WorldWideScience

Sample records for stray capacitive coupling

  1. Stray capacitances in the watt balance operation: electrostatic forces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Mana, G.

    2014-01-01

    In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results of a fin......In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results...

  2. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Mansuripur, T S [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Pascall, A J; Squires, T M [Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 (United States)], E-mail: squires@engineering.ucsb.edu

    2009-07-15

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  3. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    International Nuclear Information System (INIS)

    Mansuripur, T S; Pascall, A J; Squires, T M

    2009-01-01

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  4. Rf Discharge Impedance Measurements Using a New Method to Determine the Stray Impedances

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Hoog, de F.J.

    1999-01-01

    The impedance of a capacitively coupled radio frequency discharge in a tubular fluorescent lamp filled with neon and mercury is measured. The stray impedances in the electrical network are determined using a new method that requires no extra instruments. The reflection of power is used to determine

  5. Sensitivity Analysis and Stray Capacitance of Helical Flux Compression Generator with Multi Layer Filamentary Conductor in Rectangular Cross-Section

    Directory of Open Access Journals (Sweden)

    M. E. Mosleh

    2012-03-01

    Full Text Available This paper presents an approach to calculate the equivalent stray capacitance (SC of n-turn of the helical flux compression generator (HFCG coil with multi layer conductor wire filaments (MLCWF in the form of rectangular cross-section. This approach is based on vespiary regular hexagonal (VRH model. In this method, wire filaments of the generator coil are separated into many very small similar elementary cells. By the expanded explosion in the liner and move explosion to the end of the liner, the coil turns number will be reduced. So, the equivalent SC of the HFCG will increase. The results show that by progress of explosion and decrease of the turns’ number in the generator coil total capacitance of the generator increases until the explosion reaches to the second turn. When only one turn remains in the circuit, a decrease occurs in the total capacitance of the generator.

  6. Transparent Flexible Active Faraday Cage Enables In Vivo Capacitance Measurement in Assembled Microsensor.

    Science.gov (United States)

    Ahmadi, Mahdi; Rajamani, Rajesh; Sezen, Serdar

    2017-10-01

    Capacitive micro-sensors such as accelerometers, gyroscopes and pressure sensors are increasingly used in the modern electronic world. However, the in vivo use of capacitive sensing for measurement of pressure or other variables inside a human body suffers from significant errors due to stray capacitance. This paper proposes a solution consisting of a transparent thin flexible Faraday cage that surrounds the sensor. By supplying the active sensing voltage simultaneously to the deformable electrode of the capacitive sensor and to the Faraday cage, the stray capacitance during in vivo measurements can be largely eliminated. Due to the transparency of the Faraday cage, the top and bottom portions of a capacitive sensor can be accurately aligned and assembled together. Experimental results presented in the paper show that stray capacitance is reduced by a factor of 10 by the Faraday cage, when the sensor is subjected to a full immersion in water.

  7. Capacitive divider for output voltage measurement of intense electron beam accelerator

    International Nuclear Information System (INIS)

    Ding Desheng; Yi Lingzhi; Yu Binxiong; Hong Zhiqiang; Liu Jinliang

    2012-01-01

    A kind of simple-mechanism, easy-disassembly self-integrating capacitive divider used for measuring diode output voltage of intense electron beam accelerator (IEBA) is developed. The structure of the capacitive divider is described, and the capacitance value of the capacitive divider is calculated by theoretical analysis and electromagnetic simulation. The dependence of measurement voltage on electrical parameters such as stray capacitance, earth capacitance of front resistance is obtained by PSpice simulation. Measured waveforms appear overshoot phenomenon when stray capacitance of front resistance is larger, and the wavefront will be affected when earth capacitance of front resistance is larger. The diode output voltage waveforms of intense electron beam accelerator, are measured by capacitive divider and calibrated by water resistance divider, which is accordance with that measured by a resistive divider, the division ratio is about 563007. The designed capacitive divider can be used to measure high-voltage pulse with 100 ns full width at half maximum. (authors)

  8. A New Wide Frequency Band Capacitance Transducer with Application to Measuring Metal Fill Time

    Directory of Open Access Journals (Sweden)

    Wael DEABES

    2009-01-01

    Full Text Available A novel low cost, high frequency circuit for measuring capacitance is proposed in this paper. This new capacitance measuring circuit is able to measure small coupling capacitance variations with high stray-immunity. Hence, it could be used in many potential applications such as measuring the metal fill time in the Lost Foam Casting (LFC process and Electrical Capacitive Tomography (ECT system. The proposed circuit is based on differential charging/discharging method using current feedback amplifier and a synchronous demodulation stage. The circuit has a wide high frequency operating range with zero phase shift; hence multiple circuits can work at different frequencies simultaneously to measure the capacitance. The non-ideal characteristic of the circuit has been analyzed and the results verified through LTSpice simulation. Results from the tests on a prototype and a simulation elucidate the practicality of the proposed circuit.

  9. Finite-element simulations of coupling capacitances in capacitively coupled pixel detectors

    CERN Document Server

    AUTHOR|(SzGeCERN)755510

    2017-01-01

    Capacitively coupled hybrid silicon pixel-detector assemblies are under study for the vertex detector at the proposed future CLIC linear electron-positron collider. The assemblies consist of active CCPDv3 sensors, with 25 μm pixel pitch implemented in a 180 nm High- Voltage CMOS process, which are glued to the CLICpix readout ASIC, with the same pixel pitch and processed in a commercial 65 nm CMOS technology. The signal created in the silicon bulk of the active sensors passes a two-stage amplifier, in each pixel, and gets transferred as a voltage pulse to metal pads facing the readout chip (ROC). The coupling of the signal to the metal pads on the ROC side proceeds through the capacitors formed between the two chips by a thin layer of epoxy glue. The coupling strength and the amount of unwanted cross coupling to neighbouring pixels depends critically on the uniformity of the glue layer, its thickness and on the alignment precision during the flip-chip assembly process. Finite-element calculations of the coup...

  10. Layout Capacitive Coupling and Structure Impacts on Integrated High Voltage Power MOSFETs

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer-to-layer......The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer...... extraction tool shows that the side-by-side coupling dominated structure can perform better than the layer-to-layer coupling dominated structure, in terms of on-resistance times input or output capacitance, by 9.2% and 4.9%, respectively....

