WorldWideScience

Sample records for stream discharge database

  1. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  2. Groundwater Discharge along a Channelized Coastal Plain Stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita M [Ky Dept for natural resources, Div of Mine Permits; Sexton, Joshua L [JL Sexton and Son; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Fryar, Alan E [Univ of KY, Dept of Earth and Geoligical Sciences; Greb, Stephen F [Univ of KY, KY Geological Survey

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  3. Dilution and volatilization of groundwater contaminant discharges in streams

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Sonne, Anne Thobo

    2015-01-01

    measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained......An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different...

  4. In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality.

    Science.gov (United States)

    Gomes, Pattiyage I A; Wai, Onyx W H

    2015-08-01

    Implications of instream physical heterogeneity, rainfall-aided flushing, and stream discharge on water quality control have been investigated in a headwater stream of a climatic region that has contrasting dry and wet seasons. Dry (low flow) season's physical heterogeneity showed a positive correlation with good water quality. However, in the wet season, physical heterogeneity showed minor or no significance on water quality variations. Furthermore, physical heterogeneity appeared to be more complementary with good water quality subsequent to rainfall events. In many cases stream discharge was a reason for poor water quality. For the dry season, graywater inputs to the stream could be held responsible. In the wet season, it was probably the result of catchment level disturbances (e.g., regulation of ephemeral freshwater paths). Overall, this study revealed the importance of catchment-based approaches on water quality improvement in tandem with in-stream approaches framed on a temporal scale.

  5. Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data

    Science.gov (United States)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.

    2015-12-01

    The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.

  6. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  7. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  8. Estimating stream discharge using stage and multi-level acoustic Doppler velocimetry

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    than traditional stage-discharge methods. In this presentation we shall present results from a study where, at two sites in Denmark, the stream velocity field has been mapped by the use of three Acoustic Doppler Velocity Meter (ADVM) instruments. The ADVM instruments are mounted in three different......For temperate region countries with small or moderately sized streams, such as those in Denmark, seasonal weed growth imposes a significant temporal change of the stage-discharge relation. In the past such problems were often avoided by using hydraulic structures, however, firm ecology based...... in the Northern part of Europe may further violate a stable relation between stage and discharge in streams. Extreme high flow situations cause abrupt rise in stage, and consequently weed can be partly uprooted and partly bend down along the bed, thereby changing the conveyance of the stream. In addition, extreme...

  9. Comparing Stream Discharge, Dissolved Organic Carbon, and Selected MODIS Indices in Freshwater Basins

    Science.gov (United States)

    Shaver, W. T.; Wollheim, W. M.

    2009-12-01

    In a preliminary study of the Ipswich Basin in Massachusetts, a good correlation was found to exist between the MODIS (Moderate Resolution Imaging Spectroradiometer) Enhanced Vegetation Index and stream dissolved organic carbon (DOC). Further study was warranted to determine the utility of MODIS indices in predicting temporal stream DOC. Stream discharge rates and DOC data were obtained from the USGS National Water Quality Assessment Program (NAWQA) database. Twelve NAWQA monitoring sites were selected for evaluation based on the criteria of having drainage basin sizes less than 600 km2 with relatively continuous, long-term DOC and discharge data. MODIS indices were selected based on their connections with terrestrial DOC and were obtained for each site's catchment area. These included the Normalized Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Daily Photosynthesis (PSN) and the Leaf Area Index (LAI). Regression analysis was used to evaluate the relationships between DOC, discharge and MODIS products. Data analysis revealed several important trends. Sites with strong positive correlation coefficients (r values ranging from 0.462 to 0.831) between DOC and discharge displayed weak correlations with all of the MODIS indices (r values ranging from 0 to 0.322). For sites where the DOC/discharge correlation was weak or negative, MODIS indices were moderately correlated, with r values ranging from 0.35 to 0.647, all of which were significant at less than 1 percent. Some sites that had weak positive correlations with MODIS indices displayed a lag time, that is, the MODIS index rose and fell shortly before the DOC concentration rose and fell. Shifting the MODIS data forward in time by roughly one month significantly increased the DOC/MODIS r values by about 10%. NDVI and EVI displayed the strongest correlations with temporal DOC variability (r values ranging from 0.471 to 0.647), and therefore these indices are the most promising for being incorporated

  10. Partitioning Hydrologic and Biological Drivers of Discharge Loss in Arctic Headwater Streams

    Science.gov (United States)

    Koch, J. C.; Carey, M.; O'Donnell, J. A.; Records, M. K.; Sjoberg, Y.; Zimmerman, C. E.

    2017-12-01

    The Arctic-Boreal transition (ABT) zone of Alaska is experiencing unprecedented warming, leading to permafrost thaw and vegetation change. Both of these processes are likely to affect streams and stream ecosystems, but there is little direct empirical evidence regarding the magnitude of these effects and their relative importance. To understand how permafrost thaw and vegetation are affecting streams at the ABT, we monitored 8 first-order streams that drain catchments varying in elevation, aspect, and vegetation cover. Data were obtained from meteorological stations, continuous stream discharge, seepage runs, and stream tracer experiments. Hydrograph analysis indicated that runoff ratios in south-facing catchments were lower than north-facing catchments and decreased over the season. Seepage runs indicated that south-facing catchments lost a large portion of water (up to 50% per km stream reach) in the late summer, while north-facing catchments were gaining water. All streams displayed diel variability in discharge, but with different daily and seasonal trends related to aspect and elevation. South-facing, forested catchment streams showed diel discharge timing consistent with cycles in evapotranspiration rates, while the signal in north-facing catchments and those dominated by tundra was more consistent with thermal controls on water viscosity and groundwater discharge to streams. Together, these signals indicate that the warmer, south-facing catchments are losing a large portion of water to a combination of infiltration and evapotranspiration. The seasonal trends are consistent with higher infiltration rates beneath south-facing streams as the ground thaws over the summer. The magnitude and seasonal dynamics of the diel signatures help separate biological (i.e. evapotranspiration) vs. physical controls (i.e. frozen ground hydrology) on stream-catchment interactions, which vary depending on aspect, elevation, and vegetation cover. Warming, and subsequent increases

  11. The Stream-Catchment (StreamCat) Dataset: A database of watershed metrics for the conterminous USA

    Science.gov (United States)

    We developed an extensive database of landscape metrics for ~2.65 million streams, and their associated catchments, within the conterminous USA: The Stream-Catchment (StreamCat) Dataset. These data are publically available and greatly reduce the specialized geospatial expertise n...

  12. Bankfull discharge and channel characteristics of streams in New York State

    Science.gov (United States)

    Mulvihill, Christiane I.; Baldigo, Barry P.; Miller, Sarah J.; DeKoskie, Douglas; DuBois, Joel

    2009-01-01

    Equations that relate drainage area to bankfull discharge and channel characteristics (such as width, depth, and cross-sectional area) at gaged sites are needed to help define bankfull discharge and channel characteristics at ungaged sites and can be used in stream-restoration and protection projects, stream-channel classification, and channel assessments. These equations are intended to serve as a guide for streams in areas of similar hydrologic, climatic, and physiographic conditions. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report seeks to increase understanding of the factors affecting bankfull discharge and channel characteristics to drainage-area size relations in New York State by providing an in-depth analysis of seven previously published regional bankfull-discharge and channel-characteristics curves.Stream-survey data and discharge records from 281 cross sections at 82 streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and bankfull-channel width, depth, and cross-sectional area. The R2 and standard errors of estimate of each regional equation were compared to the R2 and standard errors of estimate for the statewide (pooled) model to determine if regionalizing data reduced model variability. It was found that regional models typically yield less variable results than those obtained using pooled statewide equations, which indicates statistically significant regional differences in bankfull-discharge and channel-characteristics relations.Statistical analysis of bankfull-discharge relations found that curves for regions 4 and 7 fell outside the 95-percent confidence interval bands of the statewide model and had intercepts that were significantly diferent (p≤0.10) from the other five hydrologic regions.Analysis of channel-characteristics relations found that the bankfull width, depth, and cross-sectional area

  13. Exploiting the Power of Relational Databases for Efficient Stream Processing

    NARCIS (Netherlands)

    E. Liarou (Erietta); R.A. Goncalves (Romulo); S. Idreos (Stratos)

    2009-01-01

    textabstractStream applications gained significant popularity over the last years that lead to the development of specialized stream engines. These systems are designed from scratch with a different philosophy than nowadays database engines in order to cope with the stream applications

  14. DataCell: Exploiting the Power of Relational Databases for Efficient Stream Processing

    NARCIS (Netherlands)

    E. Liarou (Erietta); M.L. Kersten (Martin)

    2009-01-01

    htmlabstractDesigned for complex event processing, DataCell is a research prototype database system in the area of sensor stream systems. Under development at CWI, it belongs to the MonetDB database system family. CWI researchers innovatively built a stream engine directly on top of a database

  15. Hysteretic behavior of stage-discharge relationships in urban streams

    Science.gov (United States)

    Miller, A. J.; Lindner, G. A.

    2009-12-01

    Reliable stage-discharge relationships or rating curves are of critical importance for accurate calculation of streamflow and maintenance of long-term flow records. Urban streams offer particular challenges for the maintenance of accurate rating curves. It is often difficult or impossible to collect direct discharge measurements at high flows, many of which are generated by short-duration high-intensity summer thunderstorms, both because of dangerous conditions in the channel and also because the stream rises and falls so rapidly that field crews cannot reach sites in time and sometimes cannot make measurements rapidly enough to keep pace with changing water levels even when they are on site during a storm. Work in urban streams in the Baltimore metropolitan area has shown that projection of rating curves beyond the range of measured flows can lead to overestimation of flood peaks by as much as 100%, and these can only be corrected when adequate field data are available to support modeling efforts. Even moderate flows that are above safe wading depth and velocity may best be estimated using hydraulic models. Current research for NSF CNH project 0709659 includes the application of 2-d depth-averaged hydraulic models to match existing rating curves over a range of low to moderate flows and to extend rating curves for higher flows, based on field collection of high-water marks. Although it is generally assumed that stage-discharge relationships are single-valued, we find that modeling results in small urban streams often generate hysteretic relationships, with higher discharges on the rising limb of the hydrograph than on the falling limb. The difference between discharges for the same stage on the rising and falling limb can be on the order of 20-30% even for in-channel flows that are less than 1 m deep. As safety considerations dictate that it is preferable to make direct discharge measurements on the falling limb of the hydrograph, the higher direct measurements

  16. Non-uniform groundwater discharge across a stream bed: Heat as a tracer

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn; Engesgaard, Peter Knudegaard

    2011-01-01

    Time series analysis of conO nuous streambed temperature during a period of 47 d revealed that discharge to a stream is nonuniform, with strongly increasing verO cal fl uxes throughout the top 20 cm of the streambed–aquifer interface. An analyO cal soluO on to the transient heat transport equa...... near the streambed. Seepage meter measurements in the middle of the stream oO en resulted in highly variable fl ux esO - mates, which could have been caused by hyporheic fl ow due to the presence of a gravel layer. Discharge and recharge to the stream at the bank near the meadow was relaO vely steady...

  17. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  18. Use of the PISCES Database: power plant aqueous stream compositions

    International Nuclear Information System (INIS)

    Behrens, G.P.; Orr, D.A.; Wetherold, R.G.; O'Neil, B.T.

    1996-01-01

    The Power Plant Integrated Systems: Chemical Emissions Studies (PISCES) Database sponsored by the Electric Power Research Institute is a powerful tool for evaluating and comparing the level of trace substances in power plant process streams. In this paper, data are presented on the level of several selected trace metals found in a few of the aqueous streams present in power plants. A brief discussion of other features of the Database is presented. The majority of the data is for coal fired power plants, with only 5% pertaining to oil and gas. Sources of pollution include: ash streams; cooling water; coal pile runoff; FGD liquids; makeup water; and wastewater. 11 refs., 10 figs., 1 tab

  19. Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts

    Science.gov (United States)

    Bent, Gardner C.; Waite, Andrew M.

    2013-01-01

    Regression equations were developed for estimating bankfull geometry—width, mean depth, cross-sectional area—and discharge for streams in Massachusetts. The equations provide water-resource and conservation managers with methods for estimating bankfull characteristics at specific stream sites in Massachusetts. This information can be used for the adminstration of the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a protected riverfront area extending from the mean annual high-water line corresponding to the elevation of bankfull discharge along each side of a perennial stream. Additionally, information on bankfull channel geometry and discharge are important to Federal, State, and local government agencies and private organizations involved in stream assessment and restoration projects. Regression equations are based on data from stream surveys at 33 sites (32 streamgages and 1 crest-stage gage operated by the U.S. Geological Survey) in and near Massachusetts. Drainage areas of the 33 sites ranged from 0.60 to 329 square miles (mi2). At 27 of the 33 sites, field data were collected and analyses were done to determine bankfull channel geometry and discharge as part of the present study. For 6 of the 33 sites, data on bankfull channel geometry and discharge were compiled from other studies done by the U.S. Geological Survey, Natural Resources Conservation Service of the U.S. Department of Agriculture, and the Vermont Department of Environmental Conservation. Similar techniques were used for field data collection and analysis for bankfull channel geometry and discharge at all 33 sites. Recurrence intervals of the bankfull discharge, which represent the frequency with which a stream fills its channel, averaged 1.53 years (median value 1.34 years) at the 33 sites. Simple regression equations were developed for bankfull width, mean depth, cross-sectional area, and discharge using drainage area, which is the most significant explanatory

  20. Stream discharge of metals and rare earth elements in rainfall events in a forested catchment

    International Nuclear Information System (INIS)

    Matsunaga, Takeshi; Tsuduki, Katsunori; Yanase, Nobuyuki; Hanzawa, Yukiko; Naganawa, Hirochika; Inoue, Takanobu; Yamada, Toshiro; Miyata, Akifumi

    2007-01-01

    In a forested catchment rainfall event, the accelerated stream discharge of dissolved Cr, Cu, and Sb was attributed mainly to the first flush from the ground surface and/or instantaneous resuspension of stream sediment, while REE discharge was linked to that of dissolved organic matter from the soil layer. (author)

  1. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Science.gov (United States)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  2. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    2005-01-01

    Full Text Available Spatio-temporal patterns of small water bodies (SWBs under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  3. Role of flood discharge in shaping stream geometry: Analysis of a small modern stream in the Uinta Basin, USA

    Directory of Open Access Journals (Sweden)

    Guang-Ming Hu

    2017-01-01

    This stream example demonstrates the subtleties of stream flow and the importance of flood discharge in shaping the channel geometry. Although it is difficult to scale up this example to a large river system that carves geomorphic landscape, this case shows how river geometries vary from the traditional patterns due to different gradient.

  4. Seasonal movement of Dolly Varden and cutthroat trout with respect to stream discharge in a second–order stream in South Alaska

    Science.gov (United States)

    M.D. Bryant; M.D. Lukey; J.P. McDonell; R.A. Gubernick; R.S. Aho

    2009-01-01

    The relationship between the movement of small (,150-mm) Dolly Varden Salvelinus malma and cutthroat trout Oncorhynchus clarkii and stream discharge is not well known in streams of southeast Alaska. We measured movement in a small headwater stream using passive integrated transponder (PIT) tags and stationary antennas to record time and date of movement. Fish with PIT...

  5. Estimation of Flood-Frequency Discharges for Rural, Unregulated Streams in West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Atkins, John T.

    2010-01-01

    Flood-frequency discharges were determined for 290 streamgage stations having a minimum of 9 years of record in West Virginia and surrounding states through the 2006 or 2007 water year. No trend was determined in the annual peaks used to calculate the flood-frequency discharges. Multiple and simple least-squares regression equations for the 100-year (1-percent annual-occurrence probability) flood discharge with independent variables that describe the basin characteristics were developed for 290 streamgage stations in West Virginia and adjacent states. The regression residuals for the models were evaluated and used to define three regions of the State, designated as Eastern Panhandle, Central Mountains, and Western Plateaus. Exploratory data analysis procedures identified 44 streamgage stations that were excluded from the development of regression equations representative of rural, unregulated streams in West Virginia. Regional equations for the 1.1-, 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year flood discharges were determined by generalized least-squares regression using data from the remaining 246 streamgage stations. Drainage area was the only significant independent variable determined for all equations in all regions. Procedures developed to estimate flood-frequency discharges on ungaged streams were based on (1) regional equations and (2) drainage-area ratios between gaged and ungaged locations on the same stream. The procedures are applicable only to rural, unregulated streams within the boundaries of West Virginia that have drainage areas within the limits of the stations used to develop the regional equations (from 0.21 to 1,461 square miles in the Eastern Panhandle, from 0.10 to 1,619 square miles in the Central Mountains, and from 0.13 to 1,516 square miles in the Western Plateaus). The accuracy of the equations is quantified by measuring the average prediction error (from 21.7 to 56.3 percent) and equivalent years of record (from 2.0 to 70

  6. Hydraulic modeling of thermal discharges into shallow, tidal affected streams

    International Nuclear Information System (INIS)

    Copp, H.W.; Shashidhara, N.S.

    1981-01-01

    A two-unit nuclear fired power plant is being constructed in western Washington state. Blowdown water from cooling towers will be discharged into the Chehalis River nearby. The location of a diffuser is some 21 miles upriver from Grays Harbor on the Pacific Ocean. Because the Chehalis River is classified as an excellent stream from the standpoint of water quality, State regulatory agencies required demonstration that thermal discharges would maintain water quality standards within fairly strict limits. A hydraulic model investigation used a 1:12 scale, undistorted model of a 1300-foot river reach in the vicinity of the diffuser. The model scale was selected to insure fully turbulent flows both in the stream and from the diffuser (Reynolds similitude). Model operation followed the densimetric Froude similitude. Thermistors were employed to measure temperatures in the model; measurements were taken by computer command and such measurements at some 250 positions were effected in about 2.5 seconds

  7. Regression models of discharge and mean velocity associated with near-median streamflow conditions in Texas: utility of the U.S. Geological Survey discharge measurement database

    Science.gov (United States)

    Asquith, William H.

    2014-01-01

    A database containing more than 16,300 discharge values and ancillary hydraulic attributes was assembled from summaries of discharge measurement records for 391 USGS streamflow-gauging stations (streamgauges) in Texas. Each discharge is between the 40th- and 60th-percentile daily mean streamflow as determined by period-of-record, streamgauge-specific, flow-duration curves. Each discharge therefore is assumed to represent a discharge measurement made for near-median streamflow conditions, and such conditions are conceptualized as representative of midrange to baseflow conditions in much of the state. The hydraulic attributes of each discharge measurement included concomitant cross-section flow area, water-surface top width, and reported mean velocity. Two regression equations are presented: (1) an expression for discharge and (2) an expression for mean velocity, both as functions of selected hydraulic attributes and watershed characteristics. Specifically, the discharge equation uses cross-sectional area, water-surface top width, contributing drainage area of the watershed, and mean annual precipitation of the location; the equation has an adjusted R-squared of approximately 0.95 and residual standard error of approximately 0.23 base-10 logarithm (cubic meters per second). The mean velocity equation uses discharge, water-surface top width, contributing drainage area, and mean annual precipitation; the equation has an adjusted R-squared of approximately 0.50 and residual standard error of approximately 0.087 third root (meters per second). Residual plots from both equations indicate that reliable estimates of discharge and mean velocity at ungauged stream sites are possible. Further, the relation between contributing drainage area and main-channel slope (a measure of whole-watershed slope) is depicted to aid analyst judgment of equation applicability for ungauged sites. Example applications and computations are provided and discussed within a real-world, discharge

  8. A 3-D numerical model of the influence of meanders on groundwater discharge to a gaining stream in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Boon, Wietse M.; Nicolajsen, Ellen

    2017-01-01

    Groundwater discharge to streams depends on stream morphology and groundwater flow direction, but are not always well understood. Here a 3-D groundwater flow model is employed to investigate the impact of meandering stream geometries on groundwater discharge to streams in an unconfined and homoge...

  9. Concentration-Discharge Behavior of Contaminants in a Stream Impacted by Acid Mine Drainage

    Science.gov (United States)

    Shaw, M. E.; Klein, M.; Herndon, E.

    2017-12-01

    Acid mine drainage (AMD) has severely degraded streams throughout the Appalachian coal region of the United States. AMD occurs when pyrite contained in coal is exposed to water and air during mining activities and oxidized to release high concentrations of sulfate, metals, and acidity into water bodies. Little is known about the concentration-discharge (CQ) relationships of solutes in AMD-impacted streams due to the complicated nature of acid mine drainage systems. For example, streams may receive inputs from multiple sources that include runoff, constructed treatment systems, and abandoned mines that bypass these systems to continue to contaminate the streams. It is important to understand the CQ relationships of contaminants in AMD-impacted streams in order to elucidate contaminant sources and to predict effects on aquatic ecosystems. Here, we study the CQ behaviors of acid and metals in a contaminated watershed in northeastern Ohio where limestone channels have been installed to remediate water draining from a mine pool into the stream. Stream chemistry was measured in samples collected once per day or once per hour during storm events, and stream flow was measured continuously at the watershed outlet. Increases in stream velocity during storm events resulted in an increase in pH (from 3 to 6) that subsequently decreased back to 3 as flow decreased. Additionally, Fe and Mn concentrations in the stream were high during baseflow (7 and 15 mg/L, respectively) and decreased with increasing discharge during storm events. These results indicate that the treatment system is only effective at neutralizing stream acidity and removing metals when water flow through the limestone channel is continuous. We infer that the acidic and metal-rich baseflow derives from upwelling of contaminated groundwater or subsurface flow from a mine pool. Ongoing studies aim to isolate the source of this baseflow contamination and evaluate the geochemical transformations that occur as it

  10. Age and admission times as predictive factors for failure of admissions to discharge-stream short-stay units.

    Science.gov (United States)

    Shetty, Amith L; Shankar Raju, Savitha Banagar; Hermiz, Arsalan; Vaghasiya, Milan; Vukasovic, Matthew

    2015-02-01

    Discharge-stream emergency short-stay units (ESSU) improve ED and hospital efficiency. Age of patients and time of hospital presentations have been shown to correlate with increasing complexity of care. We aim to determine whether an age and time cut-off could be derived to subsequently improve short-stay unit success rates. We conducted a retrospective audit on 6703 (5522 inclusions) patients admitted to our discharge-stream short-stay unit. Patients were classified as appropriate or inappropriate admissions, and deemed successful if discharged out of the unit within 24 h; and failures if they needed inpatient admission into the hospital. We calculated short-stay unit length of stay for patients in each of these groups. A 15% failure rate was deemed as acceptable key performance indicator (KPI) for our unit. There were 197 out of 4621 (4.3%, 95% CI 3.7-4.9%) patients up to the age of 70 who failed admission to ESSU compared with 67 out of 901 (7.4%, 95% CI 5.9-9.3%, P 70 years of age have higher rates of failure after admission to discharge-stream ESSU. Although in appropriately selected discharge-stream patients, no age group or time-band of presentation was associated with increased failure rate beyond the stipulated KPI. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  11. Numerical simulation studies of the groundwater discharge to streams from abandoned uranium mill tailings

    International Nuclear Information System (INIS)

    Abdul, A.S.; Gillham, R.W.

    1984-06-01

    This report presents an evaluation of the results of simulation studies of groundwater discharge to streams from abandoned uranium mill tailings and the effects of this discharge on the flux of contaminants to surface water systems. In particular, a discussion of the sensitivity of subsurface discharge to specific geometirc, climatic and hydrogeologic factors is presented. Simulations were carried out using a two-dimensional numerical finite-element unsaturated-saturated flow model. A total of twenty-six simulations were made. The first twenty-four of these considered a tailings medium with homogeneous and isotropic hydraulic properties and with textural properties similar to those of sandy geological materials. In addition, two simulations were carried out for tailings materials with hydraulic properties that are similar to those of silt-loam. The results indicated that the actual quantity of subsurface discharge depends on many factors including rainfall rate and duration, surface slope, and texture. However, for the medium-fine sand material, subsurface discharge was always a significant component of the total discharge. Within the context of uranium tailings management this implies that large quantities of contaminants from subsurface sources of medium-textured tailings can be expected to be discharged to streams during stormflow events. Therefore there is reason to suspect that untreated runoff from such tailings will contain significant concentrations of contaminants for long periods of time

  12. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    P. Gao

    2013-03-01

    Full Text Available Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P P P P P < 0.05, respectively. The impact of precipitation or human activity on the reduction amount after the transition years was estimated by double mass curves of precipitation vs. stream flow (sediment. For reductions in stream flow and sediment discharge, the contribution rate of human activity was found to be 82.80 and 95.56%, respectively, and was significantly stronger than the contribution rate of precipitation. This evidence clearly suggests that, in the absence of significant decreases in precipitation

  13. Temperature and Discharge on a Highly Altered Stream in Utah's Cache Valley

    OpenAIRE

    Pappas, Andy

    2013-01-01

    To study the River Continuum Concept (RCC) and the Serial Discontinuity Hypothesis (SDH), I looked at temperature and discharge changes along 52 km of the Little Bear River in Cache Valley, Utah. The Little Bear River is a fourth order stream with one major reservoir, a number of irrigation diversions, and one major tributary, the East Fork of the Little Bear River. Discharge data was collected at six sites on 29 September 2012 and temperature data was collected hourly at eleven sites from 1 ...

  14. Audio stream classification for multimedia database search

    Science.gov (United States)

    Artese, M.; Bianco, S.; Gagliardi, I.; Gasparini, F.

    2013-03-01

    Search and retrieval of huge archives of Multimedia data is a challenging task. A classification step is often used to reduce the number of entries on which to perform the subsequent search. In particular, when new entries of the database are continuously added, a fast classification based on simple threshold evaluation is desirable. In this work we present a CART-based (Classification And Regression Tree [1]) classification framework for audio streams belonging to multimedia databases. The database considered is the Archive of Ethnography and Social History (AESS) [2], which is mainly composed of popular songs and other audio records describing the popular traditions handed down generation by generation, such as traditional fairs, and customs. The peculiarities of this database are that it is continuously updated; the audio recordings are acquired in unconstrained environment; and for the non-expert human user is difficult to create the ground truth labels. In our experiments, half of all the available audio files have been randomly extracted and used as training set. The remaining ones have been used as test set. The classifier has been trained to distinguish among three different classes: speech, music, and song. All the audio files in the dataset have been previously manually labeled into the three classes above defined by domain experts.

  15. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    International Nuclear Information System (INIS)

    1993-12-01

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment

  16. Quantification of Groundwater Discharge in a Subalpine Stream Using Radon-222

    Directory of Open Access Journals (Sweden)

    Elizabeth Avery

    2018-01-01

    Full Text Available During the dry months of the water year in Mediterranean climates, groundwater influx is essential to perennial streams for sustaining ecosystem health and regulating water temperature. Predicted earlier peak flow due to climate change may result in decreased baseflow and the transformation of perennial streams to intermittent streams. In this study, naturally occurring radon-222 (222Rn was used as a tracer of groundwater influx to Martis Creek, a subalpine stream near Lake Tahoe, CA. Groundwater 222Rn is estimated based on measurements of 222Rn activity in nearby deep wells and springs. To determine the degassing constant (needed for quantification of water and gas flux, an extrinsic tracer, xenon (Xe, was introduced to the stream and monitored at eight downstream locations. The degassing constant for 222Rn is based on the degassing constant for Xe, and was determined to be 1.9–9.0 m/day. Applying a simple model in which stream 222Rn activity is a balance between the main 222Rn source (groundwater and sink (volatilization, the influx in reaches of the upstream portion of Martis Creek was calculated to be <1 to 15 m3/day/m, which cumulatively constitutes a significant portion of the stream discharge. Experiments constraining 222Rn emanation from hyporheic zone sediments suggest that this should be considered a maximum rate of influx. Groundwater influx is typically difficult to identify and quantify, and the method employed here is useful for identifying locations for focused stream flow measurements, for formulating a water budget, and for quantifying streamwater–groundwater interaction.

  17. Use of radars to monitor stream discharge by noncontact methods

    Science.gov (United States)

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods

  18. Temporal variability in discharge and benthic macroinvertebrate assemblages in a tropical glacier-fed stream

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Andino, Patricio; Calvez, Roger

    2014-01-01

    discharge parameters 3, 6, 9, 21, and 45 d before sampling. The effect of flow (slopes of regressions of faunal metrics vs flow) did not differ among sites, but the amount of variation explained by flow was significant only at the 2 downstream sites. Little synchrony was found in variability among sites......-fed stream, a prerequisite for subsequent predictions of consequences of tropical glacier melting on diversity, composition, and stability of stream communities....

  19. Effects of non-Maxwellian electron velocity distribution function on two-stream instability in low-pressure discharges

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2007-01-01

    Electron emission from discharge chamber walls is important for plasma maintenance in many low-pressure discharges. The electrons emitted from the walls are accelerated by the sheath electric field and are injected into the plasma as an electron beam. Penetration of this beam through the plasma is subject to the two-stream instability, which tends to slow down the beam electrons and heat the plasma electrons. In the present paper, a one-dimensional particle-in-cell code is used to simulate these effects both in a collisionless plasma slab with immobile ions and in a cross-field discharge of a Hall thruster. The two-stream instability occurs if the total electron velocity distribution function of the plasma-beam system is a nonmonotonic function of electron speed. Low-pressure plasmas can be depleted of electrons with energy above the plasma potential. This study reveals that under such conditions the two-stream instability depends crucially on the velocity distribution function of electron emission. It is shown that propagation of the secondary electron beams in Hall thrusters may be free of the two-stream instability if the velocity distribution of secondary electron emission is a monotonically decaying function of speed. In this case, the beams propagate between the walls with minimal loss of the beam current and the secondary electron emission does not affect the thruster plasma properties

  20. Evaluation of stream discharges measurement using radioisotope and conventional method at Sungai Weng catchment area, Kedah

    International Nuclear Information System (INIS)

    Nazrul Hizam Yusoff and Wan Zakaria Wan MuhdTahir

    2006-01-01

    A number of discharge measurements using radioisotope and current metering techniques at selected streams in Sg. Weng Experimental Catchment were conducted by MINT and JPS gauging teams starting from 2003-2005. This study aims to prepare stage-discharge relationships or rating curves of the selected streams during variable flow conditions. The rating curve of the stream is one of the important parameters and usually appraised in certain routine operations of hydrological studies. It may be used in the planning of water resources management and flood control scheme. The radioisotope method employed in this study involved the injection of short-lived radioisotope tracer, that is, technetium-99m ( 99m Tc having its half-life ∼ 6.023 hrs) which was supplied from a high activity technetium generator (55.5 Gbq). Measurement of stream discharges were concurrently undertaken by JPS staff using a current meter type 0TT-C2 mounted on a wading rod at selected gauging stations for comparison purposes. Methodologies from the two methods of discharge measurements, comparison of results and identifying the uncertainties (errors) in performing the measurement during low, medium and high turbulent flows were explained in this paper. Generally, the entire results of streamflow data (2003-2005) measured by both methods during low flows (Q 3 /s) exhibit almost comparable values to each other. However, for moderate flows (1.0 m 3 /s 3 /s), the different in gauging results are slightly higher using radioisotope method ( i.e. Q isotope > Q current meter and may goes up to 40%) , and during high turbulent flows (Q>6.0 m 3 /s) the radioisotope method presented more than 40% higher discharge values as compared to the measurement made by the conventional current-meter. Observation made on site anticipated that inaccurate gauging data measured by conventional means during high flow and turbulent conditions are expected. The average estimated measurement error associated with isotope method

  1. Influence of geometry of the discharge interval on distribution of ion and electron streams at surface of the Penning source cathode

    International Nuclear Information System (INIS)

    Egiazaryan, G.A.; Khachatrian, Zh.B.; Badalyan, E.S.; Ter-Gevorgyan, E.I.; Hovhannisyan, V.N.

    2006-01-01

    In the discharge of oscillating electrons, the mechanism of the processes, which controls the distribution of the ion and electron streams over the cathode surface, is investigated experimentally. The influence of the length of the discharge interval on value and distribution of the ion and electron streams is analyzed. The distribution both of ion and electron streams at the cathode surface is determined at different conditions of the discharge. It is shown that for given values of the anode diameter d a =31 mm and the gas pressure P=5x10 -5 Torr, the intensive stream of positive ions falls entirely on the cathode central area in the whole interval of the anode length variation (l a =1-11 cm). At the cathode, the ion current reaches the maximal value at a certain (optimal) value of the anode length that, in turn, depends on the anode voltage U a . The intensive stream of longitudinal electrons forms in the short anodes only (l a =2.5-3.5 cm) and depending on the choice of the discharge regime, may fall both on central and middle parts of the cathode

  2. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    Science.gov (United States)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore

  3. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  4. Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Yang Xuefeng; Li Cuihong; Xu Yong

    2005-01-01

    Formaldehyde is a major indoor air pollutant and can cause serious health disorders in residents. This work reports the removal of formaldehyde from gas streams via alumina-pellet-filled dielectric barrier discharge plasmas at atmospheric pressure and 70 deg. C. With a feed gas mixture of 140 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼92% of formaldehyde can be effectively destructed at GHSV (gas flow volume per hour per discharge volume) of 16 500 h -1 and E in = 108 J l -1 . An increase in the specific surface area of the alumina pellets enhances the HCHO removal, and this indicates that the adsorbed HCHO species may have a lower C-H bond breakage energy. Based on an examination of the influence of gas composition on the removal efficiency, the primary destruction pathways, besides the reactions initiated by discharge-generated radicals, such as O, H, OH and HO 2 , may include the consecutive dissociations of HCHO molecules and HCO radicals through their collisions with vibrationally- and electronically-excited metastable N 2 species. The increase of O 2 content in the inlet gas stream is able to diminish the CO production and to promote the formation of CO 2 via O-atom or HO 2 -radical involved reactions

  5. BAM: Bayesian AMHG-Manning Inference of Discharge Using Remotely Sensed Stream Width, Slope, and Height

    Science.gov (United States)

    Hagemann, M. W.; Gleason, C. J.; Durand, M. T.

    2017-11-01

    The forthcoming Surface Water and Ocean Topography (SWOT) NASA satellite mission will measure water surface width, height, and slope of major rivers worldwide. The resulting data could provide an unprecedented account of river discharge at continental scales, but reliable methods need to be identified prior to launch. Here we present a novel algorithm for discharge estimation from only remotely sensed stream width, slope, and height at multiple locations along a mass-conserved river segment. The algorithm, termed the Bayesian AMHG-Manning (BAM) algorithm, implements a Bayesian formulation of streamflow uncertainty using a combination of Manning's equation and at-many-stations hydraulic geometry (AMHG). Bayesian methods provide a statistically defensible approach to generating discharge estimates in a physically underconstrained system but rely on prior distributions that quantify the a priori uncertainty of unknown quantities including discharge and hydraulic equation parameters. These were obtained from literature-reported values and from a USGS data set of acoustic Doppler current profiler (ADCP) measurements at USGS stream gauges. A data set of simulated widths, slopes, and heights from 19 rivers was used to evaluate the algorithms using a set of performance metrics. Results across the 19 rivers indicate an improvement in performance of BAM over previously tested methods and highlight a path forward in solving discharge estimation using solely satellite remote sensing.

  6. An Investigation of the Fine Spatial Structure of Meteor Streams Using the Relational Database ``Meteor''

    Science.gov (United States)

    Karpov, A. V.; Yumagulov, E. Z.

    2003-05-01

    We have restored and ordered the archive of meteor observations carried out with a meteor radar complex ``KGU-M5'' since 1986. A relational database has been formed under the control of the Database Management System (DBMS) Oracle 8. We also improved and tested a statistical method for studying the fine spatial structure of meteor streams with allowance for the specific features of application of the DBMS. Statistical analysis of the results of observations made it possible to obtain information about the substance distribution in the Quadrantid, Geminid, and Perseid meteor streams.

  7. Use of stream water pH and specific conductance measurements to identify ground water discharges of fly ash leachate

    International Nuclear Information System (INIS)

    Price, R.M.

    1992-01-01

    Low pH and high specific conductance are typical chemical characteristics of coal fly ash leachate. Measurements of these parameters in streams adjacent to a fly ash facility were used to identify areas of ground water discharge into the streams. In-situ specific conductance and pH were determined at approximately 50 surface water stations from on-site and off-site streams. The results of the in-situ determinations were used to select twelve surface water stations for more detailed chemical analyses. The chemical character of the stream water affected by ground water discharges was similar to the water quality of sedimentation ponds which received drainage from the fly ash embankment. The results indicated that in-situ measurements of indicator parameters such as pH and specific conductance can be used as a screening method for identifying surface water quality impacts at fly ash facilities

  8. Nitrate retention in a sand plains stream and the importance of groundwater discharge

    Science.gov (United States)

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon

    2011-01-01

    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  9. Estimation of nitrate in aqueous discharge streams in presence of other anionic species

    International Nuclear Information System (INIS)

    Dhara, Amrita; Sonar, N.L.; Valsala, T.P.; Vishwaraj, I.

    2017-01-01

    In the PUREX process the spent fuel is dissolved in concentrated nitric acid for the recovery of U and Pu using 30% TBP solvent system. The added nitrates are reporting in the waste streams of reprocessing plant. In view of the environmental concern for nitrate discharges, it is essential to monitor the nitrate content in the radioactive waste streams. An analytical method based on nitration of salicylic acid in acidic medium was studied for its applicability in the estimation of nitrate in radioactive waste containing various other anions. The yellow colored complex formed absorbs at 410 nm in alkaline media. Interference of various anionic species like sulphide, chloride, ferrocyanide, phosphate etc present in different waste streams on the estimation of nitrate was studied. Nitrate could be estimated in radioactive waste in presence of other anionic species within an error of less than 6%. (author)

  10. Variability in stream discharge and temperature: a preliminary assessment of the implications for juvenile and spawning Atlantic salmon

    Directory of Open Access Journals (Sweden)

    D. Tetzlaff

    2005-01-01

    Full Text Available This study focuses on understanding the temporal variability in hydrological and thermal conditions in a small mountain stream and its potential implication for two life stages of Atlantic salmon (Salmo salar – stream resident juveniles and returning adult spawners. Stream discharge and temperature in the Girnock Burn, NE Scotland, were characterised over ten hydrological years (1994/1995–2003/2004. Attention was focussed on assessing variations during particular ecologically 'sensitive' time periods when selected life-stages of salmon behaviour may be especially influenced by hydrological and thermal conditions. Empirical discharge data were used to derive hydraulic parameters to predict the Critical Displacement Velocity (CDV of juvenile salmon. This is the velocity above which fish may no longer be able to hold station in the water column and thus can be used as an index of time periods where feeding behaviour might be constrained. In the Girnock Burn, strong inter- and intra-annual variability in hydrological and thermal conditions may have important implications for feeding opportunities for juvenile fish; both during important growth periods in late winter and early spring, and the emergence of fry in the late spring. Time periods when foraging behaviour of juvenile salmon may be constrained by hydraulic conditions were assessed as the percentage time when CDV for 0+ and 1+ fish were exceeded by mean daily stream velocities. Clear seasonal patterns of CDV were apparent, with higher summer values driven by higher stream temperatures and fish length. Inter-annual variability in the time when mean stream velocity exceeded CDV for 0+ fish ranged between 29.3% (1997/1998 and 44.7% (2000/2001. For 1+ fish mean stream velocity exceeded CDV between 14.5% (1997/1998 and 30.7% (2000/2001 of the time. The movement of adult spawners into the Girnock Burn in preparation for autumn spawning (late October to mid-November exhibited a complex

  11. Categorisation of waste streams arising from the operation of a low active waste incinerator and justification of discharge practices

    International Nuclear Information System (INIS)

    Richards, J.M.

    1989-01-01

    Waste streams arising from the low active waste incinerator at Harwell are described, and the radiological impact of each exposure pathway discussed. The waste streams to be considered are: (i) discharge of scrubber liquors after effluent treatment to the river Thames; (ii) disposal of incinerator ash; and (iii) discharge of airborne gaseous effluents to the atmosphere. Doses to the collective population and critical groups as a result of the operation of the incinerator are assessed and an attempt made to justify the incineration practice by consideration of the radiological impact and monetary costs associated with alternative disposal methods. (author)

  12. GAGES: A stream gage database for evaluating natural and alteredflow conditions in the conterminous United States

    Science.gov (United States)

    Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.

    2010-01-01

    Stream flow is a controlling element in the ecology of rivers and streams. Knowledge of the natural flow regime facilitates the assessment of whether specific hydrologic attributes have been altered by humans in a particular stream and the establishment of specific goals for stream-flow restoration. Because most streams are ungaged or have been altered by human influences, characterizing the natural flow regime is often only possible by estimating flow characteristics based on nearby stream gages of reference quality, i.e., gaged locations that are least disturbed by human influences. The ability to evaluate natural stream flow, that which is not altered by human activities, would be enhanced by the existence of a nationally consistent and up-to-date database of gages in relatively undisturbed watersheds.

  13. Historical trends in precipitation and stream discharge at the Skjern River catchment, Denmark

    DEFF Research Database (Denmark)

    Karlsson, Ida Bjørnholt; Sonnenborg, Torben Obel; Jensen, Karsten Høgh

    2014-01-01

    for undercatch. The degree of change in the climatic variables is examined using the non-parametric Mann–Kendall test. During the last 133 yr the area has experienced a significant change in precipitation of 26% and a temperature change of 1.4°C, leading to increases in river discharge of 52% and groundwater...... outside the calibration period. The results showed a reduced model fit, especially for recent time periods (after the 1980s), and not all hydrological changes could be explained. This might indicate that hydrological models cannot be expected to predict climate change impacts on discharge as accurately...... in the future, compared to the performance under present conditions, where they can be calibrated. The (simulated) stream discharge was subsequently analysed using high flow and drought indices based on the threshold method. The extreme signal was found to depend highly on the period chosen as reference...

  14. Numerical investigation of symmetry breaking and critical behavior of the acoustic streaming field in high-intensity discharge lamps

    International Nuclear Information System (INIS)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled three-dimensional multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. In certain respects the system behaves similar to a ferromagnet near the Curie point. It is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach with a transient model. (paper)

  15. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  16. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    International Nuclear Information System (INIS)

    1995-11-01

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology

  17. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology.

  18. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA.

    Science.gov (United States)

    Steven M. Wondzell

    2006-01-01

    Stream-tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach-integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS-P. Transient...

  19. Structure of turbulent velocity field in the discharge stream from a standard Rushton turbine impeller

    Czech Academy of Sciences Publication Activity Database

    Kysela, Bohuš; Konfršt, Jiří; Chára, Zdeněk; Fořt, I.

    2017-01-01

    Roč. 23, č. 2 (2017), s. 151-160 ISSN 1451-9372 R&D Projects: GA ČR GA16-20175S Institutional support: RVO:67985874 Keywords : rushton turbine * LDA * discharge stream * agitated vessel Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.664, year: 2016

  20. Methods for estimating annual exceedance-probability discharges and largest recorded floods for unregulated streams in rural Missouri.

    Science.gov (United States)

    2014-01-01

    Regression analysis techniques were used to develop a : set of equations for rural ungaged stream sites for estimating : discharges with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent : annual exceedance probabilities, which are equivalent to : ann...

  1. Detecting groundwater discharge dynamics from point-to-catchment scale in a lowland stream

    DEFF Research Database (Denmark)

    Poulsen, J. R.; Sebök, Éva; Duque, C.

    2015-01-01

    was quantified using differential gauging with an acoustic Doppler current profiler (ADCP). At the catchment scale (26–114 km2), runoff sources during main rain events were investigated by hydrograph separations based on electrical conductivity (EC) and stable isotopes 2H/1H. Clear differences in runoff sources...... response to precipitation events. This shows a large variability in groundwater discharge to the stream, despite the similar lowland characteristics of sub-catchments indicating the usefulness of environmental tracers for obtaining information about integrated catchment functioning during precipitation...

  2. Application of Discharges in Vapor of Evaporated Metals for the Film Deposition from the Ionized Stream

    International Nuclear Information System (INIS)

    Kostin, E.G.

    2006-01-01

    results of researches of the discharge device for ionization of the vapor of solid materials are presented. Evaporation of a material was made by an electron gun with a deviation of a beam on 180 degree. Diode type discharge device for ionization was placed above a surface of evaporated metal and was in a longitudinal adjustable magnetic field. Discharge was carried out in crossed electric and magnetic fields. Partial ionization of the vapor was made by primary and secondary electrons of the gun in a vapor cloud above evaporated substance. Physical properties and structure of the films. The comparative analysis of the films properties, besieged in conditions of influence of bombardment by ions of evaporated metal were studied depending on energy and the contents of ions in a stream of particles on a substrate

  3. Removal of ammonia from gas streams with dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Xia Lanyan; Huang Li; Shu Xiaohong; Zhang Renxi; Dong Wenbo; Hou Huiqi

    2008-01-01

    We reported on the experimental study of gas-phase removal of ammonia (NH 3 ) via dielectric barrier discharge (DBD) at atmospheric pressure, in which we mainly concentrated on three aspects-influence of initial NH 3 concentration, peak voltage, and gas residence time on NH 3 removal efficiency. Effectiveness, e.g. the removal efficiency, specific energy density, absolute removal amount and energy yield, of the self-made DBD reactor had also been studied. Basic analysis on DBD physical parameters and its performance was made in comparison with previous investigation. Moreover, products were detected via ion exchange chromatography (IEC). Experimental results demonstrated the application potential of DBD as an alternative technology for odor-causing gases elimination from gas streams

  4. Meteorological, stream-discharge, and water-quality data for water year 1992 from two basins in Central Nevada

    International Nuclear Information System (INIS)

    McKinley, P.W.; Oliver, T.A.

    1995-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is studying Yucca Mountain, Nevada, as a potential repository for high level nuclear waste. As part of the Yucca Mountain Site Project, the analog recharge study is providing data for the evaluation of recharge to the Yucca Mountain ground-water system given a cooler and wetter climate than currently exists. The current and climatic conditions are favorable to the isolation of radioactive waste. Because waste isolation from the accessible environment for 10,000 years is necessary, climatic change and the potential for increased ground-water recharge need to be considered as part of the characterization of the potential repository. Therefore, two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to ground water. The semiarid 3-Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. The purpose of this publication is to make available the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins

  5. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationship

    Science.gov (United States)

    Evans, C.; Davies, T.D.; Murdoch, Peter S.

    1999-01-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the

  6. Estimating magnitude and frequency of peak discharges for rural, unregulated, streams in West Virginia

    Science.gov (United States)

    Wiley, J.B.; Atkins, John T.; Tasker, Gary D.

    2000-01-01

    Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).

  7. Incorporation of water-use summaries into the StreamStats web application for Maryland

    Science.gov (United States)

    Ries, Kernell G.; Horn, Marilee A.; Nardi, Mark R.; Tessler, Steven

    2010-01-01

    Approximately 25,000 new households and thousands of new jobs will be established in an area that extends from southwest to northeast of Baltimore, Maryland, as a result of the Federal Base Realignment and Closure (BRAC) process, with consequent new demands on the water resources of the area. The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment, has extended the area of implementation and added functionality to an existing map-based Web application named StreamStats to provide an improved tool for planning and managing the water resources in the BRAC-affected areas. StreamStats previously was implemented for only a small area surrounding Baltimore, Maryland, and it was extended to cover all BRAC-affected areas. StreamStats could provide previously published streamflow statistics, such as the 1-percent probability flood and the 7-day, 10-year low flow, for U.S. Geological Survey data-collection stations and estimates of streamflow statistics for any user-selected point on a stream within the implemented area. The application was modified for this study to also provide summaries of water withdrawals and discharges upstream from any user-selected point on a stream. This new functionality was made possible by creating a Web service that accepts a drainage-basin delineation from StreamStats, overlays it on a spatial layer of water withdrawal and discharge points, extracts the water-use data for the identified points, and sends it back to StreamStats, where it is summarized for the user. The underlying water-use data were extracted from the U.S. Geological Survey's Site-Specific Water-Use Database System (SWUDS) and placed into a Microsoft Access database that was created for this study for easy linkage to the Web service and StreamStats. This linkage of StreamStats with water-use information from SWUDS should enable Maryland regulators and planners to make more informed decisions on the use of water resources in the BRAC area, and

  8. Locating Shallow Groundwater Discharge to Streams Near Concentrated Animal Feeding Operations Using Aerial Infrared Thermography: A Novel Potential Pollution Detection Method

    Science.gov (United States)

    Mapes, K. L.; Pricope, N. G.

    2017-12-01

    The Cape Fear River Basin (CFRB) has some of the highest densities of concentrated animal feeding operations (CAFO) in the United States (factoryfarmmap.org) and was recently named one of the country's most endangered rivers (americanrivers.org). There is high potential for CAFO land use to degrade stream water quality by introducing pollutants, primarily nitrates and fecal coliform, into sub-surface and surface waters. The regionally high water table in the Lower CFRB increases the risk of water quality degradation due to increased connectivity of ground- and surface water. The Lower CFRB is periodically subjected to frequent or intense hurricanes, which have been shown to exacerbate water quality issues associated with CAFOs. Additionally, the growing population in this region is placing more pressure on an already taxed water source and will continue to rely on the Cape Fear River for drinking water and wastewater discharge. While there are documented occurrences of groundwater contamination from CAFOs, we still have little understanding on how and where pollution may be entering streams by shallow sub-surface discharge. Shallow groundwater discharge to streams is becoming easier to detect using thermal infrared imaging cameras onboard unmanned aerial systems. The temperature differences between groundwater and stream water are easily distinguished in the resulting images. While this technology cannot directly measure water quality, it can locate areas of shallow groundwater discharge that can later be tested for pollutants using conventional methods. We will utilize a thermal infrared camera onboard a SenseFly eBee Plus to determine the feasibility of using this technology on a larger scale within the Lower CFRB as an inexpensive means of identifying sites of potential pollution input. Aerial surveys will be conducted in two sub-watersheds: one containing swine CAFO and a control that lacks swine CAFO. Information from this study can be integrated into

  9. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  10. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Identification of discharge zones and quantification of contaminant mass discharges into a local stream from a landfill in a heterogeneous geologic setting

    DEFF Research Database (Denmark)

    Milosevic, Nemanja; Thomsen, Nanna Isbak; Juhler, R.K.

    2012-01-01

    Contaminants from Risby Landfill (Denmark) are expected to leach through the underlying geologic strata and eventually reach the local Risby Stream. Identification of the groundwater discharge zone was conducted systematically by an array of methods including studies on site geology and hydrogeol...... for landfill sites so the approaches and findings from Risby Landfill can be applied to other landfill sites. The study highlights that landfills may pose a risk to surface waters and future studies should be directed towards evaluation of both chemical and ecological risk....

  12. Effect of land cover, stream discharge, and precipitation on water quality in Puerto Rico

    Science.gov (United States)

    Hall, J. S.; Uriarte, M.

