-01

    Future climatic changes may have profound impacts on cropping systems and affect the agronomic and environmental sustainability of current N management practices. The objectives of this work were to i) evaluate the ability of the SALUS crop model to reproduce experimental crop yield and soil nitrate dynamics results under different N fertilizer treatments in a farmer’s field, ii) use the SALUS model to estimate the impacts of different N fertilizer treatments on NO3- leaching under future climate scenarios generated by twenty nine different global circulation models, and iii) identify the management system that best minimizes NO3- leaching and maximizes yield under projected future climate conditions. A field experiment (maize-triticale rotation) was conducted in a nitrate vulnerable zone on the west coast of Sardinia, Italy to evaluate N management strategies that include urea fertilization (NMIN), conventional fertilization with dairy slurry and urea (CONV), and no fertilization (N0). An ensemble of 29 global circulation models (GCM) was used to simulate different climate scenarios for two Representative Circulation Pathways (RCP6.0 and RCP8.5) and evaluate potential nitrate leaching and biomass production in this region over the next 50 years. Data collected from two growing seasons showed that the SALUS model adequately simulated both nitrate leaching and crop yield, with a relative error that ranged between 0.4% and 13%. Nitrate losses under RCP8.5 were lower than under RCP6.0 only for NMIN. Accordingly, levels of plant N uptake, N use efficiency and biomass production were higher under RCP8.5 than RCP6.0. Simulations under both RCP scenarios indicated that the NMIN treatment demonstrated both the highest biomass production and NO3- losses. The newly proposed best management practice (BMP), developed from crop N uptake data, was identified as the optimal N fertilizer management practice since it minimized NO3- leaching and maximized biomass production over

  18. Nitrate Pollution and Preliminary Source Identification of Surface Water in a Semi-Arid River Basin, Using Isotopic and Hydrochemical Approaches

    Directory of Open Access Journals (Sweden)

    Ying Xue

    2016-08-01

    Full Text Available Nitrate contamination in rivers has raised widespread concern in the world, particularly in arid/semi-arid river basins lacking qualified water. Understanding the nitrate pollution levels and sources is critical to control the nitrogen input and promote a more sustainable water management in those basins. Water samples were collected from a typical semi-arid river basin, the Weihe River watershed, China, in October 2014. Hydrochemical assessment and nitrogen isotopic measurement were used to determine the level of nitrogen compounds and identify the sources of nitrate contamination. Approximately 32.4% of the water samples exceeded the World Health Organization (WHO drinking water standard for NO3−-N. Nitrate pollution in the main stream of the Weihe River was obviously much more serious than in the tributaries. The δ15N-NO3− of water samples ranged from +8.3‰ to +27.0‰. No significant effect of denitrification on the shift in nitrogen isotopic values in surface water was observed by high dissolved oxygen (DO values and linear relationship diagram between NO3−-N and δ15N-NO3−, except in the Weihe River in Huayin County and Shitou River. Analyses of hydrochemistry and isotopic compositions indicate that domestic sewage and agricultural activities are the main sources of nitrate in the river.

  19. Optical techniques for the determination of nitrate in environmental waters: Guidelines for instrument selection, operation, deployment, maintenance, quality assurance, and data reporting

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.; Downing, Bryan D.; Saraceno, John Franco; Garrett, Jessica D.; Olsen, Lisa D.

    2013-01-01

    The recent commercial availability of in situ optical sensors, together with new techniques for data collection and analysis, provides the opportunity to monitor a wide range of water-quality constituents on time scales in which environmental conditions actually change. Of particular interest is the application of ultraviolet (UV) photometers for in situ determination of nitrate concentrations in rivers and streams. The variety of UV nitrate sensors currently available differ in several important ways related to instrument design that affect the accuracy of their nitrate concentration measurements in different types of natural waters. This report provides information about selection and use of UV nitrate sensors by the U.S. Geological Survey to facilitate the collection of high-quality data across studies, sites, and instrument types. For those in need of technical background and information about sensor selection, this report addresses the operating principles, key features and sensor design, sensor characterization techniques and typical interferences, and approaches for sensor deployment. For those needing information about maintaining sensor performance in the field, key sections in this report address maintenance and calibration protocols, quality-assurance techniques, and data formats and reporting. Although the focus of this report is UV nitrate sensors, many of the principles can be applied to other in situ optical sensors for water-quality studies.

  20. In-stream Nitrogen Processing and Dilution in an Agricultural Stream Network

    Science.gov (United States)

    Prior, K.; Ward, A. S.; Davis, C. A.; Burgin, A. J.; Loecke, T.; Riveros-Iregui, D. A.; Thomas, S. A.; St Clair, M. A.

    2014-12-01

    The interaction of agricultural fertilizer use and extremes in drought and flood conditions in 2012-2013 set up conditions for a natural experiment on watershed-scale nutrient dynamics. The region-wide drought in 2012 left surface soils disconnected from stream networks and restricted nutrient use by crops, resulting in an unusually large nitrogen pool in soil columns through the winter. When wet conditions returned to the Midwest in 2013, the unused fertilizer was mobilized, resulting in a six-week period of extremely high in-stream nutrient concentrations. This study analyses three synoptic samples from the Iowa-Cedar River Basin in 2013 to quantify patterns in nitrogen dynamics. We use multiple conservative ions as tracers to estimate dilution by lateral inflows. We also estimate nutrient spiraling metrics by treating the fertilizer pulse as a constant rate nutrient addition across the watershed—a scale on which these processes are increasingly modeled numerically, but on which standard nutrient addition experiments are simply not feasible. Results of this study compare patterns in dilution and uptake across spatial and temporal scales, and bound feasible explanations for each reach of the network.

  1. Nutrient additions to mitigate for loss of Pacific salmon: consequences for stream biofilm and nutrient dynamics

    Science.gov (United States)

    Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2014-01-01

    Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.

  2. The influence of nitrate concentrations and acidity on the electrocatalytic reduction of nitrate on platinum

    NARCIS (Netherlands)

    Groot, de M.T.; Koper, M.T.M.

