WorldWideScience

Sample records for stream flow monitoring

  1. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence

    Science.gov (United States)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.

    2017-12-01

    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  2. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    Science.gov (United States)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (hour). The high temporal sampling resolution of the sensors permits a more realistic

  3. Investigation of technology for the monitoring of UF6 mass flow in UF6 streams diluted with H2

    International Nuclear Information System (INIS)

    Baker, O.J.; Cooley, J.N.; Hewgley, W.A.; Moran, B.W.; Swindle, D.W. Jr.

    1986-12-01

    The applicability, availability, and effectiveness of gas flow meters are assessed as a means for verifying the mass flows of pure UF 6 streams diluted with a carrier gas. The initial survey identified the orifice, pitot tube, thermal, vortex shedding, and vortex precession (swirl) meters as promising for the intended use. Subsequent assessments of these flow meters revealed that two - the orifice meter and the pitot tube meter - are the best choices for the proposed applications: the first is recommended for low velocity gas, small diameter piping; the latter, for high velocity gas, large diameter piping. Final selection of the gas flow meters should be based on test loop evaluations in which the proposed meters are subjected to gas flows, temperatures, and pressures representative of those expected in service. Known instruments are evaluated that may be applicable to the measurement of uranium or UF 6 concentration in a UF 6 - H 2 process stream at an aerodynamic enrichment plant. Of the six procedures evaluated, four have been used for process monitoring in a UF 6 environment: gas mass spectrometry, infrared-ultraviolet-visible spectrophotometry, gas chromatography, and acoustic gas analysis. The remaining two procedures, laser fluorimetry and atomic absorption spectroscopy, would require significant development work before they could be used for process monitoring. Infrared-ultravioloet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement

  4. On-stream chemical element monitor

    International Nuclear Information System (INIS)

    Averitt, O.R.; Dorsch, R.R.

    1979-01-01

    An apparatus and method for on-stream chemical element monitoring are described wherein a multiplicity of sample streams are flowed continuously through individual analytical cells and fluorescence analyses are performed on the sample streams in sequence, together with a method of controlling the time duration of each analysis as a function of the concomitant radiation exposure of a preselected perforate reference material interposed in the sample-radiation source path

  5. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

    DEFF Research Database (Denmark)

    Goyenola, Guillermo; Meerhoff, Marianna; Teixeira-de Mello, Franco

    2015-01-01

    Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the pe......Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns...... applied two alternative nutrient sampling programs (high-frequency composite sampling and low-frequency instantaneous-grab sampling) and estimated the contribution derived from point and diffuse sources fitting a source apportionment model. We expected to detect a pattern of higher total and particulate...... program to estimate P exports in flashy streams compared to the less variable streams. We also found signs of interaction between climate/hydrology and land use intensity, in particular in the presence of point sources of P, leading to a bias towards underestimation of P in hydrologically stable streams...

  6. Monitoring of plutonium contaminated solid waste streams

    International Nuclear Information System (INIS)

    Birkhoff, G.; Notea, A.

    1977-01-01

    The planning of a system for monitoring Pu contaminated solid waste streams, from the nuclear fuel cycle, is considered on the basis of given facility waste management program. The inter relations between the monitoring system and the waste management objectives are stressed. Selection criteria with pertinent data of available waste monitors are given. Example of monitoring systems planning are presented and discussed

  7. 7Q10 flows for SRS streams

    International Nuclear Information System (INIS)

    Chen, K.F.

    1996-01-01

    The Environmental Transport Group of the Environmental Technology Section was requested to predict the seven-day ten-year low flow (7Q10 flow) for the SRS streams based on historical stream flow records. Most of the historical flow records for the SRS streams include reactor coolant water discharged from the reactors and process water released from the process facilities. The most straight forward way to estimate the stream daily natural flow is to subtract the measured upstream reactor and/or facility daily effluents from the measured downstream daily flow. Unfortunately, this method does not always work, as indicated by the fact that sometimes the measured downstream volumetric flow rates are lower than the reactor effluent volumetric flow rates. For those cases that cannot be analyzed with the simple subtracting method, an alternative method was used to estimate the stream natural flows by statistically separating reactor coolant and process water flow data. The correlation between the calculated 7Q10 flows and the watershed areas for Four Mile Branch and Pen Branch agrees with that calculated by the USGS for Upper Three Runs and Lower Three Runs Creeks. The agreement between these two independent calculations lends confidence to the 7Q10 flow calculations presented in this report

  8. Network Monitoring as a Streaming Analytics Problem

    KAUST Repository

    Gupta, Arpit

    2016-11-02

    Programmable switches make it easier to perform flexible network monitoring queries at line rate, and scalable stream processors make it possible to fuse data streams to answer more sophisticated queries about the network in real-time. Unfortunately, processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have network monitoring in the context of streaming; yet, previous work has not closed the loop in a way that allows network operators to perform streaming analytics for network monitoring applications at scale. To achieve this objective, Sonata allows operators to express a network monitoring query by considering each packet as a tuple and efficiently partitioning each query between the switches and the stream processor through iterative refinement. Sonata extracts only the traffic that pertains to each query, ensuring that the stream processor can scale traffic rates of several terabits per second. We show with a simple example query involving DNS reflection attacks and traffic traces from one of the world\\'s largest IXPs that Sonata can capture 95% of all traffic pertaining to the query, while reducing the overall data rate by a factor of about 400 and the number of required counters by four orders of magnitude. Copyright 2016 ACM.

  9. Network Monitoring as a Streaming Analytics Problem

    KAUST Repository

    Gupta, Arpit; Birkner, Rü diger; Canini, Marco; Feamster, Nick; Mac-Stoker, Chris; Willinger, Walter

    2016-01-01

    , processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have

  10. Advanced monitoring with complex stream processing

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Making sense of metrics and logs for service monitoring can be a complicated task. Valuable information is normally scattered across several streams of monitoring data, requiring aggregation, correlation and time-based analysis to promptly detect problems and failures. This presentations shows a solution which is used to support the advanced monitoring of the messaging services provided by the IT Department. It uses Esper, an open-source software product for Complex Event Processing (CEP), that analyses series of events for deriving conclusions from them.

  11. Low-flow characteristics of Virginia streams

    Science.gov (United States)

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly

  12. Best Management Practices Monitoring Guide for Stream Systems

    OpenAIRE

    Mesner, Nancy

    2011-01-01

    Best Management Practices Monitoring Guide for Stream Systems provides guidance on establishing a water quality monitoring program that will demonstrate the effectiveness of Best Management Practices (BMPs) to reduce nonpoint source pollution in stream systems.

  13. Three-dimensional microbubble streaming flows

    Science.gov (United States)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  14. Flow of a stream through a reservoir

    International Nuclear Information System (INIS)

    Sauerwein, K.

    1967-01-01

    If a reservoir is fed from a single source, which may not always be pure, the extent to which the inflowing stream mixes with the water in the reservoir is important for the quality of the water supplied by the reservoir. This question was investigated at the Lingese Reservoir, containing between one and two million cubic metres of water, in the Bergisches Land (North Rhine-Westphalia). The investigation was carried out at four different seasons so that the varying effects of the stream-water temperatures could be studied in relation to the temperature of the reservoir water. The stream was radioactively labelled at the point of inflow into the reservoir, and its flow through the reservoir was measured in length and depth from boats, by means of 1-m-long Geiger counters. In two cases the radioactivity of the outflowing water was also measured at fixed points. A considerable variety of intermixing phenomena were observed; these were mainly of limnological interest. The results of four experiments corresponding to the four different seasons are described in detail. They were as follows: (1) The mid-October experiment where the stream, with a temperature of 8.0 deg. C, was a good 5 deg. C colder than the water of the reservoir, whose temperature was almost uniform, ranging from 13.2 deg. C at the bed to 13.6 deg. C at the surface. (2) The spring experiment (second half of March), when the stream temperature was only 0.3 deg. C below that of the reservoir surface (7.8 deg. C), while the temperature of the bed was 5.8 deg. C. (3) The winter experiment (early December) where at first the temperature of the stream was approximately the same as that of the surface so that, once again, the stream at first flowed 1/2 - 1 m below the surface. During the almost wind-free night a sudden fall in temperature occurred, and the air temperature dropped from 0 deg. C to -12 deg. C. (4) The summer experiment (end of July to mid-August) when the stream was nearly 1 deg. C colder than

  15. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Science.gov (United States)

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  16. Serial Network Flow Monitor

    Science.gov (United States)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  17. Flow-covariate prediction of stream pesticide concentrations.

    Science.gov (United States)

    Mosquin, Paul L; Aldworth, Jeremy; Chen, Wenlin

    2018-01-01

    Potential peak functions (e.g., maximum rolling averages over a given duration) of annual pesticide concentrations in the aquatic environment are important exposure parameters (or target quantities) for ecological risk assessments. These target quantities require accurate concentration estimates on nonsampled days in a monitoring program. We examined stream flow as a covariate via universal kriging to improve predictions of maximum m-day (m = 1, 7, 14, 30, 60) rolling averages and the 95th percentiles of atrazine concentration in streams where data were collected every 7 or 14 d. The universal kriging predictions were evaluated against the target quantities calculated directly from the daily (or near daily) measured atrazine concentration at 32 sites (89 site-yr) as part of the Atrazine Ecological Monitoring Program in the US corn belt region (2008-2013) and 4 sites (62 site-yr) in Ohio by the National Center for Water Quality Research (1993-2008). Because stream flow data are strongly skewed to the right, 3 transformations of the flow covariate were considered: log transformation, short-term flow anomaly, and normalized Box-Cox transformation. The normalized Box-Cox transformation resulted in predictions of the target quantities that were comparable to those obtained from log-linear interpolation (i.e., linear interpolation on the log scale) for 7-d sampling. However, the predictions appeared to be negatively affected by variability in regression coefficient estimates across different sample realizations of the concentration time series. Therefore, revised models incorporating seasonal covariates and partially or fully constrained regression parameters were investigated, and they were found to provide much improved predictions in comparison with those from log-linear interpolation for all rolling average measures. Environ Toxicol Chem 2018;37:260-273. © 2017 SETAC. © 2017 SETAC.

  18. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  19. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  20. A spatial assessment of stream-flow characteristics and hydrologic ...

    African Journals Online (AJOL)

    The global hydrologic regime has been intensively altered through activities such as dam construction, water abstraction, and inter-basin transfers. This paper uses the Range of Variability Approach (RVA) and daily stream flow records from nine gauging stations to characterize stream-flow post dam construction in the ...

  1. Hydroelectric plant turbine, stream and spillway flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lampa, J.; Lemon, D.; Buermans, J. [ASL AQ Flow Inc., Sidney, BC (Canada)

    2004-07-01

    This presentation provided schematics of the turbine flow measurements and typical bulb installations at the Kootenay Canal and Wells hydroelectric power facilities in British Columbia. A typical arrangement for measuring stream flow using acoustic scintillation was also illustrated. Acoustic scintillation is portable, non-intrusive, suitable for short intakes, requires minimal maintenance and is cost effective and accurate. A comparison between current meters and acoustic scintillation was also presented. Stream flow measurement is valuable in evaluating downstream areas that are environmentally important for fish habitat. Stream flow measurement makes it possible to define circulation. The effects of any changes can be assessed by combining field measurements and numerical modelling. The presentation also demonstrated that computational fluid dynamics modelling appears promising in determining stream flow and turbulent flow at spillways. tabs., figs.

  2. Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity.

    Science.gov (United States)

    Rožman, Marko; Acuña, Vicenç; Petrović, Mira

    2018-02-01

    A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    International Nuclear Information System (INIS)

    Cochran, H.D. Jr.

    1978-01-01

    An improved method of monitoring the mass flow rate of a substance entering a coherent fluid stream is described. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance

  4. Environmental Monitoring, Water Quality - MO 2009 Stream Team Volunteer Water Quality Monitoring Sites (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set shows the monitoring locations of trained Volunteer Water Quality Monitors. A monitoring site is considered to be a 300 foot section of stream channel....

  5. Switch of flow direction in an Antarctic ice stream.

    Science.gov (United States)

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  6. Ethernet Flow Monitoring with IPFIX

    NARCIS (Netherlands)

    Hofstede, R.J.; Drago, Idilio; Sperotto, Anna; Pras, Aiko

    The increasing amount of network traffic and the huge bandwidth needed to carry it requires managers to use scalable solutions to monitor their networks. Nowadays, flow-based techniques, such as Cisco’s NetFlow, provide aggregated network data and an overview of network activity at the IP layer.

  7. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Gallaher; R.J. Koch

    2004-09-15

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

  8. Ambient groundwater flow diminishes nitrogen cycling in streams

    Science.gov (United States)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  9. Monitoring probe for groundwater flow

    Science.gov (United States)

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  10. Particle migration and sorting in microbubble streaming flows

    Science.gov (United States)

    Thameem, Raqeeb; Hilgenfeldt, Sascha

    2016-01-01

    Ultrasonic driving of semicylindrical microbubbles generates strong streaming flows that are robust over a wide range of driving frequencies. We show that in microchannels, these streaming flow patterns can be combined with Poiseuille flows to achieve two distinctive, highly tunable methods for size-sensitive sorting and trapping of particles much smaller than the bubble itself. This method allows higher throughput than typical passive sorting techniques, since it does not require the inclusion of device features on the order of the particle size. We propose a simple mechanism, based on channel and flow geometry, which reliably describes and predicts the sorting behavior observed in experiment. It is also shown that an asymptotic theory that incorporates the device geometry and superimposed channel flow accurately models key flow features such as peak speeds and particle trajectories, provided it is appropriately modified to account for 3D effects caused by the axial confinement of the bubble. PMID:26958103

  11. Optimized open-flow mixing: insights from microbubble streaming

    Science.gov (United States)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha

    2015-11-01

    Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.

  12. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cid, N., E-mail: ncid@ub.edu [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Verkaik, I. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); García-Roger, E.M. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València (Spain); Rieradevall, M.; Bonada, N. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Sánchez-Montoya, M.M. [Department of Ecology and Hydrology, Regional Campus of International Excellence “Campus Mare Nostrum”—University of Murcia (Spain); Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin (Germany); Gómez, R.; Suárez, M.L.; Vidal-Abarca, M.R. [Department of Ecology and Hydrology, Regional Campus of International Excellence “Campus Mare Nostrum”—University of Murcia (Spain); Demartini, D.; Buffagni, A.; Erba, S. [Instituto di Ricerca Sulle Acque (CNR-IRSA) (Italy); Karaouzas, I.; Skoulikidis, N. [Hellenic Center for Marine Research (HCMR) (Greece); Prat, N. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain)

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. - Highlights: • The effect of flow connectivity on macroinvertebrate

  13. Continuous turbidity monitoring in streams of northwestern California

    Science.gov (United States)

    Rand Eads; Jack Lewis

    2002-01-01

    Abstract - Redwood Sciences Laboratory, a field office of the USDA Forest Service, Pacific Southwest Research Station has developed and refined methods and instrumentation to monitor turbidity and suspended sediment in streams of northern California since 1996. Currently we operate 21 stations and have provided assistance in the installation of 6 gaging stations for...

  14. Natural stream flow-rates measurements by tracer techniques

    International Nuclear Information System (INIS)

    Cuellar Mansilla, J.

    1982-01-01

    This paper presents the study of the precision obtained measuring the natural stream flow rates by tracer techniques, especially when the system presents a great slope and a bed constituted by large and extended particle size. The experiences were realized in laboratory pilot channels with flow-rates between 15 and 130 [1/s]; and in natural streams with flow-rates from 1 to 25 m 3 /s. Tracer used were In-133m and Br-82 for laboratory and field measurements respectively. In both cases the tracer was injected as a pulse and its dilution measured collecting samples in the measured section, at constant flow-rates, of 5[1] in laboratory experiences and 60[1] of water in field experiences. Precisions obtained at a 95% confidence level were about 2% for laboratory and 3% for field. (I.V.)

  15. Flow effects on benthic stream invertebrates and ecological processes

    Science.gov (United States)

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what

  16. Comparative Measurement of Stream Flow in the Ethiope River for ...

    African Journals Online (AJOL)

    This study investigates comparative measurement of stream flow in the Ethiope River for small hydropower development. Two methods – the Float and Current Meter or Bridge Broom Methods were investigated and values compared to determine best method for optimal power generation. Depth and width measurements ...

  17. Streaming: A Media Hydrography of Televisual Flows

    Directory of Open Access Journals (Sweden)

    Ghislain Thibault

    2015-09-01

    Full Text Available This paper focuses on the continuities, rather than the ruptures, between digital television and past media forms. It situates the metaphor of “streaming” in contrast to and connection with previous fluid metaphors that have been used to describe different models of media transmission. From the early use of aqueous vocabulary that shaped popular and scientific understandings of electricity transmission to the seminal studies of mass communication concerning the flows of information, images of fluidity have long shaped cultural understandings of the inner logics of media infrastructures. Building on the work of media archaeologist Erkki Huhtamo, I approach these metaphors as “recurrent topoi” in media culture.

  18. Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients.

    Science.gov (United States)

    Triantafyllopoulos, Dimitrios; Korvesis, Panagiotis; Mporas, Iosif; Megalooikonomou, Vasileios

    2016-03-01

    New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient's physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data.

  19. Flow Field and Acoustic Predictions for Three-Stream Jets

    Science.gov (United States)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  20. Frequency dependence and frequency control of microbubble streaming flows

    Science.gov (United States)

    Wang, Cheng; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2013-02-01

    Steady streaming from oscillating microbubbles is a powerful actuating mechanism in microfluidics, enjoying increased use due to its simplicity of manufacture, ease of integration, low heat generation, and unprecedented control over the flow field and particle transport. As the streaming flow patterns are caused by oscillations of microbubbles in contact with walls of the set-up, an understanding of the bubble dynamics is crucial. Here we experimentally characterize the oscillation modes and the frequency response spectrum of such cylindrical bubbles, driven by a pressure variation resulting from ultrasound in the range of 1 kHz raisebox {-.9ex{stackrel{textstyle <}{˜ }} }f raisebox {-.9ex{stackrel{textstyle <}{˜ }} } 100 kHz. We find that (i) the appearance of 2D streaming flow patterns is governed by the relative amplitudes of bubble azimuthal surface modes (normalized by the volume response), (ii) distinct, robust resonance patterns occur independent of details of the set-up, and (iii) the position and width of the resonance peaks can be understood using an asymptotic theory approach. This theory describes, for the first time, the shape oscillations of a pinned cylindrical bubble at a wall and gives insight into necessary mode couplings that shape the response spectrum. Having thus correlated relative mode strengths and observed flow patterns, we demonstrate that the performance of a bubble micromixer can be optimized by making use of such flow variations when modulating the driving frequency.

  1. Acoustic streaming in pulsating flows through porous media

    International Nuclear Information System (INIS)

    Valverde, J.M.; Dura'n-Olivencia, F.J.

    2014-01-01

    When a body immersed in a viscous fluid is subjected to a sound wave (or, equivalently, the body oscillates in the fluid otherwise at rest) a rotational fluid stream develops across a boundary layer nearby the fluid-body interphase. This so-called acoustic streaming phenomenon is responsible for a notable enhancement of heat, mass and momentum transfer and takes place in any process involving two phases subjected to relative oscillations. Understanding the fundamental mechanisms governing acoustic streaming in two-phase flows is of great interest for a wide range of applications such as sonoprocessed fluidized bed reactors, thermoacoustic refrigerators/engines, pulsatile flows through veins/arteries, hemodialysis devices, pipes in off-shore platforms, offshore piers, vibrating structures in the power-generating industry, lab-on-a-chip microfluidics and microgravity acoustic levitation, and solar thermal collectors to name a few. The aim of engineering studies on this vast diversity of systems is oriented towards maximizing the efficiency of each particular process. Even though practical problems are usually approached from disparate disciplines without any apparent linkage, the behavior of these systems is influenced by the same underlying physics. In general, acoustic streaming occurs within the interstices of porous media and usually in the presence of externally imposed steady fluid flows, which gives rise to important effects arising from the interference between viscous boundary layers developed around nearby solid surfaces and the nonlinear coupling between the oscillating and steady flows. This paper is mainly devoted to highlighting the fundamental physics behind acoustic streaming in porous media in order to provide a simple instrument to assess the relevance of this phenomenon in each particular application. The exact microscopic Navier-Stokes equations will be numerically solved for a simplified 2D system consisting of a regular array of oscillating

  2. Monitoring stream temperatures—A guide for non-specialists

    Science.gov (United States)

    Heck, Michael P.; Schultz, Luke D.; Hockman-Wert, David; Dinger, Eric C.; Dunham, Jason B.

    2018-04-19

    Executive SummaryWater temperature influences most physical and biological processes in streams, and along with streamflows is a major driver of ecosystem processes. Collecting data to measure water temperature is therefore imperative, and relatively straightforward. Several protocols exist for collecting stream temperature data, but these are frequently directed towards specialists. This document was developed to address the need for a protocol intended for non-specialists (non-aquatic) staff. It provides specific step-by-step procedures on (1) how to launch data loggers, (2) check the factory calibration of data loggers prior to field use, (3) how to install data loggers in streams for year-round monitoring, (4) how to download and retrieve data loggers from the field, and (5) how to input project data into organizational databases.

  3. An automated, self-verifying system for monitoring uranium in effluent streams

    International Nuclear Information System (INIS)

    Reda, R.J.; Pickett, J.L.

    1992-01-01

    In nuclear facilities such as nuclear fuel fabrication plants, a constant vigil is required to ensure that the concentrations of uranium in process or waste streams do not exceed required specifications. The specifications may be dictated by the process owner, a regulatory agency such as the US Nuclear Regulatory Agency or Environmental Protection Agency, or by criticality safety engineering criteria. Traditionally, uranium monitoring in effluent streams has been accomplished by taking periodic samples of the liquid stream and determining the concentration by chemical analysis. Despite its accuracy, chemical sampling is not timely enough for practical use in continuously flowing systems because of the possibility that a significant quantity of uranium may be discharged between sampling intervals. To completely satisfy regulatory standards, the liquid waste stream must be monitored for uranium on a 100% basis. To this end, an automated, radioisotopic liquid-waste monitoring system was developed by GE Nuclear Energy as an integral part of the uranium conversion and waste recovery operations. The system utilizes passive gamma-ray spectroscopy and is thus a robust, on-line, and nondestructive assay for uranium. The system provides uranium concentration data for process monitoring and assures regulatory compliance for criticality safety. A summary of the principles of system operation, calibration, and verification is presented in this paper

  4. Low-flow characteristics of streams in South Carolina

    Science.gov (United States)

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2017-09-22

    An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.Between 2008 and 2016, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, updated low-flow statistics at 106 continuous-record streamgages operated by the U.S. Geological Survey for the eight major river basins in South Carolina. The low-flow frequency statistics included the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamflow-gaging station. Computations of daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also were included.This report summarizes the findings from publications generated during the 2008 to 2016 investigations. Trend analyses for the annual minimum 7-day average flows are provided as well as trend assessments of long-term annual precipitation data. Statewide variability in the annual minimum 7-day average flow is assessed at eight long-term (record lengths from 55 to 78 years) streamgages. If previous low-flow statistics were available, comparisons with the updated annual minimum 7-day average flow, having a 10-year recurrence interval, were made. In addition, methods for estimating low-flow statistics at ungaged locations near a gaged location are described.

  5. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.

    Science.gov (United States)

    Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M

    2013-01-01

    Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water

  6. Characterization and classification of invertebrates as indicators of flow permanence in headwater streams

    Science.gov (United States)

    Headwater streams represent a large proportion of river networks and many have temporary flow. Litigation has questioned whether these streams are jurisdictional under the Clean Water Act. Our goal was to identify indicators of flow permanence by comparing invertebrate assemblage...

  7. Low-flow characteristics for selected streams in Indiana

    Science.gov (United States)

    Fowler, Kathleen K.; Wilson, John T.

    2015-01-01

    The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.

  8. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    Musa, J. J

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  9. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin.

    Science.gov (United States)

    Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Shock formation and structure in magnetic reconnection with a streaming flow.

    Science.gov (United States)

    Wu, Liangneng; Ma, Zhiwei; Zhang, Haowei

    2017-08-18

    The features of magnetic reconnection with a streaming flow have been investigated on the basis of compressible resistive magnetohydrodynamic (MHD) model. The super-Alfvenic streaming flow largely enhances magnetic reconnection. The maximum reconnection rate is almost four times larger with super-Alfvenic streaming flow than sub-Alfvénic streaming flow. In the nonlinear stage, it is found that there is a pair of shocks observed in the inflow region, which are manifested to be slow shocks for sub-Alfvénic streaming flow, and fast shocks for super-Alfvénic streaming flow. The quasi-period oscillation of reconnection rates in the decaying phase for super-Alfvénic streaming flow is resulted from the different drifting velocities of the shock and the X point.

  11. Coupling nutrient uptake and energy flow in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Thomas, Steve [University of Nebraska

    2006-08-01

    Nutrient cycling and energy flow in ecosystems are tightly linked through the metabolic processes of organisms. Greater uptake of inorganic nutrients is expected to be associated with higher rates of metabolism [gross primary production (GPP) and respiration (R)], due to assimilatory demand of both autotrophs and heterotrophs. However, relationships between uptake and metabolism should vary with the relative contribution of autochthonous and allochthonous sources of organic matter. To investigate the relationship between metabolism and nutrient uptake, we used whole-stream and benthic chamber methods to measure rates of nitrate-nitrogen (NO{sub 3}-N) uptake and metabolism in four headwater streams chosen to span a range of light availability and therefore differing rates of GPP and contributions of autochthonous carbon. We coupled whole-stream metabolism with measures of NO{sub 3}-N uptake conducted repeatedly over the same stream reach during both day and night, as well as incubating benthic sediments under both light and dark conditions. NO{sub 3}-N uptake was generally greater in daylight compared to dark conditions, and although day-night differences in whole-stream uptake were not significant, light-dark differences in benthic chambers were significant at three of the four sites. Estimates of N demand indicated that assimilation by photoautotrophs could account for the majority of NO{sub 3}-N uptake at the two sites with relatively open canopies. Contrary to expectations, photoautotrophs contributed substantially to NO{sub 3}-N uptake even at the two closed-canopy sites, which had low values of GPP/R and relied heavily on allochthonous carbon to fuel R.

  12. Apparatus for monitoring two-phase flow

    Science.gov (United States)

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  13. Apparatus for monitoring two-phase flow

    International Nuclear Information System (INIS)

    Sheppard, J.D.; Tong, L.S.

    1977-01-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods. 3 claims, 9 figures

  14. Effective number of breeders provides a link between interannual variation in stream flow and individual reproductive contribution in a stream salmonid.

    Science.gov (United States)

    Whiteley, Andrew R; Coombs, Jason A; Cembrola, Matthew; O'Donnell, Matthew J; Hudy, Mark; Nislow, Keith H; Letcher, Benjamin H

    2015-07-01

    The effective number of breeders that give rise to a cohort (N(b)) is a promising metric for genetic monitoring of species with overlapping generations; however, more work is needed to understand factors that contribute to variation in this measure in natural populations. We tested hypotheses related to interannual variation in N(b) in two long-term studies of brook trout populations. We found no supporting evidence for our initial hypothesis that N^(b) reflects N^(c) (defined as the number of adults in a population at the time of reproduction). N^(b) was stable relative to N^(C) and did not follow trends in abundance (one stream negative, the other positive). We used stream flow estimates to test the alternative hypothesis that environmental factors constrain N(b). We observed an intermediate optimum autumn stream flow for both N^(b) (R(2) = 0.73, P = 0.02) and full-sibling family evenness (R(2) = 0.77, P = 0.01) in one population and a negative correlation between autumn stream flow and full-sib family evenness in the other population (r = -0.95, P = 0.02). Evidence for greater reproductive skew at the lowest and highest autumn flow was consistent with suboptimal conditions at flow extremes. A series of additional tests provided no supporting evidence for a related hypothesis that density-dependent reproductive success was responsible for the lack of relationship between N(b) and N(C) (so-called genetic compensation). This work provides evidence that N(b) is a useful metric of population-specific individual reproductive contribution for genetic monitoring across populations and the link we provide between stream flow and N(b) could be used to help predict population resilience to environmental change. © 2015 John Wiley & Sons Ltd.

  15. The effect of in-stream activities on the Njoro River, Kenya. Part I: Stream flow and chemical water quality

    Science.gov (United States)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    For shallow streams in sub-Saharan Africa, in-stream activities could be described as the actions by people and livestock, which take place within or besides stream channels. This study examined the nature of in-stream activities along a rural stream in Kenya and established the inequality in water allocation for various livelihood needs, as well as the negative impact they have on dry weather stream flow and chemical water quality. Seven locations along the stream were studied in wet and dry weather of 2006. Enumeration consisted of making head counts of people and livestock and tallying visitors at hourly intervals from 6 a.m. to 7 p.m. To estimate water abstraction, filled containers of known volume were counted and the stream was sampled to examine the impact on water quality. Water samples were obtained upstream and downstream of in-stream activities before (6 a.m.) and during (11 a.m., 6 p.m.) activities. Samples were analyzed for suspended solids, turbidity, BOD 5, total nitrogen and total phosphorus. The daily total abstraction at the middle reaches during dry weather was 120-150 m 3 day -1. More than 60% of abstraction was done by water vendors. Vended water from the stream was sold at US 3.5-7.5 per m 3 and vendors earned between US 3-6 a day. Abstracted water contributed approximately 40-60% of the total daily consumptive water use in the riparian area during dry weather but >30% of the morning stream flow was abstracted thereby upsetting stream flow in the lower reaches. The daily total water abstraction correlated positively ( R2, 0.98) and significantly ( p < 0.05) with the daily total human visit, which was diurnally periodic with two peaks, occurring between 9 a.m. and 10 a.m. and from 4 p.m. to 5 p.m. This diurnal pattern of visits and the corresponding in-stream activities affected water quality. In particular, suspended solids, turbidity and BOD 5 levels increased significantly ( p < 0.05) downstream during in-stream activities. It was concluded

  16. Groundwater flow and mixing in a wetland–stream system

    DEFF Research Database (Denmark)

    Karan, Sachin; Engesgaard, Peter Knudegaard; Zibar, Majken Caroline Looms

    2013-01-01

    steady-state groundwater model that was calibrated against average head observations. The model results were tested against groundwater fluxes determined from streambed temperature measurements. Discharge varied up to one order of magnitude across the stream and the model was successful in capturing...... in the top of the aquifer and immediately underneath the streambed no NO3- was detected deeper within the aquifer. An inverse relationship between NO3- and SO42- suggests that pyrite oxidation takes place in the deeper parts of the aquifer. Simulated flow path lines showed very different origins for deeper...

  17. Characterization and monitoring of 300 Area Facility liquid waste streams: Status report

    International Nuclear Information System (INIS)

    Manke, K.L.; Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Ikenberry, A.S.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.

    1994-09-01

    This report summarizes the results of characterizing and monitoring the following sources during a portion of this year: liquid waste streams from Buildings 331, 320, and 3720; treated and untreated Columbia River water; and water at the confluence of the waste streams (that is, end-of-pipe). Characterization and monitoring data were evaluated for samples collected between March 22 and June 21, 1994, and subsequently analyzed for hazardous chemicals, radioactivity, and general parameters. Except for bis(2-ethylhexyl)phthalate, concentrations of chemicals detected and parameters measured at end-of-pipe were below the US Environmental Protection Agency existing and proposed drinking water standards. The source of the chemicals, except bis(2-ethylhexyl)phthalate, is not currently known. The bis(2-ethylhexyl)phthalate is probably an artifact of the plastic tubing used in the early stages of the sampling program. This practice was stopped. Concentrations and clearance times for contaminants at end-of-pipe depended strongly on source concentration at the facility release point, waste stream flow rates, dispersion, and the mechanical action of sumps. When present, the action of sumps had the greatest impact on contaminant clearance times. In the absence of sump activity, dispersion and flow rate were the controlling factors

  18. Use of radars to monitor stream discharge by noncontact methods

    Science.gov (United States)

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods

  19. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.

    2009-01-01

    Advanced techniques enabling enhanced safeguarding of the spent fuel reprocessing plants are urgently needed. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from Hanford nuclear waste storage tanks. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities. Raman and UV-vis-NIR spectroscopies are analytical techniques that have extensively been extensively applied for measuring the various organic and inorganic compounds including actinides. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. The actinides and lanthanides are monitored remotely by UV-vis-NIR spectroscopy in aqueous and organic phases. In this report, we will present our recent results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels available at

  20. Stream biofilm responses to flow intermittency: from cells to ecosystems

    Directory of Open Access Journals (Sweden)

    Sergi eSabater

    2016-03-01

    Full Text Available Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are eminently microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms accordingly change their physical structure and community composition. Biofilms experience large decreases on cell densities and biomass, both of bacteria and algae, during dryness. Algal and bacterial communities show remarkable decreases in their diversity, at least locally (at the habitat scale. Biofilms also respond with significant physiological plasticity to each of the hydrological changes. The decreasing humidity of the substrata through the drying process, and the changing quantity and quality of organic matter and nutrients available in the stream during that process, causes unequal responses on the biofilm bacteria and algae. Biofilm algae are affected faster than bacteria by the hydric stress, and as a result the ecosystem respiration resists longer than gross primary production to the increasing duration of flow intermittency. This response implies enhancing ecosystem heterotrophy, a pattern that can be exacerbated in temporary streams suffering of longer dry periods under global change.

  1. Investigation of technology for monitoring UF6 mass flow

    International Nuclear Information System (INIS)

    Cooley, J.N.; Moran, B.W.; Swindle, D.W. Jr.

    1987-06-01

    The applicability of gas flow meters, in-line enrichment monitors, and instruments for measuring uranium or UF 6 concentrations in process streams as a means for verifying declared plant throughput have been investigated. The study was performed to assist the International Atomic Energy Agency in the development of an effective international safeguards approach for aerodynamic uranium enrichment plants. Because the process gas in an aerodynamic enrichment facility is a mixture of UF 6 and H 2 , a mass flow measurement in conjunction with a measurement of the uranium (or UF 6 ) concentration in the process gas is required to quantify the amount of uranium being fed into, and withdrawn from, the cascades for nuclear materials accountability verification. In-line enrichment monitors developed for the US gas centrifuge enrichment plant are found to be applicable only to pure UF 6 streams. Of the five gas flow meters evaluated, the orifice meter and the pitot tube meter are judged the best choices for the proposed applications: the first is recommended for low-velocity gas, small diameter piping; the latter, for high-velocity gas, large diameter piping. Of the six procedures evaluated for measurement of uranium or UF 6 concentration in a mixed process stream, infrared-ultraviolet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement. 4 refs., 3 figs., 3 tabs

  2. Three-dimensional features on oscillating microbubbles streaming flows

    Science.gov (United States)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  3. The impact of Indian Ocean high pressure system on rainfall and stream flow

    International Nuclear Information System (INIS)

    Rehman, S.; Nasir, H.; Zia, S.S.; Ansari, W.A.; Salam, K.; Tayyab, N.

    2012-01-01

    Centre of Action approach is very useful in getting insight of rainfall and stream flow variability of specific region. Hameed et al. showed that Inter-annual variability of Gulf Stream north wall is influenced by low Icelandic pressure system and has more statistically significant correlation than North Atlantic Oscillation (NAO) with longitude of Icelandic low. This study also aims to explore possible relationships between rainfall and stream flow in Collie river catchment in Southwest Western Australia (SWWA) with Indian Ocean high pressure dynamics. The relationship between rainfall and stream flow with Indian Ocean high pressure system have been investigated using correlation analysis for early winter season (MJJA), lag correlation for MJJA versus SOND rainfall and stream flow are also calculated and found significant at 95% confidence level. By investigating the relationship between COA indices with rainfall and stream flow over the period 1976-2008, significant correlations suggests that rainfall and stream flow in Collie river basin is strongly influenced by COA indices. Multiple correlations between rainfall and stream flow with Indian Ocean high pressure (IOHPS and IOHLN) is 0.7 and 0.6 respectively. Centers of Action (COA) indices explain 51% and 36% of rainfall and stream flow respectively. The correlation between rainfall and stream flow with IOHPS is -0.4 and -0.3 whereas, with IOHLN is -0.47 and -0.52 respectively. (author)

  4. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  5. Riparian indicators of flow frequency in a tropical montante stream network

    Science.gov (United States)

    Andrew S. Pike; Frederick N. Scatena

    2010-01-01

    Many field indicators have been used to approximate the magnitude and frequency of flows in a variety of streams and rivers, yet due to a scarcity of long-term flow records in tropical mountain streams, little to no work has been done to establish such relationships between field features and the flow regime in these environments. Furthermore, the transition between...

  6. Toward Design Guidelines for Stream Restoration Structures: Measuring and Modeling Unsteady Turbulent Flows in Natural Streams with Complex Hydraulic Structures

    Science.gov (United States)

    Lightbody, A.; Sotiropoulos, F.; Kang, S.; Diplas, P.

    2009-12-01

    Despite their widespread application to prevent lateral river migration, stabilize banks, and promote aquatic habitat, shallow transverse flow training structures such as rock vanes and stream barbs lack quantitative design guidelines. Due to the lack of fundamental knowledge about the interaction of the flow field with the sediment bed, existing engineering standards are typically based on various subjective criteria or on cross-sectionally-averaged shear stresses rather than local values. Here, we examine the performance and stability of in-stream structures within a field-scale single-threaded sand-bed meandering stream channel in the newly developed Outdoor StreamLab (OSL) at the St. Anthony Falls Laboratory (SAFL). Before and after the installation of a rock vane along the outer bank of the middle meander bend, high-resolution topography data were obtained for the entire 50-m-long reach at 1-cm spatial scale in the horizontal and sub-millimeter spatial scale in the vertical. In addition, detailed measurements of flow and turbulence were obtained using acoustic Doppler velocimetry at twelve cross-sections focused on the vicinity of the structure. Measurements were repeated at a range of extreme events, including in-bank flows with an approximate flow rate of 44 L/s (1.4 cfs) and bankfull floods with an approximate flow rate of 280 L/s (10 cfs). Under both flow rates, the structure reduced near-bank shear stresses and resulted in both a deeper thalweg and near-bank aggradation. The resulting comprehensive dataset has been used to validate a large eddy simulation carried out by SAFL’s computational fluid dynamics model, the Virtual StreamLab (VSL). This versatile computational framework is able to efficiently simulate 3D unsteady turbulent flows in natural streams with complex in-stream structures and as a result holds promise for the development of much-needed quantitative design guidelines.

  7. Evaluating Stream Restoration Projects: What Do We Learn from Monitoring?

    Directory of Open Access Journals (Sweden)

    Zan Rubin

    2017-02-01

    Full Text Available Two decades since calls for stream restoration projects to be scientifically assessed, most projects are still unevaluated, and conducted evaluations yield ambiguous results. Even after these decades of investigation, do we know how to define and measure success? We systematically reviewed 26 studies of stream restoration projects that used macroinvertebrate indicators to assess the success of habitat heterogeneity restoration projects. All 26 studies were previously included in two meta-analyses that sought to assess whether restoration programs were succeeding. By contrast, our review focuses on the evaluations themselves, and asks what exactly we are measuring and learning from these evaluations. All 26 studies used taxonomic diversity, richness, or abundance of invertebrates as biological measures of success, but none presented explicit arguments why those metrics were relevant measures of success for the restoration projects. Although changes in biodiversity may reflect overall ecological condition at the regional or global scale, in the context of reach-scale habitat restoration, more abundance and diversity may not necessarily be better. While all 26 studies sought to evaluate the biotic response to habitat heterogeneity enhancement projects, about half of the studies (46% explicitly measured habitat alteration, and 31% used visual estimates of grain size or subjectively judged ‘habitat quality’ from protocols ill-suited for the purpose. Although the goal of all 26 projects was to increase habitat heterogeneity, 31% of the studies either sampled only riffles or did not specify the habitats sampled. One-third of the studies (35% used reference ecosystems to define target conditions. After 20 years of stream restoration evaluation, more work remains for the restoration community to identify appropriate measures of success and to coordinate monitoring so that evaluations are at a scale capable of detecting ecosystem change.