    2017-12-01

    In 2015, Puerto Rico experienced one of the worst droughts in its history, causing widespread water rationing and sparking concerns for future resources. The drought represents precipitation extremes that provide valuable insight into the effects of land cover (LC), on modulating discharge and water quality indices at varying spatial scales. We used data collected from 38 water quality and 55 precipitation monitoring stations in Puerto Rico from 2005 to 2016, paired with a 2010 land cover map to (1) determine whether temporal variability in discharge, precipitation, or antecedent precipitation was a better predictor of water quality, (2) find the spatial scale where LC has the greatest impact on water quality, and (3) quantify impacts of LC on water quality indices, including dissolved oxygen (mg/L), total nitrogen (mg/L), phosphorous (mg/L), turbidity (NTRU), fecal coliforms (colony units/100mL) and instantaneous discharge (ft3/s). The resulting linear mixed effects models account for between 36-68% of the variance in water quality. Preliminary results indicate that phosphorous and nitrogen were best predicted from instantaneous stream discharge, the log of discharge was the better predictor for turbidity and fecal coliforms, and summed 2 and 14-day antecedent precipitation indices were better predictors for dissolved oxygen and discharge, respectively. Increased urban and pasture area reliably decreased water quality in relation to forest cover, while agriculture and wetlands had little or mixed effects. Turbidity and nitrogen responded to a watershed level LC, while phosphorous, fecal coliforms, and discharge responded to LC in 60 m riparian buffers at the watershed scale. Our results indicate that LC modulates changing precipitation regimes and the ensuing impacts on water quality at a range of spatial scales.

  13. The Effects of Elevated Specific Conductivity on the Chronic Toxicity of Mining Influenced Streams Using Ceriodaphnia dubia.

    Science.gov (United States)

    Armstead, Mindy Yeager; Bitzer-Creathers, Leah; Wilson, Mandee

    2016-01-01

    Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in macroinvertebrate community declines in streams receiving coal mining discharges. Whole effluent toxicity testing of receiving stream water was used to test the hypothesis that mine discharges are toxic to laboratory test organisms and further, that toxicity is related to ionic concentrations as indicated by conductivity. Chronic toxicity testing using Ceriodaphnia dubia was conducted by contract laboratories at 72 sites with a total of 129 tests over a 3.5 year period. The database was evaluated to determine the ionic composition of mine effluent dominated streams and whether discharge constituents were related to toxicity in C. dubia. As expected, sulfate was found to be the dominant anion in streams receiving mining discharges with bicarbonate variable and sometimes a substantial component of the dissolved solids. Overall, the temporal variability in conductance was low at each site which would indicate fairly stable water quality conditions. Results of the toxicity tests show no relationship between conductance and survival of C. dubia in the mining influenced streams with the traditional toxicity test endpoints. However, consideration of the entire dataset revealed a significant inverse relationship between conductivity and neonate production. While conductivity explained very little of the high variability in the offspring production (r2 = 0.1304), the average numbers of offspring were consistently less than 20 neonates at the highest conductivities.

  14. The Effects of Elevated Specific Conductivity on the Chronic Toxicity of Mining Influenced Streams Using Ceriodaphnia dubia.

    Directory of Open Access Journals (Sweden)

    Mindy Yeager Armstead

    Full Text Available Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in macroinvertebrate community declines in streams receiving coal mining discharges. Whole effluent toxicity testing of receiving stream water was used to test the hypothesis that mine discharges are toxic to laboratory test organisms and further, that toxicity is related to ionic concentrations as indicated by conductivity. Chronic toxicity testing using Ceriodaphnia dubia was conducted by contract laboratories at 72 sites with a total of 129 tests over a 3.5 year period. The database was evaluated to determine the ionic composition of mine effluent dominated streams and whether discharge constituents were related to toxicity in C. dubia. As expected, sulfate was found to be the dominant anion in streams receiving mining discharges with bicarbonate variable and sometimes a substantial component of the dissolved solids. Overall, the temporal variability in conductance was low at each site which would indicate fairly stable water quality conditions. Results of the toxicity tests show no relationship between conductance and survival of C. dubia in the mining influenced streams with the traditional toxicity test endpoints. However, consideration of the entire dataset revealed a significant inverse relationship between conductivity and neonate production. While conductivity explained very little of the high variability in the offspring production (r2 = 0.1304, the average numbers of offspring were consistently less than 20 neonates at the highest conductivities.

  15. Numerical databases in marine biology

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Bhargava, R.M.S.

    stream_size 9 stream_content_type text/plain stream_name Natl_Workshop_Database_Networking_Mar_Biol_1991_45.pdf.txt stream_source_info Natl_Workshop_Database_Networking_Mar_Biol_1991_45.pdf.txt Content-Encoding ISO-8859-1 Content-Type... text/plain; charset=ISO-8859-1 ...

  16. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column

  17. State Waste Discharge Permit application, 183-N Backwash Discharge Pond

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  18. Development of regional curves of bankfull-channel geometry and discharge for streams in the non-urban, Piedmont Physiographic Province, Pennsylvania and Maryland

    Science.gov (United States)

    Cinotto, Peter J.

    2003-01-01

    Stream-restoration projects utilizing natural stream designs frequently are based on the bankfull-channel characteristics of stream reaches that can accommodate streamflow and sediment transport without excessive erosion or deposition and lie within a watershed that has similar runoff characteristics. The bankfull channel at an ungaged impaired site or reference reach is identified by use of field indicators and is confirmed with tools such as regional curves. Channel dimensions were surveyed at 14 streamflow-measurement stations operated by the U.S. Geological Survey (USGS) in the Gettysburg-Newark Lowland Section, Piedmont Lowland Section, and the Piedmont Upland Section of the Piedmont Physiographic Province1 in Pennsylvania and Maryland. From the surveyed channel dimensions, regional curves were developed from regression analyses of the relations between drainage area and the cross-sectional area, mean depth, width, and streamflow of the bankfull channel at these sites. Bankfull cross-sectional area and bankfull discharge have the strongest relation to drainage area as evidenced by R2 values of 0.94 and 0.93, respectively. The relation between bankfull crosssectional area and drainage area has a p-value of less than 0.001; no p-value is presented for the relation between bankfull discharge and drainage area because of a non-normal residual distribution. The relation between bankfull width and drainage area has an R2 value of 0.80 and a p-value of less than 0.001 indicating a moderate linear relation between all stations. The relation between bankfull mean depth and drainage area, with an R2 value of 0.72 and a p-value of less than 0.001, also indicates a moderate linear relation between all stations. The concept of regional curves can be a valuable tool to support efforts in stream restoration. Practitioners of stream restoration need to recognize it as such and realize the limitations. The small number of USGS streamflow-measurement stations available for

  19. Forested wetland mitigation resulting from discharges of cooling water into streams

    International Nuclear Information System (INIS)

    Nelson, E.A.

    1993-01-01

    The Savannah River Swamp is a 3020-ha forested wetland on the floodplain of the Savannah River and is located on the US Department of Energy's Savannah River Site (SRS) near Aiken, South Carolina. Historically, the swamp consisted of ∼50% bald cypress-water tupelo stands, 40% mixed bottomland hardwood stands, and 10% shrub, marsh, and open water. The hydrology was controlled by flooding the Savannah River and by flow from four creeks that drain into the swamp prior to flow into the Savannah River. Upstream dams have caused some alteration of the water levels and timing of flooding within the floodplain. Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950s. Water, often in excess of 40 to 50 degrees C was discharged into one of the small streams from 1954 to 1988, at various levels, ranging from 20 to 40 times the prior flow rate of the stream. This had a major impact on the adjacent swamp land, with erosion, silting, and vegetation destruction. The Final Environmental Impact Statement, Continued Operation of K, L, and P Reactors, Savannah River Site, Aiken, South Carolina, and the subsequent record of decision directed that these areas be restored to functional forested wetland status to the extent possible. This paper describes work begun to reach that objective

  20. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  1. Predicting Monsoonal-Driven Stream Discharge and Sediment Yield in Himalaya Mountain Basins with Changing Climate and Deforestation

    Science.gov (United States)

    Neupane, R. P.; White, J. D.

    2014-12-01

    Short and long term effects of site water availability impacts the spectrum of management outcomes including landslide risk, hydropower generation, and sustainable agriculture in mountain systems heavily influenced by climate and land use changes. Climate change and land use may predominantly affect the hydrologic cycle of mountain basins as soil precipitation interception is affected by land cover. Using the Soil and Water Assessment Tool, we estimated stream discharge and sediment yield associated with climate and land use changes for two Himalaya basins located at eastern and western margins of Nepal that included drainages of the Tamor and Seti Rivers. Future climate change was modeled using average output of temperature and precipitation changes derived from Special Report on Emission Scenarios (B1, A1B & A2) of 16 global circulation models for 2080 as meteorological inputs into SWAT. Land use change was modeled spatially and included 1) deforestation, 2) expansion of agricultural land, and 3) increased human settlement that were produced by considering current land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use types. We found higher annual stream discharge in all GCM-derived scenarios compared to the baseline with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. With 7% of original forest land removed, sediment yield for Tamor basin was estimated to be 65% higher, but increased to 124% for the SRES-B1 scenario. For the Seti basin, 4% deforestation yielded 33% more sediment for the SRES-A1B scenario. Our results indicated that combined effects of future, intensified monsoon rainfall with deforestation lead to dramatic potential for increased stream discharge and sediment yield as rainfall on steep slopes with thin exposed soils increases surface runoff and soil erosion in the Himalayas. This effect appears to

  2. Habitat sequencing and the importance of discharge in inferences

    Science.gov (United States)

    Robert H. Hilderbrand; A. Dennis Lemly; C. Andrew Dolloff

    1999-01-01

    The authors constructed stream maps for a low-­gradient trout stream in southwestern Virginia during autumn (base flow) and spring (elevated flows) to compare spatial and temporal variation in stream habitats. Pool-riffle sequencing and total area occupied by pools and riffles changed substantially depending on the level of discharge: reduced discharge resulted in an...

  3. Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality

    Science.gov (United States)

    Ledford, S. H.; Lautz, L. K.

    2013-12-01

    Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach

  4. Hydrology and substrates: determinants of oligochaete distribution in lowland streams (the Netherlands)

    NARCIS (Netherlands)

    Verdonschot, P.F.M.

    2001-01-01

    In most soft-bottomed, lowland streams in the Netherlands discharge regimes largely follow the precipitation pattern. Winter discharges are higher and much more dynamic then summer discharges, although rain storms throughout the year cause unexpected peak flows. Minimal precipitation, reduced stream

  5. Maximum known stages and discharges of New York streams and their annual exceedance probabilities through September 2011

    Science.gov (United States)

    Wall, Gary R.; Murray, Patricia M.; Lumia, Richard; Suro, Thomas P.

    2014-01-01

    Maximum known stages and discharges at 1,400 sites on 796 streams within New York are tabulated. Stage data are reported in feet. Discharges are reported as cubic feet per second and in cubic feet per second per square mile. Drainage areas range from 0.03 to 298,800 square miles; excluding the three sites with larger drainage areas on the St. Lawrence and Niagara Rivers, which drain the Great Lakes, the maximum drainage area is 8,288 square miles (Hudson River at Albany). Most data were obtained from U.S. Geological Survey (USGS) compilations and records, but some were provided by State, local, and other Federal agencies and by private organizations. The stage and discharge information is grouped by major drainage basins and U.S. Geological Survey site number, in downstream order. Site locations and their associated drainage area, period(s) of record, stage and discharge data, and flood-frequency statistics are compiled in a Microsoft Excel spreadsheet. Flood frequencies were derived for 1,238 sites by using methods described in Bulletin 17B (Interagency Advisory Committee on Water Data, 1982), Ries and Crouse (2002), and Lumia and others (2006). Curves that “envelope” maximum discharges within their range of drainage areas were developed for each of six flood-frequency hydrologic regions and for sites on Long Island, as well as for the State of New York; the New York curve was compared with a curve derived from a plot of maximum known discharges throughout the United States. Discharges represented by the national curve range from at least 2.7 to 4.9 times greater than those represented by the New York curve for drainage areas of 1.0 and 1,000 square miles. The relative magnitudes of discharge and runoff in the six hydrologic regions of New York and Long Island suggest the largest known discharges per square mile are in the southern part of western New York and the Catskill Mountain area, and the smallest are on Long Island.

  6. Impact of the emergency department streaming decision on patients' outcomes.

    Science.gov (United States)

    Kim, S W; Horwood, C; Li, J Y; Hakendorf, P H; Teubner, D J O; Thompson, C H

    2015-12-01

    Streaming occurs in emergency department (ED) to reduce crowding, but misallocation of patients may impact patients' outcome. The study aims to determine the outcomes of patients misallocated by the ED process of streaming into likely admission or discharge. This is a retrospective cohort study, at an Australian, urban, tertiary referral hospital's ED between January 2010 and March 2012, using propensity score matching for comparison. Total and partitioned ED lengths of stay, inpatient length of stay, in-hospital mortality and 7- and 28-day unplanned readmission rate were compared between patients who were streamed to be admitted against those streamed to be discharged. Total ED length of stay did not differ significantly for admitted patients if allocated to the wrong stream (median 7.6 h, interquartile range 5.7-10.6, cf. 7.5 h, 5.3-11.2; P = 0.34). The median inpatient length of stay was shorter for those initially misallocated to the discharge stream (1.8 days, 1.1-3.0, cf. 2.4 days, 1.4-3.9; P stream stayed in the ED longer than those appropriately allocated (5.2 h, 3.7-7.3, cf. 4.6 h, 3.3-6.4; P streaming process. Patients' discharge from the ED was slower if they had been allocated to the admission stream. Streaming carries few risks for patients misallocated by such a process. © 2015 Royal Australasian College of Physicians.

  7. Uncertainty of solute flux estimation in ungauged small streams: potential implications for input-output nutrient mass balances at stream reach scale

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2005-01-01

    Full Text Available Input-output mass balances within stream reaches provide in situ estimates of stream nutrient retention/release under a wide spectrum of hydrological conditions. Providing good estimates of the mass balances for nutrients depends on precise hydrological monitoring and good chemical characterisation of stream water at the input and output ends of the stream reach. There is a need to optimise the hydrological monitoring and the frequencies of water sampling to yield precise annual mass balances, so as to avoid undue cost - high resolution monitoring and subsequent chemical analysis can be labour intensive and costly. In this paper, simulation exercises were performed using a data set created to represent the instantaneous discharge and solute dynamics at the input and output ends of a model stream reach during a one year period. At the output end, stream discharge and water chemistry were monitored continuously, while the input end was assumed to be ungauged; water sampling frequency was changed arbitrarily. Instantaneous discharge at the ungauged sampling point was estimated with an empirical power model linking the discharge to the catchment area (Hooper, 1986. The model thus substitutes for the additional gauge station. Simulations showed that 10 days was the longest chemical sampling interval which could provide reach annual mass balances of acceptable precision. Presently, the relationship between discharge and catchment area is usually assumed to be linear but simulations indicate that small departures from the linearity of this relationship could cause dramatic changes in the mass balance estimations.

  8. Radioactive liquid wastes discharged to ground in the 200 areas during 1985

    International Nuclear Information System (INIS)

    Aldrich, R.C.

    1986-03-01

    This document summarizes radioactive liquids discharged to the ground in the 200 areas of the Hanford site and is provided pursuant to Department of Energy (DOE) Order 5484.1A, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements.'' There are twenty-eight liquid discharge streams in the 200 areas excluding sanitary sewers. Twenty-five streams were normally or potentially contaminated with radioactive material in 1985. Two streams had no potential for radioactive contamination but were included as adjustments in this report to maintain an accurate record of the total volume of the discharges to each disposal site. One stream, the 242-S Evaporator cooling water discharge, was not used during 1985

  9. Fish populations in Plynlimon streams

    Directory of Open Access Journals (Sweden)

    D. T. Crisp

    1997-01-01

    Full Text Available In Plynlimon streams, brown trout (Salmo trutta L. are widespread in the upper Wye at population densities of 0.03 to 0.32 fish m-2 and show evidence of successful recruitment in most years. In the upper Severn, brown trout are found only in an area of c. 1670 -2 downstream of Blaenhafren Falls at densities of 0.03 to 0.24 fish -2 and the evidence suggests very variable year to year success in recruitment (Crisp & Beaumont, 1996. Analyses of the data show that temperature differences between afforested and unafforested streams may affect the rates of trout incubation and growth but are not likely to influence species survival. Simple analyses of stream discharge data suggest, but do not prove, that good years for recruitment in the Hafren population were years of low stream discharge. This may be linked to groundwater inputs detected in other studies in this stream. More research is needed to explain the survival of the apparently isolated trout population in the Hafren.

  10. Multi-machine transport analysis of hybrid discharges from the ITPA Profile Database

    International Nuclear Information System (INIS)

    Imbreaux, F.; Fujita, T.; Isayama, A.; Joffrin, E.; Kinsey, J.; Litaudon, X.; Luce, T.; Murakami, M.; Na, Y. S.; Sakamoto, Y.; Slips, A. C. C. C.; Wade, M.; Artaud, J. F.; Basiuk, V.

    2005-01-01

    The so-called Hybrid regime is a promising candidate scenario for ITER with a potential for longer inductive pulse at high fusion gain. Hybrid discharges are operated at higher q95 than the conventional H modes, which increases the non-inductive current fraction and the duration of the discharge. Another important characteristics of this regime is the absence of large sawteeth owing toa q-profile generally just above one in the plasma core. This property allows to reach high values of the normalised kinetic to magnetic pressure ratio β N =βaB T /I p of the order of 3, without triggering deleterious Neoclassical Tearing Modes. This work presents results of transport modelling of hybrid discharges from various tokamaks (Asdes Upgrade, DIII-D, JET, JT-60U) which have been submitted recently to the ITPA database. The objective is to assess the commonality of the transport physics in the hybrid regimes obtained by the various machines. The study focuses on the dependence of the transport properties as a function of important parameters like the density and the normalised Larmor radios ρ. Induced, those parameters play a critical role in the extrapolation of the transport characteristics of present day experiments to ITER. Various transport models are used in order to test their capability to reproduce the experimental parametric dependences on density and ρ. The extrapolability of the hybrid regime to ITER is checked using integrated modeling. (Author)

  11. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution

    Science.gov (United States)

    Rice, Jacelyn; Westerhoff, Paul

    2017-08-01

    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  12. Impact of groundwater abstraction on physical habitat of brown trout (Salmo trutta) in a small Danish stream

    DEFF Research Database (Denmark)

    Olsen, M.; Bøgh, E.; Pedersen, Stig

    2009-01-01

    The purpose of this study was to assess the impact of groundwater abstraction on stream discharge and physical habitat conditions for brown trout (Salmo trutta) in a small Danish stream. Stream discharge was simulated using a lumped hydrological model (NAM) and a scenario was set up for stream...... discharge reference conditions. Stream physical habitat conditions (WUA) were simulated for four life stages of trout using a hydraulic habitat model (RHYHABSIM). The impact of groundwater abstraction on WUA for trout was assessed by combined simulations from the NAM-model and the RHYHABSIM-model. The model...... predicted that groundwater abstraction reduced median annual discharge by 37 % and mean annual 90th percentile discharge by 82 %. Summer discharge was relatively most affected by groundwater abstraction (66 % reduction of median discharge) and WUA was therefore particularly affected by groundwater...

  13. How do land-based salmonid farms affect stream ecology?

    International Nuclear Information System (INIS)

    Tello, A.; Corner, R.A.; Telfer, T.C.

    2010-01-01

    Increasing research is highlighting the fact that streams provide crucial ecosystem services through the biogeochemical and ecological processes they sustain. Freshwater land-based salmonid farms commonly discharge their effluents into low order, headwater streams, partly due to the fact that adequate freshwater resources for production are commonly found in undisturbed areas. We review the effects of salmonid farm effluents on different biological components of stream ecosystems. Relevant considerations related to the temporal and spatial scales of effluent discharge and ecological effects are discussed. These highlight the need to characterize the patterns of stressor discharge when assessing environmental impacts and designing ecological effects studies. The potential role of multiple stressors in disrupting ecosystem structure and function is discussed with an emphasis on aquaculture veterinary medicines. Further research on the effects of veterinary medicines using relevant exposure scenarios would significantly contribute to our understanding of their impact in relation to other effluent stressors. - This article reviews the effects of aquaculture effluents on stream ecosystems with an emphasis on veterinary medicines and the temporal patterns of effluent discharge.

  14. Stream Width Dynamics in a Small Headwater Catchment

    Science.gov (United States)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  15. Modelling of a vanishing Hawaiin stream with DHSVM

    NARCIS (Netherlands)

    Verger, R.P.; Augustijn, Dionysius C.M.; Booij, Martijn J.; Fares, A.; Erdbrink, C.D.; van Os, A.G.

    2008-01-01

    Several Hawaiian streams show downward trends in stream flow. In this study Makaha Stream is investigated as an example. Three possible reasons are commonly mentioned for the discharge reduction: groundwater pumping, decreasing rainfall, and changes in vegetation. The effect of these factors on

  16. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    Science.gov (United States)

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  17. Mapping of road-salt-contaminated groundwater discharge and estimation of chloride load to a small stream in southern New Hampshire, USA

    Science.gov (United States)

    Harte, P.T.; Trowbridge, P.R.

    2010-01-01

    Concentrations of chloride in excess of State of New Hampshire water-quality standards (230 mg/l) have been measured in watersheds adjacent to an interstate highway (I-93) in southern New Hampshire. A proposed widening plan for I-93 has raised concerns over further increases in chloride. As part of this effort, road-salt-contaminated groundwater discharge was mapped with terrain electrical conductivity (EC) electromagnetic (EM) methods in the fall of 2006 to identify potential sources of chloride during base-flow conditions to a small stream, Policy Brook. Three different EM meters were used to measure different depths below the streambed (ranging from 0 to 3 m). Results from the three meters showed similar patterns and identified several reaches where high EC groundwater may have been discharging. Based on the delineation of high (up to 350 mmhos/m) apparent terrain EC, seven-streambed piezometers were installed to sample shallow groundwater. Locations with high specific conductance in shallow groundwater (up to 2630 mmhos/m) generally matched locations with high streambed (shallow subsurface) terrain EC. A regression equation was used to convert the terrain EC of the streambed to an equivalent chloride concentration in shallow groundwater unique for this site. Utilizing the regression equation and estimates of onedimensional Darcian flow through the streambed, a maximum potential groundwater chloride load was estimated at 188 Mg of chloride per year. Changes in chloride concentration in stream water during streamflow recessions showed a linear response that indicates the dominant process affecting chloride is advective flow of chloride-enriched groundwater discharge. Published in 2010 by John Wiley & Sons, Ltd.

  18. Impact of stream restoration on flood waves

    Science.gov (United States)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  19. Discharge/Stage Relations in Vegetated Danish Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Frier, Jens-Ole; Vestergaard, Kristian

    1990-01-01

    This paper describes how the friction in danish streams varies as function of the vegetation. The major species of vegetation are represented. A series of laboratory and field experiments are described, and a hypothesis for the influence of the vegetation on the Manning's n is discussed....

  20. Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams

    International Nuclear Information System (INIS)

    Rosa, Rodrigo dos Santos; Aguiar, Anna Carolina Fornero; Boëchat, Iola Gonçalves; Gücker, Björn

    2013-01-01

    We investigated the impacts of effluent discharge from small flow-through fish farms on stream water characteristics, the benthic invertebrate community, whole-system nitrate uptake, and ecosystem metabolism of three tropical headwater streams in southeastern Brazil. Effluents were moderately, i.e. up to 20-fold enriched in particulate organic matter (POM) and inorganic nutrients in comparison to stream water at reference sites. Due to high dilution with stream water, effluent discharge resulted in up to 2.0-fold increases in stream water POM and up to 1.8-fold increases in inorganic nutrients only. Moderate impacts on the benthic invertebrate community were detected at one stream only. There was no consistent pattern of effluent impact on whole-stream nitrate uptake. Ecosystem metabolism, however, was clearly affected by effluent discharge. Stream reaches impacted by effluents exhibited significantly increased community respiration and primary productivity, stressing the importance of ecologically sound best management practices for small fish farms in the tropics. -- Highlights: ► Fish farm effluent discharge had moderate effects on stream water quality. ► Impacts on the benthic invertebrate community occurred at one stream. ► Whole-stream nitrate uptake showed no consistent impact pattern. ► Effluents caused considerable increases in stream ecosystem metabolism. ► Compliance with best management practices is important for small fish farms. -- Moderate water pollution by small fish farms caused considerable eutrophication responses in tropical headwater streams

  1. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  2. Delay in catchment nitrogen load to streams following restrictions on fertilizer application

    DEFF Research Database (Denmark)

    Vervloet, Lidwien S. C.; Binning, Philip John; Borgesen, Christen D.

    2018-01-01

    A MIKE SHE hydrological-solute transport model including nitrate reduction is employed to evaluate the delayed response in nitrogen loads in catchment streams following the implementation of nitrogen mitigation measures since the 1980s. The nitrate transport lag times between the root zone...... and the streams for the period 1950-2011 were simulated for two catchments in Denmark and compared with observational data. Results include nitrogen concentration and mass discharge to streams. By automated baseflow separation, stream discharge was separated into baseflow and drain flow components...

  3. Plan and schedule for disposition and regulatory compliance for miscellaneous streams. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    On December 23, 1991, the U.S. Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of Department of Ecology Consent Order No. DE 91NM-177 (Consent Order). The Consent Order lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (State Waste Discharge Permit Program) or WAC 173-218 (Washington Underground Injection Control Program) where applicable. Hanford Site liquid effluent streams discharging to the soil column have been categorized in the Consent Order as follows: Phase I Streams Phase II Streams Miscellaneous Streams. Phase I and Phase II Streams are addressed in two RL reports: open-quotes Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Siteclose quotes (DOE-RL 1987), and open-quotes Annual Status of the Report of the Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Siteclose quotes. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams. Miscellaneous Streams discharging to the soil column at the Hanford Site are subject to the requirements of several milestones identified in the Consent Order. This document provides a plan and schedule for the disposition of Miscellaneous Streams. The disposition process for the Miscellaneous Streams is facilitated using a decision tree format. The decision tree and corresponding analysis for determining appropriate disposition of these streams is presented in this document

  4. Stream Habitat Reach Summary - North Coast [ds63

    Data.gov (United States)

    California Natural Resource Agency — The shapefile is based on habitat unit level data summarized at the stream reach level. The database represents salmonid stream habitat surveys from 645 streams of...

  5. Effects of discharge fluctuation and the addition of fine sediment on stream fish and macroinvertebrates below a water-filtration facility

    Science.gov (United States)

    Erman, Don C.; Ligon, Franklin K.

    1988-01-01

    A small, coastal stream in the San Francisco Bay area of California, USA, received the discharges from a drinking-water filtration plant. Two types of discharges were present. Discharges from filter backwashing were 3 4 times base stream flow, occurred 10 60 times per day, contained fine sediments, and each lasted about 10 min. The other discharge was a large, steady flow of relatively sediment-free water from occasional overflow of the delivery aqueduct which generally lasted several hours a day. Samples of invertebrates from natural substrates had significantly fewer taxa and lower density at the two stations below the backwash than at the two above. However, when stable artificial substrates were used, there were no significant differences among all four stations. The aqueduct apparently had no effect because the. invertebrate community at the station upstream of the backwash but downstream of the aqueduct was statistically similar to the station above the aqueduct. To test for acute toxicity, we exposed additional artificial substrates to short-term simulated backwash conditions. These exposures had no effect on invertebrate density or drift. Three-spine stickleback ( Gasterosteus aculeatus) populations were also significantly reduced at the two downstream stations and were made up mostly of larger, adult fish. Prickly sculpins ( Cottus asper), restricted to the most downstream station, were emaciated and had poor growth, probably as a result of scarce benthic food organisms. Artificial redds with eggs of rainbow trout ( Salmo gairdneri) had significantly lower survival at two stations below the plant backwash (30.7% and 41.8%) than at the one above it (61.4%). Hatchery rainbow trout held in cages below the treatment plant from 7 to 37 days survived and continued to feed. Thus, the major effect of the water treatment plant on fish and invertebrates probably was not from acute toxicity in the discharges or the occasionally large discharge of clean water from the

  6. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and

  7. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    International Nuclear Information System (INIS)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-01-01

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and

  8. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    International Nuclear Information System (INIS)

    Specht, W.L.

    2000-01-01

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams

  9. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    2000-02-28

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  10. Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio-temporal variability of groundwater discharge in soft-bedded streams

    DEFF Research Database (Denmark)

    Sebok, Eva; Duque, C; Engesgaard, Peter

    2015-01-01

    , maximum and mean streambed temperatures as well as the daily amplitude and standard deviation of temperatures. The identified potential high-discharge areas were mostly located near the channel banks, also showing temporal variability because of the scouring and redistribution of streambed sediments......The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft-bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition...... variability in streambed temperatures between October 2011 and January 2012. Detailed monthly streambed elevation surveys were carried out to monitor the position of the fibre optic cable relative to the streambed and to quantify the effect of sedimentation processes on streambed temperatures. Based...

  11. MWIR-1995 DOE national mixed and TRU waste database users guide

    International Nuclear Information System (INIS)

    1995-11-01

    The Department of Energy (DOE) National 1995 Mixed Waste Inventory Report (MWIR-1995) Database Users Guide provides information on computer system requirements and describes installation, operation, and navigation through the database. The MWIR-1995 database contains a detailed, nationwide compilation of information on DOE mixed waste streams and treatment systems. In addition, the 1995 version includes data on non- mixed, transuranic (TRU) waste streams. These were added to the data set as a result of coordination of the 1995 update with the National Transuranic Program Office's (NTPO's) data needs to support the Waste Isolation Pilot Plant (WIPP) TRU Waste Baseline Inventory Report (WTWBIR). However, the information on the TRU waste streams is limited to that associated with the core mixed waste data requirements. The additional, non-core data on TRU streams collected specifically to support the WTWBIR is not included in the MWIR-1995 database. With respect to both the mixed and TRU waste stream data, the data set addresses open-quotes storedclose quotes streams. In this instance, open-quotes storedclose quotes streams are defined as (a) streams currently in storage at both EM-30 and EM-40 sites and (b) streams that have yet to be generated but are anticipated within the next five years from sources other than environmental restoration and decontamination and decommissioning (ER/D ampersand D) activities. Information on future ER/D ampersand D streams is maintained in the EM-40 core database. The MWIR-1995 database also contains limited information for both waste streams and treatment systems that have been removed or deleted since the 1994 MWIR. Data on these is maintained only through Section 2, Waste Stream Identification/Tracking/Source, to document the reason for removal from the data set

  12. State waste discharge permit application 400 Area secondary cooling water. Revision 2

    International Nuclear Information System (INIS)

    1996-01-01

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility

  13. Assessing the chemical contamination dynamics in a mixed land use stream system.

    Science.gov (United States)

    Sonne, Anne Th; McKnight, Ursula S; Rønde, Vinni; Bjerg, Poul L

    2017-11-15

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality of all three stream compartments - stream water, hyporheic zone, streambed sediment - made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs of chlorinated ethenes and pharmaceutical compounds discharge into the stream every year. The strongly reduced redox conditions in the plume result in high concentrations of dissolved iron and additionally release arsenic, generating the complex contaminant mixture found in the narrow discharge zone. The fingerprint of the plume was observed in the stream several km downgradient, while nutrients, inorganics and pesticides played a minor role for the stream health. The

  14. 30 CFR 816.47 - Hydrologic balance: Discharge structures.

    Science.gov (United States)

    2010-07-01

    ...-SURFACE MINING ACTIVITIES § 816.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... shall be controlled, by energy dissipators, riprap channels, and other devices, where necessary, to reduce erosion, to prevent deepening or enlargement of stream channels, and to minimize disturbance of...

  15. 30 CFR 817.47 - Hydrologic balance: Discharge structures.

    Science.gov (United States)

    2010-07-01

    ...-UNDERGROUND MINING ACTIVITIES § 817.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... shall be controlled, by energy dissipators, riprap channels, and other devices, where necessary, to reduce erosion, to prevent deepening or enlargement of stream channels, and to minimize disturbance of...

  16. Estimating the Spatial Distribution of Groundwater Age Using Synoptic Surveys of Environmental Tracers in Streams

    Science.gov (United States)

    Gardner, W. P.

    2017-12-01

    A model which simulates tracer concentration in surface water as a function the age distribution of groundwater discharge is used to characterize groundwater flow systems at a variety of spatial scales. We develop the theory behind the model and demonstrate its application in several groundwater systems of local to regional scale. A 1-D stream transport model, which includes: advection, dispersion, gas exchange, first-order decay and groundwater inflow is coupled a lumped parameter model that calculates the concentration of environmental tracers in discharging groundwater as a function of the groundwater residence time distribution. The lumped parameters, which describe the residence time distribution, are allowed to vary spatially, and multiple environmental tracers can be simulated. This model allows us to calculate the longitudinal profile of tracer concentration in streams as a function of the spatially variable groundwater age distribution. By fitting model results to observations of stream chemistry and discharge, we can then estimate the spatial distribution of groundwater age. The volume of groundwater discharge to streams can be estimated using a subset of environmental tracers, applied tracers, synoptic stream gauging or other methods, and the age of groundwater then estimated using the previously calculated groundwater discharge and observed environmental tracer concentrations. Synoptic surveys of SF6, CFC's, 3H and 222Rn, along with measured stream discharge are used to estimate the groundwater inflow distribution and mean age for regional scale surveys of the Berland River in west-central Alberta. We find that groundwater entering the Berland has observable age, and that the age estimated using our stream survey is of similar order to limited samples from groundwater wells in the region. Our results show that the stream can be used as an easily accessible location to constrain the regional scale spatial distribution of groundwater age.

  17. Data streams: algorithms and applications

    National Research Council Canada - National Science Library

    Muthukrishnan, S

    2005-01-01

    ... massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is an overview and survey of data stream algorithmics and is an updated version of [175]. S. Muthukrishnan Rutgers University, New Brunswick, NJ, USA, muthu@cs...

  18. Estimating discharge using multi-level velocity data from acoustic doppler instruments

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    In the majority of Danish streams, weed growth affects the effective stream width and bed roughness thus imposes temporal variations on the stage-discharge relationship. Small stream-gradients and firm ecology based restrictions prevent that hydraulic structures are made at the discharge stations...... increases to more than 3 m. The Doppler instruments (Nortek) are placed on a vertical pole about 2 m off the right bank at three fixed elevations above the streambed (0.3, 0.6, and 1.3 m); the beams point horizontally towards the left bank perpendicularly to the average flow direction. At each depth......, the Doppler sensor records 10 minute average stream velocities in the central 10 m section of the stream. During summer periods with low flow, stream velocity has only been recorded at two depths since the water table drops below the uppermost sensor. A pressure transducer is also placed at the pole where...

  19. Multi-scale streambed topographic and discharge effects on hyporheic at the stream network scale in confined streams

    Science.gov (United States)

    Alessandra Marzadri; Daniele Tonina; James A. McKean; Matthew G. Tiedemann; Rohan M. Benjankar

    2014-01-01

    The hyporheic zone is the volume of the streambed sediment mostly saturated with stream water. It is the transitional zone between stream and shallow-ground waters and an important ecotone for benthic species, including macro-invertebrates, microorganisms, and some fish species that dwell in the hyporheic zone for parts of their lives. Most hyporheic analyses are...

  20. The IAEA Member States' database of discharges of radionuclides to the atmosphere and the aquatic environment (DIRATA)

    International Nuclear Information System (INIS)

    Berkovskyy, Volodymyr; Hood, Graeme

    2008-01-01

    Full text: This paper provides the abstract model for authors. It embodies all the required formats and it is written complying with them. DIRATA is the IAEA Member States' database on discharges of radionuclides to the atmosphere and the aquatic environment (http://dirata.iaea.org/). It is a worldwide centralized repository of data submitted by IAEA Member States on a voluntary basis and each site dataset includes annual discharge and detection limits. Regulatory limits are given by Member States whenever available and a limited amount of information on the location of the site (country, geographical coordinates, water body into which radioactivity is released, number, names and types of installations) is also included. One of important purposes of DIRATA is to assist UNSCEAR in the preparation of the regular reports to the UN General Assembly and to serve Member States as a technical means for reporting and reviewing within the framework of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The on-line version of the DIRATA database was deployed for the pilot application by Member States and the general public in 2006 and provides tools for: 1-)Input of the primary information by IAEA Member States and international organizations in batch or interactive (record by record) modes. The Microsoft Excel template is provided on the DIRATA website for the batch input; 2-) On-line access of Member States and the public to the dataset. The information contained in DIRATA is available for downloading (in CSV format) and interactive review. The new web-based version of DIRATA has inherited all of the important features contained on the previous CD-ROM versions, and has been extended by the number of principally new functionalities. The paper describes the structure, functionalities and content of the DIRATA database. (author)

  1. Continuous analytical control of the streaming waters in a uranium treatment plant and of various chemical products using automatic discharge valves

    International Nuclear Information System (INIS)

    Archimbaud, M.; Simeon, C.

    1968-01-01

    This report describes a method for controlling the streaming waters produced by the Pierrelatte Centre; it is based on continuous analysis, with simultaneous recording of the species liable to be found accidentally in the corresponding hydrological circuits (chlorides, fluorides, chromium VI, uranium). An alarm set off at pre-determined thresholds leads to an automatic cutting off of the discharge valves; the outward flow of the waters is thus interrupted. This study has shown the various applications which can be found for this water control method, and gives an idea of the cost price. (authors) [fr

  2. Improving discharge data fidelity for use in large administrative databases.

    Science.gov (United States)

    Gologorsky, Yakov; Knightly, John J; Lu, Yi; Chi, John H; Groff, Michael W

    2014-06-01

    Large administrative databases have assumed a major role in population-based studies examining health care delivery. Lumbar fusion surgeries specifically have been scrutinized for rising rates coupled with ill-defined indications for fusion such as stenosis and spondylosis. Administrative databases classify cases with the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). The ICD-9-CM discharge codes are not designated by surgeons, but rather are assigned by trained hospital medical coders. It is unclear how accurately they capture the surgeon's indication for fusion. The authors first sought to compare the ICD-9-CM code(s) assigned by the medical coder according to the surgeon's indication based on a review of the medical chart, and then to elucidate barriers to data fidelity. A retrospective review was undertaken of all lumbar fusions performed in the Department of Neurosurgery at the authors' institution between August 1, 2011, and August 31, 2013. Based on this review, the indication for fusion in each case was categorized as follows: spondylolisthesis, deformity, tumor, infection, nonpathological fracture, pseudarthrosis, adjacent-level degeneration, stenosis, degenerative disc disease, or disc herniation. These surgeon diagnoses were compared with the primary ICD-9-CM codes that were generated by the medical coders and submitted to administrative databases. A follow-up interview with the hospital's coders and coding manager was undertaken to review causes of error and suggestions for future improvement in data fidelity. There were 178 lumbar fusion operations performed in the course of 170 hospital admissions. There were 44 hospitalizations in which fusion was performed for tumor, infection, or nonpathological fracture. Of these, the primary diagnosis matched the surgical indication for fusion in 98% of cases. The remaining 126 hospitalizations were for degenerative diseases, and of these, the primary ICD-9-CM

  3. Evolution of concentration-discharge relations revealed by high frequency diurnal sampling of stream water during spring snowmelt

    Science.gov (United States)

    Olshansky, Y.; White, A. M.; Thompson, M.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    Concentration discharge (C-Q) relations contain potentially important information on critical zone (CZ) processes including: weathering reactions, water flow paths and nutrient export. To examine the C-Q relations in a small (3.3 km2) headwater catchment - La Jara Creek located in the Jemez River Basin Critical Zone Observatory, daily, diurnal stream water samples were collected during spring snow melt 2017, from two flumes located in outlets of the La Jara Creek and a high elevation zero order basin within this catchment. Previous studies from this site (McIntosh et al., 2017) suggested that high frequency sampling was needed to improve our interpretation of C-Q relations. The dense sampling covered two ascending and two descending limbs of the snowmelt hydrograph, from March 1 to May 15, 2017. While Na showed inverse correlation (dilution) with discharge, most other solutes (K, Mg, Fe, Al, dissolved organic carbon) exhibited positive (concentration) or chemostatic trends (Ca, Mn, Si, dissolved inorganic carbon and dissolved nitrogen). Hysteresis in the C-Q relation was most pronounced for bio-cycled cations (K, Mg) and for Fe, which exhibited concentration during the first ascending limb followed by a chemostatic trend. A pulsed increase in Si concentration immediately after the first ascending limb in both flumes suggests mixing of deep groundwater with surface water. A continual increase in Ge/Si concentrations followed by a rapid decrease after the second rising limb may suggest a fast transition between soil water to ground water dominating the stream flow. Fourier transform infrared spectroscopy of selected samples across the hydrograph demonstrated pronounced changes in dissolved organic matter molecular composition with the advancement of the spring snow melt. X-ray micro-spectroscopy of colloidal material isolated from the collected water samples indicated a significant role for organic matter in the transport of inorganic colloids. Analyses of high

  4. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    Science.gov (United States)

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.

  5. Simulation and comparison of stream power in-channel and on the floodplain in a German lowland area

    Directory of Open Access Journals (Sweden)

    Song Song

    2014-06-01

    Full Text Available Extensive lowland floodplains cover substantial parts of the glacially formed landscape of Northern Germany. Stream power is recognized as a force of formation and development of the river morphology and an interaction system between channel and floodplain. In order to understand the effects of the river power and flood power, HEC-RAS models were set up for ten river sections in the Upper Stör catchment, based on a 1 m digital elevation model and field data, sampled during a moderate water level period (September, 2011, flood season (January, 2012 and dry season (April, 2012. The models were proven to be highly efficient and accurate through the seasonal roughness modification. The coefficients of determination (R2 of the calibrated models were 0.90, 0.90, 0.93 and 0.95 respectively. Combined with the continuous and long-term data support from SWAT model, the stream power both in-channel and on the floodplain was analysed. Results show that the 10-year-averaged discharge and unit stream power were around 1/3 of bankfull discharge and unit power, and the 10-year-peak discharge and unit stream power were nearly 1.6 times the bankfull conditions. Unit stream power was proportional to the increase of stream discharge, while the increase rate of unit in-channel stream power was 3 times higher than that of unit stream power on the floodplain. Finally, the distribution of the hydraulic parameters under 10-years-peak discharge conditions was shown, indicating that only 1-10% of flow stream was generated by floodplain flow, but 40-75% volume of water was located on the floodplain. The variation of the increasing rate of the stream power was dominated by the local roughness height, while the stream power distributed on the floodplain mainly depended on the local slope of the sub-catchment.

  6. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Eiriksson, David; Brooks, Paul D; Baker, Michelle A; Bowen, Gabriel J; Bowling, David R

    2016-02-02

    Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow. Near-chemostatic relationships between conservative ions and discharge implied that groundwater dominated discharge year-round across the montane and urban sites, challenging the conceptual emphasis on direct stormwater inputs to urban streams. Stream and groundwater NO3(-) concentrations remained consistently low during snowmelt and baseflow in most montane and urban stream reaches, indicating effective subsurface N retention or denitrification and minimal impact of fertilizer or deposition N sources. Rather, NO3(-) concentrations increased 50-fold following urban groundwater inputs, showing that subsurface flow paths potentially impact nutrient loading more than surficial land use. Isotopic composition of H2O and NO3(-) suggested that snowmelt-derived urban groundwater intercepted NO3(-) from leaking sewers. Sewer maintenance could potentially mitigate hotspots of stream N inputs at mountain/valley transitions, which have been largely overlooked in semiarid urban ecosystems.

  7. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita m [JL Sexton and Son; Fryar, Alan E [Dept of Earth and Geoligical Sciences, Univ of KY,; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Sturchio, Neil C [Dept of earth and Env. Sciences, Univ of Ill at Chicago; Heraty, Linnea J [Dept of earth and Env. Sciences, Univ of Ill at Chicago

    2008-10-01

    Recent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 along Little Bayou Creek, a first -order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and technetium-99 to the creek, and TCE concentrations tended to vary with technetium-99 in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O2, NO3⁻, and SO2-4, values of δ37CL in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that aerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.

  8. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  9. Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation

    Science.gov (United States)

    Chang, Chung-Te; Huang, -Chuan, Jr.; Wang, Lixin; Shih, Yu-Ting; Lin, Teng-Chiu

    2018-04-01

    Climate change is projected to increase the intensity and frequency of extreme climatic events such as tropical cyclones. However, few studies have examined the responses of hydrochemical processes to climate extremes. To fill this knowledge gap, we compared the relationship between stream discharge and ion input-output budget during typhoon and non-typhoon periods in four subtropical mountain watersheds with different levels of agricultural land cover in northern Taiwan. The results indicated that the high predictability of ion input-output budgets using stream discharge during the non-typhoon period largely disappeared during the typhoon periods. For ions such as Na+, NH4+, and PO43-, the typhoon period and non-typhoon period exhibited opposite discharge-budget relationships. In other cases, the discharge-budget relationship was driven by the typhoon period, which consisted of only 7 % of the total time period. The striking differences in the discharge-ion budget relationship between the two periods likely resulted from differences in the relative contributions of surface runoff, subsurface runoff and groundwater, which had different chemical compositions, to stream discharge between the two periods. Watersheds with a 17-22 % tea plantation cover showed large increases in NO3- export with increases in stream discharge. In contrast, watersheds with 93-99 % forest cover showed very mild or no increases in NO3- export with increases in discharge and very low levels of NO3- export even during typhoon storms. The results suggest that even mild disruption of the natural vegetation could largely alter hydrochemical processes. Our study clearly illustrates significant shifts in hydrochemical responses between regular and typhoon precipitation. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.

  10. JT-60 database system, 2

    International Nuclear Information System (INIS)

    Itoh, Yasuhiro; Kurihara, Kenichi; Kimura, Toyoaki.

    1987-07-01

    The JT-60 central control system, ''ZENKEI'' collects the control and instrumentation data relevant to discharge and device status data for plant monitoring. The former of the engineering data amounts to about 3 Mbytes per shot of discharge. The ''ZENKEI'' control system which consists of seven minicomputers for on-line real-time control has little performance of handling such a large amount of data for physical and engineering analysis. In order to solve this problem, it was planned to establish the experimental database on the Front-end Processor (FEP) of general purpose large computer in JAERI Computer Center. The database management system (DBMS), therefore, has been developed for creating the database during the shot interval. The engineering data are shipped up from ''ZENKEI'' to FEP through the dedicated communication line after the shot. The hierarchical data model has been adopted in this database, which consists of the data files with tree structure of three keys of system, discharge type and shot number. The JT-60 DBMS provides the data handling packages of subroutines for interfacing the database with user's application programs. The subroutine packages for supporting graphic processing and the function of access control for security of the database are also prepared in this DBMS. (author)

  11. Coupling fine particle and bedload transport in gravel-bedded streams

    Science.gov (United States)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  12. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  13. DIII-D physics analysis database

    International Nuclear Information System (INIS)

    Bramson, G.; Schissel, D.P.; DeBoo, J.C.; St John, H.

    1990-10-01

    Since June 1986 the DIII-D tokamak has had over 16000 discharges accumulating more than 250 Gigabytes of raw data (currently over 30 Mbytes per discharge). The centralized DIII-D databases and the associated support software described earlier provide the means to extract, analyze, store, and display reduced sets of data for specific physics issues. The confinement, stability, transition, and cleanliness databases consist of more than 7500 records of basic reduced diagnostic data datasets. Each database record corresponds to a specific snapshot in time for a selected discharge. Recently some profile datasets have been implemented. Diagnostic data are fit by a cubic spline or a parabola by the in-house ENERGY code to provide density, temperature, radiated power, effective charge (Z eff ), and rotation velocity profiles. These fits are stored in the profile datasets which are inputs for the ONETWO code which computes transport data. 3 refs., 4 figs

  14. The LOCUS interface to the MFE database

    International Nuclear Information System (INIS)

    Miner, W.H. Jr.

    1991-01-01

    The MFE database now consists of over 900 shots from TFTR, PDX, PLT, T-10, JT-60, TEXT, JET and ASDEX. A variety of discharge conditions is represented, ranging from single time slice Ohmic discharges to multiple time-slice auxiliary heated discharges. Included with most datasets is a reference that describes the experiment being performed when the data was taken. The MFE database is currently implemented under INGRES on a VAX that is on Internet. LOCUS, a database utility, developed at the Princeton Plasma Physics Laboratory is now available as an interface to the database. The LOCUS front end provides a graphic interface to the database from any generic graphics terminal that supports Tektronix 4010 emulation. It provides a variety of procedures for extracting, manipulating and graphing data from the MFE database. In order to demonstrate the capabilities of the LOCUS interface, the authors examine, in detail, one of the recently added JET, H-mode discharges. In this example, they address some new concepts such as monitor functions, which have been introduced in order to help users more fully understand the multiple time-slice datasets. They also describe some of the more advanced techniques available in LOCUS for data access and manipulation. Specific areas of interest that are discussed are searching for and retrieving datasets, graphics, data fitting, and linear regression analysis

  15. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-03-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2-D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt-dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite-derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  16. The role of frozen soil in groundwater discharge predictions for warming alpine watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-01-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2‐D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt‐dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite‐derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  17. Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2017-02-01

    Full Text Available In recent years, data streams have become an increasingly important area of research for the computer science, database and statistics communities. Data streams are ordered and potentially unbounded sequences of data points created by a typically non-stationary data generating process. Common data mining tasks associated with data streams include clustering, classification and frequent pattern mining. New algorithms for these types of data are proposed regularly and it is important to evaluate them thoroughly under standardized conditions. In this paper we introduce stream, a research tool that includes modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. In addition to data handling, plotting and easy scripting capabilities, R also provides many existing algorithms and enables users to interface code written in many programming languages popular among data mining researchers (e.g., C/C++, Java and Python. In this paper we describe the architecture of stream and focus on its use for data stream clustering research. stream was implemented with extensibility in mind and will be extended in the future to cover additional data stream mining tasks like classification and frequent pattern mining.

  18. STREAMED VERTICAL RECTANGLE DETECTION IN TERRESTRIAL LASER SCANS FOR FACADE DATABASE PRODUCTION

    Directory of Open Access Journals (Sweden)

    J. Demantké

    2012-07-01

    Full Text Available A reliable and accurate facade database would be a major asset in applications such as localization of autonomous vehicles, registration and fine building modeling. Mobile mapping devices now provide the data required to create such a database, but efficient methods should be designed in order to tackle the enormous amount of data collected by such means (a million point per second for hours of acquisition. Another important limitation is the presence of numerous objects in urban scenes of many different types. This paper proposes a method that overcomes these two issues: – The facade detection algorithm is streamed: the data is processed in the order it was acquired. More precisely, the input data is split into overlapping blocks which are analysed in turn to extract facade parts. Close overlapping parts are then merged in order to recover the full facade rectangle. – The geometry of the neighborhood of each point is analysed to define a probability that the point belongs to a vertical planar patch. This probability is then injected in a RANdom SAmple Consensus (RANSAC algorithm both in the sampling step and in the hypothesis validation, in order to favour the most reliable candidates. This ensures much more robustness against outliers during the facade detection. This way, the main vertical rectangles are detected without any prior knowledge about the data. The only assumptions are that the facades are roughly planar and vertical. The method has been successfully tested on a large dataset in Paris. The facades are detected despite the presence of trees occluding large areas of some facades. The robustness and accuracy of the detected facade rectangles makes them useful for localization applications and for registration of other scans of the same city or of entire city models.