    2004-01-01

    A study was performed to determine the influence of nitrate concentration and acidity on the reaction rate and selectivity of the electrocatalytic nitrate reduction on platinum. There are two different nitrate reduction mechanisms on platinum: a direct mechanism (0.4–0.1 V vs. SHE) and an indirect

  3. Mortality of nitrate fertiliser workers.

    Science.gov (United States)

    Al-Dabbagh, S; Forman, D; Bryson, D; Stratton, I; Doll, R

    1986-01-01

    An epidemiological cohort study was conducted to investigate the mortality patterns among a group of workers engaged in the production of nitrate based fertilisers. This study was designed to test the hypothesis that individuals exposed to high concentrations of nitrates might be at increased risk of developing cancers, particularly gastric cancer. A total of 1327 male workers who had been employed in the production of fertilisers between 1946 and 1981 and who had been occupationally exposed to nitrates for at least one year were followed up until 1 March 1981. In total, 304 deaths were observed in this group and these were compared with expected numbers calculated from mortality rates in the northern region of England, where the factory was located. Analysis was also carried out separately for a subgroup of the cohort who had been heavily exposed to nitrates--that is, working in an environment likely to contain more than 10 mg nitrate/m3 for a year or longer. In neither the entire cohort nor the subgroup was any significant excess observed for all causes of mortality or for mortality from any of five broad categories of cause or from four specific types of cancer. A small excess of lung cancer was noted more than 20 years after first exposure in men heavily exposed for more than 10 years. That men were exposed to high concentrations of nitrate was confirmed by comparing concentrations of nitrates in the saliva of a sample of currently employed men with control men, employed at the same factory but not in fertiliser production. The men exposed to nitrate had substantially raised concentrations of nitrate in their saliva compared with both controls within the industry and with men in the general population and resident nearby. The results of this study therefore weight against the idea that exposure to nitrates in the environment leads to the formation in vivo of material amounts of carcinogens. PMID:3015194

  4. Combining multiple approaches and optimized data resolution for an improved understanding of stream temperature dynamics of a forested headwater basin in the Southern Appalachians

    Science.gov (United States)

    Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.

    2017-12-01

    Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.

  5. GROWTH, MORTALITY AND PRODUCTION OF BROWN AND RAINBOW TROUT IN NEW MEXICO STREAMS

    Directory of Open Access Journals (Sweden)

    S Leiner

    1995-06-01

    Full Text Available Thirty-two representative trout sites in 15 high elevation New Mexico streams (1,661 - 2560 m above sea level were sampled in 1988 and 1989. Fish was captured by consecutive removal via electrofishing in net-blocked segments from 65 to 160 m long. Maximum estimated trout length (Lm.ax was related inversely to yield (r2 = 0.351; p = 0.055. Instantaneous rate of mortality was also marginally related to yield (r2 = 0.294. The production index ranged from 1,38 to 32.02 g/m2/year. Variation in production was highly correlated to trout biomass (r2 = 0.910. Trout growth and production were best defined by the relationships where: cover, stream width, water temperature, yield by anglers, LMAX, and nitrate-nitrogen concentration were included.

  6. Derivation of an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions

    International Nuclear Information System (INIS)

    Min, Duck Kee; Choi, Byung Il; Ro, Seung Gy; Eom, Tae Yoon; Kim, Zong Goo

    1986-01-01

    Densities of a large number of mixed uranyl nitrate-thorium nitrate solutions were measured with pycnometer. By the least squares analysis of the experimental result, an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions as functions of uranium concentration, thorium concentration and nitric acid normality is derived; W=1.0-0.3580 C u -0.4538 C Th -0.0307H + where W, C u , C Th , and H + stand for water content(g/cc), uranium concentration (g/cc), thorium concentration(g/cc), and nitric acid normality, respectively. Water contents of the mixed uranyl nitrate-thorium nitrate solutions are calculated by using the empirical formular, and compared with the values calculated by Bouly's equation in which an additional data, solution density, is required. The two results show good agreements within 2.7%. (Author)

  7. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization: Human Factors in Streaming Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Aritra [Pacific Northwest National Laboratory, Richland Washington USA; Arendt, Dustin L. [Pacific Northwest National Laboratory, Richland Washington USA; Franklin, Lyndsey R. [Pacific Northwest National Laboratory, Richland Washington USA; Wong, Pak Chung [Pacific Northwest National Laboratory, Richland Washington USA; Cook, Kristin A. [Pacific Northwest National Laboratory, Richland Washington USA

    2017-09-01

    Real-world systems change continuously and across domains like traffic monitoring, cyber security, etc., such changes occur within short time scales. This leads to a streaming data problem and produces unique challenges for the human in the loop, as analysts have to ingest and make sense of dynamic patterns in real time. In this paper, our goal is to study how the state-of-the-art in streaming data visualization handles these challenges and reflect on the gaps and opportunities. To this end, we have three contributions: i) problem characterization for identifying domain-specific goals and challenges for handling streaming data, ii) a survey and analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space, and iii) reflections on the perceptually motivated design challenges and potential research directions for addressing them.

  8. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development

    Science.gov (United States)

    Li, Yuge; Ouyang, Jie; Wang, Ya-Yun; Hu, Rui; Xia, Kuaifei; Duan, Jun; Wang, Yaqin; Tsay, Yi-Fang; Zhang, Mingyong

    2015-01-01

    Plants have evolved to express some members of the nitrate transporter 1/peptide transporter family (NPF) to uptake and transport nitrate. However, little is known of the physiological and functional roles of this family in rice (Oryza sativa L.). Here, we characterized the vascular specific transporter OsNPF2.2. Functional analysis using cDNA-injected Xenopus laevis oocytes revealed that OsNPF2.2 is a low-affinity, pH-dependent nitrate transporter. Use of a green fluorescent protein tagged OsNPF2.2 showed that the transporter is located in the plasma membrane in the rice protoplast. Expression analysis showed that OsNPF2.2 is nitrate inducible and is mainly expressed in parenchyma cells around the xylem. Disruption of OsNPF2.2 increased nitrate concentration in the shoot xylem exudate when nitrate was supplied after a deprivation period; this result suggests that OsNPF2.2 may participate in unloading nitrate from the xylem. Under steady-state nitrate supply, the osnpf2.2 mutants maintained high levels of nitrate in the roots and low shoot:root nitrate ratios; this observation suggests that OsNPF2.2 is involved in root-to-shoot nitrate transport. Mutation of OsNPF2.2 also caused abnormal vasculature and retarded plant growth and development. Our findings demonstrate that OsNPF2.2 can unload nitrate from the xylem to affect the root-to-shoot nitrate transport and plant development. PMID:25923512

  9. Vasodilator Therapy: Nitrates and Nicorandil.

    Science.gov (United States)

    Tarkin, Jason M; Kaski, Juan Carlos

    2016-08-01

    Nitrates have been used to treat symptoms of chronic stable angina for over 135 years. These drugs are known to activate nitric oxide (NO)-cyclic guanosine-3',-5'-monophasphate (cGMP) signaling pathways underlying vascular smooth muscle cell relaxation, albeit many questions relating to how nitrates work at the cellular level remain unanswered. Physiologically, the anti-angina effects of nitrates are mostly due to peripheral venous dilatation leading to reduction in preload and therefore left ventricular wall stress, and, to a lesser extent, epicardial coronary artery dilatation and lowering of systemic blood pressure. By counteracting ischemic mechanisms, short-acting nitrates offer rapid relief following an angina attack. Long-acting nitrates, used commonly for angina prophylaxis are recommended second-line, after beta-blockers and calcium channel antagonists. Nicorandil is a balanced vasodilator that acts as both NO donor and arterial K(+) ATP channel opener. Nicorandil might also exhibit cardioprotective properties via mitochondrial ischemic preconditioning. While nitrates and nicorandil are effective pharmacological agents for prevention of angina symptoms, when prescribing these drugs it is important to consider that unwanted and poorly tolerated hemodynamic side-effects such as headache and orthostatic hypotension can often occur owing to systemic vasodilatation. It is also necessary to ensure that a dosing regime is followed that avoids nitrate tolerance, which not only results in loss of drug efficacy, but might also cause endothelial dysfunction and increase long-term cardiovascular risk. Here we provide an update on the pharmacological management of chronic stable angina using nitrates and nicorandil.