  8. Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study.

    Science.gov (United States)

    Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny

    2018-06-01

    Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine

  9. Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow

    International Nuclear Information System (INIS)

    Wu, L. N.; Ma, Z. W.

    2014-01-01

    The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvén resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β  s , but decreases if β > β s . The existence of the specific value β s can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β s increases with increase of the streaming flow strength

  10. Methods for estimating low-flow statistics for Massachusetts streams

    Science.gov (United States)

    Ries, Kernell G.; Friesz, Paul J.

    2000-01-01

    Methods and computer software are described in this report for determining flow duration, low-flow frequency statistics, and August median flows. These low-flow statistics can be estimated for unregulated streams in Massachusetts using different methods depending on whether the location of interest is at a streamgaging station, a low-flow partial-record station, or an ungaged site where no data are available. Low-flow statistics for streamgaging stations can be estimated using standard U.S. Geological Survey methods described in the report. The MOVE.1 mathematical method and a graphical correlation method can be used to estimate low-flow statistics for low-flow partial-record stations. The MOVE.1 method is recommended when the relation between measured flows at a partial-record station and daily mean flows at a nearby, hydrologically similar streamgaging station is linear, and the graphical method is recommended when the relation is curved. Equations are presented for computing the variance and equivalent years of record for estimates of low-flow statistics for low-flow partial-record stations when either a single or multiple index stations are used to determine the estimates. The drainage-area ratio method or regression equations can be used to estimate low-flow statistics for ungaged sites where no data are available. The drainage-area ratio method is generally as accurate as or more accurate than regression estimates when the drainage-area ratio for an ungaged site is between 0.3 and 1.5 times the drainage area of the index data-collection site. Regression equations were developed to estimate the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-day, 2-year and the 7-day, 10-year low flows; and the August median flow for ungaged sites in Massachusetts. Streamflow statistics and basin characteristics for 87 to 133 streamgaging stations and low-flow partial-record stations were used to develop the equations. The

  11. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  12. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution

    Science.gov (United States)

    Rice, Jacelyn; Westerhoff, Paul

    2017-08-01

    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  13. Source modulation-correlation measurement for fissile mass flow in gas or liquid fissile streams

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; March-Leuba, J.A.; Valentine, T.E.; Abston, R.A.; Mattingly, J.K.; Mullens, J.A.

    1996-01-01

    The method of monitoring fissile mass flow on all three legs of a blending point, where the input is high-enriched uranium (HEU) and low-enriched uranium (LEU) and the product is PEU, can yield the fissile stream velocity and, with calibration, the [sup235]U content. The product of velocity and content integrated over the pipe gives the fissile mass flow in each leg. Also, the ratio of fissile contents in each pipe: HEU/LEU, HEU/PEU, and PEU/LEU, are obtained. By modulating the source on the input HEU pipe differently from that on the output pipe, the HEU gas can be tracked through the blend point. This method can be useful for monitoring flow velocity, fissile content, and fissile mass flow in HEU blenddown of UF[sub 6] if the pressures are high enough to contain some of the induced fission products. This method can also be used to monitor transfer of fissile liquids and other gases and liquids that emit radiation delayed from particle capture. These preliminary experiments with the Oak Ridge apparatus show that the method will work and the modeling is adequate

  14. Improving ecological response monitoring of environmental flows.

    Science.gov (United States)

    King, Alison J; Gawne, Ben; Beesley, Leah; Koehn, John D; Nielsen, Daryl L; Price, Amina

    2015-05-01

    Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.

  15. Improving Ecological Response Monitoring of Environmental Flows

    Science.gov (United States)

    King, Alison J.; Gawne, Ben; Beesley, Leah; Koehn, John D.; Nielsen, Daryl L.; Price, Amina

    2015-05-01

    Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.

  16. Hardware implementation of the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    McEvers, J.; Sumner, J.; Jones, R.; Ferrell, R.; Martin, C.; Uckan, T.; March-Leuba, J.

    1998-01-01

    This paper provides an overall description of the implementation of the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor, which is part of a Blend Down Monitoring System (BDMS) developed by the US Department of Energy (DOE). The Fissile Mass Flow Monitor is designed to measure the mass flow of fissile material through a gaseous or liquid process stream. It consists of a source-modulator assembly, a detector assembly, and a cabinet that houses all control, data acquisition, and supporting electronics equipment. The development of this flow monitor was first funded by DOE/NE in September 95, and an initial demonstration by ORNL was described in previous INMM meetings. This methodology was chosen by DOE/NE for implementation in November 1996, and the hardware/software development is complete. Successful BDMS installation and operation of the complete BDMS has been demonstrated in the Paducah Gaseous Diffusion Plant (PGDP), which is operated by Lockheed Martin Utility Services, Inc. for the US Enrichment Corporation and regulated by the Nuclear Regulatory Commission. Equipment for two BDMS units has been shipped to the Russian Federation

  17. An Assessment of Mean Areal Precipitation Methods on Simulated Stream Flow: A SWAT Model Performance Assessment

    Directory of Open Access Journals (Sweden)

    Sean Zeiger

    2017-06-01

    Full Text Available Accurate mean areal precipitation (MAP estimates are essential input forcings for hydrologic models. However, the selection of the most accurate method to estimate MAP can be daunting because there are numerous methods to choose from (e.g., proximate gauge, direct weighted average, surface-fitting, and remotely sensed methods. Multiple methods (n = 19 were used to estimate MAP with precipitation data from 11 distributed monitoring sites, and 4 remotely sensed data sets. Each method was validated against the hydrologic model simulated stream flow using the Soil and Water Assessment Tool (SWAT. SWAT was validated using a split-site method and the observed stream flow data from five nested-scale gauging sites in a mixed-land-use watershed of the central USA. Cross-validation results showed the error associated with surface-fitting and remotely sensed methods ranging from −4.5 to −5.1%, and −9.8 to −14.7%, respectively. Split-site validation results showed the percent bias (PBIAS values that ranged from −4.5 to −160%. Second order polynomial functions especially overestimated precipitation and subsequent stream flow simulations (PBIAS = −160 in the headwaters. The results indicated that using an inverse-distance weighted, linear polynomial interpolation or multiquadric function method to estimate MAP may improve SWAT model simulations. Collectively, the results highlight the importance of spatially distributed observed hydroclimate data for precipitation and subsequent steam flow estimations. The MAP methods demonstrated in the current work can be used to reduce hydrologic model uncertainty caused by watershed physiographic differences.

  18. Physics design of fissile mass-flow monitoring system

    International Nuclear Information System (INIS)

    Mattingly, J.K.; March-Leuba, J.; Valentine, T.E.; Mihalczo, J.T.; Uckan, T.

    1997-01-01

    The system measures the flow rate and uranium-235 content in liquid or gas streams; it does not penetrate the process piping. A moderated fission neutron source is used to periodicially introduce a burst of thermal neutrons into the fluid stream to induce fission; delayed gamma emissions from the resulting fission fragments are detected by high-efficiency scintillators downstream of the neutron source. The fluid flow rate is measure from the time between initiation of the thermal neutron burst and detection of the fission product gamma emissions, and the U-235 content is inferred from the intensity of the gamma burst detected. Design of the fissile mass flow monitor requires satisfaction of several competing constraints. Efficient operation of the monitor requires that source-induced fission rate and detection efficiency be maximized while the source-induced background rate is simultaneoulsy minimized. Near optical nuclear design of the system was achieved using numerous Monte Carlo calculations and measurements. This paper addresses calculational aspects of the physics design for the system applied to UF 6 gas

  19. Flow and suspended sediment yield monitoring of the Apennines' watershed of the Sillaro stream (Prov. BO). 1998 Data analysis; Monitoraggio del deflusso liquido e solido del tratto appenninico del T. Sillaro. Analisi dei dati del 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pavanelli, D.; Taglioli, G. [Bologna Univ., Bologna (Italy). Dipt. Economia e Ingegneria Agrarie; Sarti, A.

    2000-07-01

    The accurate assessment of surface water erosion in watershed is aided by the indications provided by the yield of fluvial solids and in particular by suspended sediment yield. Confining itself to a research study of hydrological and erosion phenomena present at the mountain watershed of the Sillaro Torrent, a monitoring station of water flow and sediment yield was set up at the enclosed end of the mountain basin. This paper contains the presentation and evaluation of the statistics revealed during the course of 1998. The fluctuation of sediment yield appears to be connected to the variation of water flow, the annual soil loss has been assessed at 54446 t, equal to an average soil loss over the entire basin of 0.26 mm. [Italian] La stima diretta dell'erosione idrica superficiale a scala di bacino idrografico puo' avvalersi delle indicazioni fornite dal trasporto solido fluviale, ed in particolare dal trasporto in sospensione. Nell'ambito di una ricerca volta allo studio dei fenomeni idrologici ed erosivi a carico del bacino montano del T. Sillaro (prov. BO), e' stata realizzata, presso la sezione di chiusa del bacino, una stazione di misura per il monitoraggio dei deflussi liquidi e della torbida. Nella presente nota viene fornita la descrizione e la valutazione dei dati rilevati nel corso del 1998. Le fluttuazioni dei valori di trasporto torbido appaiono legate alle variazioni di portata, mentre il deflusso torbido annuo per il 1998 e' stato valutato in 54.446, pari ad una perdita annua media di suolo sull'intero bacino di 0.26 mm.

  20. Monitoring And Controlling Hydroponic Flow

    Science.gov (United States)

    Dreschel, Thomas W.

    1992-01-01

    Pressure-monitoring and -controlling apparatus maintains slight suction required on nutrient solution in apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375), while overcoming gravity effects on operation of system on Earth. Suction helps to hold solution in tubular membrane.

  1. Aquatic insect emergence from headwater streams flowing through regeneration and mature forests in western Oregon

    Science.gov (United States)

    Robert Progar; Andrew R. Moldenke

    2009-01-01

    We examined the effect of canopy cover on adult aquatic insect emergence by collecting bi-weekly samples from twelve headwater stream reaches flowing either under a mature conifer canopy or streams flowing through ten-year-old regeneration in western Oregon from February to November 1997. Density and biomass generally followed a bimodal curve with peaks during early...

  2. Application of support vector regression (SVR) for stream flow prediction on the Amazon basin

    CSIR Research Space (South Africa)

    Du Toit, Melise

    2016-10-01

    Full Text Available regression technique is used in this study to analyse historical stream flow occurrences and predict stream flow values for the Amazon basin. Up to twelve month predictions are made and the coefficient of determination and root-mean-square error are used...

  3. Trail Creek II: Modeling Flow and E. Coli Concentrations in a Small Urban Stream using SWAT

    Science.gov (United States)

    Radcliffe, D. E.; Saintil, T.

    2017-12-01

    Pathogens are one of the leading causes of stream and river impairment in the State of Georgia. The common presence of fecal bacteria is driven by several factors including rapid population growth stressing pre-existing and ageing infrastructure, urbanization and poor planning, increase percent imperviousness, urban runoff, municipal discharges, sewage, pet/wildlife waste and leaky septic tanks. The Trail Creek watershed, located in Athens-Clarke County, Georgia covers about 33 km2. Stream segments within Trail Creek violate the GA standard due to high levels of fecal coliform bacteria. In this study, the Soil and Water Assessment Tool (SWAT) modeling software was used to predict E. coli bacteria concentrations during baseflow and stormflow. Census data from the county was used for human and animal population estimates and the Fecal Indicator Tool to generate the number of colony forming units of E. Coli for each source. The model was calibrated at a daily time step with one year of monitored streamflow and E. coli bacteria data using SWAT-CUP and the SUFI2 algorithm. To simulate leaking sewer lines, we added point sources in the five subbasins in the SWAT model with the greatest length of sewer line within 50 m of the stream. The flow in the point sources were set to 5% of the stream flow and the bacteria count set to that of raw sewage (30,000 cfu/100 mL). The calibrated model showed that the average load during 2003-2013 at the watershed outlet was 13 million cfu per month. Using the calibrated model, we simulated scenarios that assumed leaking sewers were repaired in one of the five subbasins with point sources. The reduction ranged from 10 to 46%, with the largest reduction in subbasin in the downtown area. Future modeling work will focus on the use of green infrastructure to address sources of bacteria.

  4. Process, product, and waste-stream monitoring with fiber optics

    International Nuclear Information System (INIS)

    Milanovich, F.P.; Hirschfeld, T.

    1983-07-01

    Fiber optic technology, motivated by communications and defense applications, has advanced significantly the past ten years. In particular, advances have been made in visible radiation transmission efficiency with concurrent reductions in fiber size, weight, and cost. Researchers at the Lawrence Livermore National Laboratory (LLNL) coupled these advances in fiber optic technology with analytical fluorescence analysis to establish a new technology - remote fiber fluorimetry (RFF). Laser-based RFF offers the potential to measure and monitor from one central and remote laboratory, on-line, and in near real time, trace (ppM) to substantial (g/L) concentrations of selected chemical species in typical process, product, and waste streams. The fluorimeter consists of a fluorescence or Raman spectrometer; unique coupling optics that separates input excitation (laser) radiation from return (fluorescence) radiation; a fiber optic cable; and an optrode - a terminal that interfaces the fiber to the measurement point, which is designed to respond quantitatively to a particular chemical species. At LLNL, research is underway into optrodes that measure pressure, temperature, and pH and those that detect and quantify various actinides, sulfates, inorganic chloride, hydrogen sulfide, aldehydes, and alcohols

  5. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.

    Science.gov (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary

    2017-08-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  6. Reverse stream flow routing by using Muskingum models

    Indian Academy of Sciences (India)

    Reverse stream flow routing is a procedure that determines the upstream hydrograph given the downstream hydrograph. This paper presents the development of methodology for Muskingum models parameter estimation for reverse stream flow routing. The standard application of the Muskingum models involves calibration ...

  7. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks

    Directory of Open Access Journals (Sweden)

    Jesús Antonio Puente Fernández

    2018-04-01

    Full Text Available Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN is a new concept of network architecture that provides the separation of control plane (controller and data plane (switches in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches.

  8. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks.

    Science.gov (United States)

    Puente Fernández, Jesús Antonio; García Villalba, Luis Javier; Kim, Tai-Hoon

    2018-04-03

    Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches.

  9. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.

    Science.gov (United States)

    Sebok, Eva; Engesgaard, Peter; Duque, Carlos

    2017-08-24

    This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.

  10. Increasing synchrony of high temperature and low flow in western North American streams: Double trouble for coldwater biota?

    Science.gov (United States)

    Ivan Arismendi; Mohammad Safeeq; Sherri L. Johnson; Jason B Dunham; Roy Haggerty

    2013-01-01

    Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and...

  11. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    Science.gov (United States)

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    drainage-basin outlet for the period 1961-1990, 10-85 channel slope (slope between points located at 10 percent and 85 percent of the longest flow-path length upstream from the outlet), and percent impervious area. The Oklahoma StreamStats application interacts with the National Streamflow Statistics database, which contains the peak-flow regression equations in a previously published report. Fourteen peak-flow (flood) frequency statistics are available for computation in the Oklahoma StreamStats application. These statistics include the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural, unregulated streams; and the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural streams that are regulated by Natural Resources Conservation Service floodwater retarding structures. Basin characteristics and streamflow statistics cannot be computed for locations in playa basins (mostly in the Oklahoma Panhandle) and along main stems of the largest river systems in the state, namely the Arkansas, Canadian, Cimarron, Neosho, Red, and Verdigris Rivers, because parts of the drainage areas extend outside of the processed hydrologic units.

  12. Monitoring changes in stream bottom sediments and benthic invertebrates.

    Science.gov (United States)

    1981-01-01

    The study was conducted to determine whether the analysis of stream bottom sediments could be used to assess sediment pollution generated by highway construction. Most of the work completed to date has involved testing and refining methods for the co...

  13. Techniques for Minimizing and Monitoring the Impact of Pipeline Construction on Coastal Streams

    Science.gov (United States)

    Thomas W. Mulroy; John R. Storrer; Vincent J. Semonsen; Michael L. Dungan

    1989-01-01

    This paper describes specific measures recently employed for protection of riparian resources during construction of an oil and gas pipeline that crossed coastal reaches of 23 perennial and intermittent streams between Point Conception and Gaviota in Santa Barbara County, California. Flumes were constructed to maintain stream flow; anchored straw bales and silt fences...

  14. Storing Data Flow Monitoring in Hadoop

    CERN Document Server

    Georgiou, Anastasia

    2013-01-01

    The on-line data flow monitoring for the CMS data acquisition system produces a large amount of data. Only 5% of data is stored permanently in a relational database due to performance issues and the cost for using dedicated infrastructure (e.g. Oracle systems). In a commercial environment, companies and organizations need to find new innovative approaches to process such big volumes of data, known as “big data”. The Big Data approach is trying to address the problem of a large and complex collection of data sets that become difficult to handle using traditional data processing applications. Using these new technologies, it should be possible to store all the monitoring information for a time window of months or a year. This report contains an initial evaluation of Hadoop for storage of data flow monitoring and subsequent data mining.

  15. Strong enhancement of streaming current power by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.

    2011-01-01

    We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system

  16. Low-flow characteristics of streams in the Puget Sound region, Washington

    Science.gov (United States)

    Hidaka, F.T.

    1973-01-01

    Periods of low streamflow are usually the most critical factor in relation to most water uses. The purpose of this report is to present data on low-flow characteristics of streams in the Puget Sound region, Washington, and to briefly explain some of the factors that influence low flow in the various basins. Presented are data on low-flow frequencies of streams in the Puget Sound region, as gathered at 150 gaging stations. Four indexes were computed from the flow-flow-frequency curves and were used as a basis to compare the low-flow characteristics of the streams. The indexes are the (1) low-flow-yield index, expressed in unit runoff per square mile; (2) base-flow index, or the ratio of the median 7-day low flow to the average discharge; (3) slope index, or slope of annual 7-day low-flow-frequency curve; and (4) spacing index, or spread between the 7-day and 183-day low-flow-frequency curves. The indexes showed a wide variation between streams due to the complex interrelation between climate, topography, and geology. The largest low-flow-yield indexes determined--greater than 1.5 cfs (cubic feet per second) per square mile--were for streams that head at high altitudes in the Cascade and Olympic Mountains and have their sources at glaciers. The smallest low-flow-yield indexes--less than 0.5 cfs per square mile--were for the small streams that drain the lowlands adjacent to Puget Sound. Indexes between the two extremes were for nonglacial streams that head at fairly high altitudes in areas of abundant precipitation. The base-flow index has variations that can be attributed to a basin's hydrogeology, with very little influence from climate. The largest base-flow indexes were obtained for streams draining permeable unconsolidated glacial and alluvial sediments in parts of the lowlands adjacent to Puget Sound. Large volume of ground water in these materials sustain flows during late summer. The smallest indexes were computed for streams draining areas underlain by

  17. Monitoring of streams: macrozoobenthos and accumulation of heavy metals and radionuclides in bottom sediments

    International Nuclear Information System (INIS)

    Arbaciauskas, K.; Mackeviciene, G.; Striupkuviene, N.; Motiejunas, S; Kreslauskaite, R.

    1998-01-01

    To evaluate the environmental quality of streams in integrated monitoring sites (IMS) and agrostations (AS), the macrozoobenthos communities and accumulation of heavy metals and radionuclides in bottom sediments were studied during 1993-1996. Samples of macrozoobenthos were collected in stream biotopes which were recommended for monitoring. Community biodiversity was assessed by Shannon-Wiener and Simpson indices, and water quality of streams was estimated by Trent and Mean Chandler biotic indices. Heavy metal (Pb, Cd, Cu, Cr, Ni, Mn) concentrations and radionuclide ( 137 Cs, 134 Cs, 40 K, 90 Sr) activity were determined in sediments. Macrozoobenthos communities indicated that the studied streams were clean waters. The heavy metal concentrations in surficial sediments showed annual and seasonal changes and differences between monitoring sites. The Cu concentration in the soft turfy stream sediments at the Aukstaitija IMS was twice as high as that in sediments of other monitoring streams with hard sandy-gravel bottoms. During 1994-1996, the Ni concentration decreased, while levels of Cu, Cd and Cr were relatively stable. The Pb concentrations decreased in all IMS, while those in AS increased. The concentration of 137 Cs was relatively stable in agrostation streams. Compared to levels in 1993, an increase of 137 Cs activity was observed in sediments at the Dzuklija IMS during 1995-1996. 90 Sr activity fluctuated in the monitoring sites from 1.6 to 3.7 Bq/kg dry weight. (author)

  18. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    Science.gov (United States)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.

  19. Short-term stream flow forecasting at Australian river sites using data-driven regression techniques

    CSIR Research Space (South Africa)

    Steyn, Melise

    2017-09-01

    Full Text Available This study proposes a computationally efficient solution to stream flow forecasting for river basins where historical time series data are available. Two data-driven modeling techniques are investigated, namely support vector regression...

  20. StreamSqueeze: a dynamic stream visualization for monitoring of event data

    Science.gov (United States)

    Mansmann, Florian; Krstajic, Milos; Fischer, Fabian; Bertini, Enrico

    2012-01-01

    While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.

  1. Calibration of AN Acoustic Sensor (geophone) for Continuous Bedload Monitoring in Mountainous Streams

    Science.gov (United States)

    Tsakiris, A. G.; Papanicolaou, T.

    2010-12-01

    Measurement of bedload rates is a crucial component in the study of alluvial processes in mountainous streams. Stream restoration efforts, the validation of morphodynamic models and the calibration empirical transport formulae rely on accurate bedload transport measurements. Bedload measurements using traditional methods (e.g. samplers, traps) are time consuming, resource intensive and not always feasible, especially at higher flow conditions. These limitations could potentially be addressed by acoustic instruments, which may provide unattended, continuous bedload measurements even at higher flow conditions, provided that these instruments are properly calibrated. The objective of this study is to calibrate an acoustic instrument (geophone) for performing bedload measurements in a well-monitored laboratory environment at conditions corresponding to low flow regime in mountainous streams. The geophone was manufactured by ClampOn® and was attached to the bottom of a steel plate with dimensions 0.15x0.15 m. The geophone registers the energy of the acoustic signal produced by the movement of the bedload particles over the steel plate with time resolution of one second. The plate-sensor system was installed in an acrylic housing such that the steel plate top surface was at the same level with the surface of a flat porous bed consisting of unisize spheres with diameter 19.1 mm. Unisize spherical glass particles, 15.9 mm in diameter, were preplaced along a 2 m long section upstream of the sensor, and were entrained over the steel plate. In these experiments, the geophone records spanned the complete experiment duratio. Plan view video of the particle movement over the steel plate was recorded via an overhead camera, and was used to calculate the actual bedload rate over the steel plate. Synchronized analysis of this plan view video and the geophone time series revealed that the geophone detected 62% of the bedload particles passing over the steel plate, which triggered

  2. Stream flow - its estimation, uncertainty and interaction with groundwater and floodplains

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang

    , floodplain hydraulics and sedimentation patterns has been investigated along a restored channel section of Odense stream, Denmark. Collected samples of deposited sediment, organic matter and phosphorus on the floodplain were compared with results from a 2D dynamic flow model. Three stage dependent flow...... regimes were predicted by the flow model with shifting primary overbank flow and zones of flow confluence. These dynamic flow patterns were found to correlate with the spatial deposition of total phosphorus (11.4 g m-2), organic matter (0.65 kg m-2) and sediment (4.72 kg m-2), and zones of major total...... sediment deposition coincided with the flow confluence zones. The revealed complex spatially and temporally changing floodplain flow pattern was found to play a decisive role for the deposition processes. The interaction between stream flow and groundwater from catchment to point scale has been...

  3. Effective information flow through efficient supply chain management - Value stream mapping approach Case Outokumpu Tornio Works

    OpenAIRE

    Juvonen, Piia

    2012-01-01

    ABSTRACT Juvonen, Piia Suvi Päivikki 2012. Effective information flow through efficient supply chain management -Value stream mapping approach - Case Outokumpu Tornio Works. Master`s Thesis. Kemi-Tornio University of Applied Sciences. Business and Culture. Pages 63. Appendices 2. The general aim of this thesis is to explore effective information flow through efficient supply chain management by following one of the lean management principles, value stream mapping. The specific research...

  4. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.

    Science.gov (United States)

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye

    2017-05-16

    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  5. Relation of streams, lakes, and wetlands to groundwater flow systems

    Science.gov (United States)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus

  6. Computerized flow monitors detect small kicks

    Energy Technology Data Exchange (ETDEWEB)

    McCann, D.; White, D. (Sedco Forex, Paris (FR))

    1992-02-24

    This paper reports on a smart alarm system installed on a number of offshore rigs and one land rig which can detect kicks more quickly than conventional systems. This rapid kick detection improves rig safety because the smaller the detected influx, the easier it is to control the well. The extensive computerized monitoring system helps drilling personnel detect fluid influxes and fluid losses before the changes in flow would normally be apparent.

  7. Fluid-flow monitoring using electromagnetic probing

    International Nuclear Information System (INIS)

    Lytle, R.J.; Lager, D.L.; Laine, E.F.; Salisbury, J.D.; Okada, J.T.

    1979-01-01

    High-frequency electromagnetic probing is used to monitor the rate and direction of flow of fluids injected into the ground. This method shows the potential for providing more detailed information than procedures presently used. The experimental technique and the test-of-concept experimental results are discussed. This technique has applications in oil-reservoir engineering and in hydrology studies concerning storage of chemical and nuclear wastes. 11 figures

  8. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows

    Science.gov (United States)

    Branco, Paulo; Santos, José M.; Katopodis, Christos; Pinheiro, António; Ferreira, Maria T.

    2013-01-01

    Fish are particularly sensitive to connectivity loss as their ability to reach spawning grounds is seriously affected. The most common way to circumvent a barrier to longitudinal connectivity, and to mitigate its impacts, is to implement a fish passage device. However, these structures are often non-effective for species with different morphological and ecological characteristics so there is a need to determine optimum dimensioning values and hydraulic parameters. The aim of this work is to study the behaviour and performance of two species with different ecological characteristics (Iberian barbel Luciobarbus bocagei–bottom oriented, and Iberian chub Squalius pyrenaicus–water column) in a full-scale experimental pool-type fishway that offers two different flow regimes–plunging and streaming. Results showed that both species passed through the surface notch more readily during streaming flow than during plunging flow. The surface oriented species used the surface notch more readily in streaming flow, and both species were more successful in moving upstream in streaming flow than in plunging flow. Streaming flow enhances upstream movement of both species, and seems the most suitable for fishways in river systems where a wide range of fish morpho-ecological traits are found. PMID:23741465

  9. Laser streaming: Turning a laser beam into a flow of liquid.

    Science.gov (United States)

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming

    2017-09-01

    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.

  10. Measurement of Streaming Potential in Downhole Application: An Insight for Enhanced Oil Recovery Monitoring

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2017-01-01

    Full Text Available Downhole monitoring using streaming potential measurement has been developing in order to respond to actual reservoir condition. Most studies have emphasized on monitoring water flooding at various reservoir condition and improving the approaches of measurement. Enhanced Oil Recovery (EOR could significantly improve oil recovery and the efficiency of the process should be well-monitored. Alkaline-surfactant-polymer (ASP flooding is the most promising chemical EOR method due to its synergy of alkaline, surfactant and polymer, which could enhance the extraction of residual oil. However, limited studies have been focused on the application of streaming potential in EOR processes, particularly ASP. Thus, this paper aims to review the streaming potential measurement in downhole monitoring with an insight for EOR application and propose the potential measurement in monitoring ASP flooding. It is important for a preliminary study to investigate the synergy in ASP and the effects on oil recovery. The behaviour of streaming potential should be investigated when the environment of porous media changes with respect to ASP flooding. Numerical model can be generated from the experimental data to forecast the measured streaming potential signal during production associated with ASP flooding. Based on the streaming potential behaviour on foam assisted water alternate gas (FAWAG and water alternate gas (WAG processes, it is expected that the streaming potential could change significantly when ASP flooding alters the environment and surface properties of porous media. The findings could provide new prospect and knowledge in the relationship between streaming potential and ASP mechanisms, which could be a potential approach in monitoring the efficiency of the process.

  11. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma

    Science.gov (United States)

    Esralew, Rachel A.; Smith, S. Jerrod

    2010-01-01

    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage

  12. Impact of lateral flow on the transition from connected to disconnected stream-aquifer systems

    Science.gov (United States)

    Xian, Yang; Jin, Menggui; Liu, Yanfeng; Si, Aonan

    2017-05-01

    Understanding the mechanisms by which stream water infiltrates through streambeds to recharge groundwater systems is essential to sustainable management of scarce water resources in arid and semi-arid areas. An inverted water table (IWT) can develop under a stream in response to the desaturation between the stream and underlying aquifer as the system changes from a connected to disconnected status. However, previous studies have suggested that the IWT can only occur at the bottom of a low permeability streambed in which only the vertical flow between the stream and groundwater during disconnection was assumed. In the present study, numerical simulations revealed that the lateral flow induced by capillarity or heterogeneity also plays an essential role on interactions between streams and aquifers. Three pathways were identified for the transition from connection to disconnection in homogenous systems; notably, the lowest point of an IWT can develop not only at the bottom of the streambed but also within the streambed or the aquifer in response to the initial desaturation at, above, or below the interface between the streambed and aquifer (IBSA), respectively. A sensitivity analysis indicated that in wide streams, the lowest point of an IWT only occurs at the bottom of the streambed; however, for a stream half width of 1 m above a 6 m thick sandy loam streambed, the lowest point occurs in the streambed as stream depth is less than 0.5 m. This critical stream depth increases with streambed thickness and decreases with stream width. Thus, in narrow streams the lowest point can also develop in a thick streambed under a shallow stream. In narrow streams, the lowest point also forms in the aquifer if the ratio of the hydraulic conductivity of the streambed to that of the aquifer is greater than the ratio of the streambed thickness to the sum of the stream depth and the streambed thickness; correspondingly, the streambed is thin but relatively permeable and the stream is

  13. Altered stream-flow regimes and invasive plant species: The Tamarix case

    Science.gov (United States)

    Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S.

    2007-01-01

    Aim: To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species. Location: The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona. Methods: We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii, and introduced Tamarix) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. Results: Populus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows. Main conclusions: Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix. On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix, both of which have narrow germination windows. The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type. ?? 2007 The Authors Journal compilation ?? 2007 Blackwell Publishing Ltd.

  14. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  15. Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet

    Science.gov (United States)

    Diercke, A.; Kuckein, C.; Verma, M.; Denker, C.

    2018-03-01

    Aim. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods: We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. Hα images from the Kanzelhöhe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both Hα and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results: We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (λ171 Å, λ193 Å, λ304 Å, and λ211 Å). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of λ171 Å and λ193 Å images. In the λ304 Å wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the λ211 Å wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in Hα and EUV images is caused by different absorption

  16. Shade and flow effects on ammonia retention in macrophyte-rich streams: implications for water quality

    International Nuclear Information System (INIS)

    Wilcock, Robert J.; Scarsbrook, Mike R.; Cooke, James G.; Costley, Kerry J.; Nagels, John W.

    2004-01-01

    Controlled releases of NH 4 -N and conservative tracers (Br - and Cl - ) to five reaches of four streams with contrasting macrophyte communities have shown differing retentions, largely as a result of the way plants interact with stream flow and velocity. First-order constants (k) were 1.0-4.8 d -1 and retention of NH 4 -N was 6-71% of amounts added to each reach. Distance travelled before a 50% reduction in concentration was achieved were 40-450 m in three streams under low-flow conditions, and 2400-3800 m at higher flows. Retention (%) of NH 4 -N can be approximated by a simple function of travel time and k, highlighting the importance of the relationship between macrophytes and stream velocity on nutrient processing. This finding has significant management implications, particularly with respect to restoration of riparian shade. Small streams with predominantly marginal emergent plants are likely to have improved retention of NH 4 -N as a result of shading or other means of reducing plant biomass. Streams dominated by submerged macrophytes will have impaired NH 4 -N retention if plant biomass is reduced because of reduced contact times between NH 4 -N molecules and reactive sites. In these conditions water resource managers should utilise riparian shading in concert with unshaded vegetated reaches to achieve a balance between enhanced in-stream habitat and nutrient processing capacity

  17. A regional classification of unregulated stream flows: spatial resolution and hierarchical frameworks.

    Science.gov (United States)

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff; Emmaneul A. Firmpong

    2012-01-01

    River regulation has resulted in substantial losses in habitat connectivity, biodiversity and ecosystem services. River managers are faced with a growing need to protect the key aspects of the natural flow regime. A practical approach to providing environmental flow standards is to create a regional framework by classifying unregulated streams into groups of similar...

  18. Instream flow assessment of streams draining the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Seilheimer, Titus S.; Fisher, William L.

    2008-01-01

    The availability of high quality water is critical to both humans and ecosystems. A recent proposal was made by rapidly expanding municipalities in central Oklahoma to begin transferring groundwater from the Arbuckle-Simpson aquifer, a sensitive sole-source aquifer in south-central Oklahoma. Concerned citizens and municipalities living on and getting their drinking water from the Arbuckle-Simpson lobbied the legislature to pass a temporary moratorium on groundwater transfer to allow for a comprehensive study of the aquifer and its ecosystems. We conducted an instream flow assessment using Physical Habitat Simulation (PHABSIM) on springs and streams with four spring-dependent species: two minnows, southern redbelly dace (Phoxinus erthyrogaster) and redspot chub (Nocomis asper); and two darters, least darter (Etheostoma microperca) and orangethroat darter (Etheostoma spectabile). Spring habitats are unique compared to other river habitats because they have constant flow and temperature, small and isolated habitat patches, and a general lack of predators. Our study sites included two spring-fed streams, one larger stream with high groundwater inputs, and a river with both groundwater and surface water inputs that is adjacent to the small spring-fed streams. These habitats meet the criteria for groundwater dependent ecosystems because they would not exist without the surface expression of groundwater. A total of 99 transects in all four sites were surveyed for channel elevation, and three sets of water surface elevation and water velocity were measured. Habitat suitability criteria were derived for the species at each site using nonparametric confidence limits based on underwater observations made by snorkelers. Simulations of flow were focused on declines in discharge, which is the expected effect of the proposed groundwater diversion. Our results show that only a small proportion of the total available area in each habitat is considered to be preferred habitat

  19. Dating base flow in streams using dissolved gases and diurnal temperature changes

    Science.gov (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  20. Stream biofilm responses to flow intermittency: from cells to ecosystems

    OpenAIRE

    Sergi eSabater; Sergi eSabater; Xisca eTimoner; Carles eBorrego; Carles eBorrego; Vicenç eAcuña

    2016-01-01

    Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are eminently microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms) accordingly change their physical structure and community composition. Biofilms experience large decreases on cell densities and biomass, both of bacteria a...

  1. Stream Biofilm Responses to Flow Intermittency: From Cells to Ecosystems

    OpenAIRE

    Sabater, Sergi; Timoner, Xisca; Borrego, Carles; Acuña, Vicenç

    2016-01-01

    Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are mainly microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms) accordingly change their physical structure and community composition. Biofilms experience large decreases in cell densities and biomass, both of bacteria and ...

  2. Comparison of active and passive sampling strategies for the monitoring of pesticide contamination in streams

    Science.gov (United States)

    Assoumani, Azziz; Margoum, Christelle; Guillemain, Céline; Coquery, Marina

    2014-05-01

    The monitoring of water bodies regarding organic contaminants, and the determination of reliable estimates of concentrations are challenging issues, in particular for the implementation of the Water Framework Directive. Several strategies can be applied to collect water samples for the determination of their contamination level. Grab sampling is fast, easy, and requires little logistical and analytical needs in case of low frequency sampling campaigns. However, this technique lacks of representativeness for streams with high variations of contaminant concentrations, such as pesticides in rivers located in small agricultural watersheds. Increasing the representativeness of this sampling strategy implies greater logistical needs and higher analytical costs. Average automated sampling is therefore a solution as it allows, in a single analysis, the determination of more accurate and more relevant estimates of concentrations. Two types of automatic samplings can be performed: time-related sampling allows the assessment of average concentrations, whereas flow-dependent sampling leads to average flux concentrations. However, the purchase and the maintenance of automatic samplers are quite expensive. Passive sampling has recently been developed as an alternative to grab or average automated sampling, to obtain at lower cost, more realistic estimates of the average concentrations of contaminants in streams. These devices allow the passive accumulation of contaminants from large volumes of water, resulting in ultratrace level detection and smoothed integrative sampling over periods ranging from days to weeks. They allow the determination of time-weighted average (TWA) concentrations of the dissolved fraction of target contaminants, but they need to be calibrated in controlled conditions prior to field applications. In other words, the kinetics of the uptake of the target contaminants into the sampler must be studied in order to determine the corresponding sampling rate

  3. Monitoring Phytophthora ramorum distribution in streams within California watersheds

    Science.gov (United States)

    S.K. Murphy; C. Lee; Y. Valachovic; J. Bienapfl; W. Mark; A. Jirka; D.R. Owen; T.F. Smith; D.M. Rizzo

    2008-01-01

    One hundred-thirteen sites were established in perennial watercourses and sampled for 1 to 3 years between 2004 and 2006 to monitor for presence of Phytophthora ramorum throughout coastal central and northern California watersheds as well as portions of the Sierra Nevada mountain range (Murphy and others 2006). The majority of the monitored...

  4. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    Science.gov (United States)

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    concurrently with fish released upstream of the dam using identical tagging methods. Tagging and release events were conducted to target a range of flow conditions indicative of flows observed during the typical migration period (March-May) for juvenile spring Chinook salmon in the Yakima River. Three, five and four separate upstream releases were conducted in 2012, 2013, and 2014 respectively, and at least 43 fish were released alive on each occasion. The release sample sizes in 2014 were much larger (~130) compared to previous years for the purpose of increasing precision of survival estimates across the range of flows tested. Migration movements of radio-tagged spring Chinook salmon smolts were monitored with an array of telemetry receiver stations (fixed sites) that extended 208 rkm downstream from the forebay of Roza Dam to the mouth of the Yakima River. Fixed monitoring sites included the forebay of Roza Dam (rkm 208), the tailrace of Roza Dam (rkm 207.9), the mouth of Wenas Creek (rkm 199.2), the mouth of the Naches River (two sites, rkm 189.4), Sunnyside Dam (two sites, rkm 169.1), Prosser Dam (rkm 77.2), and the mouth of the Yakima River (two sites, rkm2 3). This array segregated the study area into four discrete reaches in which survival of tagged fish was estimated. Aerial and underwater antennas were also used to monitor tagged fish at Roza Dam. Aerial antennas were located in the forebay, on the East gate, on the West gate, and in the tailrace of Roza Dam. Underwater antennas were located in the fish bypass, upstream of the East gate, and upstream of the West gate to collect route-specific passage data for tagged fish. Additional years of data collection and analysis could alter or improve our understanding of the influence of flow and other environmental factors on smolt survival in the Yakima River. Nevertheless, during 2012-2014, yearling hatchery Chinook salmon smolt emigration survival was significantly associated with stream flow in the

  5. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems

    OpenAIRE

    Stubbington, Rachel; England, Judy; Wood, Paul J.; Sefton, Catherine E.M.

    2017-01-01

    Temporary streams are defined by periodic flow cessation, and may experience partial or complete loss of surface water. The ecology and hydrology of these transitional aquatic-terrestrial ecosystems have received unprecedented attention in recent years. Research has focussed on the arid, semi-arid, and Mediterranean regions in which temporary systems are the dominant stream type, and those in cooler, wetter temperate regions with an oceanic climate influence are also receiving increasing atte...

  6. Calibration measurements using the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Uckan, T.; Sumner, J.; Mattingly, J.; Mihalczo, J.