  11. Overview of capacitive couplings in windings

    NARCIS (Netherlands)

    Djukic, N.; Encica, L.; Paulides, J.J.H.

    2015-01-01

    The use of electrical machines (EMs) with variable-frequency drives (VFDs) results in electromagnetic interference (EMI). At high frequencies (HFs) of conducted EMI, the impedance of an EM insulation system fed from a VFD is small due to the parasitic capacitive couplings. Thus, the conducted EMI

  12. A current driven capacitively coupled chlorine discharge

    International Nuclear Information System (INIS)

    Huang, Shuo; Gudmundsson, J T

    2014-01-01

    The effect of driving current, driving frequency and secondary electrons on capacitively coupled chlorine discharge is systematically investigated using a hybrid approach consisting of a particle-in-cell/Monte Carlo simulation and a volume-averaged global model. The driving current is varied from 20 to 80 A m −2 , the driving frequency is varied from 13.56 to 60 MHz and the secondary electron emission coefficient is varied from 0.0 to 0.4. Key plasma parameters including electron energy probability function, electron heating rate, ion energy and angular distributions are explored and their variations with control parameters are analyzed and compared with other discharges. Furthermore, we extend our study to dual-frequency (DF) capacitively coupled chlorine discharge by adding a low-frequency current source and explore the effect of the low-frequency source on the discharge. The low-frequency current density is increased from 0 to 4 A m −2 . The flux of Cl 2 + ions to the surface increases only slightly while the average energy of Cl 2 + ions to the surface increases almost linearly with increasing low-frequency current, which shows possible independent control of the flux and energy of Cl 2 + ions by varying the low-frequency current in a DF capacitively coupled chlorine discharge. However, the increase in the flux of Cl + ions with increasing low-frequency current, which is mainly due to the increased dissociation fraction of the background gas caused by extra power supplied by the low-frequency source, is undesirable. (paper)

  13. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luí s Lemos; Marques, Luí s S A; Pintassilgo, Carlos D.; Wattieaux, Gaë tan; Es-sebbar, Et-touhami; Berndt, Johannes; Kovačević, Eva; Carrasco, Nathalie; Boufendi, Laï fa; Cernogora, Guy

    2012-01-01

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups

  14. Human body capacitance: static or dynamic concept? [ESD

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1998-01-01

    A standing human body insulated from ground by footwear and/or floor covering is in principle an insulated conductor and has, as such, a capacitance, i.e. the ability to store a charge and possibly discharge the stored energy in a spark discharge. In the human body, the human body capacitance (HBC...... when a substantial part of the flux extends itself through badly defined stray fields. Since the concept of human body capacitance is normally used in a static (electric) context, it is suggested that the HBC be determined by a static method. No theoretical explanation of the observed differences...

  15. Improved capacitance sensor with variable operating frequency for scanning capacitance microscopy

    International Nuclear Information System (INIS)

    Kwon, Joonhyung; Kim, Joonhui; Jeong, Jong-Hwa; Lee, Euy-Kyu; Seok Kim, Yong; Kang, Chi Jung; Park, Sang-il

    2005-01-01

    Scanning capacitance microscopy (SCM) has been gaining attention for its capability to measure local electrical properties in doping profile, oxide thickness, trapped charges and charge dynamics. In many cases, stray capacitance produced by different samples and measurement conditions affects the resonance frequency of a capacitance sensor. The applications of conventional SCM are critically limited by the fixed operating frequency and lack of tunability in its SCM sensor. In order to widen SCM application to various samples, we have developed a novel SCM sensor with variable operating frequency. By performing variable frequency sweep over the band of 160 MHz, the SCM sensor is tuned to select the best and optimized resonance frequency and quality factor for each sample measurement. The fundamental advantage of the new variable frequency SCM sensor was demonstrated in the SCM imaging of silicon oxide nano-crystals. Typical sensitivity of the variable frequency SCM sensor was found to be 10 -19 F/V

  16. Stray light characteristics of the diffractive telescope system

    Science.gov (United States)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  17. Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma

    International Nuclear Information System (INIS)

    Wang Hongyu; Sun Peng; Zhao Shuangyun; Li Yang; Jiang Wei

    2016-01-01

    We analyzed perpendicularly configured dual-frequency (DF) capacitively coupled plasmas (CCP). In this configuration, two pairs of electrodes are arranged oppositely, and the discharging is perpendicularly driven by two radio frequency (RF) sources. Particle-in-cell/Monte Carlo (PIC/MC) simulation showed that the configuration had some advantages as this configuration eliminated some dual frequency coupling effects. Some variation and potential application of the discharging configuration is discussed briefly. (paper)

  18. STRAY - An interactive program for the computation of stray radiation in infrared telescopes

    Science.gov (United States)

    St. Clair Dinger, Ann

    1987-01-01

    The STRAY program to model the amount of stray radiation reaching the focal plane of a well-baffled telescope is described. The STRAY telescope model is addressed, including the aperture shade, barrel baffle, optics, mirror sectioning and chopping, and off-axis points in focal plane. The possible illumination paths are shown, and calculation options using STRAY are discussed. The stored data and computational aspects of STRAY are addressed. STRAY is compared to the MINI-APART model, and applications of STRAY are described.

  19. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  20. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    Science.gov (United States)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  1. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    International Nuclear Information System (INIS)

    Fumagalli, L; Ferrari, G; Sampietro, M; Casuso, I; MartInez, E; Samitier, J; Gomila, G

    2006-01-01

    Nanoscale capacitance imaging with attofarad resolution (∼1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale

  2. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, L [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Ferrari, G [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Sampietro, M [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Casuso, I [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); MartInez, E [Plataforma de Nanotecnologia, Parc Cientific de Barcelona, C/ Josep Samitier 1-5, 08028-Barcelona (Spain); Samitier, J [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); Gomila, G [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain)

    2006-09-28

    Nanoscale capacitance imaging with attofarad resolution ({approx}1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale.