  19. Flood-frequency characteristics of Wisconsin streams

    Science.gov (United States)

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  20. Reach Address Database (RAD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reach Address Database (RAD) stores the reach address of each Water Program feature that has been linked to the underlying surface water features (streams,...

  1. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge

    Science.gov (United States)

    Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.

    1994-01-01

    We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration

  2. Discharge and sediment loads at the Kings River Experimental Forest in the Southern Sierra Nevada of California

    Science.gov (United States)

    S.M. Eagan; C.T. Hunsaker; C.R. Dolanc; M.E. Lynch; C.R. Johnson

    2007-01-01

    The Kings River Experimental Watershed (KREW) is now in its third year of data collection on eight small perennial watersheds. We are collecting meteorology, stream discharge, sediment load, water chemistry, shallow soil water chemistry, vegetation, macro-invertebrate, stream microclimate, and air quality data. This paper primarily examines discharge and sediment data...

  3. Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten; Refsgaard, Jens Christian; Christensen, Britt Stenhøj Baun

    2013-01-01

    the catchment. In this study, a coupled groundwater-surface water model based on the MIKE SHE code was developed for the 4.7 km2 Lillebæk catchment in Denmark, where tile drain flow is a major contributor to the stream discharge. The catchment model was calibrated in several steps by incrementally including...... the observation data into the calibration to see the effect on model performance of including diverse data types, especially tile drain discharge. For the Lillebæk catchment, measurements of hydraulic head, daily stream discharge, and daily tile drain discharge from five small (1–4 ha) drainage areas exist....... The results showed that including tile drain data in the calibration of the catchment model improved its general performance for hydraulic heads and stream discharges. However, the model failed to correctly describe the local-scale dynamics of the tile drain discharges, and, furthermore, including the drain...

  4. Studies on the dilution behaviour of effluent discharged into the CCW channel at KGS

    International Nuclear Information System (INIS)

    Sivasubramanian, K.; Srinivasan, S.; Ponraju, D.; Meenakshisundaram, V.; Munusamy, N.

    2003-01-01

    The dilution behaviour of the liquid effluent discharged into condenser cooling water channel of Kaiga Power Plant has been studied using salt addition and dye addition methods. Dilution factors determined experimentally showed that the discharged liquid effluent gets thoroughly mixed with stream of water at the weir and further diluted in the down stream. This paper describes both salt and dye addition methods for determining the dilution factor. The velocity of the stream at various locations were measured and compared with reported values. The selection of representative sampling point for routine analysis of water was identified from this experiment. (author)

  5. Database and Expert Systems Applications

    DEFF Research Database (Denmark)

    Viborg Andersen, Kim; Debenham, John; Wagner, Roland

    schemata, query evaluation, semantic processing, information retrieval, temporal and spatial databases, querying XML, organisational aspects of databases, natural language processing, ontologies, Web data extraction, semantic Web, data stream management, data extraction, distributed database systems......This book constitutes the refereed proceedings of the 16th International Conference on Database and Expert Systems Applications, DEXA 2005, held in Copenhagen, Denmark, in August 2005.The 92 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 390...... submissions. The papers are organized in topical sections on workflow automation, database queries, data classification and recommendation systems, information retrieval in multimedia databases, Web applications, implementational aspects of databases, multimedia databases, XML processing, security, XML...

  6. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development

    Science.gov (United States)

    Bern, Carleton R.; Clark, Melanie L.; Schmidt, Travis S.; Holloway, JoAnn M.; Mcdougal, Robert

    2015-01-01

    Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km2 of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.

  7. Predicting Vulnerability of the Integrity and Connectivity Associated with Culverts in Low Order Streams of Northern Michigan

    Science.gov (United States)

    King, C. H.; Wagenbrenner, J.; Fedora, M.; Watkins, D.; Watkins, M. K.; Huckins, C.

    2017-12-01

    The Great Lakes Region of North America has experienced more frequent extreme precipitation events in recent decades, resulting in a large number of stream crossing failures. While there are accepted methods for designing stream crossings to accommodate peak storm discharges, less attention has been paid to assessing the risk of failure. To evaluate failure risk and potential impacts, coarse-resolution stream crossing surveys were completed on 51 stream crossings and dams in the North Branch Paint River watershed in Michigan's Upper Peninsula. These inventories determined stream crossing dimensions along with stream and watershed characteristics. Eleven culverts were selected from the coarse surveys for high resolution hydraulic analysis to estimate discharge conditions expected at crossing failure. Watershed attributes upstream of the crossing, including area, slope, and storage, were acquired. Sediment discharge and the economic impact associated with a failure event were also estimated for each stream crossing. Impacts to stream connectivity and fish passability were assessed from the coarse-level surveys. Using information from both the coarse and high-resolution surveys, we also developed indicators to predict failure risk without the need for complex hydraulic modeling. These passability scores and failure risk indicators will help to prioritize infrastructure replacement and improve the overall connectivity of river systems throughout the upper Great Lakes Region.

  8. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  9. The impact of episodic coal mine drainage pollution on benthic macroinvertebrates in streams in the Anthracite region of Pennsylvania

    International Nuclear Information System (INIS)

    MacCausland, A.; McTammany, M.E.

    2007-01-01

    Episodic coal mine drainage, caused by fluctuations in mine discharges relative to stream flow, has devastating effects on aquatic macroinvertebrate communities. Seven stream reaches in the Anthracite region of Pennsylvania were identified as chronically, episodically or not impaired by mine drainage, and sampled seasonally for 1 year to determine the effect of episodic mine drainage on macroinvertebrates. Specific conductance fluctuated seasonally in episodic sites; it was lower in winter when discharge increased and higher in summer when discharges decreased and mine drainage made up a larger proportion of stream flow. Although we hypothesized that episodic streams would have higher macroinvertebrate richness than chronic streams, comparisons showed no differences in richness between treatments. Episodic pollution may result from undersized or poorly maintained passive treatment systems; therefore, intensive macroinvertebrate monitoring may be needed to identify streams being affected by episodic mine drainage because macroinvertebrate richness may be sensitive to water quality fluctuations. - Episodic coal mine pollution decreases benthic macroinvertebrate richness and density

  10. Indexes of contamination for characterization of continental waters and discharges. Formulations

    International Nuclear Information System (INIS)

    Ramirez, Restrepo R; Cardenosa, M

    1999-01-01

    Contamination indexes (ICO) for characterization of natural water bodies and industrial discharges have been formulated in previous works by Ramirez, et al, 1997 in this work, complementary indexes not correlated with other ICOS previously developed are established thus resulting in a complementary tool to be applied in the interpretation and characterization on continental surface water bodies. First, a pH index (ICOpH) is obtained to determine ph incidence on water quality interpretation. A temperature index (ICOTEM) is also obtained to evaluate effluent incidence on receiving water bodies. ICOTEM is based on temperature difference of the wastewater discharge and the water body. Finally, indexes for the evaluation of aromatic and aliphatic hydrocarbons are also developed based on data collected on sediments and fish tissue samples. These hydrocarbon compounds are highly viable to accumulate and produce long-term detrimental effects on living organisms. These latter indexes have been developed based on data of nearly 130 samples collected during monitoring campaigns in streams and water bodies affected by discharges of the petroleum industry or by accidental spills of crude oil or hydrocarbon by-products in Colombian streams; its also possible that anthropic influence other than petroleum discharges might be affecting the streams included in the monitoring campaigns

  11. Hydraulic Aspects of Vegetation Maintanence in Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1991-01-01

    This paper describes the importance of the underwater vegetation on Danish streams and some of the consequences of vegetation maintenance. the influence of the weed on the hydraulic conditions is studied through experiments in a smaller stream and the effect of cutting channels through the weed...... is measured. A method for predicting the Manning's n as a function of the discharge conditions is suggested, and also a working hypothesis for predictions of the effect of channel cutting is presented....

  12. Factoring stream turbulence into global assessments of nitrogen pollution.

    Science.gov (United States)

    Grant, Stanley B; Azizian, Morvarid; Cook, Perran; Boano, Fulvio; Rippy, Megan A

    2018-03-16

    The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. The design of remote discharge scenario management system on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Chai, W.T, E-mail: wtchai@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui (China); Xiao, B.J [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui (China); Yuan, Q.P; Zhang, R.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    Highlights: • The remote discharge scenario management system is established on EAST, it provides some useful function for operators to manage discharge scenarios and formulate discharge schedule. • Operators can use this system to formulate discharge schedule on account of it can electing optimal scenarios automatically. • The system is not only for local user but also for remote user. • In the future, we can combine with actual discharge data and data mining technology to acquire optimal configuration, which to generate expert database and guiding experiment. - Abstract: The discharge scenarios on EAST plasma control system (PCS), characterized by different waveform parameters and different hardware requirements, will need a systematic discharge scenario management system for remote and local operators, in order to optimize storage structure and rationally manage discharge time. The remote management of discharge scenarios will require extending the functionalities of the present PCS “future shot” and “next shot” modules. Taking advantage of database technique, the operators can acquire detail information of all discharge scenarios directly without PCS user interface and search the specified scenarios by key words. In addition, the system can elect optimal scenarios automatically based on discharge schedule and plasma pulse setting for later artificial selection. To this purpose, a new remote discharge scenario management system (RDSMS) basis for Web is being conceived on EAST. The system contains a database with functions of “user management”, “scenario verification”, “prepared scenario management”, “actual discharge scenario management” and “discharge schedule management”. This paper will present the relevant conceptual design and give an account of the test results for implementation on EAST discharges.

  14. The design of remote discharge scenario management system on EAST

    International Nuclear Information System (INIS)

    Chai, W.T; Xiao, B.J; Yuan, Q.P; Zhang, R.R.

    2016-01-01

    Highlights: • The remote discharge scenario management system is established on EAST, it provides some useful function for operators to manage discharge scenarios and formulate discharge schedule. • Operators can use this system to formulate discharge schedule on account of it can electing optimal scenarios automatically. • The system is not only for local user but also for remote user. • In the future, we can combine with actual discharge data and data mining technology to acquire optimal configuration, which to generate expert database and guiding experiment. - Abstract: The discharge scenarios on EAST plasma control system (PCS), characterized by different waveform parameters and different hardware requirements, will need a systematic discharge scenario management system for remote and local operators, in order to optimize storage structure and rationally manage discharge time. The remote management of discharge scenarios will require extending the functionalities of the present PCS “future shot” and “next shot” modules. Taking advantage of database technique, the operators can acquire detail information of all discharge scenarios directly without PCS user interface and search the specified scenarios by key words. In addition, the system can elect optimal scenarios automatically based on discharge schedule and plasma pulse setting for later artificial selection. To this purpose, a new remote discharge scenario management system (RDSMS) basis for Web is being conceived on EAST. The system contains a database with functions of “user management”, “scenario verification”, “prepared scenario management”, “actual discharge scenario management” and “discharge schedule management”. This paper will present the relevant conceptual design and give an account of the test results for implementation on EAST discharges.

  15. Gaining, losing, and dry stream reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

    International Nuclear Information System (INIS)

    Robinson, J.A.; Mitchell, R.L. III.

    1996-01-01

    A study was conducted, to delineate stream reaches that were gaining flow, losing flow, or that were dry in the upper reaches of Bear Creek Valley near the Y-12 Plant in Oak Ridge, Tennessee. The study included a review of maps and discharge data from a seepage investigation conducted at Bear Creek Valley; preparation of tables showing site identification and discharge and stream reaches that were gaining flow, losing flow, or that were dry; and preparation of maps showing measurement site locations and discharge measurements, and gaining, losing, and dry stream reaches. This report will aid in developing a better understanding of ground-water and surface-water interactions in the upper reaches of Bear Creek

  16. Characterization of Sea Lamprey stream entry using dual‐frequency identification sonar

    Science.gov (United States)

    McCain, Erin L.; Johnson, Nicholas; Hrodey, Peter J.; Pangle, Kevin L.

    2018-01-01

    Effective methods to control invasive Sea Lampreys Petromyzon marinus in the Laurentian Great Lakes often rely on knowledge of the timing of the Sea Lamprey spawning migration, which has previously been characterized using data gathered from traps. Most assessment traps are located many kilometers upstream from the river mouth, so less is known about when Sea Lampreys enter spawning streams and which environmental cues trigger their transition from lakes to rivers. To decide how to develop barriers and traps that target Sea Lampreys when they enter a stream, the stream entry of Sea Lampreys into a Lake Huron tributary during 2 years was assessed using dual‐frequency identification sonar (DIDSON). Sea Lampreys entered the stream in low densities when temperatures first reached 4°C, which was up to 6 weeks and a mean of 4 weeks earlier than when they were first captured in traps located upstream. The probability of stream entry was significantly affected by stream temperature and discharge, and stream entry timing peaked when stream temperatures rose to 12°C and discharge was high. Examination of the entry at a finer temporal resolution (i.e., minutes) indicated that Sea Lampreys did not exhibit social behavior (e.g., shoaling) during stream entry. Our findings indicate that Sea Lampreys may be vulnerable to alternative trap types near river mouths and hydraulic challenges associated with traditional traps. Also, seasonal migration barriers near stream mouths may need to be installed soon after ice‐out to effectively block the entire adult Sea Lamprey cohort from upstream spawning habitat.

  17. Instream Biological Assessment of NPDES Point Source Discharges at the Savannah River Site, 2000

    International Nuclear Information System (INIS)

    Specht, W.L.

    2001-01-01

    The Savannah River Site (SRS) currently has 31 NPDES outfalls that have been permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams. These studies were designed to detect biological impacts due to point source discharges. Sampling was initially conducted between November 1997 and July 1998 and was repeated in the summer and fall of 2000. A total of 18 locations were sampled (Table 1, Figure 1). Sampling locations for fish and macroinvertebrates were generally the same. However, different locations were sampled for fish (Road A-2) and macroinvertebrates (Road C) in the lower portion of Upper Three Runs, to avoid interference with ongoing fisheries studies at Road C. Also, fish were sampled in Fourmile Branch at Road 4 rather than at Road F because the stream at Road F was too narrow and shallow to support many fish. Sampling locations and parameters are detailed in Sections 2 and 3 of this report. In general, sampling locations were selected that would permit comparisons upstream and downstream of NPDES outfalls. In instances where this approach was not feasible because effluents discharge into the headwaters of a stream, appropriate unimpacted reference were used for comparison purposes. This report summarizes the results of the sampling that was conducted in 2000 and also compares these data to the data that were collected in 1997 and 1998

  18. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  19. Re-thinking stressor interactions: The role of groundwater contamination impacting stream ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Sonne, Anne Thobo; Rønde, Vinni Kampman

    ) to quantify the contaminant discharges, and potentially link the chemical impact and stream water quality. Potential pollution sources include two contaminated sites (Grindstedfactory/landfill), aquaculture, waste water discharges, and diffuse sources from agriculture and urban areas. Datafor xenobiotic...... chronic stress level, so even small perturbations on top of changes in water flow or additional chemical stressors may be detrimental to the stream health. To address this issue, we identified contaminant sources and chemical stressors along a 16-km groundwater-fedstream stretch (Grindsted, Denmark...... organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow from three campaigns in 2012 and 2014 were assessed. The measured chemicalconcentrations were converted to toxic units (TU) based on 48-h acute toxicity tests with Daphnia magna...

  20. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    Science.gov (United States)

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  1. Organic Seston Dynamics in Upland Neotropical Streams: Implications for Amphibian Declines

    Science.gov (United States)

    Peterson, S. D.; Colon-Gaud, C.; Whiles, M. R.; Hunte-Brown, M.; Connelly, S.; Kilham, S.; Pringle, C. M.; Lips, K. R.; Brenes, R.

    2005-05-01

    Organic seston represents food for filter feeders and a mechanism for downstream transport of energy and nutrients. As part of a study assessing the ecological impacts of stream-breeding anuran extirpations, we examined seston dynamics in 2 stream reaches with tadpoles (El Cope) and 2 without (Fortuna) in the Panamanian uplands. All reaches are high gradient with annual average discharge ranging from 46-102 L/s. Samples were collected multiple times per month at various discharges, sieved into fine (98μm) and very fine (1.6μm) fractions, and processed to estimate ash-free dry mass (AFDM), total C, and total N. Average annual concentrations ranged from 0.52- 2.51 mg/L (fine) and 2.04-3.14 mg/L (very fine), and total export ranged from 0.27-7,981 mg/s across all streams. On average, very fine particles comprised 78% of export from El Cope sites and 61% from Fortuna streams. Average total N export ranged from 5.32-30.53 mg/s in El Cope sites and 1.71-6.04 mg/s at Fortuna. Average particle quality (C/N) in El Cope streams was higher (7.6) than Fortuna streams (11.5). Lower export of very fine particles and lower seston quality in Fortuna streams suggests the loss of tadpoles may influence seston dynamics and quality in these systems.

  2. Response of PCB contamination in stream fish to abatement actions at an industrial site

    International Nuclear Information System (INIS)

    Southworth, G.R.; Peterson, M.J.; McCarthy, J.F.; Milne, G.

    1995-01-01

    The Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, used large quantities of PCBs in equipment associated with the great electric power requirements of isotopic enrichment of uranium. Historic losses of PCBs in the 1950s and 1960s have left a legacy of contamination at the site. A biological monitoring program implemented in 1987 found PCBs in PGDP effluents and in fish downstream from facility discharges. As a consequence, a fish consumption advisory was posted on Little Bayou Creek by the Commonwealth of Kentucky in 1987, and regulatory discharge limits for PCBs at PGDP were reduced. Monitoring at multiple locations in receiving streams indicated that PGDP discharges were more important than in stream sediment contamination as sources of PCBs to fish. Environmental management and compliance staff at PGDP led an effort to reduce PCB discharges and monitor the effects of those actions. The active discharge of uncontaminated process water to historically PCB-contaminated drainage systems was found to mobilize PCBs into KPDES (Clean Water Act) regulated effluents. Efforts to locate PCB sources within the plant, coupled with improvements in management practices and remedial actions, appear to have been successful in reducing PCB discharges from these sources. Actions included emplacing passive monitors in the plant drainage system to identify this as a chronic source, and consolidating and re-routing effluents to minimize flow through PCB-contaminated channels. As a consequence, PCB contamination in fish in small streams receiving plant discharges decreased 75% over from 1992--1995

  3. Discharges of radioactive materials to the environment in Argentina

    CERN Document Server

    Curti, A R

    2003-01-01

    The International Atomic Energy Agency (IAEA) is creating a database of information on radioactive discharges to atmospheric and aquatic environments from nuclear and radioactive installations, and from facilities using radionuclides in medicine, industry and research. The database is expected to facilitate the analysis of worldwide trends in discharge levels and provide a basis for assessing the impact of the discharges on humans and on the environment. In November 2002 took place the first meeting of national contact points and the Nuclear Regulatory Authority (ARN in Spanish) was present as the counterpart for the provision of discharge data from Argentina. This paper, presented in the above mentioned meeting, is a general overview of the radioactive discharges control in Argentina including the legal infrastructure, the population dose assessment methodology and the main characteristics of the facilities in the country with radioactive discharges to the environment. It is mentioned their location, release...

  4. A report on the aquatic dilution experiment carried out at discharge canal, KGS site

    International Nuclear Information System (INIS)

    Reji, T.K.; Nayak, P.D.; Sudhakar, J.; Ajith, T.L.; Vishnu, M.S.; Ravi, P.M.; James, J.P.; Joshi, R.M.; Naik, S.B.; Kudtharkar, A.M.; Gaonkar, S.M.; Verma, P.C.; Datta, D.; Dahiya, Sudhir; Brijkumar; Datta, Maduparna; Sajeevan, G.

    2009-08-01

    Under Nuclear Power Corporation of India Limited (NPCIL), three units of (each of capacity 220MWe) Nuclear Power Stations are operational and one unit of similar capacity is under advanced stage of construction at Kaiga site. The radioactive liquid effluents generated in the plant are diluted with Condenser Coolant Water Stream (CCW) which is then discharged into Kadra reservoir through an artificially made discharge canal. The basic objective of the present study is to estimate the Dilution Factors at various locations of discharge canal and to understand the process of dilution and dispersion of radioactive effluent in the discharge canal. The strategy of the experiment involved the collection of samples from discharge canal lengthwise, breadth wise and depth wise immediately after the routine release of one of the batches of effluent stream into the CCW stream. No additional activity was released for the purpose of this experiment. The study compared the experimentally obtained Dilution Factor with that calculated based on the flow rates of CCW pumps and active liquid effluent discharge pumps. In the present conditions of experiment, Dilution Factor, based on flow rates of CCW pumps and Liquid Effluent Discharge pump, works out to be 8.11 E -05 while experimentally observed Mean Dilution Factor in the discharge canal works out to be (7.75±2.15) E-05. Hence this experiment clearly demonstrate the validity of the method of calculating dilution factor based on the flow rates of CCW line and that of Effluent discharge pump. The data analysis indicates that mass flow seems to be the major process of dispersion in the discharge canal. The tritium activity was found to be moving faster in the midstream as compared to that near the shore. The conclusions are drawn purely based on experimental results. This experimental data can be used for validation of aquatic dispersion models. (author)

  5. Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation

    Directory of Open Access Journals (Sweden)

    C.-T. Chang

    2018-04-01

    Full Text Available Climate change is projected to increase the intensity and frequency of extreme climatic events such as tropical cyclones. However, few studies have examined the responses of hydrochemical processes to climate extremes. To fill this knowledge gap, we compared the relationship between stream discharge and ion input–output budget during typhoon and non-typhoon periods in four subtropical mountain watersheds with different levels of agricultural land cover in northern Taiwan. The results indicated that the high predictability of ion input–output budgets using stream discharge during the non-typhoon period largely disappeared during the typhoon periods. For ions such as Na+, NH4+, and PO43−, the typhoon period and non-typhoon period exhibited opposite discharge–budget relationships. In other cases, the discharge–budget relationship was driven by the typhoon period, which consisted of only 7 % of the total time period. The striking differences in the discharge–ion budget relationship between the two periods likely resulted from differences in the relative contributions of surface runoff, subsurface runoff and groundwater, which had different chemical compositions, to stream discharge between the two periods. Watersheds with a 17–22 % tea plantation cover showed large increases in NO3− export with increases in stream discharge. In contrast, watersheds with 93–99 % forest cover showed very mild or no increases in NO3− export with increases in discharge and very low levels of NO3− export even during typhoon storms. The results suggest that even mild disruption of the natural vegetation could largely alter hydrochemical processes. Our study clearly illustrates significant shifts in hydrochemical responses between regular and typhoon precipitation. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a

  6. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    Science.gov (United States)

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period

  7. Expansion of a nitrogen discharge by sound

    International Nuclear Information System (INIS)

    Antinyan, M.A.; Galechyan, G.A.; Tavakalyan, L.B.

    1992-01-01

    When the background pressure and the discharge current in a gas discharge are raised the plasma column is tightened up into a filament. Then the discharge occupies a region of the discharge tube whose transverse dimensions are substantially less than those of the tube. This contraction phenomenon in discharges restricts the range of parameters used in various devices to the range of relatively low discharge currents and low gas pressures. This contraction interferes with creating high-power gas lasers, since it acts destructively on the lasing process. In order to suppress filamentation of discharges the working gas has been pumped through the system at high speed, with considerable success. The turbulent mixing in the stream plays an important role in creating an uncontracted discharge at high pressures. The purpose of the present work is to study the possibility of undoing the contraction of a nitrogen discharge, which is one of the main components in the operation of a CO 2 laser, by introducing an intense sound wave in the discharge tube. Discharge contraction and the effect of a sound wave propagating along the plasma column have been investigated experimentally in nitrogen by studying the current-voltage characteristics of a contracted discharge. 6 refs., 3 figs

  8. Discharges of radioactive materials to the environment in Argentina

    International Nuclear Information System (INIS)

    Curti, Adriana R.

    2003-01-01

    The International Atomic Energy Agency (IAEA) is creating a database of information on radioactive discharges to atmospheric and aquatic environments from nuclear and radioactive installations, and from facilities using radionuclides in medicine, industry and research. The database is expected to facilitate the analysis of worldwide trends in discharge levels and provide a basis for assessing the impact of the discharges on humans and on the environment. In November 2002 took place the first meeting of national contact points and the Nuclear Regulatory Authority (ARN in Spanish) was present as the counterpart for the provision of discharge data from Argentina. This paper, presented in the above mentioned meeting, is a general overview of the radioactive discharges control in Argentina including the legal infrastructure, the population dose assessment methodology and the main characteristics of the facilities in the country with authorized radioactive discharges to the environment. It is mentioned their location, release mode, surface water body type, main radionuclides and typical annual release activities. (author)

  9. Assessing biogeochemical cycling and transient storage of surface water in Eastern Siberian streams using short-term solute additions

    Science.gov (United States)

    Schade, J. D.; Seybold, E.; Drake, T. W.; Bulygina, E. B.; Bunn, A. G.; Chandra, S.; Davydov, S.; Frey, K. E.; Holmes, R. M.; Sobczak, W. V.; Spektor, V. V.; Zimov, S. A.; Zimov, N.

    2009-12-01

    Recent studies highlight the role of stream networks in the processing of nutrient and organic matter inputs from the surrounding watershed. Clear evidence exists that streams actively regulate fluxes of carbon, nitrogen, and phosphorus from upland terrestrial ecosystems to downstream aquatic environments. This is of particular interest in Arctic streams because of the potential impact of permafrost thaw due to global warming on inputs of nutrients and organic matter to small streams high in the landscape. Knowledge of functional characteristics of these stream ecosystems is paramount to our ability to predict changes in stream ecosystems as climate changes. Biogeochemical models developed by stream ecologists, specifically nutrient spiraling models, provide a set of metrics that we used to assess nutrient processing rates in several streams in the Eastern Siberian Arctic. We quantified these metrics using solute addition experiments in which nitrogen and phosphorus were added simultaneously with chloride as a conservative tracer. We focused on 5 streams, three flowing across upland yedoma soils and two floodplain streams. Yedoma streams showed higher uptake of N than P, suggesting N limitation of biological processes, with large variation between these three streams in the severity of N limitation. Floodplain streams both showed substantially higher P uptake than N uptake, indicating strong P limitation. Given these results, it is probable that these two types of streams will respond quite differently to changes in nutrient and organic matter inputs as permafrost thaws. Furthermore, uptake was strongly linked to discharge and transient storage of surface water, measured using temporal patterns of the conservative tracer, with higher nutrient uptake in low discharge, high transient storage streams. Given the possibility that both discharge and nutrient inputs will increase as permafrost thaws, longer-term nutrient enrichment experiments are needed to develop

  10. Combined diurnal variations of discharge and hydrochemistry of the Isunnguata Sermia outlet, Greenland Ice Sheet

    Science.gov (United States)

    Graly, Joseph; Harrington, Joel; Humphrey, Neil

    2017-05-01

    In order to examine daily cycles in meltwater routing and storage in the Isunnguata Sermia outlet of the Greenland Ice Sheet, variations in outlet stream discharge and in major element hydrochemistry were assessed over a 6-day period in July 2013. Over 4 days, discharge was assessed from hourly photography of the outlet from multiple vantages, including where midstream naled ice provided a natural gauge. pH, electrical conductivity, suspended sediment, and major element and anion chemistry were measured in samples of stream water collected every 3 h.Photography and stream observations reveal that although river width and stage have only slight diurnal variation, there are large diurnal changes in discharge shown by the doubling in width of what we term the active channel, which is characterized by large standing waves and fast flow. The concentration of dissolved solutes follows a sinusoidal diurnal cycle, except for large and variable increases in dissolved solutes during the stream's waning flow. Solute concentrations vary by ˜ 30 % between diurnal minima and maxima. Discharge maxima and minima lag temperature and surface melt by 3-7 h; diurnal solute concentration minima and maxima lag discharge by 3-6 h.This phase shift between discharge and solute concentration suggests that during high flow, water is either encountering more rock material or is stored in longer contact with rock material. We suggest that expansion of a distributed subglacial hydrologic network into seldom accessed regions during high flow could account for these phenomena, and for a spike of partial silicate reaction products during waning flow, which itself suggests a pressure threshold-triggered release of stored water.

  11. Regional Curves of Bankfull Channel Geometry for Non-Urban Streams in the Piedmont Physiographic Province, Virginia

    Science.gov (United States)

    Lotspeich, R. Russell

    2009-01-01

    Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull

  12. Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis

    Science.gov (United States)

    Jones, Christopher S.; Wang, Bo; Schilling, Keith E.; Chan, Kung-sik

    2017-06-01

    Agricultural landscapes often leak inorganic nitrogen to the stream network, usually in the form of nitrate-nitrite (NOx-N), degrading downstream water quality on both the local and regional scales. While the spatial distribution of nitrate sources has been delineated in many watersheds, less is known about the complicated temporal dynamics that drive stream NOx-N because traditional methods of stream grab sampling are often conducted at a low frequency. Deployment of accurate real-time, continuous measurement devices that have been developed in recent years enables high-frequency sampling that provides detailed information on the concentration-discharge relation and the timing of NOx-N delivery to streams. We aggregated 15-min interval NOx-N and discharge data over a nine-year period into daily averages and then used robust statistical methods to identify how the discharge regime within an artificially-drained agricultural watershed reflected catchment hydrology and NOx-N delivery pathways. We then quantified how transport and supply limitations varied from year-to-year and how dependence of these limitations varied with climate, especially drought. Our results show NOx-N concentrations increased linearly with discharge up to an average "turning point" of 1.42 mm of area-normalized discharge, after which concentrations decline with increasing discharge. We estimate transport and supply limitations to govern 57 and 43 percent, respectively, of the NOx-N flux over the nine-year period. Drought effects on the NOx-N flux linger for multiple years and this is reflected in a greater tendency toward supply limitations in the three years following drought. How the turning point varies with climate may aid in prediction of NOx-N loading in future climate regimes.

  13. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Delin, Geoffrey N.; Hare, Danielle K.

    2016-01-01

    Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.

  14. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  15. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    International Nuclear Information System (INIS)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water

  16. JT-60 database system, 1

    International Nuclear Information System (INIS)

    Kurihara, Kenichi; Kimura, Toyoaki; Itoh, Yasuhiro.

    1987-07-01

    Naturally, sufficient software circumstance makes it possible to analyse the discharge result data effectively. JT-60 discharge result data, collected by the supervisor, are transferred to the general purpose computer through the new linkage channel, and are converted to ''database''. Datafile in the database was designed to be surrounded by various interfaces. This structure is able to preserve the datafile reliability and does not expect the user's information about the datafile structure. In addition, the support system for graphic processing was developed so that the user may easily obtain the figures with some calculations. This paper reports on the basic concept and system design. (author)

  17. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  18. Web Audio/Video Streaming Tool

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2003-01-01

    In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.

  19. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  20. Multi-stream face recognition for crime-fighting

    Science.gov (United States)

    Jassim, Sabah A.; Sellahewa, Harin

    2007-04-01

    Automatic face recognition (AFR) is a challenging task that is increasingly becoming the preferred biometric trait for identification and has the potential of becoming an essential tool in the fight against crime and terrorism. Closed-circuit television (CCTV) cameras have increasingly been used over the last few years for surveillance in public places such as airports, train stations and shopping centers. They are used to detect and prevent crime, shoplifting, public disorder and terrorism. The work of law-enforcing and intelligence agencies is becoming more reliant on the use of databases of biometric data for large section of the population. Face is one of the most natural biometric traits that can be used for identification and surveillance. However, variations in lighting conditions, facial expressions, face size and pose are a great obstacle to AFR. This paper is concerned with using waveletbased face recognition schemes in the presence of variations of expressions and illumination. In particular, we will investigate the use of a combination of wavelet frequency channels for a multi-stream face recognition using various wavelet subbands as different face signal streams. The proposed schemes extend our recently developed face veri.cation scheme for implementation on mobile devices. We shall present experimental results on the performance of our proposed schemes for a number of face databases including a new AV database recorded on a PDA. By analyzing the various experimental data, we shall demonstrate that the multi-stream approach is robust against variations in illumination and facial expressions than the previous single-stream approach.

  1. Freshwater Biological Traits Database (Traits)

    Science.gov (United States)

    The traits database was compiled for a project on climate change effects on river and stream ecosystems. The traits data, gathered from multiple sources, focused on information published or otherwise well-documented by trustworthy sources.

  2. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    Science.gov (United States)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  3. Potential tracers for tracking septic tank effluent discharges in watercourses.

    Science.gov (United States)

    Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc

    2017-09-01

    Septic tank effluent (STE) contributes to catchment nutrient and pollutant loads. To assess the role of STE discharges in impairment of surface water, it is essential to identify the sources of pollution by tracing contaminants in watercourses. We examined tracers that were present in STE to establish their potential for identifying STE contamination in two stream systems (low and high dilution levels) against the background of upstream sources. The studied tracers were microbial, organic matter fluorescence, caffeine, artificial sweeteners and effluent chemical concentrations. The results revealed that tracer concentration ratios Cl/EC, Cl/NH 4 -N, Cl/TN, Cl/TSS, Cl/turbidity, Cl/total coliforms, Cl/sucralose, Cl/saccharin and Cl/Zn had potential as tracers in the stream with low dilution level (P < 0.05). Fluorescence spectroscopy could detect STE inputs through the presence of the tryptophan-like peak, but was limited to water courses with low level of dilution and was positively correlated with stream Escherichia coli (E. coli) and soluble reactive phosphorus (SRP). The results also suggested that caffeine and artificial sweeteners can be suitable tracers for effluent discharge in streams with low and high level of dilution. Caffeine and saccharin were positively correlated with faecal coliforms, E. coli, total P and SRP, indicating their potential to trace discharge of a faecal origin and to be a marker for effluent P. Caffeine and SRP had similar attenuation behaviour in the receiving stream waters suggesting caffeine's potential role as a surrogate indicator for the behaviour of P downstream of effluent inputs. Taken together, results suggest that a single tracer alone was not sufficient to evaluate STE contamination of watercourses, but rather a combination of multiple chemical and physical tracing approaches should be employed. A multiple tracing approach would help to identify individual and cumulative STE inputs that pose risks to stream waters in

  4. Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

    International Nuclear Information System (INIS)

    Roy, W.K.; Ryon, M.G.; Hinzman, R.L.

    1996-03-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances

  5. Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

    Energy Technology Data Exchange (ETDEWEB)

    Roy, W.K.; Ryon, M.G.; Hinzman, R.L. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.

    1996-03-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  6. Thermal Discharges from Paducah Gaseous Diffusion Plant Outfalls: Impacts on Stream Temperatures and Fauna of Little Bayou and Big Bayou Creeks

    International Nuclear Information System (INIS)

    Roy, W.K.

    1999-01-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances

  7. Thermal Discharges from Paducah Gaseous Diffusion Plant Outfalls: Impacts on Stream Temperatures and Fauna of Little Bayou and Big Bayou Creeks

    Energy Technology Data Exchange (ETDEWEB)

    Roy, W.K.

    1999-01-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  8. Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2015-08-01

    Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater-surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.

  9. Two Approaches for Estimating Discharge on Ungauged Basins in Oregon, USA

    Science.gov (United States)

    Wigington, P. J.; Leibowitz, S. G.; Comeleo, R. L.; Ebersole, J. L.; Copeland, E. A.

    2009-12-01

    Detailed information on the hydrologic behavior of streams is available for only a small proportion of all streams. Even in cases where discharge has been monitored, these measurements may not be available for a sufficiently long period to characterize the full behavior of a stream. In this presentation, we discuss two separate approaches for predicting discharge at ungauged locations. The first approach models discharge in the Calapooia Watershed, Oregon based on long-term US Geological Survey gauge stations located in two adjacent watersheds. Since late 2008, we have measured discharge and water level over a range of flow conditions at more than a dozen sites within the Calapooia. Initial results indicate that many of these sites, including the mainstem Calapooia and some of its tributaries, can be predicted by these outside gauge stations and simple landscape factors. This is not a true “ungauged” approach, since measurements are required to characterize the range of flow. However, the approach demonstrates how such measurements and more complete data from similar areas can be used to estimate a detailed record for a longer period. The second approach estimates 30 year average monthly discharge at ungauged locations based on a Hydrologic Landscape Region (HLR) model. We mapped HLR class over the entire state of Oregon using an assessment unit with an average size of 44 km2. We then calculated average statewide moisture surplus values for each HLR class, modified to account for snowpack accumulation and snowmelt. We calculated potential discharge by summing these values for each HLR within a watershed. The resulting monthly hydrograph is then transformed to estimate monthly discharge, based on aquifer and soil permeability and terrain. We hypothesize that these monthly values should provide good estimates of discharge in areas where imports from or exports to the deep groundwater system are not significant. We test the approach by comparing results with

  10. Variations in surface water-ground water interactions along a headwater mountain stream: comparisons between transient storage and water balance analyses

    Science.gov (United States)

    Adam S. Ward; Robert A. Payn; Michael N. Gooseff; Brian L. McGlynn; Kenneth E. Bencala; Christa A. Kellecher; Steven M. Wondzell; Thorsten. Wagener

    2013-01-01

    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We...

  11. The Massachusetts Sustainable-Yield Estimator: A decision-support tool to assess water availability at ungaged stream locations in Massachusetts

    Science.gov (United States)

    Archfield, Stacey A.; Vogel, Richard M.; Steeves, Peter A.; Brandt, Sara L.; Weiskel, Peter K.; Garabedian, Stephen P.

    2010-01-01

    unregulated, daily mean streamflow at 18 streamgages located across southern New England. Nash-Sutcliffe efficiency goodness-of-fit values are between 0.69 and 0.98, and percent root-mean-square-error values are between 19 and 283 percent. The MA SYE tool provides an estimate of streamflow adjusted for current (2000-04) water withdrawals and discharges using a spatially referenced database of permitted groundwater and surface-water withdrawal and discharge volumes. For a user-selected basin, the database is queried to obtain the locations of water withdrawal or discharge volumes within the basin. Groundwater and surface-water withdrawals and discharges are subtracted and added, respectively, from the unregulated, daily streamflow at an ungaged site to obtain a streamflow time series that includes the effects of these withdrawals and discharges. Users also have the option of applying an analytical solution to the time-varying, groundwater withdrawal and discharge volumes that take into account the effects of the aquifer properties on the timing and magnitude of streamflow alteration. For the MA SYE tool, it is assumed that groundwater and surface-water divides are coincident. For areas of southeastern Massachusetts and Cape Cod where this assumption is known to be violated, groundwater-flow models are used to estimate average monthly streamflows at fixed locations. There are several limitations to the quality and quantity of the spatially referenced database of groundwater and surface-water withdrawals and discharges. The adjusted streamflow values do not account for the effects on streamflow of climate change, septic-system discharge, impervious area, non-public water-supply withdrawals less than 100,000 gallons per day, and impounded surface-water bodies.

  12. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  13. Use of radon as tracer for identification of aquifer discharge along the Matinha stream, MG, Brazil

    International Nuclear Information System (INIS)

    Chagas, Claudio Jose

    2017-01-01

    Within the framework of 'Nuclear Techniques' is the use of natural and artificial isotopes as tracers for the study of the environment. The use of natural tracers in hydrology is a very useful tool that has been used in several scenarios. One such tracer is the isotope of radon, "2"2"2Rn, a noble gas from natural sources as a consequence of alpha decay of "2"2"6Ra. Radon can be found, to a greater or lesser degree, in all groundwater, as well as in soils and rocks from where it exudes into the atmosphere through spaces arising from fissures and or nanopores present. It can emerge into the water bodies by the leaching of water or other liquids through these interstices. In this research, the "2"2"2Rn gas diluted naturally by the leaching of the water that infiltrated the soils and rocks of the aquifers was used as a tracer in order to identify sections of discharge of these aquifers along the Stream of Matinha. The study area is about 70 km from Belo Horizonte and is in the city of Itauna, MG. The Matinha stream is about 2,200 m in length and is part of the network of tributaries of the water reservoir called Serra Azul, in the Juatuba River Basin, MG. The results presented express the studies that occurred between the second half of 2014 and the first half of 2016, in ten campaigns for water sampling, flow and natural gamma radiation measurements. Water samples were collected near the bottom and very close to the thalweg in the watercourse using syringe and or peristaltic suction pump at low flow to avoid gas leakage. The "2"2"2Rn analyzes were performed in the field during the collections and in the laboratory of the CDTN - Centro de Desenvolvimento da Tecnologia Nuclear, all of which were carried out with the radon detector RAD 7. The flow measurements counted on the use of the fluorescent tracer's technique: rhodamine and fluorescein were used for injection at points upstream and downstream of sections with higher "2"2"2Rn activities. The fluorimeter used to

  14. Quantifying in-stream nitrate reaction rates using continuously-collected water quality data

    Science.gov (United States)

    Matthew Miller; Anthony Tesoriero; Paul Capel

    2016-01-01

    High frequency in situ nitrate data from three streams of varying hydrologic condition, land use, and watershed size were used to quantify the mass loading of nitrate to streams from two sources – groundwater discharge and event flow – at a daily time step for one year. These estimated loadings were used to quantify temporally-variable in-stream nitrate processing ...

  15. Phytoscreening for vinyl chloride in groundwater discharging to a stream

    DEFF Research Database (Denmark)

    Ottosen, Cecilie Bang; Rønde, Vinni Kampman; Trapp, Stefan

    2018-01-01

    and hence different uptake/loss scenarios. Vinyl chloride (VC) as well as cis-dichloroethylene (cis-DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) were detected in the trees, documenting that phytoscreening is a viable method to locate chlorinated ethene plumes, including VC, discharging...

  16. Estimating the magnitude of annual peak discharges with recurrence intervals between 1.1 and 3.0 years for rural, unregulated streams in West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Atkins, John T.; Newell, Dawn A.

    2002-01-01

    Multiple and simple least-squares regression models for the log10-transformed 1.5- and 2-year recurrence intervals of peak discharges with independent variables describing the basin characteristics (log10-transformed and untransformed) for 236 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions in West Virginia designated as East, North, and South. Regional equations for the 1.1-, 1.2-, 1.3-, 1.4-, 1.5-, 1.6-, 1.7-, 1.8-, 1.9-, 2.0-, 2.5-, and 3-year recurrence intervals of peak discharges were determined by generalized least-squares regression. Log10-transformed drainage area was the most significant independent variable for all regions. Equations developed in this study are applicable only to rural, unregulated streams within the boundaries of West Virginia. The accuracies of estimating equations are quantified by measuring the average prediction error (from 27.4 to 52.4 percent) and equivalent years of record (from 1.1 to 3.4 years).

  17. Retention-tank systems: A unique operating practice for managing complex waste streams at research and development facilities

    International Nuclear Information System (INIS)

    Brigdon, S.

    1996-01-01

    The importance of preventing the introduction of prohibited contaminants to the sanitary sewer is critical to the management of large federal facilities such as the Lawrence Livermore National Laboratory (LLNL). LLNL operates 45 retention-tank systems to control wastewater discharges and to maintain continued compliance with environmental regulations. LLNL's unique internal operation practices successfully keep prohibited contaminants out of the sanitary waste stream and maintain compliance with federal, state, and local regulations, as well as determining appropriate wastewater-disposal options. Components of the system include sampling and analysis of the waste stream, evaluation of the data, discharge approval, and final disposition of the waste stream

  18. A Streams-Based Framework for Defining Location-Based Queries

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Xuegang, Huang

    2007-01-01

    n infrastructure is emerging that supports the delivery of on-line, location-enabled services to mobile users. Such services involve novel database queries, and the database research community is quite active in proposing techniques for the efficient processing of such queries. In parallel to this......, the management of data streams has become an active area of research. While most research in mobile services concerns performance issues, this paper aims to establish a formal framework for defining the semantics of queries encountered in mobile services, most notably the so-called continuous queries...... that are particularly relevant in this context. Rather than inventing an entirely new framework, the paper proposes a framework that builds on concepts from data streams and temporal databases. Definitions of example queries demonstrates how the framework enables clear formulation of query semantics and the comparison...

  19. Effects of coal-mine discharges on the quality of the Stonycreek River and its tributaries, Somerset and Cambria counties, Pennsylvania

    Science.gov (United States)

    Williams, Donald R.; Sams, James I.; Mulkerrin, Mary E.

    1996-01-01

    This report describes the results of a study by the U.S. Geological Survey, done in cooperation with the Somerset Conservation District, to locate and sample abandoned coal-mine discharges in the Stonycreek River Basin, to prioritize the mine discharges for remediation, and to determine the effects of the mine discharges on water quality of the Stonycreek River and its major tributaries. From October 1991 through November 1994, 270 abandoned coal-mine discharges were located and sampled. Discharges from 193 mines exceeded U.S. Environmental Protection Agency effluent standards for pH, discharges from 122 mines exceeded effluent standards for total-iron concentration, and discharges from 141 mines exceeded effluent standards for total-manganese concentration. Discharges from 94 mines exceeded effluent standards for all three constituents. Only 40 mine discharges met effluent standards for pH and concentrations of total iron and total manganese.A prioritization index (PI) was developed to rank the mine discharges with respect to their loading capacity on the receiving stream. The PI lists the most severe mine discharges in a descending order for the Stonycreek River Basin and for subbasins that include the Shade Creek, Paint Creek, Wells Creek, Quemahoning Creek, Oven Run, and Pokeytown Run Basins.Passive-treatment systems that include aerobic wetlands, compost wetlands, and anoxic limestone drains (ALD's) are planned to remediate the abandoned mine discharges. The successive alkalinity-producing-system treatment combines ALD technology with the sulfate reduction mechanism of the compost wetland to effectively remediate mine discharge. The water quality and flow of each mine discharge will determine which treatment system or combination of treatment systems would be necessary for remediation.A network of 37 surface-water sampling sites was established to determine stream-water quality during base flow. A series of illustrations show how water quality in the mainstem

  20. Toxicity limitation on radioactive liquid waste discharge at OPG Nuclear Stations

    International Nuclear Information System (INIS)

    Dobson, T.; Lovasic, Z.; Nicolaides, G.

    2000-01-01

    This paper describes the Municipal and Industrial Strategy for Abatement (MISA) regulation, which came into effect in 1995 in Ontario (Ontario Regulation 215/95 under the Environmental Protection Act). This imposed additional limitations on liquid discharges from power generating stations. The MISA regulation has divided discharges into non-event and event streams, which have to be monitored for the prescribed parameters and for toxicity. Radioactive Waste Management Systems fall into the category of non-event streams. Standard toxicity testing involves monitoring lethality of Daphnia Magna and Rainbow trout in the effluent. The new legislation has imposed a need to address several issues: acute toxicity, complying with the specific limits prescribed by the regulation and, in the long run chronic toxicity

  1. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    International Nuclear Information System (INIS)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-01-01

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring

  2. National Database of Geriatrics

    DEFF Research Database (Denmark)

    Kannegaard, Pia Nimann; Vinding, Kirsten L; Hare-Bruun, Helle

    2016-01-01

    AIM OF DATABASE: The aim of the National Database of Geriatrics is to monitor the quality of interdisciplinary diagnostics and treatment of patients admitted to a geriatric hospital unit. STUDY POPULATION: The database population consists of patients who were admitted to a geriatric hospital unit....... Geriatric patients cannot be defined by specific diagnoses. A geriatric patient is typically a frail multimorbid elderly patient with decreasing functional ability and social challenges. The database includes 14-15,000 admissions per year, and the database completeness has been stable at 90% during the past......, percentage of discharges with a rehabilitation plan, and the part of cases where an interdisciplinary conference has taken place. Data are recorded by doctors, nurses, and therapists in a database and linked to the Danish National Patient Register. DESCRIPTIVE DATA: Descriptive patient-related data include...

  3. Spatio-temporal variability of land use/land cover change (LULCC within the Huron River: Effects on stream flows

    Directory of Open Access Journals (Sweden)

    Cheyenne Lei

    Full Text Available We investigated possible influences of land use/land cover change (LULCC and precipitation on spatiotemporal changes in extreme stream flows within the watershed of the Huron River Basin during the summer seasons from 1992 to 2011. Within the basin, the urban landscape increased from 8% to 16% during the study period, while forest and agricultural lands declined by 7%. There was an increase in landscape heterogeneity within the watershed that varied from 1.21% in 1992 to 1.34% in 2011, with agricultural practices and forest regions competing due to the expansion of varying intensities of urban development. Normalized stream discharge from multiple subwatersheds increased over time, with an average increase from 0.21 m3 s−1 m to 1.64 m3 s−1 m over the study period. Land use and precipitation affected stream discharge, with increasing urban development exhibiting a 37% chance of affecting extreme stream flows within the watershed. More importantly, much of the precipitation observed within the watershed temporally affected stream discharge based on expansion of urban settlement within the basin. This caused a higher likelihood of flashiness, as runoff is more concentrated and stream flow became more variable. We concluded that, within the watersheds of the Huron River, LULCC is the major determinant of increased stream flow and potential flooding. Keywords: Urbanization, Land use, Land cover, Climate, Hydrology, ArcGIS, FRAGSTATS

  4. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  5. Towards A Streams-Based Framework for Defining Location-Based Queries

    DEFF Research Database (Denmark)

    Huang, Xuegang; Jensen, Christian S.

    2004-01-01

    An infrastructure is emerging that supports the delivery of on-line, location-enabled services to mobile users. Such services involve novel database queries, and the database research community is quite active in proposing techniques for the effi- cient processing of such queries. In parallel...... to this, the management of data streams has become an active area of research. While most research in mobile services concerns performance issues, this paper aims to establish a formal framework for defining the semantics of queries encountered in mobile services, most notably the so-called continuous...... queries that are particularly relevant in this context. Rather than inventing an entirely new framework, the paper proposes a framework that builds on concepts from data streams and temporal databases. Definitions of example queries demonstrates how the framework enables clear formulation of query...

  6. Scaling and predicting solute transport processes in streams

    Science.gov (United States)

    R. González-Pinzón; R. Haggerty; M. Dentz

    2013-01-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in...

  7. Switch of flow direction in an Antarctic ice stream.

    Science.gov (United States)

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  8. Flow Alteration and Chemical Reduction: Air Stripping to Lessen Subsurface Discharges of Mercury to Surface Water

    Science.gov (United States)

    Brooks, S. C.; Bogle, M.; Liang, L.; Miller, C. L.; Peterson, M.; Southworth, G. R.; Spalding, B. P.