    1998-01-01

    This paper presents a demonstration of fissile-mass-flow measurements using the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor in the Paducah Gaseous Diffusion Plant (PGDP). This Flow Monitor is part of a Blend Down Monitoring System (BDMS) that will be installed in at least two Russian Federation (R.F.) blending facilities. The key objectives of the demonstration of the ORNL Flow Monitor are two: (a) demonstrate that the ORNL Flow Monitor equipment is capable of reliably monitoring the mass flow rate of 235 UF 6 gas, and (b) provide a demonstration of ORNL Flow Monitor system in operation with UF 6 flow for a visiting R.F. delegation. These two objectives have been met by the PGDP demonstration, as presented in this paper

  7. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  8. Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2011-10-01

    Full Text Available Subsurface lateral flow from agricultural hillslopes is often overlooked compared with overland flow and tile drain flow, partly due to the difficulties in monitoring and quantifying. The objectives of this study were to examine how subsurface lateral flow generated through soil pedons from cropped hillslopes and to quantify its contribution to nitrate loading in the streams through an agricultural catchment in the subtropical region of China. Profiles of soil water potential along hillslopes and stream hydro-chemographs in a trenched stream below a cropped hillslope and at the catchment outlet were simultaneously recorded during two rainstorm events. The dynamics of soil water potential showed positive matrix soil water potential over impermeable soil layer at 0.6 to 1.50 m depths during and after the storms, indicating soil water saturation and drainage processes along the hillslopes irrespective of land uses. The hydro-chemographs in the streams, one trenched below a cropped hillslope and one at the catchment outlet, showed that the concentrations of particulate nitrogen and phosphorus corresponded well to stream flow during the storm, while the nitrate concentration increased on the recession limbs of the hydrographs after the end of the storm. All the synchronous data revealed that nitrate was delivered from the cropped hillslope through subsurface lateral flow to the streams during and after the end of the rainstorms. A chemical mixing model based on electricity conductivity (EC and H+ concentration was successfully established, particularly for the trenched stream. The results showed that the subsurface lateral flow accounted for 29% to 45% of total stream flow in the trenched stream, responsible for 86% of total NO3-N loss (or 26% of total N loss, and for 5.7% to 7.3% of total stream flow at the catchment outlet, responsible for about 69% of total NO3-N loss (or 28% of total N

  9. Assessing Ecological Flow Needs and Risks for Springs and Baseflow Streams With Growth and Climate Change

    Science.gov (United States)

    Springer, A. E.; Stevens, L. E.

    2008-12-01

    Ecological flow needs assessments are beginning to become an important part of regulated river management, but are more challenging for unregulated rivers. Water needs for ecosystems are greater than just consumptive use by riparian and aquatic vegetation and include the magnitude, frequency, duration and timing of flows and the depth and annual fluctuations of groundwater levels of baseflow supported streams. An ecological flow needs assessment was adapted and applied to an unregulated, baseflow dependent river in the arid to semi-arid Southwestern U.S. A separate process was developed to determine groundwater sources potentially at risk from climate, land management, or groundwater use changes in a large regional groundwater basin in the same semi-arid region. In 2007 and 2008, workshops with ecological, cultural, and physical experts from agencies, universities, tribes, and other organizations were convened. Flow-ecology response functions were developed with either conceptual or actual information for a baseflow dependent river, and scoring systems were developed to assign values to categories of risks to groundwater sources in a large groundwater basin. A reduction of baseflow to the river was predicted to lead to a decline in cottonwood and willow tree abundance, decreases in riparian forest diversity, and increases in non-native tree species, such as tamarisk. These types of forest vegetation changes would likely cause reductions or loss of some bird species. Loss of riffle habitat through declines in groundwater discharge and the associated river levels would likely lead to declines in native fish and amphibian species. A research agenda was developed to develop techniques to monitor, assess and hopefully better manage the aquifers supporting the baseflow dependent river to prevent potential threshold responses of the ecosystems. The scoring system for categories of risk was applied to four systems (aquifers, springs, standing water bodies, and streams) in

  10. NMR reaction monitoring in flow synthesis

    Directory of Open Access Journals (Sweden)

    M. Victoria Gomez

    2017-02-01

    Full Text Available Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  11. NMR reaction monitoring in flow synthesis.

    Science.gov (United States)

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  12. Scalable, Asynchronous, Distributed Eigen-Monitoring of Astronomy Data Streams

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, we develop a distributed algorithm for monitoring the principal components (PCs) for next generation of astronomy petascale data pipelines such as the...

  13. Evidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China

    Science.gov (United States)

    Z. Zhou; Y. Ouyang; Z. Qiu; G. Zhou; M. Lin; Y. Li

    2017-01-01

    Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis...

  14. Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts

    Science.gov (United States)

    Zarriello, Phillip J.

    2017-05-11

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Transportation, determined the magnitude of flood flows at selected annual exceedance prob­abilities (AEPs) at streamgages in Massachusetts and from these data developed equations for estimating flood flows at ungaged locations in the State. Flood magnitudes were deter­mined for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs at 220 streamgages, 125 of which are in Massachusetts and 95 are in the adjacent States of Connecticut, New Hamp­shire, New York, Rhode Island, and Vermont. AEP flood flows were computed for streamgages using the expected moments algorithm weighted with a recently computed regional skew­ness coefficient for New England.Regional regression equations were developed to estimate the magnitude of floods for selected AEP flows at ungaged sites from 199 selected streamgages and for 60 potential explanatory basin characteristics. AEP flows for 21 of the 125 streamgages in Massachusetts were not used in the final regional regression analysis, primarily because of regulation or redundancy. The final regression equations used general­ized least squares methods to account for streamgage record length and correlation. Drainage area, mean basin elevation, and basin storage explained 86 to 93 percent of the variance in flood magnitude from the 50- to 0.2-percent AEPs, respec­tively. The estimates of AEP flows at streamgages can be improved by using a weighted estimate that is based on the magnitude of the flood and associated uncertainty from the at-site analysis and the regional regression equations. Weighting procedures for estimating AEP flows at an ungaged site on a gaged stream also are provided that improve estimates of flood flows at the ungaged site when hydrologic characteristics do not abruptly change.Urbanization expressed as the percentage of imperviousness provided some explanatory power in the regional regression; however, it was not statistically

  15. Long-term monitoring of stream bank stability under different vegetation cover

    Science.gov (United States)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  16. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Netrananda; Yamashiki, Yosuke; Takara, Kaoru [Kyoto University, Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Gokasho, Uji City, Kyoto (Japan); Behera, Swadhin K. [JAMSTEC, Research Institute for Global Change, Yokohama, Kanagawa (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan); Yamagata, Toshio [University of Tokyo, School of Science, Bunkyo-ku, Tokyo (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan)

    2012-10-15

    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Nina conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Nino Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Nino events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Nino for September-November season only. (orig.)

  17. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    Science.gov (United States)

    Sahu, Netrananda; Behera, Swadhin K.; Yamashiki, Yosuke; Takara, Kaoru; Yamagata, Toshio

    2012-10-01

    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Niña conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Niño Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Niño events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Niño for September-November season only.

  18. Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures

    International Nuclear Information System (INIS)

    Yamasaki, K; Iwayama, T; Yajima, T

    2011-01-01

    The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.

  19. Impact of meander geometry and stream flow events on residence times and solute transport in the intra-meander flow

    Science.gov (United States)

    Nasir Mahmood, Muhammad; Schmidt, Christian; Trauth, Nico

    2017-04-01

    Stream morphological features, in combination with hydrological variability play a key role in water and solute exchange across surface and subsurface waters. Meanders are prominent morphological features within stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange within the intra-meander region. This hyporheic flow is characterized by considerably prolonged flow paths and residence times (RT) compared to smaller scales of hyporheic exchange. In this study we examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady state and transient flow conditions. We developed a number of artificial meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander. Three dimensional steady state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region. The meandering stream was implemented in the model by adjusting the top layers of the modelling domain to the streambed elevation and assigning linearly decreasing head boundary conditions to the streambed cells. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. The transient stream discharge was simulated for a number of discharge events of variable duration and peak height using the surface water model HEC-RAS. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. A solute concentration source was added in the

  20. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)

  1. Numerical and experimental modelling of back stream flow during close-coupled gas atomization

    OpenAIRE

    Motaman, S; Mullis, AM; Borman, DJ; Cochrane, RF; McCarthy, IN

    2013-01-01

    This paper reports the numerical and experimental investigation into the effects of different gas jet mis-match angles (for an external melt nozzle wall) on the back-stream flow in close coupled gas atomization. The Pulse Laser Imaging (PLI) technique was applied for visualising the back-stream melt flow phenomena with an analogue water atomizer and the associated PLI images compared with numerical results. In the investigation a Convergent–Divergent (C–D) discrete gas jet die at five differe...

  2. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico

    Science.gov (United States)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.

    2012-12-01

    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed

  3. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events

    Science.gov (United States)

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.

    2016-01-01

    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  4. Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.

    Science.gov (United States)

    Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent

    2015-01-01

    This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams. © 2015, National Ground Water Association.

  5. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Science.gov (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  6. Characterization and monitoring of 300 Area facility liquid waste streams during 1994 and 1995

    International Nuclear Information System (INIS)

    Thompson, C.J.; Ballinger, M.Y.; Damberg, E.G.; Riley, R.G.

    1997-07-01

    Pacific Northwest National Laboratory's Facility Effluent Management Program characterized and monitored liquid waste streams from 300 Area buildings that are owned by the US Department of Energy and are operated by Pacific Northwest National Laboratory. The purpose of these measurements was to determine whether the waste streams would meet administrative controls that were put in place by the operators of the 300 Area Treated Effluent Disposal Facility. This report summarizes the data obtained between March 1994 and September 1995 on the following waters: liquid waste streams from Buildings 306, 320, 324, 325, 326, 327, 331, and 3,720; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe)

  7. Suggestions for diatom-based monitoring in intermittent streams

    Directory of Open Access Journals (Sweden)

    Falasco Elisa

    2016-01-01

    Full Text Available Over the last decades, river lentification processes and droughts have been dramatically spreading worldwide, due to global and local drastic changes due to human activities. Under this scenario, the evaluation of physical disturbance caused by intermittency and droughts has become more and more relevant. In this research, we compare samples collected in Mediterranean streams following both traditional and experimental approaches with the aim of understanding if diatom indices calculated from a new sampling strategy could provide additional information for the physical disturbance assessment. Moreover, we also evaluated the response of functional metrics. Our results demonstrated that even though an enhanced sampling method better reflects hydrological disturbance than the traditional one, diatom indices do not detect it. Conversely, functional traits proved to be important metrics for the hydrological disturbance assessment. In particular, benthic diatom chlorophyll a showed significantly lower values in sections more subject to droughts. With respect to ecological guilds, the motile taxa proved to be linked to depositional areas, which resulted important microhabitats (MHs to be explored in rivers affected by lentification. Including different MHs in the sampling process improves the information we can obtain from the analysis of the diatom community and presents important implications in documenting species distribution and autecology.

  8. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    Science.gov (United States)

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Flood effects on an Alaskan stream restoration project: the value of long-term monitoring

    Science.gov (United States)

    Densmore, Roseann V.; Karle, Kenneth F.

    2009-01-01

    On a nationwide basis, few stream restoration projects have long-term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long-term and event-based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long-term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross-sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25-year flood on the stream and floodplain geometry and riparian vegetation. The long-term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.

  10. Users Manual for the Geospatial Stream Flow Model (GeoSFM)

    Science.gov (United States)

    Artan, Guleid A.; Asante, Kwabena; Smith, Jodie; Pervez, Md Shahriar; Entenmann, Debbie; Verdin, James P.; Rowland, James

    2008-01-01

    The monitoring of wide-area hydrologic events requires the manipulation of large amounts of geospatial and time series data into concise information products that characterize the location and magnitude of the event. To perform these manipulations, scientists at the U.S. Geological Survey Center for Earth Resources Observation and Science (EROS), with the cooperation of the U.S. Agency for International Development, Office of Foreign Disaster Assistance (USAID/OFDA), have implemented a hydrologic modeling system. The system includes a data assimilation component to generate data for a Geospatial Stream Flow Model (GeoSFM) that can be run operationally to identify and map wide-area streamflow anomalies. GeoSFM integrates a geographical information system (GIS) for geospatial preprocessing and postprocessing tasks and hydrologic modeling routines implemented as dynamically linked libraries (DLLs) for time series manipulations. Model results include maps that depicting the status of streamflow and soil water conditions. This Users Manual provides step-by-step instructions for running the model and for downloading and processing the input data required for initial model parameterization and daily operation.

  11. Stream flow regime of springs in the Mantiqueira Mountain Range region, Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Alisson Souza de Oliveira

    2014-09-01

    Full Text Available The stream flow regime of four springs located in the Mantiqueira Mountain Range region (MG was evaluated and correlated to the respective recharge area, relief characteristics, land cover and physical and hydrologic soil characteristics. The streamflow regime was characterized by monitoring of discharges, calculating the surface runoff and specific discharge and by modeling the discharge over the recession period using the Maillet method. As all recharge areas have similar relief the effect of it on the streamflow was not possible to identify. Analysis included determining the effect of drainage area size, soil characteristics and land cover on the indicators of the streamflow regime. Size of the recharge area had a positive influence on the indicators mean discharge and surface runoff volume and on the regulation of the streamflow regime (springs L4 and L1. The spring under the smallest area of influence provided the worst results for the above mentioned indicators (spring L3. The effect of forest cover (natural and planted, associated with soil characteristics, was evidenced by the indicators surface runoff (in depth and specific yield, both independent of the recharge area size (springs L4 and L2. The interaction of area size, soil characteristics and forest cover (natural and planted provided the best results for all indicators of streamflow regime in the springs studied in the Mantiqueira Mountain Range (spring L4.

  12. Validating alternative methodologies to estimate the hydrological regime of temporary streams when flow data are unavailable

    Science.gov (United States)

    Llorens, Pilar; Gallart, Francesc; Latron, Jérôme; Cid, Núria; Rieradevall, Maria; Prat, Narcís

    2016-04-01

    Aquatic life in temporary streams is strongly conditioned by the temporal variability of the hydrological conditions that control the occurrence and connectivity of diverse mesohabitats. In this context, the software TREHS (Temporary Rivers' Ecological and Hydrological Status) has been developed, in the framework of the LIFE Trivers project, to help managers for adequately implement the Water Framework Directive in this type of water bodies. TREHS, using the methodology described in Gallart et al (2012), defines six temporal 'aquatic states', based on the hydrological conditions representing different mesohabitats, for a given reach at a particular moment. Nevertheless, hydrological data for assessing the regime of temporary streams are often non-existent or scarce. The scarcity of flow data makes frequently impossible the characterization of temporary streams hydrological regimes and, as a consequence, the selection of the correct periods and methods to determine their ecological status. Because of its qualitative nature, the TREHS approach allows the use of alternative methodologies to assess the regime of temporary streams in the lack of observed flow data. However, to adapt the TREHS to this qualitative data both the temporal scheme (from monthly to seasonal) as well as the number of aquatic states (from 6 to 3) have been modified. Two alternatives complementary methodologies were tested within the TREHS framework to assess the regime of temporary streams: interviews and aerial photographs. All the gauging stations (13) belonging to the Catalan Internal Catchments (NE, Spain) with recurrent zero flows periods were selected to validate both methodologies. On one hand, non-structured interviews were carried out to inhabitants of villages and small towns near the gauging stations. Flow permanence metrics for input into TREHS were drawn from the notes taken during the interviews. On the other hand, the historical series of available aerial photographs (typically 10

  13. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP): WESTERN STREAMS AND RIVERS STATISTICAL SUMMARY

    Science.gov (United States)

    This statistical summary reports data from the Environmental Monitoring and Assessment Program (EMAP) Western Pilot (EMAP-W). EMAP-W was a sample survey (or probability survey, often simply called 'random') of streams and rivers in 12 states of the western U.S. (Arizona, Californ...

  14. Testing common stream sampling methods for broad-scale, long-term monitoring

    Science.gov (United States)

    Eric K. Archer; Brett B. Roper; Richard C. Henderson; Nick Bouwes; S. Chad Mellison; Jeffrey L. Kershner

    2004-01-01

    We evaluated sampling variability of stream habitat sampling methods used by the USDA Forest Service and the USDI Bureau of Land Management monitoring program for the upper Columbia River Basin. Three separate studies were conducted to describe the variability of individual measurement techniques, variability between crews, and temporal variation throughout the summer...

  15. In-line monitoring and optimization of powder flow in a simulated continuous process using transmission near infrared spectroscopy.

    Science.gov (United States)

    Alam, Md Anik; Shi, Zhenqi; Drennen, James K; Anderson, Carl A

    2017-06-30

    In-line monitoring of continuous powder flow is an integral part of the continuous manufacturing process of solid oral dosage forms in the pharmaceutical industry. Specifically, monitoring downstream from loss-in-weight (LIW) feeders and/or continuous mixers provides important data about the state of the process. Such measurements support control of the process and thereby enhance product quality. Near Infrared Spectroscopy (NIRS) is a potential PAT tool to monitor the homogeneity of a continuous powder flow stream in pharmaceutical manufacturing. However, the association of analytical results from NIR sampling of the powder stream and the homogeneity (content uniformity) of the resulting tablets provides several challenges; appropriate sampling strategies, adequately robust modeling techniques and poor sensitivities (for low dose APIs) are amongst them. Information from reflectance-based NIRS sampling is limited. The region of the powder bed that is interrogated is confined to the surface where the measurement is made. This potential bias in sampling may, in turn, limit the ability to predict the homogeneity of the finished dosage form. Further, changes to the processing parameters (e.g., rate of powder flow) often have a significant effect on the resulting data. Sample representation, interdependence between process parameters and their effects on powder flow behavior are critical factors for NIRS monitoring of continuous powder flow system. A transmission NIR method was developed as an alternative technique to monitor continuous powder flow and quantify API in the powder stream. Transmission NIRS was used to determine the thickness of the powder stream flowing from a loss-in-weight feeder. The thickness measurement of the powder stream provided an in-depth understanding about the effects of process parameters such as tube angles and powder flow rates on powder flow behaviors. This knowledge based approach helped to define an analytical design space that was

  16. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  17. Interaction of counter-streaming plasma flows in dipole magnetic field

    OpenAIRE

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G

    2017-01-01

    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  18. Effect of β-PVDF Piezoelectric Transducers’ Positioning on the Acoustic Streaming Flows

    Directory of Open Access Journals (Sweden)

    Susana O. Catarino

    2014-09-01

    Full Text Available This paper reports the numerical and experimental analysis of the acoustic streaming effect in a fluidic domain. The actuation of a piezoelectric transducer generates acoustic waves that propagate to the fluids, generating pressure gradients that induce the flow. The number and positioning of the transducers affect the pressure gradients and, consequently, the resultant flow profile. Two actuation conditions were considered: (1 acoustic streaming generated by a 28 μm thick β-poly(vinylidene fluoride (β-PVDF piezoelectric transducer placed asymmetrically relative to the fluidic domain and (2 acoustic streaming generated by two 28 μm thick β-PVDF piezoelectric transducers placed perpendicularly to each other. The transducers were fixed to the lower left corner of a poly(methyl methacrylate (PMMAcuvette and were actuated with a 24 Vpp and 34.2 MHz sinusoidal voltage. The results show that the number of transducers and their positioning affects the shape and number of recirculation areas in the acoustic streaming flows. The obtained global flows show great potential for mixing and pumping, being an alternative to the previous geometries studied by the authors, namely, a single transducer placed symmetrically under a fluidic domain.

  19. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Science.gov (United States)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  20. Flow characterization temporary streams : using the model SIMGRO for the Evrotas basin, Greece

    NARCIS (Netherlands)

    Vernooij, M.G.M.; Querner, E.P.; Jacobs, C.; Froebrich, J.

    2011-01-01

    Tools were developed to quantify space–time development of different flow phases on a river basin scale. Such information is needed for the WFD. The spatial development of temporary streams was investigated in the Evrotas basin, Greece. We used the regional hydrological model SIMGRO in a GIS

  1. Prediction of the impacts of climate changes on the stream flow of ...

    African Journals Online (AJOL)

    Abstract. Soil and Water Assessment Tool, (SWAT) model was used to predict the impacts of Climate Change on Ajali River watershed, Aguobu-Umumba, Ezeagu, Enugu State, Nigeria. The model was first used to simulate stream flow using observed data. After model run, parameterization, sensitivity analysis, the monthly ...

  2. Climate and Land-Cover Change Impacts on Stream Flow in the Southwest U.S.

    Science.gov (United States)

    Vegetation change in arid and semi-arid climatic regions of the American West are a primary concern in sustaining key ecosystem services such as clean, reliable water sources for multiple uses. Land cover and climate change impacts on stream flow were investigated in a southeast ...

  3. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    2005-01-01

    Full Text Available Spatio-temporal patterns of small water bodies (SWBs under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  4. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)

    2012-07-01

    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  5. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams

    Science.gov (United States)

    Stephen F. Jane; Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Michael K. Schwartz; Winsor H. Lowe; Benjamin H. Letcher; Andrew R. Whiteley

    2014-01-01

    Environmental DNA (eDNA) detection has emerged as a powerful tool for monitoring aquatic organisms, but much remains unknown about the dynamics of aquatic eDNA over a range of environmental conditions. DNA concentrations in streams and rivers will depend not only on the equilibrium between DNA entering the water and DNA leaving the system through degradation, but also...

  6. Application of a microprocessor system to stream monitoring

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1978-01-01

    Low-level liquid wastes originating from the Oak Ridge National Laboratory (ORNL) are discharged, after treatment, into White Oak Creek, which is a small tributary of the Clinch River located in East Tennessee. Samples of White Oak Creek discharges are collected at White Oak Dam by a continuous digital proportional water sampler and analyzed weekly for radioactivity. The sampler contains a control system with a microprocessor that has been programmed to solve nonlinear weir equations. This system was designed and installed at ORNL by the Instrumentation and Controls Division and was tested by the Environmental Surveillance and Evaluation Section of the Industrial Safety and Applied Health Physics Division. The control system was designed to measure water flow rates from 0 to 334 ft 3 /sec to within 0.1%. Results of our test program and possible applications to other liquid sampling needs are discussed

  7. Flowing water affects fish fast-starts: escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni.

    Science.gov (United States)

    Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W

    2016-10-01

    Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.

  8. Physical cleaning by bubbly streaming flow in an ultrasound field

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    Low-intensity ultrasonic cleaning with gas-supersaturated water is a promising method of physical cleaning without erosion; we are able to trigger cavitation bubble nucleation by weak ultrasound under gas supersaturation and thus clean material surfaces by mild bubble dynamics. Here, we perform particle image velocimetry (PIV) measurement of liquid flow and cavitation bubble translation in an ultrasonic cleaning bath driven at 28 kHz and then relate it to cleaning tests using glass slides at which silica particles are attached. The ultrasound pressure amplitude at the cleaning spot is set at 1.4 atm. We select the supersaturation level of dissolved oxygen (DO) as a parameter and control it by oxygen microbubble aeration. It follows from the PIV measurement that the liquid flow is enhanced by the cavitation bubble translation driven by acoustic radiation force; this trend becomes clearer when the bubbles appear more densely as the DO supersaturation increases. In the cleaning tests, the cleaned areas appear as straight streaks. This suggests that physical cleaning is achieved mainly by cavitation bubbles that translate in ultrasound fields.

  9. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation

  10. STREAM

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    This paper presents a flexible model, ‘STREAM’, for transforming higher science education into blended and online learning. The model is inspired by ideas of active and collaborative learning and builds on feedback strategies well-known from Just-in-Time Teaching, Flipped Classroom, and Peer...... Instruction. The aim of the model is to provide both a concrete and comprehensible design toolkit for adopting and implementing educational technologies in higher science teaching practice and at the same time comply with diverse ambitions. As opposed to the above-mentioned feedback strategies, the STREAM...... model supports a relatively diverse use of educational technologies and may also be used to transform teaching into completely online learning. So far both teachers and educational developers have positively received the model and the initial design experiences show promise....

  11. Method and apparatus for monitoring two-phase flow. [PWR

    Science.gov (United States)

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  12. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  13. Interactions between hyporheic flow produced by stream meanders, bars, and dunes

    Science.gov (United States)

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.

    2013-01-01

    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  14. Changes in Stream Flow and Their Relationships with Climatic Variations and Anthropogenic Activities in the Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Chaojun Gu

    2016-12-01

    Full Text Available The Poyang Lake Basin has been suffering from severe water problems such as floods and droughts. This has led to great adverse impacts on local ecosystems and water resource utilization. It is therefore important to understand stream flow changes and their driving factors. In this paper, the dynamics of stream flow and precipitation in the Poyang Lake Basin between 1961 and 2012 were evaluated with the Mann–Kendall test, Theil–Sen approaches, Pettitt test, and Pearson’s correlation. Stream flow was measured at the outlets of five major tributaries of Poyang Lake, while precipitation was recorded by fourteen meteorological stations located within the Poyang Lake Basin. Results showed that annual stream flow of all tributaries and the precipitation over the study area had insignificant (P > 0.1 temporal trends and change points, while significant trends and shifts were found in monthly scale. Stream flow concentration indices (SCI at Waizhou, Meigang, and Wanjiabu stations showed significant (P < 0.05 decreasing trends with change points emerging in 1984 at Waizhou and 1978 at Wanjiabu, while there was no significant temporal trend and change point detected for the precipitation concentration indices (PCI. Correlation analysis indicated that area-average stream flow was closely related to area-average precipitation, but area-average SCI was insignificantly correlated with area-average PCI after change point (1984. El Niño/Southern Oscillation (ENSO had greater impacts on stream flow than other climate indices, and La Niña events played a more important role in stream flow changes than EI Niño. Human activities, particularly in terms of reservoir constructions, largely altered the intra-annual distribution of stream flow but its effects on the amount of stream flow were relatively low. Results of this study provided a useful reference to regional water resource management and the prevention of flood and drought disasters.

  15. Stream habitat analysis using the instream flow incremental methodology

    Science.gov (United States)

    Bovee, Ken D.; Lamb, Berton L.; Bartholow, John M.; Stalnaker, Clair B.; Taylor, Jonathan; Henriksen, Jim

    1998-01-01

    This document describes the Instream Flow Methodology in its entirety. This also is to serve as a comprehensive introductory textbook on IFIM for training courses as it contains the most complete and comprehensive description of IFIM in existence today. This should also serve as an official guide to IFIM in publication to counteract the misconceptions about the methodology that have pervaded the professional literature since the mid-1980's as this describes IFIM as it is envisioned by its developers. The document is aimed at the decisionmakers of management and allocation of natural resources in providing them an overview; and to those who design and implement studies to inform the decisionmakers. There should be enough background on model concepts, data requirements, calibration techniques, and quality assurance to help the technical user design and implement a cost-effective application of IFIM that will provide policy-relevant information. Some of the chapters deal with basic organization of IFIM, procedural sequence of applying IFIM starting with problem identification, study planning and implementation, and problem resolution.

  16. Solute-specific patterns and drivers of urban stream chemistry revealed by long-term monitoring in Baltimore, Maryland

    Science.gov (United States)

    Reisinger, A. J.; Woytowitz, E.; Majcher, E.; Rosi, E. J.; Groffman, P.

    2017-12-01

    Urban streams receive a myriad of chemical inputs from the surrounding landscape due to altered lithology (asphalt, concrete), leaky sewage infrastructure, and other human activities (road salt, fertilizer, industrial wastes, wastewater effluent), potentially leading to multiple chemical stressors occurring simultaneously. To evaluate potential drivers of water chemistry change, we used approximately 20 years of weekly water chemistry monitoring data from streams in the Baltimore Ecosystem Study (BES) to quantify trends of annual loads and flow-weighted concentrations for multiple solutes of interest, including nitrate (NO3-), phosphate (PO43-), total nitrogen (TN), total phosphorus (TP), chloride (Cl-), and sulfate (SO42-) and subsequently examined various gray and green infrastructure characteristics at the watershed scale. For example, we quantified annual volume and duration of reported sanitary sewer overflows (SSO) and cumulative storage volume and area of various best management practices (BMPs). Site- and solute-specific trends differed, but across our monitoring network we found evidence for decreasing annual export for multiple solutes. Additionally, we found that changes in gray- and green-infrastructure characteristics were related to changes in water quality at our most downstream (most urban) monitoring site. For example, annual NO3- loads increased with longer cumulative SSO duration, whereas annual PO43- and TP loads decreased with a cumulative BMP area in the watershed. Further, we used same long-term water chemistry data and multivariate analyses to investigate whether urban streams have unique water chemistry fingerprints representing the multiple chemical stressors at a given site, which could provide insight into sources and impacts of water-quality impairment. These analyses and results illustrate the major role gray and green infrastructure play in influencing water quality in urban environments, and illustrate that focusing on a variety of

  17. Viscous Potential Flow Analysis of Electroaerodynamic Instability of a Liquid Sheet Sprayed with an Air Stream

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Awasthi

    2013-01-01

    Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.

  18. Ptaquiloside from bracken in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Clauson-Kaas, Frederik; Ramwell, Carmel; Hansen, Hans Chr. Bruun

    2016-01-01

    not decrease over the course of the event. In the stream, the throughfall contribution to PTA cannot be separated from a possible below-ground input from litter, rhizomes and soil. Catchment-specific factors such as the soil pH, topography, hydrology, and bracken coverage will evidently affect the level of PTA...... rainfall and PTA concentration in the stream, with a reproducible time lag of approx. 1 h from onset of rain to elevated concentrations, and returning rather quickly (about 2 h) to base flow concentration levels. The concentration of PTA behaved similar to an inert tracer (Cl(-)) in the pulse experiment...

  19. A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method

    Science.gov (United States)

    Somogyi, Andy; Tagg, Randall

    2007-11-01

    We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.

  20. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  1. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    Science.gov (United States)

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  2. An evaluation of the relations between flow regime components, stream characteristics, species traits and meta-demographic rates of warmwater stream fishes: Implications for aquatic resource management

    Science.gov (United States)

    Peterson, James T.; Shea, C.P.

    2015-01-01

    Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species-specific demographic rates. A more cost-effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta-demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta-demographic rates were influenced by streamflows, particularly short-term (10-day) flows. Flow effects on meta-demographic rates also varied with stream size, channel morphology, and fish species traits. Small-bodied species with generalized life-history characteristics were more resilient to flow variability than large-bodied species with specialized life-history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment

    Science.gov (United States)

    Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.

    2013-12-01

    Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by

  4. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    Science.gov (United States)

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  5. Type and timing of stream flow changes in urbanizing watersheds in the Eastern U.S.

    Directory of Open Access Journals (Sweden)

    Kristina G. Hopkins

    2015-06-01

    Full Text Available Abstract Linking the type and timing of hydrologic changes with patterns of urban growth is essential to identifying the underlying mechanisms that drive declines in urban aquatic ecosystems. In six urbanizing watersheds surrounding three U.S. cities (Baltimore, MD, Boston, MA, and Pittsburgh, PA, we reconstructed the history of development patterns since 1900 and assessed the magnitude and timing of stream flow changes during watershed development. Development reconstructions indicated that the majority of watershed development occurred during a period of peak population growth, typically between 1950 and 1970. Stream flow records indicated significant increases in annual frequency of high-flow events in all six watersheds and increases in annual runoff efficiency in five watersheds. Annual development intensity during the peak growth period had the strongest association with the magnitude of changes in high-flow frequency from the pre- to post-development periods. Results suggest the timing of the peak growth period is particularly important to understanding hydrologic changes, because it can set the type of stormwater infrastructure installed within a watershed. In three watersheds there was a rapid (∼10-15 years shift toward more frequent high-flow events, and in four watersheds there was a shift toward higher runoff efficiency. Breakpoint analyses indicated these shifts occurred between 1969 and 1976 for high-flow frequency and between 1962 and 1984 for runoff efficiency. Results indicated that the timing of high-flow changes were mainly driven by the development trajectory of each watershed, whereas the timing of runoff-efficiency changes were driven by a combination of development trajectories and extreme weather events. Our results underscore the need to refine the causes of urban stream degradation to incorporate the impact of gradual versus rapid urbanization on hydrologic changes and aquatic ecosystem function, as well as to

  6. Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania

    Science.gov (United States)

    Brush, Lucien M.

    1961-01-01

    The hydraulic, basin, and geologic characteristics of 16 selected streams in central Pennsylvania were measured for the purpose of studying the relations among these general characteristics and their process of development. The basic parameters which were measured include bankfull width and depth, channel slope, bed material size and shape, length of stream from drainage divide, and size of drainage area. The kinds of bedrock over which the streams flow were noted. In these streams the bankfull channel is filled by flows approximating the 2.3-year flood. By measuring the breadth and mean depth of the channel, it was possible to compute the bankfull mean velocity for each of the 119 sampling stations. These data were then used to compute the downstream changes in hydraulic geometry of the streams studied. This method has been called an indirect computation of the hydraulic geometry. The results obtained by the indirect method are similar to those of the direct method of other workers. The basins were studied by examining the relations of drainage area, discharge, and length of stream from drainage divide. For the streams investigated, excellent correlations were found to exist between drainage area and the 2.3-year flood, as well as between length of stream from the basin divide and drainage area. From these correlations it is possible to predict the discharge for the 2.3-year flood at any arbitrary point along the length of the stream. The long, intermediate, and short axes of pebbles sampled from the bed of the stream were recorded to study both size and sphericity changes along individual streams and among the streams studied. No systematic downstream changes in sphericity were found. Particle size changes are erratic and show no consistent relation to channel slope. Particle size decreases downstream in many streams but remains constant or increases in others. Addition of material by tributaries is one factor affecting particle size and another is the parent

  7. Acoustically Induced Streaming Flows near a Model Cod Otolith and their Potential Implications for Fish Hearing

    Energy Technology Data Exchange (ETDEWEB)

    Kotas, Charlotte W [ORNL; Rogers, Peter [Georgia Institute of Technology; Yoda, Minami [Georgia Institute of Technology

    2011-01-01

    The ears of fishes are remarkable sensors for the small acoustic disturbances associated with underwater sound. For example, each ear of the Atlantic cod (Gadus morhua) has three dense bony bodies (otoliths) surrounded by fluid and tissue, and detects sounds at frequencies from 30 to 500 Hz. Atlantic cod have also been shown to localize sounds. However, how their ears perform these functions is not fully understood. Steady streaming, or time-independent, flows near a 350% scale model Atlantic cod otolith immersed in a viscous fluid were studied to determine if these fluid flows contain acoustically relevant information that could be detected by the ear s sensory hair cells. The otolith was oscillated sinusoidally at various orientations at frequencies of 8 24 Hz, corresponding to an actual frequency range of 280 830 Hz. Phaselocked particle pathline visualizations of the resulting flows give velocity, vorticity, and rate of strain fields over a single plane of this mainly two-dimensional flow. Although the streaming flows contain acoustically relevant information, the displacements due to these flows are likely too small to explain Atlantic cod hearing abilities near threshold. The results, however, may suggest a possible mechanism for detection of ultrasound in some fish species.

  8. The effects of human land use on flow regime and water chemistry of headwater streams in the highlands of Chiapas

    Directory of Open Access Journals (Sweden)

    Castillo M.M.

    2013-03-01

    Full Text Available We studied the effects of land use changes on flow regime and water chemistry of headwater streams in the highlands of Chiapas, a region in southern Mexico that has experienced high rates of deforestation in the last decades. Samples for water chemistry were collected and discharge was measured between September 2007 and August 2008 at eight streams that differed in the land uses of their riparian and catchment areas, including streams draining protected forested areas. Streams with high forest cover (>70% in their catchments maintained flow through the year. Streams draining more disturbed catchments exhibited reduced or no flow for 4 − 6 months during the dry season. Nitrate concentrations were lower at streams draining forested catchments while highest concentrations were measured where conventional agriculture covered a high proportion of the catchment and riparian zone. Highest phosphorus concentrations occurred at the catchment where poultry manure was applied as fertilizer. Differences between forest streams and those draining disturbed areas were correlated with the proportion of forest and agriculture in the riparian zone. Variation in stream variables among sampling dates was lower at the forest sites than at the more disturbed study streams. Conversion of forest into agriculture and urban areas is affecting flow regime and increasing nutrient concentrations, although the magnitude of the impacts are influenced by the type of agricultural practices and the alteration of the riparian zone.

  9. A review of lot streaming in a flow shop environment with makespan criteria

    Directory of Open Access Journals (Sweden)

    Pedro Gómez-Gasquet

    2013-07-01

    Full Text Available Purpose: This paper reviews current literature and contributes a set of findings that capture the current state-of-the-art of the topic of lot streaming in a flow-shop. Design/methodology/approach: A literature review to capture, classify and summarize the main body of knowledge on lot streaming in a flow-shop with makespan criteria and, translate this into a form that is readily accessible to researchers and practitioners in the more mainstream production scheduling community. Findings and Originality/value: The existing knowledge base is somewhat fragmented. This is a relatively unexplored topic within mainstream operations management research and one which could provide rich opportunities for further exploration. Originality/value: This paper sets out to review current literature, from an advanced production scheduling perspective, and contributes a set of findings that capture the current state-of-the-art of this topic.

  10. Effects of Urbanization on the Flow Regimes of Semi-Arid Southern California Streams

    Science.gov (United States)

    Hawley, R. J.; Bledsoe, B. P.; Stein, E. D.

    2010-12-01

    Stream channel erosion and associated habitat degradation are pervasive in streams draining urban areas in the southwestern US. The prevalence of these impacts results from the inherent sensitivity of streams in semi-arid climates to changes in flow and sediment regimes, and past inattention to management of geomorphically effective flows. Addressing this issue is difficult due to the lack of data linking ranges of flow (from small to large runoff events) to geomorphic channel response. Forty-three U. S. Geological Survey gages with record lengths greater than ~15 yrs and watershed areas less than ~250 square kilometers were used to empirically model the effects of urbanization on streams in southern California. The watersheds spanned a gradient of urban development and ranged from 0 to 23% total impervious area in 2001. With little flow control at the subdivision scale to date, most impervious area in the region is relatively well-connected to surface-drainage networks. Consequently, total impervious area was an effective surrogate for urbanization, and emerged as a significant (p approach expands on previous scaling procedures to produce histogram-style cumulative flow duration graphs for ungaged sites based on urbanization extent and other watershed descriptors. Urbanization resulted in proportionally-longer durations of all geomorphically-effective flows, with a more pronounced effect on the durations of moderate flows. For example, an average watershed from the study domain with ~20% imperviousness could experience five times as many days of mean daily flows on the order of 100 cfs (3 cubic meters per second) and approximately three times as many days on the order of 1,000 cfs (30 cubic meters per second) relative to the undeveloped setting. Increased duration of sediment-transporting flows is a primary driver of accelerated changes in channel form that are often concurrent with urbanization throughout southern California, particularly in unconfined, fine

  11. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    Science.gov (United States)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  12. FINE MAGNETIC STRUCTURE AND ORIGIN OF COUNTER-STREAMING MASS FLOWS IN A QUIESCENT SOLAR PROMINENCE

    International Nuclear Information System (INIS)

    Shen, Yuandeng; Liu, Yu; Xu, Zhi; Liu, Zhong; Liu, Ying D.; Chen, P. F.; Su, Jiangtao

    2015-01-01

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends

  13. Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine

    Science.gov (United States)

    Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)

    2002-01-01

    This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.

  14. Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows

    Science.gov (United States)

    Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803

  15. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Science.gov (United States)

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  16. Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies

    Science.gov (United States)

    Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

    2013-04-01

    Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such

  17. Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms.