  3. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  4. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  5. Development of an Intelligent Capacitive Mass Sensor Based on Co-axial Cylindrical Capacitor

    Directory of Open Access Journals (Sweden)

    Amir ABU AL AISH

    2009-06-01

    Full Text Available The paper presents a linear, robust and intelligent capacitive mass sensor made of a co-axial cylindrical capacitor. It is designed such that the mass under measurement is directly proportional to the capacitance of the sensor. The average value of the output voltage of a capacitance to voltage converter is proportional to the capacitance of the sensor. The output of the converter is measured and displayed, as mass, with the help of microcontroller. The results are free from the effect of stray capacitances which cause errors at low values of capacitances. Developed sensor is linear, free from errors due to temperature and highly flexible in design. The proto-type of the mass sensor can weigh up to 4 kilogram only.

  6. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  7. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)756402

    2017-01-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128 × 128 square pixels with 25 μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (∼ 20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ∼ 20 ns for a power consumption of 5 μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (∼ 20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using...

  8. An evaluation of safety guidelines to restrict exposure to stray radiofrequency radiation from short-wave diathermy units

    Energy Technology Data Exchange (ETDEWEB)

    Shields, Nora [School of Physiotherapy, La Trobe University, Victoria 3086 (Australia); O' Hare, Neil [Department of Medical Physics and Bioengineering, St James' s Hospital, Dublin 8 (Ireland); Gormley, John [School of Physiotherapy, Trinity College Dublin, Trinity Centre for Health Sciences, St James' s Hospital, Dublin 8 (Ireland)

    2004-07-07

    Short-wave diathermy (SWD), a form of radiofrequency radiation used therapeutically by physiotherapists, may be applied in continuous (CSWD) or pulsed (PSWD) mode using either capacitive or inductive methods. Stray radiation emitted by these units may exceed exposure guidelines close to the equipment. Discrepant guidelines exist on a safe distance from an operating unit for operators and other personnel. Stray electric (E-field) and magnetic (H-field) field strengths from 10 SWD units in six departments were examined using a PMM 8053 meter and two isotropic probes (EP-330, HP-032). A 5 l saline phantom completed the patient circuit. Measurements were recorded in eight directions between 0.5 m and 2 m at hip and eye levels while the units operated at maximum output and data compared to current guidelines. Results found stray fields from capacitive CSWD fell below operator limits at 2 m (E-field 4.8-39.8 V/m; H-field 0.015-0.072 A/m) and at 1 m for inductive CSWD (E-field 0-36 V/m; H-field 0.01-0.065 A/m). Capacitive PSWD fields fell below the limits at 1.5 m (E-field 1.2-19.9 V/m; H-field 0.002-0.045 A/m) and at 1m for inductive PSWD (E-field 0.7-4.0 V/m; H-field 0.009-0.03 A/m). An extra 0.5 m was required before fields fell below the guidelines for other personnel. These results demonstrate, under a worst case scenario, emissions from SWD exceed the guidelines for operators at distances currently recommended as safe. Future guidelines should include recommendations for personnel other than physiotherapists.

  9. An evaluation of safety guidelines to restrict exposure to stray radiofrequency radiation from short-wave diathermy units

    International Nuclear Information System (INIS)

    Shields, Nora; O'Hare, Neil; Gormley, John

    2004-01-01

    Short-wave diathermy (SWD), a form of radiofrequency radiation used therapeutically by physiotherapists, may be applied in continuous (CSWD) or pulsed (PSWD) mode using either capacitive or inductive methods. Stray radiation emitted by these units may exceed exposure guidelines close to the equipment. Discrepant guidelines exist on a safe distance from an operating unit for operators and other personnel. Stray electric (E-field) and magnetic (H-field) field strengths from 10 SWD units in six departments were examined using a PMM 8053 meter and two isotropic probes (EP-330, HP-032). A 5 l saline phantom completed the patient circuit. Measurements were recorded in eight directions between 0.5 m and 2 m at hip and eye levels while the units operated at maximum output and data compared to current guidelines. Results found stray fields from capacitive CSWD fell below operator limits at 2 m (E-field 4.8-39.8 V/m; H-field 0.015-0.072 A/m) and at 1 m for inductive CSWD (E-field 0-36 V/m; H-field 0.01-0.065 A/m). Capacitive PSWD fields fell below the limits at 1.5 m (E-field 1.2-19.9 V/m; H-field 0.002-0.045 A/m) and at 1m for inductive PSWD (E-field 0.7-4.0 V/m; H-field 0.009-0.03 A/m). An extra 0.5 m was required before fields fell below the guidelines for other personnel. These results demonstrate, under a worst case scenario, emissions from SWD exceed the guidelines for operators at distances currently recommended as safe. Future guidelines should include recommendations for personnel other than physiotherapists

  10. Switchless charge-discharge circuit for electrical capacitance tomography

    International Nuclear Information System (INIS)

    Kryszyn, J; Smolik, W T; Radzik, B; Olszewski, T; Szabatin, R

    2014-01-01

    The main factor limiting the performance of electrical capacitance tomography (ECT) is an extremely low value of inter-electrode capacitances. The charge-discharge circuit is a well suited circuit for a small capacitance measurement due to its immunity to noise and stray capacitance, although it has a problem associated with a charge injected by the analogue switches, which results in a dc offset. This paper presents a new diode-based circuit for capacitance measurement in which a charge transfer method is realized without switches. The circuit was built and tested in one channel configuration with 16 multiplexed electrodes. The performance of the elaborated circuit and a comparison with a classic charge-discharge circuit are presented. The elaborated circuit can be used for sensors with inter-electrode capacitances not lower than 10 fF. The presented approach allows us to obtain a similar performance to the classic charge-discharge circuit, but has a simplified design. A lack of the need to synchronize the analogue switches in the transmitter and the receiver part of this circuit could be a desirable feature in the design of measurement systems integrated with electrodes. (paper)

  11. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    Science.gov (United States)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  12. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  13. The Disturbing Effect of the Stray Magnetic Fields on Magnetoimpedance Sensors

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-10-01

    Full Text Available The disturbing effect of the stray magnetic fields of Fe-based amorphous ribbons on the giant magnetoimpedance (GMI sensor has been investigated systematically in this paper. Two simple methods were used for examining the disturbing effect of the stray magnetic fields of ribbons on the GMI sensor. In order to study the influence of the stray magnetic fields on the GMI effect, the square-shaped amorphous ribbons were tested in front, at the back, on the left and on the top of a meander-line GMI sensor made up of soft ferromagnetic films, respectively. Experimental results show that the presence of ribbons in front or at the back of GMI sensor shifts the GMI curve to a lower external magnetic field. On the contrary, the presence of ribbons on the left or on the top of the GMI sensor shifts the GMI curve to a higher external magnetic field, which is related to the coupling effect of the external magnetic field and the stray magnetic fields. The influence of the area and angle of ribbons on GMI was also studied in this work. The GMI sensor exhibits high linearity for detection of the stray magnetic fields, which has made it feasible to construct a sensitive magnetometer for detecting the typical stray magnetic fields of general soft ferromagnetic materials.