    2009-12-01

    Mercury concentrations in groundwater, surface water, and biota near an industrial facility in Oak Ridge, Tennessee remain high some 50 years after the original major releases from the facility to the environment. Since the mid-1980s, various remedial and abatement actions have been implemented at the facility, including re-routing water flows, armoring contaminated stream banks, relining or cleanout of facility storm drains, and activated charcoal treatment of groundwater and sump discharges. These actions were taken to reduce inorganic mercury inputs from the facility to the stream; a strategy that assumes limiting the inorganic mercury precursor will reduce Hg methylation and its subsequent bioaccumulation. To date, such actions have reduced mercury loading from the site by approximately 90% from levels typical of the mid 1980's, but waterborne mercury at the facility boundary remains roughly 100 times the typical local background concentration and methylmercury accumulation in aquatic biota exceed standards for safe consumption by humans and wildlife. In 2008 and 2009, a series of investigations was initiated to explore innovative approaches to further control mercury concentrations in stream water. Efforts in this study focused on decreasing waterborne inorganic mercury inputs from two sources. The first, a highly localized source, is the discharge point of the enclosed stormdrain network whereas the second is a more diffuse short reach of stream where metallic Hg in streambed sediments generates a continued input of dissolved Hg to the overlying water. Moving a clean water flow management discharge point to a position downstream of the contaminated reach reduced mercury loading from the streambed source by 75% - 100%, likely by minimizing resuspension of Hg-rich fine particulates and changing characteristic hyporheic flow path length and residence time. Mercury in the stormdrain discharge exists as highly reactive dissolved Hg(II) due to residual chlorine in

  9. Discharge measurements at gaging stations

    Science.gov (United States)

    Turnipseed, D. Phil; Sauer, Vernon B.

    2010-01-01

    The techniques and standards for making discharge measurements at streamflow gaging stations are described in this publication. The vertical axis rotating-element current meter, principally the Price current meter, has been traditionally used for most measurements of discharge; however, advancements in acoustic technology have led to important developments in the use of acoustic Doppler current profilers, acoustic Doppler velocimeters, and other emerging technologies for the measurement of discharge. These new instruments, based on acoustic Doppler theory, have the advantage of no moving parts, and in the case of the acoustic Doppler current profiler, quickly and easily provide three-dimensional stream-velocity profile data through much of the vertical water column. For much of the discussion of acoustic Doppler current profiler moving-boat methodology, the reader is referred to U.S. Geological Survey Techniques and Methods 3-A22 (Mueller and Wagner, 2009). Personal digital assistants (PDAs), electronic field notebooks, and other personal computers provide fast and efficient data-collection methods that are more error-free than traditional hand methods. The use of portable weirs and flumes, floats, volumetric tanks, indirect methods, and tracers in measuring discharge are briefly described.

  10. Effects of Large Wood on River-Floodplain Connectivity in a Headwater Appalachian Stream

    Science.gov (United States)

    Keys, T.; Govenor, H.; Jones, C. N.; Hession, W. C.; Scott, D.; Hester, E. T.

    2017-12-01

    Large wood (LW) plays an important, yet often undervalued role in stream ecosystems. Traditionally, LW has been removed from streams for aesthetic, navigational, and flood mitigation purposes. However, extensive research over the last three decades has directly linked LW to critical ecosystem functions including habitat provisioning, stream geomorphic stability, and water quality improvements; and as such, LW has increasingly been implemented in stream restoration activities. One of the proposed benefits to this restoration approach is that LW increases river-floodplain connectivity, potentially decreasing downstream flood peaks and improving water quality. Here, we conducted two experiential floods (i.e., one with and one without LW) in a headwater, agricultural stream to explore the effect of LW on river-floodplain connectivity and resulting hydrodynamic processes. During each flood, we released an equal amount of water to the stream channel, measured stream discharge at upstream and downstream boundaries, and measured inundation depth at multiple locations across the floodplain. We then utilized a 2-dimensional hydrodynamic model (HEC-RAS) to simulate floodplain hydrodynamics. We first calibrated the model using observations from the two experimental floods. Then, we utilized the calibrated model to evaluate differing LW placement strategies and effects under various flow conditions. Results show that the addition of LW to the channel decreased channel velocity and increased inundation extent, inundation depth, and floodplain velocity. Differential placement of LW along the stream impacted the levels of floodplain discharge, primarily due to the geomorphic characteristics of the stream. Finally, we examined the effects of LW on floodplain hydrodynamics across a synthetic flow record, and found that the magnitude of river-floodplain connectivity decreased as recurrence interval increased, with limited impacts on storm events with a recurrence interval of 25 years

  11. Guidelines for the collection of continuous stream water-temperature data in Alaska

    Science.gov (United States)

    Toohey, Ryan C.; Neal, Edward G.; Solin, Gary L.

    2014-01-01

    Objectives of stream monitoring programs differ considerably among many of the academic, Federal, state, tribal, and non-profit organizations in the state of Alaska. Broad inclusion of stream-temperature monitoring can provide an opportunity for collaboration in the development of a statewide stream-temperature database. Statewide and regional coordination could reduce overall monitoring cost, while providing better analyses at multiple spatial and temporal scales to improve resource decision-making. Increased adoption of standardized protocols and data-quality standards may allow for validation of historical modeling efforts with better projection calibration. For records of stream water temperature to be generally consistent, unbiased, and reproducible, data must be collected and analyzed according to documented protocols. Collection of water-temperature data requires definition of data-quality objectives, good site selection, proper selection of instrumentation, proper installation of sensors, periodic site visits to maintain sensors and download data, pre- and post-deployment verification against an NIST-certified thermometer, potential data corrections, and proper documentation, review, and approval. A study created to develop a quality-assurance project plan, data-quality objectives, and a database management plan that includes procedures for data archiving and dissemination could provide a means to standardize a statewide stream-temperature database in Alaska. Protocols can be modified depending on desired accuracy or specific needs of data collected. This document is intended to guide users in collecting time series water-temperature data in Alaskan streams and draws extensively on the broader protocols already published by the U.S. Geological Survey.

  12. Substrate homogenization affects survival and fitness in the lowland stream caddisflies Micropterna sequax and Potamophylax rotundipennis

    NARCIS (Netherlands)

    Westveer, Judith J.; Verdonschot, Piet F.M.; Verdonschot, Ralf C.M.

    2017-01-01

    Loss of substrate heterogeneity or patchiness is common in lowland streams with disturbed hydrological regimes. At the reach scale, peak discharges tend to homogenize the stream bed and decrease the availability of specific microhabitat types. This spatial shift in habitats toward a more

  13. Measuring surface-water loss in Honouliuli Stream near the ‘Ewa Shaft, O‘ahu, Hawai‘i

    Science.gov (United States)

    Rosa, Sarah N.

    2017-05-30

    The Honolulu Board of Water Supply is currently concerned with the possibility of bacteria in the pumped water of the ‘Ewa Shaft (State well 3-2202-21). Groundwater from the ‘Ewa Shaft could potentially be used to meet future potable water needs in the ‘Ewa area on the island of O‘ahu. The source of the bacteria in the pumped water is unknown, although previous studies indicate that surface water may be lost to the subsurface near the site. The ‘Ewa Shaft consists of a vertical shaft, started near the south bank of Honouliuli Stream at an altitude of about 161 feet, and two horizontal infiltration tunnels near sea level. The shaft extracts groundwater from near the top of the freshwater lens in the Waipahu-Waiawa aquifer system within the greater Pearl Harbor Aquifer Sector, a designated Water Management Area.The surface-water losses were evaluated with continuous groundwater-level data from the ‘Ewa Shaft and a nearby monitoring well, continuous stream-discharge data from U.S. Geological Survey streamflow-gaging station 16212490 (Honouliuli Stream at H-1 Freeway near Waipahu), and seepage-run measurements in Honouliuli Stream and its tributary. During storms, discharge at the Honouliuli Stream gaging station increases and groundwater levels at ‘Ewa Shaft and a nearby monitoring well also increase. The concurrent increase in water levels at ‘Ewa Shaft and the nearby monitoring well during storms indicates that regional groundwater-level changes related to increased recharge, reduced withdrawals (due to a decrease in demand during periods of rainfall), or both may be occurring; although these data do not preclude the possibility of local recharge from Honouliuli Stream. Discharge measurements from two seepage runs indicate that surface water in the immediate area adjacent to ‘Ewa Shaft infiltrates into the streambed and may later reach the groundwater system developed by the ‘Ewa Shaft. The estimated seepage loss rates in the vicinity of

  14. Rotenone persistence model for montane streams

    Science.gov (United States)

    Brown, Peter J.; Zale, Alexander V.

    2012-01-01

    The efficient and effective use of rotenone is hindered by its unknown persistence in streams. Environmental conditions degrade rotenone, but current label instructions suggest fortifying the chemical along a stream based on linear distance or travel time rather than environmental conditions. Our objective was to develop models that use measurements of environmental conditions to predict rotenone persistence in streams. Detailed measurements of ultraviolet radiation, water temperature, dissolved oxygen, total dissolved solids (TDS), conductivity, pH, oxidation–reduction potential (ORP), substrate composition, amount of organic matter, channel slope, and travel time were made along stream segments located between rotenone treatment stations and cages containing bioassay fish in six streams. The amount of fine organic matter, biofilm, sand, gravel, cobble, rubble, small boulders, slope, pH, TDS, ORP, light reaching the stream, energy dissipated, discharge, and cumulative travel time were each significantly correlated with fish death. By using logistic regression, measurements of environmental conditions were paired with the responses of bioassay fish to develop a model that predicted the persistence of rotenone toxicity in streams. This model was validated with data from two additional stream treatment reaches. Rotenone persistence was predicted by a model that used travel time, rubble, and ORP. When this model predicts a probability of less than 0.95, those who apply rotenone can expect incomplete eradication and should plan on fortifying rotenone concentrations. The significance of travel time has been previously identified and is currently used to predict rotenone persistence. However, rubble substrate, which may be associated with the degradation of rotenone by adsorption and volatilization in turbulent environments, was not previously considered.

  15. Plasma remediation of trichloroethylene in silent discharge plasmas

    International Nuclear Information System (INIS)

    Evans, D.; Rosocha, L.A.; Anderson, G.K.; Coogan, J.J.; Kushner, M.J.

    1993-01-01

    Plasma destruction of toxins, and volatile organic compounds in particular, from gas streams is receiving increased attention as an energy efficient means to remediate those compounds. In this regard, remediation of trichloroethylene (TCE) in silent discharge plasmas has been experimentally and theoretically investigated. We found that TCE can be removed from Ar/O 2 gas streams at atmospheric pressure with an energy efficiency of 15--20 ppm/(mJ/cm 3 ), or 2--3 kW h kg -1 . The majority of the Cl from TCE is converted to HCl, Cl 2 , and COCl 2 , which can be removed from the gas stream by a water bubbler. The destruction efficiency of TCE is smaller in humid mixtures compared to dry mixtures due to interception of reactive intermediates by OH radicals

  16. SIRSALE: integrated video database management tools

    Science.gov (United States)

    Brunie, Lionel; Favory, Loic; Gelas, J. P.; Lefevre, Laurent; Mostefaoui, Ahmed; Nait-Abdesselam, F.

    2002-07-01

    Video databases became an active field of research during the last decade. The main objective in such systems is to provide users with capabilities to friendly search, access and playback distributed stored video data in the same way as they do for traditional distributed databases. Hence, such systems need to deal with hard issues : (a) video documents generate huge volumes of data and are time sensitive (streams must be delivered at a specific bitrate), (b) contents of video data are very hard to be automatically extracted and need to be humanly annotated. To cope with these issues, many approaches have been proposed in the literature including data models, query languages, video indexing etc. In this paper, we present SIRSALE : a set of video databases management tools that allow users to manipulate video documents and streams stored in large distributed repositories. All the proposed tools are based on generic models that can be customized for specific applications using ad-hoc adaptation modules. More precisely, SIRSALE allows users to : (a) browse video documents by structures (sequences, scenes, shots) and (b) query the video database content by using a graphical tool, adapted to the nature of the target video documents. This paper also presents an annotating interface which allows archivists to describe the content of video documents. All these tools are coupled to a video player integrating remote VCR functionalities and are based on active network technology. So, we present how dedicated active services allow an optimized video transport for video streams (with Tamanoir active nodes). We then describe experiments of using SIRSALE on an archive of news video and soccer matches. The system has been demonstrated to professionals with a positive feedback. Finally, we discuss open issues and present some perspectives.

  17. Sediment dynamics of a high gradient stream in the Oi river basin of Japan

    Science.gov (United States)

    Hideji Maita

    1991-01-01

    This paper discusses the effects of the valley width for discontinuities of sediment transport in natural stream channels. The results may be summarized as follows: 1)ln torrential rivers. deposition or erosion depend mostly on the sediment supply. not on the magnitude of the flow discharge. 2)Wide valley floors of streams are depositional spaces where the excess...

  18. Headwater stream temperature: interpreting response after logging, with and without riparian buffers, Washington, USA

    Science.gov (United States)

    Jack E. Janisch; Steven M. Wondzell; William J. Ehinger

    2012-01-01

    We examined stream temperature response to forest harvest in small forested headwater catchments in western Washington, USA over a seven year period (2002-2008). These streams have very low discharge in late summer and many become spatially intermittent. We used a before-after, control-impact (BACl) study design to contrast the effect of clearcut logging with two...

  19. INFLAMMABLE ABILITY ELECTRIC DISCHARGE OF THE STATIC ELECTRICITY in REFUELLING AIRcraft

    Directory of Open Access Journals (Sweden)

    N. E. Syrojedov

    2014-01-01

    Full Text Available The article deals with the improvement of the methodical base and the results of the research in the field of inflammable ability of static electricity discharges in the environment of aviation fuel stream.

  20. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    Science.gov (United States)

    Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  1. The effect of purified sewage discharge from a sewage treatment plant on the physicochemical state of water in the receiver

    Directory of Open Access Journals (Sweden)

    Kanownik Włodzimierz

    2016-09-01

    Full Text Available The paper presents changes in the contents of physicochemical indices of the Sudół stream water caused by a discharge of purified municipal sewage from a small mechanical-biological treatment plant with throughput of 300 m3·d−1 and a population equivalent (p.e. – 1,250 people. The discharge of purified sewage caused a worsening of the stream water quality. Most of the studied indices values increased in water below the treatment plant. Almost a 100-fold increase in ammonium nitrogen, 17-fold increase in phosphate concentrations and 12-fold raise in BOD5 concentrations were registered. Due to high values of these indices, the water physicochemical state was below good. Statistical analysis revealed a considerable effect of the purified sewage discharge on the stream water physicochemical state. A statistically significant increase in 10 indices values (BOD5, COD-Mn, EC, TDS, Cl−, Na+, K+, PO43−, N-NH4+ and N-NO2 as well as significant decline in the degree of water saturation with oxygen were noted below the sewage treatment plant. On the other hand, no statistically significant differences between the water indices values were registered between the measurement points localised 150 and 1,000 m below the purified sewage discharge. It evidences a slow process of the stream water self-purification caused by an excessive loading with pollutants originating from the purified sewage discharge.

  2. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    Science.gov (United States)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in

  3. Assessing the chemical contamination dynamics in a mixed land use stream system

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo; McKnight, Ursula S.; Rønde, Vinni

    2017-01-01

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production......, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical...... stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality...

  4. A relational database for physical data from TJ-II discharges

    International Nuclear Information System (INIS)

    Sanchez, E.; Portas, A.B.; Vega, J.

    2002-01-01

    A relational database (RDB) has been developed for classifying TJ-II experimental data according to physical criteria. Two objectives have been achieved: the design and the implementation of the database and the software tools for data access depending on a single software driver. TJ-II data were arranged in several tables with a flexible design, speedy performance, efficient search capacity and adaptability to meet present and future, requirements. The software has been developed to allow the access to the TJ-II RDB from a variety of computer platforms (ALPHA AXP/True64 UNIX, CRAY/UNICOS, Intel Linux, Sparc/Solaris and Intel/Windows 95/98/NT) and programming languages (FORTRAN and C/C++). The database resides in a Windows NT Server computer and is managed by Microsoft SQL Server. The access software is based on open network computing remote procedure call and follows client/server model. A server program running in the Windows NT computer controls data access. Operations on the database (through a local ODBC connection) are performed according to predefined permission protocols. A client library providing a set of basic functions for data integration and retrieval has been built in both static and dynamic link versions. The dynamic version is essential in accessing RDB data from 4GL environments (IDL and PV-WAVE among others)

  5. Predictive Models of the Hydrological Regime of Unregulated Streams in Arizona

    Science.gov (United States)

    Anning, David W.; Parker, John T.C.

    2009-01-01

    Three statistical models were developed by the U.S. Geological Survey in cooperation with the Arizona Department of Environmental Quality to improve the predictability of flow occurrence in unregulated streams throughout Arizona. The models can be used to predict the probabilities of the hydrological regime being one of four categories developed by this investigation: perennial, which has streamflow year-round; nearly perennial, which has streamflow 90 to 99.9 percent of the year; weakly perennial, which has streamflow 80 to 90 percent of the year; or nonperennial, which has streamflow less than 80 percent of the year. The models were developed to assist the Arizona Department of Environmental Quality in selecting sites for participation in the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program. One model was developed for each of the three hydrologic provinces in Arizona - the Plateau Uplands, the Central Highlands, and the Basin and Range Lowlands. The models for predicting the hydrological regime were calibrated using statistical methods and explanatory variables of discharge, drainage-area, altitude, and location data for selected U.S. Geological Survey streamflow-gaging stations and a climate index derived from annual precipitation data. Models were calibrated on the basis of streamflow data from 46 stations for the Plateau Uplands province, 82 stations for the Central Highlands province, and 90 stations for the Basin and Range Lowlands province. The models were developed using classification trees that facilitated the analysis of mixed numeric and factor variables. In all three models, a threshold stream discharge was the initial variable to be considered within the classification tree and was the single most important explanatory variable. If a stream discharge value at a station was below the threshold, then the station record was determined as being nonperennial. If, however, the stream discharge was above the threshold

  6. Seasonal Arsenic Accumulation in Stream Sediments at a Groundwater Discharge Zone

    DEFF Research Database (Denmark)

    MacKay, Allison A.; Gan, Ping; Yu, Ran

    2014-01-01

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic...... and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), With higher surface water: levels, was associated with losses...... of arsenic and iron from bead column coatings at. depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg...

  7. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    Directory of Open Access Journals (Sweden)

    Gurbir Singh

    2018-04-01

    Full Text Available In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphorus, and sediment loss in stream water from a no-till corn-soybean rotation planted with winter cover crops cereal rye (Secale cereale and hairy vetch (Vicia villosa in non-tile drained paired watersheds in Illinois, USA. The paired watersheds are under mixed land use (agriculture, forest, and pasture. The control watershed had 27 ha of row-crop agriculture, and the treatment watershed had 42 ha of row crop agriculture with cover crop treatment (CC-treatment. During a 4-year calibration period, 42 storm events were collected and Event Mean Concentrations (EMCs for each storm event were calculated for total suspended solids (TSS, nitrate-N (NO3-N, ammonia-N (NH4-N, dissolved reactive phosphorus (DRP, and total discharge. Predictive regression equations developed from the calibration period were used for calculating TSS, NO3-N, NH4-N, and DRP losses of surface runoff for the CC-treatment watershed. The treatment period consisted of total 18 storm events, seven of which were collected during the cereal rye, eight in the hairy vetch cover crop season and three during cash crop season. Cover crops reduced TSS and discharge by 33% and 34%, respectively in the CC-treatment watershed during the treatment period. However, surprisingly, EMCs for NO3-N, NH4-N, and DRP did not decrease. Stream discharge from the paired-watersheds will continue to be monitored to determine if the current water quality results hold or new patterns emerge.

  8. Making a search engine for Indocean - A database of abstracts: An experience

    Digital Repository Service at National Institute of Oceanography (India)

    Tapaswi, M.P.; Haravu, L.J.

    stream_size 23701 stream_content_type text/plain stream_name Inf_Manage_Trends_Issues_2003_307.pdf.txt stream_source_info Inf_Manage_Trends_Issues_2003_307.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... Information Mallagement : Trends and Issues (Festschrift ill honour of Prof S. Seetharama) 52 . Making a Search Engine for Indocean - A Database of Abstracts : An Experience Murari P Tapaswi* and L J Haravu** *Documentation Officer. National Information...

  9. Development of radionuclide parameter database on internal contamination in nuclear emergencies

    International Nuclear Information System (INIS)

    Zhao Li; Xu Cuihua; Li Wenhong; Su Xu

    2010-01-01

    Objective: To develop a radionuclide parameter database on internal contamination in nuclear emergencies. Methods: By researching the radionuclides composition discharged from different nuclear emergencies, the radionuclide parameters were achieved on physical decay, absorption and metabolism in the body from ICRP publications and some other publications. The database on internal contamination for nuclear incidents was developed by using MS Visual Studio 2005 C and MS Access programming language. Results: The radionuclide parameter database on internal contamination in nuclear emergency was established. Conclusions: The database may be very convenient for searching radionuclides and radionuclide parameter data discharged from different nuclear emergencies, which would be helpful to the monitoring and assessment and assessment of internal contamination in nuclear emergencies. (authors)

  10. Zips : mining compressing sequential patterns in streams

    NARCIS (Netherlands)

    Hoang, T.L.; Calders, T.G.K.; Yang, J.; Mörchen, F.; Fradkin, D.; Chau, D.H.; Vreeken, J.; Leeuwen, van M.; Faloutsos, C.

    2013-01-01

    We propose a streaming algorithm, based on the minimal description length (MDL) principle, for extracting non-redundant sequential patterns. For static databases, the MDL-based approach that selects patterns based on their capacity to compress data rather than their frequency, was shown to be

  11. Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment

    Science.gov (United States)

    Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.

    2013-12-01

    Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by

  12. 7Q10 flows for SRS streams

    International Nuclear Information System (INIS)

    Chen, K.F.

    1996-01-01

    The Environmental Transport Group of the Environmental Technology Section was requested to predict the seven-day ten-year low flow (7Q10 flow) for the SRS streams based on historical stream flow records. Most of the historical flow records for the SRS streams include reactor coolant water discharged from the reactors and process water released from the process facilities. The most straight forward way to estimate the stream daily natural flow is to subtract the measured upstream reactor and/or facility daily effluents from the measured downstream daily flow. Unfortunately, this method does not always work, as indicated by the fact that sometimes the measured downstream volumetric flow rates are lower than the reactor effluent volumetric flow rates. For those cases that cannot be analyzed with the simple subtracting method, an alternative method was used to estimate the stream natural flows by statistically separating reactor coolant and process water flow data. The correlation between the calculated 7Q10 flows and the watershed areas for Four Mile Branch and Pen Branch agrees with that calculated by the USGS for Upper Three Runs and Lower Three Runs Creeks. The agreement between these two independent calculations lends confidence to the 7Q10 flow calculations presented in this report

  13. Ambient groundwater flow diminishes nitrogen cycling in streams

    Science.gov (United States)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  14. Database and applications security integrating information security and data management

    CERN Document Server

    Thuraisingham, Bhavani

    2005-01-01

    This is the first book to provide an in-depth coverage of all the developments, issues and challenges in secure databases and applications. It provides directions for data and application security, including securing emerging applications such as bioinformatics, stream information processing and peer-to-peer computing. Divided into eight sections, each of which focuses on a key concept of secure databases and applications, this book deals with all aspects of technology, including secure relational databases, inference problems, secure object databases, secure distributed databases and emerging

  15. Quality of streams in Johnson County, Kansas, 2002--10

    Science.gov (United States)

    Rasmussen, Teresa J.; Stone, Mandy S.; Poulton, Barry C.; Graham, Jennifer L.

    2012-01-01

    Stream quality in Johnson County, northeastern Kansas, was assessed on the basis of land use, hydrology, stream-water and streambed-sediment chemistry, riparian and in-stream habitat, and periphyton and macroinvertebrate community data collected from 22 sites during 2002 through 2010. Stream conditions at the end of the study period are evaluated and compared to previous years, stream biological communities and physical and chemical conditions are characterized, streams are described relative to Kansas Department of Health and Environment impairment categories and water-quality standards, and environmental factors that most strongly correlate with biological stream quality are evaluated. The information is useful for improving water-quality management programs, documenting changing conditions with time, and evaluating compliance with water-quality standards, total maximum daily loads (TMDLs), National Pollutant Discharge Elimination System (NPDES) permit conditions, and other established guidelines and goals. Constituent concentrations in water during base flow varied across the study area and 2010 conditions were not markedly different from those measured in 2003, 2004, and 2007. Generally the highest specific conductance and concentrations of dissolved solids and major ions in water occurred at urban sites except the upstream Cedar Creek site, which is rural and has a large area of commercial and industrial land less than 1 mile upstream on both sides of the creek. The highest base-flow nutrient concentrations in water occurred downstream from wastewater treatment facilities. Water chemistry data represent base-flow conditions only, and do not show the variability in concentrations that occurs during stormwater runoff. Constituent concentrations in streambed sediment also varied across the study area and some notable changes occurred from previously collected data. High organic carbon and nutrient concentrations at the rural Big Bull Creek site in 2003 decreased

  16. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    with DAISY, a one dimensional crop model describing soil water dynamics in the root zone, and MIKE SHE, a distributed groundwater-surface water model. The relative and combined impacts on low flows, groundwater levels, and nitrate leaching are quantified and compared to assess the water resource sensitivity...... and risk to stream ecological conditions. We find low flow and annual discharge to be most impacted by scenarios of climate change, with high variation across climate models (+/- 40% change). Doubling of current groundwater abstraction rates reduces annual discharge by approximately 20%, with higher...... flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...

  17. Downstream reduction of rural channel size with contrasting urban effects in small coastal streams of southeastern Australia

    Science.gov (United States)

    Nanson, G. C.; Young, R. W.

    1981-07-01

    Although most streams show a downstream increase in channel size corresponding to a downstream increase in flood discharges, those flowing off the Illawarra escarpment of New South Wales show a marked reduction of channel size, accompanied by a down-stream increase in flood frequency in their lower reaches. Within the confined and steeply sloping valleys of the escarpment foothills, bed and bank sediments are relatively coarse and uncohesive, and channels increase in size, corresponding to increasing discharge downstream. However, once these streams emerge into more open rural valleys at lower slopes and are accompanied by extensive floodplains formed of fine cohesive sediment, there is a dramatic reduction in channel size. This decrease in channel size apparently results from a sudden decline in channel slope and associated stream power, the cohesive nature of downstream alluvium, its retention on the channel banks by a dense cover of pasture grasses, and the availability of an extensive floodplain to carry displaced floodwater. Under these conditions floodwaters very frequently spill out over the floodplain and the downstream channel-flow becomes a relatively unimportant component of the total peak discharge. This emphasizes the importance of these floodplains as a part of the total channel system. In situations where urban development has increased peak runoff and reduced the available area of effective floodplain, stream channels formed in this fine alluvium rapidly entrench and increase in cross-sectional area by 2-3 times. Minor man-induced channel alteration and maintenance appears to trigger this enlargement.

  18. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    Science.gov (United States)

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  19. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures

    International Nuclear Information System (INIS)

    Kalbus, E.; Schmidt, C.; Bayer-Raich, M.; Leschik, S.; Reinstorf, F.; Balcke, G.U.; Schirmer, M.

    2007-01-01

    The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60 m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272 μg m -2 d -1 MCB and 71 μg m -2 d -1 DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream. - We provide a new methodology to quantify the potential contaminant mass flux from an aquifer to a stream

  20. Validity of International Classification of Diseases (ICD) coding for dengue infections in hospital discharge records in Malaysia.

    Science.gov (United States)

    Woon, Yuan-Liang; Lee, Keng-Yee; Mohd Anuar, Siti Fatimah Zahra; Goh, Pik-Pin; Lim, Teck-Onn

    2018-04-20

    Hospitalization due to dengue illness is an important measure of dengue morbidity. However, limited studies are based on administrative database because the validity of the diagnosis codes is unknown. We validated the International Classification of Diseases, 10th revision (ICD) diagnosis coding for dengue infections in the Malaysian Ministry of Health's (MOH) hospital discharge database. This validation study involves retrospective review of available hospital discharge records and hand-search medical records for years 2010 and 2013. We randomly selected 3219 hospital discharge records coded with dengue and non-dengue infections as their discharge diagnoses from the national hospital discharge database. We then randomly sampled 216 and 144 records for patients with and without codes for dengue respectively, in keeping with their relative frequency in the MOH database, for chart review. The ICD codes for dengue were validated against lab-based diagnostic standard (NS1 or IgM). The ICD-10-CM codes for dengue had a sensitivity of 94%, modest specificity of 83%, positive predictive value of 87% and negative predictive value 92%. These results were stable between 2010 and 2013. However, its specificity decreased substantially when patients manifested with bleeding or low platelet count. The diagnostic performance of the ICD codes for dengue in the MOH's hospital discharge database is adequate for use in health services research on dengue.

  1. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    International Nuclear Information System (INIS)

    Denton, M. S.; Wilson, J.; Ahrendt, M.; Bostick, W. D.; DeSilva, F.; Meyers, P.

    2006-01-01

    Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrant to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual

  2. Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network

    Science.gov (United States)

    Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.

    2018-04-01

    Headwater stream networks expand and contract in response to changes in stream discharge. The changes in the extent of the stream network are also controlled by geologic or geomorphic setting - some reaches go dry even under relatively wet conditions, other reaches remain flowing under relatively dry conditions. While such patterns are well recognized, we currently lack tools to predict the extent of the stream network and the times and locations where the network is dry within large river networks. Here, we develop a perceptual model of the river corridor in a headwater mountainous catchment, translate this into a reduced-complexity mechanistic model, and implement the model to examine connectivity and network extent over an entire water year. Our model agreed reasonably well with our observations, showing that the extent and connectivity of the river network was most sensitive to hydrologic forcing under the lowest discharges (Qgauge 10 L s-1) the extent of the network was relatively insensitive to hydrologic forcing and was instead determined by the network topology. We do not expect that the specific thresholds observed in this study would be transferable to other catchments with different geology, topology, or hydrologic forcing. However, we expect that the general pattern should be robust: the dominant controls will shift from hydrologic forcing to geologic setting as discharge increases. Furthermore, our method is readily transferable as the model can be applied with minimal data requirements (a single stream gauge, a digital terrain model, and estimates of hydrogeologic properties) to estimate flow duration or connectivity along the river corridor in unstudied catchments. As the available information increases, the model could be better calibrated to match site-specific observations of network extent, locations of dry reaches, or solute break through curves as demonstrated in this study. Based on the low initial data requirements and ability to later tune

  3. Preliminary assessment of streamflow characteristics for selected streams at Fort Gordon, Georgia, 1999-2000

    Science.gov (United States)

    Stamey, Timothy C.

    2001-01-01

    In 1999, the U.S. Geological Survey, in cooperation with the U.S. Army Signal Center and Fort Gordon, began collection of periodic streamflow data at four streams on the military base to assess and estimate streamflow characteristics of those streams for potential water-supply sources. Simple and reliable methods of determining streamflow characteristics of selected streams on the military base are needed for the initial implementation of the Fort Gordon Integrated Natural Resources Management Plan. Long-term streamflow data from the Butler Creek streamflow gaging station were used along with several concurrent discharge measurements made at three selected partial-record streamflow stations on Fort Gordon to determine selected low-flow streamflow characteristics. Streamflow data were collected and analyzed using standard U.S. Geological Survey methods and computer application programs to verify the use of simple drainage area to discharge ratios, which were used to estimate the low-flow characteristics for the selected streams. Low-flow data computed based on daily mean streamflow include: mean discharges for consecutive 1-, 3-, 7-, 14-, and 30-day period and low-flow estimates of 7Q10, 30Q2, 60Q2, and 90Q2 recurrence intervals. Flow-duration data also were determined for the 10-, 30-, 50-, 70-, and 90-percent exceedence flows. Preliminary analyses of the streamflow indicate that the flow duration and selected low-flow statistics for the selected streams averages from about 0.15 to 2.27 cubic feet per square mile. The long-term gaged streamflow data indicate that the streamflow conditions for the period analyzed were in the 50- to 90-percent flow range, or in which streamflow would be exceeded about 50 to 90 percent of the time.

  4. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The

  5. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  6. Dating base flow in streams using dissolved gases and diurnal temperature changes

    Science.gov (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  7. Free software and open source databases

    Directory of Open Access Journals (Sweden)

    Napoleon Alexandru SIRITEANU

    2006-01-01

    Full Text Available The emergence of free/open source software -FS/OSS- enterprises seeks to push software development out of the academic stream into the commercial mainstream, and as a result, end-user applications such as open source database management systems (PostgreSQL, MySQL, Firebird are becoming more popular. Companies like Sybase, Oracle, Sun, IBM are increasingly implementing open source strategies and porting programs/applications into the Linux environment. Open source software is redefining the software industry in general and database development in particular.

  8. The role of geology in sediment supply and bedload transport patterns in coarse-grained streams

    Science.gov (United States)

    Sandra E. Ryan

    2007-01-01

    This paper compares gross differences in rates of bedload sediment moved at bankfull discharges in 19 channels on national forests in the Middle and Southern Rocky Mountains. Each stream has its own "bedload signal," in that the rate and size of materials transported at bankfull discharge largely reflect the nature of flow and sediment particular to that...

  9. Indicators of streamflow alteration, habitat fragmentation, impervious cover, and water quality for Massachusetts stream basins

    Science.gov (United States)

    Weiskel, Peter K.; Brandt, Sara L.; DeSimone, Leslie A.; Ostiguy, Lance J.; Archfield, Stacey A.

    2010-01-01

    Massachusetts streams and stream basins have been subjected to a wide variety of human alterations since colonial times. These alterations include water withdrawals, treated wastewater discharges, construction of onsite septic systems and dams, forest clearing, and urbanization—all of which have the potential to affect streamflow regimes, water quality, and habitat integrity for fish and other aquatic biota. Indicators were developed to characterize these types of potential alteration for subbasins and groundwater contributing areas in Massachusetts. The potential alteration of streamflow by the combined effects of withdrawals and discharges was assessed under two water-use scenarios. Water-use scenario 1 incorporated publicly reported groundwater withdrawals and discharges, direct withdrawals from and discharges to streams, and estimated domestic-well withdrawals and septic-system discharges. Surface-water-reservoir withdrawals were excluded from this scenario. Water-use scenario 2 incorporated all the types of withdrawal and discharge included in scenario 1 as well as withdrawals from surface-water reservoirs—all on a long-term, mean annual basis. All withdrawal and discharge data were previously reported to the State for the 2000–2004 period, except domestic-well withdrawals and septic-system discharges, which were estimated for this study. The majority of the state’s subbasins and groundwater contributing areas were estimated to have relatively minor (less than 10 percent) alteration of streamflow under water-use scenario 1 (seasonally varying water use; no surface-water-reservoir withdrawals). However, about 12 percent of subbasins and groundwater contributing areas were estimated to have extensive alteration of streamflows (greater than 40 percent) in August; most of these basins were concentrated in the outer metropolitan Boston region. Potential surcharging of streamflow in August was most commonly indicated for main-stem river subbasins, although

  10. Alignment data streams for the ATLAS inner detector

    International Nuclear Information System (INIS)

    Pinto, B; Amorim, A; Pereira, P; Elsing, M; Hawkings, R; Schieck, J; Garcia, S; Schaffer, A; Ma, H; Anjos, A

    2008-01-01

    The ATLAS experiment uses a complex trigger strategy to be able to reduce the Event Filter rate output, down to a level that allows the storage and processing of these data. These concepts are described in the ATLAS Computing Model which embraces Grid paradigm. The output coming from the Event Filter consists of four main streams: physical stream, express stream, calibration stream, and diagnostic stream. The calibration stream will be transferred to the Tier-0 facilities that will provide the prompt reconstruction of this stream with a minimum latency of 8 hours, producing calibration constants of sufficient quality to allow a first-pass processing. The Inner Detector community is developing and testing an independent common calibration stream selected at the Event Filter after track reconstruction. It is composed of raw data, in byte-stream format, contained in Readout Buffers (ROBs) with hit information of the selected tracks, and it will be used to derive and update a set of calibration and alignment constants. This option was selected because it makes use of the Byte Stream Converter infrastructure and possibly gives better bandwidth usage and storage optimization. Processing is done using specialized algorithms running in the Athena framework in dedicated Tier-0 resources, and the alignment constants will be stored and distributed using the COOL conditions database infrastructure. This work is addressing in particular the alignment requirements, the needs for track and hit selection, and the performance issues

  11. Alignment data stream for the ATLAS inner detector

    International Nuclear Information System (INIS)

    Pinto, B

    2010-01-01

    The ATLAS experiment uses a complex trigger strategy to be able to achieve the necessary Event Filter rate output, making possible to optimize the storage and processing needs of these data. These needs are described in the ATLAS Computing Model, which embraces Grid concepts. The output coming from the Event Filter will consist of three main streams: a primary stream, the express stream and the calibration stream. The calibration stream will be transferred to the Tier-0 facilities which will allow the prompt reconstruction of this stream with an admissible latency of 8 hours, producing calibration constants of sufficient quality to permit a first-pass processing. An independent calibration stream is developed and tested, which selects tracks at the level-2 trigger (LVL2) after the reconstruction. The stream is composed of raw data, in byte-stream format, and contains only information of the relevant parts of the detector, in particular the hit information of the selected tracks. This leads to a significantly improved bandwidth usage and storage capability. The stream will be used to derive and update the calibration and alignment constants if necessary every 24h. Processing is done using specialized algorithms running in Athena framework in dedicated Tier-0 resources, and the alignment constants will be stored and distributed using the COOL conditions database infrastructure. The work is addressing in particular the alignment requirements, the needs for track and hit selection, timing and bandwidth issues.

  12. Discharge process of cesium during rainstorms in headwater catchments, Fukushima, Japan

    Science.gov (United States)

    Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Nishino, Masataka; Konuma, Ryohei

    2014-05-01

    We monitored Cs-137 concentrations in stream water, groundwater, soil water and rainwater in the Yamakiya district located approximately 35 km north west of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from June 2011 through July 2013, focusing on rainfall-runoff processes during the rainstorm events. Two catchments with different land cover (Iboishiyama and Koutaishiyama) were instrumentd, and stream water, groundwater, soil water and rainwater were sampled for approximately one month at each site, and intensive sampling was conducted during rainstorm events. The 137Cs concentration in stream water showed a relatively quick decreasing trend during 2011. Also, during rainfall events, the Cs-137 concentration in stream water showed a temporary increase. End Member Mixing Analysis was applied to evaluate contribution of groundwater, soil water and rainwater in discharge water during rainstorm events. The groundwater component was dominant in the runoff, whereas rainwater was main source for the Cs-137 concentration of the stream increasing during the storm events. In addition, a leaching of Cs-137 from the suspended sediments and the organic materials seemed to be also important sources to the stream.

  13. Comparative metagenome of a stream impacted by the urbanization phenomenon

    Directory of Open Access Journals (Sweden)

    Julliane Dutra Medeiros

    Full Text Available Abstract Rivers and streams are important reservoirs of freshwater for human consumption. These ecosystems are threatened by increasing urbanization, because raw sewage discharged into them alters their nutrient content and may affect the composition of their microbial community. In the present study, we investigate the taxonomic and functional profile of the microbial community in an urban lotic environment. Samples of running water were collected at two points in the São Pedro stream: an upstream preserved and non-urbanized area, and a polluted urbanized area with discharged sewage. The metagenomic DNA was sequenced by pyrosequencing. Differences were observed in the community composition at the two sites. The non-urbanized area was overrepresented by genera of ubiquitous microbes that act in the maintenance of environments. In contrast, the urbanized metagenome was rich in genera pathogenic to humans. The functional profile indicated that the microbes act on the metabolism of methane, nitrogen and sulfur, especially in the urbanized area. It was also found that virulence/defense (antibiotic resistance and metal resistance and stress response-related genes were disseminated in the urbanized environment. The structure of the microbial community was altered by uncontrolled anthropic interference, highlighting the selective pressure imposed by high loads of urban sewage discharged into freshwater environments.

  14. Biological and Physical Inventory of the Streams within the Nez Perce Reservation; Juvenile Steelhead Survey and Factors that Affect Abundance in Selected Streams in the Lower Clearwater River Basin, Idaho, 1983-1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A.; Johnson, David B. (Nez Perce Tribe, Lapwai, ID)

    1986-08-01

    A biological and physical inventory of selected tributaries in the lower Clearwater River basin was conducted to collect information for the development of alternatives and recommendations for the enhancement of the anadromous fish resources in streams on the Nez Perce Reservation. Five streams within the Reservation were selected for study: Bedrock and Cottonwood Creeks were investigated over a two year period (1983 to 1984) and Big Canyon, Jacks and Mission Creeks were studied for one year (1983). Biological information was collected and analyzed on the density, biomass, production and outmigration of juvenile summer steelhead trout. Physical habitat information was collected on available instream cover, stream discharge, stream velocity, water temperature, bottom substrate, embeddedness and stream width and depth. The report focuses on the relationships between physical stream habitat and juvenile steelhead trout abundance.

  15. Using Soluble Reactive Phosphorus and Ammonia to Identify Point Source Discharge from Large Livestock Facilities

    Science.gov (United States)

    Borrello, M. C.; Scribner, M.; Chessin, K.

    2013-12-01

    A growing body of research draws attention to the negative environmental impacts on surface water from large livestock facilities. These impacts are mostly in the form of excessive nutrient loading resulting in significantly decreased oxygen levels. Over-application of animal waste on fields as well as direct discharge into surface water from facilities themselves has been identified as the main contributor to the development of hypoxic zones in Lake Erie, Chesapeake Bay and the Gulf of Mexico. Some regulators claim enforcement of water quality laws is problematic because of the nature and pervasiveness of non-point source impacts. Any direct discharge by a facility is a violation of permits governed by the Clean Water Act, unless the facility has special dispensation for discharge. Previous research by the principal author and others has shown runoff and underdrain transport are the main mechanisms by which nutrients enter surface water. This study utilized previous work to determine if the effects of non-point source discharge can be distinguished from direct (point-source) discharge using simple nutrient analysis and dissolved oxygen (DO) parameters. Nutrient and DO parameters were measured from three sites: 1. A stream adjacent to a field receiving manure, upstream of a large livestock facility with a history of direct discharge, 2. The same stream downstream of the facility and 3. A stream in an area relatively unimpacted by large-scale agriculture (control site). Results show that calculating a simple Pearson correlation coefficient (r) of soluble reactive phosphorus (SRP) and ammonia over time as well as temperature and DO, distinguishes non-point source from point source discharge into surface water. The r value for SRP and ammonia for the upstream site was 0.01 while the r value for the downstream site was 0.92. The control site had an r value of 0.20. Likewise, r values were calculated on temperature and DO for each site. High negative correlations

  16. Monitoring stream temperatures—A guide for non-specialists

    Science.gov (United States)

    Heck, Michael P.; Schultz, Luke D.; Hockman-Wert, David; Dinger, Eric C.; Dunham, Jason B.

    2018-04-19

    Executive SummaryWater temperature influences most physical and biological processes in streams, and along with streamflows is a major driver of ecosystem processes. Collecting data to measure water temperature is therefore imperative, and relatively straightforward. Several protocols exist for collecting stream temperature data, but these are frequently directed towards specialists. This document was developed to address the need for a protocol intended for non-specialists (non-aquatic) staff. It provides specific step-by-step procedures on (1) how to launch data loggers, (2) check the factory calibration of data loggers prior to field use, (3) how to install data loggers in streams for year-round monitoring, (4) how to download and retrieve data loggers from the field, and (5) how to input project data into organizational databases.

  17. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  18. Stream capture to form Red Pass, northern Soda Mountains, California

    Science.gov (United States)

    Miller, David; Mahan, Shannon

    2014-01-01

    Red Pass, a narrow cut through the Soda Mountains important for prehistoric and early historic travelers, is quite young geologically. Its history of downcutting to capture streams west of the Soda Mountains, thereby draining much of eastern Fort Irwin, is told by the contrast in alluvial fan sediments on either side of the pass. Old alluvial fan deposits (>500 ka) were shed westward off an intact ridge of the Soda Mountains but by middle Pleistocene time, intermediate-age alluvial fan deposits (~100 ka) were laid down by streams flowing east through the pass into Silurian Valley. The pass was probably formed by stream capture driven by high levels of groundwater on the west side. This is evidenced by widespread wetland deposits west of the Soda Mountains. Sapping and spring discharge into Silurian Valley over millennia formed a low divide in the mountains that eventually was overtopped and incised by a stream. Lessons include the importance of groundwater levels for stream capture and the relatively youthful appearance of this ~100-200 ka feature in the slowly changing Mojave Desert landscape.

  19. Health risk assessment for radium discharged in produced waters

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-01-01

    Produced water generated during the production of oil and gas can contain enhanced levels of radium. This naturally occurring radioactive material (NORM) is discharged into freshwater streams, estuarine, coastal and outer continental shelf waters. Large volumes of produced waters are discharged to coastal waters along the Gulf Coast of Louisiana. The Gulf of Mexico is an important producer of fish and shellfish, and there is concern that radium discharged to coastal Louisiana could contaminate fish and shellfish used by people for food, and present a significant increase in cancer risk. This paper describes a screening-level assessment of the potential cancer risks posed by radium discharged to coastal Louisiana in oil-field produced waters. This screening analysis was performed to determine if a more comprehensive and realistic assessment is necessary, and because of the conservative assumptions embedded in the analysis overestimates the risk associated with the discharge of radium in produced waters. Two isotopes of radium (Ra-226 and Ra-228) are the radionuclides of most concern in produced water in terms of potential human health effects

  20. Optimum Discharge Burnup and Cycle Length for PWRs

    International Nuclear Information System (INIS)

    Secker, Jeffrey R.; Johansen, Baard J.; Stucker, David L.; Ozer, Odelli; Ivanov, Kostadin; Yilmaz, Serkan; Young, E.H.

    2005-01-01

    This paper discusses the results of a pressurized water reactor fuel management study determining the optimum discharge burnup and cycle length. A comprehensive study was performed considering 12-, 18-, and 24-month fuel cycles over a wide range of discharge burnups. A neutronic study was performed followed by an economic evaluation. The first phase of the study limited the fuel enrichments used in the study to 235 U consistent with constraints today. The second phase extended the range of discharge burnups for 18-month cycles by using fuel enriched in excess of 5 wt%. The neutronic study used state-of-the-art reactor physics methods to accurately determine enrichment requirements. Energy requirements were consistent with today's high capacity factors (>98%) and short (15-day) refueling outages. The economic evaluation method considers various component costs including uranium, conversion, enrichment, fabrication and spent-fuel storage costs as well as the effect of discounting of the revenue stream. The resulting fuel cycle costs as a function of cycle length and discharge burnup are presented and discussed. Fuel costs decline with increasing discharge burnup for all cycle lengths up to the maximum discharge burnup considered. The choice of optimum cycle length depends on assumptions for outage costs

  1. Regional Comparison of Nitrogen Export to Japanese Forest Streams

    Directory of Open Access Journals (Sweden)

    Hideaki Shibata

    2001-01-01

    Full Text Available Nitrogen (N emissions in Asian countries are predicted to increase over the next several decades. An understanding of the mechanisms that control temporal and spatial fluctuation of N export to forest streams is important not only to quantify critical loads of N, N saturation status, and soil acidification N dynamics and budgets in Japanese forested watersheds is not clear due to the lack of regional comparative studies on stream N chemistry. To address the lack of comparative studies, we measured inorganic N (nitrate and ammonium concentrations from June 2000 to May 2001 in streams in 18 experimental forests located throughout the Japanese archipelago and belonging to the Japanese Union of University Forests. N concentrations in stream water during base flow and high flow periods were monitored, and N mineralization potential in soil was measured using batch incubation experiments. Higher nitrate concentrations in stream water were present in central Japan, an area that receives high rates of atmospheric N deposition. In northern Japan, snowmelt resulted in increased nitrate concentrations in stream water. The potential net N mineralization rate was higher in surface soil than in subsurface soil, and the high potential for N mineralization in the surface soil partly contributed to the increase in nitrate concentration in stream water during a storm event. Regional differences in the atmospheric N deposition and seasonality of precipitation and high discharge are principal controls on the concentrations and variations of nitrates in stream water in forested watersheds of Japan.

  2. Regional scale analysis of the altimetric stream network evolution

    Directory of Open Access Journals (Sweden)

    T. Ghizzoni

    2006-01-01

    Full Text Available Floods result from the limited carrying capacity of stream channels when compared to the discharge peak value. The transit of flood waves - with the associated erosion and sedimentation processes - often modifies local stream geometry. In some cases this results in a reduction of the stream carrying capacity, and consequently in an enhancement of the flooding risk. A mathematical model for the prediction of potential altimetric stream network evolution due to erosion and sedimentation processes is here formalized. It works at the regional scale, identifying the tendency of river segments to sedimentation, stability, or erosion. The model builds on geomorphologic concepts, and derives its parameters from extensive surveys. As a case study, tendencies of rivers pertaining to the Valle d'Aosta region are analyzed. Some validation is provided both at regional and local scales of analysis. Local validation is performed both through a mathematical model able to simulate the temporal evolution of the stream profile, and through comparison of the prediction with ante and post-event river surveys, where available. Overall results are strongly encouraging. Possible use of the information derived from the model in the context of flood and landslide hazard mitigation is briefly discussed.

  3. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H. de; Geer, F.C. van; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  4. Field-Scale Measurements for Separation of Catchment Discharge into Flow Route Contributions

    NARCIS (Netherlands)

    Velde, van der Y.; Rozemeijer, J.; Rooij, de G.H.; Geer, van F.C.; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  5. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    van der Velde, Ype; Rozemeijer, Joachim C.; de Rooij, Gerrit H.; van Geer, Frans C.; Broers, Hans Peter

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  6. Open Geoscience Database

    Science.gov (United States)

    Bashev, A.

    2012-04-01

    treatment could be conducted in other programs after extraction the filtered data into *.csv file. It makes the database understandable for non-experts. The database employs open data format (*.csv) and wide spread tools: PHP as the program language, MySQL as database management system, JavaScript for interaction with GoogleMaps and JQueryUI for create user interface. The database is multilingual: there are association tables, which connect with elements of the database. In total the development required about 150 hours. The database still has several problems. The main problem is the reliability of the data. Actually it needs an expert system for estimation the reliability, but the elaboration of such a system would take more resources than the database itself. The second problem is the problem of stream selection - how to select the stations that are connected with each other (for example, belong to one water stream) and indicate their sequence. Currently the interface is English and Russian. However it can be easily translated to your language. But some problems we decided. For example problem "the problem of the same station" (sometimes the distance between stations is smaller, than the error of position): when you adding new station to the database our application automatically find station near this place. Also we decided problem of object and parameter type (how to regard "EC" and "electrical conductivity" as the same parameter). This problem has been solved using "associative tables". If you would like to see the interface on your language, just contact us. We should send you the list of terms and phrases for translation on your language. The main advantage of the database is that it is totally open: everybody can see, extract the data from the database and use them for non-commercial purposes with no charge. Registered users can contribute to the database without getting paid. We hope, that it will be widely used first of all for education purposes, but

  7. Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging

    Science.gov (United States)

    Lewis, Quinn W.; Lindroth, Evan M.; Rhoads, Bruce L.