  10. How wide is a stream? Spatial extent of the potential "stream signature" in terrestrial food webs using meta-analysis.

    Science.gov (United States)

    Muehlbauer, Jeffrey D; Collins, Scott F; Doyle, Martin W; Tockner, Klement

    2014-01-01

    The magnitude of cross-ecosystem resource subsidies is increasingly well recognized; however, less is known about the distance these subsidies travel into the recipient landscape. In streams and rivers, this distance can delimit the "biological stream width," complementary to hydro-geomorphic measures (e.g., channel banks) that have typically defined stream ecosystem boundaries. In this study we used meta-analysis to define a "stream signature" on land that relates the stream-to-land subsidy to distance. The 50% stream signature, for example, identifies the point on the landscape where subsidy resources are still at half of their maximum (in- or near-stream) level. The decay curve for these data was best fit by a negative power function in which the 50% stream signature was concentrated near stream banks (1.5 m), but a non-trivial (10%) portion of the maximum subsidy level was still found > 0.5 km from the water's edge. The meta-analysis also identified explanatory variables that affect the stream signature. This improves our understanding of ecosystem conditions that permit spatially extensive subsidy transmission, such as in highly productive, middle-order streams and rivers. Resultant multivariate models from this analysis may be useful to managers implementing buffer rules and conservation strategies for stream and riparian function, as they facilitate prediction of the extent of subsidies. Our results stress that much of the subsidy remains near the stream, but also that subsidies (and aquatic organisms) are capable of long-distance dispersal into adjacent environments, and that the effective "biological stream width" of stream and river ecosystems is often much larger than has been defined by hydro-geomorphic metrics alone. Limited data available from marine and lake sources overlap well with the stream signature data, indicating that the "signature" approach may also be applicable to subsidy spatial dynamics across other ecosystems.

  11. Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air.

    Science.gov (United States)

    Quan, De; Shim, Jun Ho; Kim, Jong Dae; Park, Hyung Soo; Cha, Geun Sig; Nam, Hakhyun

    2005-07-15

    Nitrate monitoring biosensors were prepared by immobilizing nitrate reductase derived from yeast on a glassy carbon electrode (GCE, d = 3 mm) or screen-printed carbon paste electrode (SPCE, d = 3 mm) using a polymer (poly(vinyl alcohol)) entrapment method. The sensor could directly determine the nitrate in an unpurged aqueous solution with the aid of an appropriate oxygen scavenger: the nitrate reduction reaction driven by the enzyme and an electron-transfer mediator, methyl viologen, at -0.85 V (GCE vs Ag/AgCl) or at -0.90 V (SPCE vs Ag/AgCl) exhibited no oxygen interference in a sulfite-added solution. The electroanalytical properties of optimized biosensors were measured: the sensitivity, linear response range, and detection limit of the sensors based on GCE were 7.3 nA/microM, 15-300 microM (r2 = 0.995), and 4.1 microM (S/N = 3), respectively, and those of SPCE were 5.5 nA/microM, 15-250 microM (r2 = 0.996), and 5.5 microM (S/N = 3), respectively. The disposable SPCE-based biosensor with a built-in well- or capillary-type sample cell provided high sensor-to-sensor reproducibility (RSD sensor system was demonstrated by determining nitrate in real samples.

  12. Rapid detection of sugar alcohol precursors and corresponding nitrate ester explosives using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Sisco, Edward; Forbes, Thomas P

    2015-04-21

    This work highlights the rapid detection of nitrate ester explosives and their sugar alcohol precursors by direct analysis in real time mass spectrometry (DART-MS) using an off-axis geometry. Demonstration of the effect of various parameters, such as ion polarity and in-source collision induced dissociation (CID) on the detection of these compounds is presented. Sensitivity of sugar alcohols and nitrate ester explosives was found to be greatest in negative ion mode with sensitivities ranging from hundreds of picograms to hundreds of nanograms, depending on the characteristics of the particular molecule. Altering the in-source CID potential allowed for acquisition of characteristic molecular ion spectra as well as fragmentation spectra. Additional studies were completed to identify the role of different experimental parameters on the sensitivity for these compounds. Variables that were examined included the DART gas stream temperature, the presence of a related compound (i.e., the effect of a precursor on the detection of a nitrate ester explosive), incorporation of dopant species and the role of the analysis surface. It was determined that each variable affected the response and detection of both sugar alcohols and the corresponding nitrate ester explosives. From this work, a rapid and sensitive method for the detection of individual sugar alcohols and corresponding nitrate ester explosives, or mixtures of the two, has been developed, providing a useful tool in the real-world identification of homemade explosives.

  13. Effects of nitrogen on temporal and spatial patterns of nitrate in streams and soil solution of a central hardwood forest

    Science.gov (United States)

    Frank S. Gilliam; Mary Beth. Adams

    2011-01-01

    This study examined changes in stream and soil water NO3- and their relationship to temporal and spatial patterns of NO3- in soil solution of watersheds at the Fernow Experimental Forest, West Virginia. Following tenfold increases in stream NO3

  14. Nitration Study of Cyclic Ladder Polyphenylsilsesquioxane

    Directory of Open Access Journals (Sweden)

    LIANG Jia-xiang

    2017-05-01

    Full Text Available Several nitration reagents including fuming nitric acid, HNO3-H2SO4, KNO3-H2SO4, HNO3-KNO3, CH3COOH-KNO3, (CH3CO2O-HNO3 were used to nitrate cyclic ladder polyphenylsilsesquioxane (CL-PPSQ in different conditions in order to enhance the compatibility of the CL-PPSQ in polymers, the NO2-PPSQ was obtained. FTIR, element analysis, GPC, TGA and 1H NMR were used to characterize the structures of the nitrated products. The results show that the nitrating abilities of the fuming nitric acid, HNO3-H2SO4 and KNO3-H2SO4 are very strong. Many nitro groups can be linked with phenyl groups in CL-PPSQ, but with low molecular mass, fracture occurs in siloxane segment. However, the Mn of the product NO2-PPSQ sharply drops by 50% compared with that of CL-PPSQ, so the nitration reagents can break the cyclic structure of CL-PPSQ. The nitrating reagents of HNO3-KNO3 and CH3COOH-KNO3 have no nitration effects on CL-PPSQ. At last, NO2-CL-PPSQ was prepared using (CH3CO2O-HNO3 because of the moderate nitration process and ability. The cyclic structure of PPSQ is remained, although the number of —NO2 group is not too much. At the same time, the nitration mechanism using different nitration reagents was analyzed. A certain amount of NO2+, which is a kind of activator owning strong nitration ability, can be found in the fuming nitric acid and H2SO4-HNO3(KNO3 systems. As to the (CH3CO2O-HNO3 system, the main activator is CH3COONO2.