  14. Specific methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasitic effects

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Ivan [Laboratoire de Génie Électrique de Paris (LGEP), UMR 8507 CNRS-Supélec, Paris-Sud and UPMC Paris 06 Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France); Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis (France); Chrétien, Pascal; Schneegans, Olivier; Houzé, Frédéric, E-mail: houze@lgep.supelec.fr [Laboratoire de Génie Électrique de Paris (LGEP), UMR 8507 CNRS-Supélec, Paris-Sud and UPMC Paris 06 Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France)

    2014-02-24

    On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.

  15. A capacitively coupled dose-rate-dependent transient upset mechanism in a bipolar memory

    International Nuclear Information System (INIS)

    Turfler, R.M.; Pease, R.L.; Dinger, G.; Armstrong, B.

    1992-01-01

    This paper reports on a pattern sensitivity that was observed in the threshold dose rate response of a bipolar 16K PROM for radiation pulse widths of 20-100 ns. For the worst case pattern, the upset threshold was a factor of three lower than for the commonly used checkerboard pattern. The mechanism for this pattern sensitivity was found to be a capacitively coupled voltage transient on a sensitive node which caused a low-to-high transition at the output. A design fix was implemented to significantly alter the ratio of the two parasitic capacitances in a capacitive divider which reduced the amplitude of the voltage transient at the sensitive node. It was demonstrated that in the redesign, the pattern sensitivity was eliminated

  16. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  17. Tunable superconducting resonators with integrated trap structures for coupling with ultracold atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, Benedikt; Wiedmaier, Dominik; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Bothner, Daniel [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2016-07-01

    We intend to investigate a hybrid quantum system where ultracold atomic gases play the role of a long-living quantum memory, coupled to a superconducting qubit via a coplanar waveguide transmission line resonator. As a first step we developed a resonator chip containing a Z-shaped trapping wire for the atom trap. In order to suppress parasitic resonances due to stray capacitances, and to achieve good ground connection we use hybrid superconductor - normal conductor chips. As an additional degree of freedom we add a ferroelectric capacitor making the resonators voltage-tunable. We furthermore show theoretical results on the expected coupling strength between resonator and atomic cloud.

  18. Stray light analysis and control

    CERN Document Server

    Fest, Eric

    2013-01-01

    Stray light is defined as unwanted light in an optical system, a familiar concept for anyone who has taken a photograph with the sun in or near their camera's field of view. This book addresses stray light terminology, radiometry, and the physics of stray light mechanisms, such as surface roughness scatter and ghost reflections. The most-efficient ways of using stray light analysis software packages are included. The book also demonstrates how the basic principles are applied in the design, fabrication, and testing phases of optical system development.

  19. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    Science.gov (United States)

    Wang, Zhaohui; Tammela, Petter; Strømme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k

  20. Effect of capacitive feedback on the characteristics of direct current superconducting quantum interference device coupled to a multiturn input coil

    International Nuclear Information System (INIS)

    Minotani, T.; Enpuku, K.; Kuroki, Y.

    1997-01-01

    Distortion of voltage versus flux (V endash Φ) relation of a dc superconducting quantum interference device (SQUID) coupled to a multiturn input coil is studied. First, resonant behavior of the coupled SQUID due to the so-called input coil resonance is clarified. It is shown that large rf noise flux is produced by the input coil resonance. This rf flux is added to the SQUID, and results in large rf voltage across the SQUID. In the case where parasitic capacitance exists between the input coil and the ground of the SQUID, this rf voltage produces the rf flux again, i.e., a feedback loop for the rf flux is formed. Taking into account this capacitive feedback, we study the V endash Φ relation of the coupled SQUID. Numerical simulation shows that the V endash Φ relation is distorted considerably by the feedback mechanism. The simulation result explains well the experimental V endash Φ relation of the coupled SQUID. The combination of the input coil resonance with the capacitive feedback is the most likely mechanism for the distorted V endash Φ curve of the coupled SQUID. The condition for occurrence of the distorted V endash Φ curve due to the capacitive feedback is also obtained, and methods to prevent degradation are discussed. copyright 1997 American Institute of Physics

  1. Detecting stray microwaves and nonequilibrium quasiparticles in thin films by single-electron tunneling

    Science.gov (United States)

    Saira, Olli-Pentti; Maisi, Ville; Kemppinen, Antti; Möttönen, Mikko; Pekola, Jukka

    2013-03-01

    Superconducting thin films and tunnel junctions are the building blocks of many state-of-the-art technologies related to quantum information processing, microwave detection, and electronic amplification. These devices operate at millikelvin temperatures, and - in a naive picture - their fidelity metrics are expected to improve as the temperature is lowered. However, very often one finds in the experiment that the device performance levels off around 100-150 mK. In my presentation, I will address three common physical mechanisms that can cause such saturation: stray microwaves, nonequilibrium quasiparticles, and sub-gap quasiparticle states. The new experimental data I will present is based on a series of studies on quasiparticle transport in Coulomb-blockaded normal-insulator-superconductor tunnel junction devices. We have used a capacitively coupled SET electrometer to detect individual quasiparticle tunneling events in real time. We demonstrate the following record-low values for thin film aluminum: quasiparticle density nqp < 0 . 033 / μm3 , normalized density of sub-gap quasiparticle states (Dynes parameter) γ < 1 . 6 ×10-7 . I will also discuss some sample stage and chip designs that improve microwave shielding.