    2018-05-01

    Quantifying flow in rivers is fundamental to assessments of water supply, water quality, ecological conditions, hydrological responses to storm events, and geomorphological processes. Image-based surface velocity measurements have shown promise in extending the range of discharge conditions that can be measured in the field. The use of Unmanned Aerial Systems (UAS) in image-based measurements of surface velocities has the potential to expand applications of this method. Thus far, few investigations have assessed this potential by evaluating the accuracy and repeatability of discharge measurements using surface velocities obtained from UAS. This study uses large-scale particle image velocimetry (LSPIV) derived from videos captured by cameras on a UAS and a fixed tripod to obtain discharge measurements at ten different stream locations in Illinois, USA. Discharge values are compared to reference values measured by an acoustic Doppler current profiler, a propeller meter, and established stream gauges. The results demonstrate the effects of UAS flight height, camera steadiness and leveling accuracy, video sampling frequency, and LSPIV interrogation area size on surface velocities, and show that the mean difference between fixed and UAS cameras is less than 10%. Differences between LSPIV-derived and reference discharge values are generally less than 20%, not systematically low or high, and not related to site parameters like channel width or depth, indicating that results are relatively insensitive to camera setup and image processing parameters typically required of LSPIV. The results also show that standard velocity indices (between 0.85 and 0.9) recommended for converting surface velocities to depth-averaged velocities yield reasonable discharge estimates, but are best calibrated at specific sites. The study recommends a basic methodology for LSPIV discharge measurements using UAS that is rapid, cost-efficient, and does not require major preparatory work at a

  8. Estimation of stream conditions in tributaries of the Klamath River, northern California

    Science.gov (United States)

    Manhard, Christopher V.; Som, Nicholas A.; Jones, Edward C.; Perry, Russell W.

    2018-01-01

    Because of their critical ecological role, stream temperature and discharge are requisite inputs for models of salmonid population dynamics. Coho Salmon inhabiting the Klamath Basin spend much of their freshwater life cycle inhabiting tributaries, but environmental data are often absent or only seasonally available at these locations. To address this information gap, we constructed daily averaged water temperature models that used simulated meteorological data to estimate daily tributary temperatures, and we used flow differentials recorded on the mainstem Klamath River to estimate daily tributary discharge. Observed temperature data were available for fourteen of the major salmon bearing tributaries, which enabled estimation of tributary-specific model parameters at those locations. Water temperature data from six mid-Klamath Basin tributaries were used to estimate a global set of parameters for predicting water temperatures in the remaining tributaries. The resulting parameter sets were used to simulate water temperatures for each of 75 tributaries from 1980-2015. Goodness-of-fit statistics computed from a cross-validation analysis demonstrated a high precision of the tributary-specific models in predicting temperature in unobserved years and of the global model in predicting temperatures in unobserved streams. Klamath River discharge has been monitored by four gages that broadly intersperse the 292 kilometers from the Iron Gate Dam to the Klamath River mouth. These gages defined the upstream and downstream margins of three reaches. Daily discharge of tributaries within a reach was estimated from 1980-2015 based on drainage-area proportionate allocations of the discharge differential between the upstream and downstream margin. Comparisons with measured discharge on Indian Creek, a moderate-sized tributary with naturally regulated flows, revealed that the estimates effectively approximated both the variability and magnitude of discharge.

  9. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    Science.gov (United States)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  10. Anisotropy of streambed sediments of contrasting geomorphological environments and its relation to groundwater discharge

    Science.gov (United States)

    Sebok, Eva; Duque, Carlos; Engesgaard, Peter; Bøgh, Eva

    2013-04-01

    As a main factor controlling surface water-groundwater exchange, spatial variability in streambed hydraulic conductivity and anisotropy is a key to understand groundwater discharge patterns to streams. Here we report on a field investigation in a soft-bedded stream, where horizontal and vertical streambed hydraulic conductivities were determined in order to, (i) detect spatial and seasonal variability in streambed hydraulic conductivity and anisotropy, (ii) relate this variability to channel morphology and different streambed sediments. The study was carried out at a field site located along Holtum stream in Western Denmark. The 5 m wide stream has a soft sandy streambed, an average discharge of 1000 l/s and an average depth of 0.7 m. Hydraulic tests were carried out in 8 transects across the stream with 5 test locations in each transect to study the spatial variability and streambed hydraulic anisotropy across the stream. Different geomorphological environments were compared by having two transects in a straight channel and six transects across a channel bend with a depositional and an erosional bank. Streambed horizontal hydraulic conductivity (Kh) 0.5 meters below the streambed was determined with slugtests in piezometers. At the same locations falling head tests were conducted in standpipes to calculate vertical hydraulic conductivity (Kv) on a 0.5 m long streambed material column some of which were later removed for grain size analysis. In order to account for any seasonal changes in the temperature-related fluid properties the falling head tests and slugtests were carried out in December 2011 and August 2012. Both the Kh and Kv values show greater variability in the summer dataset. During both seasons the shallow, depositional streambank displays the highest Kh values, while the erosional bank at the thalweg is characterised by lower Kh. Vertical streambed hydraulic conductivities do not show any spatial trend across the stream. Streambed anisotropy values of

  11. Aufeis accumulations in stream bottoms in arctic and subarctic environments as a possible indicator of geologic structure: Chapter F in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    Science.gov (United States)

    Wanty, Richard B.; Wang, Bronwen; Vohden, Jim; Day, Warren C.; Gough, Larry P.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    Thick accumulations of ice, called “aufeis,” form during winter along stream and river valleys in arctic and subarctic regions. In high-gradient alpine streams, aufeis forms mostly as a result of ground-water discharge into the stream channel. The ice occludes this discharge, perturbing the steady-state condition, and causing an incremental rise in the local water table until discharge occurs higher on the stream bank above the previously formed ice. Successive freezing of onlapping ice layers can lead to aufeis accumulations several meters thick.

  12. A database for compliance with land disposal restrictions

    International Nuclear Information System (INIS)

    McCoy, M.W.

    1990-09-01

    The new restrictions on land disposal introduce additional challenges to hazardous waste managers. Laboratory waste streams consisting of small volumes of diverse waste types will be particularly difficult to manage due to the large number of possible treatment standards that could be applied. To help remedy this management problem, a user-friendly database has been developed to provide the regulatory information required for each of the hazardous wastes present in the wastes stream of a large research laboratory. 3 figs., 1 tab

  13. HydroCloud: A Web Application for Exploring Stream Gage Data

    Directory of Open Access Journals (Sweden)

    Martin C. Roberge

    2017-08-01

    Full Text Available HydroCloud (hydrocloud.org is a mobile-friendly web application for visually browsing hydrology data from multiple sources. Data providers such as the US Geological Survey (USGS and the German 'Wasserstraßen- und Schifffahrtsverwaltung des Bundes' (WSV currently serve stream discharge data from more than 10,000 stream gages around the world. HydroCloud allows users to plot these data while out in the field, while also providing contextual information such as the current NEXRAD weather imagery or descriptive information about the stream gage and its watershed. Additional features include a chat mechanism for contacting developers, and the use of local storage for saving data.   Funding Statement: This project was supported in part by a grant from the Towson University School of Emerging Technology.

  14. Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA

    Science.gov (United States)

    Clayton, J.A.; Kean, J.W.

    2010-01-01

    Investigating the routing of streamflow through a large drainage basin requires the determination of discharge at numerous locations in the channel network. Establishing a dense network of stream gages using conventional methods is both cost-prohibitive and functionally impractical for many research projects. We employ herein a previously tested, fluid-mechanically based model for generating rating curves to establish a stream gaging network in the Whitewater River basin in south-central Kansas. The model was developed for the type of channels typically found in this watershed, meaning that it is designed to handle deep, narrow geomorphically stable channels with irregular planforms, and can model overbank flow over a vegetated floodplain. We applied the model to ten previously ungaged stream reaches in the basin, ranging from third- to sixth-order channels. At each site, detailed field measurements of the channel and floodplain morphology, bed and bank roughness, and vegetation characteristics were used to quantify the roughness for a range of flow stages, from low flow to overbank flooding. Rating curves that relate stage to discharge were developed for all ten sites. Both fieldwork and modeling were completed in less than 2 years during an anomalously dry period in the region, which underscores an advantage of using theoretically based (as opposed to empirically based) discharge estimation techniques. ?? 2010 Springer Science+Business Media B.V.

  15. How has climate change altered network connectivity in a mountain stream network?

    Science.gov (United States)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Johnson, S.

    2017-12-01

    Connectivity along river networks is broadly recognized as dynamic, with seasonal and event-based expansion and contraction of the network extent. Intermittently flowing streams are particularly important as they define a crucial threshold for continuously connected waters that enable migration by aquatic species. In the Pacific northwestern U.S., changes in atmospheric circulation have been found to alter rainfall patterns and result in decreased summer low-flows in the region. However, the impact of this climate dynamic on network connectivity is heretofore unstudied. Thus, we ask: How has connectivity in the riparian corridor changed in response to observed changes in climate? In this study we take the well-studied H.J. Andrews Experimental Forest as representative of mountain river networks in the Pacific northwestern U.S. First, we analyze 63 years of stream gauge information from a network of 11 gauges to document observed changes in timing and magnitude of stream discharge. We found declining magnitudes of seasonal low-flows and shifting seasonality of water export from the catchment, both of which we attribute to changes in precipitation timing and storage as snow vs. rainfall. Next, we use these discharge data to drive a reduced-complexity model of the river network to simulate network connectivity over 63 years. Model results show that network contraction (i.e., minimum network extent) has decreased over the past 63 years. Unexpectedly, the increasing winter peak flows did not correspond with increasing network expansion, suggesting a geologic control on maximum flowing network extent. We find dynamic expansion and contraction of the network primarily occurs during period of catchment discharge less than about 1 m3/s at the outlet, whereas the network extent is generally constant for discharges from 1 to 300 m3/s. Results of our study are of interest to scientists focused on connectivity as a control on ecological processes both directly (e.g., fish

  16. StreamNet Project : Annual Report Fiscal Year 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Bruce; Roger, Phil; Oftedahl, Lenora

    2008-12-12

    Fiscal Year 2008 (FY-08) represents a transitional year for the StreamNet project. While the project continued to acquire/update, standardize, georeference and disseminate fish-related data for the state, some tribal and one federal fisheries agencies, it also took on several new initiatives and is anticipating new regional guidance on data needs. Passage of the Columbia Basin Accords caused an administrative change within the project, separating the work done by the Columbia River Inter-Tribal Fish Commission (CRITFC) out to a separate contract with BPA. This will change the structure of the StreamNet contract but not change the relationship with the StreamNet Library or data developed by CRITFC, and will likely increase the availability of tribal data to StreamNet due to increased funding for tribal data efforts. This change will take effect in FY-09. We also expect that data work will be adjusted in the future in response to executive level policy direction in the Columbia Basin based on efforts to establish priorities under a regional data management framework. Data development emphasis was shifted this year to place highest priority on data that support indicators of fish abundance for the focal species covered in the Status of the Resource (SOTR) report, as requested by the Columbia Basin Fish and Wildlife Authority (CBFWA) Data Management Framework Subcommittee. We instituted an XML based web service allowing direct access to data from the project database for CBFWA to update the SOTR report. The project also increased efforts to work with tribal fisheries managers to provide data related assistance and to include tribal data in the StreamNet database. A primary theme this year was exploring means to speed the flow of data. We had ongoing success in our strategic emphasis on increasing automation of data conversion through development of comprehensive database systems within our partner agencies, as outlined in our Vision and Strategic Plan. By assisting

  17. HydroClim: a Continental-Scale Database of Contemporary and Future Streamflow and Stream Temperature Estimates for Aquatic Ecosystem Studies

    Science.gov (United States)

    Knouft, J.; Ficklin, D. L.; Bart, H. L.; Rios, N. E.

    2017-12-01

    Streamflow and water temperature are primary factors influencing the traits, distribution, and diversity of freshwater species. Ongoing changes in climate are causing directional alteration of these environmental conditions, which can impact local ecological processes. Accurate estimation of these variables is critical for predicting the responses of species to ongoing changes in freshwater habitat, yet ecologically relevant high-resolution data describing variation in streamflow and water temperature across North America are not available. Considering the vast amount of web-accessible freshwater biodiversity data, development and application of appropriate hydrologic data are critical to the advancement of our understanding of freshwater systems. To address this issue, we are developing the "HydroClim" database, which will provide web-accessible (www.hydroclim.org) historical and projected monthly streamflow and water temperature data for stream sections in all major watersheds across the United States and Canada from 1950-2099. These data will also be integrated with FishNet 2 (www.fishnet2.net), an online biodiversity database that provides open access to over 2 million localities of freshwater fish species in the United States and Canada, thus allowing for the characterization of the habitat requirements of freshwater species across this region. HydroClim should provide a vast array of opportunities for a greater understanding of water resources as well as information for the conservation of freshwater biodiversity in the United States and Canada in the coming century.

  18. Stream profile analysis using a step backwater model for selected reaches in the Chippewa Creek basin in Medina, Wayne, and Summit Counties, Ohio

    Science.gov (United States)

    Straub, David E.; Ebner, Andrew D.

    2011-01-01

    The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.

  19. Extreme Changes in Stream Geomorphic Conditions induced by Fluvial Scour in Bridges

    Science.gov (United States)

    Özcan, O.; Ozcan, O.

    2016-12-01

    The numerous complexities associated with bridge scour have caused scour to be one of the most active topics of stream geomorphic research. The assessment of local scouring mechanism around bridge piers provides information for decision-making regarding the pile footing design, predicting the safety of bridges under critical scoured conditions, and as a result, may help prevent unnecessary loses. In the study, bridge design plans and HEC-RAS modeling were used for the assessment of changes in stream geomorphic conditions. The derived fluvial scour depths were compared with the field measurements and the empirical formula which is based on stream flow discharge rate, streambed condition and shape of river. Preliminary results revealed that bridge damage resulting from the flood event in 2003 induced substantial scour around bridge piles. Afterwards, significant stream bed change was observed under the influence of fluvial scour in another flood occurred in 2009. Consequently, geomorphic conditions of the stream bed should be considered in the structural design of the bridges.

  20. The Danish Intensive Care Database

    Directory of Open Access Journals (Sweden)

    Christiansen CF

    2016-10-01

    Full Text Available Christian Fynbo Christiansen,1 Morten Hylander Møller,2 Henrik Nielsen,1 Steffen Christensen3 1Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, 2Department of Intensive Care 4131, Copenhagen University Hospital Rigshospitalet, Copenhagen, 3Department of Intensive Care, Aarhus University Hospital, Aarhus, Denmark Aim of database: The aim of this database is to improve the quality of care in Danish intensive care units (ICUs by monitoring key domains of intensive care and to compare these with predefined standards. Study population: The Danish Intensive Care Database (DID was established in 2007 and includes virtually all ICU admissions in Denmark since 2005. The DID obtains data from the Danish National Registry of Patients, with complete follow-up through the Danish Civil Registration System. Main variables: For each ICU admission, the DID includes data on the date and time of ICU admission, type of admission, organ supportive treatments, date and time of discharge, status at discharge, and mortality up to 90 days after admission. Descriptive variables include age, sex, Charlson comorbidity index score, and, since 2010, the Simplified Acute Physiology Score (SAPS II. The variables are recorded with 90%–100% completeness in the recent years, except for SAPS II score, which is 73%–76% complete. The DID currently includes five quality indicators. Process indicators include out-of-hour discharge and transfer to other ICUs for capacity reasons. Outcome indicators include ICU readmission within 48 hours and standardized mortality ratios for death within 30 days after admission using case-mix adjustment (initially using age, sex, and comorbidity level, and, since 2013, using SAPS II for all patients and for patients with septic shock. Descriptive data: The DID currently includes 335,564 ICU admissions during 2005–2015 (average 31,958 ICU admissions per year. Conclusion: The DID provides a

  1. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  2. Nutrient cycling and ecosystem metabolism in boreal streams of the Central Siberian Plateau

    Science.gov (United States)

    Diemer, L.; McDowell, W. H.; Prokushkin, A. S.

    2013-12-01

    Arctic boreal streams are undergoing considerable change in carbon and nutrient biogeochemistry due to degrading permafrost and increasing fire activity. Recent studies show that fire increases transport of inorganic solutes from the boreal landscape to arctic streams in some regions; couple this with expected greater labile dissolved organic carbon (DOC) from deepening active layers, enhanced biomass production, and increased annual precipitation and boreal streams may experience greater in-stream primary production and respiration in the coming century. Little is known about the spatial and temporal dynamics of inorganic nutrients in relation to C availability in headwater streams of a major Arctic region, the Central Siberian Plateau. Our preliminary data of Central Siberian headwater streams show NO3 and PO4 concentrations near or below detection limits (e.g. nine samples taken in spring from a small stream near the Russian settlement of Tura averaged 10 μg/L NO3-N and 9.7 μg/L PO4-P), and recent studies in Central Siberia suggest that bioavailable organic matter and inorganic nutrients such as NO3 will likely increase with climate warming. We examined the fate of nutrients in Central Siberian streams using Tracer for Spiraling Curve Characterization (TASCC) additions of NO3, NH4, and PO4 along with conservative tracer, NaCl, in spring at high and low discharges in streams underlain by continuous permafrost in Central Siberia. We also sampled two sites in spring every 2 hours overnight for 24 hours to document any diel patterns in DOC and inorganic nutrients. Our results thus far show that NO3 uptake length may be strongly correlated with DOC concentration (a function of fire activity). Preliminary results also show that despite high discharge and cold temperatures (4-8°C) in mid to late spring, there appears to be biological activity stimulating a diel signal for NO3 with maximum concentration corresponding to low light (11 PM). Investigating the primary

  3. Long-Term Trends in Nutrient Concentrations and Fluxes in Streams Draining to Lake Tahoe, California

    Science.gov (United States)

    Domagalski, J. L.

    2017-12-01

    Lake Tahoe, situated in the rain shadow of the eastern Sierra Nevada at an elevation of 1,897 meters, has numerous small to medium sized tributaries that are sources of nutrients and fine sediment. The Tahoe watershed is relatively small and the surface area of the lake occupies about 38% of the total watershed area (1,313 km2). Each stream contributing water to the lake therefore also occupies a small watershed, mostly forested, with typical trees being Jeffrey, Ponderosa, or Sugar Pine and White Fir. Outflow from the lake contributes to downstream uses such as water supply and ecological resources. Only about 6% of the watershed is urbanized or residential land, and wastewater is exported to adjacent basins and not discharged to the lake as part of a plan to maintain water clarity. The lake's exceptional clarity has been diminishing due to phytoplankton and fine sediment, prompting development of management plans to improve water quality. Much of the annual discharge and flux of nutrients to the lake results from snowmelt in the spring and summer months, and climatic changes have begun to shift this melt to earlier time frames. Winter rains on urbanized land also contribute to nutrient loads. To understand the relative importance of land use, climate, and other factors affecting stream concentrations and fluxes, a Weighted Regression on Time Discharge and Season (WRTDS) model documented trends over a time frame of greater than 25 years. Ten streams have records of discharge, nutrient (NO3, NH3, OP, TP, TKN) and sediment data to complete this analysis. Both urbanized and non-urbanized locations generally show NO3 trending down in the 1980s. Some locations show initially decreasing orthophosphate trends, followed by small significant increases in concentration and fluxes starting around 2000 to 2005. Although no wastewater enters the streams, ammonia concentrations mimic those of orthophosphate, with initially negative trends in concentration and flux followed by

  4. Impacts of Catfish Effluents on Water Quality Parameters of Majidun Stream, South-West, Nigeria

    Directory of Open Access Journals (Sweden)

    O. E. Omofunmi

    2017-06-01

    Full Text Available There has been a great concern about the level of safety of surface waters, especially in developing countries where there is an exponential increase in water pollution and water-borne diseases. The aim of this study was to assess the effect of catfish pond effluents on water quality of stream water where five catfish farms were located. Water samples were taken on monthly basis, 20 cm of below water surface from the streams that receive effluents from neighboring fishponds. Water quality indicators like dissolved oxygen, biochemical oxygen demand (BOD5, nitrate, nitrite, water temperature, ammonia and Hydrogen ion Concentration (pH were examined in the sampled waters in accordance with the American Public Health Association standards. The average values of water quality indicators examined at effluents and non-effluents discharged sites of the stream indicated that water (24.6 ± 0.2, 24.2 ±0.1, (7.29±0.30, 7.30±0.10, (6.90±0.4, 7.07±0.1 mg/l, (0.40±0.04, 0.27±0.01, (3.77±0.26, 2.34±0.16 mg/l, (3.59±0.11, 2.80±0.02 mg/l and (3.51±0.24, 2.46±0.21 mg/l at (p≥0.05 respectively for temperature, pH, dissolved oxygen, total ammonia, total nitrogen, total phosphorus, and BODs. They were significant differences (P 0.05 excepts temperature and pH, between values obtained at effluents discharged and non-effluents discharged sites, indicating that improper discharges of catfish pond effluents could resulted into environmental contamination

  5. Experiment Databases

    Science.gov (United States)

    Vanschoren, Joaquin; Blockeel, Hendrik

    Next to running machine learning algorithms based on inductive queries, much can be learned by immediately querying the combined results of many prior studies. Indeed, all around the globe, thousands of machine learning experiments are being executed on a daily basis, generating a constant stream of empirical information on machine learning techniques. While the information contained in these experiments might have many uses beyond their original intent, results are typically described very concisely in papers and discarded afterwards. If we properly store and organize these results in central databases, they can be immediately reused for further analysis, thus boosting future research. In this chapter, we propose the use of experiment databases: databases designed to collect all the necessary details of these experiments, and to intelligently organize them in online repositories to enable fast and thorough analysis of a myriad of collected results. They constitute an additional, queriable source of empirical meta-data based on principled descriptions of algorithm executions, without reimplementing the algorithms in an inductive database. As such, they engender a very dynamic, collaborative approach to experimentation, in which experiments can be freely shared, linked together, and immediately reused by researchers all over the world. They can be set up for personal use, to share results within a lab or to create open, community-wide repositories. Here, we provide a high-level overview of their design, and use an existing experiment database to answer various interesting research questions about machine learning algorithms and to verify a number of recent studies.

  6. Research of decreasing of the cesium radionuclides discharge in the course pouring of the liquid glass from furnace EhP-500/1

    International Nuclear Information System (INIS)

    Sadovskij, B.F.; Borisov, N.B.; Dzekun, E.G.; Skobtsov, A.S.

    1996-01-01

    Cesium radionuclides discharge from the furnace liquid-glass discharge unit are studied and estimates of cesium emission from the glass melt by the stream flow-out and filling the waste storage capacity are performed. The ways for decreasing cesium discharges are indicated and new additional aerosol protection system for high-active glass discharge, providing for high protection efficiency is proposed. 10 refs., 1 fig., 1 tab

  7. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach

    Science.gov (United States)

    Norman, Laura M.; Sankey, Joel B.; Dean, David; Caster, Joshua J.; DeLong, Stephen B.; Henderson-DeLong, Whitney; Pelletier, Jon D.

    2017-01-01

    Rock-detention structures are used as restoration treatments to engineer ephemeral stream channels of southeast Arizona, USA, to reduce streamflow velocity, limit erosion, retain sediment, and promote surface-water infiltration. Structures are intended to aggrade incised stream channels, yet little quantified evidence of efficacy is available. The goal of this 3-year study was to characterize the geomorphic impacts of rock-detention structures used as a restoration strategy and develop a methodology to predict the associated changes. We studied reaches of two ephemeral streams with different watershed management histories: one where thousands of loose-rock check dams were installed 30 years prior to our study, and one with structures constructed at the beginning of our study. The methods used included runoff, sediment transport, and geomorphic modelling and repeat terrestrial laser scanner (TLS) surveys to map landscape change. Where discharge data were not available, event-based runoff was estimated using KINEROS2, a one-dimensional kinematic-wave runoff and erosion model. Discharge measurements and estimates were used as input to a two-dimensional unsteady flow-and-sedimentation model (Nays2DH) that combined a gridded flow, transport, and bed and bank simulation with geomorphic change. Through comparison of consecutive DEMs, the potential to substitute uncalibrated models to analyze stream restoration is introduced. We demonstrate a new approach to assess hydraulics and associated patterns of aggradation and degradation resulting from the construction of check-dams and other transverse structures. Notably, we find that stream restoration using rock-detention structures is effective across vastly different timescales.

  8. Restoration of a forested wetland ecosystem in a thermally impacted stream corridor

    International Nuclear Information System (INIS)

    Nelson, E.A.; McKee, W.H. Jr.; Dulohery, C.J.

    1995-01-01

    The Savannah River Swamp is a 3,020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS). Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 50 C. The nearly continuous flood of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. Research has been ongoing to determine methods to reintroduce tree species characteristic of more mature forested wetlands. The goal of the restoration is to create structural and biological diversity in the forest canopy by establishing a mix of species typically present in riparian and wetland forests of the area

  9. Surgical discharge summaries: improving the record.

    Science.gov (United States)

    Adams, D C; Bristol, J B; Poskitt, K R

    1993-03-01

    The problem area of communication between hospital and general practitioners may potentially be improved by the advent of new information technology. The introduction of a regional computer database for general surgery allows the rapid automated production of discharge summaries and has provided us with the opportunity for auditing the quality of old and new styles of discharge communication. A total of 118 general practitioners were sent a postal questionnaire to establish their views on the relative importance of various aspects of patient information and management after discharge. A high response rate (97%) indicated the interest of general practitioners in this topic. The majority (73%) believed that summaries should be delayed no more than 3 days. The structured and shortened new format was preferred to the older style of discharge summary. The older format rarely arrived within an appropriate time and its content was often felt to be either inadequate (35%) or excessive (7%) compared with the new format (8% and 1%, respectively). The diagnosis, information given to the patient, clinic date, list of medications and investigations were considered the more important details in the summary. Improvements in the discharge information were suggested and have subsequently been incorporated in our discharge policy. The use of new information technology, intended to facilitate clinical audit, has improved our ability to generate prompt, well-structured discharge summaries which are accepted by the general practitioners.

  10. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams

    Science.gov (United States)

    Kocovsky, P.M.; Carline, R.F.

    2005-01-01

    Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and

  11. Overcoming equifinality: Leveraging long time series for stream metabolism estimation

    Science.gov (United States)

    Appling, Alison; Hall, Robert O.; Yackulic, Charles B.; Arroita, Maite

    2018-01-01

    The foundational ecosystem processes of gross primary production (GPP) and ecosystem respiration (ER) cannot be measured directly but can be modeled in aquatic ecosystems from subdaily patterns of oxygen (O2) concentrations. Because rivers and streams constantly exchange O2 with the atmosphere, models must either use empirical estimates of the gas exchange rate coefficient (K600) or solve for all three parameters (GPP, ER, and K600) simultaneously. Empirical measurements of K600 require substantial field work and can still be inaccurate. Three-parameter models have suffered from equifinality, where good fits to O2 data are achieved by many different parameter values, some unrealistic. We developed a new three-parameter, multiday model that ensures similar values for K600 among days with similar physical conditions (e.g., discharge). Our new model overcomes the equifinality problem by (1) flexibly relating K600 to discharge while permitting moderate daily deviations and (2) avoiding the oft-violated assumption that residuals in O2 predictions are uncorrelated. We implemented this hierarchical state-space model and several competitor models in an open-source R package, streamMetabolizer. We then tested the models against both simulated and field data. Our new model reduces error by as much as 70% in daily estimates of K600, GPP, and ER. Further, accuracy benefits of multiday data sets require as few as 3 days of data. This approach facilitates more accurate metabolism estimates for more streams and days, enabling researchers to better quantify carbon fluxes, compare streams by their metabolic regimes, and investigate controls on aquatic activity.

  12. Evolution of Database Replication Technologies for WLCG

    CERN Document Server

    Baranowski, Zbigniew; Blaszczyk, Marcin; Dimitrov, Gancho; Canali, Luca

    2015-01-01

    In this article we summarize several years of experience on database replication technologies used at WLCG and we provide a short review of the available Oracle technologies and their key characteristics. One of the notable changes and improvement in this area in recent past has been the introduction of Oracle GoldenGate as a replacement of Oracle Streams. We report in this article on the preparation and later upgrades for remote replication done in collaboration with ATLAS and Tier 1 database administrators, including the experience from running Oracle GoldenGate in production. Moreover, we report on another key technology in this area: Oracle Active Data Guard which has been adopted in several of the mission critical use cases for database replication between online and offline databases for the LHC experiments.

  13. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    Science.gov (United States)

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total

  14. Application of an Automated Discharge Imaging System and LSPIV during Typhoon Events in Taiwan

    OpenAIRE

    Wei-Che Huang; Chih-Chieh Young; Wen-Cheng Liu

    2018-01-01

    An automated discharge imaging system (ADIS), which is a non-intrusive and safe approach, was developed for measuring river flows during flash flood events. ADIS consists of dual cameras to capture complete surface images in the near and far fields. Surface velocities are accurately measured using the Large Scale Particle Image Velocimetry (LSPIV) technique. The stream discharges are then obtained from the depth-averaged velocity (based upon an empirical velocity-index relationship) and cross...

  15. Estimation of Channel-Forming Discharge and Large-Event Geomorphic Response Using HEC-RAS

    Science.gov (United States)

    Hamilton, P.; Strom, K.; Hosseiny, S. M. H.

    2015-12-01

    The goal of the present work was to consider the functionality and applicability of HEC-RAS sediment transport simulations in two situations. The first was as a mode for obtaining quick estimates of the effective discharge, one measure of channel-forming discharge, and the second was as a mode to quickly estimate sediment transport and the commensurate potential erosion and deposition during large flood events. Though there are many other sediment transport and morphodynamic models available, e.g., CCHE1D, Nays2DH, we were interested in using HEC-RAS since this is the model of choice for many regulatory bodies, e.g., FEMA, cities, and counties. This makes using the sediment transport capability of HEC-RAS a natural extension of models that already otherwise exist and are well calibrated. In first looking at the utility of these models, we wanted to estimate the effective discharge of streams. Effective discharge is one way of defining the channel-forming discharge for a stream and is therefore an important parameter in natural channel design and restoration efforts. By running this range of floods, one can easily obtain an estimate for recurrence interval most responsible for moving the majority of sediment over a long time period. Results were compared to data collected within our research group on the Brazos River (TX). Effective discharge is an important estimate, particularly in understanding the equilibrium channel condition. Nevertheless, large floods are contemporaneously catastrophic and understanding their potential effects is desirable. Finally, we performed some sensitivity analysis to better understand the underlying assumptions of the various sediment transport model options and how they might affect the outcome of the aforementioned computations.

  16. HCUP State Inpatient Databases (SID) - Restricted Access File

    Data.gov (United States)

    U.S. Department of Health & Human Services — The State Inpatient Databases (SID) contain the universe of hospital inpatient discharge abstracts in States participating in HCUP that release their data through...

  17. A study into the treatability of ochreous mine water discharges

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C J; Crawshaw, D H

    1979-01-01

    The oxidation of ferrous salts in solution from waste-water discharges from 3 abandoned and flooded mines near Bromley, Lancs, (UK) has since 1968 caused discoloration in the Calder River. Deposition and dilution decreases the ochreous effect, but the iron oxide is harmful to the benthos by producing a low dissolved-oxygen environment. The Calder River is only a Class 4 river below the confluence with the stream which carried the mine waters, and pilot-plant studies and field trials are described to determine the feasibility of full- scale treatment of the stream waters, resulting in the recommendation of lagoon treatment followed by neutralization.

  18. Evaluation of Ruthenium Capture Methods for Tritium Pretreatment Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, Denis M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    In the reprocessing of used nuclear fuel, radioactive elements are released into various plant off-gas streams. While much research and development has focused on the abatement of the volatile nuclides 3H, 14C, 85Kr, and 129I, the potential release of semivolatile isotopes that could also report to the off-gas streams in a reprocessing facility has been examined. Ruthenium (as 106Ru) has been identified as one of the semivolatile nuclides requiring the greatest degree of abatement prior to discharging the plant off-gas to the environment.

  19. Exploration of diffuse and discrete sources of acid mine drainage to a headwater mountain stream in Colorado, USA

    Science.gov (United States)

    Johnston, Allison; Runkel, Robert L.; Navarre-Sitchler, Alexis; Singha, Kamini

    2017-01-01

    We investigated the impact of acid mine drainage (AMD) contamination from the Minnesota Mine, an inactive gold and silver mine, on Lion Creek, a headwater mountain stream near Empire, Colorado. The objective was to map the sources of AMD contamination, including discrete sources visible at the surface and diffuse inputs that were not readily apparent. This was achieved using geochemical sampling, in-stream and in-seep fluid electrical conductivity (EC) logging, and electrical resistivity imaging (ERI) of the subsurface. The low pH of the AMD-impacted water correlated to high fluid EC values that served as a target for the ERI. From ERI, we identified two likely sources of diffuse contamination entering the stream: (1) the subsurface extent of two seepage faces visible on the surface, and (2) rainfall runoff washing salts deposited on the streambank and in a tailings pile on the east bank of Lion Creek. Additionally, rainfall leaching through the tailings pile is a potential diffuse source of contamination if the subsurface beneath the tailings pile is hydraulically connected with the stream. In-stream fluid EC was lowest when stream discharge was highest in early summer and then increased throughout the summer as stream discharge decreased, indicating that the concentration of dissolved solids in the stream is largely controlled by mixing of groundwater and snowmelt. Total dissolved solids (TDS) load is greatest in early summer and displays a large diel signal. Identification of diffuse sources and variability in TDS load through time should allow for more targeted remediation options.

  20. StreamStats, version 4

    Science.gov (United States)

    Ries, Kernell G.; Newson, Jeremy K.; Smith, Martyn J.; Guthrie, John D.; Steeves, Peter A.; Haluska, Tana L.; Kolb, Katharine R.; Thompson, Ryan F.; Santoro, Richard D.; Vraga, Hans W.

    2017-10-30

    IntroductionStreamStats version 4, available at https://streamstats.usgs.gov, is a map-based web application that provides an assortment of analytical tools that are useful for water-resources planning and management, and engineering purposes. Developed by the U.S. Geological Survey (USGS), the primary purpose of StreamStats is to provide estimates of streamflow statistics for user-selected ungaged sites on streams and for USGS streamgages, which are locations where streamflow data are collected.Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (which is exceeded, on average, once in 100 years and has a 1-percent chance of exceedance in any year) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; permitting of water withdrawals and wastewater and industrial discharges; hydropower facility design and regulation; and setting of minimum allowed streamflows to protect freshwater ecosystems. Streamflow statistics can be computed from available data at USGS streamgages depending on the type of data collected at the stations. Most often, however, streamflow statistics are needed at ungaged sites, where no streamflow data are available to determine the statistics.

  1. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    Science.gov (United States)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more

  2. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    Science.gov (United States)

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  3. The role of near-stream riparian zones in the hydrology of steep upland catchments

    Science.gov (United States)

    McDonnell, Jeffery J.; McGlynn, B.L.; Kendall, K.; Shanley, J.; Kendall, C.

    1998-01-01

    Surface and subsurface waters were monitored and sampled at various topographic positions in a 40.5-ha headwater catchment to test several hypotheses of runoff generation and stream chemical and isotopic evolution during snowmelt. Transmissivity feedback was observed on the hillslopes during the melt period. Groundwater levels and stream DOC were highly correlated with stream discharge. Hysteresis in the groundwater-streamflow relation suggests that localized water flux from the riparian areas controlled the rising limb and main peak response of the melt hydrograph, whilst hillslope drainage controlled the timing and volume of the falling limb. Lateral flow from upslope positions was detected in the riparian zone.

  4. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2012-08-01

    Full Text Available Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  5. Large-scale environmental controls on microbial biofilms in high-alpine streams

    Directory of Open Access Journals (Sweden)

    T. J. Battin

    2004-01-01

    Full Text Available Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal, groundwater-fed (krenal and snow-fed (rhithral streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.

  6. The Role of Stream Water Carbon Dynamics and Export in the Carbon Balance of a Tropical Seasonal Rainforest, Southwest China

    Science.gov (United States)

    Zhou, Wen-Jun; Zhang, Yi-Ping; Schaefer, Douglas A.; Sha, Li-Qing; Deng, Yun; Deng, Xiao-Bao; Dai, Kai-Jie

    2013-01-01

    A two-year study (2009 ∼ 2010) was carried out to investigate the dynamics of different carbon (C) forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN), southwest China. The seasonal volumetric weighted mean (VWM) concentrations of total inorganic C (TIC) and dissolved inorganic C (DIC) were higher, and particulate inorganic C (PIC) and organic C (POC) were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC) and dissolved organic C (DOC) were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT), only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC) export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha−1 yr−1, about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest. PMID:23437195

  7. The role of stream water carbon dynamics and export in the carbon balance of a tropical seasonal rainforest, southwest China.

    Directory of Open Access Journals (Sweden)

    Wen-Jun Zhou

    Full Text Available A two-year study (2009 ~ 2010 was carried out to investigate the dynamics of different carbon (C forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN, southwest China. The seasonal volumetric weighted mean (VWM concentrations of total inorganic C (TIC and dissolved inorganic C (DIC were higher, and particulate inorganic C (PIC and organic C (POC were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC and dissolved organic C (DOC were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT, only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha(-1 yr(-1, about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest.

  8. Stability of alternating current discharges between water drops on insulation surfaces

    International Nuclear Information System (INIS)

    Rowland, S M; Lin, F C

    2006-01-01

    Discharges between water drops are important in the ageing of hydrophobic outdoor insulators. They may also be important in the processes leading up to flashover of these insulators in high pollution conditions. This paper considers discharges between drops when a limited alternating current is available, as experienced by an ageing insulator in service. A phenomenon is identified in which the length of a discharge between two drops is reduced through a particular type of distortion of the drops. This is visually characterized as a liquid protrusion from each of a pair of water drops along the insulator surface. This process is distinct from vibration of the drops, general distortion of their shape and the very fast emission of jet streams seen in very high fields. The process depends upon the discharge current, the resistivity of the moisture and the hydrophobicity of the insulation surface

  9. PGG: An Online Pattern Based Approach for Stream Variation Management

    Institute of Scientific and Technical Information of China (English)

    Lu-An Tang; Bin Cui; Hong-Yan Li; Gao-Shan Miao; Dong-Qing Yang; Xin-Biao Zhou

    2008-01-01

    Many database applications require efficient processing of data streams with value variations and fiuctuant sampling frequency. The variations typically imply fundamental features of the stream and important domain knowledge of underlying objects. In some data streams, successive events seem to recur in a certain time interval, but the data indeed evolves with tiny differences as time elapses. This feature, so called pseudo periodicity, poses a new challenge to stream variation management. This study focuses on the online management for variations over such streams. The idea can be applied to many scenarios such as patient vital signal monitoring in medical applications. This paper proposes a new method named Pattern Growth Graph (PGG) to detect and manage variations over evolving streams with following features: 1) adopts the wave-pattern to capture the major information of data evolution and represent them compactly;2) detects the variations in a single pass over the stream with the help of wave-pattern matching algorithm; 3) only stores different segments of the pattern for incoming stream, and hence substantially compresses the data without losing important information; 4) distinguishes meaningful data changes from noise and reconstructs the stream with acceptable accuracy.Extensive experiments on real datasets containing millions of data items, as well as a prototype system, are carried out to demonstrate the feasibility and effectiveness of the proposed scheme.

  10. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    Musa, J. J

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  11. Effective Discharge and Annual Sediment Yield on Brazos River

    Science.gov (United States)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  12. Relating Hydrogeomorphic Attributes to Nutrient Uptake in Alluvial Streams of a Mountain Lake District

    Science.gov (United States)

    Arp, C. D.; Baker, M. A.

    2005-05-01

    Stream form and hydrologic processes may indirectly drive nutrient uptake, however developing predictive relationships has been elusive. Problems in establishing such relationships may lie in the sets of streams analyzed, which often span diverse channel-sizes, geology, and regions, or are too geomorphically similar. We collected field data on stream geomorphology and hydrologic and nutrient transport processes using solute injections at 22 alluvial stream reaches in the Sawtooth Mountains, Idaho, USA. Many of these streams occur near lakes, which create contrasting fluvial form and functions that we hoped would produce a broad geomorphic dataset to compare to hyporheic and dead-zone transient storage and NO3 and PO4 spiraling metrics. Preliminary results suggest that storage zone residence time (Tsto) was best predicted by sediment D50, wood abundance (CWD), and discharge (r2=0.84, pnutrient cycling processes should be further considered and investigated.

  13. Relational databases for conditions data and event selection in ATLAS

    International Nuclear Information System (INIS)

    Viegas, F; Hawkings, R; Dimitrov, G

    2008-01-01

    The ATLAS experiment at LHC will make extensive use of relational databases in both online and offline contexts, running to O(TBytes) per year. Two of the most challenging applications in terms of data volume and access patterns are conditions data, making use of the LHC conditions database, COOL, and the TAG database, that stores summary event quantities allowing a rapid selection of interesting events. Both of these databases are being replicated to regional computing centres using Oracle Streams technology, in collaboration with the LCG 3D project. Database optimisation, performance tests and first user experience with these applications will be described, together with plans for first LHC data-taking and future prospects

  14. Relational databases for conditions data and event selection in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viegas, F; Hawkings, R; Dimitrov, G [CERN, CH-1211 Geneve 23 (Switzerland)

    2008-07-15

    The ATLAS experiment at LHC will make extensive use of relational databases in both online and offline contexts, running to O(TBytes) per year. Two of the most challenging applications in terms of data volume and access patterns are conditions data, making use of the LHC conditions database, COOL, and the TAG database, that stores summary event quantities allowing a rapid selection of interesting events. Both of these databases are being replicated to regional computing centres using Oracle Streams technology, in collaboration with the LCG 3D project. Database optimisation, performance tests and first user experience with these applications will be described, together with plans for first LHC data-taking and future prospects.

  15. Combining observations of channel network contraction and spatial discharge variation to inform spatial controls on baseflow in Birch Creek, Catskill Mountains, USA

    Directory of Open Access Journals (Sweden)

    Stephen B. Shaw

    2017-08-01

    New hydrological insights: For the 31 different sub-channels, baseflow discharge per unit drainage area and per unit stream length were highly variable, even during periods of higher moisture storage when all channels were active. Simple mapping of the active channels would not have recognized these sizable spatial differences in discharge contribution. Previous studies of hydrologic scaling in the Catskills have noted the likelihood of heterogeneity in discharge below a threshold of approximately 3–8 km2. This study provides direct documentation of such heterogeneity at smaller spatial scales. When considering perennial and ephemeral streams, such heterogeneity was not well explained by standard topographic, geologic, or meteorological factors. We suggest the heterogeneity may arise from difficult to map fine-scale variations in subsurface properties.

  16. Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics.

    Science.gov (United States)

    Thomaz, Edivaldo L; Peretto, Gustavo T

    2016-04-15

    Unpaved roads are ubiquitous features that have been transforming the landscape through human history. Unpaved roads affect the water and sediment pathways through a catchment and impacts the aquatic ecosystem. In this study, we describe the effect of unpaved road on the hydrogeomorphic connectivity at the rural headwater scale. Measurement was based on the stream crossing approach, i.e., road superimposing the drainage system. We installed a Parshall flume coupled with single-stage suspended sediment sampler at each stream crossing. In addition, we displayed our monitoring scheme with an upscaling perspective from second-order to third-order stream. We concluded that the road-stream coupling dramatically changed the stream dynamic. The increase of discharge caused by roads at the headwater was 50% larger compared to unaffected streams. Additionally, suspended sediment concentration enhancement at stream crossings ranged from to 413% at second-order streams to 145% at third-order streams. The landform characteristics associated with the road network produced an important hydrogeomorphic disruption in the landscape. As a result, the sediment filter function of the riparian zone was reduced dramatically. Therefore, we recommend that projects for aquatic system restoration or conservation in rural landscape consider the role of the road network on stream dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Macroinvertebrate Community Response to the Elimination of Concentrated Feedlot Runoff to a Headwater Stream

    Science.gov (United States)

    Snitgen, J. L.; Moren, M. M.

    2005-05-01

    During rainfall and snow melt events, a first order, cold-water stream was receiving varying amounts of liquefied manure from a concentrated feed lot. Stream restoration efforts included the implementation of best management practices to prevent further discharge of the water/manure mixture to the stream. Physical, chemical and biological data were collected pre-construction and two years post-construction of the containment system at a fixed location downstream of the feedlot. Hilsenhoff Biotic Index scores improved significantly, from 6.79 or "Fairly Poor" before the installation of the manure containment system, to 5.28 or "Good" after the installation of the manure containment system. Taxa richness improved from 25 to 34 and the EPT score improved from 0 to 4. Key words: macroinvertebrate, community response, manure, feedlot runoff, stream restoration

  18. Readiness for hospital discharge: A concept analysis.

    Science.gov (United States)

    Galvin, Eileen Catherine; Wills, Teresa; Coffey, Alice

    2017-11-01

    To report on an analysis on the concept of 'readiness for hospital discharge'. No uniform operational definition of 'readiness for hospital discharge' exists in the literature; therefore, a concept analysis is required to clarify the concept and identify an up-to-date understanding of readiness for hospital discharge. Clarity of the concept will identify all uses of the concept; provide conceptual clarity, an operational definition and direction for further research. Literature review and concept analysis. A review of literature was conducted in 2016. Databases searched were: Academic Search Complete, CINAHL Plus with Full Text, PsycARTICLES, Psychology and Behavioural Sciences Collection, PsycINFO, Social Sciences Full Text (H.W. Wilson) and SocINDEX with Full Text. No date limits were applied. Identification of the attributes, antecedents and consequences of readiness for hospital discharge led to an operational definition of the concept. The following attributes belonging to 'readiness for hospital discharge' were extracted from the literature: physical stability, adequate support, psychological ability, and adequate information and knowledge. This analysis contributes to the advancement of knowledge in the area of hospital discharge, by proposing an operational definition of readiness for hospital discharge, derived from the literature. A better understanding of the phenomenon will assist healthcare professionals to recognize, measure and implement interventions where necessary, to ensure patients are ready for hospital discharge and assist in the advancement of knowledge for all professionals involved in patient discharge from hospital. © 2017 John Wiley & Sons Ltd.

  19. Radioactive Cs-137 discharge from Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    Science.gov (United States)

    Iwagami, S.; Onda, Y.; Tsujimura, M.; Sakakibara, K.; Konuma, R.

    2015-12-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, Cs-137 concentration of dissolved water, suspended sediment and coarse organic matter such as leaf and branch were monitored. Discharge amount of stream water, suspended sediment and coarse organic matter were measured to investigate the discharge amount of radiocesium and composition of radiocesium discharge form through the headwater stream. Observation were conducted at stream site in four headwater catchments in Yamakiya district, located ~35 km north west of FDNPP from June 2011 (suspended sediment and coarse organic matter: August 2012) to December 2014.The Cs-137 concentration of dissolved water was around 1Bq/l at June 2011. Then declined to 0.1 Bq/l at December 2011. And in December 2014, it declined to 0.01 Bq/l order. Declining trend of Cs-137 concentration in dissolved water was expressed in double exponential model. Also temporary increase was observed in dissolved Cs-137 during the rainfall event. The Cs-137 concentration of suspended sediment and coarse organic matter were 170-49000 Bq/kg and 350-14000 Bq/kg respectably. The Cs-137 concentration of suspended sediment showed good correlation with average deposition density of catchment. The effect of decontamination works appeared in declining of Cs-137 concentration in suspended sediment. Contribution rate of Cs-137 discharge by suspended sediment was 96-99% during a year. Total annual Cs-137 discharge from the catchment were 0.02-0.3% of the deposition.

  20. Hydrologic and Hydraulic Analyses of Selected Streams in Lorain County, Ohio, 2003

    Science.gov (United States)

    Jackson, K. Scott; Ostheimer, Chad J.; Whitehead, Matthew T.

    2003-01-01

    Hydrologic and hydraulic analyses were done for selected reaches of nine streams in Lorain County Ohio. To assess the alternatives for flood-damage mitigation, the Lorain County Engineer and the U.S. Geological Survey (USGS) initiated a cooperative study to investigate aspects of the hydrology and hydraulics of the nine streams. Historical streamflow data and regional regression equations were used to estimate instantaneous peak discharges for floods having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Drainage areas of the nine stream reaches studied ranged from 1.80 to 19.3 square miles. The step-backwater model HEC-RAS was used to determine water-surface-elevation profiles for the 10-year-recurrence-interval (10-year) flood along a selected reach of each stream. The water-surface pro-file information was used then to generate digital mapping of flood-plain boundaries. The analyses indicate that at the 10-year flood elevation, road overflow results at numerous hydraulic structures along the nine streams.

  1. Controls on stream water dissolved mercury in three mid-Appalachian forested headwater catchments

    Science.gov (United States)

    Riscassi, Ami L.; Scanlon, Todd M.

    2011-12-01

    Determining the controls on dissolved mercury (HgD) transport is necessary to improve estimations of export from unmonitored watersheds and to forecast responses to changes in deposition and other environmental forcings. Stream water HgD and dissolved organic carbon (DOC) were evaluated over a range of discharge conditions in three streams within Shenandoah National Park, VA. Watersheds are distinguished by stream water pH (ranging from neutral to acidic) and soil size fractioning (ranging from clays to sands). At all sites, discharge was a significant but poor predictor of HgD concentrations (r2 from 0.13-0.52). HgD was strongly coupled with DOC at all sites (r2 from 0.74-0.89). UV absorbance at 254 nm (UV254), a proxy for DOC quantity and quality, slightly improved the predictions of HgD. Mean DOC quality differed between streams, with less aromatic DOC mobilized from the more acidic watershed. The site with less aromatic DOC and sandy soils mobilized more Hg to the stream for the same quantity and quality of DOC, likely due to the reduced capacity of the larger-grained soils to retain Hg, leaving a greater fraction associated with the organic matter. A similar amount of 0.54 ng HgD/mg DOC is transported at all sites, suggesting the less aromatic DOC transports less Hg per unit DOC, offsetting the effects of soil type. This research demonstrates that soil composition and DOC quality influence HgDexport. We also provide evidence that soil organic carbon is a primary control on Hg-DOC ratios (0.12-1.4 ng mg-1) observed across the U.S. and Sweden.