  15. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT

    Science.gov (United States)

    Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.

    2007-12-01

    Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.

  16. Nitrate removal from alkaline high nitrate effluent by in situ generation of hydrogen using zinc dust

    International Nuclear Information System (INIS)

    Rajagopal, S.; Chitra, S.; Paul, Biplob

    2016-01-01

    Alkaline radioactive low level waste generated in Nuclear Fuel Cycle contains substantial amount of nitrate and needs to be treated to meet Central Pollution Control Board discharge limits of 90 mg/L in marine coastal area. Several denitrification methods like chemical treatment, electrochemical reduction, biological denitrification, ion exchange, reverse osmosis, photochemical reduction etc are followed for removal of nitrate. In effluent treatment plants where chemical treatment is carried out, chemical denitrification can be easily adapted without any additional set up. Reducing agents like zinc and aluminum are suitable for reducing nitrate in alkaline solution. Study on denitrification with zinc dust was taken up in this work. Not much work has been done with zinc dust on reduction of nitrate to nitrogen in alkaline waste with high nitrate content. In the present work, nitrate is reduced by nascent hydrogen generated in situ, caused by reaction between zinc dust and sodium hydroxide

  17. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  18. Nitrate photolysis in salty snow

    Science.gov (United States)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  19. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    Science.gov (United States)

    Samuelsson, M O

    1985-10-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.

  20. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  1. Trends in concentrations and export of nitrogen in boreal forest streams

    Energy Technology Data Exchange (ETDEWEB)

    Sarkkola, S.; Nieminen, M. [Finnish Forest Research Inst., Vantaa (Finland); Koivusalo, H. [Aalto University School of Science and Technology, Espoo (Finland), Dept. of Civil and Environmental Engineering] [and others

    2012-11-01

    Temporal trends in inorganic and organic nitrogen (N) export in the stream water between 1979 and 2006 were studied in eight forested headwater catchments in eastern Finland, where an increasing air-temperature trend and a decreasing N-deposition trend has been observed since the 1980s. The Seasonal Kendall test was conducted to study if the stream water N concentrations have changed concurrently and a mixed model regression analysis was used to study which catchment characteristics and hydrometeorological variables were related to the variation in stream water N. The annual concentrations of total organic N (TON) increased at two catchments and the concentrations of nitrate (NO{sub 3}-N) and ammonium (NH{sub 4}-N) decreased at three and four catchments, respectively. The main factor explaining variation in concentrations and export of N was percentage of peatlands in a catchment. The NH{sub 4}-N concentrations were also related to the N deposition, and the exports of NO{sub 3}, NH{sub 4}, and TON to precipitation. Quantitative changes in both the N concentrations and exports were small. The results suggested relatively small changes in the N concentrations and exports between 1979 and 2006, most probably because the effects of increased air and stream water temperatures largely have been concealed behind the concurrent decrease in N deposition. (orig.)

  2. Application of infrared spectroscopy for study of chemical bonds in complexes of rare earth nitrates with alkylammonium nitrates

    International Nuclear Information System (INIS)

    Klimov, V.D.; Chudinov, Eh.G.

    1974-01-01

    The IR absorption spectra for the tri-n-octylamine, methyl-di-n-octylamine, their nitrates and complexes with the rare element nitrates are obtained. The IR spectra analysis of the complexes has suggested that the degree of covalent character bond of a nitrate with a metal grows with the atomic number of the element. Based on the comparison of the obtained data with those available in literature for various rare-earth complexes a conclusion is made that the bond character of a metal with nitrate groups is influenced by all ligands constituting the inner coordinating sphere. As the donor capacity of a ligand grows the covalent character of the metal-nitrate bond is enhanced. The replacement of the outer-sphere cations (trioctylammonium or methyldioctylammonium) only slightly affects the bond character of a metal with the nitrate group. The distribution coefficients in the rare-earth series are shown to decrease as the electrostatic part in the metal-nitrate declines. The phenomenon is attributed to the competition between nitrate and water for the metal bond as concurrently with the intensification of metal-nitrate covalent bond in the organic phase the strength of metal hydrates in aqueous phase grows much faster. (author)

  3. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    Science.gov (United States)

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  4. Nitrate analogs as attractants for soybean cyst nematode.

    Science.gov (United States)

    Hosoi, Akito; Katsuyama, Tsutomu; Sasaki, Yasuyuki; Kondo, Tatsuhiko; Yajima, Shunsuke; Ito, Shinsaku

    2017-08-01

    Soybean cyst nematode (SCN) Heterodera glycines Ichinohe, a plant parasite, is one of the most serious pests of soybean. In this paper, we report that SCN is attracted to nitrate and its analogs. We performed attraction assays to screen for novel attractants for SCN and found that nitrates were attractants for SCN and SCN recognized nitrate gradients. However, attraction of SCN to nitrates was not observed on agar containing nitrate. To further elucidate the attraction mechanism in SCN, we performed attraction assays using nitrate analogs ([Formula: see text], [Formula: see text], [Formula: see text]). SCN was attracted to all nitrate analogs; however, attraction of SCN to nitrate analogs was not observed on agar containing nitrate. In contrast, SCN was attracted to azuki root, irrespective of presence or absence of nitrate in agar media. Our results suggest that the attraction mechanisms differ between plant-derived attractant and nitrate.

  5. Nitrate pollution in intensively farmed regions: What are the prospects for sustaining high-quality groundwater?

    Science.gov (United States)

    Howden, Nicholas J. K.; Burt, Tim P.; Worrall, Fred; Mathias, Simon; Whelan, Mick J.

    2011-06-01

    Widespread pollution of groundwater by nutrients due to 20th century agricultural intensification has been of major concern in the developed world for several decades. This paper considers the River Thames catchment (UK), where water-quality monitoring at Hampton (just upstream of London) has produced continuous records for nitrate for the last 140 years, the longest continuous record of water chemistry anywhere in the world. For the same period, data are available to characterize changes in both land use and land management at an annual scale. A modeling approach is used that combines two elements: an estimate of nitrate available for leaching due to land use and land management; and, an algorithm to route this leachable nitrate through to surface or groundwaters. Prior to agricultural intensification at the start of World War II, annual average inputs were around 50 kg ha-1, and river concentrations were stable at 1 to 2 mg l-1, suggesting in-stream denitrification capable of removing 35 (±15) kt N yr-1. Postintensification data suggest an accumulation of 100 (±40) kt N yr-1 in the catchment, most of which is stored in the aquifer. This build up of reactive N species within the catchments means that restoration of surface nitrate concentrations typical of the preintensification period would require massive basin-wide changes in land use and management that would compromise food security and take decades to be effective. Policy solutions need to embrace long-term management strategies as an urgent priority.