  2. Design and test of a capacitance detection circuit based on a transimpedance amplifier

    International Nuclear Information System (INIS)

    Mu Linfeng; Zhang Wendong; He Changde; Zhang Rui; Song Jinlong; Xue Chenyang

    2015-01-01

    This paper presents a transimpedance amplifier (TIA) capacitance detection circuit aimed at detecting micro-capacitance, which is caused by ultrasonic stimulation applied to the capacitive micro-machined ultrasonic transducer (CMUT). In the capacitance interface, a TIA is adopted to amplify the received signal with a center frequency of 400 kHz, and finally detect ultrasound pressure. The circuit has a strong anti-stray property and this paper also studies the calculation of compensation capacity in detail. To ensure high resolution, noise analysis is conducted. After optimization, the detected minimum ultrasound pressure is 2.1 Pa, which is two orders of magnitude higher than the former. The test results showed that the circuit was sensitive to changes in ultrasound pressure and the distance between the CMUT and stumbling block, which also successfully demonstrates the functionality of the developed TIA of the analog-front-end receiver. (paper)

  3. Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes

    Science.gov (United States)

    Hu, Xuedong; You, J. Q.; Nori, Franco

    2005-03-01

    Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in a Cooper-pair box (CPB). Here we discuss an encoding approachootnotetextJ.Q. You, X.Hu, and F. Nori, cond-mat/0407423. to control the decoherence effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system has a low-decoherence subspace of two states, for which we calculate the dephasing and relaxation rates using a master equation approach. Our results show that the inter-box Coulomb correlation can significantly suppress decoherence of this two-level system by reducing the strength of the system-environment interaction, making it a promising candidate as a logical qubit, encoded using two CPBs.

  4. Effect of antenna capacitance on the plasma characteristics of an internal linear inductively coupled plasma system

    International Nuclear Information System (INIS)

    Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young

    2008-01-01

    This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power

  5. Hand-to-hand coupling and strategies to minimize unintentional energy transfer during laparoscopic surgery.

    Science.gov (United States)

    Overbey, Douglas M; Hilton, Sarah A; Chapman, Brandon C; Townsend, Nicole T; Barnett, Carlton C; Robinson, Thomas N; Jones, Edward L

    2017-11-01

    Energy-based devices are used in nearly every laparoscopic operation. Radiofrequency energy can transfer to nearby instruments via antenna and capacitive coupling without direct contact. Previous studies have described inadvertent energy transfer through bundled cords and nonelectrically active wires. The purpose of this study was to describe a new mechanism of stray energy transfer from the monopolar instrument through the operating surgeon to the laparoscopic telescope and propose practical measures to decrease the risk of injury. Radiofrequency energy was delivered to a laparoscopic L-hook (monopolar "bovie"), an advanced bipolar device, and an ultrasonic device in a laparoscopic simulator. The tip of a 10-mm telescope was placed adjacent but not touching bovine liver in a standard four-port laparoscopic cholecystectomy setup. Temperature increase was measured as tissue temperature from baseline nearest the tip of the telescope which was never in contact with the energy-based device after a 5-s open-air activation. The monopolar L-hook increased tissue temperature adjacent to the camera/telescope tip by 47 ± 8°C from baseline (P energy devices significantly reduced temperature change in comparison to the monopolar instrument (47 ± 8°C) for both the advanced bipolar (1.2 ± 0.5°C; P energy transfers from the monopolar "bovie" instrument through the operating surgeon to standard electrically inactive laparoscopic instruments. Hand-to-hand coupling describes a new form of capacitive coupling where the surgeon's body acts as an electrical conductor to transmit energy. Strategies to reduce stray energy transfer include avoiding the same surgeon holding the active electrode and laparoscopic camera or using alternative energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  7. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luís Lemos

    2012-07-06

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). Simulations use a hybrid code that couples a two-dimensional time-dependent fluid module, describing the dynamics of the charged particles (electrons and positive ions N 2 + and N 4 + ), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species. The coupling between these modules adopts the local mean energy approximation to define spacetime-dependent electron parameters for the fluid module and to work out spacetime-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 34. © 2012 IOP Publishing Ltd.

  8. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively lo...... with the contact resistance artificially increased by resistors. The results emphasize the importance of keeping contact resistance low in CR measurements....

  9. Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge

    International Nuclear Information System (INIS)

    Xu Lin; Chen, Lee; Funk, Merritt; Ranjan, Alok; Hummel, Mike; Bravenec, Ron; Sundararajan, Radha; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    The energy distribution of ballistic electrons in a dc/rf hybrid parallel-plate capacitively coupled plasma reactor was measured. Ballistic electrons originated as secondaries produced by ion and electron bombardment of the electrodes. The energy distribution of ballistic electrons peaked at the value of the negative bias applied to the dc electrode. As that bias became more negative, the ballistic electron current on the rf substrate electrode increased dramatically. The ion current on the dc electrode also increased

  10. Limitations of the electromagnetic isolation for multi-antenna systems on small terminals with capacitive coupling elements

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Alrabadi, Osama; Franek, Ondrej

    2012-01-01

    Recently, there has been a growing interest for evaluating the performance potential of multiple antenna systems on small terminals. This work focuses on Capacitive Coupling Elements (CCEs), which are expected to perform differently with respect to self-resonating elements. Several CCEs...

  11. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    Science.gov (United States)

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  12. Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Science.gov (United States)

    Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.

    2018-01-01

    We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.

  13. Capacitive Coupling in Double-Circuit Transmission Lines

    Directory of Open Access Journals (Sweden)

    Zdenka Benesova

    2004-01-01

    Full Text Available The paper describes an algorithm for calculation of capacitances and charges on conductors in systems with earth wires and in double-circuit overhead lines with respect to phase arrangement. A balanced voltage system is considered. A suitable transposition of individual conductors enables to reduce the electric and magnetic fields in vicinity of overhead lines and to limit the inductive and capacitive linkage. The procedure is illustrated on examples the results of which lead to particular recommendations for designers.