  2. Removal of iodomethane from air using a plot-scale corona discharge scrubber

    International Nuclear Information System (INIS)

    Dickson, L.W.; Toft-Hall, A.; Torgerson, D.F.

    1985-12-01

    This report presents the results of a study of the removal of iodomethane from air using a pilot-scale corona discharge scrubber. The removal was measured in the following parameter ranges: bulk air flow, 30 to 350 m 3 /h; initial CH 3 I concentration, 6 to 230 μmol/m 3 ; and discharge current, 0 to 75 mA DC (negative polarity). Approximately five to ten moles of iodomethane are removed per mole of electrons added to the air stream at a discharge voltage of ∼ 10 kV. This removal efficiency suggests that both ion-molecule and radical-molecule reactions may be important in the removal of iodomethane from air in a corona discharge. The results of this pilot-scale demonstration indicate that a corona discharge scrubber would be suitable for removing iodine species from air as part of the emergency filtered-air discharge system of a nuclear reactor. The application of this technology to the control of nitrogen oxide, sulfur dioxide and hydrogen sulfide emissions is being investigated. 15 refs

  3. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  4. United States Geological Survey discharge data from five example gages on intermittent streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data are mean daily discharge data at United States Geological Survey gages. Once column provides the date (mm/dd/yyyy) and the other column provides the mean...

  5. Plasma processes in water under effect of short duration pulse discharges

    Science.gov (United States)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  6. Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone.

    Science.gov (United States)

    MacKay, Allison A; Gan, Ping; Yu, Ran; Smets, Barth F

    2014-01-21

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), with higher surface water levels, was associated with losses of arsenic and iron from bead column coatings at depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg(As)/mg(Fe)) of unreacted iron oxide solids. The flooded spring (March-June) with high surface water flows showed the lowest arsenic and iron accumulation rates in the sediments. Comparisons of accumulation rates across a shoreline transect were consistent with greater rates at regions exposed above surface water levels for longer times and greater losses at locations submerged below surface water. Iron (oxy)hydroxide solids in the shallowest sediments likely serve as a passive barrier to sorb arsenic released to pore water at depth by biological iron reduction.

  7. Estimating sediment discharge: Appendix D

    Science.gov (United States)

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    different types of bed-load samplers may not be comparable (Gray et al. 1991; Childers 1999; Edwards and Glysson 1999). The total suspended solids (TSS) analytical method tends to produce concentration data from open-channel flows that are biased low with respect to their paired suspended-sediment concentration values, particularly when sand-size material composes more than about a quarter of the material in suspension. Instantaneous sediment-discharge values based on TSS data may differ from the more reliable product of suspended- sediment concentration values and the same water-discharge data by an order of magnitude (Gray et al. 2000; Bent et al. 2001; Glysson et al. 2000; 2001). An assessment of data comparability and reliability is an important first step in the estimation of sediment discharges. There are two approaches to obtaining values describing sediment loads in streams. One is based on direct measurement of the quantities of interest, and the other on relations developed between hydraulic parameters and sediment- transport potential. In the next sections, the most common techniques for both approaches are briefly addressed.

  8. Nitrogen Dynamics Along a Headwater Stream Draining a Fen, Swamp, and Marsh in a Fractured Dolomite Watershed

    Science.gov (United States)

    Duval, T. P.; Waddington, J. M.

    2009-05-01

    Stream-wetland interaction has been shown to have a significant effect on nutrient cycling and downstream water quality. Additionally, connection to regional groundwater systems can dilute or enrich stream water with a number of dissolved constituents. This study demonstrates the resultant downstream change in dissolved nitrogen species as a hardwater stream emerges from a calcareous aquifer and traverses a calcareous fen, a cedar swamp, and a cattail marsh over two growing seasons, a very dry 2006 and a very wet 2007. Upon emergence at a number of groundwater seeps, the water contained appreciable nitrate levels averaging 2.72±0.42 mg NO3-N L-1, minimal organic nitrogen, and ammonium below detectable levels. Through the gently sloping calcareous fen, with a stream residence time of ~ 5 hours, NO3-N concentration decreases of 0.35 mg L-1 were observed. Concomitantly, stream recharge into the dolomite bedrock depressed stream discharge values significantly, further removing nitrate from the stream system. This resulted in the fen-bedrock system acting as an estimated net sink of 432 kg of NO3-N in the early summer of 2007, for example. In contrast, the hydrological-biogeochemical systems became decoupled through the swamp during the same period, where concentrations increased from 2.58±0.34 mg L-1 entering the swamp to 2.65±0.58 mg L-1 exiting, but streamflow decreased in general by 5 L s- 1. This resulted in the swamp, with its large depression storage, acting as a small net sink of nitrate (75 kg through the early summer), which would not be detected simply from concentration changes. The concentration-discharge relation realigned through the marsh, where significant groundwater entered the wetland, increasing both concentration and discharge, yielding a small export of 93 kg over the same time period. A series of tracer injections in each wetland type will be presented to compare the streamflow- concentration patterns with the measured nutrient spiralling

  9. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  10. Identifying Stream/Aquifer Exchange by Temperature Gradient in a Guarani Aquifer System Outcrop Zone

    Science.gov (United States)

    Wendland, E.; Rosa, D. M. S.; Anache, J. A. A.; Lowry, C.; Lin, Y. F. F.

    2017-12-01

    Recharge of the Guarani Aquifer System (GAS) in South America is supposed to occur mainly in the outcrop zones, where the GAS appears as an unconfined aquifer (10% of the 1.2 Million km2 aquifer extension). Previous evaluations of recharge are based essentially on water balance estimates for the whole aquifer area or water table fluctuations in monitoring wells. To gain a more detailed understanding of the recharge mechanisms the present work aimed to study the stream aquifer interaction in a watershed (Ribeirão da Onça) at an outcrop zone. Two Parshall flumes were installed 1.3 km apart for discharge measurement in the stream. Along this distance an optic fiber cable was deployed to identify stretches with gaining and losing behavior. In order to estimate groundwater discharge in specific locations, 8 temperature sticks were set up along the stream reach to measure continuously the vertical temperature gradient. A temperature probe with 4 thermistors was also used to map the shallow streambed temperature gradient manually along the whole distance. The obtained results show a discharge difference of 250 m3/h between both flumes. Since the last significant rainfall (15 mm) in the watershed occurred 3 months ago, this value can be interpreted as the base flow contribution to the stream during the dry season. Given the temperature difference between groundwater ( 24oC) and surface water ( 17oC) the fiber-optic distributed temperature sensing (FO-DTS) allowed the identification of stretches with gaining behavior. Temperature gradients observed at the streambed varied between 0.67 and 14.33 oC/m. The study demonstrated that heat may be used as natural tracer even in tropical conditions, where the groundwater temperature is higher than the surface water temperature during the winter. The obtained results show that the discharge difference between both flumes can not be extrapolated without detailed analysis. Gaining and loosing stretches have to be identified on order

  11. Sediment motion and velocity in a glacier-fed stream

    Science.gov (United States)

    Mao, L.; Dell'Agnese, A.; Comiti, F.

    2017-08-01

    Current understanding of coarse sediment transport (e.g. threshold for motion, travel length and virtual velocity) in mountain rivers is still quite limited, and even less is known about glacial streams. However, the hydrological characteristics of these systems (strong daily discharge fluctuations, high water turbidity) pose challenges to the use of tracers to monitor bed sediment dynamics, as tagged clasts are usually located after bedload events when flow stage has receded, e.g. by means of portable antennas in the case of Passive Integrated Transponders (PIT). The use of stationary antennas, still scarcely in use worldwide, to detect PIT-tagged particles has potential advantages in glacier-fed streams. If water discharge is monitored continuously, a stationary antenna provides real time data on the actual discharge at the moment of tracer particles passage. This study focuses on incipient motion and virtual velocity of bed particles measured by a stationary antennas system in a steep mountain channel (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily discharge fluctuations and bedload transport occur as a result of a nivo-glacial regime. Four stationary antennas were installed 50-m apart in the study reach. A total of 629 PIT-tagged clasts were inserted in the studied reach between 2011 and 2014, ranging in size from 35 mm to 580 mm, with an overall recovery rate of around 44%. Critical discharge for sediment entrainment was obtained by detecting the movement of tracers placed immediately upstream of antennas. Virtual velocity was derived by knowing distances between the antennas and travel time of tracers. Results on initiation of motion show that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing the stationary antenna is very weak. The influence of antecedent flows on incipient motion was thus investigated by dividing the highest discharge recorded between each PIT

  12. Development of a cross-section based stream package for MODFLOW

    Science.gov (United States)

    Ou, G.; Chen, X.; Irmak, A.

    2012-12-01

    Accurate simulation of stream-aquifer interactions for wide rivers using the streamflow routing package in MODFLOW is very challenging. To better represent a wide river spanning over multiple model grid cells, a Cross-Section based streamflow Routing (CSR) package is developed and incorporated into MODFLOW to simulate the interaction between streams and aquifers. In the CSR package, a stream segment is represented as a four-point polygon instead of a polyline which is traditionally used in streamflow routing simulation. Each stream segment is composed of upstream and downstream cross-sections. A cross-section consists of a number of streambed points possessing coordinates, streambed thicknesses and streambed hydraulic conductivities to describe the streambed geometry and hydraulic properties. The left and right end points are used to determine the locations of the stream segments. According to the cross-section geometry and hydraulic properties, CSR calculates the new stream stage at the cross-section using the Brent's method to solve the Manning's Equation. A module is developed to automatically compute the area of the stream segment polygon on each intersected MODFLOW grid cell as the upstream and downstream stages change. The stream stage and streambed hydraulic properties of model grids are interpolated based on the streambed points. Streambed leakage is computed as a function of streambed conductance and difference between the groundwater level and stream stage. The Muskingum-Cunge flow routing scheme with variable parameters is used to simulate the streamflow as the groundwater (discharge or recharge) contributes as lateral flows. An example is used to illustrate the capabilities of the CSR package. The result shows that the CSR is applicable to describing the spatial and temporal variation in the interaction between streams and aquifers. The input data become simple due to that the internal program automatically interpolates the cross-section data to each

  13. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  14. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams

    DEFF Research Database (Denmark)

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian

    2015-01-01

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradabilit...

  15. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  16. Combining Empirical Relationships with Data Based Mechanistic Modeling to Inform Solute Tracer Investigations across Stream Orders

    Science.gov (United States)

    Herrington, C.; Gonzalez-Pinzon, R.; Covino, T. P.; Mortensen, J.

    2015-12-01

    Solute transport studies in streams and rivers often begin with the introduction of conservative and reactive tracers into the water column. Information on the transport of these substances is then captured within tracer breakthrough curves (BTCs) and used to estimate, for instance, travel times and dissolved nutrient and carbon dynamics. Traditionally, these investigations have been limited to systems with small discharges (turbidity (e.g., nitrate signals with SUNA instruments or fluorescence measures) and/or high total dissolved solids (e.g., making prohibitively expensive the use of salt tracers such as NaCl) in larger systems. Additionally, a successful time-of-travel study is valuable for only a single discharge and river stage. We have developed a method to predict tracer BTCs to inform sampling frequencies at small and large stream orders using empirical relationships developed from multiple tracer injections spanning several orders of magnitude in discharge and reach length. This method was successfully tested in 1st to 8th order systems along the Middle Rio Grande River Basin in New Mexico, USA.

  17. Similarities and differences in dissolved organic matter response in two headwater streams under contrasted hydro-climatic regimes

    Science.gov (United States)

    Butturini, Andrea; Guarch, Alba; Battin, Tom

    2017-04-01

    Dissolved organic matter (DOM) concentration and properties in headwater streams are strongly shaped by hydrology. Besides the direct relationship with storms and high flows, seasonal variability of base flow also influences DOM variability. This study focuses on identifying the singularities and similarities in DOM - discharge relationships between an intermittent Mediterranean stream (Fuirosos) and a perennial Alpine stream (Oberer Seebach). Oberer Seebach had a higher discharge mean, but Fuirosos had a higher variability in flow and in magnitude of storm events. During three years we performed an intensive sampling that allows us to satisfactorily capture abrupt and extreme storms. We analysed dissolved organic carbon concentration (DOC) and optical properties of DOM and we calculated the specific ultraviolet absorbance (SUVA), the spectral slopes ratio (SR), the fluorescence index (FI), the biological index (BIX) and the humification index (HIX). DOM in Fuirosos was significantly more concentrated than in Oberer Seebach, and more terrigenous (lower FI), more degraded (lower BIX), more aromatic (higher SUVA) and more humificated (higher HIX). Most of the DOM properties showed a clear relationship with discharge and the sign of the global response was identical in both streams. However, discharge was a more robust predictor of DOM variability in Oberer Seebach than in Fuirosos. In fact, low flow and rewetting periods in Fuirosos introduced considerable dispersion in the relationship. During snowmelt in Oberer Seebach the sensitivity to discharge also decreased (DOC and BIX) or disappeared (SR, FI and HIX). The magnitude of the storm events (DQ) in Fuirosos significantly drove the changes in DOC, FI, BIX and SUVA. This suggests that the flushing/dilution patterns were essentially associated to the occurrence of storm episodes in Fuirosos. In contrast, in Oberer Seebach all DOM qualitative properties were unrelated to DQ and it significantly explained only the

  18. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    Science.gov (United States)

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    drainage-basin outlet for the period 1961-1990, 10-85 channel slope (slope between points located at 10 percent and 85 percent of the longest flow-path length upstream from the outlet), and percent impervious area. The Oklahoma StreamStats application interacts with the National Streamflow Statistics database, which contains the peak-flow regression equations in a previously published report. Fourteen peak-flow (flood) frequency statistics are available for computation in the Oklahoma StreamStats application. These statistics include the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural, unregulated streams; and the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural streams that are regulated by Natural Resources Conservation Service floodwater retarding structures. Basin characteristics and streamflow statistics cannot be computed for locations in playa basins (mostly in the Oklahoma Panhandle) and along main stems of the largest river systems in the state, namely the Arkansas, Canadian, Cimarron, Neosho, Red, and Verdigris Rivers, because parts of the drainage areas extend outside of the processed hydrologic units.

  19. Development, deployment and operations of ATLAS databases

    International Nuclear Information System (INIS)

    Vaniachine, A. V.; von der Schmitt, J. G.

    2008-01-01

    In preparation for ATLAS data taking, a coordinated shift from development towards operations has occurred in ATLAS database activities. In addition to development and commissioning activities in databases, ATLAS is active in the development and deployment (in collaboration with the WLCG 3D project) of the tools that allow the worldwide distribution and installation of databases and related datasets, as well as the actual operation of this system on ATLAS multi-grid infrastructure. We describe development and commissioning of major ATLAS database applications for online and offline. We present the first scalability test results and ramp-up schedule over the initial LHC years of operations towards the nominal year of ATLAS running, when the database storage volumes are expected to reach 6.1 TB for the Tag DB and 1.0 TB for the Conditions DB. ATLAS database applications require robust operational infrastructure for data replication between online and offline at Tier-0, and for the distribution of the offline data to Tier-1 and Tier-2 computing centers. We describe ATLAS experience with Oracle Streams and other technologies for coordinated replication of databases in the framework of the WLCG 3D services

  20. Assessment of Energy Production Potential from Tidal Streams in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin A. [Georgia Inst. of Technology, Savannah, GA (United States); Fritz, Hermann M. [Georgia Inst. of Technology, Savannah, GA (United States); French, Steven P. [Georgia Inst. of Technology, Atlanta, GA (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Neary, Vincent [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  1. Physics analysis database for the DIII-D tokamak

    International Nuclear Information System (INIS)

    Schissel, D.P.; Bramson, G.; DeBoo, J.C.

    1986-01-01

    The authors report on a centralized database for handling reduced data for physics analysis implemented for the DIII-D tokamak. Each database record corresponds to a specific snapshot in time for a selected discharge. Features of the database environment include automatic updating, data integrity checks, and data traceability. Reduced data from each diagnostic comprises a dedicated data bank (a subset of the database) with quality assurance provided by a physicist. These data banks will be used to create profile banks which will be input to a transport code to create a transport bank. Access to the database is initially through FORTRAN programs. One user interface, PLOTN, is a command driven program to select and display data subsets. Another user interface, PROF, compares and displays profiles. The database is implemented on a Digital Equipment Corporation VAX 8600 running VMS

  2. Enhanced DIII-D Data Management Through a Relational Database

    Science.gov (United States)

    Burruss, J. R.; Peng, Q.; Schachter, J.; Schissel, D. P.; Terpstra, T. B.

    2000-10-01

    A relational database is being used to serve data about DIII-D experiments. The database is optimized for queries across multiple shots, allowing for rapid data mining by SQL-literate researchers. The relational database relates different experiments and datasets, thus providing a big picture of DIII-D operations. Users are encouraged to add their own tables to the database. Summary physics quantities about DIII-D discharges are collected and stored in the database automatically. Meta-data about code runs, MDSplus usage, and visualization tool usage are collected, stored in the database, and later analyzed to improve computing. Documentation on the database may be accessed through programming languages such as C, Java, and IDL, or through ODBC compliant applications such as Excel and Access. A database-driven web page also provides a convenient means for viewing database quantities through the World Wide Web. Demonstrations will be given at the poster.

  3. Occupational amputations in Illinois 2000-2007: BLS vs. data linkage of trauma registry, hospital discharge, workers compensation databases and OSHA citations.

    Science.gov (United States)

    Friedman, Lee; Krupczak, Colin; Brandt-Rauf, Sherry; Forst, Linda

    2013-05-01

    Workplace amputation is a widespread, disabling, costly, and preventable public health problem. Thousands of occupational amputations occur each year, clustering in particular economic sectors, workplaces, and demographic groups such as young workers, Hispanics, and immigrants. To identify and describe work related amputations amongst Illinois residents that occur within Illinois as reported in three legally mandated State databases; to compare these cases with those identified through the BLS-Survey of Occupational Illnesses and Injuries (SOII); and to determine the extent of direct intervention by the Occupational Safety and Health Administration (OSHA) for these injuries in the State. We linked cases across three databases in Illinois - trauma registry, hospital discharge, and workers compensation claims. We describe amputation injuries in Illinois between 2000 and 2007, compare them to the BLS-SOII, and determine OSHA investigations of the companies where amputations occurred. There were 3984 amputations identified, 80% fingertips, in the Illinois databases compared to an estimated 3637, 94% fingertips, from BLS-SOII. Though the overall agreement is close, there were wide fluctuations (over- and under-estimations) in individual years between counts in the linked dataset and federal survey estimates. No OSHA inspections occurred for these injuries. Increased detection of workplace amputations is essential to targeting interventions and to evaluating program effectiveness. There should be mandatory reporting of all amputation injuries by employers and insurance companies within 24h of the event, and every injury should be investigated by OSHA. Health care providers should recognise amputation as a public health emergency and should be compelled to report. There should be a more comprehensive occupational injury surveillance system in the US that enhances the BLS-SOII through linkage with state databases. Addition of industry, occupation, and work

  4. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa

    Directory of Open Access Journals (Sweden)

    A.C. Guzha

    2018-02-01

    New hydrological insights: Forest cover loss is accompanied by increased stream discharges and surface runoff. No significant difference in stream discharge is observed between bamboo and pine plantation catchments, and between cultivated and tea plantation catchments. Trend analyses show that despite forest cover loss, 63% of the watersheds show non-significant changes in annual discharges while 31% show increasing trends. Half of the watersheds show non-significant trends in wet season flows and low flows while 35% reveal decreasing trends in low flows. Modeling studies estimate that forest cover loss increases annual discharges and surface runoff by 16 ± 5.5% and 45 ± 14%, respectively. Peak flows increased by a mean of 10 ± 2.8% while low flows decreased by a mean of 7 ± 5.3%. Increased forest cover decreases annual discharges and surface runoff by 13 ± 1.9% and 25 ± 5%, respectively. Weak correlations between forest cover and runoff (r = 0.42, p < 0.05, mean discharge (r = 0.63, p < 0.05 and peak discharge (r = 0.67, p < 0.05 indicate that forest cover alone is not an accurate predictor of hydrological fluxes in East African catchments. The variability in these results supports the need for long-term field monitoring to better understand catchment responses and to improve the calibration of currently used simulation models.

  5. Database structures and interfaces for W7-X

    International Nuclear Information System (INIS)

    Heimann, P.; Bluhm, T.; Hennig, Ch.; Kroiss, H.; Kuehner, G.; Maier, J.; Riemann, H.; Zilker, M.

    2008-01-01

    The W7-X experiment of the IPP, under construction in Greifswald Germany, is designed to operate in a quasi-steady-state scenario. The database structures and interfaces used for discharge description and execution have to reflect this continuous mode of operation. In close collaboration between the control group of W7-X and the data acquisition group a combined design of the data structures used for describing the configuration and the operation of the experiment was developed. To guarantee access to this information from all participating stations a TCP/IP portal and a proxy server were developed. This portal enables especially the VxWorks real-time operating systems of the control stations to access the information in the object-oriented database. The database schema includes now a more functional description of the experiment and gives the physicists a more simplified view of the necessary definitions of operational parameters. The scheduling of the long discharges of W7-X will be done by predefining operational parameters in segments and scenarios, where a scenario is a fixed sequence of segments with a common physical background. To hide the specialized information contained in the basic parameters from the experiment leader or physicist an abstraction layer was introduced that only shows physically interesting information. An executable segment will be generated after verifying the consistency of the high-level parameters by using a transformation function for every basic parameter needed. Since the database contains all configurations and discharge definitions necessary to operate the experiment, it is very important to give the user a tool to manipulate this information in an intuitive way. A special editor (ConfiX) was designed and implemented for this task. At the moment the basic functionality for dealing with all kind of objects in the database is available. Future releases will extend the functionality to defining and editing configurations, segments

  6. Instream flow assessment of streams draining the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Seilheimer, Titus S.; Fisher, William L.

    2008-01-01

    The availability of high quality water is critical to both humans and ecosystems. A recent proposal was made by rapidly expanding municipalities in central Oklahoma to begin transferring groundwater from the Arbuckle-Simpson aquifer, a sensitive sole-source aquifer in south-central Oklahoma. Concerned citizens and municipalities living on and getting their drinking water from the Arbuckle-Simpson lobbied the legislature to pass a temporary moratorium on groundwater transfer to allow for a comprehensive study of the aquifer and its ecosystems. We conducted an instream flow assessment using Physical Habitat Simulation (PHABSIM) on springs and streams with four spring-dependent species: two minnows, southern redbelly dace (Phoxinus erthyrogaster) and redspot chub (Nocomis asper); and two darters, least darter (Etheostoma microperca) and orangethroat darter (Etheostoma spectabile). Spring habitats are unique compared to other river habitats because they have constant flow and temperature, small and isolated habitat patches, and a general lack of predators. Our study sites included two spring-fed streams, one larger stream with high groundwater inputs, and a river with both groundwater and surface water inputs that is adjacent to the small spring-fed streams. These habitats meet the criteria for groundwater dependent ecosystems because they would not exist without the surface expression of groundwater. A total of 99 transects in all four sites were surveyed for channel elevation, and three sets of water surface elevation and water velocity were measured. Habitat suitability criteria were derived for the species at each site using nonparametric confidence limits based on underwater observations made by snorkelers. Simulations of flow were focused on declines in discharge, which is the expected effect of the proposed groundwater diversion. Our results show that only a small proportion of the total available area in each habitat is considered to be preferred habitat

  7. Aerodynamic Analyses and Database Development for Ares I Vehicle First Stage Separation

    Science.gov (United States)

    Pamadi, Bandu N.; Pei, Jing; Pinier, Jeremy T.; Holland, Scott D.; Covell, Peter F.; Klopfer, Goetz, H.

    2012-01-01

    This paper presents the aerodynamic analysis and database development for the first stage separation of the Ares I A106 Crew Launch Vehicle configuration. Separate databases were created for the first stage and upper stage. Each database consists of three components: isolated or free-stream coefficients, power-off proximity increments, and power-on proximity increments. The power-on database consists of three parts, all plumes firing at nominal conditions, the one booster deceleration motor out condition, and the one ullage settling motor out condition. The isolated and power-off incremental databases were developed using wind tunnel test data. The power-on proximity increments were developed using CFD solutions.

  8. The relationship between inpatient discharge timing and emergency department boarding.

    Science.gov (United States)

    Powell, Emilie S; Khare, Rahul K; Venkatesh, Arjun K; Van Roo, Ben D; Adams, James G; Reinhardt, Gilles

    2012-02-01

    Patient crowding and boarding in Emergency Departments (EDs) impair the quality of care as well as patient safety and satisfaction. Improved timing of inpatient discharges could positively affect ED boarding, and this hypothesis can be tested with computer modeling. Modeling enables analysis of the impact of inpatient discharge timing on ED boarding. Three policies were tested: a sensitivity analysis on shifting the timing of current discharge practices earlier; discharging 75% of inpatients by 12:00 noon; and discharging all inpatients between 8:00 a.m. and 4:00 p.m. A cross-sectional computer modeling analysis was conducted of inpatient admissions and discharges on weekdays in September 2007. A model of patient flow streams into and out of inpatient beds with an output of ED admitted patient boarding hours was created to analyze the three policies. A mean of 38.8 ED patients, 22.7 surgical patients, and 19.5 intensive care unit transfers were admitted to inpatient beds, and 81.1 inpatients were discharged daily on September 2007 weekdays: 70.5%, 85.6%, 82.8%, and 88.0%, respectively, occurred between noon and midnight. In the model base case, total daily admitted patient boarding hours were 77.0 per day; the sensitivity analysis showed that shifting the peak inpatient discharge time 4h earlier eliminated ED boarding, and discharging 75% of inpatients by noon and discharging all inpatients between 8:00 a.m. and 4:00 p.m. both decreased boarding hours to 3.0. Timing of inpatient discharges had an impact on the need to board admitted patients. This model demonstrates the potential to reduce or eliminate ED boarding by improving inpatient discharge timing in anticipation of the daily surge in ED demand for inpatient beds. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. MonetDB/DataCell: Online Analytics in a Streaming Column-Store

    NARCIS (Netherlands)

    E. Liarou (Erietta); S. Idreos (Stratos); S. Manegold (Stefan); M.L. Kersten (Martin)

    2012-01-01

    textabstractIn DataCell, we design streaming functionalities in a mod- ern relational database kernel which targets big data analyt- ics. This includes exploitation of both its storage/execution engine and its optimizer infrastructure. We investigate the opportunities and challenges that arise with

  10. MonetDB/DataCell: online analytics in a streaming column-store

    NARCIS (Netherlands)

    Liarou, E.; Idreos, S.; Manegold, S.; Kersten, M.

    2012-01-01

    In DataCell, we design streaming functionalities in a modern relational database kernel which targets big data analytics. This includes exploitation of both its storage/execution engine and its optimizer infrastructure. We investigate the opportunities and challenges that arise with such a direction

  11. Discharge controls on the sediment and dissolved nutrient transport flux of the lowermost Mississippi River: Implications for export to the ocean and for delta restoration

    Science.gov (United States)

    Allison, Mead A.; Pratt, Thad C.

    2017-12-01

    Lagrangian longitudinal surveys and fixed station data are utilized from the lowermost Mississippi River reach in Louisiana at high and low discharge in 2012-2013 to examine the changing stream power, sediment transport capacity, and nitrate conveyance in this backwater reach of the river. Nitrate appears to remain conservative through the backwater reach at higher discharges (>15,000 m3/s), thus, nitrate levels supplied from the catchment are those exported to the Gulf of Mexico, fueling coastal hypoxia. At lower discharges, interaction with fine sediments and organic matter stored on the bed due to estuarine and tidal processes, likely elevates nitrate levels prior to entering the Gulf: a further 1-2 week long spike in nitrate concentrations is associated with the remobilization of this sediments during the rising discharge phase of the Mississippi. Backwater characteristics are clearly observed in the study reach starting at river kilometer 703 (Vicksburg) in both longitudinal study periods. Stream power at the lowermost station is only 16% of that at Vicksburg in the high discharge survey, and 0.6% at low flow. The high-to-low discharge study differential in unit stream power at a station increases between Vicksburg and the lowermost station from a factor of 3 to 47-50 times. At high discharge, ∼30% of this energy loss can be ascribed to the removal of water to the Atchafalaya at Old River Control. Suspended sediment flux decreases downstream in the studied reach in both studies: the lowermost station has 75% of the flux at Vicksburg in the high discharge study, and 0.9% in the low discharge study. The high discharge values, given that this study was conducted during the highest rising hydrograph of the water year, are augmented by sediment resuspended from the bed that was deposited in the previous low discharge phase. Examination of this first detailed field observation studies of the backwater phenomenon in a major river, shows that observed suspended

  12. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    Science.gov (United States)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  13. Investigating methods of stream planform identification

    Science.gov (United States)

    Lohberg, M. M.; Lusk, K.; Miller, D.; Stonedahl, F.; Stonedahl, S. H.

    2013-12-01

    Stream planforms are used to map scientific measurements, estimate volumetric discharge, and model stream flow. Changes in these planforms can be used to quantify erosion and water level fluctuations. This research investigated five cost-effective methods of identifying stream planforms: (1) consumer-grade digital camera GPS (2) multi-view stereo 3D scene reconstruction (using Microsoft Photosynth (TM)) (3) a cross-sectional measurement approach (4) a triangulation-based measurement approach and (5) the 'square method' - a novel photogrammetric procedure which involved floating a large wooden square in the stream, photographing the square and banks from numerous angles and then using the square to correct for perspective and extract the outline (using custom post-processing software). Data for each of the five methods was collected at Blackhawk Creek in Davenport, Iowa. Additionally we placed 30 control points near the banks of the stream and measured 88 lengths between these control points. We measured or calculated the locations of these control points with each of our five methods and calculated the average percent error associated with each method using the predicted control point locations. The effectiveness of each method was evaluated in terms of accuracy, affordability, environmental intrusiveness, and ease of use. The camera equipped with GPS proved to be a very ineffective method due to an extremely high level of error, 289%. The 3D point cloud extracted from Photosynth was missing markers for many of the control points, so the error calculation (which yielded 11.7%) could only be based on five of the 88 lengths and is thus highly uncertain. The two non-camera methods (cross-sectional and triangulation measurements) resulted in low percent error (2.04% and 1.31% respectively) relative to the control point lengths, but these methods were very time consuming, exhausting, and only provided low resolution outlines. High resolution data collection would

  14. Comparison of peak discharges among sites with and without valley fills for the July 8-9, 2001 flood in the headwaters of Clear Fork, Coal River basin, mountaintop coal-mining region, southern West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Brogan, Freddie D.

    2003-01-01

    The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.

  15. Final Report: Efficient Databases for MPC Microdata

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Bender; Martin Farach-Colton; Bradley C. Kuszmaul

    2011-08-31

    The purpose of this grant was to develop the theory and practice of high-performance databases for massive streamed datasets. Over the last three years, we have developed fast indexing technology, that is, technology for rapidly ingesting data and storing that data so that it can be efficiently queried and analyzed. During this project we developed the technology so that high-bandwidth data streams can be indexed and queried efficiently. Our technology has been proven to work data sets composed of tens of billions of rows when the data streams arrives at over 40,000 rows per second. We achieved these numbers even on a single disk driven by two cores. Our work comprised (1) new write-optimized data structures with better asymptotic complexity than traditional structures, (2) implementation, and (3) benchmarking. We furthermore developed a prototype of TokuFS, a middleware layer that can handle microdata I/O packaged up in an MPI-IO abstraction.

  16. Development and testing of an in-stream phosphorus cycling model for the soil and water assessment tool.

    Science.gov (United States)

    White, Michael J; Storm, Daniel E; Mittelstet, Aaron; Busteed, Philip R; Haggard, Brian E; Rossi, Colleen

    2014-01-01

    The Soil and Water Assessment Tool is widely used to predict the fate and transport of phosphorus (P) from the landscape through streams and rivers. The current in-stream P submodel may not be suitable for many stream systems, particularly those dominated by attached algae and those affected by point sources. In this research, we developed an alternative submodel based on the equilibrium P concentration concept coupled with a particulate scour and deposition model. This submodel was integrated with the SWAT model and applied to the Illinois River Watershed in Oklahoma, a basin influenced by waste water treatment plant discharges and extensive poultry litter application. The model was calibrated and validated using measured data. Highly variable in-stream P concentrations and equilibrium P concentration values were predicted spatially and temporally. The model also predicted the gradual storage of P in streambed sediments and the resuspension of this P during periodic high-flow flushing events. Waste water treatment plants were predicted to have a profound effect on P dynamics in the Illinois River due to their constant discharge even under base flow conditions. A better understanding of P dynamics in stream systems using the revised submodel may lead to the development of more effective mitigation strategies to control the impact of P from point and nonpoint sources. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  18. Effects of Channelisation, Riparian Structure and Catchment Area on Physical Habitats in Small Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge

    2009-01-01

    Rivers and streams form a longitudinal network in which physical conditions and biological processes change through the river system. Geomorphology, topography, geology and hydraulic conditions change from site to site within the river system, thereby creating a complex network of reaches that ar.......e. a confined and steep valley (V-shaped) is less likely to be used for agricultural production compared to a broad valley. The results are useful to water managers, who seek to identify natural and impacted physical conditions in large river systems....... that are dominated by a hierarchy of physical processes. The complexity is further enhanced by local human alteration of the physical structure, natural processes and alteration of the riparian areas. The aim of the study was to analyse variations in land use and riparian characteristics along small Danish streams...... and to determine the effect of channelisation on physical habitats. Physical stream characteristics were measured in 149 stream small and medium sized Danish streams (catchment area: 0.1 to 67.2 km2). The measured physical parameters included discharge, stream slope, width, depth, current velocity, substrata...

  19. Impact of meander geometry and stream flow events on residence times and solute transport in the intra-meander flow

    Science.gov (United States)

    Nasir Mahmood, Muhammad; Schmidt, Christian; Trauth, Nico

    2017-04-01

    Stream morphological features, in combination with hydrological variability play a key role in water and solute exchange across surface and subsurface waters. Meanders are prominent morphological features within stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange within the intra-meander region. This hyporheic flow is characterized by considerably prolonged flow paths and residence times (RT) compared to smaller scales of hyporheic exchange. In this study we examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady state and transient flow conditions. We developed a number of artificial meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander. Three dimensional steady state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region. The meandering stream was implemented in the model by adjusting the top layers of the modelling domain to the streambed elevation and assigning linearly decreasing head boundary conditions to the streambed cells. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. The transient stream discharge was simulated for a number of discharge events of variable duration and peak height using the surface water model HEC-RAS. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. A solute concentration source was added in the

  20. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    Science.gov (United States)

    Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.

    2016-06-28

    sites and to improve flood-quantile estimates at and near a gaged site; (2) the urbanization-adjusted annual maximum peak discharges and peak discharge quantile estimates at streamgages from 181 watersheds including the 117 study watersheds and 64 additional watersheds in the study region that were originally considered for use in the study but later deemed to be redundant.The urbanization-adjustment equations, spatial regression equations, and peak discharge quantile estimates developed in this study will be made available in the web application StreamStats, which provides automated regression-equation solutions for user-selected stream locations. Figures and tables comparing the observed and urbanization-adjusted annual maximum peak discharge records by streamgage are provided at https://doi.org/10.3133/sir20165050 for download.

  1. Determination of mercury evasion in a contaminated headwater stream.

    Science.gov (United States)

    Maprani, Antu C; Al, Tom A; Macquarrie, Kerry T; Dalziel, John A; Shaw, Sean A; Yeats, Phillip A

    2005-03-15

    Evasion from first- and second-order streams in a watershed may be a significant factor in the atmospheric recycling of volatile pollutants such as mercury; however, methods developed for the determination of Hg evasion rates from larger water bodies are not expected to provide satisfactory results in highly turbulent and morphologically complex first- and second-order streams. A new method for determining the Hg evasion rates from these streams, involving laboratory gas-indexing experiments and field tracer tests, was developed in this study to estimate the evasion rate of Hg from Gossan Creek, a first-order stream in the Upsalquitch River watershed in northern New Brunswick, Canada. Gossan Creek receives Hg-contaminated groundwater discharge from a gold mine tailings pile. Laboratory gas-indexing experiments provided the ratio of gas-exchange coefficients for zero-valent Hg to propane (tracer gas) of 0.81+/-0.16, suggesting that the evasion mechanism in highly turbulent systems can be described by the surface renewal model with an additional component of enhanced gas evasion probably related to the formation of bubbles. Deliberate field tracer tests with propane and chloride tracers were found to be a reliable and practical method for the determination of gas-exchange coefficients for small streams. Estimation of Hg evasion from the first 1 km of Gossan Creek indicates that about 6.4 kg of Hg per year is entering the atmosphere, which is a significant fraction of the regional sources of Hg to the atmosphere.

  2. Estimating Discharge and Nonpoint Source Nitrate Loading to Streams From Three End-Member Pathways Using High-Frequency Water Quality Data

    Science.gov (United States)

    Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  3. Database for the degradation risk assessment of groundwater resources (Southern Italy)

    Science.gov (United States)

    Polemio, M.; Dragone, V.; Mitolo, D.

    2003-04-01

    The risk characterisation of quality degradation and availability lowering of groundwater resources has been pursued for a wide coastal plain (Basilicata region, Southern Italy), an area covering 40 km along the Ionian Sea and 10 km inland. The quality degradation is due two phenomena: pollution due to discharge of waste water (coming from urban areas) and due to salt pollution, related to seawater intrusion but not only. The availability lowering is due to overexploitation but also due to drought effects. To this purpose the historical data of 1,130 wells have been collected. Wells, homogenously distributed in the area, were the source of geological, stratigraphical, hydrogeological, geochemical data. In order to manage space-related information via a GIS, a database system has been devised to encompass all the surveyed wells and the body of information available per well. Geo-databases were designed to comprise the four types of data collected: a database including geometrical, geological and hydrogeological data on wells (WDB), a database devoted to chemical and physical data on groundwater (CDB), a database including the geotechnical parameters (GDB), a database concering piezometric and hydrological (rainfall, air temperature, river discharge) data (HDB). The record pertaining to each well is identified in these databases by the progressive number of the well itself. Every database is designed as follows: a) the HDB contains 1,158 records, 28 of and 31 fields, mainly describing the geometry of the well and of the stratigraphy; b) the CDB encompasses data about 157 wells, based on which the chemical and physical analyses of groundwater have been carried out. More than one record has been associated with these 157 wells, due to periodic monitoring and analysis; c) the GDB covers 61 wells to which the geotechnical parameters obtained by soil samples taken at various depths; the HDB is designed to permit the analysis of long time series (from 1918) of piezometric

  4. High-intensity discharge lamp and Duffing oscillator—Similarities and differences

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Stein, Ulrich; Hallerberg, Sarah; Wolff, Marcus

    2017-12-01

    The processes inside the arc tube of high-intensity discharge lamps are investigated using finite element simulations. The behavior of the gas mixture inside the arc tube is governed by differential equations describing mass, energy, and charge conservation, as well as the Helmholtz equation for the acoustic pressure and the Reynolds equations for the flow driven by buoyancy and Reynolds stresses. The model is highly nonlinear and requires a recursion procedure to account for the impact of acoustic streaming on the temperature and other fields. The investigations reveal the presence of a hysteresis and the corresponding jump phenomenon, quite similar to a Duffing oscillator. The similarities and, in particular, the differences of the nonlinear behavior of the high-intensity discharge lamp to that of a Duffing oscillator are discussed. For large amplitudes, the high-intensity discharge lamp exhibits a stiffening effect in contrast to the Duffing oscillator. It is speculated on how the stiffening might affect hysteresis suppression.

  5. A coaxial plasma gun with a controllable streaming velocity in the range of 2-90 km secsup(-1)

    International Nuclear Information System (INIS)

    Venkataramani, N.; Mattoo, S.K.

    1981-01-01

    A coaxial plasma gun capable of producing a plasma stream of velocity ranging between 2 and 90 km secsup(-1) is described. The velocity of the stream is controlled by a variable (0.2-25 Ω) NaCl salt solution resistor in the discharge path of the energy storage connected across the gun. The resistor dissipates an energy of 200 J in the gun discharge current pulse period of 25 μ sec and the consequent heating and dissociation of the electrolyte are insignificant. The electron density of the plasma stream ranges between 10 18 and 10 19 msup(-3) and the temperature is approximately 10 eV. The total number of ions per plasma pulse is approximately 10 18 . The energy transfer efficiency of the gun is approximately 10%. The low transfer efficiency is explained in terms of the experimental requirements and the performance of the valve which admits gas into the gun region. For evaluation of the performance of the gun, several diagnostics have been deployed. A specially designed high voltage capacitor probe is described. (author)

  6. Assessment of water chemistry, habitat, and benthic macroinvertebrates at selected stream-quality monitoring sites in Chester County, Pennsylvania, 1998-2000

    Science.gov (United States)

    Reif, Andrew G.

    2004-01-01

    Biological, chemical, and habitat data have been collected from a network of sites in Chester County, Pa., from 1970 to 2003 to assess stream quality. Forty sites in 6 major stream basins were sampled between 1998 and 2000. Biological data were used to determine levels of impairment in the benthic-macroinvertebrate community in Chester County streams and relate the impairment, in conjunction with chemical and habitat data, to overall stream quality. Biological data consisted of benthic-macroinvertebrate samples that were collected annually in the fall. Water-chemistry samples were collected and instream habitat was assessed in support of the biological sampling.Most sites in the network were designated as nonimpacted or slightly impacted by human activities or extreme climatic conditions on the basis of biological-metric analysis of benthic-macroinvertebrate data. Impacted sites were affected by factors, such as nutrient enrichment, erosion and sedimentation, point discharges, and droughts and floods. Streams in the Schuylkill River, Delaware River, and East Branch Brandywine Creek Basins in Chester County generally had low nutrient concentrations, except in areas affected by wastewater-treatment discharges, and stream habitat that was affected by erosion. Streams in the West Branch Brandywine, Christina, Big Elk, and Octoraro Creek Basins in Chester County generally had elevated nutrient concentrations and streambottom habitat that was affected by sediment deposition.Macroinvertebrate communities identified in samples from French Creek, Pigeon Creek (Schuylkill River Basin), and East Branch Brandywine Creek at Glenmoore consistently indicate good stream conditions and were the best conditions measured in the network. Macroinvertebrate communities identified in samples from Trout Creek (site 61), West Branch Red Clay Creek (site 55) (Christina River Basin), and Valley Creek near Atglen (site 34) (Octoraro Creek Basin) indicated fair to poor stream conditions and

  7. Hydrogeochemical and stream-sediment reconnaissance program at LLL

    International Nuclear Information System (INIS)

    Tinney, J.F.

    1977-03-01

    The Lawrence Livermore Laboratory (LLL) is conducting a Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR) survey in support of ERDA's National Uranium Resource Evaluation (NURE) program. Included in the LLL portion of this survey are seven western states (Arizona, California, Idaho, Nevada, Oregon, Utah, and Washington). Similar surveys are being carried out in the rest of the continental United States, including Alaska, as part of a systematic nationwide study of the distribution of uranium in surface water, groundwater, and stream sediment. The overall objective is to identify favorable areas for uranium exploration. This paper describes the program being conducted by LLL to complete our portion of the survey by 1981. The topics discussed are geology and sample acquisition, sample preparation and analysis, and data-base management

  8. Stream permanence influences crayfish occupancy and abundance in the Ozark Highlands, USA

    Science.gov (United States)

    Yarra, Allyson N.; Magoulick, Daniel D.

    2018-01-01

    Crayfish use of intermittent streams is especially important to understand in the face of global climate change. We examined the influence of stream permanence and local habitat on crayfish occupancy and species densities in the Ozark Highlands, USA. We sampled in June and July 2014 and 2015. We used a quantitative kick–seine method to sample crayfish presence and abundance at 20 stream sites with 32 surveys/site in the Upper White River drainage, and we measured associated local environmental variables each year. We modeled site occupancy and detection probabilities with the software PRESENCE, and we used multiple linear regressions to identify relationships between crayfish species densities and environmental variables. Occupancy of all crayfish species was related to stream permanence. Faxonius meeki was found exclusively in intermittent streams, whereas Faxonius neglectus and Faxonius luteushad higher occupancy and detection probability in permanent than in intermittent streams, and Faxonius williamsi was associated with intermittent streams. Estimates of detection probability ranged from 0.56 to 1, which is high relative to values found by other investigators. With the exception of F. williamsi, species densities were largely related to stream permanence rather than local habitat. Species densities did not differ by year, but total crayfish densities were significantly lower in 2015 than 2014. Increased precipitation and discharge in 2015 probably led to the lower crayfish densities observed during this year. Our study demonstrates that crayfish distribution and abundance is strongly influenced by stream permanence. Some species, including those of conservation concern (i.e., F. williamsi, F. meeki), appear dependent on intermittent streams, and conservation efforts should include consideration of intermittent streams as an important component of freshwater biodiversity.

  9. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  10. Transport modelling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Kinsey, J.E.; Imbeaux, F.; Staebler, G.M.; Budny, R.; Bourdelle, C.; Fukuyama, A.; Garbet, X.; Tala, T.; Parail, V.

    2005-01-01

    Predictive transport modelling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and advanced tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. E x B shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET and AUG tokamaks. GLF23 transport modelling and gyrokinetic stability analysis indicate that E x B shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of E x B shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveal some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and E x B shear stabilization can dominate parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent E x B shear quenching of the turbulent

  11. Transport modeling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Kinsey, J.; Imbeaux, F.; Bourdelle, C.; Garbet, X.; Staebler, G.; Budny, R.; Fukuyama, A.; Tala, T.; Parail, V.

    2005-01-01

    Predictive transport modeling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and Advanced Tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. ExB shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET, and AUG tokamaks. GLF23 transport modeling and gyrokinetic stability analysis indicates that ExB shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of ExB shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveals some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and ExB shear stabilization can win out over parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent ExB shear quenching of the turbulent

  12. Cross-site comparisons of concentration-discharge relationships reveal climate-driven chemostatic set points

    Science.gov (United States)

    Godsey, S.; Kirchner, J. W.

    2017-12-01

    Streamflow solute concentrations often vary predictably with flows, providing insight into processes controlling solute generation and export. Previous work by the authors showed that log-transformed concentration-discharge relationships of weathering-derived solutes in 59 headwater catchments had relatively low slopes, implying that these watersheds behaved almost like chemostats. That is, their rates of solute production and/or mobilization were nearly proportional to water fluxes, on both event and inter-annual time scales. Here we re-examine these findings using data from roughly 1000 catchments, ranging from ˜10 to >1,000,000 sq. km in drainage area, and spanning a wide range of lithologic and climatic settings.Concentration-discharge relationships among this much larger set of much larger catchments are broadly consistent with the chemostatic behavior described above. However, site-to-site variations in mean concentrations among these catchments are negatively correlated with long-term average precipitation and discharge, suggesting dilution of stream concentrations under long-term leaching of the critical zone. Thus, on event and inter-annual time scales, stream solute concentrations are chemostatically buffered by groundwater storage and fast chemical reactions (such as ion exchange), but on much longer time scales, the catchment's chemostatic "set point" is determined by climatically driven critical zone evolution. We present examples illustrating short-term and long-term controls on water quality consistent with variations in weather and climate, and discuss their implications.

  13. Analysis of storm runoff-sediment yield of a 1st order stream basin in ...

    African Journals Online (AJOL)

    Analysis of storm runoff-sediment yield of a 1st order stream basin in Obafemi Awolowo University, Ile-Ife, southwestern Nigeria. ... The findings of this study will aid programme in soil erosion controls designed by the governments and individuals in forested watersheds. Key Words: Storm flow discharge, storm sediment ...

  14. Transport and fate of nitrate in headwater agricultural streams in Illinois.

    Science.gov (United States)

    Royer, Todd V; Tank, Jennifer L; David, Mark B

    2004-01-01

    Nitrogen inputs to the Gulf of Mexico have increased during recent decades and agricultural regions in the upper Midwest, such as those in Illinois, are a major source of N to the Mississippi River. How strongly denitrification affects the transport of nitrate (NO(3)-N) in Illinois streams has not been directly assessed. We used the nutrient spiraling model to assess the role of in-stream denitrification in affecting the concentration and downstream transport of NO(3)-N in five headwater streams in agricultural areas of east-central Illinois. Denitrification in stream sediments was measured approximately monthly from April 2001 through January 2002. Denitrification rates tended to be high (up to 15 mg N m(-2) h(-1)), but the concentration of NO(3)-N in the streams was also high (>7 mg N L(-1)). Uptake velocities for NO(3)-N (uptake rate/concentration) were lower than reported for undisturbed streams, indicating that denitrification was not an efficient N sink relative to the concentration of NO(3)-N in the water column. Denitrification uptake lengths (the average distance NO(3)-N travels before being denitrified) were long and indicated that denitrification in the streambed did not affect the transport of NO(3)-N. Loss rates for NO(3)-N in the streams were <5% d(-1) except during periods of low discharge and low NO(3)-N concentration, which occurred only in late summer and early autumn. Annually, most NO(3)-N in these headwater sites appeared to be exported to downstream water bodies rather than denitrified, suggesting previous estimates of N losses through in-stream denitrification may have been overestimated.

  15. Temporal scaling of groundwater level fluctuations near a stream

    Science.gov (United States)

    Schilling, K.E.; Zhang, Y.-K.

    2012-01-01

    Temporal scaling in stream discharge and hydraulic heads in riparian wells was evaluated to determine the feasibility of using spectral analysis to identify potential surface and groundwater interaction. In floodplains where groundwater levels respond rapidly to precipitation recharge, potential interaction is established if the hydraulic head (h) spectrum of riparian groundwater has a power spectral density similar to stream discharge (Q), exhibiting a characteristic breakpoint between high and low frequencies. At a field site in Walnut Creek watershed in central Iowa, spectral analysis of h in wells located 1 m from the channel edge showed a breakpoint in scaling very similar to the spectrum of Q (~20 h), whereas h in wells located 20 and 40 m from the channel showed temporal scaling from 1 to 10,000 h without a well-defined breakpoint. The spectral exponent (??) in the riparian zone decreased systematically from the channel into the floodplain as groundwater levels were increasingly dominated by white noise groundwater recharge. The scaling pattern of hydraulic head was not affected by land cover type, although the number of analyses was limited and site conditions were variable among sites. Spectral analysis would not replace quantitative tracer or modeling studies, but the method may provide a simple means of confirming potential interaction at some sites. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  16. Catchment heterogeneity controls emergent archetype concentration-discharge relationships

    Science.gov (United States)

    Musolff, A.; Fleckenstein, J. H.; Rao, P. S.; Jawitz, J. W.