    Science.gov (United States)

    Corcoll, Natàlia; Casellas, Maria; Huerta, Belinda; Guasch, Helena; Acuña, Vicenç; Rodríguez-Mozaz, Sara; Serra-Compte, Albert; Barceló, Damià; Sabater, Sergi

    2015-01-15

    Increasing concentrations of pharmaceutical compounds occur in many rivers, but their environmental risk remains poorly studied in stream biofilms. Flow intermittency shapes the structure and functions of ecosystems, and may enhance their sensitivity to toxicants. This study evaluates the effects of a long-term exposure of biofilm communities to a mixture of pharmaceutical compounds at environmental concentrations on biofilm bioaccumulation capacity, the structure and metabolic processes of algae and bacteria communities, and how their potential effects were enhanced or not by the occurrence of flow intermittency. To assess the interaction between those two stressors, an experiment with artificial streams was performed. Stream biofilms were exposed to a mixture of pharmaceuticals, as well as to a short period of flow intermittency. Results indicate that biofilms were negatively affected by pharmaceuticals. The algal biomass and taxa richness decreased and unicellular green algae relatively increased. The structure of the bacterial (based on denaturing gradient gel electrophoresis of amplified 16S rRNA genes) changed and showed a reduction of the operational taxonomic units (OTUs) richness. Exposed biofilms showed higher rates of metabolic processes, such as primary production and community respiration, attributed to pharmaceuticals stimulated an increase of green algae and heterotrophs, respectively. Flow intermittency modulated the effects of chemicals on natural communities. The algal community became more sensitive to short-term exposure of pharmaceuticals (lower EC50 value) when exposed to water intermittency, indicating cumulative effects between the two assessed stressors. In contrast to algae, the bacterial community became less sensitive to short-term exposure of pharmaceuticals (higher EC50) when exposed to water intermittency, indicating co-tolerance phenomena. According to the observed effects, the environmental risk of pharmaceuticals in nature is high

  18. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA.

    Science.gov (United States)

    Steven M. Wondzell

    2006-01-01

    Stream-tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach-integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS-P. Transient...

  19. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  20. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    Science.gov (United States)

    Lin, Chao-Chih; Chang, Ya-Chi; Yeh, Hund-Der

    2018-04-01

    Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007). The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR) from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007).

  1. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    Directory of Open Access Journals (Sweden)

    C.-C. Lin

    2018-04-01

    Full Text Available Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007. The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007.

  2. Linking stream flow and groundwater to avian habitat in a desert riparian system.

    Science.gov (United States)

    Merritt, David M; Bateman, Heather L

    2012-10-01

    Increasing human populations have resulted in aggressive water development in arid regions. This development typically results in altered stream flow regimes, reduced annual flow volumes, changes in fluvial disturbance regimes, changes in groundwater levels, and subsequent shifts in ecological patterns and processes. Balancing human demands for water with environmental requirements to maintain functioning ecosystems requires quantitative linkages between water in streams and ecosystem attributes. Streams in the Sonoran Desert provide important habitat for vertebrate species, including resident and migratory birds. Habitat structure, food, and nest-building materials, which are concentrated in riparian areas, are provided directly or indirectly by vegetation. We measured riparian vegetation, groundwater and surface water, habitat structure, and bird occurrence along Cherry Creek, a perennial tributary of the Salt River in central Arizona, USA. The purpose of this work was to develop an integrated model of groundwater-vegetation-habitat structure and bird occurrence by: (1) characterizing structural and provisioning attributes of riparian vegetation through developing a bird habitat index (BHI), (2) validating the utility of our BHI through relating it to measured bird community composition, (3) determining the riparian plant species that best explain the variability in BHI, (4) developing predictive models that link important riparian species to fluvial disturbance and groundwater availability along an arid-land stream, and (5) simulating the effects of changes in flow regime and groundwater levels and determining their consequences for riparian bird communities. Riparian forest and shrubland vegetation cover types were correctly classified in 83% of observations as a function of fluvial disturbance and depth to water table. Groundwater decline and decreased magnitude of fluvial disturbance caused significant shifts in riparian cover types from riparian forest to

  3. Continental slope sea level and flow variability induced by lateral movements of the Gulf Stream in the Middle Atlantic Bight

    Science.gov (United States)

    Böhm, E.; Hopkins, T. S.; Pietrafesa, L. J.; Churchill, J. H.

    2006-08-01

    As described by [Csanady, G.T., Hamilton, P., 1988. Circulation of slope water. Continental Shelf Research 8, 565-624], the flow regime over the slope of the southern Middle Atlantic Bight (MAB) includes a current reversal in which southwestward flow over the upper and middle slope becomes entrained in the northeastward current adjacent to the Gulf Stream. In this paper we use satellite-derived data to quantify how lateral motions of the Gulf Stream impact this current system. In our analysis, the Gulf Stream’s thermal front is delineated using a two-year time series of sea surface temperature derived from NOAA/AVHRR satellite data. Lateral motions of the Gulf Stream are represented in terms of temporal variations of the area, east of 73°W, between the Gulf Stream thermal front and the shelf edge. Variations of slope water flow within this area are represented by anomalies of geostrophic velocity as derived from the time series of the sea level anomaly determined from TOPEX/POSEIDON satellite altimeter data. A strong statistical relationship is found between Gulf Stream displacements and parabathic flow over the continental slope. It is such that the southwestward flow over the slope is accelerated when the Gulf Stream is relatively far from the shelf edge, and is decelerated (and perhaps even reversed) when the Gulf Stream is close to the shelf edge. This relationship between Gulf Stream displacements and parabathic flow is also observed in numerical simulations produced by the Miami Isopycnic Coordinate Model. In qualitative terms, it is consistent with the notion that when the Gulf Stream is closer to the 200-m isobath, it is capable of entraining a larger fraction of shelf water masses. Alternatively, when the Gulf Stream is far from the shelf-break, more water is advected into the MAB slope region from the northeast. Analysis of the diabathic flow indicates that much of the cross-slope transport by which the southwestward flow entering the study region is

  4. Manageable and Extensible Video Streaming Systems for On-Line Monitoring of Remote Laboratory Experiments

    Directory of Open Access Journals (Sweden)

    Jian-Wei Lin

    2009-08-01

    Full Text Available To enable clients to view real-time video of the involved instruments during a remote experiment, two real-time video streaming systems are devised. One is for the remote experiments which instruments locate in one geographic spot and the other is for those which instruments scatter over different places. By means of running concurrent streaming processes at a server, multiple instruments can be monitored simultaneously by different clients. The proposed systems possess excellent extensibility, that is, the systems can easily add new digital cameras for instruments without modifying any software. Also they are well-manageable, meaning that an administrator can conveniently adjust the quality of the real-time video depending on system load and visual requirements. Finally, some evaluation concerning CPU utilization and bandwidth consumption of the systems have been evaluated to verify the effectiveness of the proposed solutions.

  5. The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators

    Science.gov (United States)

    Salter, S.

    2011-12-01

    The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations

  6. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj

    1991-01-01

    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  7. Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA.

    Science.gov (United States)

    Justin K. Anderson; Steven M. Wondzell; Michael N. Gooseff; Roy. Haggerty

    2005-01-01

    There is a need to identify measurable characteristics of stream channel morphology that vary predictably throughout stream networks and that influence patterns of hyporheic exchange flow in mountain streams. In this paper we characterize stream longitudinal profiles according to channel unit spacing and the concavity of the water surface profile. We demonstrate that...

  8. Spatio-temporal variability of land use/land cover change (LULCC within the Huron River: Effects on stream flows

    Directory of Open Access Journals (Sweden)

    Cheyenne Lei

    Full Text Available We investigated possible influences of land use/land cover change (LULCC and precipitation on spatiotemporal changes in extreme stream flows within the watershed of the Huron River Basin during the summer seasons from 1992 to 2011. Within the basin, the urban landscape increased from 8% to 16% during the study period, while forest and agricultural lands declined by 7%. There was an increase in landscape heterogeneity within the watershed that varied from 1.21% in 1992 to 1.34% in 2011, with agricultural practices and forest regions competing due to the expansion of varying intensities of urban development. Normalized stream discharge from multiple subwatersheds increased over time, with an average increase from 0.21 m3 s−1 m to 1.64 m3 s−1 m over the study period. Land use and precipitation affected stream discharge, with increasing urban development exhibiting a 37% chance of affecting extreme stream flows within the watershed. More importantly, much of the precipitation observed within the watershed temporally affected stream discharge based on expansion of urban settlement within the basin. This caused a higher likelihood of flashiness, as runoff is more concentrated and stream flow became more variable. We concluded that, within the watersheds of the Huron River, LULCC is the major determinant of increased stream flow and potential flooding. Keywords: Urbanization, Land use, Land cover, Climate, Hydrology, ArcGIS, FRAGSTATS

  9. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    International Nuclear Information System (INIS)

    Gunning, John E.; Laughter, Mark D.; March-Leuba, Jose A.

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  10. DASHBOARD.awi.de: Streaming and monitoring solutions for near real-time data

    OpenAIRE

    Koppe, Roland; Gerchow, Peter; Macario, Ana; Haas, Antonie; Schäfer-Neth, Christian; Rehmcke, Steven; Walter, Andreas; Düde, Tobias; Weidinger, Philipp; Schäfer, Angela; Pfeiffenberger, Hans

    2018-01-01

    DASHBOARD.awi.de is a component of our data flow framework designed to enable a semi-automated flow of sensor observations to archives (acronym O2A). The dramatic increase in the number and type of platforms and respective sensors operated by Alfred Wegener Institute along with complex project-driven requirements in terms of satellite communication, sensor monitoring, quality control and validation, processing pipelines, visualization, and archival under FAIR principles, led us to build a...

  11. Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation

    Directory of Open Access Journals (Sweden)

    A. H. Haria

    2004-01-01

    Full Text Available Upland streamflow generation has traditionally been modelled as a simple rainfall-runoff mechanism. However, recent hydrochemical studies conducted in upland Wales have highlighted the potentially important role of bedrock groundwater in streamflow generation processes. To investigate these processes, a detailed and novel field study was established in the riparian zone and lower hillslopes of the Hafren catchment at Plynlimon, mid-Wales. Results from this study showed groundwater near the river behaving in a complex and most likely confined manner within depth-specific horizons. Rapid responses to rainfall in all boreholes at the study site indicated rapid recharge pathways further upslope. The different flow pathways and travel times influenced the chemical character of groundwaters with depth. Groundwaters were shown to discharge into the stream from the fractured bedrock. A lateral rapid flow horizon was also identified as a fast flow pathway immediately below the soils. This highlighted a mechanism whereby rising groundwater may pick up chemical constituents from the lower soils and transfer them quickly to the stream channel. Restrictions in this horizon resulted in groundwater upwelling into the soils at some locations indicating soil water to be sourced from both rising groundwater and rainfall. The role of bedrock groundwater in upland streamflow generation is far more complicated than previously considered, particularly with respect to residence times and flow pathways. Hence, water quality models in upland catchments that do not take account of the bedrock geology and the groundwater interactions therein will be seriously flawed. Keywords: bedrock, groundwater, Hafren, hillslope hydrology, Plynlimon, recharge, soil water, streamflow generation

  12. Flow Monitoring Experiences at the Ethernet-Layer

    NARCIS (Netherlands)

    Hofstede, Rick; Hofstede, R.J.; Drago, Idilio; Sperotto, Anna; Pras, Aiko; Lehnert, Ralf

    2011-01-01

    Flow monitoring is a scalable technology for providing summaries of network activity. Being deployed at the IP-layer, it uses fixed flow definitions, based on fields of the IP-layer and higher layers. Since several backbone network operators are considering the deployment of (Carrier) Ethernet in

  13. VEGETATION BEHAVIOR AND ITS HABITAT REGION AGAINST FLOOD FLOW IN URBAN STREAMS

    Directory of Open Access Journals (Sweden)

    IL-KI CHOI

    2013-06-01

    Full Text Available Hydraulic effects on the vegetation behavior and on its habitat region against flood flow in the urban streams were analysed in this paper. Vegetation behavior was classified into stable, recovered, damaged and swept away stages. Criteria between recovered and damaged status were determined by the bending angle of the aquatic plants. Aquatic plants whose bending angle is lower than 30~50 degree is recovered, but they were damaged and cannot be recovered when the bending angle is higher than 30~50 degree. Phragmites japonica was inhabited in the hydraulic condition of high Froude number which shows that it was inhabited in the upstream reaches. Phragmites communis was inhabited in the relatively low Froude number compared with Phragmites japonica. This shows that it was inhabited in the downstream reaches. Persicaria blumei was found in the relatively wide range of flow velocity and flow depth, which shows that it was inhabited in the middle and downstream reaches. Criterion on the vegetation behavior of Persicaria thunbergii was not clear, which implies that it may be affected by the flow turbulence rather than flow velocity and flow depth.

  14. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows.

    Science.gov (United States)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.

    2014-12-01

    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  15. Surface-water quantity and quality, aquatic biology, stream geomorphology, and groundwater-flow simulation for National Guard Training Center at Fort Indiantown Gap, Pennsylvania, 2002-05

    Science.gov (United States)

    Langland, Michael J.; Cinotto, Peter J.; Chichester, Douglas C.; Bilger, Michael D.; Brightbill, Robin A.

    2010-01-01

    Base-line and long-term monitoring of water resources of the National Guard Training Center at Fort Indiantown Gap in south-central Pennsylvania began in 2002. Results of continuous monitoring of streamflow and turbidity and monthly and stormflow water-quality samples from two continuous-record long-term stream sites, periodic collection of water-quality samples from five miscellaneous stream sites, and annual collection of biological data from 2002 to 2005 at 27 sites are discussed. In addition, results from a stream-geomorphic analysis and classification and a regional groundwater-flow model are included. Streamflow at the facility was above normal for the 2003 through 2005 water years and extremely high-flow events occurred in 2003 and in 2004. Water-quality samples were analyzed for nutrients, sediments, metals, major ions, pesticides, volatile and semi-volatile organic compounds, and explosives. Results indicated no exceedances for any constituent (except iron) above the primary and secondary drinking-water standards or health-advisory levels set by the U.S. Environmental Protection Agency. Iron concentrations were naturally elevated in the groundwater within the watershed because of bedrock lithology. The majority of the constituents were at or below the method detection limit. Sediment loads were dominated by precipitation due to the remnants of Hurricane Ivan in September 2004. More than 60 percent of the sediment load measured during the entire study was transported past the streamgage in just 2 days during that event. Habitat and aquatic-invertebrate data were collected in the summers of 2002-05, and fish data were collected in 2004. Although 2002 was a drought year, 2003-05 were above-normal flow years. Results indicated a wide diversity in invertebrates, good numbers of taxa (distinct organisms), and on the basis of a combination of metrics, the majority of the 27 sites indicated no or slight impairment. Fish-metric data from 25 sites indicated results

  16. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation.

    Science.gov (United States)

    Williams, P Stephen

    2016-05-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.

  17. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    Science.gov (United States)

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  18. Volunteer stream monitoring: Do the data quality and monitoring experience support increased community involvement in freshwater decision making?

    Directory of Open Access Journals (Sweden)

    Richard G. Storey

    2016-12-01

    Full Text Available Recent freshwater policy reforms in New Zealand promote increased community involvement in freshwater decision making and management. Involving community members in scientific monitoring increases both their knowledge and their ability to discuss this knowledge with professionals, potentially increasing their influence in decision-making processes. However, these interactions rarely occur because, in particular, of perceptions that volunteer-collected data are unreliable. We assessed the agreement between volunteer (community group and local government (regional council data at nine stream sites across New Zealand. Over 18 months, community groups and regional council staff monitored, in parallel, a common set of water quality variables, physical habitat, periphyton and benthic macroinvertebrates that are routinely used by regional councils for statutory state of environment reporting. Community groups achieved close agreement (correlations ≥ 0.89, bias < 1% with regional councils for temperature, electrical conductivity, visual water clarity, and Escherichia coli. For dissolved oxygen, nitrate, and pH, correlations were weaker (0.2, 0.53, and 0.4, respectively. Volunteer assessments of physical habitat were as consistent over time as those of councils. For visual assessments of thick periphyton growths (% streambed cover, volunteers achieved a correlation of 0.93 and bias of 0.1% relative to councils. And for a macroinvertebrate biotic index that indicates water and habitat quality, correlation was 0.88, bias was < 5%, and the average difference was 12% of the index score. Volunteers showed increased awareness of local freshwaters, understanding of stream ecosystems, and attentiveness to local and national freshwater issues. Most volunteers had shared their knowledge and interest with others in their community. Most groups had developed relationships with their regional council, and some volunteers became more interested in engaging in

  19. Integrated condition monitoring of a fleet of offshore wind turbines with focus on acceleration streaming processing

    International Nuclear Information System (INIS)

    Helsen, Jan; Gioia, Nicoletta; Peeters, Cédric; Jordaens, Pieter-Jan

    2017-01-01

    Particularly offshore there is a trend to cluster wind turbines in large wind farms, and in the near future to operate such a farm as an integrated power production plant. Predictability of individual turbine behavior across the entire fleet is key in such a strategy. Failure of turbine subcomponents should be detected well in advance to allow early planning of all necessary maintenance actions; Such that they can be performed during low wind and low electricity demand periods. In order to obtain the insights to predict component failure, it is necessary to have an integrated clean dataset spanning all turbines of the fleet for a sufficiently long period of time. This paper illustrates our big-data approach to do this. In addition, advanced failure detection algorithms are necessary to detect failures in this dataset. This paper discusses a multi-level monitoring approach that consists of a combination of machine learning and advanced physics based signal-processing techniques. The advantage of combining different data sources to detect system degradation is in the higher certainty due to multivariable criteria. In order to able to perform long-term acceleration data signal processing at high frequency a streaming processing approach is necessary. This allows the data to be analysed as the sensors generate it. This paper illustrates this streaming concept on 5kHz acceleration data. A continuous spectrogram is generated from the data-stream. Real-life offshore wind turbine data is used. Using this streaming approach for calculating bearing failure features on continuous acceleration data will support failure propagation detection. (paper)

  20. Calculating e-flow using UAV and ground monitoring

    Science.gov (United States)

    Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.

    2017-09-01

    Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements

  1. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    Science.gov (United States)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  2. Simulated responses of streams and ponds to groundwater withdrawals and wastewater return flows in southeastern Massachusetts

    Science.gov (United States)

    Carlson, Carl S.; Walter, Donald A.; Barbaro, Jeffrey R.

    2015-12-21

    Water use, such as withdrawals, wastewater return flows, and interbasin transfers, can alter streamflow regimes, water quality, and the integrity of aquatic habitat and affect the availability of water for human and ecosystem needs. To provide the information needed to determine alteration of streamflows and pond water levels in southeastern Massachusetts, existing groundwater models of the Plymouth-Carver region and western (Sagamore flow lens) and eastern (Monomoy flow lens) Cape Cod were used to delineate subbasins and simulate long-term average and average monthly streamflows and pond levels for a series of water-use conditions. Model simulations were used to determine the extent to which streamflows and pond levels were altered by comparing simulated streamflows and pond levels under predevelopment conditions with streamflows and pond levels under pumping only and pumping with wastewater return flow conditions. The pumping and wastewater return flow rates used in this study are the same as those used in previously published U.S. Geological Survey studies in southeastern Massachusetts and represent the period from 2000 to 2005. Streamflow alteration for the nontidal portions of streams in southeastern Massachusetts was evaluated within and at the downstream outlets of 78 groundwater subbasins delineated for this study. Evaluation of streamflow alteration at subbasin outlets is consistent with the approach used by the U.S. Geological Survey for the topographically derived subbasins in the rest of Massachusetts.

  3. Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels

    Science.gov (United States)

    Daniele Tonina; John M. Buffington

    2011-01-01

    Hyporheic flow results from the interaction between streamflow and channel morphology and is an important component of stream ecosystems because it enhances water and solute exchange between the river and its bed. Hyporheic flow in pool-riffle channels is particularly complex because of three-dimensional topography that spans a range of partially to fully submerged...

  4. Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin – Ethiopia

    Directory of Open Access Journals (Sweden)

    T. H. M. Rientjes

    2011-06-01

    Full Text Available In this study we evaluated changes in land cover and rainfall in the Upper Gilgel Abbay catchment in the Upper Blue Nile basin and how changes affected stream flow in terms of annual flow, high flows and low flows. Land cover change assessment was through classification analysis of remote sensing based land cover data while assessments on rainfall and stream flow data are by statistical analysis. Results of the supervised land cover classification analysis indicated that 50.9 % and 16.7 % of the catchment area was covered by forest in 1973 and 2001, respectively. This significant decrease in forest cover is mainly due to expansion of agricultural land.

    By use of a change detection procedure, three periods were identified for which changes in rainfall and stream flow were analyzed. Rainfall was analyzed at monthly base by use of the Mann-Kendall test statistic and results indicated a statistically significant, decreasing trend for most months of the year. However, for the wet season months of June, July and August rainfall has increased. In the period 1973–2005, the annual flow of the catchment decreased by 12.1 %. Low flow and high flow at daily base were analyzed by a low flow and a high flow index that is based on a 95 % and 5 % exceedance probability. Results of the low flow index indicated decreases of 18.1 % and 66.6 % for the periods 1982–2000 and 2001–2005 respectively. Results of high flows indicated an increase of 7.6 % and 46.6 % for the same periods. In this study it is concluded that over the period 1973–2005 stream flow has changed in the Gilgel Abbay catchment by changes in land cover and changes in rainfall.

  5. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, Taner [ORNL; March-Leuba, Jose A [ORNL; Powell, Danny H [ORNL; Nelson, Dennis [Sandia National Laboratories (SNL); Radev, Radoslav [Lawrence Livermore National Laboratory (LLNL)

    2007-12-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the {sup 235}U fissile mass flow of UF{sub 6} gas streams by using {sup 252}Cf neutron sources for fission activation of the UF{sub 6} gas and by measuring the fission products in the flow. The {sup 252}Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life ({approx} 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  6. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    International Nuclear Information System (INIS)

    Uckan, Taner; March-Leuba, Jose A.; Powell, Danny H.; Nelson, Dennis; Radev, Radoslav

    2007-01-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the 235 U fissile mass flow of UF 6 gas streams by using 252 Cf neutron sources for fission activation of the UF 6 gas and by measuring the fission products in the flow. The 252 Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life (∼ 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  7. Joule heating induced stream broadening in free-flow zone electrophoresis.

    Science.gov (United States)

    Dutta, Debashis

    2018-03-01

    The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali

    2007-12-01

    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  9. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry.

    Science.gov (United States)

    Headland, Sarah E; Jones, Hefin R; D'Sa, Adelina S V; Perretti, Mauro; Norling, Lucy V

    2014-06-10

    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStream(X) Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStream(X) could be used effectively to advance this scientific field.

  10. Effect of Free Stream Turbulence on the Flow-Induced Background Noise of In-Flow Microphones

    Science.gov (United States)

    Allen, Christopher S.; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    When making noise measurements of sound sources in flow using microphones immersed in an air stream or wind tunnel, the factor limiting the dynamic range of the measurement is, in many cases, the noise caused by the flow over the microphone. To lower this self-noise, and to protect the microphone diaphragm, an aerodynamic microphone forebody is usually mounted on the tip of the omnidirectional microphone. The microphone probe is then pointed into the wind stream. Even with a microphone forebody, however, the self-noise persists, prompting further research in the area of microphone forebody design for flow-induced self-noise reduction. The magnitude and frequency characteristics of in-flow microphone probe self-noise is dependent upon the exterior shape of the probe and on the level of turbulence in the onset flow, among other things. Several recent studies present new designs for microphone forebodies, some showing the forbodies' self-noise characteristics when used in a given facility. However, these self-noise characteristics may change when the probes are used in different facilities. The present paper will present results of an experimental investigation to determine an empirical relationship between flow turbulence and self-noise levels for several microphone forebody shapes as a function of frequency. As a result, the microphone probe self-noise for these probes will be known as a function of freestream turbulence, and knowing the freestream turbulence spectra for a given facility, the probe self-noise can be predicted. Flow-induced microphone self-noise is believed to be related to the freestream. turbulence by three separate mechanisms. The first mechanism is produced by large scale, as compared to the probe size, turbulence which appears to the probe as a variation in the angle of attack of the freestream. flow. This apparent angle of attack variation causes the pressure along the probe surface to fluctuate, and at the location of the sensor orifice this

  11. Methods for estimating flow-duration curve and low-flow frequency statistics for ungaged locations on small streams in Minnesota

    Science.gov (United States)

    Ziegeweid, Jeffrey R.; Lorenz, David L.; Sanocki, Chris A.; Czuba, Christiana R.

    2015-12-24

    Knowledge of the magnitude and frequency of low flows in streams, which are flows in a stream during prolonged dry weather, is fundamental for water-supply planning and design; waste-load allocation; reservoir storage design; and maintenance of water quality and quantity for irrigation, recreation, and wildlife conservation. This report presents the results of a statewide study for which regional regression equations were developed for estimating 13 flow-duration curve statistics and 10 low-flow frequency statistics at ungaged stream locations in Minnesota. The 13 flow-duration curve statistics estimated by regression equations include the 0.0001, 0.001, 0.02, 0.05, 0.1, 0.25, 0.50, 0.75, 0.9, 0.95, 0.99, 0.999, and 0.9999 exceedance-probability quantiles. The low-flow frequency statistics include annual and seasonal (spring, summer, fall, winter) 7-day mean low flows, seasonal 30-day mean low flows, and summer 122-day mean low flows for a recurrence interval of 10 years. Estimates of the 13 flow-duration curve statistics and the 10 low-flow frequency statistics are provided for 196 U.S. Geological Survey continuous-record streamgages using streamflow data collected through September 30, 2012.

  12. The effect of bedload transport rates on bedform and planform morphological development in a laboratory meandering stream under varying flow conditions

    Science.gov (United States)

    Sullivan, C.; Good, R. G. R.; Binns, A. D.

    2017-12-01

    Sediment transport processes in streams provides valuable insight into the temporal evolution of planform and bedform geometry. The majority of previous experimental research in the literature has focused on bedload transport and corresponding bedform development in rectangular, confined channels, which does not consider planform adjustment processes in streams. In contrast, research conducted with laboratory streams having movable banks can investigate planform development in addition to bedform development, which is more representative of natural streams. The goal of this research is to explore the relationship between bedload transport rates and the morphological adjustments in meandering streams. To accomplish this, a series of experimental runs were conducted in a 5.6 m by 1.9 m river basin flume at the University of Guelph to analyze the bedload impacts on bed formations and planform adjustments in response to varying flow conditions. In total, three experimental runs were conducted: two runs using steady state conditions and one run using unsteady flow conditions in the form of a symmetrical hydrograph implementing quasi steady state flow. The runs were performed in a series of time-steps in order to monitor the evolution of the stream morphology and the bedload transport rates. Structure from motion (SfM) was utilized to capture the channel morphology after each time-step, and Agisoft PhotoScan software was used to produce digital elevation models to analyze the morphological evolution of the channel with time. Bedload transport rates were quantified using a sediment catch at the end of the flume. Although total flow volumes were similar for each run, the morphological evolution and bedload transport rates in each run varied. The observed bedload transport rates from the flume are compared with existing bedload transport formulas to assess their accuracy with respect to sediment transport in unconfined meandering channels. The measured sediment transport

  13. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    Science.gov (United States)

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  14. Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream

    Science.gov (United States)

    Dunkerley, David; Brown, Kate

    1999-08-01

    The behaviour of a discrete sub-bank-full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank-full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank-full stage, and be higher in both sub-bank-full and overbank flows. Factors contributing to enhanced flow loss in the sub-bank-full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments.

  15. Fine particle retention within stream storage areas at base flow and in response to a storm event

    Science.gov (United States)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, Judson

    2017-01-01

    Fine particles (1–100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  16. Fine particle retention within stream storage areas at base flow and in response to a storm event

    Science.gov (United States)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, J. W.

    2017-07-01

    Fine particles (1-100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  17. Monitoring of Plutonium Contaminated Solid Waste Streams. A technical guide to design and analysis of monitoring systems

    International Nuclear Information System (INIS)

    Birkhoff, G.

    1985-06-01

    The basic information on the Pu content in Pu Contaminated Materials (PCM) is the measurement of radiation emitted by Pu isotopes either spontaneously or due to irradiation by external neutron or gamma-sources. Requirements on measurement accuracy and detection limits should be defined by the operator of a Pu-handling facility in accordance with monitoring objectives in the very beginning of the planning of a monitoring system. Monitoring objectives reflect nuclear safety and radiological protection regulations and the needs for Pu-accountancy of nuclear materials management and safeguards. On considering the possibilities and limitations of radiometric techniques a solution of the monitoring problem is based on appropriate segregation and packaging procedures and records upon matrix and isotopic composition of PCM-items to be measured. The general interrelations between waste item characteristics and measurement uncertainty and detection limit are outlined in the first chapter which is addressed to the system planner. Chapter 2 is devoted to the attention of instrument developers and analysts. It presents in a general approach the correlations between the observed radiation leakage rate, respectively detection signal, and the generating source, e.g. Pu-isotopic content of the examined PCM item. Some practical measurement methods are reviewed and their limitations are indicated. The possible radiometric techniques based on detection of gamma rays from alpha decay (and 241 Am), neutrons from spontaneous fission and (α,n)-reaction and from induced fission reactions by neutron irradiation of Pu isotopes are presented. The measurement uncertainty of a single PCM item measurement is estimated on the basis of the uncertainty of the spatial distributions of source (Pu) and matrix materials. For the estimation of the cumulative error over a large collection of PCM items from a defined PCM-stream a probabilistic approach is suggested

  18. Comparison of Firefly algorithm and Artificial Immune System algorithm for lot streaming in -machine flow shop scheduling

    Directory of Open Access Journals (Sweden)

    G. Vijay Chakaravarthy

    2012-11-01

    Full Text Available Lot streaming is a technique used to split the processing of lots into several sublots (transfer batches to allow the overlapping of operations in a multistage manufacturing systems thereby shortening the production time (makespan. The objective of this paper is to minimize the makespan and total flow time of -job, -machine lot streaming problem in a flow shop with equal and variable size sublots and also to determine the optimal sublot size. In recent times researchers are concentrating and applying intelligent heuristics to solve flow shop problems with lot streaming. In this research, Firefly Algorithm (FA and Artificial Immune System (AIS algorithms are used to solve the problem. The results obtained by the proposed algorithms are also compared with the performance of other worked out traditional heuristics. The computational results shows that the identified algorithms are more efficient, effective and better than the algorithms already tested for this problem.

  19. Effects of soil data resolution on SWAT model stream flow and water quality predictions.

    Science.gov (United States)

    Geza, Mengistu; McCray, John E

    2008-08-01

    The prediction accuracy of agricultural nonpoint source pollution models such as Soil and Water Assessment Tool (SWAT) depends on how well model input spatial parameters describe the characteristics of the watershed. The objective of this study was to assess the effects of different soil data resolutions on stream flow, sediment and nutrient predictions when used as input for SWAT. SWAT model predictions were compared for the two US Department of Agriculture soil databases with different resolution, namely the State Soil Geographic database (STATSGO) and the Soil Survey Geographic database (SSURGO). Same number of sub-basins was used in the watershed delineation. However, the number of HRUs generated when STATSGO and SSURGO soil data were used is 261 and 1301, respectively. SSURGO, with the highest spatial resolution, has 51 unique soil types in the watershed distributed in 1301 HRUs, while STATSGO has only three distributed in 261 HRUS. As a result of low resolution STATSGO assigns a single classification to areas that may have different soil types if SSURGO were used. SSURGO included Hydrologic Response Units (HRUs) with soil types that were generalized to one soil group in STATSGO. The difference in the number and size of HRUs also has an effect on sediment yield parameters (slope and slope length). Thus, as a result of the discrepancies in soil type and size of HRUs stream flow predicted was higher when SSURGO was used compared to STATSGO. SSURGO predicted less stream loading than STATSGO in terms of sediment and sediment-attached nutrients components, and vice versa for dissolved nutrients. When compared to mean daily measured flow, STATSGO performed better relative to SSURGO before calibration. SSURGO provided better results after calibration as evaluated by R(2) value (0.74 compared to 0.61 for STATSGO) and the Nash-Sutcliffe coefficient of Efficiency (NSE) values (0.70 and 0.61 for SSURGO and STATSGO, respectively) although both are in the same satisfactory

  20. NUMERICAL ANALYSIS OF INFLUENCE OF EXOGENOUS FIRE IN DOG HEADING ON PARAMETERS OF THE AIR STREAM FLOWING THROUGH THIS HEADING

    Directory of Open Access Journals (Sweden)

    Magdalena TUTAK

    2014-04-01

    Full Text Available Flow of ventilation air stream through the dog heading with a fire centre is the flow with complex character, during which as a result of emission of fire gases into the mining atmosphere, there occur to disturbances of its flow. In the paper there is presented a numerical analysis of an influence of exogenous fire in a dog heading, on the parameters of the ventilation air stream flowing through this heading. Modeling tests were carried out with a use of ANSYS software, basing on the Finite Volume Method. For the made assumptions, there were determined physical parameters of air stream flowing through the heading with a fire centre, and also changes in mass fraction of gases in this stream during its flow through the analyzed heading: oxygen, carbon monoxide and carbon dioxide. As a result of performed analysis over the fire centre, the local increase of velocity and temperature and violent decrease of static pressure were recorded. Model of heading presented in the paper gives possibilities for development, and then the analysis of more complicated problems in a range of ventilation of mining headings.

  1. Characterization and monitoring of 300 Area facility liquid waste streams: 1994 Annual report

    International Nuclear Information System (INIS)

    Manke, K.L.; Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Julya, J.L.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.; Vogel, H.R.

    1995-04-01

    This report summarizes the results of characterizing and monitoring the following sources during calendar year 1994: liquid waste streams from Buildings 306, 320, 324, 326, 331, and 3720 in the 300 Area of Hanford Site and managed by the Pacific Northwest Laboratory; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe). Data were collected from March to December before the sampling system installation was completed. Data from this initial part of the program are considered tentative. Samples collected were analyzed for chemicals, radioactivity, and general parameters. In general, the concentrations of chemical and radiological constituents and parameters in building wastewaters which were sampled and analyzed during CY 1994 were similar to historical data. Exceptions were the occasional observances of high concentrations of chloride, nitrate, and sodium that are believed to be associated with excursions that were occurring when the samples were collected. Occasional observances of high concentrations of a few solvents also appeared to be associated with infrequent building r eases. During calendar year 1994, nitrate, aluminum, copper, lead, zinc, bis(2-ethylhexyl) phthalate, and gross beta exceeded US Environmental Protection Agency maximum contaminant levels

  2. In-line analytical methods for fuel reprocessing streams : Part IV -Neutron monitoring for plutonium

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.; Iyer, R.H.; Ramaniah, M.V.; Srinivasan, N.

    1975-01-01

    A neutron monitoring assembly consisting of a stainless steel housing packed with beryllium oxide chips, a paraffin moderator, a ring of fifteen BF 3 counters and an all stainless steel continuous flow system for circulating plutonium solutions has been fabricated and tested for monitoring plutonium concentrations in flow solutions. The method is based on the detection and measurement of neutron flux produced when alpha particles from plutonium interact with beryllium by the nuclear reactoon 9 4 Be(α,n) 12 6 C. The unit was successfully tested for the estimation of plutonium concentrations upto 10 g/1 in solutions of plutonium and plutonium solutions mixed with uranium and fission products. The unit gave an accuracy of 10-15%. Details of the construction and working of the system are discussed. (author)

  3. Monitoring the sulfur content of coal streams by thermal-neutron-capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Martin, J.W.; Hall, A.W.

    1976-07-01

    A theory was developed for evaluating a complex, prompt gamma ray spectrum to serve as the basis for an instrument to monitor continuously the sulfur content of tonnage streams of coal. Equations for the energies and intensities of prompt gamma rays emitted from 13 most significant elements in coal are combined into a single equation that defines the basic electronic design of the meter. The sulfur content of up to 10 tons per hour of coal was determined in pilot plant tests with a prototype meter. The precision of 0.04 percent sulfur substantiates the validity of the theory. In subsequent industrial plant tests the precision was determined to be a comparable 0.05 percent sulfur

  4. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    Science.gov (United States)

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Self-potential monitoring of a thermal pulse advecting through a preferential flow path

    Science.gov (United States)

    Ikard, S. J.; Revil, A.

    2014-11-01

    There is a need to develop new non-intrusive geophysical methods to detect preferential flow paths in heterogeneous porous media. A laboratory experiment is performed to non-invasively localize a preferential flow pathway in a sandbox using a heat pulse monitored by time-lapse self-potential measurements. Our goal is to investigate the amplitude of the intrinsic thermoelectric self-potential anomalies and the ability of this method to track preferential flow paths. A negative self-potential anomaly (-10 to -15 mV with respect to the background signals) is observed at the surface of the tank after hot water is injected in the upstream reservoir during steady state flow between the upstream and downstream reservoirs of the sandbox. Repeating the same experiment with the same volume of water injected upstream, but at the same temperature as the background pore water, produces a negligible self-potential anomaly. The negative self-potential anomaly is possibly associated with an intrinsic thermoelectric effect, with the temperature dependence of the streaming potential coupling coefficient, or with an apparent thermoelectric effect associated with the temperature dependence of the electrodes themselves. We model the experiment in 3D using a finite element code. Our results show that time-lapse self-potential signals can be used to track the position of traveling heat flow pulses in saturated porous materials, and therefore to find preferential flow pathways, especially in a very permeable environment and in real time. The numerical model and the data allows quantifying the intrinsic thermoelectric coupling coefficient, which is on the order of -0.3 to -1.8 mV per degree Celsius. The temperature dependence of the streaming potential during the experiment is negligible with respect to the intrinsic thermoelectric coupling. However, the temperature dependence of the potential of the electrodes needs to be accounted for and is far from being negligible if the electrodes

  6. Removal of Contaminants from Waste Streams at Gas Evolving Flow-Through Porous Electrodes

    International Nuclear Information System (INIS)

    Mahmoud Saleh, M.

    1999-01-01

    Electrochemical techniques have been used for the removal of inorganic and organic toxic materials from industrial waste streams. One of the most important branch of these electrochemical techniques is the flow-through porous electrode. Such systems allow for the continuous operation and hence continuous removal of the contaminants from waste streams at high rates and high efficiency. However, when there is an evolution of gas bubbles with the removal process, the treatment process needs a much different treatment of both the design and the mathematical treatment of the such these systems. The evolving gas bubbles within the electrode decrease the pore electrolyte conductivity of the porous electrodes, decrease the efficiency and make the current more non-uniform. This cause the under utilization of the reaction area and finally make the electrode inoperable. In this work the harmful effects of the gas bubbles on the performance of the porous electrode will be modeled. The model accounts for the effects of kinetic, mass transfer and gas bubbles resistance on the overall performance of the electrode. This will help in optimizing the operating conditions and the cell design

  7. Collaborative Approaches to Flow Restoration in Intermittent Salmon-Bearing Streams: Salmon Creek, CA, USA

    Directory of Open Access Journals (Sweden)

    Cleo Woelfle-Erskine

    2017-03-01

    Full Text Available In Mediterranean-climate regions of California and southern Oregon, juvenile salmon depend on groundwater aquifers to sustain their tributary habitats through the dry summers. Along California’s North Coast streams, private property regimes on land have created commons tragedies in groundwater and salmon fisheries, both classic examples of commons that are often governed collectively and sustainably by their users. Understanding the linkages between salmon and groundwater is one major focus of salmon recovery and climate change adaptation planning in central California and increasingly throughout the Pacific Northwest. In this paper, I use extended field interviews and participant-observation in field ecology campaigns and regulatory forums to explore how, in one water-scarce, salmon-bearing watershed on California’s central coast, collaborators are synthesizing agency and landowner data on groundwater and salmon management. I focus on three projects undertaken by citizen scientists in collaboration with me and Gold Ridge Resource Conservation District staff: salmonid censuses, mapping of wet and dry stream reaches and well monitoring. I find that collaborative research initiated by local residents and agency personnel has, in some cases, created a new sense of ecological possibility in the region. I also consider some limitations of this collaborations, namely the lack of engagement with indigenous Pomo and Miwok tribal members, with the Confederated Tribes of Graton Rancheria and with farmworkers and other marginalized residents, and suggest strategies for deepening environmental justice commitments in future collaborative work.