  14. Design Considerations in Capacitively Coupled Plasmas

    Science.gov (United States)

    Song, Sang-Heon; Ventzek, Peter; Ranjan, Alok

    2015-11-01

    Microelectronics industry has driven transistor feature size scaling from 10-6 m to 10-9 m during the past 50 years, which is often referred to as Moore's law. It cannot be overstated that today's information technology would not have been so successful without plasma material processing. One of the major plasma sources for the microelectronics fabrication is capacitively coupled plasmas (CCPs). The CCP reactor has been intensively studied and developed for the deposition and etching of different films on the silicon wafer. As the feature size gets to around 10 nm, the requirement for the process uniformity is less than 1-2 nm across the wafer (300 mm). In order to achieve the desired uniformity, the hardware design should be as precise as possible before the fine tuning of process condition is applied to make it even better. In doing this procedure, the computer simulation can save a significant amount of resources such as time and money which are critical in the semiconductor business. In this presentation, we compare plasma properties using a 2-dimensional plasma hydrodynamics model for different kinds of design factors that can affect the plasma uniformity. The parameters studied in this presentation include chamber accessing port, pumping port, focus ring around wafer substrate, and the geometry of electrodes of CCP.

  15. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Cheol [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hyun-Jun; Lee, Hyo-Chang; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2015-12-15

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10% by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.

  16. Stray light reduction for Thomson scattering

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Doebele, H.F.; Muraoka, K.

    1999-01-01

    In order to perform Thomson scattering in a gas discharge tube, the reduction of stray light is very important because of the very small Thomson cross-section. By introducing a sodium absorption cell as a notch filter, we can reduce the measured stray light considerably. Then we have to use a dye

  17. Analysis of ecstasy tablets using capillary electrophoresis with capacitively coupled contactless conductivity detection.

    Science.gov (United States)

    Porto, Suely K S S; Nogueira, Thiago; Blanes, Lucas; Doble, Philip; Sabino, Bruno D; do Lago, Claudimir L; Angnes, Lúcio

    2014-11-01

    A method for the identification of 3,4-methylenedioxymethamphetamine (MDMA) and meta-chlorophenylpiperazine (mCPP) was developed employing capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C(4) D). Sample extraction, separation, and detection of "Ecstasy" tablets were performed in fenproporex, caffeine, lidocaine, and cocaine. Separation was performed in <90 sec. The advantages of using C(4) D instead of traditional CE-UV methods for in-field analysis are also discussed. © 2014 American Academy of Forensic Sciences.

  18. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    Science.gov (United States)

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  19. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    International Nuclear Information System (INIS)

    Kwon, Deuk-Chul; Yoon, Jung-Sik

    2011-01-01

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.

  20. Effect of low-frequency power on dual-frequency capacitively coupled plasmas

    International Nuclear Information System (INIS)

    Yuan, Q H; Xin, Y; Huang, X J; Sun, K; Ning, Z Y; Yin, G Q

    2008-01-01

    In low-pressure dual-frequency capacitively coupled plasmas driven with 60/13.56 MHz, the effect of low-frequency power on the plasma characteristics was investigated using a compensated Langmuir electrostatic probe. At lower pressures (about 10 mTorr), it was possible to control the plasma density and the ion bombardment energy independently. As the pressure increased, this independent control could not be achieved. As the low-frequency power increased for the fixed high-frequency power, the electron energy probability function (EEPF) changed from Druyvesteyn-like to Maxwellian-like at pressures of 50 mTorr and higher, along with a drop in electron temperature. The plasma parameters were calculated and compared with simulation results.

  1. Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

    Directory of Open Access Journals (Sweden)

    Kyoseung Keum

    2018-01-01

    Full Text Available In this paper, a planar printed hybrid short/open-ended slot antenna with capacitive coupling feed strips is proposed for hepta-band mobile applications. The proposed antenna is comprised of a slotted ground plane on the top plane and two capacitive coupling feed strips with a chip inductor on the bottom plane. At the low frequency band, the short-ended long slot fed by strip 1 generates its half-wavelength resonance mode, whereas the T-shaped open ended slot fed by strip 2 generates its quarter-wavelength resonance mode for the high frequency band. The antenna provides a wide bandwidth covering GSM850/GSM900/DCS/PCS/UMTS/LTE2300/LTE2500 operation bands. Moreover, the antenna occupies a small volume of 15 mm × 50 mm × 1 mm. The operating principle of the proposed antenna and the simulation/measurement results are presented and discussed.

  2. Influence of stray light for divertor spectroscopy in ITER

    International Nuclear Information System (INIS)

    Kajita, Shin; Veshchev, Evgeny; Lisgo, Steve; Barnsley, Robin; Morgan, Philip; Walsh, Michael; Ogawa, Hiroaki; Sugie, Tatsuo; Itami, Kiyoshi

    2015-01-01

    The influence of stray light in the divertor spectroscopy system in ITER is quantitatively investigated using a ray tracing simulation. Simulation results show that the stray light is negligible at positions in the divertor where the plasma emission is strong. However, it is also shown that the stray light can be significantly greater than the real signal if the plasma intensity is low. Deuterium and beryllium emissions are used for the assessment; for beryllium cases in particular, since the emission profile may be non-uniform in the divertor region, the influence of stray light can be non-negligible at some positions, e.g., above the divertor dome

  3. Real-time control of electron density in a capacitively coupled plasma

    International Nuclear Information System (INIS)

    Keville, Bernard; Gaman, Cezar; Turner, Miles M.; Zhang Yang; Daniels, Stephen; Holohan, Anthony M.

    2013-01-01

    Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.

  4. Detection of Helminth Eggs and Identification of Hookworm Species in Stray Cats, Dogs and Soil from Klang Valley, Malaysia.

    Science.gov (United States)

    Tun, Sandee; Ithoi, Init; Mahmud, Rohela; Samsudin, Nur Izyan; Kek Heng, Chua; Ling, Lau Yee

    2015-01-01

    The present study was conducted to determine the prevalence of helminth eggs excreted in the faeces of stray cats, dogs and in soil samples. A total of 505 fresh samples of faeces (from 227 dogs and 152 cats) and soil were collected. The egg stage was detected via microscopy after the application of formalin-ether concentration technique. Genomic DNA was extracted from the samples containing hookworm eggs and used for further identification to the species level using real-time polymerase chain reaction coupled with high resolution melting analysis. Microscopic observation showed that the overall prevalence of helminth eggs among stray cats and dogs was 75.7% (95% CI = 71.2%-79.9%), in which 87.7% of dogs and 57.9% of cats were infected with at least one parasite genus. Five genera of heliminth eggs were detected in the faecal samples, including hookworms (46.4%), Toxocara (11.1%), Trichuris (8.4%), Spirometra (7.4%) and Ascaris (2.4%). The prevalence of helminth infections among stray dogs was significantly higher than that among stray cats (p dog hookworm, Ancylostoma caninum, was also detected among cats, which is the first such occurrence reported in Malaysia till date. This finding indicated that there was a cross-infection of A. caninum between stray cats and dogs because of their coexistent within human communities. Taken together, these data suggest the potential role of stray cats and dogs as being the main sources of environmental contamination as well as for human infections.