  6. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations.

    Science.gov (United States)

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil

    2017-12-01

    For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Contribution to the study of the evaporation of aqueous uranyl nitrate solutions; Contribution a l'etude de l'evaporation des solutions aqueuses de nitrate d'uranyle

    Energy Technology Data Exchange (ETDEWEB)

    Billy, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-05-15

    This work was carried out with a view to define the conditions under which is affected the concentration of aqueous uranyl nitrate solutions one of the steps in uranium extraction metallurgy. The first port is devoted to the experimental determination of the physical characteristics of aqueous uranyl nitrate solutions, from dilute to concentrated solutions. The second part of this work is devoted to the isothermal evaporation of solution a west ted-wall column; this chemical engineering study has been more particularly devoted to the definition of the influence of the dynamics of the liquid phase on the exchange of matter between the two phases in contact. (author) [French] La concentration par evaporation des solutions aqueuses de nitrate d'uranyle constitue une etape de la metallurgie de l'uranium dont ce travail a voulu preciser la connaissance. Dans ce but, une premiere partie a ete consacree a la determination experimentale de caracteristiques physiques des solutions aqueuses de nitrate d'uranyle, des solutions diluees aux solutions saturees. Dans une deuxieme partie, ce travail a porte sur l'evaporation isotherme des solutions dans une colonne a paroi mouillee; cette etude de genie chimique a ete plus particulierement orientee de facon a preciser l'influence de la dynamique de la phase liquide sur l'echange de matiere entre les deux phases en contact. (auteur)

  8. Glucose Elevates NITRATE TRANSPORTER2.1 Protein Levels and Nitrate Transport Activity Independently of Its HEXOKINASE1-Mediated Stimulation of NITRATE TRANSPORTER2.1 Expression1[W][OPEN

    Science.gov (United States)

    de Jong, Femke; Thodey, Kate; Lejay, Laurence V.; Bevan, Michael W.

    2014-01-01

    Mineral nutrient uptake and assimilation is closely coordinated with the production of photosynthate to supply nutrients for growth. In Arabidopsis (Arabidopsis thaliana), nitrate uptake from the soil is mediated by genes encoding high- and low-affinity transporters that are transcriptionally regulated by both nitrate and photosynthate availability. In this study, we have studied the interactions of nitrate and glucose (Glc) on gene expression, nitrate transport, and growth using glucose-insensitive2-1 (gin2-1), which is defective in sugar responses. We confirm and extend previous work by showing that HEXOKINASE1-mediated oxidative pentose phosphate pathway (OPPP) metabolism is required for Glc-mediated NITRATE TRANSPORTER2.1 (NRT2.1) expression. Treatment with pyruvate and shikimate, two products derived from intermediates of the OPPP that are destined for amino acid production, restores wild-type levels of NRT2.1 expression, suggesting that metabolites derived from OPPP metabolism can, together with Glc, directly stimulate high levels of NRT2.1 expression. Nitrate-mediated NRT2.1 expression is not influenced by gin2-1, showing that Glc does not influence NRT2.1 expression through nitrate-mediated mechanisms. We also show that Glc stimulates NRT2.1 protein levels and transport activity independently of its HEXOKINASE1-mediated stimulation of NRT2.1 expression, demonstrating another possible posttranscriptional mechanism influencing nitrate uptake. In gin2-1 plants, nitrate-responsive biomass growth was strongly reduced, showing that the supply of OPPP metabolites is essential for assimilating nitrate for growth. PMID:24272701

  9. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2012-08-01

    Full Text Available Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  10. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    Science.gov (United States)

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  11. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    Science.gov (United States)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  12. Comparison of nanostructured silver-modified silver and carbon ultramicroelectrodes for electrochemical detection of nitrate.

    Science.gov (United States)

    Lotfi Zadeh Zhad, Hamid R; Lai, Rebecca Y

    2015-09-10

    We report the use of silver (Ag)-modified carbon and Ag ultramicroelectrodes (UMEs) for electrochemical detection of nitrate. We investigated several methods for electrodeposition of Ag; our results show that the addition of a complexation agent (ammonium sulfate) in the Ag deposition solution is necessary for electrodeposition of nanostructured Ag that adheres well to the electrode. The electrodeposited Ag on both types of electrodes has branch-like structures that are well-suited for electrocatalytic reduction of nitrate. The use of UMEs is advantageous; the sigmoidal-shaped cyclic voltammogram allows for sensitive detection of nitrate by reducing the capacitive current, as well as enabling easy quantification of the nitrate reduction current. Both cyclic voltammetry and chronoamperometry were used to characterize the electrodes; and independent of the electrochemical interrogation technique, both UMEs were found to have a wide linear dynamic range (4-1000 μM) and a low limit of detection (3.2-5.1 μM). More importantly, they are reusable up to ∼100 interrogation cycles and are selective enough to be used for direct detection of nitrate in a synthetic aquifer sample without any sample pretreatment and/or pH adjustment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Using Whole Stream {delta}{sup 15}N Additions to Understand the Effects of Land Use Change on Stream Function

    Energy Technology Data Exchange (ETDEWEB)

    Deegan, L. A.; Neill, C.; Thomas, S.; Haupert, C. [Marine Biological Laboratory, Woods Hole, MA (United States); Victoria, R. L.; Krusche, A. V.; Ballester, M. V.R. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2013-05-15

    In this paper we introduce an emerging new technique; the use of {delta}{sup 15}N stable isotope tracers to understand both short term and long term alterations in stream ecosystem nitrogen biogeochemistry and food web dynamics. The use of {delta}{sup 15}N isotopes to determine stream nitrogen cycling was developed in small tundra streams in Alaska (USA), but a network of researchers using similar technique has rapidly grown to answer questions about nitrogen cycling and stream food webs in a variety of ecosystem types and subject to human modifications. Here we provide an overview of some of the information that can be provided using stable isotope additions and describe the general approach of an isotope addition experiment. To illustrate the scope of isotope applicability some examples are provided of work undertaken in the Brazilian Amazon. (author)

  14. Design tradeoffs in long-term research for stream salamanders

    Science.gov (United States)

    Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    Long-term research programs can benefit from early and periodic evaluation of their ability to meet stated objectives. In particular, consideration of the spatial allocation of effort is key. We sampled 4 species of stream salamanders intensively for 2 years (2010–2011) in the Chesapeake and Ohio Canal National Historical Park, Maryland, USA to evaluate alternative distributions of sampling locations within stream networks, and then evaluated via simulation the ability of multiple survey designs to detect declines in occupancy and to estimate dynamic parameters (colonization, extinction) over 5 years for 2 species. We expected that fine-scale microhabitat variables (e.g., cobble, detritus) would be the strongest determinants of occupancy for each of the 4 species; however, we found greater support for all species for models including variables describing position within the stream network, stream size, or stream microhabitat. A monitoring design focused on headwater sections had greater power to detect changes in occupancy and the dynamic parameters in each of 3 scenarios for the dusky salamander (Desmognathus fuscus) and red salamander (Pseudotriton ruber). Results for transect length were more variable, but across all species and scenarios, 25-m transects are most suitable as a balance between maximizing detection probability and describing colonization and extinction. These results inform sampling design and provide a general framework for setting appropriate goals, effort, and duration in the initial planning stages of research programs on stream salamanders in the eastern United States.