  8. A numerical study of a turbulent axisymmetric jet emerging in a co-flowing stream

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Houda, E-mail: mahhouda2003@yahoo.f [Unite de thermique et thermodynamique des procedes industriels, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5020 Monastir (Tunisia); Kriaa, Wassim; Mhiri, Hatem [Unite de thermique et thermodynamique des procedes industriels, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5020 Monastir (Tunisia); Palec, Georges Le; Bournot, Philippe [IUSTI, UMR CNRS 6595, 5 Rue Enrico Fermi, Technopole de Chateau-Gombert, 13013 Marseille (France)

    2010-11-15

    In this work, we propose a numerical study of an axisymmetric turbulent jet discharging into co-flowing stream with different velocities ratios ranging between 0 and {infinity}. The standard k-{epsilon} model and the RSM model were applied in this study. The numerical resolution of the governing equations was carried out using two computed codes: the first is a personal code and the second is a commercial CFD code FLUENT 6.2. These two codes are based on a finite volume method. The present predictions are compared with the experimental data. The results show that the two turbulence models are valid to predict the average and turbulent flow sizes. Also, the effect of the velocities ratios on the flow structure was examined. For R{sub u} > 1, it is noted the appearance of the fall velocity zone due to the presence of a trough low pressure. This fall velocity becomes increasingly intense according to R{sub u} and changes into a recirculation zone for R{sub u} {>=} 4.5. This zone is larger and approaches more the nozzle injection when R{sub u} increases.

  9. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    P. Gao

    2013-03-01

    Full Text Available Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P P P P P < 0.05, respectively. The impact of precipitation or human activity on the reduction amount after the transition years was estimated by double mass curves of precipitation vs. stream flow (sediment. For reductions in stream flow and sediment discharge, the contribution rate of human activity was found to be 82.80 and 95.56%, respectively, and was significantly stronger than the contribution rate of precipitation. This evidence clearly suggests that, in the absence of significant decreases in precipitation

  10. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    Science.gov (United States)

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R

    2016-07-01

    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.

  11. The multi-stream flows and the dynamics of the cosmic web

    International Nuclear Information System (INIS)

    Shandarin, Sergei F.

    2011-01-01

    A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computationally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. Ideally in the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in the Zel'dovich approximation and in the N-body simulation of the ΛCDM model. The effect of numerical noise is discussed. The web identified by the new method has been compared with the web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggests that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web

  12. The multi-stream flows and the dynamics of the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Shandarin, Sergei F., E-mail: sergei@ku.edu [Department of Physics and Astronomy, University of Kansas, 10082 Malott Hall, 1251 Wescoe Hall Dr, Lawrence, Kansas, 66045 (United States)

    2011-05-01

    A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computationally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. Ideally in the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in the Zel'dovich approximation and in the N-body simulation of the ΛCDM model. The effect of numerical noise is discussed. The web identified by the new method has been compared with the web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggests that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web.

  13. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  14. Continuous Distributed Top-k Monitoring over High-Speed Rail Data Stream in Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Hanning Wang

    2013-01-01

    Full Text Available In the environment of cloud computing, real-time mass data about high-speed rail which is based on the intense monitoring of large scale perceived equipment provides strong support for the safety and maintenance of high-speed rail. In this paper, we focus on the Top-k algorithm of continuous distribution based on Multisource distributed data stream for high-speed rail monitoring. Specifically, we formalized Top-k monitoring model of high-speed rail and proposed DTMR that is the Top-k monitoring algorithm with random, continuous, or strictly monotone aggregation functions. The DTMR was proved to be valid by lots of experiments.

  15. Evaluation of Measurements Collected with Multi-Parameter Continuous Water-Quality Monitors in Selected Illinois Streams, 2001-03

    Science.gov (United States)

    Groschen, George E.; King, Robin B.

    2005-01-01

    Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago

  16. Streaming flows produced by oscillating interface of magnetic fluid adsorbed on a permanent magnet in alternating magnetic field

    Science.gov (United States)

    Sudo, S.; Ito, M.; Ishimoto, Y.; Nix, S.

    2017-04-01

    This paper describes microstreaming flows generated by oscillating interface of magnetic fluid adsorbed on a circular cylindrical permanent magnet in alternating magnetic field. The interface of magnetic fluid adsorbed on the NdFeB magnet responds to the external alternating magnetic flied as harmonic oscillation. The directions of alternating magnetic field are parallel and antiparallel to the magnetic field of permanent magnet. The oscillation of magnetic fluid interface generates streaming flow around the magnet-magnetic fluid element in water. Microstreaming flows are observed with a high-speed video camera analysis system. The flow pattern generated by magnetic fluid motion depends on the Keulegan-Carpenter number and the Reynolds number.

  17. Monitoring taconite process streams with thermal neutron capture-gamma ray analysis. Report of investigations/1980

    International Nuclear Information System (INIS)

    Woodbury, F.B.W.

    1980-12-01

    The Bureau of Mines is evaluating alternative technologies to treat oxidized taconites. Since process control is an essential element in the application of these process technologies, research was performed on a prototype monitoring system utilizing a californium-252 (252-Cf) neutron source and a thermal neutron capture-gamma ray spectra analysis method to measure the amount of iron and percent solids in process slurries. The prototype system was used to monitor the concentrate and tailing streams in a 900-lb/hr flotation pilot plant during continuous around-the-clock tests. The iron content of the process slurries was determined by measuring the total peak areas under the capture spectrum peaks at 7.626-7.632 MeV, the associated escape peaks at 7.136-7.122 and 6.626-6.612 MeV, and the iron doublets at 4.900 and 4.998 MeV. A potential method for determining the percent solids in process slurries using the 2.22 MeV hydrogen capture peak is discussed

  18. Influence of the old mining loads on the contamination of streams, flows in the Water-work Reservoir “Ružín I” in 2004 year by the selected elements

    Directory of Open Access Journals (Sweden)

    Tomislav Špaldon

    2005-11-01

    Full Text Available This article presents results of the research concentrated on the content of selected elements, mostly heavy metals, in samples of stream waters and stream deposits from selected profiles of streams in the drainage basins of the Hnilec and Hornád river, which flow in the water-work Reservoir “Ružín I”. The sampling was carried out from the winter to the summer months, 2004. The major part of the drainage basins of these two rivers is located in the territory of the central Spiš, which is well-known from the historic times until these days by its intensive mining, mineral processing and metallurgical activities. The wastes generated by such activities are sources of metals, which penetrate into the surface waters and consequently into the stream deposits. From the point of view of the transfer and the transformation of these metal elements, their monitoring deserves a continuous attention

  19. Variability, trends, and teleconnections of stream flows with large-scale climate signals in the Omo-Ghibe River Basin, Ethiopia.

    Science.gov (United States)

    Degefu, Mekonnen Adnew; Bewket, Woldeamlak

    2017-04-01

    This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.

  20. Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa

    Directory of Open Access Journals (Sweden)

    Komlavi Akpoti

    2016-07-01

    Full Text Available Potential implications of rainfall variability along with Land Use and Land Cover Change (LULC on stream flow have been assessed in the Black Volta basin using the SWAT model. The spatio-temporal variability of rainfall over the Black Volta was assessed using the Mann-Kendall monotonic trend test and the Sen’s slope for the period 1976–2011. The statistics of the trend test showed that 61.4% of the rain gauges presented an increased precipitation trend whereas the rest of the stations showed a decreased trend. However, the test performed at the 95% confidence interval level showed that the detected trends in the rainfall data were not statistically significant. Land use trends between the year 2000 and 2013 show that within thirteen years, land use classes like bare land, urban areas, water bodies, agricultural lands, deciduous forests and evergreen forests have increased respectively by 67.06%, 33.22%, 7.62%, 29.66%, 60.18%, and 38.38%. Only grass land has decreased by 44.54% within this period. Changes in seasonal stream flow due to LULC were assessed by defining dry and wet seasons. The results showed that from year 2000 to year 2013, the dry season discharge has increased by 6% whereas the discharge of wet season has increased by 1%. The changes in stream flows components such us surface run-off (SURF_Q, lateral flow (LAT_Q and ground water contribution to stream flow (GW_Q and also on evapotranspiration (ET changes due to LULC was evaluated. The results showed that between the year 2000 and 2013, SURF_Q and LAT_Q have respectively increased by 27% and 19% while GW_Q has decreased by 6% while ET has increased by 4.59%. The resultant effects are that the water yield to stream flow has increased by 4%.

  1. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    International Nuclear Information System (INIS)

    Wissink, Jan G.; Rodi, Wolfgang

    2009-01-01

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  2. A feasability study of color flow doppler vectorization for automated blood flow monitoring.

    Science.gov (United States)

    Schorer, R; Badoual, A; Bastide, B; Vandebrouck, A; Licker, M; Sage, D

    2017-12-01

    An ongoing issue in vascular medicine is the measure of the blood flow. Catheterization remains the gold standard measurement method, although non-invasive techniques are an area of intense research. We hereby present a computational method for real-time measurement of the blood flow from color flow Doppler data, with a focus on simplicity and monitoring instead of diagnostics. We then analyze the performance of a proof-of-principle software implementation. We imagined a geometrical model geared towards blood flow computation from a color flow Doppler signal, and we developed a software implementation requiring only a standard diagnostic ultrasound device. Detection performance was evaluated by computing flow and its determinants (flow speed, vessel area, and ultrasound beam angle of incidence) on purposely designed synthetic and phantom-based arterial flow simulations. Flow was appropriately detected in all cases. Errors on synthetic images ranged from nonexistent to substantial depending on experimental conditions. Mean errors on measurements from our phantom flow simulation ranged from 1.2 to 40.2% for angle estimation, and from 3.2 to 25.3% for real-time flow estimation. This study is a proof of concept showing that accurate measurement can be done from automated color flow Doppler signal extraction, providing the industry the opportunity for further optimization using raw ultrasound data.

  3. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina

    Science.gov (United States)

    Watershed land use and topographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the relative influences of land use and watershed geomorphic characteristics on low flow variability in the sour...

  4. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Science.gov (United States)

    2010-04-01

    ... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion...

  5. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States

    Science.gov (United States)

    Katie Price; C. Jackson; Albert Parker; Trond Reitan; John Dowd; Mike Cyterski

    2011-01-01

    Land use and physiographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the influence of land use and watershed geomorphic characteristics on low-flow variability in the southern Blue Ridge Mountains of North Carolina and Georgia. Ten minute interval discharge data for 35 streams (...

  6. Persistent effects of wildfire and debris flows on the invertebrate prey base of rainbow trout in Idaho streams

    Science.gov (United States)

    Rosenberger, A.E.; Dunham, J.B.; Buffington, J.M.; Wipfli, M.S.

    2011-01-01

    Wildfire and debris flows are important physical and ecological drivers in headwater streams of western North America. Past research has primarily examined short-term effects of these disturbances; less is known about longer-term impacts. We investigated wildfire effects on the invertebrate prey base for drift-feeding rainbow trout (Oncorhynchus mykiss, Walbaum) in Idaho headwater streams a decade after wildfire. Three stream types with different disturbance histories were examined: 1) unburned, 2) burned, and 3) burned followed by debris flows that reset channel morphology and riparian vegetation. The quantity of macroinvertebrate drift (biomass density) was more variable within than among disturbance categories. Average body weight and taxonomic richness of drift were significantly related to water temperature and influenced by disturbance history. During the autumn sampling period, the amount of terrestrial insects in rainbow trout diets varied with disturbance history and the amount of overhead canopy along the stream banks. Results indicate that there are detectable changes to macroinvertebrate drift and trout diet a decade after wildfire, and that these responses are better correlated with specific characteristics of the stream (water temperature, canopy cover) than with broad disturbance classes.

  7. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming

    International Nuclear Information System (INIS)

    Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji

    2011-01-01

    Highlights: ► Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. ► Fluid streaming is a potent factor for peritoneal fibrosis in PD. ► We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. ► A history of fluid streaming exposure promoted mesothelial proliferative activity. ► We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial–mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed. The present findings show that fluid flow stress exerts a prolonged bioactive effect on mesothelial cells after termination

  8. Dose monitoring in large-scale flowing aqueous media

    International Nuclear Information System (INIS)

    Kuruca, C.N.

    1995-01-01

    The Miami Electron Beam Research Facility (EBRF) has been in operation for six years. The EBRF houses a 1.5 MV, 75 KW DC scanned electron beam. Experiments have been conducted to evaluate the effectiveness of high-energy electron irradiation in the removal of toxic organic chemicals from contaminated water and the disinfection of various wastewater streams. The large-scale plant operates at approximately 450 L/min (120 gal/min). The radiation dose absorbed by the flowing aqueous streams is estimated by measuring the difference in water temperature before and after it passes in front of the beam. Temperature measurements are made using resistance temperature devices (RTDs) and recorded by computer along with other operating parameters. Estimated dose is obtained from the measured temperature differences using the specific heat of water. This presentation will discuss experience with this measurement system, its application to different water presentation devices, sources of error, and the advantages and disadvantages of its use in large-scale process applications

  9. Landscape Characteristics and Variations in Longitudinal Stream Flow Contribution in two Headwater Semi-Arid Mountain Watersheds

    Science.gov (United States)

    Shakespeare, B.; Gooseff, M. N.

    2005-12-01

    Understanding what role particular catchment attributes (slope, aspect, landcover, and contributing area) play in the contribution of stream flow is important for land management decisions, especially in the semi-arid western areas of the United States. Our study site is paired small catchments (approximately 9 and 11 km2) in the headwaters of the Weber drainage basin in Northern Utah. These catchments are surrounded by Wasatch formation with loamy textured soils. One catchment is predominantly underlain by quartzite while the other catchment is mostly underlain by limestone. We measured lateral flow gains every 200 to 400 meters using salt dilution gauging techniques throughout the ~5 km long streams. These measurements were taken synoptically 3 times during the seasonal discharge recession (summer 2005). The flows ranged spatially from 4 L s-1 to 55 L s-1 and varied temporally by as much as 50% when comparing the same reaches. Using GIS software, landscape analysis of slope, aspect, contributing area, topographic convergence, riparian and hillslope area, and landcover was performed for each of the delineated stream reach contributing areas. The results were tested for correlations between lateral flow gains measured in the field and different landscape characteristics. Each of the synoptic events was compared with each other to explore effects of seasonal recession on the relationships between flow gain and landscape characteristics.

  10. Free stream turbulence and density ratio effects on the interaction region of a jet in a cross flow

    Science.gov (United States)

    Wark, C. E.; Foss, J. F.

    1984-01-01

    Jets of low temperature air are introduced into the aft sections of gas turbine combustors for the purpose of cooling the high temperature gases and quenching the combustion reactions. Research studies, motivated by this complex flow field, have been executed by introducing a heated jet into the cross stream of a wind tunnel. The investigation by Kamotani and Greber stands as a prime example of such investigations and it serves as the principal reference for the present study. The low disturbance level of the cross stream, in their study and in similar research investigations, is compatible with an interest in identifying the basic features of this flow field. The influence of the prototypes' strongly disturbed cross flow is not, however, made apparent in these prior investigations.

  11. Geomorphic, flood, and groundwater-flow characteristics of Bayfield Peninsula streams, Wisconsin, and implications for brook-trout habitat

    Science.gov (United States)

    Fitzpatrick, Faith A.; Peppler, Marie C.; Saad, David A.; Pratt, Dennis M.; Lenz, Bernard N.

    2015-01-01

    In 2002–03, the U.S. Geological Survey conducted a study of the geomorphic, flood, and groundwater-flow characteristics of five Bayfield Peninsula streams, Wisconsin (Cranberry River, Bark River, Raspberry River, Sioux River, and Whittlesey Creek) to determine the physical limitations for brook-trout habitat. The goals of the study were threefold: (1) to describe geomorphic characteristics and processes, (2) to determine how land-cover characteristics affect flood peaks, and (3) to determine how regional groundwater flow patterns affect base flow.

  12. Monitoring of multiphase flows for superconducting accelerators and others applications

    Science.gov (United States)

    Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

    2017-07-01

    This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

  13. Monitoring Immune Responses in Organ Recipients by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Al-Mukhalafi Zuha

    2001-01-01

    Full Text Available Allograft rejection remains a major barrier to successful organ transplan-tation. Cellular and humoral immune responses play a critical role in mediating graft rejection. During the last few years, monoclonal antibodies have been used as a new specific therapeutic approach in the prevention of allograft rejection. Recently, the technology of flow cytometry has become a useful tool for monitoring immunological responses in transplant recipients. The application of this valuable tool in clinical transplantation at the present time is aimed at, i determining the extent of immuno-suppressive therapy through T-cell receptor analysis of cellular components, ii monitoring levels of alloreactive antibodies to identify high-risk recipients (sensitized patients in the pre-operative period and iii to predict rejection by monitoring their development post-operatively. In future, further development of this technology may demonstrate greater benefit to the field of organ transplantation.

  14. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  15. Predicting the natural flow regime: Models for assessing hydrological alteration in streams

    Science.gov (United States)

    Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norris, R.H.

    2009-01-01

    Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected streamflow characteristics could be predicted at regional and national scales using geospatial data. Long-term, gaged river basins distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflow were calculated using a 20-50 year period of record for each site. We used random forests (RF), a robust statistical modelling approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We compared the performance (i.e. bias and precision) of national- and regional-scale predictive models to that of models based on landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates ranged from 15 to 40%, but were 25% for most metrics. We selected three gaged, non-reference sites to illustrate how predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate predisturbance conditions and are sensitive to changes in streamflow variability associated with long-term land-use change. We also

  16. Monitoring of Shadow Cash Flows Using Computer Modelling

    Directory of Open Access Journals (Sweden)

    Evgeniya Vladimirovna Baturina

    2018-03-01

    Full Text Available The computer simulation of economic systems is a promising tool in the development of the theory of the country’s economic security. We have examined the Russian banking legislation and synthesized judicial economic expertise. This has allowed to develop an algorithm for the investigation of the marker pattern of shadow cash flows. The authors’ algorithm of marker monitoring of cash flow consists of the following sequences. Firstly, we set the time of the first receipt of money and the first withdrawals. Secondly, we compare cash balance of an organization at the beginning of the period with the first withdrawals. Thirdly, under the given condition, the minimum value of interested money flow in these withdrawals is calculated. This value is characterized by the marker parameters and forms a table containing data on the cash flow, recipients and payers, spheres of their activity. And last, on the basis of this table, we build a graph of relationships between the subjects of the shadow economy. The graph’s vertices represent these subjects. The visual representation of the graph is a marker pattern of shadow cash flow. The practical importance of this algorithm is due to its applicability in the investigation of economic crimes both at the stage of intelligence operations, and when obtaining proofs of the brought criminal cases in the form of the conclusions of expertseconomists. In addition, marker patterns of shadow cash flows can describe the state of the shadow economy of a region as a whole including its dynamics. This expands its parameterization. The created database of the shadow flows of the economy can be also useful for the scientific community. On the basis of the received results, we have developed management decisions to create and administer the information resource of the Bank of Russia “Shadow economy of a region”. This information resource ensures tracking the marker trace of cash flow in the bank environment by the

  17. Biological Monitoring Using Macroinvertebrates as Bioindicators of Water Quality of Maroaga Stream in the Maroaga Cave System, Presidente Figueiredo, Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Christiane Brito Uherek

    2014-01-01

    Full Text Available Aquatic environments are being modified by anthropogenic activities regarding their biological, physical, and chemical conditions; even pristine aquatic ecosystems can be threatened. This study focused on the biological monitoring of Maroaga Stream—a first order stream located in an Environmental Protection Area in the Amazon using the Biological Monitoring Working Party (BMWP Score System. The BMWP Score System revealed that the Maroaga Stream was a Class I stream (score of 138 points, indicating clean or not significantly altered water quality. The results suggest the adequate environmental conditions and ecological responses of the Maroaga Stream.

  18. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

    2013-03-01

    The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated

  19. Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, S. [Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111 (Iran, Islamic Republic of); Dehghan, M. [Department of Mechanical Engineering, Semnan University, P.O. Box: 35196-45399, Semnan (Iran, Islamic Republic of); Ellahi, R., E-mail: rellahi@engr.ucr.edu [Department of Mathematics and Statistics, FBAS, IIUI, 44000 Islamabad (Pakistan); Department of Mechanical Engineering, Bourns Hall, University of California, Riverside, CA 92521 (United States); Riaz, M. [Department of QEC, National Defense University, E-9 Sector, 44000 Islamabad (Pakistan); Jamal-Abad, M.T. [Department of Mechanical Engineering, Semnan University, P.O. Box: 35196-45399, Semnan (Iran, Islamic Republic of)

    2015-03-15

    A mathematical model for two-dimensional fluid flow under the influence of stream wise transverse magnetic fields in laminar regime is simulated in this study. Heat transfer past a square diamond shaped porous obstacle is also taken into account. The attention is focused to investigate the effects of intensity and direction of magnetic field, Darcy and Reynolds numbers on the mechanism of convective heat transfer and flow structures. The Darcy–Brinkman–Forchheimer model along with the Maxwell equations is used. The nonlinear coupled equations using a finite volume approach (FVA) are solved numerically. The calculations are performed for different governing parameters such as Reynolds number, Nusselt number, Stuart number and Prandtl Number. The physical interpretation of velocity and isothermal contours is assigned through graphs. It is shown that the effects of a transverse magnetic field on flow behavior and heat transfer mechanism are more than that of the stream wise magnetic field. The configuration of streamlines and vorticity contours phenomena are also presented for porous diamond obstacle. Comparison of the numerical solutions with existing literature is also made. - Highlights: • This paper analyses two-dimensional fluid flow under the influence of stream wise transverse magnetic field. • Heat transfer past a square diamond shaped porous obstacle is taken into account. • The Darcy–Brinkman–Forchheimer model is used. • Finite volume approach is used to find numerical solutions. • The configuration of streamlines and vorticity contours phenomena are presented through graphs.

  20. Rapid response sensor to monitor the temperature and flow of liquid metals

    International Nuclear Information System (INIS)

    McCann, J.D.

    1980-01-01

    Two forms of a sensor capable of simultaneously monitoring the temperature and flow of liquid metal coolants within a reactor are described. They operate by measuring the coupling impedances between the sensor and the surrounding electrically conductive coolant. Since the system utilises electrical rather than thermal properties, the response to perturbations is rapid, typically displaying the changed conditions within a few milliseconds. The first form of the sensor was designed to operate whilst protected by a thick walled service tube positioned in the reactor coolant. Providing bends in the tube had a radius greater than 70 cm, the sensor could be removed for inspection and maintenance if necessary. The second sensor was fitted inside a streamlined NaK proof capsule. This was inserted directly into the coolant outlet stream of a fuel pin assembly in the Dounreay Fast Reactor. In this form the sensor successfully monitored flow, entrained gas and temperature excursions during the final operating cycle of D.F.R. (author)

  1. Stream temperature monitoring and modeling: Recent advances and new tools for managers

    Science.gov (United States)

    Daniel J. Isaak

    2011-01-01

    Stream thermal regimes are important within regulatory contexts, strongly affect the functioning of aquatic ecosystems, and are a primary determinant of habitat suitability for many sensitive species. The diverse landscapes and topographies inherent to National Forests and Grasslands create mosaics of stream thermal conditions that are intermingled with strong...

  2. Notes on the Vegetation of the Fast-flowing Streams in Peninsular Thailand, the Tropical Mainland of South East Asia

    Directory of Open Access Journals (Sweden)

    Milica Stankovic

    2013-12-01

    Full Text Available The species composition and structure of the plant communities along and in the fast-flowing streams on different bedrock types of the tropical mainland South-East Asia were investigated. The study was carried out in Peninsular Thailand, on the Nakhon Si Thammarat mountain range. A total number of 14 plots were placed within the five selected streams where vascular plants species had been collected, starting from November 2010 until July 2012. The estimation of the species was calculated by computer program EstimateS, and in order to distinguish plant communities, a cluster analysis was performed. A total number of 109 species of vascular plants has been recorded, with 59 species in the granite and 60 in the calcareous bedrock streams. There were four types of plant communities that had were categorized; of which three types occurred in the granitic bedrock streams and the other could be seen exclusively in the calcareous bedrock. It is convinced that the types of the bedrock as well as the topographic features of the streams might have major impact on the characterization of the plant communities.

  3. Monitoring individual traffic flows within the ATLAS TDAQ network

    CERN Document Server

    Sjoen, R; Ciobotaru, M; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A

    2010-01-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities a...

  4. Monitoring individual traffic flows within the ATLAS TDAQ network

    International Nuclear Information System (INIS)

    Sjoen, R; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A; Stancu, S; Ciobotaru, M

    2010-01-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.

  5. Sediment Mobilization and Storage Dynamics of a Debris Flow Impacted Stream Channel using Multi-Temporal Structure from Motion Photogrammetry

    Science.gov (United States)

    Bailey, T. L.; Sutherland-Montoya, D.

    2015-12-01

    High resolution topographic analysis methods have become important tools in geomorphology. Structure from Motion photogrammetry offers a compelling vehicle for geomorphic change detection in fluvial environments. This process can produce arbitrarily high resolution, geographically registered spectral and topographic coverages from a collection of overlapping digital imagery from consumer cameras. Cuneo Creek has had three historically observed episodes of rapid aggradation (1955, 1964, and 1997). The debris flow deposits continue to be major sources of sediment sixty years after the initial slope failure. Previous studies have monitored the sediment storage volume and particle size since 1976 (in 1976, 1982, 1983, 1985, 1986, 1987, 1998, 2003). We reoccupied 3 previously surveyed stream cross sections on Sept 30, 2014 and March 30, 2015, and produced photogrammetric point clouds using a pole mounted camera with a remote view finder to take nadir view images from 4.3 meters above the channel bed. Ground control points were registered using survey grade GPS and typical cross sections used over 100 images to build the structure model. This process simultaneously collects channel geometry and we used it to also generate surface texture metrics, and produced DEMs with point cloud densities above 5000 points / m2. In the period between the surveys, a five year recurrence interval discharge of 20 m3/s scoured the channel. Surface particle size distribution has been determined for each observation period using image segmentation algorithms based on spectral distance and compactness. Topographic differencing between the point clouds shows substantial channel bed mobilization and reorganization. The net decline in sediment storage is in excess of 4 x 10^5 cubic meters since the 1964 aggradation peak, with associated coarsening of surface particle sizes. These new methods provide a promising rapid assessment tool for measurement of channel responses to sediment inputs.

  6. Base flow-driven shifts in tropical stream temperature regimes across a mean annual rainfall gradient

    Science.gov (United States)

    Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley

    2017-01-01

    Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...

  7. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  8. Numerical study of unsteady MHD oblique stagnation point flow and heat transfer due to an oscillating stream

    Science.gov (United States)

    Javed, T.; Ghaffari, A.; Ahmad, H.

    2016-05-01

    The unsteady stagnation point flow impinging obliquely on a flat plate in presence of a uniform applied magnetic field due to an oscillating stream has been studied. The governing partial differential equations are transformed into dimensionless form and the stream function is expressed in terms of Hiemenz and tangential components. The dimensionless partial differential equations are solved numerically by using well-known implicit finite difference scheme named as Keller-box method. The obtained results are compared with those available in the literature. It is observed that the results are in excellent agreement with the previous studies. The effects of pertinent parameters involved in the problem namely magnetic parameter, Prandtl number and impinging angle on flow and heat transfer characteristics are illustrated through graphs. It is observed that the influence of magnetic field strength increases the fluid velocity and by the increase of obliqueness parameter, the skin friction increases.

  9. Application of Genetic Programing to Develop a Modular Model for the Simulation of Stream Flow Time Series

    Science.gov (United States)

    Meshgi, A.; Babovic, V.; Chui, T. F. M.; Schmitter, P.

    2014-12-01

    Developing reliable methods to estimate stream flow has been a subject of interest due to its importance in planning, design and management of water resources within a basin. Machine learning tools such as Artificial Neural Network (ANN) and Genetic Programming (GP) have been widely applied for rainfall-runoff modeling as they require less computational time as compared to physically-based models. As GP is able to generate a function with understandable structure, it may offer advantages over other data driven techniques and therefore has been used in different studies to generate rainfall-runoff functions. However, to date, proposed formulations only contain rainfall and/or streamflow data and consequently are local and cannot be generalized and adopted in other catchments which have different physical characteristics. This study investigated the capability of GP in developing a physically interpretable model with understandable structure to simulate stream flow based on hydrological parameters (e.g. precipitation) and catchment conditions (e.g., initial groundwater table elevation and area of the catchment) by following a modular approach. The modular model resulted in two sub-models where the baseflow was first predicted and the direct runoff was then estimated for a semi-urban catchment in Singapore. The simulated results matched very well with observed data in both the training and the testing of data sets, giving NSEs of 0.97 and 0.96 respectively demonstrated the successful estimation of stream flow using the modular model derived in this study. The results of this study indicate that GP is an effective tool in developing a physically interpretable model with understandable structure to simulate stream flow that can be transferred to other catchments.

  10. Monitoring the effects of climate and agriculture intensity on nutrient fluxes in lowland streams: a comparison between temperate Denmark and subtropical Uruguay

    Science.gov (United States)

    Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco; González-Bergonzoni, Ivan; Graeber, Daniel; Vidal, Nicolas; Mazzeo, Nestor; Ovesen, Niels; Jeppesen, Erik; Thodsen, Hans; Kronvang, Brian

    2014-05-01

    Climate is changing towards more extreme conditions all over the world. At the same time, land use is becoming more intensive worldwide and particularly in many developing countries, whereas several developed countries are trying to reduce the impacts of intensive agricultural production and lower the excessive nutrient loading and eutrophication symptoms in water bodies. In 2009, we initiated a comparative research project between the subtropical region (Uruguay) and the temperate region (Denmark) to compare the hydrology and nutrient fluxes in paired micro-catchments with extensive production or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity on stream hydrology and nutrient concentrations and fluxes under different climate conditions. We have conducted high frequency measurements in the four lowland streams with underwater probes (turbidity, pH, conductivity and oxygen measured every 15 minutes), fortnight grab sampling of water and automatic sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes and instantaneous flow measurements have been conducted at regular intervals, to facilitate the calculation of instantaneous discharge from continuous records of water level (stage-discharge relationships). We will show results of ca. 2 years from this comparative study between Uruguay and Denmark, and the importance of differences in climate and land use will be discussed.

  11. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  12. Method and apparatus for monitoring the flow of solids

    International Nuclear Information System (INIS)

    Wyton, W.W.; Doeksen, G.

    1977-01-01

    The flow of particulate solids through a screw conveyor or a screw feeder is monitored by passing radiant energy from a source in a generally vertical path into a bed of the solids flowing through the conveyor, receiving by a detector radiation that is not absorbed or scattered by the solids or the conveyor, and transmitting amplified electrical signals from the detector to a recorder. The detector extends parallel to the shaft of the conveyor screw for at least about one pitch length of the screw. The path of radiaton from the source to the detector follows a plane that lies between the shaft and the conveyor casing on the lift side of the screw. Cyclic variations in radiation signals as tapered pitch-length segments of material move through the conveyor are averaged mechanically

  13. Evaluation of spatial plan in controlling stream flow rate in Wakung Watershed, Pemalang, Central Java, Indonesia

    Science.gov (United States)

    Anwar, Y.; Setyasih, I.; Setiawan, M. A.; Christanto, N.

    2018-04-01

    Evaluation study for such a regional spatial plan (RTRW) in Indonesia has not been evaluated for its effectiveness in controlling the surface run off that contributed to streamflow. This necessity can be accomplishsed by applying a modeling approach, such as Soil Water Assessment Tool (SWAT). The objectives of this research are 1) to simulate the streamflow of Wakung watershed based on actual landuse, 2) to predict streamflow of Wakung watershed based on RTRW, and 3) to evaluate the effectiveness of the RTRW of Pemalang District in controling streamflow rate at Wakung Watershed. ArcSWAT model was used to determine the erosion rate prediction. The model was then calibrated by using SWATCUP. Model performance were tested by using R2 and ENS. The calibration and validation results showed that R2 and ENS (monthly) > 0.5. The result of SWAT simulation in Wakung sub-watershed reaching 161 - 4950 m3/s/years for W-A scenario (actual landuse and weather data of 2013), for scenario W-R (RTRW and weather data of 2013), 330 - 4919 m3/s/year. The comparison between actual and spatial plan land use data for stream flow is showing that the W-A scenario is lower than the W-R scenario in 19 sub watersheds. This is because there are many plans for adding land use for urban and intensive horticulture land in areas with steep slopes (> 25%). This condition is caused by the demands of fulfilling the needs of settlement and food for people in the Wakung watershed.

  14. Monitoring electrolyte concentrations in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  15. Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks

    Directory of Open Access Journals (Sweden)

    Hakan Tongal

    2013-07-01

    Full Text Available This paper evaluates the forecasting performance of two nonlinear models, k-nearest neighbor (kNN and feed-forward neural networks (FFNN, using stream flow data of the Kızılırmak River, the longest river in Turkey. For the kNN model, the required parameters are delay time, number of nearest neigh- bors and embedding dimension. The optimal delay time was obtained with the mutual information function; the number of nearest neighbors was obtained with the optimization process that minimi- zes RMSE as a function of the neighbor number and the embedding dimension was obtained with the correlation dimension method. The correlation dimension of the Kızılırmak River was d = 2.702, which was used in forming the input structure of the FFNN. The nearest integer above the correlation dimension (i.e., 3 provided the minimal number of required variables to characterize the system, and the maximum number of required variables was obtained with the nearest integer above the value 2d + 1 (Takens, 1981 (i.e., 7. Two FFNN models were developed that incorporate 3 and 7 lagged discharge values and the predicted performance compared to that of the kNN model. The results showed that the kNN model was superior to the FFNN model in stream flow forecasting. However, as a result from the kNN model structure, the model failed in the prediction of peak values. Additionally, it was found that the correlation dimension (if it existed could successfully be used in time series where the determina- tion of the input structure is difficult because of high inter-dependency, as in stream flow time series.  Resumen Este trabajo evalúa el desempeño de pronóstico de dos modelos no lineares, de método de clasificación no paramétrico kNN y de redes neuronales con alimentación avanzada (FNNN, usando datos de flujo del río Kizilirmak, el mayor de Turquía. Para el modelo kNN, los parámetros requeridos son tiempo de retraso, número de vecindarios cercanos y dimensión de

  16. Fluid flow measurements by means of vibration monitoring

    International Nuclear Information System (INIS)

    Campagna, Mauro M; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-01-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology. (paper)

  17. Fluid flow measurements by means of vibration monitoring

    Science.gov (United States)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  18. Assessment of the ecological impacts of macroroughness elements in stream flows

    Science.gov (United States)

    Niayifar, Amin; Oldroyd, Holly J.; Perona, Paolo

    2017-04-01

    The environmental suitability of flow release rules is often assessed for different fish species by modeling (e.g., CASiMir and PHABSIM) Weighted Usable Area (WUA) curves. However, these models are not able to resolve the hydrodynamic at small scales, e.g. that induced by the presence of macroroughness (e.g., single stones), which yet determine relatively large wakes that may contribute significantly in terms of habitat suitability. The presence of stones generates sheltered zones (i.e., the wake), which are typically temporary stationary points for many fish species. By resting in these low velocity regions, fishes minimize energy expenditure, and can quickly move to nearby fast water to feed (Hayes and Jowett, 1994). Following the analytical model proposed by Negretti et al., (2006), we developed an analytical solution for the wake area behind the macroroughness elements. The total wake area in the river reach being monitored is a function of the streamflow, Q, and it is an actual Usable Area for fishes that can be used to correct the one computed by classic software such as PHABSIM or CASIMIR at each flow rate. By quantifying these wake areas we can therefore assess how the physical properties and number of such zones change in response to the changing hydrologic regime. In order to validate the concept, we selected a 400 meter reach from the Aare river in the center of Switzerland. The statistical distribution of macroroughness elements is obtained by taking orthorectified aerial photographs by drone surveys during low flow conditions. Then, the distribution of the wakes is obtained analytically as a derived distribution. This methodology allows to save computational costs and the time for detailed field surveys.

  19. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    Science.gov (United States)

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  20. Monitoring, controlling and safeguarding radiochemical streams at spent fuel reprocessing facilities with optical and gamma-ray spectroscopic methods

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Bryan, S.A.; Orton, C.R.; Levitskaia, T.G.; Fraga, C.G.

    2013-01-01

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-usable nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MCA) at these facilities require time-consuming and resource intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies based upon gamma-ray and optical spectroscopic measurements to potentially reduce the time and resource burden associated with current techniques. The Multi-Isotope Process (MIP) Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major stable flowsheet reagents using UV-Vis, Near IR and Raman spectroscopy. Multi-variate analysis is also applied to the optical measurements in order to quantify concentrations of analytes of interest within a complex array of radiochemical streams. This paper will provide an overview of these methods and reports on-going efforts to develop

  1. A comparison of the performance and compatibility of protocols used by seven monitoring groups to measure stream habitat in the Pacific Northwest

    Science.gov (United States)

    Brett B. Roper; John M. Buffington; Stephen Bennett; Steven H. Lanigan; Eric Archer; Scott T. Downie; John Faustini; Tracy W. Hillman; Shannon Hubler; Kim Jones; Chris Jordan; Philip R. Kaufmann; Glenn Merritt; Chris Moyer; Allen Pleus

    2010-01-01

    To comply with legal mandates, meet local management objectives, or both, many federal, state, and tribal organizations have monitoring groups that assess stream habitat at different scales. This myriad of groups has difficulty sharing data and scaling up stream habitat assessments to regional or national levels because of differences in their goals and data collection...

  2. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  3. Interpreting streaming biosignals : in search of best approaches to augmenting mobile health monitoring with machine learning for adaptive clinical decision support

    NARCIS (Netherlands)

    Jones, Valerie M.; Mendes Batista, R.J.; Bults, Richard G.A.; op den Akker, Harm; Widya, I.A.; Hermens, Hermanus J.; Huis in 't Veld, M.H.A.; Tönis, Thijs; Tonis, T.; Vollenbroek-Hutten, Miriam Marie Rosé

    2011-01-01

    We investigate Body Area Networks for ambulant patient monitoring. As well as sensing physiological parameters, BAN applications may provide feedback to patients. Automating formulation of feedback requires realtime analysis and interpretation of streaming biosignals and other context and knowledge

  4. In-line near real time monitoring of fluid streams in separation processes for used nuclear fuel - 5146

    International Nuclear Information System (INIS)

    Nee, K.; Nilsson, M.

    2015-01-01

    Applying spectroscopic tools for chemical processes has been intensively studied in various industries owing to its rapid and non-destructive analysis for detecting chemical components and determine physical characteristic in a process stream. The general complexity of separation processes for used nuclear fuel, e.g., chemical speciation, temperature variations, and prominent process security and safety concerns, require a well-secured and robust monitoring system to provide precise information of the process streams at real time without interference. Multivariate analysis accompanied with spectral measurements is a powerful statistic technique that can be used to monitor this complex chemical system. In this work, chemometric models that respond to the chemical components in the fluid samples were calibrated and validated to establish an in-line near real time monitoring system. The models show good prediction accuracy using partial least square regression analysis on the spectral data obtained from UV/Vis/NIR spectroscopies. The models were tested on a solvent extraction process using a single stage centrifugal contactor in our laboratory to determine the performance of an in-line near real time monitoring system. (authors)

  5. Method for Modeling High-Temporal-Resolution Stream Inflows in a Long-Term ParFlow.CLM Simulation

    Science.gov (United States)

    Miller, G. R.; Merket, C.

    2017-12-01

    Traditional hydrologic modeling has compartmentalized the water cycle into distinct components (e.g. rainfall-runoff, river routing, or groundwater flow models). An integrated, process-based modeling framework assesses two or more of these components simultaneously, reducing the error associated with approximated boundary conditions. One integrated model, ParFlow.CLM, offers the advantage of parallel computing, but it lacks any mechanism for incorporating time-varying streamflow as an upstream boundary condition. Here, we present a generalized method for applying transient streamflow at an upstream boundary in ParFlow.CLM. Downstream flow values are compared to predictions by traditional runoff and routing methods as implemented in HEC-HMS. Additionally, we define a model spin-up process which includes initialization of steady-state streamflow. The upstream inflow method was successfully tested on two domains - one synthetic tilted V catchment and an idealized small stream catchment in the Brazos River Basin. The stream in the idealized domain is gaged at the upstream and downstream boundaries. Both tests assumed a homogeneous subsurface so that the efficacy of the transient streamflow method could be evaluated with minimal complications by groundwater interactions. In the tilted V catchment, spin-up criteria were achieved within 6 model years. A 25 x 25 x 66 cell model grid was run at a computational efficiency of values early in the simulation.