  5. ON THE INVERSION OF STOKES PROFILES WITH LOCAL STRAY-LIGHT CONTAMINATION

    International Nuclear Information System (INIS)

    Asensio Ramos, A.; Manso Sainz, R.

    2011-01-01

    Obtaining the magnetic properties of non-resolved structures in the solar photosphere is always challenging and problems arise because the inversion is carried out through the numerical minimization of a merit function that depends on the proposed model. We investigate the reliability of inversions in which the stray-light contamination is obtained from the same observations as a local average. In this case, we show that it is fundamental to include the covariance between the observed Stokes profiles and the stray-light contamination. The ensuing modified merit function of the inversion process penalizes large stray-light contaminations simply because of the presence of positive correlations between the observables and the stray light, fundamentally produced by spatially variable systematics. We caution that if the wrong merit function is used, artificially large stray-light contaminations might be inferred. Since this effect disappears if the stray-light contamination is obtained as an average over the full field of view, we recommend taking into account stray-light contamination using a global approach.

  6. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  7. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    Science.gov (United States)

    Khan, Farid Ullah

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  8. STRAY DOG DETECTION IN WIRED CAMERA NETWORK

    Directory of Open Access Journals (Sweden)

    C. Prashanth

    2013-08-01

    Full Text Available Existing surveillance systems impose high level of security on humans but lacks attention on animals. Stray dogs could be used as an alternative to humans to carry explosive material. It is therefore imperative to ensure the detection of stray dogs for necessary corrective action. In this paper, a novel composite approach to detect the presence of stray dogs is proposed. The captured frame from the surveillance camera is initially pre-processed using Gaussian filter to remove noise. The foreground object of interest is extracted utilizing ViBe algorithm. Histogram of Oriented Gradients (HOG algorithm is used as the shape descriptor which derives the shape and size information of the extracted foreground object. Finally, stray dogs are classified from humans using a polynomial Support Vector Machine (SVM of order 3. The proposed composite approach is simulated in MATLAB and OpenCV. Further it is validated with real time video feeds taken from an existing surveillance system. From the results obtained, it is found that a classification accuracy of about 96% is achieved. This encourages the utilization of the proposed composite algorithm in real time surveillance systems.

  9. Conjugate Image Theory Applied on Capacitive Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Ben Minnaert

    2017-01-01

    Full Text Available Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this optimal network as a function of the characteristics of the capacitive wireless link, as well for the series as for the parallel topology. The results are compared with the inductive power transfer system. Introduction of a new concept, the coupling function, enables the description of the compensation network of both an inductive and a capacitive system in two elegant equations, valid for the series and the parallel topology. This approach allows better understanding of the fundamentals of the wireless power transfer link, necessary for the design of an efficient system.

  10. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  11. Prevalence of external ear disorders in Belgian stray cats.

    Science.gov (United States)

    Bollez, Anouck; de Rooster, Hilde; Furcas, Alessandra; Vandenabeele, Sophie

    2018-02-01

    Objectives Feline otitis externa is a multifactorial dermatological disorder about which very little is known. The objective of this study was to map the prevalence of external ear canal disorders and the pathogens causing otitis externa in stray cats roaming around the region of Ghent, Belgium. Methods One hundred and thirty stray cats were randomly selected during a local trap-neuter-return programme. All cats were European Shorthairs. This study included clinical, otoscopic and cytological evaluation of both external ears of each cat. Prospective data used as parameters in this study included the sex, age and body condition score of each cat, as well as the presence of nasal and/or ocular discharge, and the results of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) Snap tests. Results Remarkably, very few (sub)clinical problems of the external ear canal were found in the stray cat population. Malassezia species was by far the most common organism found in the external ear canals of the 130 stray cats. A total of 96/130 (74%) cats were found to have Malassezia species organisms present in one or both ears based on the cytological examination. No correlation was found between the parameters of sex, age, body condition score, the presence of nasal and/or ocular discharge and FIV and FeLV status, and the presence of parasites, bacteria or yeasts. Conclusions and relevance This study provides more information about the normal state of the external ear canal of stray cats. The ears of most stray cats are relatively healthy. The presence of Malassezia species organisms in the external ear canal is not rare among stray cats.

  12. Effect of electromagnetic waves and higher harmonics in capacitively coupled plasma phenomena

    International Nuclear Information System (INIS)

    Upadhyay, R R; Sawada, I; Ventzek, P L G; Raja, L L

    2013-01-01

    High-resolution self-consistent numerical simulation of electromagnetic wave phenomena in an axisymmetric capacitively coupled plasma reactor is reported. A prominent centre-peaked plasma density profile is observed for driving frequencies of 60 MHz and is consistent with observations in the literature and accompanying experimental studies. A power spectrum of the simulated wave electric field reveals the presence of well-resolved high frequency harmonic content up to the 20th harmonic of the excitation frequency; an observation that has also been reported in experiments. Importantly, the simulation results reveal that the occurrence of higher harmonics is strongly correlated with the occurrence of a centre-peaked plasma density profile. (fast track communication)

  13. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    Science.gov (United States)

    Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin

    2010-09-21

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-

  14. Reduction of ballistic spin scattering in a spin-FET using stray electric fields

    International Nuclear Information System (INIS)

    Nemnes, G A; Manolescu, A; Gudmundsson, V

    2012-01-01

    The quasi-bound states which appear as a consequence of the Rashba spin-orbit (SO) coupling, introduce a strongly irregular behavior of the spin-FET conductance at large Rashba parameter. Moreover, the presence of the bulk inversion asymmetry, i.e. the Dresselhaus SO coupling, may compromise the spin-valve effect even at small values of the Rashba parameter. However, by introducing stray electric fields in addition to the SO couplings, we show that the effect of the SO induced quasi-bound states can be tuned. The oscillations of the spin-resolved conductance become smoother and the control of the spin-FET characteristics becomes possible. For the calculations we employ a multi-channel scattering formalism, based on the R-matrix method extended to spin transport, in the presence of Rashba and Dresselhaus SO couplings.