  15. Stable nitrogen isotope ratios of macrophytes and associated periphyton along a nitrate gradient in two subtropical, spring-fed streams

    DEFF Research Database (Denmark)

    De Brabandere, Loreto; Frazer, Thomas K.; Montoya, Joseph P.

    2007-01-01

    , macrophytes and periphyton as a consequence of isotopic fractionation associated with preferential use of 14NO3-. This hypothesis was tested in two spring-fed river systems, the Chassahowitzka and Homosassa rivers, along Florida’s central Gulf of Mexico coast. 3. In general, d15N values of nitrate...

  16. Method and apparatus of prefetching streams of varying prefetch depth

    Science.gov (United States)

    Gara, Alan [Mount Kisco, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Hoenicke, Dirk [Seebruck-Seeon, DE

    2012-01-24

    Method and apparatus of prefetching streams of varying prefetch depth dynamically changes the depth of prefetching so that the number of multiple streams as well as the hit rate of a single stream are optimized. The method and apparatus in one aspect monitor a plurality of load requests from a processing unit for data in a prefetch buffer, determine an access pattern associated with the plurality of load requests and adjust a prefetch depth according to the access pattern.

  17. Dynamic transition of chemolithotrophic sulfur-oxidizing bacteria in response to amendment with nitrate in deposited marine sediments

    Directory of Open Access Journals (Sweden)

    Tomo eAoyagi

    2015-05-01

    Full Text Available Although environmental stimuli are known to affect the structure and function of microbial communities, their impact on the metabolic network of microorganisms has not been well investigated. Here, geochemical analyses, high-throughput sequencing of 16S rRNA genes and transcripts, and isolation of potentially relevant bacteria were carried out to elucidate the anaerobic respiration processes stimulated by nitrate (20 mM amendment of marine sediments. Marine sediments deposited by the Great East Japan Earthquake in 2011 were incubated anaerobically in the dark at 25°C for 5 days. Nitrate in slurry water decreased gradually for 2 days, then more rapidly until its complete depletion at day 5; production of N2O followed the same pattern. From day 2 to 5, the sulfate concentration increased and the sulfur content in solid-phase sediments significantly decreased. These results indicated that denitrification and sulfur oxidation occurred simultaneously. Illumina sequencing revealed the proliferation of known sulfur oxidizers, i.e., Sulfurimonas spp. and Chromatiales bacteria, which accounted for approximately 43.5% and 14.8% of the total population at day 5, respectively. They also expressed 16S rRNA to a considerable extent, whereas the other microorganisms, e.g., iron(III reducers and methanogens, became metabolically active at the end of the incubation. Extinction dilution culture in a basal-salts medium supplemented with sulfur compounds and nitrate successfully isolated the predominant sulfur oxidizers: Sulfurimonas sp. strain HDS01 and Thioalkalispira sp. strain HDS22. Their 16S rRNA genes showed 95.2−96.7% sequence similarity to the closest cultured relatives and they grew chemolithotrophically on nitrate and sulfur. Novel sulfur-oxidizing bacteria were thus directly involved in carbon fixation under nitrate-reducing conditions, activating anaerobic respiration processes and the reorganization of microbial communities in the deposited marine

  18. Bio nitrate Project: a new technology for water nitrate elimination by means of ionic exchange resins

    International Nuclear Information System (INIS)

    Arellano Ortiz, J.

    2009-01-01

    The use of ion exchange resins for nitrate elimination from water generates a waste containing a sodium chloride mixture plus the retained nitrates. this waste must be correctly disposed. In this project, the resin ionic form is modified to be regenerated with other compounds, different from the common salt, which are interesting because of the presence of mineral nutrition. So, with Bio nitrate Project, nitrates are recovered and the regeneration waste is apt to be use as fertilizer, for agricultural uses, or as complementary contribution of nutrients in biological water treatment. (Author) 27 refs.

  19. The impact of nitration on the structure and immunogenicity of the major birch pollen allergen Bet v 1.0101.

    Directory of Open Access Journals (Sweden)

    Chloé Ackaert

    Full Text Available Allergy prevalence has increased in industrialized countries. One contributing factor could be pollution, which can cause nitration of allergens exogenously (in the air or endogenously (in inflamed lung tissue. We investigated the impact of nitration on both the structural and immunological behavior of the major birch pollen allergen Bet v 1.0101 to determine whether nitration might be a factor in the increased incidence of allergy. Bet v 1.0101 was nitrated with tetranitromethane. Immune effects were assessed by measuring the proliferation of specific T-cell lines (TCLs upon stimulation with different concentrations of nitrated and unmodified allergen, and by measurement of cytokine release of monocyte-derived dendritic cells (moDCs and primary DCs (primDCs stimulated with nitrated versus unmodified allergen. HPLC-MS, crystallography, gel electrophoresis, amino acid analysis, size exclusion chromatography and molecular dynamics simulation were performed to characterize structural changes after nitration of the allergen. The proliferation of specific TCLs was higher upon stimulation with the nitrated allergen in comparison to the unmodified allergen. An important structural consequence of nitration was oligomerization. Moreover, analysis of the crystal structure of nitrated Bet v 1.0101 showed that amino acid residue Y83, located in the hydrophobic cavity, was nitrated to 100%. Both moDCs and primDCs showed decreased production of TH1-priming cytokines, thus favoring a TH2 response. These results implicate that nitration of Bet v 1.0101 might be a contributing factor to the observed increase in birch pollen allergy, and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.

  20. Evaluation of tidal stream energy and its impacts on surrounding dynamics in the Eastern Region of Pingtan Island, China

    Science.gov (United States)

    Wu, He; Wang, Xin; Wang, Bingzhen; Bai, Yang; Wang, Peitao

    2017-11-01

    Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southern cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.

  1. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    Science.gov (United States)

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  2. Aqueous nitrate flowsheet optimization and enhancement using the ATLAS facility

    International Nuclear Information System (INIS)

    Schreiber, S.B.; Punjak, W.A.; Yarbro, S.L.