  6. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

    Science.gov (United States)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  7. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin

    Science.gov (United States)

    P.B. Parajuli; P. Jayakody; G.F. Sassenrath; Y. Ouyang

    2016-01-01

    This study evaluated climate change impacts on stream flow, crop and sediment yields from three differ-ent tillage systems (conventional, reduced 1–close to conservation, and reduced 2–close to no-till), in theBig Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) modelwas applied to the BSRW using observed stream flow and crop...

  8. Monitoring of water quality of a stream at the Federal University of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Marlyete Chagas de Araújo

    2013-12-01

    Full Text Available The Cavouco stream is an affluent of Pernambuco’s main river, the Capibaribe, and has its source on the campus of the Federal University of Pernambuco (UFPE. The stretch of the river that runs within the university receives an influx of pollution in the form of chemicals, and household and hospital waste. In light of this situation, and hoping to mitigate it, the aim of this study was to analyze the water quality of this stream and to raise the academic community’s awareness regarding this issue. To this end, stream water samples were collected in two different periods (dry and rainy at five strategic points on campus. The water samples were sent to the Water Treatment Plant and to the Laboratory for Analysis of Mineral, Soil and Water of the UFPE where 16 physicochemical parameters were analyzed (temperature, turbidity, conductivity, total dissolved solids, pH, dissolved oxygen, ammonia, nitrite, nitrate, iron, manganese, cadmium, lead, copper, chromium, zinc according to the methodology of 21st Standard Methods for the Examination of Water and Wastewater. The results show that the water of the Cavouco stream has a high load of pollution, with the points P2 and P5 being the most impacted. Additionally, the results of the Index of Water Quality for the Protection of Aquatic Life indicated that currently the stream has a low capacity for maintenance of aquatic life.

  9. Improving AVSWAT Stream Flow Simulation by Incorporating Groundwater Recharge Prediction in the Upstream Lesti Watershed, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Christina Rahayuningtyas

    2014-01-01

    Full Text Available The upstream Lesti watershed is one of the major watersheds of East Java in Indonesia, covering about 38093 hectares. Although there are enough water resources to meet current demands in the basin, many challenges including high spatial and temporal variability in precipitation from year to year exist. It is essential to understand how the climatic condition affects Lesti River stream flow in each sub basin. This study investigated the applicability of using the Soil and Water Assessment Tool (SWAT with the incorporation of groundwater recharge prediction in stream flow simulation in the upstream Lesti watershed. Four observation wells in the upstream Lesti watershed were used to evaluate the seasonal and annual variations in the water level and estimate the groundwater recharge in the deep aquifer. The results show that annual water level rise was within the 2800 - 5700 mm range in 2007, 3900 - 4700 mm in 2008, 3200 - 5100 mm in 2009, and 2800 - 4600 mm in 2010. Based on the specific yield and the measured water level rise, the area-weighted groundwater predictions at the watershed outlet are 736, 820.9, 786.7, 306.4 mm in 2007, 2008, 2009, and 2010, respectively. The consistency test reveals that the R-square statistical value is greater than 0.7, and the DV (% ranged from 32 - 55.3% in 2007 - 2010. Overall, the SWAT model performs better in the wet season flow simulation than the dry season. It is suggested that the SWAT model needs to be improved for stream flow simulation in tropical regions.

  10. Sonification of network traffic flow for monitoring and situational awareness

    Science.gov (United States)

    2018-01-01

    Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators’ situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen. PMID:29672543

  11. Sonification of network traffic flow for monitoring and situational awareness.

    Science.gov (United States)

    Debashi, Mohamed; Vickers, Paul

    2018-01-01

    Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators' situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen.

  12. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  13. The effects of DDoS attacks on flow monitoring applications

    NARCIS (Netherlands)

    Sadre, R.; Sperotto, Anna; Pras, Aiko

    Flow-based monitoring has become a popular approach in many areas of network management. However, flow monitoring is, by design, susceptible to anomalies that generate a large number of flows, such as Distributed Denial-Of-Service attacks. This paper aims at getting a better understanding on how a

  14. Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip

    Science.gov (United States)

    González-Guerrero, Maria José; del Campo, F. Javier; Esquivel, Juan Pablo; Giroud, Fabien; Minteer, Shelley D.; Sabaté, Neus

    2016-09-01

    This work presents a first approach towards the development of a cost-effective enzymatic paper-based glucose/O2 microfluidic fuel cell in which fluid transport is based on capillary action. A first fuel cell configuration consists of a Y-shaped paper device with the fuel and the oxidant flowing in parallel over carbon paper electrodes modified with bioelectrocatalytic enzymes. The anode consists of a ferrocenium-based polyethyleneimine polymer linked to glucose oxidase (GOx/Fc-C6-LPEI), while the cathode contains a mixture of laccase, anthracene-modified multiwall carbon nanotubes, and tetrabutylammonium bromide-modified Nafion (MWCNTs/laccase/TBAB-Nafion). Subsequently, the Y-shaped configuration is improved to use a single solution containing both, the anolyte and the catholyte. Thus, the electrolytes pHs of the fuel and the oxidant solutions are adapted to an intermediate pH of 5.5. Finally, the fuel cell is run with this single solution obtaining a maximum open circuit of 0.55 ± 0.04 V and a maximum current and power density of 225 ± 17 μA cm-2 and 24 ± 5 μW cm-2, respectively. Hence, a power source closer to a commercial application (similar to conventional lateral flow test strips) is developed and successfully operated. This system can be used to supply the energy required to power microelectronics demanding low power consumption.

  15. Use of neural networks for monitoring surface water quality changes in a neotropical urban stream.

    Science.gov (United States)

    da Costa, Andréa Oliveira Souza; Silva, Priscila Ferreira; Sabará, Millôr Godoy; da Costa, Esly Ferreira

    2009-08-01

    This paper reports the using of neural networks for water quality analysis in a tropical urban stream before (2002) and after sewerage building and the completion of point-source control-based sanitation program (2003). Mathematical modeling divided water quality data in two categories: (a) input of some in situ water quality variables (temperature, pH, O2 concentration, O2 saturation and electrical conductivity) and (b) water chemical composition (N-NO2(-); N-NO3(-); N-NH4(+) Total-N; P-PO4(3-); K+; Ca2+; Mg+2; Cu2+; Zn2+ and Fe+3) as the output from tested models. Stream water data come from fortnightly sampling in five points along the Ipanema stream (Southeast Brazil, Minas Gerais state) plus two points downstream and upstream Ipanema discharge into Doce River. Once the best models are consistent with variables behavior we suggest that neural networking shows potential as a methodology to enhance guidelines for urban streams restoration, conservation and management.

  16. Stream Flow Prediction and Flood Mapping in the Hindu Kush-Himalaya with the ICIMOD Water Resources App Portal (IWRAP)

    Science.gov (United States)

    Nelson, J.; Ames, D. P.; Jones, N.; Souffront, M.

    2016-12-01

    Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts that are increasingly available in native as well as other derived products. The European Centre for Medium Range Weather Forecasts (ECMWF) have developed such products for global flood awareness which can be downscaled to smaller regions and used for stream flow prediction in underserved areas such as the Hindu Kush-Himalaya. Combined with digital elevation data, now available at 30 meters through the Shuttle Radar Topography Mission (SRTM) reconnaissance-level flood maps can be generated across wide regions that would otherwise not be possible and where increased information to drive higher resolution models are available the same forecasts can be used to provide forcing inflows for improved flood maps. Advances in cloud computing offer a unique opportunity to facilitate deployment of water resources models as decision-making tools in the cloud-based ICIMOD Water Resources App Portal or IWRAP. The interactive nature of web apps makes this an excellent medium for creating decision support tools that harness cutting edge modeling techniques. Thin client apps hosted in a cloud portal eliminates the need for the decision makers to procure and maintain the high performance hardware required by the models, deal with issues related to software installation and platform incompatibilities, or monitor and install software updates, a problem that is exacerbated in the Hindu Kush-Himalaya where both financial and technical capacity are limited. All that is needed to use the system is an Internet connection and a web browser. We will take advantage of these technologies to develop tools which can be centrally maintained but openly accessible. Advanced mapping and visualization will make results intuitive and information derived actionable. We will also take advantage of the emerging standards for sharing water

  17. Multiple Time-Scale Monitoring to Address Dynamic Seasonality and Storm Pulses of Stream Water Quality in Mountainous Watersheds

    Directory of Open Access Journals (Sweden)

    Hyun-Ju Lee

    2015-11-01

    Full Text Available Rainfall variability and extreme events can amplify the seasonality and storm pulses of stream water chemistry in mountainous watersheds under monsoon climates. To establish a monitoring program optimized for identifying potential risks to stream water quality arising from rainfall variability and extremes, we examined water chemistry data collected on different timescales. At a small forested watershed, bi-weekly sampling lasted over two years, in comparison to three other biweekly sampling sites. In addition, high-frequency continuous measurements of pH, electrical conductivity, and turbidity were conducted in tandem with automatic water sampling at 2 h intervals during eight rainfall events. Biweekly monitoring showed that during the summer monsoon period, electrical conductivity (EC, dissolved oxygen (DO, and dissolved ion concentrations generally decreased, but total suspended solids (TSS slightly increased. A noticeable variation from the usual seasonal pattern was that DO levels substantially decreased during an extended drought. Bi-hourly storm event samplings exhibited large changes in the concentrations of TSS and particulate and dissolved organic carbon (POC; DOC during intense rainfall events. However, extreme fluctuations in sediment export during discharge peaks could be detected only by turbidity measurements at 5 min intervals. Concomitant measurements during rainfall events established empirical relationships between turbidity and TSS or POC. These results suggest that routine monitoring based on weekly to monthly sampling is valid only in addressing general seasonal patterns or long-lasting phenomena such as drought effects. We propose an “adaptive” monitoring scheme that combines routine monitoring for general seasonal patterns and high-frequency instrumental measurements of water quality components exhibiting rapid responses pulsing during intense rainfall events.

  18. Flow level performance approximations for elastic traffic integrated with prioritized stream traffic

    NARCIS (Netherlands)

    Malhotra, R.; Berg, J.L. van den

    2007-01-01

    Almost all traffic in todays networks can be classified as being either stream or elastic. The support of these two traffic types is possible either with a Differentiated (DiffServ) or an Integrated Services (IntServ) architecture. However, both DiffServ and IntServ rely on efficient scheduling

  19. Robust Detection and Visualization of Jet-Stream Core Lines in Atmospheric Flow.

    Science.gov (United States)

    Kern, Michael; Hewson, Tim; Sadlo, Filip; Westermann, Rudiger; Rautenhaus, Marc

    2018-01-01

    Jet-streams, their core lines and their role in atmospheric dynamics have been subject to considerable meteorological research since the first half of the twentieth century. Yet, until today no consistent automated feature detection approach has been proposed to identify jet-stream core lines from 3D wind fields. Such 3D core lines can facilitate meteorological analyses previously not possible. Although jet-stream cores can be manually analyzed by meteorologists in 2D as height ridges in the wind speed field, to the best of our knowledge no automated ridge detection approach has been applied to jet-stream core detection. In this work, we -a team of visualization scientists and meteorologists-propose a method that exploits directional information in the wind field to extract core lines in a robust and numerically less involved manner than traditional 3D ridge detection. For the first time, we apply the extracted 3D core lines to meteorological analysis, considering real-world case studies and demonstrating our method's benefits for weather forecasting and meteorological research.

  20. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions

    Directory of Open Access Journals (Sweden)

    R. Kandasamy

    2016-03-01

    Full Text Available The objective of the present work was to investigate theoretically the effect of single walled carbon nanotubes (SWCNTs in the presence of water and seawater with variable stream condition due to solar radiation energy. The conclusion is drawn that the flow motion and the temperature field for SWCNTs in the presence of base fluid are significantly influenced by magnetic field, convective radiation and thermal stratification. Thermal boundary layer of SWCNTs-water is compared to that of Cu-water, absorbs the incident solar radiation and transits it to the working fluid by convection.

  1. Modelling mean transit time of stream base flow during tropical cyclone rainstorm in a steep relief forested catchment

    Science.gov (United States)

    Lee, Jun-Yi; Huang, -Chuan, Jr.

    2017-04-01

    Mean transit time (MTT) is one of the of fundamental catchment descriptors to advance understanding on hydrological, ecological, and biogeochemical processes and improve water resources management. However, there were few documented the base flow partitioning (BFP) and mean transit time within a mountainous catchment in typhoon alley. We used a unique data set of 18O isotope and conductivity composition of rainfall (136 mm to 778 mm) and streamflow water samples collected for 14 tropical cyclone events (during 2011 to 2015) in a steep relief forested catchment (Pinglin, in northern Taiwan). A lumped hydrological model, HBV, considering dispersion model transit time distribution was used to estimate total flow, base flow, and MTT of stream base flow. Linear regression between MTT and hydrometric (precipitation intensity and antecedent precipitation index) variables were used to explore controls on MTT variation. Results revealed that both the simulation performance of total flow and base flow were satisfactory, and the Nash-Sutcliffe model efficiency coefficient of total flow and base flow was 0.848 and 0.732, respectively. The event magnitude increased with the decrease of estimated MTTs. Meanwhile, the estimated MTTs varied 4-21 days with the increase of BFP between 63-92%. The negative correlation between event magnitude and MTT and BFP showed the forcing controls the MTT and BFP. Besides, a negative relationship between MTT and the antecedent precipitation index was also found. In other words, wetter antecedent moisture content more rapidly active the fast flow paths. This approach is well suited for constraining process-based modeling in a range of high precipitation intensity and steep relief forested environments.

  2. Experimental analysis of flow of ductile cast iron in stream lined gating systems

    DEFF Research Database (Denmark)

    Skov-Hansen, Søren Peter; Tiedje, Niels Skat

    2008-01-01

    Streamlined gating systems have been developed for production of high integrity ductile cast iron parts. Flow of ductile cast iron in streamlined gating systems was studied in glass fronted sand moulds where flow in the gating system and casting was recorded by a digital video camera. These results...... show how the quality of pouring, design of ingates, design of bends and flow over cores influence melt flow and act to determine the quality of the castings....

  3. The mass flow and proposed management of bisphenol A in selected Norwegian waste streams.

    Science.gov (United States)

    Arp, Hans Peter H; Morin, Nicolas A O; Hale, Sarah E; Okkenhaug, Gudny; Breivik, Knut; Sparrevik, Magnus

    2017-02-01

    Current initiatives for waste-handling in a circular economy favor prevention and recycling over incineration or landfilling. However, the impact of such a transition on environmental emissions of contaminants like bisphenol A (BPA) during waste-handling is not fully understood. To address this, a material flow analysis (MFA) was constructed for selected waste categories in Norway, for which the amount recycled is expected to increase in the future; glass, vehicle, electronic, plastic and combustible waste. Combined, 92tons/y of BPA are disposed of via these waste categories in Norway, with 98.5% associated with plastic and electronic waste. During the model year 2011, the MFA showed that BPA in these waste categories was destroyed through incineration (60%), exported for recycling into new products (35%), stored in landfills (4%) or released into the environment (1%). Landfilling led to the greatest environmental emissions (up to 13% of landfilled BPA), and incinerating the smallest (0.001% of incinerated BPA). From modelling different waste management scenarios, the most effective way to reduce BPA emissions are to incinerate BPA-containing waste and avoid landfilling it. A comparison of environmental and human BPA concentrations with CoZMoMAN exposure model estimations suggested that waste emissions are an insignificant regional source. Nevertheless, from monitoring studies, landfill emissions can be a substantial local source of BPA. Regarding the transition to a circular economy, it is clear that disposing of less BPA-containing waste and less landfilling would lead to lower environmental emissions, but several uncertainties remain regarding emissions of BPA during recycling, particularly for paper and plastics. Future research should focus on the fate of BPA, as well as BPA alternatives, in emerging reuse and recycling processes, as part of the transition to a circular economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Monitoring Marcellus: A Case Study of a Collaborative Volunteer Monitoring Project to Document the Impact of Unconventional Shale Gas Extraction on Small Streams

    Directory of Open Access Journals (Sweden)

    Candie C. Wilderman

    2016-05-01

    Full Text Available The rapid growth of the natural gas extraction industry in Pennsylvania and neighboring states has stirred concerned citizens to seek ways to collect data on water quality impacts from the extraction activities. As a response to requests from community members, the Alliance for Aquatic Resource Monitoring (ALLARM developed a volunteer-friendly protocol in 2010 for early detection and reporting of surface water contamination by shale gas extraction activities in small streams. To date, ALLARM has trained more than 2,000 volunteers in Pennsylvania, New York, and West Virginia to monitor water quality (conductivity, barium, strontium, and total dissolved solids and physical parameters (stream stage and visual observations prior to, during, and after shale gas wells have been developed. This paper documents the operational models of Public Participation in Scientific Research (PPSR used by ALLARM, describes the volunteer monitoring protocol developed, and examines three years of water quality results from hundreds of monitoring sites in Pennsylvania and New York. The majority of watersheds monitored are small, forested, headwater streams. Results indicate that mean conductivity in streams is strongly and positively related to the percentage of development and the percentage of limestone in the watersheds. Mean conductivity is not significantly related to number or density of drilled wells, although the dataset did not lend itself to finding a signal from shale gas activities because only 20% of the watersheds had wells drilled at the time of sampling. This fact enables the use of these data as baseline data for future documentation of shale gas impacts on water quality. Volunteers have reported multiple cases of visual pollution related to shale gas activities, but have not identified water contamination events based on stream water chemistry. The results of the volunteer dataset are compared with results from the scientific literature, affirming

  5. Influences of high-flow events on a stream channel altered by construction of a highway bridge: A case study

    Science.gov (United States)

    Hedrick, Lara B.; Welsh, Stuart A.; Anderson, James T.

    2009-01-01

    Impacts of highway construction on streams in the central Appalachians are a growing concern as new roads are created to promote tourism and economic development in the area. Alterations to the streambed of a first-order stream, Sauerkraut Run, Hardy County, WV, during construction of a highway overpass included placement and removal of a temporary culvert, straightening and regrading of a section of stream channel, and armourment of a bank with a reinforced gravel berm. We surveyed longitudinal profiles and cross sections in a reference reach and the altered reach of Sauerkraut Run from 2003 through 2007 to measure physical changes in the streambed. During the four-year period, three high-flow events changed the streambed downstream of construction including channel widening and aggradation and then degradation of the streambed. Upstream of construction, at a reinforced gravel berm, bank erosion was documented. The reference section remained relatively unchanged. Knowledge gained by documenting channel changes in response to natural and anthropogenic variables can be useful for managers and engineers involved in highway construction projects.

  6. Low-flow frequency and flow-duration characteristics of selected streams in Alabama through March 2014

    Science.gov (United States)

    Feaster, Toby D.; Lee, Kathyrn G.

    2017-08-28

    Low-flow statistics are needed by water-resource engineers, planners, and managers to protect and manage the water resources of Alabama. The accuracy of these statistics is influenced by such factors as length of record and specific hydrologic conditions measured in those records. As such, it is generally recommended that flow statistics be updated about every 10 years to provide improved and representative low-flow characteristics. The previous investigation of low-flow characteristics for Alabama included data through September 1990. Since that time, Alabama has experienced several historic droughts highlighting the need to update the low-flow characteristics at U.S. Geological Survey streamgaging stations. Consequently, this investigation was undertaken in cooperation with a number of State and local agencies to update low-flow frequency and flow-duration statistics at 210 continuous-record streamgaging stations in Alabama and 67 stations from basins that are shared with surrounding States. The flow characteristics were computed on the basis of available data through March 2014.

  7. Monitoring Urban Stream Restoration Efforts in Relation to Flood Behavior Along Minebank Run, Towson, MD

    Science.gov (United States)

    Lee, G.; Miller, A. J.

    2017-12-01

    Urban stream restoration efforts are commonly undertaken to combat channel degradation and restore natural stream hydrology. We examine changes in flood patterns along an approximately 1.5-mile reach of Minebank Run, located in Towson, MD, by comparing pre-restoration morphology from surveys conducted in 2001, post-restoration morphology in 2007, and current conditions in 2017 following damage to the restoration project from persistent flooding. Hydraulic modeling was conducted in HEC-RAS 2D using three alternative scenarios: 1) topographic contours from a 2001 survey of pre-restoration topography combined with 2005 LiDAR, 2) 2007 survey combined with 2005 LiDAR data representing the post-restoration channel morphology, and 3) a March 2017 DEM of current channel conditions. The 2017 DEM was created using Structure from Motion (SfM) from high resolution 4K video collected via Unmanned Aerial Vehicle (UAV) flights at a resolution of 0.05 meters. Flood hydrographs from a USGS stream gage located within the study reach as well as a simulated hydrograph of the 100-year storm event were routed through the pre-restoration, post-restoration, and current modeled terrain and analyzed for changes in water-surface elevation and depth, inundation extent, 2-d velocity fields, and translation vs. attenuation of the flood wave to assess the net impact on potential flood hazards. In addition, our study demonstrates that SfM is a quick and inexpensive method for collecting topographic data for hydrologic modeling, assessing stream characteristics including channel bed roughness, and for examining short term changes of channel morphology at a very fine scale.

  8. Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis

    Science.gov (United States)

    Jones, Christopher S.; Wang, Bo; Schilling, Keith E.; Chan, Kung-sik

    2017-06-01

    Agricultural landscapes often leak inorganic nitrogen to the stream network, usually in the form of nitrate-nitrite (NOx-N), degrading downstream water quality on both the local and regional scales. While the spatial distribution of nitrate sources has been delineated in many watersheds, less is known about the complicated temporal dynamics that drive stream NOx-N because traditional methods of stream grab sampling are often conducted at a low frequency. Deployment of accurate real-time, continuous measurement devices that have been developed in recent years enables high-frequency sampling that provides detailed information on the concentration-discharge relation and the timing of NOx-N delivery to streams. We aggregated 15-min interval NOx-N and discharge data over a nine-year period into daily averages and then used robust statistical methods to identify how the discharge regime within an artificially-drained agricultural watershed reflected catchment hydrology and NOx-N delivery pathways. We then quantified how transport and supply limitations varied from year-to-year and how dependence of these limitations varied with climate, especially drought. Our results show NOx-N concentrations increased linearly with discharge up to an average "turning point" of 1.42 mm of area-normalized discharge, after which concentrations decline with increasing discharge. We estimate transport and supply limitations to govern 57 and 43 percent, respectively, of the NOx-N flux over the nine-year period. Drought effects on the NOx-N flux linger for multiple years and this is reflected in a greater tendency toward supply limitations in the three years following drought. How the turning point varies with climate may aid in prediction of NOx-N loading in future climate regimes.

  9. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different...... is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external...

  10. Assessment and monitoring of flow limitation and other parameters from flow/volume loops.

    Science.gov (United States)

    Dueck, R

    2000-01-01

    Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise

  11. Unsteady flow around a two-dimensional section of a vertical axis turbine for tidal stream energy conversion

    Directory of Open Access Journals (Sweden)

    Hyun Ju Jung

    2009-12-01

    Full Text Available The two-dimensional unsteady flow around a vertical axis turbine for tidal stream energy conversion was investigated using a computational fluid dynamics tool solving the Reynolds-Averaged Navier-Stokes equations. The geometry of the turbine blade section was NACA653-018 airfoil. The computational analysis was done at several different angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Simulations were then carried out for the two-dimensional cross section of a vertical axis turbine. The simulation results demonstrated the usefulness of the method for the typical unsteady flows around vertical axis turbines. The optimum turbine efficiency was achieved for carefully selected combinations of the number of blades and tip speed ratios.

  12. Effects of Watershed Land Use and Geomorphology on Stream Low Flows During Severe Drought Conditions in the Southern Blue Ridge Mountains, Georgia and North Carolina, United States

    Science.gov (United States)

    Land use and physiographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the influence of land use and watershed geomorphic characteristics on low-flow variability in the southern Blue Ridge Mo...

  13. The conversion of grasslands to forests in Southern South America: Shifting evapotranspiration, stream flow and groundwater dynamics

    Science.gov (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Pineiro, G.; Farley, K. A.; Palmer, S. M.; Jackson, R. B.

    2005-12-01

    Vegetation changes, particularly those involving transitions between tree- and grass-dominated systems, often modify evaporation as a result of plant-mediated shifts in moisture access and demand. The establishment of tree plantations (fast growing eucalypts and pines) on native grasslands is emerging as a major land-use change, particularly in the Southern Hemisphere, where cheap land and labor, public subsidies, and prospective C sequestration rewards provide converging incentives. What are the hydrological consequences of grassland afforestation? How are crucial ecosystem services such as fresh water supply and hydrological regulation being affected? We explore these questions focusing on a) evapotranspiration, b) stream flow, and c) groundwater recharge-discharge patterns across a network of paired stands and small watershed occupied by native grassland and tree plantation in Argentina and Uruguay. Radiometric information obtained from Landsat satellite images was used to estimate daily evapotranspiration in >100 tree plantations and grasslands stands in the humid plains of the Uruguay River (mean annual precipitation, MAP= 1350 mm). In spite of their lower albedo, tree plantations were 0.5 C° cooler than grasslands. Energy balance calculations suggested 80% higher evapotranspiration in afforested plots with relative differences becoming larger during dry periods. Seasonal stream flow measurements in twelve paired watershed (50-500 Ha) in the hills of Comechingones (MAP= 800 mm) and Minas (MAP= 1200 mm) showed declining water yields following afforestation. Preliminary data in Cordoba showed four-fold reductions of base flow in the dry season and two-fold reductions of peak flow after storms. A network of twenty paired grassland-plantation stands covering a broad range of sediment textures in the Pampas (MAP= 1000 mm, typical groundwater depth= 1-5 m) showed increased groundwater salinity in afforested stands (plantation:grassland salinity ratio = 1.2, 10, and

  14. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf

    2009-01-01

    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953......-dimensional simulations of standing waves have also been made by application of a general purpose Navier-Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory...

  15. Carcinogenic ptaquiloside in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Strobel, Bjarne W.; Clauson-Kaas, Frederik; Hansen, Hans Chr. Bruun

    2017-01-01

    identified, of which the compound ptaquiloside (PTA) is the most abundant. Ptaquiloside has been shown to be highly water soluble, leachable from bracken fronds and litter, and present in the soil below bracken stands. During storm events throughfall from the bracken canopy was collected as well. Stream...... water samples were taken as grab samples, while throughfall accumulated in glass jars set out below the canopy. Field blanks and fortified lab controls were included to ensure reliability of the analysis. Ptaquiloside concentrations were determined using LC-MS/MS after a clean-up using solid phase...... extraction. Results showed that PTA levels in the stream were highly dependent on precipitation, and was rising considerably during rain events, peaking at 2.28 μg/L, before quickly (conservation...

  16. A millennium-length reconstruction of Bear River stream flow, Utah

    Science.gov (United States)

    R. J. DeRose; M. F. Bekker; S.-Y. Wang; B. M. Buckley; R. K. Kjelgren; T. Bardsley; T. M. Rittenour; E. B. Allen

    2015-01-01

    The Bear River contributes more water to the eastern Great Basin than any other river system. It is also the most significant source of water for the burgeoning Wasatch Front metropolitan area in northern Utah. Despite its importance for water resources for the region’s agricultural, urban, and wildlife needs, our understanding of the variability of Bear River’s stream...

  17. Whole-stream metabolism of a perennial spring-fed aufeis field in Alaska, with coincident surface and subsurface flow

    Science.gov (United States)

    Hendrickson, P. J.; Gooseff, M. N.; Huryn, A. D.

    2017-12-01

    Aufeis (icings or naleds) are seasonal arctic and sub-arctic features that accumulate through repeated overflow and freeze events of river or spring discharge. Aufeis fields, defined as the substrate on which aufeis form and the overlaying ice, have been studied to mitigate impacts on engineering structures; however, ecological characteristics and functions of aufeis fields are poorly understood. The perennial springs that supply warm water to aufeis fields create unique fluvial habitats, and are thought to act as winter and summer oases for biota. To investigate ecosystem function, we measured whole-stream metabolism at the Kuparuk River Aufeis (North Slope, AK), a large ( 5 km2) field composed of cobble substrate and predominately subsurface flow dynamics. The single-station open channel diel oxygen method was utilized at several dissolved oxygen (DO) stations located within and downstream of the aufeis field. DO loggers were installed in August 2016, and data downloaded summer 2017. Daily ecosystem respiration (ER), gross primary production (GPP) and reaeration rates were modeled using BASE, a package freely available in the open-source software R. Preliminary results support net heterotrophy during a two-week period of DO measurements in the fall season when minimum ice extent is observed. GPP, ER, and net metabolism are greater at the upstream reach near the spring source (P/R = 0.53), and decrease as flow moves downstream. As flow exits the aufeis field, surface and subsurface flow are incorporated into the metabolism model, and indicate the stream system becomes dependent on autochthonous production (P/R = 0.91). Current work is directed towards spring and summer discharge and metabolic parameter estimation, which is associated with maximum ice extent and rapid melting of the aufeis feature.

  18. Persistent Tracers of Historic Ice Flow in Glacial Stratigraphy near Kamb Ice Stream, West Antarctica

    OpenAIRE

    Holschuh, Nicholas; Christianson, Knut; Conway, Howard; Jacobel, Robert W.; Welch, Brian C.

    2018-01-01

    Variations in properties controlling ice flow (e.g., topography, accumulation rate, basal friction) are recorded by structures in glacial stratigraphy. When anomalies that disturb the stratigraphy are fixed in space, the structures they produce advect away from the source, and can be used to trace flow pathways and reconstruct ice-flow patterns of the past. Here we provide an example of one of these persistent tracers: a prominent unconformity in the glacial layering that originates at Mt. Re...

  19. Monitoring of plutonium contaminated solid waste streams. Chapter IV: Passive neutron assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1978-01-01

    The fundamentals of the passive neutron technique for the non destructive assay of plutonium bearing materials are summarized. A reference monitor for the passive neutron assay of Pu contaminated solids is described in terms of instrumental design principles and performances. The theoretical model of this reference monitor with pertinent nuclear data and functions for the interpretation of experimental data is given

  20. Collecting and Storing Data Flow Monitoring in Elasticsearch

    CERN Document Server

    Hashim, Fatin Hazwani

    2014-01-01

    A very large amount of data is produced from the online data flow monitoring for the CMS data acquisition system. However, there are only a small portion of data is stored permanently in the relational database. This is because of the high cost needed while relying on the dedicated infrastructure as well as the issues in its performance itself. A new approach needs to be found in order to confront such a big volume of data known as “Big Data”. The Big Data [1] is the term given to the very large and complex data sets that cannot be handled by the traditional data processing application [2] in terms of capturing, storing, managing, and analyzing. The sheer size of the data [3] in CMS data acquisition system is one of the major challenges, and is the one of the most easily recognized. New technology need to be used as the alternative of the traditional databases initial evaluation to handle this problem as more data need to be stored permanently and can be easily retrieved. This report consists of the intro...

  1. Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case

    Science.gov (United States)

    Stewardson, Michael J.; Skinner, Dominic

    2018-03-01

    This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.

  2. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values to predict stream temperature

    Science.gov (United States)

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to...

  3. Projected effects of Climate-change-induced flow alterations on stream macroinvertebrate abundances.

    Science.gov (United States)

    Kakouei, Karan; Kiesel, Jens; Domisch, Sami; Irving, Katie S; Jähnig, Sonja C; Kail, Jochem

    2018-03-01

    Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species

  4. Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling

    Directory of Open Access Journals (Sweden)

    A. K. Gain

    2011-05-01

    Full Text Available Climate change is likely to have significant effects on the hydrology. The Ganges-Brahmaputra river basin is one of the most vulnerable areas in the world as it is subject to the combined effects of glacier melt, extreme monsoon rainfall and sea level rise. To what extent climate change will impact river flow in the Brahmaputra basin is yet unclear, as climate model studies show ambiguous results. In this study we investigate the effect of climate change on both low and high flows of the lower Brahmaputra. We apply a novel method of discharge-weighted ensemble modeling using model outputs from a global hydrological models forced with 12 different global climate models (GCMs. Our analysis shows that only a limited number of GCMs are required to reconstruct observed discharge. Based on the GCM outputs and long-term records of observed flow at Bahadurabad station, our method results in a multi-model weighted ensemble of transient stream flow for the period 1961–2100. Using the constructed transients, we subsequently project future trends in low and high river flow. The analysis shows that extreme low flow conditions are likely to occur less frequent in the future. However a very strong increase in peak flows is projected, which may, in combination with projected sea level change, have devastating effects for Bangladesh. The methods presented in this study are more widely applicable, in that existing multi-model streamflow simulations from global hydrological models can be weighted against observed streamflow data to assess at first order the effects of climate change for specific river basins.

  5. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationship

    Science.gov (United States)

    Evans, C.; Davies, T.D.; Murdoch, Peter S.

    1999-01-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the

  6. Assessing roadway contributions to stormwater flows, concentrations, and loads with the StreamStats application

    Science.gov (United States)

    Stonewall, Adam; Granato, Gregory E.; Haluska, Tana L.

    2018-01-01

    The Oregon Department of Transportation (ODOT) and other state departments of transportation need quantitative information about the percentages of different land cover categories above any given stream crossing in the state to assess and address roadway contributions to water-quality impairments and resulting total maximum daily loads. The U.S. Geological Survey, in cooperation with ODOT and the FHWA, added roadway and land cover information to the online StreamStats application to facilitate analysis of stormwater runoff contributions from different land covers. Analysis of 25 delineated basins with drainage areas of about 100 mi2 indicates the diversity of land covers in the Willamette Valley, Oregon. On average, agricultural, developed, and undeveloped land covers comprise 15%, 2.3%, and 82% of these basin areas. On average, these basins contained about 10 mi of state highways and 222 mi of non-state roads. The Stochastic Empirical Loading and Dilution Model was used with available water-quality data to simulate long-term yields of total phosphorus from highways, non-highway roadways, and agricultural, developed, and undeveloped areas. These yields were applied to land cover areas obtained from StreamStats for the Willamette River above Wilsonville, Oregon. This analysis indicated that highway yields were larger than yields from other land covers because highway runoff concentrations were higher than other land covers and the highway is fully impervious. However, the total highway area was a fraction of the other land covers. Accordingly, highway runoff mitigation measures can be effective for managing water quality locally, they may have limited effect on achieving basin-wide stormwater reduction goals.

  7. sedFlow – a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    Directory of Open Access Journals (Sweden)

    F. U. M. Heimann

    2015-01-01

    floods. The model is intended for temporal scales from the individual event (several hours to few days up to longer-term evolution of stream channels (several years. The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL (www.wsl.ch/sedFlow. Examples of the application of sedFlow are given in a companion article by Heimann et al. (2015.

  8. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  9. PIV measurements of acoustic and flow-induced vibration in main stream lines

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)

  10. Tagging, Mux, smolt, habitat and flow data - Movement and Survival of Juvenile Salmonids in Small Streams

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project is part of the Washington State Intensively Monitored Watershed (IMW) Program. Using passive inductive transponder (PIT) tags and remote stationary...

  11. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    Science.gov (United States)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  12. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    Science.gov (United States)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week

  13. Hydrogeological approach to the regional analysis of low flow in medium and small streams of the hilly and mountainous areas of Serbia

    Directory of Open Access Journals (Sweden)

    Nikić Zoran

    2006-01-01

    Full Text Available During the long rainless spells of the dry season, flows in medium and small streams get reduced to what is generally known as "low flow". For ungauged streams, the controlling "low flows" are determined using the regional analysis method. In the presently described exploration, the method applied was based on the assumption that dry weather discharges in medium and small rivers depended on the hydrogeological conditions. The controlling effect of hydrogeology on the natural low flow in medium and small streams of the hilly and mountainous part of Serbia was analyzed applying the theory of multiple linear regression. The thirty-day minimum mean 80 and 95 per cent exceedance flows were taken for dependent variables, and quantified hydrogeological elements as independent variables. The analysis covered streams that had small or medium size catchment areas. The treated example encompassed sixty-one gauged catchments. The resulting regional relations for the thirty day minimum mean 80 and 95 per cent exceedance flows are presented in this paper. The quality of the established relation was controlled by relevant statistic tests.

  14. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator

    Science.gov (United States)

    Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi

    2009-08-01

    The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.

  15. The monitoring, operation and assessment of a semi-submersible tidal stream prototype

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    It is feasible that for deep water (60-80m) sites around the British Isles, the most suitable tidal stream turbine is the free-swinging type. As a forerunner of a commercial system, a small-scale turbine (1.5m diameter) was studied firstly in a swimming pool and secondly in the River Thames. The river tests were carried out over 15 months on both flood and ebb tides. The results of the tests and conclusions drawn are reported. The tests demonstrated the promise of the system but a number of problems arose which will need to be resolved before designing a commercial-scale system. The problems mainly concerned the method of handling the large torque and thrust loads, and buoyancy in strong tides.

  16. Brief communication: The curious case of the large wood-laden flow event in the Pocuro stream (Chile

    Directory of Open Access Journals (Sweden)

    D. Ravazzolo

    2017-11-01

    Full Text Available Large wood transported during extreme flood events can represent a relevant additional source of hazards that should be taken into account in mountain environments. However, direct observations and monitoring of large-wood transport during floods are difficult and scarce. Here we present a video of a flood characterised by multiple phases of large-wood transport, including an initial phase of wood-laden flow rarely described in the literature. Estimations of flow velocity and transported wood volume provide a good opportunity to develop models of large-wood-congested transport.

  17. A Framework for Monitoring Capital Flows in Hong Kong

    OpenAIRE

    Dong He; Frank Leung; Philip Ng

    2009-01-01

    In this paper we attempt to delineate conceptual issues relating to the definition of capital flows, and introduce a framework that organises survey data and accounting information at different time horizons to form a judgment on the nature and scale of fund flows in Hong Kong. Given the complexity of international financial transactions in Hong Kong, cross-border capital flows may not correspond closely to fund flows into and out of the Hong Kong dollar. A comprehensive view on the scale and...

  18. On-Line Monitoring for Process Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plants

    International Nuclear Information System (INIS)

    Bryan, S.; Levitskaia, T.; Casella, A.

    2015-01-01

    The International Atomic Energy Agency (IAEA) has established international safe- guards standards for fissionable material at spent nuclear fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource-efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including a spectroscopy-based monitoring system, to potentially reduce the time and re- source burden associated with current techniques. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using ultra-violet and visible, near infrared and Raman spectroscopy. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technologies. Our ability to identify material intentionally diverted from a liquid-liquid solvent extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion, and detection of that diversion, from a solvent extraction scheme was demonstrated using a centrifugal contactor system operating with the PUREX flowsheet. A portion of the feed from a counter-current extraction system was diverted while a continuous extraction experiment was underway. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of

  19. Water quality monitoring protocol for wadeable streams and rivers in the Northern Great Plains Network

    Science.gov (United States)

    Wilson, Marcia H.; Rowe, Barbara L.; Gitzen, Robert A.; Wilson, Stephen K.; Paintner-Green, Kara J.

    2014-01-01

    Preserving the national parks unimpaired for the enjoyment of future generations is a fundamental purpose of the National Park Service (NPS). To address growing concerns regarding the overall physical, chemical, and biological elements and processes of park ecosystems, the NPS implemented science-based management through “Vital Signs” monitoring in 270 national parks (NPS 2007). The Northern Great Plains Network (NGPN) is among the 32 National Park Service Networks participating in this monitoring effort. The NGPN will develop protocols over the next several years to determine the overall health or condition of resources within 13 parks located in Nebraska, North Dakota, South Dakota, and Wyoming.