    2017-12-01

    Relationships between in-stream dissolved solute concentrations (C) and discharge (Q) are often-used indicators of catchment-scale processes and their interference with human activities. Here we analyze observational C-Q relationships from 61 catchments and 8 different solutes across a wide range of land-uses and discharge regimes. This analysis is combined with a parsimonious stochastic modeling approach to test how C-Q relationships arise from spatial heterogeneity in catchment solute sources coupled with different timescales of biogeochemical reactions. The observational data exhibit archetypical dilution, enrichment, and constant C-Q patterns. Moreover, with land-use intensification we find decreasing C variability relative to Q variability (chemostatic export regime). Our model indicates that the dominant driver of emergent C-Q patterns was structured heterogeneity of solute sources implemented as correlation of source concentration to travel time. Regardless of the C-Q pattern, with decreasing source heterogeneity we consistently find lower variability in C than in Q and a dominance of chemostatic export regimes. Here, the variance in exported loads is determined primarily by variance of Q. We conclude that efforts to improve stream water quality and ecological integrity in intensely managed catchments should lead away from landscape homogenization by introducing structured source heterogeneity. References: Musolff, A., J. H. Fleckenstein, P. S. C. Rao, and J. W. Jawitz (2017), Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments, Geophys. Res. Lett., 44(9), 4143-4151, doi: 10.1002/2017GL072630.

  17. Effects of inhomogeneity on the Shukla-Nambu-Salimullah and wake potentials in a streaming dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.U.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    Detailed properties of the electrostatic Shukla-Nambu-Salimullah and the dynamical oscillatory wake potentials in an inhomogeneous dusty magnetoplasma in the presence of ion streaming, as in a laboratory discharge plasma, have been examined analytically. The potentials become sensitive functions of the external static magnetic field, the scale-length of inhomogeneity, and the deviation from the linear ion streaming velocity. For a decreasing ion density gradient, there is a limit of existence of the static modified shielding potential. For a strongly inhomogeneous dusty plasma, the effective length of the oscillatory wake potential increases with increasing deviation of the ion streaming velocity (u i0y ), but it does not depend on the external magnetic field. (author)

  18. Stream temperature investigations: field and analytic methods

    Science.gov (United States)

    Bartholow, J.M.

    1989-01-01

    This document provides guidance to the user of the U.S. Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP). Planning a temperature study is discussed in terms of understanding the management objectives and ensuring that the questions will be accurately answered with the modeling approach being used. A sensitivity analysis of SNTEMP is presented to illustrate which input variables are most important in predicting stream temperatures. This information helps prioritize data collection activities, highlights the need for quality control, focuses on which parameters can be estimated rather than measured, and offers a broader perspective on management options in terms of knowing where the biggest temperature response will be felt. All of the major input variables for stream geometry, meteorology, and hydrology are discussed in detail. Each variable is defined, with guidance given on how to measure it, what kind of equipment to use, where to obtain it from another agency, and how to calculate it if the data are in a form other than that required by SNTEMP. Examples are presented for the various forms in which water temperature, discharge, and meteorological data are commonly found. Ranges of values for certain input variables that are difficult to measure of estimate are given. Particular attention is given to those variables not commonly understood by field biologists likely to be involved in a stream temperature study. Pertinent literature is cited for each variable, with emphasis on how other people have treated particular problems and on results they have found.

  19. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF

  20. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  1. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification

    Science.gov (United States)

    Norrström, Ann Catrine

    1995-08-01

    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  2. Reduced streamflow lowers dry-season growth of rainbow trout in a small stream

    Science.gov (United States)

    Bret C. Harvey; Rodney J. Nakamoto; Jason L. White

    2006-01-01

    A wide variety of resource management activities can affect surface discharge in small streams. Often, the effects of variation in streamflow on fish survival and growth can be difficult to estimate because of possible confounding with the effects of other variables, such as water temperature and fish density. We measured the effect of streamflow on survival and growth...

  3. Radon as tracer to identify discharge sections at Juatuba basin

    International Nuclear Information System (INIS)

    Chagas, Claudio Jose; Ferreira, Vinicius Verna Magalhaes; Fonseca, Raquel Luisa Mageste; Rocha, Zildete; Moreira, Rubens Martins; Lemos, Nayron Cosme; Menezes, Angela de Barros Correia; Santos, Talita Oliveira

    2015-01-01

    The use of natural tracers in hydrological studies is a very useful tool, being applied in several studies. One of these tracers is the radon, 222 Rn, noble gas derived from natural sources, been found in all underground waters, as a product of radioactive decay of the 226 Ra. This gas can be found in the air, water, rocks or soil. In this paper, the 222 Rn detection in surface water was used as tracer in order to identify aquifer discharge sections in surface water at the Fundao stream, which belongs to the Juatuba river basin, through the second semester of 2014 and the first semester of 2015, in three sampling campaigns. The 222 Rn measurements at Fundao stream were carried out using the equipment RAD 7. The results showed that 222 Rn is present in some sections of the water course suggesting that there is a connection between groundwater and surface water. It also justifies the variation in the water level in the stream, recorded by a fluviometric station. (author)

  4. Radon as tracer to identify discharge sections at Juatuba basin

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, Claudio Jose; Ferreira, Vinicius Verna Magalhaes; Fonseca, Raquel Luisa Mageste; Rocha, Zildete; Moreira, Rubens Martins; Lemos, Nayron Cosme; Menezes, Angela de Barros Correia, E-mail: vvmf@cdtn.br, E-mail: rlmf@cdtn.br, E-mail: cjc@cdtn.br, E-mail: rochaz@cdtn.br, E-mail: rubens@cdtn.br, E-mail: menezes@cdtn.br, E-mail: lemosnc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Santos, Talita Oliveira, E-mail: talitaolsantos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2015-07-01

    The use of natural tracers in hydrological studies is a very useful tool, being applied in several studies. One of these tracers is the radon, {sup 222}Rn, noble gas derived from natural sources, been found in all underground waters, as a product of radioactive decay of the {sup 226}Ra. This gas can be found in the air, water, rocks or soil. In this paper, the {sup 222}Rn detection in surface water was used as tracer in order to identify aquifer discharge sections in surface water at the Fundao stream, which belongs to the Juatuba river basin, through the second semester of 2014 and the first semester of 2015, in three sampling campaigns. The {sup 222}Rn measurements at Fundao stream were carried out using the equipment RAD 7. The results showed that {sup 222}Rn is present in some sections of the water course suggesting that there is a connection between groundwater and surface water. It also justifies the variation in the water level in the stream, recorded by a fluviometric station. (author)

  5. Charged particles beams measurements in plasma focus discharges

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M.; Zebrowski, J.

    2001-01-01

    Experimental studies performed with many Plasma-Focus (PF) facilities have shown that simultaneously with the emission of X-ray pulses and intense relativistic electron beams (REBs) there also appears the emission of pulsed ion streams of a relatively high energy (up to several MeV). Such ions are emitted mainly along the z-axis of the PF discharge, although the ion angular distribution is relatively wide. From PF discharges with deuterium filling fast neutrons produced by nuclear fusion reactions are also emitted. The paper concerns studies of the energetic ion beams and their correlation with the pulsed REBs. Time-integrated measurements were performed with an ion pinhole camera equipped with solid-state nuclear track detectors (SSNTDs), and time-resolved studies were carried out with a scintillation detector, enabling the determination of an ion energy spectrum on the basis of the time-of-flight (TOF) technique. (author)

  6. The TJ-II Relational Database Access Library: A User's Guide

    International Nuclear Information System (INIS)

    Sanchez, E.; Portas, A. B.; Vega, J.

    2003-01-01

    A relational database has been developed to store data representing physical values from TJ-II discharges. This new database complements the existing TJ-EI raw data database. This database resides in a host computer running Windows 2000 Server operating system and it is managed by SQL Server. A function library has been developed that permits remote access to these data from user programs running in computers connected to TJ-II local area networks via remote procedure cali. In this document a general description of the database and its organization are provided. Also given are a detailed description of the functions included in the library and examples of how to use these functions in computer programs written in the FORTRAN and C languages. (Author) 8 refs

  7. Estimating wetland connectivity to streams in the Prairie Pothole Region: An isotopic and remote sensing approach

    Science.gov (United States)

    Brooks, J. R.; Mushet, David M.; Vanderhoof, Melanie; Leibowitz, Scott G.; Neff, Brian; Christensen, J. R.; Rosenberry, Donald O.; Rugh, W. D.; Alexander, L.C.

    2018-01-01

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding the reliance of stream flow on inputs from wetlands. We used the isotopic evaporation signal in water and remote sensing to examine wetland‐stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie‐pothole wetlands. Pipestem Creek exhibited an evaporated‐water signal that had approximately half the isotopic‐enrichment signal found in most evaporatively enriched prairie‐pothole wetlands. Groundwater adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment, indicating that enriched surface water did not contribute significantly to groundwater discharging into Pipestem Creek. The estimated surface water area necessary to generate the evaporation signal within Pipestem Creek was highly dynamic, varied primarily with the amount of discharge, and was typically greater than the immediate Pipestem Creek surface water area, indicating that surficial flow from wetlands contributed to stream flow throughout the summer. We propose a dynamic range of spilling thresholds for prairie‐pothole wetlands across the watershed allowing for wetland inputs even during low‐flow periods. Combining Landsat estimates with the isotopic approach allowed determination of potential (Landsat) and actual (isotope) contributing areas in wetland‐dominated systems. This combined approach can give insights into the changes in location and magnitude of surface water and groundwater pathways over time. This approach can be used in other areas where evaporation from wetlands results in a sufficient evaporative isotopic signal.

  8. Reproductive effects assessment of fish in streams on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    McCracken, M.K.; Ivey, L.J.; Niemela, S.L.; Greeley, M.S. Jr.

    1995-01-01

    The Department of Energy has three large facilities located on the Oak Ridge Reservation Site, the Y-12 Plant, and the Oak Ridge National Laboratory. Several Biological Monitoring and Abatement Programs (BMAP) monitor and assess the effects of these facilities on the aquatic and terrestrial resources of the reservation. One BMAP task concerns the potential role of contaminant-related reproductive dysfunction in shaping the composition of fish communities in creeks draining the facilities. This task addresses specific questions concerning (1) the reproductive competence of adult fish in the streams, and (2) the capacity of fish embryos and fry to survive and develop sequent reproductive cohorts. Evidence for current or potential reproductive impacts in several of the streams include abnormal fecundity at some sites, increased incidences of oocyte atresia, and a marked toxicity of surface water samples from several stream reaches to fish embryos in periodic embryo-larval tests. Recovery of certain of the monitored streams in response to ongoing remedial actions is documented by positive changes over time in many these indicators of reproductive dysfunction. These results suggest that the monitoring of reproductive indicators can be a sensitive tool for assessing the effects of both industrial discharges and remedial activities on the fish resources of receiving streams

  9. Influence of Beaver Dams on Channel Complexity, Hydrology, and Temperature Regime in a Mountainous Stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2013-12-01

    Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on

  10. Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07

    Science.gov (United States)

    Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the City of Omaha, investigated the water quality of combined sewer overflows, stormwater, and streams in the Omaha, Nebraska, area by collecting and analyzing 1,175 water samples from August 2006 through October 2007. The study area included the drainage area of Papillion Creek at Capeheart Road near Bellevue, Nebraska, which encompasses the tributary drainages of the Big and Little Papillion Creeks and Cole Creek, along with the Missouri River reach that is adjacent to Omaha. Of the 101 constituents analyzed during the study, 100 were detected in at least 1 sample during the study. Spatial and seasonal comparisons were completed for environmental samples. Measured concentrations in stream samples were compared to water-quality criteria for pollutants of concern. Finally, the mass loads of water-quality constituents in the combined sewer overflow discharges, stormwater outfalls, and streams were computed and compared. The results of the study indicate that combined sewer overflow and stormwater discharges are affecting the water quality of the streams in the Omaha area. At the Papillion Creek Basin sites, Escherichia coli densities were greater than 126 units per 100 milliliters in 99 percent of the samples (212 of 213 samples analyzed for Escherichia coli) collected during the recreational-use season from May through September (in 2006 and 2007). Escherichia coli densities in 76 percent of Missouri River samples (39 of 51 samples) were greater than 126 units per 100 milliliters in samples collected from May through September (in 2006 and 2007). None of the constituents with human health criteria for consumption of water, fish, and other aquatic organisms were detected at levels greater than the criteria in any of the samples collected during this study. Total phosphorus concentrations in water samples collected in the Papillion Creek Basin were in excess of the U.S. Environmental Protection Agency's proposed

  11. Human grasping database for activities of daily living with depth, color and kinematic data streams.

    Science.gov (United States)

    Saudabayev, Artur; Rysbek, Zhanibek; Khassenova, Raykhan; Varol, Huseyin Atakan

    2018-05-29

    This paper presents a grasping database collected from multiple human subjects for activities of daily living in unstructured environments. The main strength of this database is the use of three different sensing modalities: color images from a head-mounted action camera, distance data from a depth sensor on the dominant arm and upper body kinematic data acquired from an inertial motion capture suit. 3826 grasps were identified in the data collected during 9-hours of experiments. The grasps were grouped according to a hierarchical taxonomy into 35 different grasp types. The database contains information related to each grasp and associated sensor data acquired from the three sensor modalities. We also provide our data annotation software written in Matlab as an open-source tool. The size of the database is 172 GB. We believe this database can be used as a stepping stone to develop big data and machine learning techniques for grasping and manipulation with potential applications in rehabilitation robotics and intelligent automation.

  12. Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania

    Science.gov (United States)

    Brush, Lucien M.

    1961-01-01

    The hydraulic, basin, and geologic characteristics of 16 selected streams in central Pennsylvania were measured for the purpose of studying the relations among these general characteristics and their process of development. The basic parameters which were measured include bankfull width and depth, channel slope, bed material size and shape, length of stream from drainage divide, and size of drainage area. The kinds of bedrock over which the streams flow were noted. In these streams the bankfull channel is filled by flows approximating the 2.3-year flood. By measuring the breadth and mean depth of the channel, it was possible to compute the bankfull mean velocity for each of the 119 sampling stations. These data were then used to compute the downstream changes in hydraulic geometry of the streams studied. This method has been called an indirect computation of the hydraulic geometry. The results obtained by the indirect method are similar to those of the direct method of other workers. The basins were studied by examining the relations of drainage area, discharge, and length of stream from drainage divide. For the streams investigated, excellent correlations were found to exist between drainage area and the 2.3-year flood, as well as between length of stream from the basin divide and drainage area. From these correlations it is possible to predict the discharge for the 2.3-year flood at any arbitrary point along the length of the stream. The long, intermediate, and short axes of pebbles sampled from the bed of the stream were recorded to study both size and sphericity changes along individual streams and among the streams studied. No systematic downstream changes in sphericity were found. Particle size changes are erratic and show no consistent relation to channel slope. Particle size decreases downstream in many streams but remains constant or increases in others. Addition of material by tributaries is one factor affecting particle size and another is the parent

  13. Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling

    Directory of Open Access Journals (Sweden)

    A. K. Gain

    2011-05-01

    Full Text Available Climate change is likely to have significant effects on the hydrology. The Ganges-Brahmaputra river basin is one of the most vulnerable areas in the world as it is subject to the combined effects of glacier melt, extreme monsoon rainfall and sea level rise. To what extent climate change will impact river flow in the Brahmaputra basin is yet unclear, as climate model studies show ambiguous results. In this study we investigate the effect of climate change on both low and high flows of the lower Brahmaputra. We apply a novel method of discharge-weighted ensemble modeling using model outputs from a global hydrological models forced with 12 different global climate models (GCMs. Our analysis shows that only a limited number of GCMs are required to reconstruct observed discharge. Based on the GCM outputs and long-term records of observed flow at Bahadurabad station, our method results in a multi-model weighted ensemble of transient stream flow for the period 1961–2100. Using the constructed transients, we subsequently project future trends in low and high river flow. The analysis shows that extreme low flow conditions are likely to occur less frequent in the future. However a very strong increase in peak flows is projected, which may, in combination with projected sea level change, have devastating effects for Bangladesh. The methods presented in this study are more widely applicable, in that existing multi-model streamflow simulations from global hydrological models can be weighted against observed streamflow data to assess at first order the effects of climate change for specific river basins.

  14. Hydraulic modelling of the spatial and temporal variability in Atlantic salmon parr habitat availability in an upland stream.

    Science.gov (United States)

    Fabris, Luca; Malcolm, Iain Archibald; Buddendorf, Willem Bastiaan; Millidine, Karen Jane; Tetzlaff, Doerthe; Soulsby, Chris

    2017-12-01

    We show how spatial variability in channel bed morphology affects the hydraulic characteristics of river reaches available to Atlantic salmon parr (Salmo salar) under different flow conditions in an upland stream. The study stream, the Girnock Burn, is a long-term monitoring site in the Scottish Highlands. Six site characterised by different bed geometry and morphology were investigated. Detailed site bathymetries were collected and combined with discharge time series in a 2D hydraulic model to obtain spatially distributed depth-averaged velocities under different flow conditions. Available habitat (AH) was estimated for each site. Stream discharge was used according to the critical displacement velocity (CDV) approach. CDV defines a velocity threshold above which salmon parr are not able to hold station and effective feeding opportunities or habitat utilization are reduced, depending on fish size and water temperature. An average value of the relative available habitat () for the most significant period for parr growth - April to May - was used for inter-site comparison and to analyse temporal variations over 40years. Results show that some sites are more able than others to maintain zones where salmon parr can forage unimpeded by high flow velocities under both wet and dry conditions. With lower flow velocities, dry years offer higher values of than wet years. Even though can change considerably across the sites as stream flow changes, the directions of change are consistent. Relative available habitat (RAH) shows a strong relationship with discharge per unit width, whilst channel slope and bed roughness either do not have relevant impact or compensate each other. The results show that significant parr habitat was available at all sites across all flows during this critical growth period, suggesting that hydrological variability is not a factor limiting growth in the Girnock. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    Science.gov (United States)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  16. Responses of macroinvertebrate community metrics to a wastewater discharge in the Upper Blue River of Kansas and Missouri, USA

    Science.gov (United States)

    Poulton, Barry C.; Graham, Jennifer L.; Rasmussen, Teresa J.; Stone, Mandy L.

    2015-01-01

    The Blue River Main wastewater treatment facility (WWTF) discharges into the upper Blue River (725 km2), and is recently upgraded to implement biological nutrient removal. We measured biotic condition upstream and downstream of the discharge utilizing the macroinvertebrate protocol developed for Kansas streams. We examined responses of 34 metrics to determine the best indicators for discriminating site differences and for predicting biological condition. Significant differences between sites upstream and downstream of the discharge were identified for 15 metrics in April and 12 metrics in August. Upstream biotic condition scores were significantly greater than scores at both downstream sites in April (p = 0.02), and in August the most downstream site was classified as non-biologically supporting. Thirteen EPT taxa (Ephemeroptera, Plecoptera, Trichoptera) considered intolerant of degraded stream quality were absent at one or both downstream sites. Increases in tolerance metrics and filtering macroinvertebrates, and a decline in ratio of scrapers to filterers all indicated effects of increased nutrient enrichment. Stepwise regressions identified several significant models containing a suite of metrics with low redundancy (R2 = 0.90 - 0.99). Based on the rapid decline in biological condition downstream of the discharge, the level of nutrient removal resulting from the facility upgrade (10% - 20%) was not enough to mitigate negative effects on macroinvertebrate communities.

  17. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    Science.gov (United States)

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  18. Pollutant Dispersion Modeling in Natural Streams Using the Transmission Line Matrix Method

    Directory of Open Access Journals (Sweden)

    Safia Meddah

    2015-09-01

    Full Text Available Numerical modeling has become an indispensable tool for solving various physical problems. In this context, we present a model of pollutant dispersion in natural streams for the far field case where dispersion is considered longitudinal and one-dimensional in the flow direction. The Transmission Line Matrix (TLM, which has earned a reputation as powerful and efficient numerical method, is used. The presented one-dimensional TLM model requires a minimum input data and provides a significant gain in computing time. To validate our model, the results are compared with observations and experimental data from the river Severn (UK. The results show a good agreement with experimental data. The model can be used to predict the spatiotemporal evolution of a pollutant in natural streams for effective and rapid decision-making in a case of emergency, such as accidental discharges in a stream with a dynamic similar to that of the river Severn (UK.

  19. Stream Water, Carbon and Total Nitrogen Load Responses to a Simulated Emerald Ash Borer Infestation in Black Ash Dominated Headwater Wetlands

    Science.gov (United States)

    Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.

    2017-12-01

    The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period

  20. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  1. [Establishement for regional pelvic trauma database in Hunan Province].

    Science.gov (United States)

    Cheng, Liang; Zhu, Yong; Long, Haitao; Yang, Junxiao; Sun, Buhua; Li, Kanghua

    2017-04-28

    To establish a database for pelvic trauma in Hunan Province, and to start the work of multicenter pelvic trauma registry.
 Methods: To establish the database, literatures relevant to pelvic trauma were screened, the experiences from the established trauma database in China and abroad were learned, and the actual situations for pelvic trauma rescue in Hunan Province were considered. The database for pelvic trauma was established based on the PostgreSQL and the advanced programming language Java 1.6.
 Results: The complex procedure for pelvic trauma rescue was described structurally. The contents for the database included general patient information, injurious condition, prehospital rescue, conditions in admission, treatment in hospital, status on discharge, diagnosis, classification, complication, trauma scoring and therapeutic effect. The database can be accessed through the internet by browser/servicer. The functions for the database include patient information management, data export, history query, progress report, video-image management and personal information management.
 Conclusion: The database with whole life cycle pelvic trauma is successfully established for the first time in China. It is scientific, functional, practical, and user-friendly.

  2. Use of neural networks for monitoring surface water quality changes in a neotropical urban stream.

    Science.gov (United States)

    da Costa, Andréa Oliveira Souza; Silva, Priscila Ferreira; Sabará, Millôr Godoy; da Costa, Esly Ferreira

    2009-08-01

    This paper reports the using of neural networks for water quality analysis in a tropical urban stream before (2002) and after sewerage building and the completion of point-source control-based sanitation program (2003). Mathematical modeling divided water quality data in two categories: (a) input of some in situ water quality variables (temperature, pH, O2 concentration, O2 saturation and electrical conductivity) and (b) water chemical composition (N-NO2(-); N-NO3(-); N-NH4(+) Total-N; P-PO4(3-); K+; Ca2+; Mg+2; Cu2+; Zn2+ and Fe+3) as the output from tested models. Stream water data come from fortnightly sampling in five points along the Ipanema stream (Southeast Brazil, Minas Gerais state) plus two points downstream and upstream Ipanema discharge into Doce River. Once the best models are consistent with variables behavior we suggest that neural networking shows potential as a methodology to enhance guidelines for urban streams restoration, conservation and management.

  3. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Directory of Open Access Journals (Sweden)

    Alonso Ramírez

    2014-06-01

    Full Text Available Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial variability in stream physicochemistry in a highly urbanized watershed in Puerto Rico. The main objective of the study was to describe stream physicochemical characteristics and relate them to urban intensity, e.g., percent impervious surface cover, and watershed infrastructure, e.g., road and pipe densities. The Río Piedras Watershed in the San Juan Metropolitan Area, Puerto Rico, is one of the most urbanized regions on the island. The Río Piedras presented high solute concentrations that were related to watershed factors, such as percent impervious cover. Temporal variability in ion concentrations lacked seasonality, as did all other parameters measured except water temperature, which was lower during winter and highest during summer, as expected based on latitude. Spatially, stream physicochemistry was strongly related to watershed percent impervious cover and also to the density of urban infrastructure, e.g., roads, pipe, and building densities. Although the watershed is serviced by a sewage collection system, illegal discharges and leaky infrastructure are probably responsible for the elevated ion concentration found. Overall, the Río Piedras is an example of the response of a tropical urban watershed after major sewage inputs are removed, thus highlighting the importance of proper infrastructure maintenance and management of runoff to control ion concentrations in tropical streams.

  4. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.

    Science.gov (United States)

    Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi

    2015-01-15

    A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Interannual variability in the extent of wetland-stream connectivity within the Prairie Pothole Region

    Science.gov (United States)

    Melanie Vanderhoof; Laurie Alexander

    2016-01-01

    The degree of hydrological connectivity between wetland systems and downstream receiving waters can be expected to influence the volume and variability of stream discharge. The Prairie Pothole Region contains a high density of depressional wetland features, a consequence of glacial retreat. Spatial variability in wetland density, drainage evolution, and precipitation...

  6. Arsenic in New Jersey Coastal Plain streams, sediments, and shallow groundwater: effects from different geologic sources and anthropogenic inputs on biogeochemical and physical mobilization processes

    Science.gov (United States)

    Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.

    2013-01-01

    Arsenic (As) concentrations in New Jersey Coastal Plain streams generally exceed the State Surface Water Quality Standard (0.017 micrograms per liter (µg/L)), but concentrations seldom exceed 1 µg/L in filtered stream-water samples, regardless of geologic contributions or anthropogenic inputs. Nevertheless, As concentrations in unfiltered stream water indicate substantial variation because of particle inputs from soils and sediments with differing As contents, and because of discharges from groundwater of widely varying chemistry.

  7. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.

    Science.gov (United States)

    Good, Kelly D; VanBriesen, Jeanne M

    2017-10-17

    Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.

  8. Water's Journey from Rain to Stream in perspective

    Science.gov (United States)

    Rodhe, Allan; Grip, Harald

    2015-04-01

    The International Hydrological Decade (IHD) 1965-1974, sponsored by UNESCO, initiated a research effort for coordinating the fragmented branches of hydrology and for understanding and quantifying the hydrologic cycle on various scales, from continents to small catchments. One important part of the Swedish IHD-program was to quantify the terms of the water budget, including detailed data on soil water and groundwater storage dynamics, of several medium sized to small. As an outcome of these studies and subsequent process oriented studies, a new view of the runoff process in forested till soils was developed in the 1970's, stressing the dominating role of groundwater in delivering water to the streams and the usefulness of subdividing catchments into recharge and discharge areas for groundwater for understanding the flowpaths of water. This view contrasted with the general view among the public, and also among professionals within the field and in text books, according to which overland flow is the main process for runoff. With this latter view it would, for instance, not be possible to understand stream water chemistry, which had become an important question in a time of growing environmental concern. In order to decrease the time lag between research results and practice, the Swedish Natural Science Research Council initiated a text book project for presenting the recent results of hydrologic research on stream flow generation applied to Swedish conditions, and in 1985 our book "Water's Journey from Rain to Stream" was published. Founded on the basic principles for water storage and flow in soils, the book gives a general picture of the water flow through the forested till landscape, with separate chapters for recharge and discharge areas. Chemical processes along the flowpaths of water are treated and the book concludes with a few applications to current issues. The book is written in Swedish and the target audience is those working professionally with water and

  9. Recurrent and Dynamic Models for Predicting Streaming Video Quality of Experience.

    Science.gov (United States)

    Bampis, Christos G; Li, Zhi; Katsavounidis, Ioannis; Bovik, Alan C

    2018-07-01

    Streaming video services represent a very large fraction of global bandwidth consumption. Due to the exploding demands of mobile video streaming services, coupled with limited bandwidth availability, video streams are often transmitted through unreliable, low-bandwidth networks. This unavoidably leads to two types of major streaming-related impairments: compression artifacts and/or rebuffering events. In streaming video applications, the end-user is a human observer; hence being able to predict the subjective Quality of Experience (QoE) associated with streamed videos could lead to the creation of perceptually optimized resource allocation strategies driving higher quality video streaming services. We propose a variety of recurrent dynamic neural networks that conduct continuous-time subjective QoE prediction. By formulating the problem as one of time-series forecasting, we train a variety of recurrent neural networks and non-linear autoregressive models to predict QoE using several recently developed subjective QoE databases. These models combine multiple, diverse neural network inputs, such as predicted video quality scores, rebuffering measurements, and data related to memory and its effects on human behavioral responses, using them to predict QoE on video streams impaired by both compression artifacts and rebuffering events. Instead of finding a single time-series prediction model, we propose and evaluate ways of aggregating different models into a forecasting ensemble that delivers improved results with reduced forecasting variance. We also deploy appropriate new evaluation metrics for comparing time-series predictions in streaming applications. Our experimental results demonstrate improved prediction performance that approaches human performance. An implementation of this work can be found at https://github.com/christosbampis/NARX_QoE_release.

  10. Evaluation of Secondary Streams in Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Haywood, Fred F.; Goldsmith, William A.; Allen, Douglas F.; Mezga, Lance J.

    1995-12-01

    The United States Department of Energy (DOE) and its predecessors have generated waste containing radioactive and hazardous chemical components (mixed wastes) for over 50 years. Facilities and processes generating these wastes as well as the regulations governing their management have changed. Now, DOE has 49 sites where mixed waste streams exist. The Federal Facility Compliance Act of 1992 (1) required DOE to prepare and obtain regulatory approval of plans for treating these mixed waste streams. Each of the involved DOE sites submitted its respective plan to regulators in April 1995 (2). Most of the individual plans were approved by the respective regulatory agencies in October 1995. The implementation of these plans has begun accordance with compliance instruments (orders) issued by the cognizant regulatory authority. Most of these orders include milestones that are fixed, firm and enforceable as defined in each compliance order. In many cases, mixed waste treatment that was already being carried out and survived the alternative selection process is being used now to treat selected mixed waste streams. For other waste streams at sites throughout the DOE complex treatment methods and schedules are subject to negotiation as the realties of ever decreasing budgets begin to drive the available options. Secondary wastes generated by individual waste treatment systems are also mixed wastes that require treatment in the appropriate treatment system. These secondary wastes may be solid or liquid waste (or both). For example debris washing will generate wastewater requiring treatment; wastewater treatment, in turn, will generate sludge or other residuals requiring treatment; liquid effluents must meet applicable limits of discharge permits. At large DOE sites, secondary waste streams will be a major influence in optimizing design for primary treatment. Understanding these impacts is important not only foe system design, but also for assurances that radiation releases and

  11. Multi-machine transport analysis of hybrid discharges from the ITPA profile database

    International Nuclear Information System (INIS)

    Artaud, J.F.; Bourdelle, C.; Joffrin, E.; Kinsey, J.; Tala, T.J.J.; Fujita, T.; Sakamoto, Y.; Na, Y.S.; Sips, A.C.C.; Na, Y.S.; Parail, V.V.

    2005-01-01

    Current diffusion, heat transport modelling, and linear gyrokinetic stability analysis have been carried out on a set of 7 hybrid discharges from AUG, DIII-D, JET and JT-60U, in order to gain better understanding of the physics underlying this promising candidate scenario for ITER. Within this dataset, the GLF23 model has a higher accuracy than the Weiland model in predicting the temperature profiles in the region 0.3 N on extended duration. (authors)

  12. An automated, self-verifying system for monitoring uranium in effluent streams

    International Nuclear Information System (INIS)

    Reda, R.J.; Pickett, J.L.

    1992-01-01

    In nuclear facilities such as nuclear fuel fabrication plants, a constant vigil is required to ensure that the concentrations of uranium in process or waste streams do not exceed required specifications. The specifications may be dictated by the process owner, a regulatory agency such as the US Nuclear Regulatory Agency or Environmental Protection Agency, or by criticality safety engineering criteria. Traditionally, uranium monitoring in effluent streams has been accomplished by taking periodic samples of the liquid stream and determining the concentration by chemical analysis. Despite its accuracy, chemical sampling is not timely enough for practical use in continuously flowing systems because of the possibility that a significant quantity of uranium may be discharged between sampling intervals. To completely satisfy regulatory standards, the liquid waste stream must be monitored for uranium on a 100% basis. To this end, an automated, radioisotopic liquid-waste monitoring system was developed by GE Nuclear Energy as an integral part of the uranium conversion and waste recovery operations. The system utilizes passive gamma-ray spectroscopy and is thus a robust, on-line, and nondestructive assay for uranium. The system provides uranium concentration data for process monitoring and assures regulatory compliance for criticality safety. A summary of the principles of system operation, calibration, and verification is presented in this paper

  13. Effect of land use change on water discharge in Srepok watershed, Central Highland, Viet Nam

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Ngoc Quyen

    2014-09-01

    Full Text Available Srepok watershed plays an important role in Central Highland in Viet Nam. It impacts to developing social-economic conditions. Therefore, it is necessary to research elements which impact to natural resources in this watershed. The Soil and Water Assessment Tool (SWAT model and Geography Information System (GIS were used to simulate water discharge in the Srepok watershed. The objectives of the research were to apply GIS and SWAT model for simulation water discharge and then, we assessed land use change which impacted on water discharge in the watershed. The observed stream flow data from Ban Don Stream gauge station was used to calibrate for the period from 1981 to 2000 and then validate for the period from 2001 to 2009. After using SWAT-CUP software to calibration, NSI reached 0.63 and R square value achieved 0.64 from 2004 to 2008 in calibration and NSI gained good level at 0.74 and R square got 0.75 from 2009 to 2012 in validation step at Ban Don Station. After that, land cover in 2010 was processed like land cover in 2000 and set up SWAT model again. The simulated water discharge in scenario 1 (land use 2000 was compared with scenario 2 (land use 2010, the simulation result was not significant difference between two scenarios because the change of area of land use was not much enough to affect the fluctuation of water discharge. However, the effect of land cover on water resource could be seen clearly via total water yield. The percentage of surface flow in 2000 was twice times more than in 2010; retard and base flow in 2000 was slightly more than in 2010. Therefore, decreased surface flow, increased infiltration capacity of water and enriched base flow resulted in the growth of land cover.

  14. Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems

    Science.gov (United States)

    Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh

    2016-04-01

    Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.

  15. Water-supply potential of major streams and the Upper Floridan Aquifer in the vicinity of Savannah, Georgia

    Science.gov (United States)

    Garza, Reggina; Krause, Richard E.

    1997-01-01

    Surface- and ground-water resources in the Savannah, Georgia, area were evaluated for potential water-supply development. Stream-discharge and water-quality data were analyzed for two major streams considered to be viable water-supply sources. A ground-water flow model was developed to be used in conjunction with other previously calibrated models to simulate the effects of additional pumpage on water levels near areas of saltwater intrusion at Brunswick and seawater encroachment at Hilton Head Island. Hypothetical scenarios also were simulated involving redistributions and small increases, and decreases in pumpage.

  16. Annual variability in the radiocarbon age and source of dissolved CO2 in a peatland stream

    International Nuclear Information System (INIS)

    Garnett, Mark H.; Dinsmore, Kerry J.; Billett, Michael F.

    2012-01-01

    Radiocarbon dating has the capacity to significantly improve our understanding of the aquatic carbon cycle. In this study we used a new passive sampler to measure the radiocarbon ( 14 C) and stable carbon (δ 13 C) isotopic composition of dissolved CO 2 for the first time in a peatland stream throughout a complete year (May 2010–June 2011). The in-stream sampling system collected time-integrated samples of CO 2 continuously over approximately 1 month periods. The rate of CO 2 trapping was proportional to independently measured streamwater CO 2 concentrations, demonstrating that passive samplers can be used to estimate the time-averaged dissolved CO 2 concentration of streamwater. While there was little variation and no clear trend in δ 13 CO 2 values (suggesting a consistent CO 2 source), we found a clear temporal pattern in the 14 C concentration of dissolved CO 2 . The 14 C age of CO 2 varied from 707 ± 35 to 1210 ± 39 years BP, with the youngest CO 2 in the autumn and oldest in spring/early summer. Mean stream discharge and 14 C content of dissolved CO 2 were positively correlated. We suggest that the observed pattern in the 14 C content of dissolved CO 2 reflects changes in its origin, with older carbon derived from deeper parts of the peat profile contributing proportionally more gaseous carbon during periods of low stream flow. - Highlights: ► Dissolved CO 2 was sampled from a peatland stream and radiocarbon dated. ► Samples collected using new passive sampler are suitable for integrated monthly samples. ► Age of CO 2 ranged from 707 to 1210 years old and seasonal pattern is observed. ► Age correlated with discharge and reflected source of dissolved CO 2 . ► Study highlights the value of 14 C analysis and potential of new method.

  17. Stream-channel and watershed delineations and basin-characteristic measurements using lidar elevation data for small drainage basins within the Des Moines Lobe landform region in Iowa

    Science.gov (United States)

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.; Gelder, Brian K.

    2018-02-14

    Basin-characteristic measurements related to stream length, stream slope, stream density, and stream order have been identified as significant variables for estimation of flood, flow-duration, and low-flow discharges in Iowa. The placement of channel initiation points, however, has always been a matter of individual interpretation, leading to differences in stream definitions between analysts.This study investigated five different methods to define stream initiation using 3-meter light detection and ranging (lidar) digital elevation models (DEMs) data for 17 streamgages with drainage areas less than 50 square miles within the Des Moines Lobe landform region in north-central Iowa. Each DEM was hydrologically enforced and the five stream initiation methods were used to define channel initiation points and the downstream flow paths. The five different methods to define stream initiation were tested side-by-side for three watershed delineations: (1) the total drainage-area delineation, (2) an effective drainage-area delineation of basins based on a 2-percent annual exceedance probability (AEP) 12-hour rainfall, and (3) an effective drainage-area delineation based on a 20-percent AEP 12-hour rainfall.Generalized least squares regression analysis was used to develop a set of equations for sites in the Des Moines Lobe landform region for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs. A total of 17 streamgages were included in the development of the regression equations. In addition, geographic information system software was used to measure 58 selected basin-characteristics for each streamgage.Results of the regression analyses of the 15 lidar datasets indicate that the datasets that produce regional regression equations (RREs) with the best overall predictive accuracy are the National Hydrographic Dataset, Iowa Department of Natural Resources, and profile curvature of 0.5 stream initiation methods combined with

  18. The role of groundwater in the effect of climatic warming on stream habitat of brook trout

    International Nuclear Information System (INIS)

    Meisner, J.D.

    1990-01-01

    Freshwater fisheries are linked to climate through the variables of water temperature, water quality and water quantity. These three ecosystem linkages provide a basis for assessments of potential impacts of climate change on fisheries resources. A characteristic of fisheries resources, whether it be the size or distribution of fish populations, or a measure of yield, which can be related to climate through one or more of these linkages, is a useful tool with which to forecast the effects of climate change. A stream population of brook trout is a coldwater fisheries resource that is linked to climate by groundwater. Stream dwelling brook trout at low altitudes rely heavily on groundwater discharge in summer to maintain low stream temperature. Groundwater temperature tracks mean annual air temperature due to the insulative effect of the lower troposphere on the surface of the earth. The effect of elevated groundwater temperature on the stream habitat of brook trout was investigated in two brook trout streams north of Toronto, Ontario, with an energy balance stream temperature model, calibrated to both streams to simulate maximum water temperature observed in the brook trout zones. Simulated maximum summer temperatures from the Goddard Institute for Space Studies scenario reduced the brook trout zones by up to 42%. 17 refs., 2 figs

  19. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    Science.gov (United States)

    Hladik, Michelle; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  20. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  1. Angina - discharge

    Science.gov (United States)

    Chest pain - discharge; Stable angina - discharge; Chronic angina - discharge; Variant angina - discharge; Angina pectoris - discharge; Accelerating angina - discharge; New-onset angina - discharge; Angina-unstable - discharge; ...

  2. Groundwater flow and mixing in a wetland–stream system

    DEFF Research Database (Denmark)

    Karan, Sachin; Engesgaard, Peter Knudegaard; Zibar, Majken Caroline Looms

    2013-01-01

    steady-state groundwater model that was calibrated against average head observations. The model results were tested against groundwater fluxes determined from streambed temperature measurements. Discharge varied up to one order of magnitude across the stream and the model was successful in capturing...... in the top of the aquifer and immediately underneath the streambed no NO3- was detected deeper within the aquifer. An inverse relationship between NO3- and SO42- suggests that pyrite oxidation takes place in the deeper parts of the aquifer. Simulated flow path lines showed very different origins for deeper...

  3. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events

    Science.gov (United States)

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.

    2016-01-01

    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  4. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    Science.gov (United States)

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  5. Water Quality, Macroinvertebrates, and Fisheries in Tailwaters and Related Streams. An Annotated Bibliography.

    Science.gov (United States)

    1981-05-01

    more rapidly available source of energy and protein below the dam than that normally present in unregulated streams. Benthic diversity was lowest at...robusta; bluehead sucker, Pantosteus delphinus; and humpback sucker, Xyrauchen texanus) in Dinosaur National Monument were con- ducted from May 1964 to...duced successfully in Dinosaur National Monument every year since impoundment. During years of high summer discharge from the dam resultant lower water

  6. Field methods for determining point source pollution impacts in rivers: A case study of the Grindsted stream

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Sonne, Anne Thobo; Fjordbøge, Annika Sidelmann

    2013-01-01

    Water Framework Directive requires member states to evaluate all types of contamination sources within a watershed in order to assess their direct impact on water quality. Understanding and accurately characterizing groundwater-surface water interactions (GSI) and groundwater discharge is thus becoming...... was carried out in 2012, to develop the theoretical basis for conducting risk assessments for contaminated sites impacting surface waters. Grindsted stream was chosen, as groundwater flow is known to comprise an important part of the total water supply to the stream. It is also a well-studied site, affected...... a 5 km stream stretch, which were not visible at the regional scale, using systematic temperature measurements. We then correlated the two highly contaminated contact zones, using piezometers placed where streambed temperature measurements were waters...

  7. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  8. Development of Ecogeomorphological (EGM Stream Design and Assessment Tools for the Piedmont of Alabama, USA

    Directory of Open Access Journals (Sweden)

    Brian Helms

    2016-04-01

    Full Text Available Regional data needed for effective stream restoration include hydraulic geometry relationships (i.e., regional curves and reference channel morphology parameters. Increasingly ecological conditions are being considered when designing, implementing, and assessing restoration efforts. We provide morphology relationships and associated ecological endpoint curves for reference streams in the Alabama piedmont. Twenty-one reference stream reaches were identified in the Tallapoosa drainage of Alabama, ranging from 0.2 to 242 km2 drainage area. Geomorphic surveys were conducted in each stream to measure riffle cross-sections and longitudinal profiles and related to drainage area to develop regional curves. Fish, crayfish, and benthic macroinvertebrates were collected from each surveyed reach and related to drainage area and geomorphic data to provide associated biological community endpoints. Bankfull channel cross-section area, width, mean depth, and estimated discharge were strongly correlated to watershed drainage area, similar to efforts in other areas of the Piedmont ecoregion. Multiple measures of fish assemblages and crayfish size were strongly predicted by drainage area and geomorphic dimensions. Macroinvertebrates showed no taxonomic and limited functional relationships with drainage area and geomorphic dimension. These tools, which integrate geomorphological and ecological conditions, can result in improved stream evaluations and designs increasing the effectiveness of stream restoration projects.

  9. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    Science.gov (United States)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing

  10. Stream and floodplain restoration in a riparian ecosystem disturbed by placer mining

    Science.gov (United States)

    Karle, Kenneth F.; Densmore, Roseann V.

    1994-01-01

    Techniques for the hydrologic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve Alaska, USA. The hydrologic study focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements include a channel capacity for a 1.5-year (bankfull) discharge and a floodplain capacity for a 1.5- to 100-year discharge. Concern for potential damage to the project from annual flooding before natural revegetation occurs led to development of alder (Alnus crispa) brush bars to dissipate floodwater energy and encourage sediment deposition. The brush bars, constructed of alder bundles tied together and anchored laterally adjacent to the channel, were installed on the floodplain in several configurations to test their effectiveness. A moderate flood near the end of the two-year construction phase of the project provided data on channel design, stability, floodplain erosion, and brush bar effectiveness. The brush bars provided substantial protection, but unconsolidated bank material and a lack of bed armour for a new channel segment led to some bank erosion, slope changes and an increase in sinuosity in several reaches of the study area.

  11. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information

    Science.gov (United States)

    Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.

    2017-01-01

    Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.

  12. Seasonal forecasting of discharge for the Raccoon River, Iowa

    Science.gov (United States)

    Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel

    2016-04-01

    The state of Iowa (central United States) is regularly afflicted by severe natural hazards such as the 2008/2013 floods and the 2012 drought. To improve preparedness for these catastrophic events and allow Iowans to make more informed decisions about the most suitable water management strategies, we have developed a framework for medium to long range probabilistic seasonal streamflow forecasting for the Raccoon River at Van Meter, a 8900-km2 catchment located in central-western Iowa. Our flow forecasts use statistical models to predict seasonal discharge for low to high flows, with lead forecasting times ranging from one to ten months. Historical measurements of daily discharge are obtained from the U.S. Geological Survey (USGS) at the Van Meter stream gage, and used to compute quantile time series from minimum to maximum seasonal flow. The model is forced with basin-averaged total seasonal precipitation records from the PRISM Climate Group and annual row crop production acreage from the U.S. Department of Agriculture's National Agricultural Statistics Services database. For the forecasts, we use corn and soybean production from the previous year (persistence forecast) as a proxy for the impacts of agricultural practices on streamflow. The monthly precipitation forecasts are provided by eight Global Climate Models (GCMs) from the North American Multi-Model Ensemble (NMME), with lead times ranging from 0.5 to 11.5 months, and a resolution of 1 decimal degree. Additionally, precipitation from the month preceding each season is used to characterize antecedent soil moisture conditions. The accuracy of our modelled (1927-2015) and forecasted (2001-2015) discharge values is assessed by comparison with the observed USGS data. We explore the sensitivity of forecast skill over the full range of lead times, flow quantiles, forecast seasons, and with each GCM. Forecast skill is also examined using different formulations of the statistical models, as well as NMME forecast

  13. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States

    Science.gov (United States)

    Katie Price; C. Jackson; Albert Parker; Trond Reitan; John Dowd; Mike Cyterski

    2011-01-01

    Land use and physiographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the influence of land use and watershed geomorphic characteristics on low-flow variability in the southern Blue Ridge Mountains of North Carolina and Georgia. Ten minute interval discharge data for 35 streams (...

  14. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    Science.gov (United States)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  15. In Brief: Online database for instantaneous streamflow data

    Science.gov (United States)

    Showstack, Randy

    2007-11-01

    Access to U.S. Geological Survey (USGS) historical instantaneous streamflow discharge data, dating from around 1990, is now available online through the Instantaneous Data Archive (IDA), the USGS announced on 14 November. In this new system, users can find streamflow information reported at the time intervals at which it is collected, typically 15-minute to hourly intervals. Although instantaneous data have been available for many years, they were not accessible through the Internet. Robert Hirsch, USGS Associate Director of Water, said, ``A user-friendly archive of historical instantaneous streamflow data is important to many different users for such things as floodplain mapping, flood modeling, and estimating pollutant transport.''The site currently has about 1.5 billion instantaneous data values from 5500 stream gages in 26 states. The number of states and stream gages with data will continue to increase, according to the USGS. For more information, visit the Web site: http://ida.water.usgs.gov/ida/.

  16. Interactive real-time media streaming with reliable communication

    Science.gov (United States)

    Pan, Xunyu; Free, Kevin M.

    2014-02-01

    different spot in the media file, will be reflected in all media streams. These techniques are designed to allow users at different locations to simultaneously view a full length HD video and interactively control the media streaming session. To create a sustainable media stream with high quality, our system supports UDP packet loss recovery at high transmission speed using custom File- Buffers. Traditional real-time streaming protocols such as Real-time Transport Protocol/RTP Control Protocol (RTP/RTCP) provide no such error recovery mechanism. Finally, the system also features an Instant Messenger that allows users to perform social interactions with one another while they enjoy a media file. The ultimate goal of the application is to offer users a hassle free way to watch a media file over long distances without having to upload any personal information into a third party database. Moreover, the users can communicate with each other and stream media directly from one mobile device to another while maintaining an independence from traditional sign up required by most streaming services.

  17. Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments

    Science.gov (United States)

    Writer, Jeffrey; Barber, Larry B.; Ryan, Joseph N.; Bradley, Paul M.

    2011-01-01

    Biodegradation of select endocrine-disrupting compounds (17β-estradiol, estrone, 17α-ethynylestradiol, 4-nonylphenol, 4-nonylphenolmonoexthoylate, and 4-nonylphenoldiethoxylate) was evaluated in stream biofilm, sediment, and water matrices collected from locations upstream and downstream from a wastewater treatment plant effluent discharge. Both biologically mediated transformation to intermediate metabolites and biologically mediated mineralization were evaluated in separate time interval experiments. Initial time intervals (0–7 d) evaluated biodegradation by the microbial community dominant at the time of sampling. Later time intervals (70 and 185 d) evaluated the biodegradation potential as the microbial community adapted to the absence of outside energy sources. The sediment matrix was more effective than the biofilm and water matrices at biodegrading 4-nonylphenol and 17β-estradiol. Biodegradation by the sediment matrix of 17α-ethynylestradiol occurred at later time intervals (70 and 185 d) and was not observed in the biofilm or water matrices. Stream biofilms play an important role in the attenuation of endocrine-disrupting compounds in surface waters due to both biodegradation and sorption processes. Because sorption to stream biofilms and bed sediments occurs on a faster temporal scale (185 d), these compounds can accumulate in stream biofilms and sediments.

  18. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  19. Estimating groundwater discharge into the ocean in the Yucatán Peninsula

    Science.gov (United States)

    Alvarez Rodriguez, G.; Gutierrez-Jurado, H. A.; Uuh-Sonda, J.

    2017-12-01

    The Yucatán peninsula is an emerged flat carbonate block abundant in soluble rocks. High permeability and dissolution of the rock, facilitates the development of channels, sinkholes and caves where underground rivers discharge into the ocean. There are no rivers or streams acting as a surface drainage system, all rainfall water entering the peninsula is discharged either as evapotranspiration (ET) or as underground runoff into the ocean. To date there are no estimates of the total groundwater discharge from the peninsula into the sea, and of the spatial distribution of recharge and discharge areas thereby hindering efforts to understand the dynamics of a complex hydrologic system. In this study, we estimate the discharge (Q) by solving the water balance equation (ΔS=PPT-ET-Q) using remote sensing products over a period of 12 years; the change in storage (ΔS) was retrieved from the satellite GRACE; precipitation (PPT) from the Tropical Rainfall Measuring Mission; and evapotranspiration (ET) from the Moderate Resolution Imaging Spectroradiometer. Results show that freshwater discharge via evapotranspiration can be a significant portion of the water budget depending on the climatic conditions throughout the year. We observe high recharge-discharge inter-annual variability in the center of the peninsula and some clearly defined recharge and discharge zones around the perimeter. On average the dryer north-east and wetter north-western parts of the peninsula act as recharge zones (where the influx of water is higher than the outflow), while the central-northern part of the peninsula corresponding to agricultural lands, acts as a discharge zone (outflow is higher than influx). The most southern region of the peninsula and the western mangroves are always discharge zones. Finally, our analyses reveal a number of highly subsidized zones, where precipitation levels are consistently lower than evapotranspiration, hence indicating the presence of groundwater dependent

  20. Transport analysis of ohmic, L-mode and improved confinement discharges in FTU

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Marinucci, M [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Romanelli, M [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Bracco, G [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Castaldo, C [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Cocilovo, V [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Giovannozzi, E [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Leigheb, M [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Monari, G [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Nowak, S [IFP CNR, Via R. Cozzi, 53, 20125 Milano (Italy); Sozzi, C [IFP CNR, Via R. Cozzi, 53, 20125 Milano (Italy); Tudisco, O [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Cesario, R [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Frigione, D [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Gormezano, C [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Granucci, G [IFP CNR, Via R. Cozzi, 53, 20125 Milano (Italy); Panaccione, L [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Pericoli-Ridolfini, V [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Pieroni, L [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)

    2004-11-01

    A thorough investigation of confinement in Frascati Tokamak Upgrade has been carried out on a new database of ohmic, L-mode and advanced scenario discharges (multiple pellet-fuelled, radiation improved and internal transport barriers (ITBs)) obtained with the available auxiliary heating systems, namely electron cyclotron resonant heating, lower hybrid and ion Bernstein wave. A general agreement of the measured {tau}{sub E} with ITER97 L-mode scaling is found in ohmic and L-mode discharges. An improvement of the energy confinement time ({tau}{sub E}) of up to about 60% over the ITER97 L-mode scaling has been obtained in ITB discharges, together with a reduction in local electron transport in the region of high pressure gradient, and up to about 30% in pellet-fuelled discharges (where {tau}{sub E} as large as {approx}120 ms have been reached). The linear density dependence of {tau}{sub E} in ohmic discharges has been found to extend above the saturation density threshold in pellet-fuelled plasmas.