    1993-08-01

    The Advanced Testing Line for Actinide Separations (ATLAS) is a pilot plant of all aqueous nitrate plutonium recovery and purification operations within the Los Alamos Plutonium Facility. The main unit operations include dissolution, anion exchange, precipitations, evaporation, calcination, and waste stream polishing. In the current political environment, the emphasis has been redirected from the traditional goal of recovering a pure plutonium product to that of generating ''clean'' effluents while placing the plutonium into a form suitable for long term storage. The ATLAS facility is uniquely suited to fulfill this new role in the development and demonstration of new or revisited technologies. This report summarizes recent work in equipment improvements to the batch dissolver, an evaluation of homogeneous hydroxide precipitations, a demonstration of nitric acid recycle, and the preparation of neptunium and plutonium standards

  3. Comparative Assessment of the Physico-Chemical and Bacteriological Qualities of Selected Streams in Louisiana

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-04-01

    Full Text Available The objective of this research was to compare the chemical/physical parameters and bacterial qualities of selected surface water streams in Louisiana, including a natural stream (control and an animal waste related stream. Samples were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols (LaMotte 2002. An analysis of biological oxygen demand (BOD, chemical oxygen demand (COD, total organic carbon (TOC, total dissolved solids (TDS, conductivity, pH, temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, turbidity, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [9]. Results of the comparisons of the various surface water streams showed that phosphate levels, according to Mitchell and Stapp, were considered good for Lake Claiborne (control and Bayou Dorcheat. The levels were found to be .001 mg/L and .007 mg/L respectively. Other streams associated with animal waste, had higher phosphate levels of 2.07 mg/L and 2.78 mg/L, respectively. Conductivity and total dissolved solids (TDS levels were the lowest in Lake Claiborne and highest in the Hill Farm Research Station stream. It can be concluded from the data that some bacterial levels and various nutrient levels can be affected in water resources due to non-point source pollution. Many of these levels will remain unaffected.

  4. Comparative assessment of the physico-chemical and bacteriological qualities of selected streams in Louisiana.

    Science.gov (United States)

    Hill, Dagne D; Owens, William E; Tchounwou, Paul B

    2005-04-01

    The objective of this research was to compare the chemical/physical parameters and bacterial qualities of selected surface water streams in Louisiana, including a natural stream (control) and an animal waste related stream. Samples were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols (LaMotte 2002). An analysis of biological oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total dissolved solids (TDS), conductivity, pH, temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, turbidity, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [9]. Results of the comparisons of the various surface water streams showed that phosphate levels, according to Mitchell and Stapp, were considered good for Lake Claiborne (control) and Bayou Dorcheat. The levels were found to be .001 mg/L and .007 mg/L respectively. Other streams associated with animal waste, had higher phosphate levels of 2.07 mg/L and 2.78 mg/L, respectively. Conductivity and total dissolved solids (TDS) levels were the lowest in Lake Claiborne and highest in the Hill Farm Research Station stream. It can be concluded from the data that some bacterial levels and various nutrient levels can be affected in water resources due to non-point source pollution. Many of these levels will remain unaffected.

  5. An evaluation of the relations between flow regime components, stream characteristics, species traits and meta-demographic rates of warmwater stream fishes: Implications for aquatic resource management

    Science.gov (United States)

    Peterson, James T.; Shea, C.P.

    2015-01-01

    Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species-specific demographic rates. A more cost-effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta-demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta-demographic rates were influenced by streamflows, particularly short-term (10-day) flows. Flow effects on meta-demographic rates also varied with stream size, channel morphology, and fish species traits. Small-bodied species with generalized life-history characteristics were more resilient to flow variability than large-bodied species with specialized life-history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. Subglacial hydrology and the formation of ice streams.

    Science.gov (United States)

    Kyrke-Smith, T M; Katz, R F; Fowler, A C

    2014-01-08

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice-water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.

  7. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  8. Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams

    Science.gov (United States)

    Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle; Mahler, Barbara J.; Van Metre, Peter C.

    2016-01-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  9. Hydroelectric plant turbine, stream and spillway flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lampa, J.; Lemon, D.; Buermans, J. [ASL AQ Flow Inc., Sidney, BC (Canada)

    2004-07-01

    This presentation provided schematics of the turbine flow measurements and typical bulb installations at the Kootenay Canal and Wells hydroelectric power facilities in British Columbia. A typical arrangement for measuring stream flow using acoustic scintillation was also illustrated. Acoustic scintillation is portable, non-intrusive, suitable for short intakes, requires minimal maintenance and is cost effective and accurate. A comparison between current meters and acoustic scintillation was also presented. Stream flow measurement is valuable in evaluating downstream areas that are environmentally important for fish habitat. Stream flow measurement makes it possible to define circulation. The effects of any changes can be assessed by combining field measurements and numerical modelling. The presentation also demonstrated that computational fluid dynamics modelling appears promising in determining stream flow and turbulent flow at spillways. tabs., figs.

  10. Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning

    Science.gov (United States)

    Julia I. Burton; Deanna H. Olson; Klaus J. Puettmann

    2016-01-01

    Forested riparian buffer zones are used in conjunction with upland forest management, in part, to provide for the recruitment for large wood to streams. Small headwater streams account for the majority of stream networks in many forested regions. Yet, our understanding of how riparian buffer width influences wood dynamics in headwater streams is relatively less...

  11. Research studies on in vitro and ex vivo yield of the miconazole nitrate from oral biomucoadhesive tablets.

    Science.gov (United States)

    Birsan, Magdalena; Cojocaru, Ileana; Scutariu, Mihaela Monica; Popovici, Iuliana

    2014-01-01

    Among the various routes of drug administration, the oral mucosa is perhaps the most often preferred by patients and medical staff. However, oral administration of drugs has disadvantages, which may limit or prevent oral administration of some drugs, especially peptides and proteins, little when they are inserted in special administration systems for the colon. The disaggregation of some oral biomucoadhesive tablets and the in vitro yield of the miconazole nitrate was evaluated and in parallel with this, the evaluation of the in vivo yield of the antifungal from the pharmaceutical form. Thus, for a clear determination of the oral mucobioadhesive tablets' disintegration with miconazole nitrate, it was necessary to implement a method to simulate the conditions of the oral cavity at a flow of solution (artificial saliva) similar to that of the human one. miconazole nitrate. The determination of disintegration time according to method A (FRX); the disaggregation of oral biomucoadhesive tablets with miconazole nitrate by means of simulation methods of in vitro conditions; the quantitative determination of the miconazole nitrate by means of HPLC method, after the in vitro dissolution test; the study of miconazole nitrate's yield in dynamic condition from biomucoadhesive tablets in the presence of artificial saliva (AFNOR). The yield profile of the miconazole nitrate in the disintegration solutions by means of classical method from FR X, by HPLC dosage was researched. The release of miconazole nitrate from the oral mucobioadhesive tablets was determined, that varies in time, depending on the type and relation of matrix forming polymers; a low yield speed of the miconazole nitrate from the tablets was determined; the yield profile of miconazole nitrate in disintegration solutions by means of the new suggested method was researched. The release of miconazole nitrate from the formulated biomucoadhesive tablets is of swelling and erosion.