  20. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    Science.gov (United States)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  1. Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Koch, Jon D; Jaramillo, David E; DiVito, Enrico; Peters, Ove A

    2016-03-01

    This study aimed to compare fluid movements generated from photon-induced photoacoustic streaming (PIPS) and passive ultrasonic irrigation (PUI). Particle Image Velocimetry (PIV) was performed using 6-μm melamine spheres in water. Measurement areas were 3-mm-long sections of the canal in the coronal, midroot and apical regions for PIPS (erbium/yttrium-aluminium garnet (Er:YAG) laser set at 15 Hz with 20 mJ), or passive ultrasonic irrigation (PUI, non-cutting insert at 30% unit power) was performed in simulated root canals prepared to an apical size #30/0.04 taper. Fluid movement was analysed directly subjacent to the apical ends of ultrasonic insert or fiber optic tips as well as at midroot and apically. During PUI, measured average velocities were around 0.03 m/s in the immediate vicinity of the sides and tip of the ultrasonic file. Speeds decayed to non-measureable values at a distance of about 2 mm from the sides and tip. During PIPS, typical average speeds were about ten times higher than those measured for PUI, and they were measured throughout the length of the canal, at distances up to 20 mm away. PIPS caused higher average fluid speeds when compared to PUI, both close and distant from the instrument. The findings of this study could be relevant to the debriding and disinfecting stage of endodontic therapy. Irrigation enhancement beyond needle irrigation is relevant to more effectively eradicate microorganisms from root canal systems. PIPS may be an alternative approach due to its ability to create high streaming velocities further away from the activation source compared to ultrasonic activation.

  2. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  3. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002

    Science.gov (United States)

    Messinger, Terence; Wiley, Jeffrey B.

    2004-01-01

    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be

  4. Synthesis of a parallel data stream processor from data flow process networks

    NARCIS (Netherlands)

    Zissulescu-Ianculescu, Claudiu

    2008-01-01

    In this talk, we address the problem of synthesizing Process Network specifications to FPGA execution platforms. The process networks we consider are special cases of Kahn Process Networks. We call them COMPAAN Data Flow Process Networks (CDFPN) because they are provided by a translator called the

  5. Characterization of storm flow dynamics of headwater streams in the South Carolina lower coastal plain

    Science.gov (United States)

    Thomas H. Epps; Daniel R. Hitchcock; Anand D. Jayakaran; Drake R. Loflin; Thomas M. Williams; Devendra M. Amatya

    2013-01-01

    Hydrologic monitoring was conducted in two first-order lower coastal plain watersheds in South Carolina, United States, a region with increasing growth and land use change. Storm events over a three-year period were analyzed for direct runoff coefficients (ROC) and the total storm response (TSR) as percent rainfall. ROC calculations utilized an empirical hydrograph...

  6. Monitoring of plutonium contaminated solid waste streams. Chapter II: principles and theory of radiometric assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.; Notea, A.; Segal, Y.

    1977-01-01

    The interpretation of a count rate distribution obtained from radiometric assay of a given waste items population in terms of source strength distribution is discussed. A model for the evaluation of errors, arising from non uniform source density distribution (Pu) within the item volume and heterogeneity of matrix materials, is presented. Points concerning calibration procedures and representativity of reference materials are dealt with. Qualification procedures for possible monitoring systems are outlined on the basis of comparison with reference systems. The latter are composed of reference monitors based on high resolution gamma spectrometry and passive and active neutron techniques. The importance of information upon the elemental composition and density distribution of matrix materials for the interpretation of radiometric assay of solid wastes is stressed

  7. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej

    2016-02-01

    Full Text Available Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenient to consider hydrological components as stochastic phenomenon, and use stochastic models for modeling them. Stochastic simulation of time series models related to water resources, particularly hydrologic time series, have been widely used in recent decades in order to solve issues pertaining planning and management of water resource systems. In this study time series models fitted to the precipitation, evaporation and stream flow series separately and the relationships between stream flow and precipitation processes are investigated. In fact, the three mentioned processes should be modeled in parallel to each other in order to acquire a comprehensive vision of hydrological conditions in the region. Moreover, the relationship between the hydrologic processes has been mostly studied with respect to their trends. It is desirable to investigate the relationship between trends of hydrological processes and climate change, while the relationship of the models has not been taken into consideration. The main objective of this study is to investigate the relationship between hydrological processes and their effects on each other and the selected models. Material and Method: In the current study, the four sub-basins of Lake Urmia Basin namely Zolachay (A, Nazloochay (B, Shahrchay (C and Barandoozchay (D were considered. Precipitation, evaporation and stream flow time series were modeled by linear time series. Fundamental assumptions of time series analysis namely

  8. Hydrography - Streams and Shorelines

    Data.gov (United States)

    California Natural Resource Agency — The hydrography layer consists of flowing waters (rivers and streams), standing waters (lakes and ponds), and wetlands -- both natural and manmade. Two separate...

  9. Optical System for Monitoring Net Occular Blood Flow, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a novel ophthalmic imaging platform for the characterization and monitoring of visual impairment observed in...

  10. Quantifying diffuse pathways for overland flow between the roads and streams of the mountain ash forests of central Victoria Australia

    Science.gov (United States)

    Lane, Patrick N. J.; Hairsine, Peter B.; Croke, Jacky C.; Takken, Ingrid

    2006-06-01

    Limiting connectivity between road runoff sources and stream networks is crucial for preservation of water quality in forested environments. Where flow is non-eroding, the length of hillslope available to accommodate volumes of discharged water is the key to restricting connectivity. Hairsine et al. ([2002], Hydrological Processes 16: 2311-2327) proposed a probabilistic model of diffuse overland flow that predicted the hillslope lengths required to infiltrate road discharge, based on the concept of volume to breakthrough (Vbt). This paper extends this analysis to a different forest environment with the aim of testing the portability of the Hairsine et al. ([2002]) model. The volume of flow required to travel overland to a distance of 5 and 10 m (Vbt5 and Vbt10) from drainage outlets was measured in deep, highly conductive mountain soils in the Upper Tyers catchment, Victoria, Australia. Rainfall, hydraulic conductivity and soil depths contrasted markedly with those in the Hairsine et al. ([2002]) study, and represent an extreme in Australian forests. Statistical analyses revealed the population of Vbt5 to be indistinguishable from that observed by Hairsine et al. ([2002]), indicating the model is valid for a range of forest soils. There was no significant correlation of sediment plume length with site characteristics such as slope, width of flow, or existence of incised pathways. It is suggested there are universal properties of pathways draining tracks and roads, with bioturbation acting to restore available pore spaces filled by antecedent plumes. Drain discharge design criteria may be developed for local conditions using the Hairsine et al. ([2002]) model, providing a robust tool for protection of water quality in the siting of new forest roads, and maintenance of exiting roads and tracks.

  11. Removal of Lead Ions From Waste streams Using Flowing-Through Porous Electrodes

    International Nuclear Information System (INIS)

    El-Deab, M.S.; Saleh, M.M.; El-Anadouli, B.E.; Ateya, B.G.

    1999-01-01

    Packed bed electrodes, made of stacked screens, have been used as cathodes for the removal of lead ions from flowing alkaline electrolytes. We consider the coulombic efficiency ξ =ipb/(ipb+iH), and the collection efficiency given by ψ=i L (exp)/nFvc, where i L (exp) is the geometric limiting current for lead deposition. Two regions are defined in the current-potential relations, depending on whether hydrogen evolution does, or does not, contribute to the measured current, corresponding to ξ less than, or equal to, 100%, respectively. The geometric limiting current, i L (exp), increases with increase of v. The collection efficiency ψ increases as v decreases and/or L increases. Operating the cell at higher flow rates increases the overall coulombic efficiency, over a broader range of cell currents

  12. Riparian woodland encroachment following flow regulation: a comparative study of Mediterranean and Boreal streams

    Directory of Open Access Journals (Sweden)

    Dolores Bejarano M.

    2011-10-01

    Full Text Available Water development accompanying mankind development has turned rivers into endangered ecosystems. Improving the understanding of ecological responses to river management actions is a key issue for assuring sustainable water management. However, few studies have been published where ecological metrics have been quantified in response to various degrees of flow alteration. In this work, changes in natural distribution of trees and shrubs within the riparian corridor (as indicator of the ecological status of the fluvial ecosystem were quantified at multiple sites along a flow alteration gradient (as indicator of impact along two regulated river reaches, one Boreal and the other Mediterranean, each downstream of a dam. Based on the obtained relationships we evaluated differences in response trends related to local physico-climatic factors of the two biomes and regarding to differing life-forms. Woody vegetation establishment patterns represented objective indicators of ecological responses to flow alteration. We found different responses between life-forms. Both trees and shrubs migrated downwards to the channel after dam closure, but shrubs were most impacted under higher degrees of flow alteration in terms of lateral movement. In addition, our results show clear longitudinal recovery trends of natural patterns of tree and shrub distribution corresponding to a decrease in intensity of hydrologic alteration in the Boreal river. However, vegetation encroachment persisted along the entire Mediterranean study reach. This may result from a relatively low gradient of decrease of hydrologic alteration with distance from the dam, coupled with other overlapping pressures and the mediating effect of physico-climatic characteristics on vegetation responses.

  13. Radiation Effects on the Flow and Heat Transfer over a Moving Plate in a Parallel Stream

    International Nuclear Information System (INIS)

    Ishak, Anuar

    2009-01-01

    Effects of thermal radiation on the steady laminar boundary layer flow over a moving plate in a moving fluid is investigated. Under certain conditions, the present problem reduces to the classical Blasius and Sakiadis problems. It is found that dual solutions exist when the plate and the fluid move in the opposite directions. Moreover, the existence of thermal radiation is to reduce the heat transfer rate at the surface. (fundamental areas of phenomenology (including applications))

  14. Flood and Weather Monitoring Using Real-time Twitter Data Streams

    Science.gov (United States)

    Demir, I.; Sit, M. A.; Sermet, M. Y.

    2016-12-01

    Social media data is a widely used source to making inference within public crisis periods and events in disaster times. Specifically, since Twitter provides large-scale data publicly in real-time, it is one of the most extensive resources with location information. This abstract provides an overview of a real-time Twitter analysis system to support flood preparedness and response using a comprehensive information-centric flood ontology and natural language processing. Within the scope of this project, we deal with acquisition and processing of real-time Twitter data streams. System fetches the tweets with specified keywords and classifies them as related to flooding or heavy weather conditions. The system uses machine learning algorithms to discover patterns using the correlation between tweets and Iowa Flood Information System's (IFIS) extensive resources. The system uses these patterns to forecast the formation and progress of a potential future flood event. While fetching tweets, predefined hashtags are used for filtering and enhancing the relevancy for selected tweets. With this project, tweets can also be used as an alternative data source where other data sources are not sufficient for specific tasks. During the disasters, the photos that people upload alongside their tweets can be collected and placed to appropriate locations on a mapping system. This allows decision making authorities and communities to see the most recent outlook of the disaster interactively. In case of an emergency, concentration of tweets can help the authorities to determine a strategy on how to reach people most efficiently while providing them the supplies they need. Thanks to the extendable nature of the flood ontology and framework, results from this project will be a guide for other natural disasters, and will be shared with the community.

  15. Liquid metal monitor

    International Nuclear Information System (INIS)

    Caldwell-Nichols, C.J.; Roach, P.F.

    1982-01-01

    A liquid metal monitor of the by-pass plugging meter kind described in British Patent 1,308,466, is further provided with a pump arranged to oppose flow through a by-pass thereby to provide a constant pressure difference across an orifice and improve the sensitivity of the instrument. The monitor estimates the impurity content in a liquid metal stream. (author)

  16. Uncertainty analysis of power monitoring transit time ultrasonic flow meters

    International Nuclear Information System (INIS)

    Orosz, A.; Miller, D. W.; Christensen, R. N.; Arndt, S.

    2006-01-01

    A general uncertainty analysis is applied to chordal, transit time ultrasonic flow meters that are used in nuclear power plant feedwater loops. This investigation focuses on relationships between the major parameters of the flow measurement. For this study, mass flow rate is divided into three components, profile factor, density, and a form of volumetric flow rate. All system parameters are used to calculate values for these three components. Uncertainty is analyzed using a perturbation method. Sensitivity coefficients for major system parameters are shown, and these coefficients are applicable to a range of ultrasonic flow meters used in similar applications. Also shown is the uncertainty to be expected for density along with its relationship to other system uncertainties. One other conclusion is that pipe diameter sensitivity coefficients may be a function of the calibration technique used. (authors)

  17. SiCi Explorer : situation monitoring of cities in social media streaming data

    OpenAIRE

    Weiler, Andreas; Grossniklaus, Michael; Scholl, Marc H.

    2014-01-01

    The continuous growth of social networks and the active use of social media services result in massive amounts of user-generated data. More and more people worldwide report and distribute up-to-date information about almost any topic. Therefore, we argue that this kind of data is a good basis to observe ongoing situations in cities as well as related situations from outside about these cities in real-time. This paper presents a visualization for monitoring the situation (current topics and em...

  18. Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    None available

    1999-07-29

    On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

  19. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    Science.gov (United States)

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  20. An Application of Value Stream Mapping in Production Flow Analysis: A lean approach in An Automotive Industry

    Directory of Open Access Journals (Sweden)

    Krushnaraj Bodana

    2016-08-01

    Full Text Available Lean manufacturing deals with a manufacturing process improvement based on the fundamental goal of Toyota production system in order to minimize or eliminate waste while maximizing production flow. Today in a highly competitive local and global market, it is very much crucial to satisfy the changing demand of the customers. Thus, in today’s manufacturing industry there is an increased focus to produce the right product at right time. The prime objective of this paper to apply a significant lean manufacturing tool know as Value Stream Mapping (VSM. To fulfil this objective a fundamental principles of lean were implemented and VSM was generated to analyse the production flow at an automotive industry and improve the current operating condition to overcome the difficulties with current state of work through time study, Takt time calculation, modifying work cell layout. And based on the future state of VSM, final results showed that by implementing this lean techniques, Production Lead-time (PLT decreased from 7.6 days to 3.2 days, and the cycle time is decrease up to 73%.

  1. The Influence of Flow and Bed Slope on Gas Transfer in Steep Streams and Their Implications for Evasion of CO2

    Science.gov (United States)

    Maurice, L.; Rawlins, B. G.; Farr, G.; Bell, R.; Gooddy, D. C.

    2017-11-01

    The evasion of greenhouse gases (including CO2, CH4, and N2O) from streams and rivers to the atmosphere is an important process in global biogeochemical cycles, but our understanding of gas transfer in steep (>10%) streams, and under varying flows, is limited. We investigated gas transfer using combined tracer injections of SF6 and salt. We used a novel experimental design in which we compared four very steep (18.4-29.4%) and four moderately steep (3.7-7.6%) streams and conducted tests in each stream under low flow conditions and during a high-discharge event. Most dissolved gas evaded over short distances ( 100 and 200-400 m, respectively), so accurate estimates of evasion fluxes will require sampling of dissolved gases at these scales to account for local sources. We calculated CO2 gas transfer coefficients (KCO2) and found statistically significant differences between larger KCO2 values for steeper (mean 0.465 min-1) streams compared to those with shallower slopes (mean 0.109 min-1). Variations in flow had an even greater influence. KCO2 was substantially larger under high (mean 0.497 min-1) compared to low flow conditions (mean 0.077 min-1). We developed a statistical model to predict KCO2 using values of streambed slope × discharge which accounted for 94% of the variation. We show that two models using slope and velocity developed by Raymond et al. (2012) for streams and rivers with shallower slopes also provide reasonable estimates of our CO2 gas transfer velocities (kCO2; m d-1). We developed a robust field protocol which could be applied in future studies.

  2. Three-Dimensional Numerical Modelling of Flow and Sediment Transport for Field Scale Application of Stream Barbs at Sawmill Creek, Ottawa

    Science.gov (United States)

    Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.

    2009-05-01

    Stream barbs (a type of submerged groyne or spur dike) are low-profile linear rock structures that prevent the erosion of stream banks by redirecting high velocity flow away from the bank. Stream barbs are becoming a popular method for stream bank protection as they can be built at a relatively low cost and provide added ecological benefit. The design and construction of stream barbs in Sawmill Creek, a small urban stream in the city of Ottawa, Canada, will serve as a demonstration project for the use of barbs as a bank stabilization technique that will contribute to the rehabilitation of urban creeks while reducing erosion threats to property and infrastructure. As well as providing bank protection, these structures promote vegetated stream banks, create resting pools and scour holes for fish habitat, and increase bio-diversity for aquatic species. Despite these benefits, stream barbs are not a common means of stream bank protection in Canada, due largely to a lack of suitable design guidelines. The overall goal of stream habitat restoration in incising channel systems should be to accelerate natural processes of channel equilibrium recovery, riparian re-vegetation, and stream-floodplain interaction. Incorporating stream barbs, instead of traditional bank protection measures, attempts to achieve these goals. A three-dimensional numerical model: 'Simulation in Intakes with Multiblock option' (SSIIM), was used to model the effects of placing a series of stream barbs along an unstable section of Sawmill Creek. The average bankfull depth, width, and discharge of the creek are 1.2 m, 7.5 m, and 9 m3/s respectively. The model was used to assess various design alternatives for a series of seven stream barbs at two consecutive channel bends requiring stabilization measures along their outer banks. Design criteria were principally based on the reduction of velocity, shear stress and subsequent erosion at the outside bank of each bend, and on the relocation of a new thalweg

  3. Laboratory study on streaming potential for exploring underground water flow; Shitsunai jikken ni yoru ryudo den`i wo mochiita mizu michi tansa no kanosei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H; Shima, H [Oyo Corp., Tokyo (Japan)

    1997-05-27

    To investigate a possibility of exploration of underground water flow as well as to grasp the underground fluid flow by measuring streaming potential at the ground surface, some experiments were conducted using a model unit by considering the difference of permeability. For this experimental unit, water is driven by adding head difference between the polyethylene vessel filled with water and the experimental water tank. The size of water tank is 350{times}160 mm with a height of 160 mm. Twenty platinum electrodes are set on the cover of water tank. Toyoura standard sand and Kanto loam were used for the experiments. For the experiments, fluid was injected in various combined models by considering the permeability, to measure the streaming potential. As a result, it was explained by the streaming potential that the fluid flows in a form of laminar flow in the experimental water tank, and that the movement of fluid in the Kanto loam is quite slow. It was also confirmed that the streaming potential method is an effective technique for grasping the movement of fluid. 3 refs., 8 figs.

  4. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Delin, Geoffrey N.; Hare, Danielle K.

    2016-01-01

    Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.

  5. Monitoring Stream Nutrient Concentration Trends in a Mixed-Land-Use Watershed

    Science.gov (United States)

    Zeiger, S. J.; Hubbart, J. A.

    2014-12-01

    Mixed-land use watersheds are often a complex patchwork of forested, agricultural, and urban land-uses where differential land-use mediated non-point source pollution can significantly impact water quality. Stream nitrogen and phosphorus concentrations serve as important variables for quantifying land use effects on non-point source pollution in receiving waters and relative impacts on aquatic biota. The Hinkson Creek Watershed (HCW) is a representative mixed land use urbanizing catchment (231 km2) located in central Missouri, USA. A nested-scale experimental watershed study including five permanent hydroclimate stations was established in 2009 to provide quantitative understanding of multiple land use impacts on nutrient loading. Spectrophotometric analysis was used to quantify total inorganic nitrogen (TIN) and total phosphorus (TP as PO4) regimes. Results (2010 - 2013) indicate average nitrate (NO3-) concentration (mg/l) range of 0.28 to 0.46 mg/l, nitrite (NO2-) range of 0.02 to 0.03 mg/l, ammonia (NH3) ranged from 0.04 to 0.08 mg/l, and TP range of 0.26 to 0.39 mg/l. With n=858, NO3-, NO2-, NH3, and TP concentrations were significantly (CI=95%, p=0.00) higher in the subbasin with the greatest percent cumulative agricultural land use (57%). NH3 and TP concentrations were significantly (CI=95%, p=0.00) higher (with the exception of the agricultural subbasin) in the subbasin with the greatest percent cumulative urban land use (26%). Results from multiple regression analyses showed percent cumulative agricultural and urban land uses accounted for 85% and 96% of the explained variance in TIN loading (CI=95%, p=0.08) and TP loading (CI=95%, p=0.02), respectively, between gauging sites. These results improve understanding of agricultural and urban land use impacts on nutrient concentrations in mixed use watersheds of the Midwest and have implications for nutrient reduction programs in the Mississippi River Basin and hypoxia reductions in the Gulf of Mexico, USA.

  6. The stream flow rate measurement using tracer techniques at the Kemubu Agricultural Development Authority (KADA), Kelantan

    International Nuclear Information System (INIS)

    Daud Mohammad; Abd Razak Hamzah; Wan Abd Aziz Wan Mohamad; Juhari Yusoff; Wan Zakaria Wan Mohd Tahir

    1985-01-01

    Measuring the flow rate of a water course is one of the basic operations in hydrology, being of general relevance to water problems and of particular importance in the planning of water control schemes. The techniques commonly used in streamflow gauging are either by a current meter of tracer dilution method. This paper describes the latter technique in which radioisotope Tc-99m was used as a tracer in streamflow measurements performed in 1983 in a few selected irrigation canals and pump house under the Kemubu Agriculture Development Authority (KADA), Kelantan. Total count technique and peak-to-peak method were adopted in this study. (author)

  7. Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia

    Science.gov (United States)

    Dutrieux, Loïc Paul; Verbesselt, Jan; Kooistra, Lammert; Herold, Martin

    2015-09-01

    Automatically detecting forest disturbances as they occur can be extremely challenging for certain types of environments, particularly those presenting strong natural variations. Here, we use a generic structural break detection framework (BFAST) to improve the monitoring of forest cover loss by combining multiple data streams. Forest change monitoring is performed using Landsat data in combination with MODIS or rainfall data to further improve the modelling and monitoring. We tested the use of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) with varying spatial aggregation window sizes as well as a rainfall derived index as external regressors. The method was evaluated on a dry tropical forest area in lowland Bolivia where forest cover loss is known to occur, and we validated the results against a set of ground truth samples manually interpreted using the TimeSync environment. We found that the addition of an external regressor allows to take advantage of the difference in spatial extent between human induced and naturally induced variations and only detect the processes of interest. Of all configurations, we found the 13 by 13 km MODIS NDVI window to be the most successful, with an overall accuracy of 87%. Compared with a single pixel approach, the proposed method produced better time-series model fits resulting in increases of overall accuracy (from 82% to 87%), and decrease in omission and commission errors (from 33% to 24% and from 3% to 0% respectively). The presented approach seems particularly relevant for areas with high inter-annual natural variability, such as forests regularly experiencing exceptional drought events.

  8. Generalized Skew Coefficients of Annual Peak Flows for Rural, Unregulated Streams in West Virginia

    Science.gov (United States)

    Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.

    2009-01-01

    Generalized skew was determined from analysis of records from 147 streamflow-gaging stations in or near West Virginia. The analysis followed guidelines established by the Interagency Advisory Committee on Water Data described in Bulletin 17B, except that stations having 50 or more years of record were used instead of stations with the less restrictive recommendation of 25 or more years of record. The generalized-skew analysis included contouring, averaging, and regression of station skews. The best method was considered the one with the smallest mean square error (MSE). MSE is defined as the following quantity summed and divided by the number of peaks: the square of the difference of an individual logarithm (base 10) of peak flow less the mean of all individual logarithms of peak flow. Contouring of station skews was the best method for determining generalized skew for West Virginia, with a MSE of about 0.2174. This MSE is an improvement over the MSE of about 0.3025 for the national map presented in Bulletin 17B.

  9. Tidal Stream Generators, current state and potential opportunities for condition monitoring

    DEFF Research Database (Denmark)

    Kappatos, Vassilios; Georgoulas, George; Avdelidis, Nicolas

    2016-01-01

    Tidal power industry has made significant progress towards commercialization over the past decade. Significant investments from sector leaders, strong technical progress and positive media coverage have established the credibility of this specific renewable energy source. However, its progress...... is being retarded by operation and maintenance problems, which results in very low operational availability times, as low as 25 %. This paper presents a literature review of the current state of tidal device operators as well as some commercial tidal turbine condition monitoring solutions. Furthermore......, an overview is given of the global tidal activity status (tidal energy market size and geography), the key industry activity and the regulations-standards related with tidal energy industry. Therefore, the main goal of this paper is to provide a bird’s view of the current status of the tidal power industry...

  10. Monitoring hyperproliferative disorders in human skin: flow cytometry of changing cytokeratin expression.

    NARCIS (Netherlands)

    Franssen, M.E.J.; Boezeman, J.B.M.; Kerkhof, P.C.M. van de; Erp, P.E.J. van

    2004-01-01

    BACKGROUND: Monitoring dynamics of different cell populations in solid tissues using flow cytometry has several limitations. The interaction and changes in epidermal subpopulations in hyperproliferative skin disorders such as psoriasis, a very common chronic inflammatory skin disease, may, however,

  11. Bioassessment in nonperennial streams: Hydrologic stability influences assessment validity

    Science.gov (United States)

    Mazor, R. D.; Stein, E. D.; Schiff, K.; Ode, P.; Rehn, A.

    2011-12-01

    Nonperennial streams pose a challenge for bioassessment, as assessment tools developed in perennial streams may not work in these systems. For example, indices of biotic integrity (IBIs) developed in perennial streams may give improper indications of impairment in nonperennial streams, or may be unstable. We sampled benthic macroinvertebrates from 12 nonperennial streams in southern California. In addition, we deployed loggers to obtain continuous measures of flow. 3 sites were revisited over 2 years. For each site, we calculated several metrics, IBIs, and O/E scores to determine if assessments were consistent and valid throughout the summer. Hydrology varied widely among the streams, with several streams drying between sampling events. IBIs suggested good ecological health at the beginning of the study, but declined sharply at some sites. Multivariate ordination suggested that, despite differences among sites, changes in community structure were similar, with shifts from Ephemeroptera, Plecoptera, and Trichoptera to Coleoptera and more tolerant organisms. Site revisits revealed a surprising level of variability, as 2 of the 3 revisited sites had perennial or near-perennial flow in the second year of sampling. IBI scores were more consistent in streams with stable hydrographs than in those with strongly intermittent hydrographs. These results suggest that nonperennial streams can be monitored successfully, but they may require short index periods and distinct metrics from those used in perennial streams. In addition, better approaches to mapping nonperennial streams are required.

  12. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    Science.gov (United States)

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is

  13. Time-Based Data Streams: Fundamental Concepts for a Data Resource for Streams

    Energy Technology Data Exchange (ETDEWEB)

    Beth A. Plale

    2009-10-10

    Real time data, which we call data streams, are readings from instruments, environmental, bodily or building sensors that are generated at regular intervals and often, due to their volume, need to be processed in real time. Often a single pass is all that can be made on the data, and a decision to discard or keep the instance is made on the spot. Too, the stream is for all practical purposes indefinite, so decisions must be made on incomplete knowledge. This notion of data streams has a different set of issues from a file, for instance, that is byte streamed to a reader. The file is finite, so the byte stream is becomes a processing convenience more than a fundamentally different kind of data. Through the duration of the project we examined three aspects of streaming data: the first, techniques to handle streaming data in a distributed system organized as a collection of web services, the second, the notion of the dashboard and real time controllable analysis constructs in the context of the Fermi Tevatron Beam Position Monitor, and third and finally, we examined provenance collection of stream processing such as might occur as raw observational data flows from the source and undergoes correction, cleaning, and quality control. The impact of this work is severalfold. We were one of the first to advocate that streams had little value unless aggregated, and that notion is now gaining general acceptance. We were one of the first groups to grapple with the notion of provenance of stream data also.

  14. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    Science.gov (United States)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  15. Turbidity on the Shallow Reef off Kaulana and Hakioawa Watersheds, North Coast of Kaho`olawe, Hawai`iMeasurements of Turbidity and Ancillary Data on Winds, Waves, Precipitation, and Stream flow Discharge, November 2005 to June 2008

    Science.gov (United States)

    Presto, M. Katherine; Storlazzi, Curt D.; Field, Michael E.; Abbott, Lyman L.

    2010-01-01

    The island of Kaho`olawe has particular cultural and religious significance for native Hawaiians. Once known as Kanaloa, the island was a center for native Hawaiian navigation. In the mid-20th century, the island was used as a bombing range by the U.S. Navy, and that practice, along with the foraging by feral goats, led to a near-complete decimation of vegetation. The loss of ground cover led to greatly increased erosion and run-off of sediment-laden water onto the island's adjacent coral reefs. Litigation in 1990 ended the U.S. Navy's use of the island as a bombing range, and in 1994 the island was transferred to the Kaho`olawe Island Reserve Commission (KIRC), http://kahoolawe.hawaii.gov/. As a result of the litigation, the U.S. Navy began a 10-year clean-up effort that was the foundation for the present restoration effort by KIRC (Slay, 2009). The restoration effort is centered on revegetating the island, reducing erosion, and limiting run-off onto adjacent reefs. Restoration efforts to mitigate sediment runoff to streams and gulches by restoring native vegetation and minimizing erosion have focused on two watersheds, Kaulana and Hakioawa, on the northeast and northwest sides of the island, respectively. Stream flow and sediment gages were installed by the U.S. Geological Survey Pacific Islands Water Science Center in each of the watersheds, and a weather station was established upland of the watersheds. For this study, turbidity monitors were installed on the insular shelf off the two watersheds to monitor the overall quality of reef waters and their changes in response to rain and stream flow discharge events.

  16. Hydrological modeling of stream flow in small Mediterranean dams and impact of climate change : case study of wadi Rmel catchment

    Science.gov (United States)

    Habaieb, Hamadi; Hermassi, Taoufik; Moncef Masmoudi, Mohamed; Ben Mechlia, Nétij

    2015-04-01

    Northern Tunisia is characterized by a semi-arid climate with an irregular and high spatial variability of rainfall. This situation is expected to aggravate under the expected increase of temperature and modification of rainfall regime predicted by most climate models for the Mediterranean region. Water is a major limiting factor for agriculture in Tunisia and mobilization of surface water resources is approaching its maximum. Dams are installed on almost all large watersheds and concerned also medium size and small ones. Hydrological functioning of such structures and their capacity to satisfy user's demand under the changing climate will be addressed using simple models and results will be discussed in this paper. The small catchment of Wadi Rmel is considered here for methodological development. This watershed (675 Km2) is situated in North-East Tunisia with average annual rainfall of 420 mm and was equipped in 1998 with a small dam. Data on rainfall collected at 12 rainfall stations during the period 1908 - 2012 are analyzed and used to build a coherent series of monthly rainfalls and spatially averaged on the watershed by the Thiessen method. In a second step, rainfall-runoff modeling was used to estimate runoff and water budget of the dam. Tow rainfall-runoff models GR2M and SWAT were considered and evaluated when using i) the rainfall observed at the dam and ii) the average rainfall on the watershed. The observed and simulated level in the dam were compared for both models and situations. Results showed that taking into account the spatial distribution of rainfall improved the simulation of stream flows and that SWAT model performs better than GR2M. The use of such models to make prediction of stream flow using downscaled climatic data from GCM will be discussed. Analysis of the results considering tow standardized sets of future greenhouse gas emissions used by the General Circulation Models for the IPCC 5th approximation RCP4.5 and RCP8.5 and three future

  17. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  18. An improved dosimeter having constant flow pump

    International Nuclear Information System (INIS)

    Baker, W.B.

    1980-01-01

    A dosemeter designed for individual use which can be used to monitor toxic radon gas and toxic related products of radon gas in mines and which incorporates a constant air stream flowing through the dosimeter is described. (U.K.)

  19. Fishy Business: Response of Stream Fish Assemblages to Small Hydro-power Plant Induced Flow Alteration in the Western Ghats, Karnataka

    Science.gov (United States)

    Rao, S. T.; Krishnaswamy, J.; Bhalla, R. S.

    2017-12-01

    Alteration of natural flow regimes is considered as a major threat to freshwater fish assemblages as it disturbs the water quality and micro-habitat features of rivers. Small hydro-power (SHP), which is being promoted as a clean and green substitute for large hydro-power generation, alters the natural flow regime of head-water streams by flow diversion and regulation. The effects of altered flow regime on tropical stream fish assemblages, driven by seasonality induced perturbations to water quality and microhabitat parameters are largely understudied. My study examined the potential consequences of flow alteration by SHPs on fish assemblages in two tributaries of the west-flowing Yettinahole River which flows through the reserved forests of Sakleshpur in the Western Ghats of Karnataka. The flow in one of the tributaries followed natural flow regime while the other comprised three regimes: a near-natural flow regime above the dam, rapidly varying discharge below the dam and a dewatered regime caused by flow diversion. The study found that the altered flow regime differed from natural flow regime in terms of water quality, microhabitat heterogeneity and fish assemblage response, each indicative of the type of flow alteration. Fish assemblage in the natural flow regime was characterized by a higher catch per site, a strong association of endemic and trophic specialist species. The flow regime above the dam was found to mimic some components of the natural flow regime, both ecological and environmental. Non endemic, generalist and pool tolerant species were associated with the dewatered regime. There was a lack of strong species-regime association and an overall low catch per site for the flow regulated regime below the dam. This study highlights the consequences of altered flows on the composition of freshwater fish assemblages and portrays the potential of freshwater fish as indicators of the degree and extent of flow alteration. The study recommends the need for

  20. Electronic device, system on chip and method for monitoring a data flow

    NARCIS (Netherlands)

    2012-01-01

    An electronic device is provided which comprises a plurality of processing units (IP1-IP6), a network-based inter-connect (N) coupled to the processing units (IP1-IP6) and at least one monitoring unit (P1, P2) for monitoring a data flow of at least one first communication path between the processing

  1. Stream Flow Simulation of a Snow-Fed Mountainous Basin Using the SWAT Model

    Science.gov (United States)

    Shukla, S.; Kansal, M. L.; Jain, S. K.

    2017-12-01

    Hydrological budget of the Satluj River (a major tributary of Indus river system) in Western Himalaya, is dominated by monsoonal rainfall and snowmelt during the non-monsoon months. The river watershed experiences extensive snowfall in the winters and snowmelt runoff substantially contributes to the streamflow of the river in the spring and summer months. In order to understand the hydrologic response of Satluj basin, hydrological modeling study is carried out using a semi distributed hydrological model Soil and Water Assessment Tool (SWAT), for the period of thirty years (1985-2014). The basic intent of this study is to derive the parameters required for runoff modeling using the geospatial database. The Sequential Uncertainty Fitting (SUFI-2) algorithm is used to calibrate and validate the model and incorporate uncertainties in the analysis. The results are validated with the observed daily streamflow data at Rampur, in terms of Nash-Sutcliffe Coefficient (NSC), R2 and Root Mean Square Error (RMSE). Further, the snowmelt-runoff mechanism is modelled by relating the temperature changes to the elevation band in the basin. The northern part of the basin and the south part of the basin on the high elevation zones have the coldest maximum temperatures that is about 7°C. It is found that the average contribution of snow and glacier runoff in the annual flow of the Satluj River at Rampur is about 66% and remaining 34% is from rainfall.

  2. Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions

    OpenAIRE

    Jodeau , M.; Hauet , A.; Paquier , A.; Le Coz , J.; Dramais , G.

    2008-01-01

    Large Scale Particle Image Velocimetry (LS-PIV) is used to measure the surface flow velocities in a mountain stream during high flow conditions due to a reservoir release. A complete installation including video acquisition from a mobile elevated viewpoint and artificial flow seeding has been developed and implemented. The LS-PIV method was adapted in order to take into account the specific constraints of these high flow conditions. Using a usual LS-PIV data processing, significant variations...

  3. Extended Sleeve Products Allow Control and Monitoring of Process Fluid Flows Inside Shielding, Behind Walls and Beneath Floors - 13041

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Mark W. [Flowserve Corporation, 1978 Foreman Drive Cookeville, TN 38506 (United States)

    2013-07-01

    Throughout power generation, delivery and waste remediation, the ability to control process streams in difficult or impossible locations becomes increasingly necessary as the complexity of processes increases. Example applications include radioactive environments, inside concrete installations, buried in dirt, or inside a shielded or insulated pipe. In these situations, it is necessary to implement innovative solutions to tackle such issues as valve maintenance, valve control from remote locations, equipment cleaning in hazardous environments, and flow stream analysis. The Extended Sleeve family of products provides a scalable solution to tackle some of the most challenging applications in hazardous environments which require flow stream control and monitoring. The Extended Sleeve family of products is defined in three groups: Extended Sleeve (ESV), Extended Bonnet (EBV) and Instrument Enclosure (IE). Each of the products provides a variation on the same requirements: to provide access to the internals of a valve, or to monitor the fluid passing through the pipeline through shielding around the process pipe. The shielding can be as simple as a grout filled pipe covering a process pipe or as complex as a concrete deck protecting a room in which the valves and pipes pass through at varying elevations. Extended Sleeves are available between roughly 30 inches and 18 feet of distance between the pipeline centerline and the top of the surface to which it mounts. The Extended Sleeve provides features such as ± 1.5 inches of adjustment between the pipeline and deck location, internal flush capabilities, automatic alignment of the internal components during assembly and integrated actuator mounting pads. The Extended Bonnet is a shorter fixed height version of the Extended Sleeve which has a removable deck flange to facilitate installation through walls, and is delivered fully assembled. The Instrument Enclosure utilizes many of the same components as an Extended Sleeve

  4. BIO-MONITORING FOR URANIUM USING STREAM-SIDE TERRESTRIAL PLANTS AND MACROPHYTES

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, E.; Duff, M.; Hicks, T.; Coughlin, D.; Hicks, R.; Dixon, E.

    2012-01-12

    This study evaluated the abilities of various plant species to act as bio-monitors for environmental uranium (U) contamination. Vegetation and soil samples were collected from a U processing facility. The water-way fed from facility storm and processing effluents was the focal sample site as it represented a primary U transport mechanism. Soils and sediments from areas exposed to contamination possessed U concentrations that averaged 630 mg U kg{sup -1}. Aquatic mosses proved to be exceptional accumulators of U with dry weight (dw) concentrations measuring as high as 12500 mg U kg{sup -1} (approximately 1% of the dw mass was attributable to U). The macrophytes (Phragmites communis, Scripus fontinalis and Sagittaria latifolia) were also effective accumulators of U. In general, plant roots possessed higher concentrations of U than associated upper portions of plants. For terrestrial plants, the roots of Impatiens capensis had the highest observed levels of U accumulation (1030 mg kg{sup -1}), followed by the roots of Cyperus esculentus and Solidago speciosa. The concentration ratio (CR) characterized dry weight (dw) vegetative U levels relative to that in associated dw soil. The plant species that accumulated U at levels in excess of that found in the soil were: P. communis root (CR, 17.4), I. capensis root (CR, 3.1) and S. fontinalis whole plant (CR, 1.4). Seven of the highest ten CR values were found in the roots. Correlations with concentrations of other metals with U were performed, which revealed that U concentrations in the plant were strongly correlated with nickel (Ni) concentrations (correlation: 0.992; r-squared: 0.984). Uranium in plant tissue was also strongly correlated with strontium (Sr) (correlation: 0.948; r-squared: 0.899). Strontium is chemically and physically similar to calcium (Ca) and magnesium (Mg), which were also positively-correlated with U. The correlation with U and these plant nutrient minerals, including iron (Fe), suggests that active

  5. Cross-flow filtration during the washing of a simulated radioactive waste stream

    International Nuclear Information System (INIS)

    MARK R., DUIGNAN

    2005-01-01

    Bechtel National, Inc. has been contracted by the Department of Energy to design a Waste Treatment and Immobilization Plant (WTP) to stabilize liquid radioactive waste that is stored at the Hanford Site as part of the River Protection Project (RPP). Because of its experience with radioactive waste stabilization, the Savannah River National Laboratory (SRNL) of the Westinghouse Savannah River Company is working with Bechtel and Washington Group International, to help design and test certain parts of the waste treatment facility. One part of the process is the separation of radioactive solids from the liquid wastes by cross-flow ultrafiltration. To test this process a cross-flow filter was used that was prototypic in porosity, length, and diameter, along with a simulated radioactive waste slurry, made to prototypically represent the chemical and physical characteristics of a Hanford waste in tank 241-AY-102/C-106. To mimic the filtration process the waste slurry undergoes several steps, including dewatering and washing. During dewatering the concentration of undissolved solids (UDS) of the simulated AY102/C106 waste is increased from 12 wt percent to at least 20 wt percent. Once at the higher concentration the waste must be washed to prepare for its eventual receipt in a High Level Radioactive Waste Melter to be vitrified. This paper describes the process of washing and filtering a batch of concentrated simulated waste in two cycles, which each containing 22 washing steps that used approximately 7.7 liters of a solution of 0.01 M NaOH per step. This will be the method used by the full-scale WTP to prepare the waste for vitrification. The first washing cycle started with the simulated waste that had a solids concentration of 20 wt percent UDS. This cycle began with a permeate filter flux of 0.015 gpm/ft2 (3.68 cm/hr) at 19.6 wt percent UDS with a density of 1.33 kg/L, and yield stress of 8.5 Pa. At the end of the 22 washing steps the permeate filter flux increased to

  6. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.