  1. Stream network responses to evapotranspiration in mountain systems: evidence from spatially-distributed network mapping and sapflow measurements

    Science.gov (United States)

    Godsey, S.; Whiting, J. A.; Reinhardt, K.

    2015-12-01

    Stream networks respond to decreased inputs by shrinking from their headwaters and disconnecting along their length. Both the relative stability of the stream network and the degree of disconnection along the network length can strongly affect stream ecology, including fish migration and nutrient spiraling. Previous data suggests that stream network lengths decrease measurably as discharge decreases, and that evapotranspiration may be an important control on stream network persistence. We hypothesized that changes in sapflow timing and magnitude across a gradient from rain-dominated to snow-dominated elevations would be reflected in the stability of the stream network in a steep watershed draining to the Middle Fork Salmon in central Idaho. We expected that the relative timing of water availability across the gradient would drive differences in water delivery to both trees and the stream network. Here we present results that highlight the stability of sapflow timing across the gradient and persistence of the stream network at this site. We discuss geologic controls on network stability and present a conceptual framework identifying characteristics of stable flowheads. We test this framework at four sites in central Idaho with mapped stream networks. We also discuss late summer sapflow patterns across the elevation gradient and their linkages to soil and atmospheric characteristics. Finally, we compare these patterns to those observed at other sites and discuss the role of vegetation in controlling spatiotemporal patterns across the stream network.

  2. Time-Critical Database Conditions Data-Handling for the CMS Experiment

    CERN Document Server

    De Gruttola, M; Innocente, V; Pierro, A

    2011-01-01

    Automatic, synchronous and of course reliable population of the condition database is critical for the correct operation of the online selection as well as of the offline reconstruction and data analysis. We will describe here the system put in place in the CMS experiment to automate the processes to populate centrally the database and make condition data promptly available both online for the high-level trigger and offline for reconstruction. The data are ``dropped{''} by the users in a dedicated service which synchronizes them and takes care of writing them into the online database. Then they are automatically streamed to the offline database, hence immediately accessible offline worldwide. This mechanism was intensively used during 2008 and 2009 operation with cosmic ray challenges and first LHC collision data, and many improvements were done so far. The experience of this first years of operation will be discussed in detail.

  3. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Gibs, Jacob, E-mail: jgibs@usgs.gov [U.S. Geological Survey, 810 Bear Tavern Road, West Trenton, NJ 08628 (United States); Heckathorn, Heather A. [U.S. Geological Survey, 810 Bear Tavern Road, West Trenton, NJ 08628 (United States); Meyer, Michael T. [U.S. Geological Survey, 4821 Quail Crest Place, Lawrence, KS 66049 (United States); Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert L. [New Jersey Department of Environmental Protection, PO Box 413, Trenton, NJ 08625 (United States)

    2013-08-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin–H{sub 2}O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin

  4. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008

    International Nuclear Information System (INIS)

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert L.

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin–H 2 O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin

  5. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Lu Fugong; Xu Yong; Zhang Jing; Yang Xuefeng

    2006-01-01

    Formaldehyde (HCHO) is a typical air pollutant capable of causing serious health disorders in human beings. This work reports plasma-catalytic oxidation of formaldehyde in gas streams via dielectric barrier discharges over Ag/CeO 2 pellets at atmospheric pressure and 70 0 C. With a feed gas mixture of 276 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼99% of formaldehyde can be effectively destructed with an 86% oxidative conversion into CO 2 at GHSV of 16500 h -1 and input discharge energy density of 108 J l -1 . At the same experimental conditions, the conversion percentages of HCHO to CO 2 from pure plasma-induced oxidation (discharges over fused silica pellets) and from pure catalytic oxidation over Ag/CeO 2 (without discharges) are 6% and 33% only. The above results and the CO plasma-catalytic oxidation experiments imply that the plasma-generated short-lived gas phase radicals, such as O and HO 2 , play important roles in the catalytic redox circles of Ag/CeO 2 to oxidize HCHO and CO to CO 2

  6. Field Investigation of Stream-Aquifer Interactions: A Case Study in Coastal California

    Science.gov (United States)

    Pritchard-Peterson, D.; Malama, B.

    2017-12-01

    We report here results of a detailed investigation of the dynamic interaction between a stream and an alluvial aquifer at Swanton Pacific Ranch in the Scotts Creek watershed, Santa Cruz County, California. The aquifer is an important source of groundwater for cropland irrigation and for aquatic ecosystem support. Low summer base flows in Scotts Creek are a source of serious concern for land managers, fisheries biologists, and regulatory agencies due to the presence of federally protected steelhead trout and coho salmon. An understanding of the interaction between the stream and pumped aquifer will allow for assessment of the impacts of groundwater extraction on stream flows and is essential to establishing minimum flow requirements. This will aid in the development of sustainable riparian groundwater pumping practices that meet agricultural and ecological needs. Results of extensive direct-push sampling of the subsurface, laboratory falling-head permeameter tests and particle size analysis of aquifer sediments, multi-day pumping tests, long-term passive monitoring of aquifer hydraulic heads and stream stage and discharge, and electrical resistivity interrogation of the subsurface are reported here. Findings indicate that the permeable subsurface formation tapped by irrigation wells is a leaky semi-confined aquifer, overlain by a thin low permeability layer of silt and clay above which lies Scotts Creek. These results are particularly useful to land managers responsible for groundwater abstraction from wells that tap into the aquifer. Additionally, an index of stream-aquifer connectivity is proposed that would allow land managers to conveniently modify groundwater abstraction practices, minimizing concerns of stream depletion.

  7. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  8. Analyzing indicators of stream health for Minnesota streams

    Science.gov (United States)

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  9. Point-Source Contributions to the Water Quality of an Urban Stream

    Science.gov (United States)

    Little, S. F. B.; Young, M.; Lowry, C.

    2014-12-01

    Scajaquada Creek, which runs through the heart of the city of Buffalo, is a prime example of the ways in which human intervention and local geomorphology can impact water quality and urban hydrology. Beginning in the 1920's, the Creek has been partially channelized and connected to Buffalo's combined sewer system (CSS). At Forest Lawn Cemetery, where this study takes place, Scajaquada Creek emerges from a 3.5-mile tunnel built to route stream flow under the city. Collocated with the tunnel outlet is a discharge point for Buffalo's CSS, combined sewer outlet (CSO) #53. It is at this point that runoff and sanitary sewage discharge regularly during rain events. Initially, this study endeavored to create a spatial and temporal picture for this portion of the Creek, monitoring such parameters as conductivity, dissolved oxygen, pH, temperature, and turbidity, in addition to measuring Escherichia coli (E. coli) concentrations. As expected, these factors responded directly to seasonality, local geomorphology, and distance from the point source (CSO #53), displaying a overall, linear response. However, the addition of nitrate and phosphate testing to the study revealed an entirely separate signal from that previously observed. Concentrations of these parameters did not respond to location in the same manner as E. coli. Instead of decreasing with distance from the CSO, a distinct periodicity was observed, correlating with a series of outflow pipes lining the stream banks. It is hypothesized that nitrate and phosphate occurring in this stretch of Scajaquada Creek originate not from the CSO, but from fertilizers used to maintain the lawns within the subwatershed. These results provide evidence of the complexity related to water quality issues in urban streams as a result of point- and nonpoint-source hydrologic inputs.

  10. The Influence of Flow and Bed Slope on Gas Transfer in Steep Streams and Their Implications for Evasion of CO2

    Science.gov (United States)

    Maurice, L.; Rawlins, B. G.; Farr, G.; Bell, R.; Gooddy, D. C.

    2017-11-01

    The evasion of greenhouse gases (including CO2, CH4, and N2O) from streams and rivers to the atmosphere is an important process in global biogeochemical cycles, but our understanding of gas transfer in steep (>10%) streams, and under varying flows, is limited. We investigated gas transfer using combined tracer injections of SF6 and salt. We used a novel experimental design in which we compared four very steep (18.4-29.4%) and four moderately steep (3.7-7.6%) streams and conducted tests in each stream under low flow conditions and during a high-discharge event. Most dissolved gas evaded over short distances ( 100 and 200-400 m, respectively), so accurate estimates of evasion fluxes will require sampling of dissolved gases at these scales to account for local sources. We calculated CO2 gas transfer coefficients (KCO2) and found statistically significant differences between larger KCO2 values for steeper (mean 0.465 min-1) streams compared to those with shallower slopes (mean 0.109 min-1). Variations in flow had an even greater influence. KCO2 was substantially larger under high (mean 0.497 min-1) compared to low flow conditions (mean 0.077 min-1). We developed a statistical model to predict KCO2 using values of streambed slope × discharge which accounted for 94% of the variation. We show that two models using slope and velocity developed by Raymond et al. (2012) for streams and rivers with shallower slopes also provide reasonable estimates of our CO2 gas transfer velocities (kCO2; m d-1). We developed a robust field protocol which could be applied in future studies.

  11. Collisional and radiative processes in high-pressure discharge plasmas

    Science.gov (United States)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  12. A Systematic Review of Interventions to Follow-Up Test Results Pending at Discharge.

    Science.gov (United States)

    Darragh, Patrick J; Bodley, T; Orchanian-Cheff, A; Shojania, K G; Kwan, J L; Cram, P

    2018-05-01

    Patients are frequently discharged from the hospital before all test results have been finalized. Thirty to 40% of tests pending at discharge (TPADs) return potentially actionable results that could necessitate change in the patients' management, often unbeknownst to their physicians. Delayed follow-up of TPADs can lead to patient harm. We sought to synthesize the existing literature on interventions intended to improve the management of TPADs, including interventions designed to enhance documentation of TPADs, increase physician awareness when TPAD results finalize post-discharge, decrease adverse events related to missed TPADs, and increase physician satisfaction with TPAD management. We searched Medline, EMBASE, CINAHL, Cochrane Database of Systematic Reviews, Cochrane Database of Controlled Clinical Trials and Medline (January 1, 2000-November 10, 2016) for randomized controlled trials and prospective, controlled observational studies that evaluated interventions to improve follow-up of TPADs for adult patients discharged from acute care hospitals or emergency department settings. From each study we extracted characteristics of the intervention being evaluated and its impact on TPAD management. Nine studies met the criteria for inclusion. Six studies evaluated electronic discharge summary templates with a designated field for documenting TPADs, and three of six of these studies reported a significant improvement in documentation of TPADs in discharge summaries in pre- and post-intervention analysis. One study reported that auditing discharge summaries and providing feedback to physicians were associated with improved TPAD documentation in discharge summaries. Two studies found that email alerts when TPADs were finalized improved physicians' awareness of the results and documentation of their follow-up actions. Of the four studies that assessed patient morbidity, two showed a positive effect; however, none specifically measured the impact of their interventions

  13. Evolution of Database Replication Technologies for WLCG

    OpenAIRE

    Baranowski, Zbigniew; Pardavila, Lorena Lobato; Blaszczyk, Marcin; Dimitrov, Gancho; Canali, Luca

    2015-01-01

    In this article we summarize several years of experience on database replication technologies used at WLCG and we provide a short review of the available Oracle technologies and their key characteristics. One of the notable changes and improvement in this area in recent past has been the introduction of Oracle GoldenGate as a replacement of Oracle Streams. We report in this article on the preparation and later upgrades for remote replication done in collaboration with ATLAS and Tier 1 databas...

  14. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data

    Science.gov (United States)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  15. Relationships between dissolved organic matter and discharge: New insights from in-situ measurements in a northern forested watershed

    Science.gov (United States)

    Pellerin, B. A.; Shanley, J. B.; Saraceno, J.; Aiken, G.; Sebestyen, S. D.; Bergamaschi, B. A.

    2012-12-01

    Quantifying the fundamental linkages between hydrology and dissolved organic matter (DOM) dynamics in streams and rivers is critical for understanding carbon loads, ecosystem food webs and metal transport. Accurately assessing this relationship is difficult, however, given that rapid changes in water flow paths and associated DOM sources are often not captured by traditional discrete sampling intervals of weeks to months. We explored DOM - discharge relationships at Sleepers River below a 40.5 hectare USGS research watershed in northern Vermont by making 30 minute chromophoric DOM fluorescence (FDOM) measurements in-situ since October 2008 along with periodic discrete sampling for dissolved organic carbon. There is a tight coupling between the timing of increases in FDOM and discharge at Sleepers during events, but the ratio of FDOM to discharge exhibited considerable variability across seasons and events, as did FDOM-discharge hysteresis (FDOM variously peaked 1-4 hours after streamflow). Discrete DOM quality indicators (spectral slope, fluorescence index, SUVA) indicate DOM was predominantly terrestrial at all but the lowest flows, highlighting the important role of DOM-rich terrestrial flow paths as the primary source of stream DOM. Our results suggest that changes in flow paths are likely to be the primary drivers of future changes in DOM transport from this site rather than changes in DOM quality. Overcoming significant challenges inherent in continuous sensor deployments in watersheds (e.g. ice cover, suspended particles, remote communication and power) will allow for new insights into watershed biogeochemistry.

  16. Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study.

    Science.gov (United States)

    Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny

    2018-06-01

    Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine

  17. Cognition, continence and transfer status at the time of discharge from an acute hospital setting and their associations with an unfavourable discharge outcome after stroke.

    Science.gov (United States)

    Myint, Phyo K; Vowler, Sarah L; Redmayne, Oliver; Fulcher, Robert A

    2008-01-01

    Current demographic trends pose a major societal challenge due to the rising number of older people with chronic conditions such as stroke. The relative impact of various disabilities at the time of discharge from an acute unit on discharge outcome is poorly understood. To examine the association between cognition, continence and transfer status at the time of discharge from the acute stroke unit and discharge destination. A retrospective stroke register database study was conducted in an acute stroke unit in a UK hospital with a catchment population of 568,000. Consecutive acute stroke admissions between 1997 and 2003 who were discharged alive were identified and the likelihood of adverse discharge outcomes defined as institutionalization or a requirement for longer-term rehabilitation was estimated. A total of 2,521 discharges were analyzed (median length of hospital stay 8 days). The presence of confusion, urinary incontinence or the need for help with transfers at the time of discharge predicted a higher likelihood of an adverse outcome even after controlling for age, stroke subtype, premorbid Rankin score and length of hospital stay. The need for help with transfers appeared to be the most consistent and significant factor associated with an adverse outcome regardless of age, sex or stroke subtype across the sample distribution. The ability to transfer has a pivotal role in the clinical decision making of discharge destination after stroke. Understanding of the factors which may increase the potential for improving this ability after acute stroke could have an impact on clinical outcome. Copyright 2008 S. Karger AG, Basel.

  18. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej

    2016-02-01

    normalization and stationarity were considered. Skewness test applied to evaluate normalization of evaporation, precipitation and stream flow time series and logarithmic transformation function executed for in order to improve normalization. Stationarity of studied time series were evaluated by well-known powerful ADF and KPSS stationarity tests. Time series model's order was determined using modified AICC test and the portmanteau goodness of fit test was used to evaluate the adequacy of developed linear time series models. Man-Kendall trend analysis was also conducted for the precipitation amount, the number of rainy days, the maximum precipitation with 24 hours duration, the evaporation and stream flow in monthly and annual time scales. Results and Discussion: Inferring to the physical base of ARMA models provided by Salas et al (1998, the precipitation has been considered independently and stochastically. If this assumption is not true in a given basin, it is expected that the MA component of stream flow discharge model be eliminated or washed out. This case occurred in basins A, B and C. In these basins, the behavior of precipitation and evaporation was autoregressive. It was observed that the stream flow discharge behavior also follows autoregressive models that had greater lags than precipitation and evaporation lags. This result proved that the precipitation, evaporation, and stream flow processes in the basin were regular processes. In basin D, the behavior of precipitation was stochastic and followed the MA model, which was related to the stochastic processes. In this basin, the stochastic behavior of precipitation affected the stream flow behavior, and it was observed that the stochastic term of MA also appeared in the stream flow. Thus, this leads to decrease the memory of stream flow discharge. The fact that the MA component in the stream flow discharge was greater than the MA component in precipitation indicated that during the process of producing stream flow

  19. Investigation and control of the {{\\rm{O}}}_{3}- to {NO}-transition in a novel sub-atmospheric pressure dielectric barrier discharge

    Science.gov (United States)

    Bansemer, Robert; Schmidt-Bleker, Ansgar; van Rienen, Ursula; Weltmann, Klaus-Dieter

    2017-06-01

    A novel flow-driven dielectric barrier discharge concept is presented, which uses a Venturi pump to transfer plasma-generated reactive oxygen and nitrogen species from a sub-atmospheric pressure (200{--}600 {mbar}) discharge region to ambient pressure and can be operated with air. By adjusting the working pressure of the device, the plasma chemistry can be tuned continuously from an ozone ({{{O}}}3)-dominated mode to a nitrogen oxides ({{NO}}x)-only mode. The plasma source is characterized focusing on the mechanisms effecting this mode change. The composition of the device’s output gas was determined using Fourier-transform infrared spectroscopy. The results are correlated to measurements of discharge chamber pressure and temperature as well as of input power. It is found that the mode-change temperature can be controlled by the discharge chamber pressure. The source concept is capable of generating an {{NO}}x-dominated plasma chemistry at gas temperatures distinctly below 400 {{K}}. Through mixing of the processed gas stream with a second flow of pressurized air required for the operation of the Venturi pump, the resulting product gas stream remains close to room temperature. A reduced zero-dimensional reaction kinetics model with only seven reactions is capable of describing the observed pressure- and temperature-dependence of the {{{O}}}3 to {{NO}}x mode-change.

  20. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  1. The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field

    International Nuclear Information System (INIS)

    Kozlov, A.N.; Klimov, N.S.; Moskacheva, A.A.; Podkovyrov, V.L.; Drukarenko, S.P.

    2009-01-01

    Installation of the coaxial quasi-steady high-current one-stage plasma accelerator with a longitudinal magnetic field is created. The lead experiments have shown an opportunity of realization of the discharges, formation of the ionization front and generation of the plasma streams at the presence of a longitudinal field in the accelerator channel. The current-voltage characteristics of the discharge at the presence and absence of a longitudinal field are measured. It is established that a weak longitudinal field does not render the appreciable influence on the integrated characteristics of discharge in the accelerator with the rod anode in an ion current transport regime

  2. ThermoData Engine: Extension to Solvent Design and Multi-component Process Stream Property Calculations with Uncertainty Analysis

    DEFF Research Database (Denmark)

    Diky, Vladimir; Chirico, Robert D.; Muzny, Chris

    ThermoData Engine (TDE, NIST Standard Reference Databases 103a and 103b) is the first product that implements the concept of Dynamic Data Evaluation in the fields of thermophysics and thermochemistry, which includes maintaining the comprehensive and up-to-date database of experimentally measured...... property values and expert system for data analysis and generation of recommended property values at the specified conditions along with uncertainties on demand. The most recent extension of TDE covers solvent design and multi-component process stream property calculations with uncertainty analysis...... variations). Predictions can be compared to the available experimental data, and uncertainties are estimated for all efficiency criteria. Calculations of the properties of multi-component streams including composition at phase equilibria (flash calculations) are at the heart of process simulation engines...

  3. Effects of geothermal energy utilization on stream biota and water quality at The Geysers, California. Final report. [Big Sulphur, Little Sulphur, Squaw, and Pieta Creeks

    Energy Technology Data Exchange (ETDEWEB)

    LeGore, R.S.

    1975-01-01

    The discussion is presented under the following section headings: biological studies, including fish, insects, and microbiology; stream hydrology; stream water quality, including methods and results; the contribution of tributaries to Big Sulphur Creek, including methods, results, and tributary characterization; standing water at wellheads; steam condensate quality; accidental discharges; trout spawning bed quality; major conclusions; list of references; and appendices. It is concluded that present operational practices at Geysers geothermal field do not harm the biological resources in adjacent streams. The only effects of geothermal development observed during the study were related to operational accidents. (JGB)

  4. Comparative analysis of perioperative complications between a multicenter prospective cervical deformity database and the Nationwide Inpatient Sample database.

    Science.gov (United States)

    Passias, Peter G; Horn, Samantha R; Jalai, Cyrus M; Poorman, Gregory; Bono, Olivia J; Ramchandran, Subaraman; Smith, Justin S; Scheer, Justin K; Sciubba, Daniel M; Hamilton, D Kojo; Mundis, Gregory; Oh, Cheongeun; Klineberg, Eric O; Lafage, Virginie; Shaffrey, Christopher I; Ames, Christopher P

    2017-11-01

    Complication rates for adult cervical deformity are poorly characterized given the complexity and heterogeneity of cases. To compare perioperative complication rates following adult cervical deformity corrective surgery between a prospective multicenter database for patients with cervical deformity (PCD) and the Nationwide Inpatient Sample (NIS). Retrospective review of prospective databases. A total of 11,501 adult patients with cervical deformity (11,379 patients from the NIS and 122 patients from the PCD database). Perioperative medical and surgical complications. The NIS was queried (2001-2013) for cervical deformity discharges for patients ≥18 years undergoing cervical fusions using International Classification of Disease, Ninth Revision (ICD-9) coding. Patients ≥18 years from the PCD database (2013-2015) were selected. Equivalent complications were identified and rates were compared. Bonferroni correction (pdatabases. A total of 11,379 patients from the NIS database and 122 patiens from the PCD database were identified. Patients from the PCD database were older (62.49 vs. 55.15, pdatabase. The PCD database had an increased risk of reporting overall complications than the NIS (odds ratio: 2.81, confidence interval: 1.81-4.38). Only device-related complications were greater in the NIS (7.1% vs. 1.1%, p=.007). Patients from the PCD database displayed higher rates of the following complications: peripheral vascular (0.8% vs. 0.1%, p=.001), gastrointestinal (GI) (2.5% vs. 0.2%, pdatabases (p>.004). Based on surgicalapproach, the PCD reported higher GI and neurologic complication rates for combined anterior-posterior procedures (pdatabase revealed higher overall and individual complication rates and higher data granularity. The nationwide database may underestimate complications of patients with adult cervical deformity (ACD) particularly in regard to perioperative surgical details owing to coding and deformity generalizations. The surgeon-maintained database

  5. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  6. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  7. Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin

    Science.gov (United States)

    Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.

    2017-12-01

    The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.

  8. Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels

    Science.gov (United States)

    Daniele Tonina; John M. Buffington

    2011-01-01

    Hyporheic flow results from the interaction between streamflow and channel morphology and is an important component of stream ecosystems because it enhances water and solute exchange between the river and its bed. Hyporheic flow in pool-riffle channels is particularly complex because of three-dimensional topography that spans a range of partially to fully submerged...

  9. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  10. Water quality, streamflow conditions, and annual flow-duration curves for streams of the San Juan–Chama Project, southern Colorado and northern New Mexico, 1935-2010

    Science.gov (United States)

    Falk, Sarah E.; Anderholm, Scott K.; Hafich, Katya A.

    2013-01-01

    , Horse Lake Creek, and Willow Creek watersheds, which are underlain mostly by Cretaceous-aged marine shale, was compositionally similar and had large concentrations of sulfate relative to the other streams in the study area, though the water from the Navajo River had lower specific-conductance values than did the water from Horse Lake Creek above Heron Reservoir and Willow Creek above Azotea Creek. Generally, surface-water quality varied with streamflow conditions throughout the year. Streamflow in spring and summer is generally a mixture of base flow (the component of streamflow derived from groundwater discharged to the stream channel) diluted with runoff from snowmelt and precipitation events, whereas streamflow in fall and winter is generally solely base flow. Major- and trace-element concentrations in the streams sampled were lower than U.S. Environmental Protection Agency primary and secondary drinking-water standards and New Mexico Environment Department surface-water standards for the streams. In general, years with increased annual discharge, compared to years with decreased annual discharge, had a smaller percentage of discharge in March, a larger percentage of discharge in June, an interval of discharge derived from snowmelt runoff that occurred later in the year, and a larger discharge in June. Additionally, years with increased annual discharge generally had a longer duration of runoff, and the streamflow indicators occurred at dates later in the year than the years with less snowmelt runoff. Additionally, the seasonal distribution of streamflow was more strongly controlled by the change in the amount of annual discharge than by changes in streamflow over time. The variation of streamflow conditions over time at one streamflow-gaging station in the study area, Navajo River at Banded Peak Ranch, was not significantly monotonic over the period of record with a Kendall’s tau of 0.0426 and with a p-value of 0.5938 for 1937 to 2009 (a trend was considered

  11. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  12. 16th East-European Conference on Advances in Databases and Information Systems (ADBIS 2012)

    CERN Document Server

    Härder, Theo; Wrembel, Robert; Advances in Databases and Information Systems

    2013-01-01

    This volume is the second one of the 16th East-European Conference on Advances in Databases and Information Systems (ADBIS 2012), held on September 18-21, 2012, in Poznań, Poland. The first one has been published in the LNCS series.   This volume includes 27 research contributions, selected out of 90. The contributions cover a wide spectrum of topics in the database and information systems field, including: database foundation and theory, data modeling and database design, business process modeling, query optimization in relational and object databases, materialized view selection algorithms, index data structures, distributed systems, system and data integration, semi-structured data and databases, semantic data management, information retrieval, data mining techniques, data stream processing, trust and reputation in the Internet, and social networks. Thus, the content of this volume covers the research areas from fundamentals of databases, through still hot topic research problems (e.g., data mining, XML ...

  13. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  14. An assessment of the impact of motorway runoff on a pond, wetland and stream

    Energy Technology Data Exchange (ETDEWEB)

    Sriyaraj, K.; Shutes, R.B.E. [Middlesex University, London (United Kingdom). Urban Pollution Research Centre

    2001-07-01

    The impact of soil filtered runoff from a section of the M25 outer London motorway (constructed in 1981) on a pond, wetland and stream in a nature reserve was investigated by monitoring water, sediment. The tissues of the emergent plants Typha latifolia and Glyceria maxima collected from the pond were analysed for the heavy metals, Cd, Pb, Cu and Zn. Macroinvertebrates were monitored in the stream and biotic indices applied to the data. The plant tissue concentrations for Typha and Glyceria show decreasing metal concentrations from root to rhizome to leaf. This trend has previously been reported for Typha exposed to runoff although the tissue concentrations are lower in this study with the exception of Cd in root tissue. The Biological Monitoring Working Party (BMWP) score and Average Score Per Taxon (ASPT) for the stream at sites above and below the pond outlet are lower than the scores recorded by the Environment Agency for England and Wales at an upstream site above the Pond/Wetland. The sites have an Overall Quality Index of 'moderate water quality', and there is no evidence of a deterioration of biologically assessed water quality between them. The results of the study show the long-term impact on sediment of filtered road runoff discharges to a natural wetland and pond located in a nature reserve. The use of natural wetlands for the discharge of road runoff is inadvisable. Constructed wetlands in combination with other structures including settlement trenches and ponds should be considered as an alternative treatment option. (Author)

  15. Procedures for determining stream flowrate using radioisotope method in Pesanggrahan River, Indonesia. Prosedur untuk mengukur kadar-alir sungai menggunakan kaedah radioisotop di Sungai Pesanggrahan, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    River flow measurements either by a current meter or a tracer dilution are established elsewhere. This report describes the experimental method, calibrations of NaI detector, preparation of radioisotopes and equipment, and safety aspect considerations as well as results interpretation in determining stream flowrate of Pesanggrahan River, Indonesia in which radioisotopes /sup 82/Br and /sup 51/Cr complexed with EDTA were used as tracers. The total count technique of stream flow D=AF/N, developed by Hull, was simplified for the ease of field work purposes and adopted in this study. Discharge results at different water levels during low flows gauged using both radioisotope tracers are comparable. The relationship between water level and discharge value is also plotted although the available data is insufficient.

  16. Novel Insights Linking Ecological Health to Biogeochemical Hotspots across the Groundwater-Surface Water Interface in Mixed Land Use Stream Systems

    Science.gov (United States)

    McKnight, U. S.; Sonne, A. T.; Rasmussen, J. J.; Rønde, V.; Traunspurger, W.; Höss, S.; Bjerg, P. L.

    2017-12-01

    Increasing modifications in land use and water management have resulted in multiple stressors impacting freshwater ecosystems globally. Chemicals with the potential to impact aquatic habitats are still often evaluated individually for their adverse effects on ecosystem health. This may lead to critical underestimations of the combined impact caused by interactions occurring between stressors not typically evaluated together, e.g. xenobiotic groundwater pollutants and trace metals. To address this issue, we identified sources and levels of chemical stressors along a 16-km groundwater-fed stream corridor (Grindsted, Denmark), representative for a mixed land use stream system. Potential pollution sources included two contaminated sites (factory, landfill), aquaculture, wastewater/industrial discharges, and diffuse sources from agriculture and urban areas. Ecological status was determined by monitoring meiobenthic and macrobenthic invertebrate communities.The stream was substantially impaired by both geogenic and anthropogenic sources of metals throughout the investigated corridor, with concentrations close to or above threshold values for barium, copper, lead, nickel and zinc in the stream water, hyporheic zone and streambed sediment. The groundwater plume from the factory site caused elevated concentrations of chlorinated ethenes, benzene and pharmaceuticals in both the hyporheic zone and stream, persisting for several km downstream. Impaired ecological conditions, represented by a lower abundance of meiobenthic individuals, were found in zones where the groundwater plume discharges to the stream. The effect was only pronounced in areas characterized by high xenobiotic organic concentrations and elevated dissolved iron and arsenic levels - linked to the dissolution of iron hydroxides caused by the degradation of xenobiotic compounds in the plume. The results thus provide ecological evidence for the interaction of organic and inorganic chemical stressors, which may

  17. Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed

    Directory of Open Access Journals (Sweden)

    Miroslaw-Swiatek Dorota

    2017-09-01

    Full Text Available Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed. In this study effects of cypress knees as vegetation resistance factor on Turkey Creek watershed discharge calculation were analyzed. The Turkey Creek watershed is a 3rd order stream system draining an approximate area of 5,240 ha. It is located at 33°08' N latitude and 79°47' W longitude, approximately 60 km north-west of City of Charleston in South Carolina (USA. Turkey Creek (WS 78 is typical of other watersheds in the south Atlantic coastal plain. In the case of Turkey Creek watershed, one of the main channels and riparian floodplain vegetation contains cypress trees. Cypress trees live in moist or swampy regions along the Atlantic coastal plain. The cypress trees are characterized by the unique root system called knees that appear just above the water line, up to 1.2 m above water surface. This study is conducted to examine the effects of roughness of cypress knee as related to its shape (diameter and height on discharge estimates of the Turkey Creek watershed. Hydraulic characteristics of the cypress knees were determined by field inventory in selected cross-section along the main stream channel. The Pasche method was used to calculate the total Darcy–Weisbach friction factor in discharge capacity calculation of the study watershed. The results of this study show that the effect of vegetation shape in the Pasche approach is significant. If the variability of vegetation stem diameter is taken into consideration in the calculations, an increase by 10–32% in the values of friction coefficients occurs.

  18. Development of a building sump database for the Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Sepanski, R.J.; Field, S.M.

    1997-07-01

    Operations at the Oak Ridge Y-12 Plant have resulted in contamination of Upper East Fork Poplar Creek (UEFPC) and shallow groundwater through soil erosion, infiltration, and outfall discharges. The contamination of groundwater has been documented for nearly two decades, largely through well monitoring efforts. This study represents the first effort to formally identify and compile location data on sumps at the Y-12 Plant, several of which are known or are suspected to pump groundwater. Operation of several of these sumps have been documented to affect groundwater hydraulics and contaminant pathways. This report presents preliminary results of an investigation attempting to identify sources of data on building sumps that have not previously been incorporated into existing Y-12 Plant groundwater databases. This investigation involved acquiring information on building sumps, such as location, building number, water source, discharge location, and availability of analytical data. This information was used to construct an ARC/INFO database capable of simultaneously storing spatial data on sump locations and attribute information concerning the operation of individual building sumps. This database will be referred to hereafter as the Y-12 Plant Building Sump Database

  19. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  20. Database Dictionary for Ethiopian National Ground-Water DAtabase (ENGDA) Data Fields

    Science.gov (United States)

    Kuniansky, Eve L.; Litke, David W.; Tucci, Patrick

    2007-01-01

    Introduction This document describes the data fields that are used for both field forms and the Ethiopian National Ground-water Database (ENGDA) tables associated with information stored about production wells, springs, test holes, test wells, and water level or water-quality observation wells. Several different words are used in this database dictionary and in the ENGDA database to describe a narrow shaft constructed in the ground. The most general term is borehole, which is applicable to any type of hole. A well is a borehole specifically constructed to extract water from the ground; however, for this data dictionary and for the ENGDA database, the words well and borehole are used interchangeably. A production well is defined as any well used for water supply and includes hand-dug wells, small-diameter bored wells equipped with hand pumps, or large-diameter bored wells equipped with large-capacity motorized pumps. Test holes are borings made to collect information about the subsurface with continuous core or non-continuous core and/or where geophysical logs are collected. Test holes are not converted into wells. A test well is a well constructed for hydraulic testing of an aquifer in order to plan a larger ground-water production system. A water-level or water-quality observation well is a well that is used to collect information about an aquifer and not used for water supply. A spring is any naturally flowing, local, ground-water discharge site. The database dictionary is designed to help define all fields on both field data collection forms (provided in attachment 2 of this report) and for the ENGDA software screen entry forms (described in Litke, 2007). The data entered into each screen entry field are stored in relational database tables within the computer database. The organization of the database dictionary is designed based on field data collection and the field forms, because this is what the majority of people will use. After each field, however, the

  1. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  2. ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    I Made Oka Widyantara

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG-DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  3. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  4. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A. 1. Conceptual model

    Science.gov (United States)

    Kennedy, V.C.; Jackman, A.P.; Zand, S.M.; Zellweger, G.W.; Avanzino, R.J.

    1984-01-01

    Stream sediments adsorb certain solutes from streams, thereby significantly changing the solute composition; but little is known about the details and rates of these adsorptive processes. To investigate such processes, a 24-hr. injection of a solution containing chloride, strontium, potassium, sodium and lead was made at the head of a 640-m reach of Uvas Creek in west-central Santa Clara County, California. Uvas Creek is a cobble-bed pool-and-riffle stream draining the eastern slopes of the Santa Cruz Mountains. By September 12, 1973, after a long dry season, Uvas Creek had a low (0.0215 m3s-1 average) flow which varied diurnally, from 0.018 to 0.025 m3s-1. Because stream discharge varied while the injection rate was constant, the concentration of tracers (injected solutes), after mixing in the stream, varied inversely with discharge. Chloride, a nonreactive solute, served as a tracer of water movement. Analysis of extensive chloride concentration data at five sites below the injection point during and after the injection demonstrated that there was considerable underflow of water through the stream gravels; however, the extent of underflow varied greatly within the study reach. Pre-injection water, displaced by tracer-laden water percolating through the gravels, diluted tracers in the stream channel, giving the mistaken impression of groundwater inflow at some points. Accurate measurement of total discharge in such streams requires prolonged tracer injection unless a reach can be found where underflow is negligible. Strontium and potassium were adsorbed by the bed sediments to a moderate extent and lead was strongly adsorbed. A high proportion of these metals could be removed by adsorption from percolating underflow because of extensive and intimate contact with bed sediments. After channel clearing following injection cutoff, 51% of the added strontium and 96% of the lead remained in the study reach, whereas only 19% of the chloride remained. Packets of sized

  5. A novel chaotic stream cipher and its application to palmprint template protection

    International Nuclear Information System (INIS)

    Heng-Jian, Li; Jia-Shu, Zhang

    2010-01-01

    Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher. (general)

  6. A novel chaotic stream cipher and its application to palmprint template protection

    Science.gov (United States)

    Li, Heng-Jian; Zhang, Jia-Shu

    2010-04-01

    Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher.

  7. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges

    International Nuclear Information System (INIS)

    Batt, Angela L.; Bruce, Ian B.; Aga, Diana S.

    2006-01-01

    Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 μg/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 μg/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 μg/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters. - This work investigates the extent of antibiotic concentrations in receiving waters from discharges of wastewater treatment plants

  8. Environmental Characteristics and Geographic Information System Applications for the Development of Nutrient Thresholds in Oklahoma Streams

    Science.gov (United States)

    Masoner, Jason R.; Haggard, Brian E.; Rea, Alan

    2002-01-01

    The U.S.Environmental Protection Agency has developed nutrient criteria using ecoregions to manage and protect rivers and streams in the United States. Individual states and tribes are encouraged by the U.S. Environmental Protection Agency to modify or improve upon the ecoregion approach. The Oklahoma Water Resources Board uses a dichotomous process that stratifies streams using environmental characteristics such as stream order and stream slope. This process is called the Use Support Assessment Protocols, subchapter15. The Use Support Assessment Protocols can be used to identify streams threatened by excessive amounts of nutrients, dependant upon a beneficial use designation for each stream. The Use Support Assessment Protocols, subchapter 15 uses nutrient and environmental characteristic thresholds developed from a study conducted in the Netherlands, but the Oklahoma Water Resources Board wants to modify the thresholds to reflect hydrologic and ecological conditions relevant to Oklahoma streams and rivers. Environmental characteristics thought to affect impairment from nutrient concentrations in Oklahoma streams and rivers were determined for 798 water-quality sites in Oklahoma. Nutrient, chlorophyll, water-properties, and location data were retrieved from the U.S. Environmental Protection Agency STORET database including data from the U.S. Geological Survey, Oklahoma Conservation Commission, and Oklahoma Water Resources Board. Drainage-basin area, stream order, stream slope, and land-use proportions were determined for each site using a Geographic Information System. The methods, procedures, and data sets used to determine the environmental characteristics are described.

  9. Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS)

    DEFF Research Database (Denmark)

    Matheswaran, Karthikeyan; Blemmer, Morten; Rosbjerg, Dan

    2014-01-01

    –night temperature difference were applied to three DTS datasets representing stream temperature responses to the variable meteorological and hydrological conditions prevailing in summer, winter and spring. The standard deviation criterion was useful to identify groundwater discharge zones in summer and spring......-term deployment covering variable meteorological and hydrological scenarios. Copyright © 2012 John Wiley & Sons, Ltd....

  10. Patient with stroke: hospital discharge planning, functionality and quality of life

    Directory of Open Access Journals (Sweden)

    Henrique José Mendes Nunes

    Full Text Available ABSTRACT Stroke still causes high levels of human inability and suffering, and it is one of the main causes of death in developed countries, including Portugal. Objective: analyze the strategies of hospital discharge planning for these patients, increasing the knowledge related to hospitalhome transition, discharge planning processes and the main impact on the quality of life and functionality. Method: integrative literature review using the PICOD criteria, with database research. Results: 19 articles were obtained, using several approaches and contexts. For quality of life, the factors related to the patient satisfaction with care and the psychoemotional aspects linked with functionality are the most significant. Conclusion: during the hospitalization period, a careful hospital discharge planning and comprehensive care to patients and caregivers - in particular the functional and psychoemotional aspects - tend to have an impact on the quality of life of patients.

  11. Surface discharge of raw wastewater among unsewered homes in central Alabama

    Science.gov (United States)

    Elliott, M.; Das, P.; Blackwell, A.; Aytekin, E.; Hu, Y.; White, K.; Jones, R.; Lu, Y.

    2017-12-01

    Discussions of future water and wastewater challenges in the US typically focus on crumbling infrastructure. However, another major challenge has been almost entirely neglected. A growing body of evidence indicates that household discharge of untreated wastewater to the surface (through so-called "straight pipes") is widespread in poor rural communities of Appalachia and the southeastern US. The US Census included water and wastewater questions until 1990. However, the census questions do not appear to differentiate clearly between legal onsite treatment and discharge of raw wastewater to the ground (EPA, 1999; US Census, 2015). Although straight pipes are illegal, many reports from the southern US and Appalachia indicate that the practice is still common in poor rural areas (e.g., EPA Region 4, 2002; du Albuquerque, 2011). A representative, county-scale report on straight pipes in Madison County, NC (Baldwin, 2000) found that 5.6% of unsewered rural households directly discharged raw wastewater and a 2005 study of Bibb County, AL, reported 15% straight pipe among households not connected to sewer (White and Jones, 2006). We focused on two Alabama counties (Hale and Wilcox) with high rates of rural poverty (26.6% and 39.2% of households in poverty, respectively) and soils unsuited for conventional septic systems. We used two main methods (1) site-by-site inspections of a random sample of unsewered rural homes and (2) water sample collection and analysis from impacted streams. We found high rates of straight pipe use and substantial impacts on water quality in local streams. For example, in Wilcox Co., 60% of unsewered households had a visible straight pipe; conservatively, these homes discharge 500,000 gallons of raw sewage to the ground in Wilcox Co. each day. Water sampling upstream and downstream of an unsewered town with many straight pipes indicated major impacts on surface water quality. Additionally, the literature reveals possible health impacts from onsite

  12. Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty

    International Nuclear Information System (INIS)

    Iezzi, F; Todisco, M T

    2015-01-01

    The paper aims to show a technique to estimate in situ the stream temperature from thermal-infrared images deepening its best estimate and uncertainty. Stream temperature is an important indicator of water quality and nowadays its assessment is important particularly for thermal pollution monitoring in water bodies. Stream temperature changes are especially due to the anthropogenic heat input from urban wastewater and from water used as a coolant by power plants and industrial manufacturers. The stream temperatures assessment using ordinary techniques (e.g. appropriate thermometers) is limited by sparse sampling in space due to a spatial discretization necessarily punctual. Latest and most advanced techniques assess the stream temperature using thermal-infrared remote sensing based on thermal imagers placed usually on aircrafts or using satellite images. These techniques assess only the surface water temperature and they are suitable to detect the temperature of vast water bodies but do not allow a detailed and precise surface water temperature assessment in limited areas of the water body. The technique shown in this research is based on the assessment of thermal-infrared images obtained in situ via portable thermal imager. As in all thermographic techniques, also in this technique, it is possible to estimate only the surface water temperature. A stream with the presence of a discharge of urban wastewater is proposed as case study to validate the technique and to show its application limits. Since the technique analyzes limited areas in extension of the water body, it allows a detailed and precise assessment of the water temperature. In general, the punctual and average stream temperatures are respectively uncorrected and corrected. An appropriate statistical method that minimizes the errors in the average stream temperature is proposed. The correct measurement of this temperature through the assessment of thermal- infrared images obtained in situ via portable

  13. Anaerobic treatment for C and S removal in 'zero-discharge' paper mills: effects of process design on S removal efficiencies.

    NARCIS (Netherlands)

    Lier, van J.B.; Lens, P.N.L.; Hulshoff Pol, L.W.

    2001-01-01

    Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is

  14. Determination of toxicity assays, trophic state index, and physicochemical parameters on Piracicaba River and Itapeva Stream

    Directory of Open Access Journals (Sweden)

    Larissa de Assunção Rodrigues

    2015-04-01

    Full Text Available Anthropogenic activity has a great impact on aquatic environments, causing changes in biodiversity and the environment. In an attempt to determine pollution levels, we established physicochemical parameters, a trophic state index and toxicity assays. The Piracicaba River is an important water body that receives xenobiotic waste from industry, domestic activities and agriculture. These pollutants are released directly into the river or by streams like Itapeva Stream, which discharges into the river. The goals of this work were to analyze the toxicity factor for Daphnia magna (TFD, trophic state index (TSI, pH, conductivity, temperature and dissolved oxygen in the Piracicaba River and in the Itapeva Stream from one monthly collection in the months of May, June and August 2011. In the Piracicaba River was not found toxicity, while in May, June and August the TFD was 1, 8 and 1, respectively. The TSI varied from mesotrophic to eutrophic in the river and in the stream from ultraoligotrophic to mesotrophic. The medium of conductivity for the Itapeva Stream was 479.5 µS.cm-1 and for the Piracicaba River was 219.8 µS.cm-1. The dissolved oxygen in the Piracicaba River varied from 6.89 to11.36 mg.L-1 and in the Itapeva Stream from 0.92 to 6.31 mg.L-1. Based upon the results, both hydric bodies were eutrophic, and the Itapeva Stream was classified as unsuitable for maintaining aquatic life.

  15. Akamai Streaming

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Akamai offers world-class streaming media services that enable Internet content providers and enterprises to succeed in today's Web-centric marketplace. They deliver live event Webcasts (complete with video production, encoding, and signal acquisition services), streaming media on demand, 24/7 Webcasts and a variety of streaming application services based upon their EdgeAdvantage.

  16. The plasma movie database system for JT-60

    International Nuclear Information System (INIS)

    Sueoka, Michiharu; Kawamata, Yoichi; Kurihara, Kenichi; Seki, Akiyuki

    2007-01-01

    The real-time plasma movie with the computer graphics (CG) of plasma shape is one of the most effective methods to know what discharge have been made in the experiment. For an easy use of the movie in the data analysis, we have developed the plasma movie database system (PMDS), which automatically records plasma movie according to the JT-60 discharge sequence, and transfers the movie files on request from the web site. The file is compressed to about 8 MB/shot small enough to be transferred within a few seconds through local area network (LAN). In this report, we describe the developed system from the technical point of view, and discuss a future plan on the basis of advancing video technology

  17. Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments

    Science.gov (United States)

    Magin, Katrin; Somlai-Haase, Celia; Schäfer, Ralf B.; Lorke, Andreas

    2017-11-01

    Inland waters play an important role in regional to global-scale carbon cycling by transporting, processing and emitting substantial amounts of carbon, which originate mainly from their catchments. In this study, we analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from the catchments in a temperate stream network. The analysis included more than 200 catchment areas in southwest Germany, ranging in size from 0.8 to 889 km2 for which CO2 evasion from stream surfaces and downstream transport with stream discharge were estimated from water quality monitoring data, while NPP in the catchments was obtained from a global data set based on remote sensing. We found that on average 13.9 g C m-2 yr-1 (corresponding to 2.7 % of terrestrial NPP) are exported from the catchments by streams and rivers, in which both CO2 evasion and downstream transport contributed about equally to this flux. The average carbon fluxes in the catchments of the study area resembled global and large-scale zonal mean values in many respects, including NPP, stream evasion and the carbon export per catchment area in the fluvial network. A review of existing studies on aquatic-terrestrial coupling in the carbon cycle suggests that the carbon export per catchment area varies in a relatively narrow range, despite a broad range of different spatial scales and hydrological characteristics of the study regions.

  18. Long-term patterns and short-term dynamics of stream solutes and suspended sediment in a rapidly weathering tropical watershed

    Science.gov (United States)

    Shanley, James B.; McDowell, William H.; Stallard, Robert F.

    2011-07-01

    The 326 ha Río Icacos watershed in the tropical wet forest of the Luquillo Mountains, northeastern Puerto Rico, is underlain by granodiorite bedrock with weathering rates among the highest in the world. We pooled stream chemistry and total suspended sediment (TSS) data sets from three discrete periods: 1983-1987, 1991-1997, and 2000-2008. During this period three major hurricanes crossed the site: Hugo in 1989, Hortense in 1996, and Georges in 1998. Stream chemistry reflects sea salt inputs (Na, Cl, and SO4), and high weathering rates of the granodiorite (Ca, Mg, Si, and alkalinity). During rainfall, stream composition shifts toward that of precipitation, diluting 90% or more in the largest storms, but maintains a biogeochemical watershed signal marked by elevated K and dissolved organic carbon (DOC) concentration. DOC exhibits an unusual "boomerang" pattern, initially increasing with flow but then decreasing at the highest flows as it becomes depleted and/or vigorous overland flow minimizes contact with watershed surfaces. TSS increased markedly with discharge (power function slope 1.54), reflecting the erosive power of large storms in a landslide-prone landscape. The relations of TSS and most solute concentrations with stream discharge were stable through time, suggesting minimal long-term effects from repeated hurricane disturbance. Nitrate concentration, however, increased about threefold in response to hurricanes then returned to baseline over several years following a pseudo first-order decay pattern. The combined data sets provide insight about important hydrologic pathways, a long-term perspective to assess response to hurricanes, and a framework to evaluate future climate change in tropical ecosystems.

  19. The Midwest Stream Quality Assessment—Influences of human activities on streams

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  20. Simulating pesticide transport from a sloped tropical soil to an adjacent stream.

    Science.gov (United States)

    Kahl, G; Ingwersen, J; Totrakool, S; Pansombat, K; Thavornyutikarn, P; Streck, T

    2010-01-01

    Preferential flow from stream banks is an important component of pesticide transport in the mountainous areas of northern Thailand. Models can help evaluate and interpret field data and help identify the most important transport processes. We developed a simple model to simulate the loss of pesticides from a sloped litchi (Litchi chinensis Sonn.) orchard to an adjacent stream. The water regime was modeled with a two-domain reservoir model, which accounts for rapid preferential flow simultaneously with slow flow processes in the soil matrix. Preferential flow is triggered when the topsoil matrix is saturated or the infiltration capacity exceeded. In addition, close to matrix saturation, rainfall events induce water release to the fractures and lead to desorption of pesticides from fracture walls and outflow to the stream. Pesticides undergo first order degradation and equilibrium sorption to soil matrix and fracture walls. The model was able to reproduce the dynamics of the discharge reasonably well (model efficiency [EF] = 0.56). The cumulative pesticide mass (EF = 0.91) and the pesticide concentration in the stream were slightly underestimated, but the deviation from measurement data is acceptable. Shape and timing of the simulated concentration peaks occurred in the same pattern as observed data. While the effect of surface runoff and preferential interflow on pesticide mass transport could not be absolutely clarified, according to our simulations, most concentration peaks in the stream are caused by preferential interflow pointing to the important role of this flow path in the hilly areas of northern Thailand.