  12. Hydrology and substrates: determinants of oligochaete distribution in lowland streams (the Netherlands)

    NARCIS (Netherlands)

    Verdonschot, P.F.M.

    2001-01-01

    In most soft-bottomed, lowland streams in the Netherlands discharge regimes largely follow the precipitation pattern. Winter discharges are higher and much more dynamic then summer discharges, although rain storms throughout the year cause unexpected peak flows. Minimal precipitation, reduced stream

  13. Identification of groundwater nitrate sources in pre-alpine catchments: a multi-tracer approach

    Science.gov (United States)

    Stoewer, Myriam; Stumpp, Christine

    2014-05-01

    Porous aquifers in pre-alpine areas are often used as drinking water resources due to their good water quality status and water yield. Maintaining these resources requires knowledge about possible sources of pollutants and a sustainable management practice in groundwater catchment areas. Of particular interest in agricultural areas, like in pre-alpine regions, is limiting nitrate input as main groundwater pollutant. Therefore, the objective of the presented study is i) to identify main nitrate sources in a pre-alpine groundwater catchment with current low nitrate concentration using stable isotopes of nitrate (d18O and d15N) and ii) to investigate seasonal dynamics of nitrogen compounds. The groundwater catchment areas of four porous aquifers are located in Southern Germany. Most of the land use is organic grassland farming as well as forestry and residential area. Thus, potential sources of nitrate mainly are mineral fertilizer, manure/slurry, leaking sewage system and atmospheric deposition of nitrogen compounds. Monthly freshwater samples (precipitation, river water and groundwater) are analysed for stable isotope of water (d2H, d18O), the concentration of major anions and cations, electrical conductivity, water temperature, pH and oxygen. In addition, isotopic analysis of d18O-NO3- and d15N-NO3- for selected samples is carried out using the denitrifier method. In general, all groundwater samples were oxic (10.0±2.6mg/L) and nitrate concentrations were low (0.2 - 14.6mg/L). The observed nitrate isotope values in the observation area compared to values from local precipitation, sewage, manure and mineral fertilizer as well as to data from literature shows that the nitrate in freshwater samples is of microbial origin. Nitrate derived from ammonium in fertilizers and precipitation as well as from soil nitrogen. It is suggested that a major potential threat to the groundwater quality is ammonia and ammonium at a constant level mainly from agriculture activities as

  14. The effect of restored and native oxbows on hydraulic loads of nutrients and stream water quality

    Science.gov (United States)

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Joseph P.Schubauer-Berigan,

    2016-01-01

    The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north-central Iowa in a native oxbow in the Lyons Creek watershed and two restored oxbow wetlands in the Prairie Creek watershed (Smeltzer west and Smeltzer east) to assess their effectiveness at reducing nitrogen and phosphorus loads. The tile line inlets carrying agricultural runoff to the oxbows, the outfall from the oxbows, and the surface waters in the streams receiving the outfall water were monitored for discharge and nutrients from February 2013 to September 2015. Smeltzer west and east also had four monitoring wells each, two in the upland and two between the oxbow and Prairie Creek to monitor surface water-groundwater interaction. The Smeltzer west and east oxbow sites also were instrumented to continuously measure the nitrate concentration. Rainfall was measured at one Lyons Creek and one Smeltzer site. Daily mean nitrate-N concentrations in Lyons Creek in 2013 ranged from 11.8 mg/L to 40.9 mg/L, the median daily mean nitrate-N concentration was 33.0 mg/L. Daily mean nitrate-N concentrations in Prairie Creek in 2013 ranged from 0.07 mg/L in August to 32.2 mg/L in June. In 2014, daily mean nitrate-N concentrations in Prairie Creek ranged from 0.17 mg/L in April to 26.7 mg/L in July; the daily mean nitrate-N concentration for the sampled period was 9.78 mg/L. Nutrient load reduction occurred in oxbow wetlands in Lyons and Prairie Creek watersheds in north-central Iowa but efficiency of reduction was variable. Little nutrient reduction occurred in the native Lyons Creek oxbow during 2013. Concentrations of all nutrient constituents were not significantly (P>0.05, Wilcoxon rank sum) different in water discharging from the tile line than in water leaving the Lyons Creek oxbow. A combination of physical features and flow conditions suggest that the residence time of

  15. Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin.

    Science.gov (United States)

    Ebrahimi, Shelir; Roberts, Deborah J

    2013-11-15

    The sustainability of ion-exchange treatment processes using high capacity single use resins to remove nitrate from contaminated drinking water can be achieved by regenerating the exhausted resin and reusing it multiple times. In this study, multi cycle loading and bioregeneration of tributylamine strong base anion (SBA) exchange resin was studied. After each cycle of exhaustion, biological regeneration of the resin was performed using a salt-tolerant, nitrate-perchlorate-reducing culture for 48 h. The resin was enclosed in a membrane to avoid direct contact of the resin with the culture. The results show that the culture was capable of regenerating the resin and allowing the resin to be used in multiple cycles. The concentrations of nitrate in the samples reached a peak in first 0.5-1h after placing the resin in medium because of desorption of nitrate from resin with desorption rate of 0.099 ± 0.003 hr(-1). After this time, since microorganisms began to degrade the nitrate in the aqueous phase, the nitrate concentration was generally non-detectable after 10h. The average of calculated specific degradation rate of nitrate was -0.015 mg NO3(-)/mg VSS h. Applying 6 cycles of resin exhaustion/regeneration shows resin can be used for 4 cycles without a loss of capacity, after 6 cycles only 6% of the capacity was lost. This is the first published research to examine the direct regeneration of a resin enclosed in a membrane, to allow reuse without any disinfection or cleaning procedures. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    Science.gov (United States)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of

  17. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationship

    Science.gov (United States)

    Evans, C.; Davies, T.D.; Murdoch, Peter S.

    1999-01-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the

  18. Opposing dorsal/ventral stream dynamics during figure-ground segregation

    NARCIS (Netherlands)

    Wokke, M.E.; Scholte, H.S.; Lamme, V.A.F.

    2014-01-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist

  19. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    International Nuclear Information System (INIS)

    Wang Aijie; Liu Chunshuang; Ren Nanqi; Han Hongjun; Lee Duujong

    2010-01-01

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S 0 ), N 2 , and CO 2 , or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 1000 mg/L influent sulfide, however, the DSR system will break down.

  20. Effect of cation type and concentration of nitrates on neurological disorders during experimental cerebral ischemia.

    Science.gov (United States)

    Kuzenkov, V S; Krushinskii, A L; Reutov, V P

    2013-10-01

    Experiments were performed on the model of ischemic stroke due to bilateral occlusion of the carotid arteries. Nitrates had various effects on the dynamics of neurological disorders and mortality rate of Wistar rats, which depended on the cation type and concentration.