    Science.gov (United States)

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  7. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks

    Directory of Open Access Journals (Sweden)

    Yoshiaki Taniguchi

    2016-01-01

    Full Text Available Software-Defined Networking (SDN has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator’s configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  8. Methods for monitoring heat flow intensity in the blast furnace wall

    Directory of Open Access Journals (Sweden)

    L'. Dorčák

    2010-04-01

    Full Text Available In this paper we present the main features of an online system for real-time monitoring of the bottom part of the blast furnace. Firstly, monitoring concerns the furnace walls and furnace bottom temperatures measurement and their visualization. Secondly, monitored are the heat flows of the furnace walls and furnace bottom. In the case of two measured temperatures, the heat flow is calculated using multi-layer implicit difference scheme and in the case of only one measured temperature, the heat flow is calculated using a method based on application of fractional-order derivatives. Thirdly, monitored is the theoretical temperature of the blast furnace combustion process in the area of tuyeres.

  9. Flow cytofluorometric monitoring of leukocyte apoptosis in experimental cholera

    Science.gov (United States)

    Lotsmanova, Ekaterina Y.; Kravtsov, Alexander L.; Livanova, Ludmila F.; Kobkova, Irina M.; Kuznetsov, Oleg S.; Shchukovskaya, Tatyana N.; Smirnova, Nina I.; Kutyrev, Vladimir V.

    2003-10-01

    Flow cytofluorometric DNA analysis was applied to determine of the relative contents of proliferative (more then 2C DNA per cell) and apoptotic (less then 2C DNA per cell) leukocytes in blood of adult rabbits, challenged with 10,000 times the 50 % effective dose of Vibrio cholerae virulent strain by the RITARD technique. It has been shown that irreversible increase the percentage of cells carrying DNA in the degradation stage brings to disbalance between the genetically controlled cell proliferation and apoptosis that leads to animal death from the cholera infection. Such fatal changes were not observed in challenging of immunized animals that were not died. Thus received data show that the flow cytofluorometric measurements may be used for detection of transgressions in homeostasis during acute infection diseases, for outlet prognosis of the cholera infection.

  10. Noninvasive tomographic and velocimetric monitoring of multiphase flows

    International Nuclear Information System (INIS)

    Chaouki, J.; Dudukovic, M.P.

    1997-01-01

    A condensed review of recent advances accomplished in the development and the applications of noninvasive tomographic and velocimetric measurement techniques to multiphase flows and systems is presented. In recent years utilization of such noninvasive techniques has become widespread in many engineering disciplines that deal with systems involving two immiscible phases or more. Tomography provides concentration, holdup, or 2D or 3D density distribution of at least one component of the multiphase system, whereas velocimetry provides the dynamic features of the phase of interest such as the flow pattern, the velocity field, the 2D or 3D instantaneous movements, etc. The following review is divided into two parts. The first part summarizes progress and developments in flow imaging techniques using γ-ray and X-ray transmission tomography; X-ray radiography; neutron transmission tomography and radiography; positron emission tomography; X-ray diffraction tomography; nuclear magnetic resonance imaging; electrical capacitance tomography; optical tomography; microwave tomography; and ultrasonic tomography. The second part of the review summarizes progress and developments in the following velocimetry techniques: positron emission particle tracking; radioactive particle tracking; cinematography; laser-Doppler anemometry; particle image velocimetry; and fluorescence particle image velocimetry. The basic principles of tomography and velocimetry techniques are outlined, along with advantages and limitations inherent to each technique. The hydrodynamic and structural information yielded by these techniques is illustrated through a literature survey on their successful applications to the study of multiphase systems in such fields as particulate solids processes, fluidization engineering, porous media, pipe flows, transport within packed beds and sparged reactors, etc

  11. Monitoring drilling mud composition using flowing liquid junction electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, R; Fletcher, P; Vercaemer, C

    1990-06-27

    The concentration of a chosen ionic component of a drilling mud is determined from the potential difference between an ion selective electrode, selective to the component and a reference electrode, the reference electrode being connected to the mud by a liquid junction through which reference electrolyte flows from the electrode to the mud. The system avoids errors due to undesirable interactions between the mud and the reference electrode materials. (author).

  12. The use of a low-cost gas-liquid flow meter to monitor severe slugging

    DEFF Research Database (Denmark)

    Andreussi, Paolo; Bonizzi, Marco; Ciandri, Paolo

    2017-01-01

    A very simple, low-cost gas-liquid flow meter that only employs conventional field instrumentation has been used to monitor severe slugging occurring at the exit of a vertical pipe. This meter was originally developed for conventional oil field applications [1] and is based on the readings...... method to monitor severe slugging by means of low cost instrumentation, in particular, by replacing a cumbersome instrument such as a gamma-densitometer with a differential pressure transmitter. In field operation, the multiphase orifice used in these experiments can be replaced by a calibrated control...... of a multiphase orifice and the pressure drops of the gas-liquid mixture flowing in a vertical section of the pipe. Liquid and gas flow rates have been determined by means of semi-empirical equations developed for the specific set of flow parameters (geometry, flow rates, physical properties) adopted in a series...

  13. Drivers of increased organic carbon concentrations in stream water following forest disturbance: Separating effects of changes in flow pathways and soil warming

    Science.gov (United States)

    Schelker, J.; Grabs, T.; Bishop, K.; Laudon, H.

    2013-12-01

    disturbance such as clear-cutting has been identified as an important factor for increasing dissolved organic carbon (DOC) concentrations in boreal streams. We used a long-term data set of soil temperature, soil moisture, shallow groundwater (GW) levels, and stream DOC concentrations from three boreal first-order streams to investigate mechanisms causing these increases. Clear-cutting was found to alter soil conditions with warmer and wetter soils during summer. The application of a riparian flow concentration integration model (RIM) explained a major part of variation in stream [DOC] arising from changing flow pathways in riparian soils during the pretreatment period (r2 = 0.4-0.7), but less well after the harvest. Model residuals were sensitive to changes in soil temperature. The linear regression models for the temperature dependence of [DOC] in soils were not different in the disturbed and undisturbed catchments, whereas a nonlinear response to soil moisture was found. Overall these results suggest that the increased DOC mobilization after forest disturbance is caused by (i) increased GW levels leading to increased water fluxes in shallow flow path in riparian soils and (ii) increased soil temperature increasing the DOC availability in soils during summer. These relationships indicate that the mechanisms of DOC mobilization after forest disturbance are not different to those of undisturbed catchments, but that catchment soils respond to the higher hydro-climatic variation observed after clear-cutting. This highlights the sensitivity of boreal streams to changes in the energy and water balance, which may be altered as a result of both land management and climate change.

  14. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats

    Science.gov (United States)

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from

  15. Monitoring the Inhalation Flow Rate of Nebulized Aerosols Using an Ultrasonic Flow Meter: In Vitro Assessment.

    Science.gov (United States)

    Yang, Michael Y; Chan, Hak-Kim

    2017-06-01

    The measurement of aerosol flow rates without obscuration of the flow is of particular concern with in vivo lung deposition studies, where precise knowledge of aerosol particle size distributions is a necessary requirement for the development of predictive correlations. This study examines the utility of an ultrasonic flow meter for such measurements and determines if a valved system can be attached to the flow meter for sampling exhaled aerosols. The flow rate across a D-30 flow meter was compared with and without nebulization of 0.9% saline aerosols from a PARI LC Sprint nebulizer. Particle size distributions of the nebulized aerosol before and after adding the D-30 flow meter and duckbill valve were measured using a Spraytec laser diffraction system. Finally, the ability of the Thor D-30 to capture a realistic breathing profile was assessed. The mean ± standard error flow rates measured by the D-30 flow meter with and without nebulization were 10.4 ± 0.1 versus 10.4 ± 0.1 L/min, 66.4 ± 0.1 versus 67.2 ± 0.1 L/min, and 89.9 ± 0.1 versus 91.4 ± 0.1 L/min. The D-30 flow meter did not considerably affect the volumetric median diameter (VMD) of the aerosols, while the VMD reduced slightly by 0.65 μm at 10 L/min and 0.69 μm at 72 L/min upon the inclusion of a duckbill valve. Time-weighted average inhalation flow rates measured by D-30 flow meters placed upstream and downstream of the one-way valve agreed well, 31.9 versus 32.6 L/min, respectively. The D-30 flow meter can be used to accurately measure inhalation flow rates of nebulized aerosols without significantly impacting particle size distributions, and one-way duckbill valves can be used to isolate the inhalation portion of a breathing pattern to facilitate collection of exhaled doses.

  16. Steady flow in a porous layer subjected to a stream uniformly injecting from a plane; Ichiyo ni men kara fukidasu nagare ni sarasareta takoshitsu sonai no teijo nagare

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, E; Horiguchi, Y; Kitazawa, K [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-08-25

    A steady flow in an non-deformable porous layer subjected to a fluid stream is studied analytically and numerically. One side of the layer of sponge is bounded by a solid wall and the other by a layer of fluid. The fluid is injected uniformly from a plane, through which the fluid can pass, set up parallel to the sponge layer. The flow in the sponge layer is assumed to be governed by Darcy`s law. The problem considered is solved in terms of a similarity solution. The equations governing the fluid flows in both the porous layer and the fluid layer are reduced to a system of the ordinary differential equations. These equations are solved analytically for three cases ideal fluid flow, low Reynolds number flow and high Reynolds number flow. On the other hand, these equations are solved numerically for the general case by using the finite difference method. The distributions of the velocity and the pressure in both layers are found for various parameters. In particular, the speed which the fluid intrudes into the sponge layer due to the injection of the stream from the plane is found to be a function of dimensionless parameters. To find this speed is essential to the understanding of porous material. 15 refs., 9 figs.

  17. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values

    Science.gov (United States)

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to an...

  18. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Base Flow Index

    Science.gov (United States)

    This dataset represents the base flow index values within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Source_Information). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The bfi (%) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  19. Monitoring catalyst flow rate in a FCC cold pilot unity by gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Brito, Marcio F.P.; Netto, Wilson F.S.; Miranda, Marcia V.F.E.S.; Junior, Isacc A.S.; Dantas, Carlos C.; Melo, Silvio B.; Lima, Emerson A.O.

    2013-01-01

    A model for monitoring catalyst mass flow in riser of Fluid Catalytic Cracking - FCC, pilot unity as a function of air flow and solid injection is proposed. The fluidized FCC- catalyst bed system is investigated in an experimental setup the Cold Pilot Unity - CPU by means of gamma ray transmission measurements. Riser in CPU simulates the reactor in FCC process. By automation control air flow is instrumentally measured in riser and the solid injection is manually controlled by valve adjusting. Keeping a constant solid injection, catalyst level at the return column was measured by gamma transmission for several air flow values in riser. The operational condition reached a steady state regime before given to setup a new air flow value. A calibration of catalyst level as a function of air flow in riser is calculated, therefore, a model for solid feed rate is derived. Recent published work evaluates solid concentration in riser of the CPU by means of gamma ray transmission, and a correlation with air velocity is obtained. In this work, the model for solid feed rate was further investigated by carrying out experiments to measure catalyst concentration at the same air flow values. These experiments lead to a model for monitoring catalyst flow in riser as function of solid feed rate and air flow. Simulation with random numbers produced with Matlab software allows to define validation criteria for the model parameters. (author)

  20. Intercomparison of principal hydrometric instruments; Third phase, Evaluation of ultrasonic velocity meters for flow measurement in streams, canals, and estuaries

    Science.gov (United States)

    Melching, Charles S.; Meno, Michael W.

    1998-01-01

    As part of the World Meteorological Organization (WMO) project Intercomparison of Principal Hydrometric Instruments, Third Phase, a questionnaire was prepared by the U.S. Geological Survey (USGS) on the application of Ultrasonic Velocity Meters (UVM's) for flowmeasurement in streams, canals, and estuaries. In 1996, this questionnaire was distributed internationally by the WMO and USGS, and distributed within the United States by the USGS. Completed questionnaires were returned by 26 agencies in 7 countries (Canada, France, Germany, The Netherlands, Switzerland, the United Kingdom, and the United States). The completed questionnaires described geometric and streamflow conditions, system configurations, and reasons for applying UVM systems for 260 sites, thus providing information on the applicability of UVM systems throughout the world. The completed questionnaires also provided information on operational issues such as (1) methods used to determine and verify UVM ratings, (2) methods used to determine the mean flow velocity for UVM systems, (3) operational reliability of UVM systems, (4) methods to estimate missing data, (5) common problems with UVM systems and guidelines to mitigate these problems, and (6) personnel training issues. The completed questionnaires also described a few unique or novel applications of UVM systems. In addition to summarizing the completed questionnaires, this report includes a brief overview of UVM application and operation, and a short summary of current (1998) information from UVM system manufacturers regarding system cost and capabilities. On the basis of the information from the completed questionnaires and provided by the manufacturers, the general applicability of UVM systems is discussed. In the finalisation of this report the financial support provided by the US National Committee for Scientific Hydrology is gratefully acknowledged.

  1. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  2. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  3. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis

    International Nuclear Information System (INIS)

    Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.

    2000-01-01

    The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring. (c)

  4. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  5. Internet of Things-Based Arduino Intelligent Monitoring and Cluster Analysis of Seasonal Variation in Physicochemical Parameters of Jungnangcheon, an Urban Stream

    Directory of Open Access Journals (Sweden)

    Byungwan Jo

    2017-03-01

    Full Text Available In the present case study, the use of an advanced, efficient and low-cost technique for monitoring an urban stream was reported. Physicochemical parameters (PcPs of Jungnangcheon stream (Seoul, South Korea were assessed using an Internet of Things (IoT platform. Temperature, dissolved oxygen (DO, and pH parameters were monitored for the three summer months and the first fall month at a fixed location. Analysis was performed using clustering techniques (CTs, such as K-means clustering, agglomerative hierarchical clustering (AHC, and density-based spatial clustering of applications with noise (DBSCAN. An IoT-based Arduino sensor module (ASM network with a 99.99% efficient communication platform was developed to allow collection of stream data with user-friendly software and hardware and facilitated data analysis by interested individuals using their smartphones. Clustering was used to formulate relationships among physicochemical parameters. K-means clustering was used to identify natural clusters using the silhouette coefficient based on cluster compactness and looseness. AHC grouped all data into two clusters as well as temperature, DO and pH into four, eight, and four clusters, respectively. DBSCAN analysis was also performed to evaluate yearly variations in physicochemical parameters. Noise points (NOISE of temperature in 2016 were border points (ƥ, whereas in 2014 and 2015 they remained core points (ɋ, indicating a trend toward increasing stream temperature. We found the stream parameters were within the permissible limits set by the Water Quality Standards for River Water, South Korea.

  6. Behavioural and physiological responses of brook trout Salvelinus fontinalis to midwinter flow reduction in a small ice-free mountain stream.

    Science.gov (United States)

    Krimmer, A N; Paul, A J; Hontela, A; Rasmussen, J B

    2011-09-01

    This study presents an experimental analysis of the effects of midwinter flow reduction (50-75%, reduction in discharge in 4 h daily pulses) on the physical habitat and on behaviour and physiology of overwintering brook trout Salvelinus fontinalis in a small mountain stream. Flow reduction did not result in significant lowering of temperature or formation of surface or subsurface ice. The main findings were (1) daily movement by S. fontinalis increased (c. 2·5-fold) during flow reduction, but was limited to small-scale relocations (reduced during flow reduction. (3) Although both experimental and reference fish did lose mass and condition during the experiment, no effects of flow reduction on stress indicators (blood cortisol or glucose) or bioenergetics (total body fat, water content or mass loss) were detected, probably because access to the preferred type of cover remained available. Like other salmonids, S. fontinalis moves little and seeks physical cover during winter. Unlike many of the more studied salmonids, however, this species overwinters successfully in small groundwater-rich streams that often remain ice-free, and this study identifies undercut banks as the critical winter habitat rather than substratum cover. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  7. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang; Furtlehner, Cyril; Germain-Renaud, Cecile; Sebag, Michele

    2014-01-01

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  8. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang

    2014-07-09

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  9. Mucosal blood flow measurements using laser Doppler perfusion monitoring

    Institute of Scientific and Technical Information of China (English)

    Dag Arne Lihaug Hoff; Hans Gregersen; Jan Gunnar Hatlebakk

    2009-01-01

    Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insufficiency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of peripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastrointestinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.

  10. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    International Nuclear Information System (INIS)

    Yang, Jun; Yang, Ming; Yoshikawa, Hidekazu; Yang, Fangqing

    2014-01-01

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs

  11. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun, E-mail: youngjun51@hotmail.com [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yang, Ming, E-mail: yangming@hrbeu.edu.cn [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yoshikawa, Hidekazu, E-mail: yosikawa@kib.biglobe.ne.jp [Symbio Community Forum, Kyoto (Japan); Yang, Fangqing, E-mail: yfq613@163.com [China Nuclear Power Technology Research Institute, 518000 (China)

    2014-10-15

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs.

  12. The use of flow cytometry to monitor chitin synthesis in regenerating protoplasts of Candida albicans.

    Science.gov (United States)

    Hector, R F; Braun, P C; Hart, J T; Kamarck, M E

    1990-01-01

    Flow cytometry was used to monitor chitin synthesis in regenerating protoplasts of the yeast Candida albicans. Comparisons of cells stained with Calcofluor White, a fluorochrome with known affinity for chitin, and cells incubated in the presence of N-[3H]-acetylglucosamine, the precursor substrate for chitin, showed a linear relationship between fluorescence and incorporation of label over time. Changes in both the fluorescence and light scatter of regenerating protoplasts treated with inhibitors of fungal chitin synthase were also quantitated by flow cytometry.

  13. Sewage Monitors

    Science.gov (United States)

    1987-01-01

    Every U.S. municipality must determine how much waste water it is processing and more importantly, how much is going unprocessed into lakes and streams either because of leaks in the sewer system or because the city's sewage facilities were getting more sewer flow than they were designed to handle. ADS Environmental Services, Inc.'s development of the Quadrascan Flow Monitoring System met the need for an accurate method of data collection. The system consists of a series of monitoring sensors and microcomputers that continually measure water depth at particular sewer locations and report their findings to a central computer. This provides precise information to city managers on overall flow, flow in any section of the city, location and severity of leaks and warnings of potential overload. The core technology has been expanded upon in terms of both technical improvements, and functionality for new applications, including event alarming and control for critical collection system management problems.

  14. Research on Segmentation Monitoring Control of IA-RWA Algorithm with Probe Flow

    Science.gov (United States)

    Ren, Danping; Guo, Kun; Yao, Qiuyan; Zhao, Jijun

    2018-04-01

    The impairment-aware routing and wavelength assignment algorithm with probe flow (P-IA-RWA) can make an accurate estimation for the transmission quality of the link when the connection request comes. But it also causes some problems. The probe flow data introduced in the P-IA-RWA algorithm can result in the competition for wavelength resources. In order to reduce the competition and the blocking probability of the network, a new P-IA-RWA algorithm with segmentation monitoring-control mechanism (SMC-P-IA-RWA) is proposed. The algorithm would reduce the holding time of network resources for the probe flow. It segments the candidate path suitably for the data transmitting. And the transmission quality of the probe flow sent by the source node will be monitored in the endpoint of each segment. The transmission quality of data can also be monitored, so as to make the appropriate treatment to avoid the unnecessary probe flow. The simulation results show that the proposed SMC-P-IA-RWA algorithm can effectively reduce the blocking probability. It brings a better solution to the competition for resources between the probe flow and the main data to be transferred. And it is more suitable for scheduling control in the large-scale network.

  15. Accounting for intracell flow in models with emphasis on water table recharge and stream-aquifer interaction: 1. Problems and concepts

    Science.gov (United States)

    Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.

    1989-01-01

    Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by

  16. Analysis of hydraulic characteristics for stream diversion in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jin; Jun, Kye-Won [Chungbuk National University, Cheongju(Korea)

    2001-10-31

    This study is the analysis of hydraulic characteristics for stream diversion reach by numerical model test. Through it we can provide the basis data in flood, and in grasping stream flow characteristics. Analysis of hydraulic characteristics in Seoknam stream were implemented by using computer model HEC-RAS(one-dimensional model) and RMA2(two-dimensional finite element model). As a result we became to know that RMA2 to simulate left, main channel, right in stream is more effective method in analysing flow in channel bends, steep slope, complex bed form effect stream flow characteristics, than HEC-RAS. (author). 13 refs., 3 tabs., 5 figs.

  17. Go with the Flow. Moving meshes and solution monitoring for compressible flow simulation

    NARCIS (Netherlands)

    van Dam, A.

    2009-01-01

    The simulation of time-dependent physical problems, such as flows of some kind, places high demands on the domain discretization in order to obtain high accuracy of the numerical solution. We present a moving mesh method in which the mesh points automatically move towards regions where high spatial

  18. Monitoring of debris flows and landslides by wired and wireless systems. Experiences from the Catalan Pyrenees.

    Science.gov (United States)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, José; Vilajosana, Ignasi; Llosa, Jordi

    2013-04-01

    Sophisticated monitoring of landslides for research purpose has started in the 1990thies in the Catalan Pyrenees. Since then several types of mass movements (large landslides, debris flows, shallow landslides and rock falls) and multiples techniques have been applied. In this contribution, special attention will be given to the debris-flow monitoring system installed since summer 2009 in the Rebaixader catchment, Central Pyrenees. The monitoring system has continuously been improved during the last years and nowadays includes devices studying the three major aspects: 1) initiation, 2) flow dynamics, and 3) accumulation. While some parts of the monitoring network include a traditional wired system, the newer parts were installed using low-power wireless devices. Two major aspects will be discussed. First, results of the Rebaixader monitoring site will be presented. Second, experience regarding the monitoring will be evaluated focussing on technical aspects and the comparison between wired and wireless techniques. In the Rebaixader catchment, 6 debris flows and 11 debris floods were observed between August 2009 and October 2012. Surprisingly, also 4 major rock falls were recorded. The rainfall analysis shows that the debris flows were triggered by short, high-intensity rainstorms with a preliminary threshold of about 15 mm during 1 hour. In addition, there was observed a positive trend between event volume and rainfall amount or intensity. The analysis of the ground vibration signals shows significant differences between the time series recorded at the different geophones. These differences are associated with the geophone location in the channel (distance and material), the mounting or the data acquisition system. For instance, the most downstream geophone, installed in bedrock, shows the clearest debris-flows vibration time series, while the uppermost is the most reliable regarding the detection of rockfalls. An evaluation of wired versus wireless monitoring

  19. Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems

    Science.gov (United States)

    Randall, Allan D.; Freehafer, Douglas A.

    2017-08-02

    A variety of watershed properties available in 2015 from geographic information systems were tested in regression equations to estimate two commonly used statistical indices of the low flow of streams, namely the lowest flows averaged over 7 consecutive days that have a 1 in 10 and a 1 in 2 chance of not being exceeded in any given year (7-day, 10-year and 7-day, 2-year low flows). The equations were based on streamflow measurements in 51 watersheds in the Lower Hudson River Basin of New York during the years 1958–1978, when the number of streamflow measurement sites on unregulated streams was substantially greater than in subsequent years. These low-flow indices are chiefly a function of the area of surficial sand and gravel in the watershed; more precisely, 7-day, 10-year and 7-day, 2-year low flows both increase in proportion to the area of sand and gravel deposited by glacial meltwater, whereas 7-day, 2-year low flows also increase in proportion to the area of postglacial alluvium. Both low-flow statistics are also functions of mean annual runoff (a measure of net water input to the watershed from precipitation) and area of swamps and poorly drained soils in or adjacent to surficial sand and gravel (where groundwater recharge is unlikely and riparian water loss to evapotranspiration is substantial). Small but significant refinements in estimation accuracy resulted from the inclusion of two indices of stream geometry, channel slope and length, in the regression equations. Most of the regression analysis was undertaken with the ordinary least squares method, but four equations were replicated by using weighted least squares to provide a more realistic appraisal of the precision of low-flow estimates. The most accurate estimation equations tested in this study explain nearly 84 and 87 percent of the variation in 7-day, 10-year and 7-day, 2-year low flows, respectively, with standard errors of 0.032 and 0.050 cubic feet per second per square mile. The equations

  20. Thirty-one years of debris-flow observation and monitoring near La Honda, California, USA

    Science.gov (United States)

    Wieczorek, G.F.; Wilson, R.C.; Ellen, S.D.; Reid, M.E.; Jayko, A.S.

    2007-01-01

    From 1975 until 2006,18 intense storms triggered at least 248 debris flows within 10 km2 northwest of the town of La Honda within the Santa Cruz Mountains, California. In addition to mapping debris flows and other types of landslides, studies included soil sampling and geologic mapping, piezometric and tensiometer monitoring, and rainfall measurement and recording. From 1985 until 1995, a system with radio telemetered rain gages and piezometers within the La Honda region was used for issuing six debris-flow warnings within the San Francisco Bay region through the NOAA ALERT system. Depending upon the relative intensity of rainfall during storms, debris flows were generated from deep slumps, shallow slumps, shallow slides in colluvium and shallow slides over bedrock. Analysis shows the storms with abundant antecedent rainfall followed by several days of steady heavy intense rainfall triggered the most abundant debris flows. ?? 2007 millpress.

  1. A multichannel bioimpedance monitor for full-body blood flow monitoring

    Czech Academy of Sciences Publication Activity Database

    Vondra, Vlastimil; Jurák, Pavel; Viščor, Ivo; Halámek, Josef; Leinveber, P.; Matějková, M.; Soukup, L.

    2016-01-01

    Roč. 61, č. 1 (2016), s. 107-118 ISSN 0013-5585 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA ČR GAP102/12/2034 Institutional support: RVO:68081731 Keywords : bioimpedance * blood flow * cardiac output * multichannel measurement * non- invasive measurements * pulse wave velocity Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 0.915, year: 2016

  2. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  3. Monitoring Cs-134 and 137 released by Fukushima Dai-ichi Nuclear Power Plant accident in ground, soil, and stream waters

    Science.gov (United States)

    Tsujimura, Maki; Onda, Yuichi; Hada, Manami; Ishwar, Pun; Abe, Yutaka

    2013-04-01

    Due to Fukushima Dai-ichi Nuclear power plant accident occurred in March 2011, large amount of radionuclides was released into the atmosphere and was fallen onto ground by rainfall. Few researches have monitored radioactive cesium dynamics in whole hydrological cycle system such as groundwater, soil water, spring water and stream water. Thus, the purpose of this study is to monitor concentration of radioactive cesium in those waters in time series in the headwaters. We have performed an intensive monitoring at three small mountainous catchments in Yamakiya district, Kawamata town, Fukushima prefecture, locating 35 km northwest from Fukushima Dai-ichi Nuclear Power Plant since June 2011, also we consider the movement of radioactive cesium and its relation with the hydrological cycle.

  4. What Can Hierarchies Do for Data Streams?

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    Much effort has been put into building data streams management systems for querying data streams. Here, data streams have been viewed as a flow of low-level data items, e.g., sensor readings or IP packet data. Stream query languages have mostly been SQL-based, with the STREAM and TelegraphCQ lang...

  5. Real time EM waves monitoring system for oil industry three phase flow measurement

    International Nuclear Information System (INIS)

    Al-Hajeri, S; Wylie, S R; Shaw, A; Al-Shamma'a, A I

    2009-01-01

    Monitoring fluid flow in a dynamic pipeline is a significant problem in the oil industry. In order to manage oil field wells efficiently, the oil industry requires accurate on line sensors to monitor the oil, gas, and water flow in the production pipelines. This paper describes a non-intrusive sensor that is based on an EM Waves cavity resonator. It determines and monitors the percentage volumes of each phase of three phase (oil, gas, and water) in the pipeline, using the resonant frequencies shifts that occur within an electromagnetic cavity resonator. A laboratory prototype version of the sensor system was constructed, and the experimental results were compared to the simulation results which were obtained by the use of High Frequency Structure Simulation (HFSS) software package.

  6. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  7. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  8. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy

    Science.gov (United States)

    Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.

    2017-06-01

    We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.

  9. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  10. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  11. Investigating Streams and Rivers. An Interdisciplinary Curriculum Guide for Use with Mitchell and Stapp's "Field Manual for Water Quality Monitoring."

    Science.gov (United States)

    Cromwell, Mare; And Others

    This guide contains 12 activities designed to encourage secondary school student inquiry, investigation, and action regarding local streams and rivers. The activities are sequential and organized into three topic areas. The first section consists of three activities that help orient students to their local watercourse. Students map a local…

  12. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    Science.gov (United States)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  13. The development of a high performance liquid chromatograph with a sensitive on-stream radioactivity monitor for the analysis of 3H- and 14C-labelled gibberellins

    International Nuclear Information System (INIS)

    Reeve, D.R.; Yokota, T.; Nash, L.; Crozier, A.

    1976-01-01

    The development of a high performance liquid chromatograph for the separation of gibberellins is described. The system combines high efficiency, peak capacity, and sample capacity with rapid speed of analysis. In addition, the construction details of a sensitive on-stream radioactivity monitor are outlined. The overall versatility of the chromatograph has been demonstrated by the separation of a range of 3 H- and 14 C-labelled gibberellins and gibberellin precursors. The system also has considerable potential for the analysis of abscisic acid and acidic and neutral indoles. (author)

  14. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.

    Science.gov (United States)

    Zeiger, Sean J; Hubbart, Jason A

    2016-12-01

    There is an ongoing need to validate the accuracy of predictive model simulated pollutant yields, particularly from multiple-land-use (i.e. forested, agricultural, and urban) watersheds. However, there are seldom sufficient observed data sets available that supply requisite spatial and temporal resolution and coupled multi-parameter constituents for rigorous model performance assessment. Four years of hydroclimate and water quality data were used to validate SWAT model estimates of monthly stream flow, suspended sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen from 5 nested-scale gauging sites located in a multiple-land-use watershed of the central USA. The uncalibrated SWAT model satisfactorily simulated monthly stream flow with Nash-Sutcliffe efficiency (NSE) values ranging from 0.50 near the headwaters, to 0.75 near the watershed outlet. However, the uncalibrated model did not accurately simulate monthly sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen with NSE valuesSWAT model to multiple gauging sites within the watershed improved estimates of monthly stream flow (NSE=0.83), sediment (NSE=0.78), total phosphorus (NSE=0.81), nitrate (NSE=0.90), and total inorganic nitrogen (NSE=0.86). However, NSE values were model performance decreased for sediment, nitrate, and total inorganic nitrogen during the validation period with NSE valuesSWAT model to multiple gauging sites and provide guidance to SWAT model (or similar models) users wishing to improve model performance at multiple scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Low parameter model to monitor bottom hole pressure in vertical multiphase flow in oil production wells

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-09-01

    Full Text Available The importance of the flow patterns through petroleum production wells proved for upstream experts to provide robust production schemes based on the knowledge about flow behavior. To provide accurate flow pattern distribution through production wells, accurate prediction/representation of bottom hole pressure (BHP for determining pressure drop from bottom to surface play important and vital role. Nevertheless enormous efforts have been made to develop mechanistic approach, most of the mechanistic and conventional models or correlations unable to estimate or represent the BHP with high accuracy and low uncertainty. To defeat the mentioned hurdle and monitor BHP in vertical multiphase flow through petroleum production wells, inventive intelligent based solution like as least square support vector machine (LSSVM method was utilized. The evolved first-break approach is examined by applying precise real field data illustrated in open previous surveys. Thanks to the statistical criteria gained from the outcomes obtained from LSSVM approach, the proposed least support vector machine (LSSVM model has high integrity and performance. Moreover, very low relative deviation between the model estimations and the relevant actual BHP data is figured out to be less than 6%. The output gained from LSSVM model are closed the BHP while other mechanistic models fails to predict BHP through petroleum production wells. Provided solutions of this study explicated that implies of LSSVM in monitoring bottom-hole pressure can indicate more accurate monitoring of the referred target which can lead to robust design with high level of reliability for oil and gas production operation facilities.

  16. Counter-rotating type tidal stream power unit boarded on pillar (performances and flow conditions of tandem propellers)

    Science.gov (United States)

    Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju

    2013-12-01

    The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.

  17. Stream function method for computing steady rotational transonic flows with application to solar wind-type problems

    International Nuclear Information System (INIS)

    Kopriva, D.A.

    1982-01-01

    A numerical scheme has been developed to solve the quasilinear form of the transonic stream function equation. The method is applied to compute steady two-dimensional axisymmetric solar wind-type problems. A single, perfect, non-dissipative, homentropic and polytropic gas-dynamics is assumed. The four equations governing mass and momentum conservation are reduced to a single nonlinear second order partial differential equation for the stream function. Bernoulli's equation is used to obtain a nonlinear algebraic relation for the density in terms of stream function derivatives. The vorticity includes the effects of azimuthal rotation and Bernoulli's function and is determined from quantities specified on boundaries. The approach is efficient. The number of equations and independent variables has been reduced and a rapid relaxation technique developed for the transonic full potential equation is used. Second order accurate central differences are used in elliptic regions. In hyperbolic regions a dissipation term motivated by the rotated differencing scheme of Jameson is added for stability. A successive-line-overrelaxation technique also introduced by Jameson is used to solve the equations. The nonlinear equation for the density is a double valued function of the stream function derivatives. The velocities are extrapolated from upwind points to determine the proper branch and Newton's method is used to iteratively compute the density. This allows accurate solutions with few grid points

  18. Effect of turbulent model closure and type of inlet boundary condition on a Large Eddy Simulation of a non-reacting jet with co-flow stream

    International Nuclear Information System (INIS)

    Payri, Raul; López, J. Javier; Martí-Aldaraví, Pedro; Giraldo, Jhoan S.

    2016-01-01

    Highlights: • LES in a non-reacting jet with co-flow is performed with OpenFoam. • Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are compared. • A turbulent pipe is used to generate and map coherent inlet turbulence structure. • Fluctuating inlet boundary condition requires much less computational cost. - Abstract: In this paper, the behavior and turbulence structure of a non-reacting jet with a co-flow stream is described by means of Large Eddy Simulations (LES) carried out with the computational tool OpenFoam. In order to study the influence of the sub-grid scale (SGS) model on the main flow statistics, Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are used to model the smallest scales involved in the turbulence of the jet. The impact of cell size and turbulent inlet boundary condition in resulting velocity profiles is analyzed as well. Four different tasks have been performed to accomplish these objectives. Firstly, the simulation of a turbulent pipe, which is necessary to generate and map coherent turbulence structure into the inlet of the non-reacting jet domain. Secondly, a structured mesh based on hexahedrons has been built for the jet and its co-flow. The third task consists on performing four different simulations. In those, mapping statistics from the turbulent pipe is compared with the use of fluctuating inlet boundary condition available in OpenFoam; OEE and SMAG approaches are contrasted; and the effect of changing cell size is investigated. Finally, as forth task, the obtained results are compared with experimental data. As main conclusions of this comparison, it has been proved that the fluctuating boundary condition requires much less computational cost, but some inaccuracies were found close to the nozzle. Also, both SGS models are capable to simulate this kind of jets with a co-flow stream with exactitude.

  19. Regional Comparison of Nitrogen Export to Japanese Forest Streams

    Directory of Open Access Journals (Sweden)

    Hideaki Shibata

    2001-01-01

    Full Text Available Nitrogen (N emissions in Asian countries are predicted to increase over the next several decades. An understanding of the mechanisms that control temporal and spatial fluctuation of N export to forest streams is important not only to quantify critical loads of N, N saturation status, and soil acidification N dynamics and budgets in Japanese forested watersheds is not clear due to the lack of regional comparative studies on stream N chemistry. To address the lack of comparative studies, we measured inorganic N (nitrate and ammonium concentrations from June 2000 to May 2001 in streams in 18 experimental forests located throughout the Japanese archipelago and belonging to the Japanese Union of University Forests. N concentrations in stream water during base flow and high flow periods were monitored, and N mineralization potential in soil was measured using batch incubation experiments. Higher nitrate concentrations in stream water were present in central Japan, an area that receives high rates of atmospheric N deposition. In northern Japan, snowmelt resulted in increased nitrate concentrations in stream water. The potential net N mineralization rate was higher in surface soil than in subsurface soil, and the high potential for N mineralization in the surface soil partly contributed to the increase in nitrate concentration in stream water during a storm event. Regional differences in the atmospheric N deposition and seasonality of precipitation and high discharge are principal controls on the concentrations and variations of nitrates in stream water in forested watersheds of Japan.

  20. Monitoring the Erosion of Hydrolytically-Degradable Nanogels via Multiangle Light Scattering Coupled to Asymmetrical Flow Field-Flow Fractionation

    Science.gov (United States)

    Smith, Michael H.; South, Antoinette B.; Gaulding, Jeffrey C.; Lyon, L. Andrew

    2009-01-01

    We describe the synthesis and characterization of degradable nanogels that display bulk erosion under physiologic conditions (pH = 7.4, 37 °C). Erodible poly(N-isopropylmethacrylamide) nanogels were synthesized by copolymerization with N,O-(dimethacryloyl)hydroxylamine, a cross-linker previously used in the preparation of non-toxic and biodegradable bulk hydrogels. To monitor particle degradation, we employed multiangle light scattering and differential refractometry detection following asymmetrical flow field-flow fractionation. This approach allowed the detection of changes in nanogel molar mass and topology as a function of both temperature and pH. Particle erosion was evident from both an increase in nanogel swelling and a decrease in scattering intensity as a function of time. Following these analyses, the samples were recovered for subsequent characterization by direct particle tracking, which yields hydrodynamic size measurements and enables number density determination. Additionally, we confirmed the conservation of nanogel stimuli-responsivity through turbidity measurements. Thus, we have demonstrated the synthesis of degradable nanogels that erode under conditions and on timescales that are relevant for many drug delivery applications. The combined separation and light scattering detection method is demonstrated to be a versatile means to monitor erosion and should also find applicability in the characterization of other degradable particle constructs. PMID:20000662

  1. Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape

    Science.gov (United States)

    Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.

    2017-12-01

    Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and

  2. Technical feasibility study for the D-T neutron monitor using activation of the flowing water

    International Nuclear Information System (INIS)

    Uno, Yoshitomo; Kaneko, Junichi; Nishitani, Takeo; Maekawa, Fujio; Tanaka, Teruya; Ikeda, Yujiro; Takeuchi, Hiroshi

    2001-03-01

    The experimental study of technical feasibility for the D-T neutron monitor using activation of the flowing water was performed at FNS/JAERI as the ITER/EDA R and D Task T499. The temporal resolution for pulsed neutrons was measured and dependence of the temporal resolution on flowing velocity was studied. The temporal resolution of 50 ms that is better than 100 ms of the requirement for ITER was achieved. We found that the temporal resolution is determined by a turbulent dispersion of the flow. The experiment for validation of the method determining the absolute D-T neutron flux was carried out by using the stainless steel (SS 316)/Water assembly to simulate the neutron field in the blanket region of ITER. The neutron emission rate measured with the water activation has a good agreement with that with the neutron yield monitor with associated α detector, and this technique shows the accuracy of the absolute neutron flux better than 10%. At the application on ITER-FEAT, the neutron activation with fluid flow has a dynamic range of 50 kW - 500 MW operation with a temporal resolution of 78 ms at the flow velocity of 10 m/s. (author)

  3. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.

    Science.gov (United States)

    Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz

    2011-02-01

    The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.

  4. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Hansen, Ole; Petersen, Peter Kalsen

    2006-01-01

    Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring...... of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DER The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell...

  5. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raic