  15. Analysis, Design and Implementation of a Quasi-Proportional-Resonant Controller for a Multifunctional Capacitive-Coupling Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Ye, Tao; Dai, Ning-Yi; Lam, Chi-Seng

    2016-01-01

    to compensate reactive power and transfer active power simultaneously. It is a promising solution for micro-grid and building-integrated distributed generator systems. A quasiproportional- resonant (quasi-PR) controller is applied to reduce steady-state current tracking errors of the CGCI in this paper......The capacitive-coupling grid-connected inverter (CGCI) is coupled to the point of common coupling via a second-order LC branch. Its operational voltage is much lower than that of a conventional inductive-coupling grid-connected inverter (IGCI) when it serves as a multifunctional inverter...... tracking errors are greatly reduced when the quasi-PR controller rather than the proportional-integration controller is applied. Experimental results are also provided to validate the CGCI as a multifunctional grid-connected inverter....

  16. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  17. Aerial firing and stray bullet injuries: a rising tide.

    Science.gov (United States)

    Ali, Syed Asad; Tahir, Syed Mohammad; Makhdoom, Asadullah; Shaikh, Abdul Razaque; Siddique, Akmal Jamal

    2015-04-01

    Aerial firing is shooting, using fire arm, into the air usually during a celebration. This observational study aimed to quantify magnitude and impact of stray bullet injuries by aerial firing at surgical emergencies of the Liaquat University Hospital (a university hospital), Hyderabad, Sindh, Pakistan from January 2009 to December 2010 (2 years). During the study period, 144 firearm injuries due to stray bullet reported to the A and E departments of the university hospital. All patients referred to surgical unit providing emergency cover on that day irrespective of the severity of the injury for medico-legal reasons. For this study, the cases were divided into those having trivial injury and do not require any active surgical intervention and those having serious injury mandating surgical intervention. One hundred and two cases of stray bullet injury sustained trivial injury and followed as outpatients after an overnight period of indoor hospitalization; however, 42 patients with stray bullet injuries requiring surgical intervention were hospitalized. The most common events leading to aerial firing and stray bullet injuries were marriage ceremonies, followed by a political rallies and New Year celebrations. Stray bullet injury also reported after aerial firing on cricket/hockey team victories, Pakistan Independence Day (14th August), cultural day in Sindh and Basant (Kite) festival in Punjab. The most frequent sites with serious stray bullet injury were chest (15), head and neck (10), abdomen (9) and limbs (8), respectively. Surgical interventions performed included chest intubation, exploration of wound tract to retrieve bullet if lodged superficially and was palpable, laparotomy to managed intra-abdominal injury, reduction of fracture site followed by reconstruction, flap reconstruction and graft for nonhealing wound. The mean duration of hospital stay was 19 days. No mortality was observed in this series of patients. We conclude that the prevalence of aerial

  18. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot.

    Science.gov (United States)

    Ke, Quan; Luo, Weijie; Yan, Guozheng; Yang, Kai

    2016-04-01

    A wireless power transfer system based on the weakly inductive coupling makes it possible to provide the endoscope microrobot (EMR) with infinite power. To facilitate the patients' inspection with the EMR system, the diameter of the transmitting coil is enlarged to 69 cm. Due to the large transmitting range, a high quality factor of the Litz-wire transmitting coil is a necessity to ensure the intensity of magnetic field generated efficiently. Thus, this paper builds an analytical model of the transmitting coil, and then, optimizes the parameters of the coil by enlarging the quality factor. The lumped model of the transmitting coil includes three parameters: ac resistance, self-inductance, and stray capacitance. Based on the exact two-dimension solution, the accurate analytical expression of ac resistance is derived. Several transmitting coils of different specifications are utilized to verify this analytical expression, being in good agreements with the measured results except the coils with a large number of strands. Then, the quality factor of transmitting coils can be well predicted with the available analytical expressions of self- inductance and stray capacitance. Owing to the exact estimation of quality factor, the appropriate coil turns of the transmitting coil is set to 18-40 within the restrictions of transmitting circuit and human tissue issues. To supply enough energy for the next generation of the EMR equipped with a Ø9.5×10.1 mm receiving coil, the coil turns of the transmitting coil is optimally set to 28, which can transfer a maximum power of 750 mW with the remarkable delivering efficiency of 3.55%.

  19. Monitoring dc stray current corrosion at sheet pile structures

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2012-01-01

    Steel is discarded by railway owners as a material for underground structures near railway lines, due to uncertainty over increased corrosion by DC stray currents stemming from the traction power system. This paper presents a large scale field test in which stray currents interference of a sheet

  20. Conjugate Image Theory Applied on Capacitive Wireless Power Transfer

    OpenAIRE

    Ben Minnaert; Nobby Stevens

    2017-01-01

    Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this opti...

  1. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  2. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  3. Stray light field dependence for large astronomical space telescopes

    Science.gov (United States)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the

  4. Performance of human body communication-based wearable ECG with capacitive coupling electrodes.

    Science.gov (United States)

    Sakuma, Jun; Anzai, Daisuke; Wang, Jianqing

    2016-09-01

    Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors' proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals.

  5. Stray animal populations and public health in the South Mediterranean and the Middle East regions

    Directory of Open Access Journals (Sweden)

    Aristarhos Seimenis

    2014-06-01

    Full Text Available Uncontrolled urban growth in South Mediterranean and the Middle East regions involves city dwellers and stray animals (mainly dogs and cats creating a dense and downgraded environment, in which irregular street garbage collection disposes sufficient food for survival and proliferation of stray animals. Under such conditions serious public health hazards are expected due to the increase of animal bites, the multiplication of insects and rodents vectors of different viral, bacterial, fungal and parasitic agents to which humans are exposed. Traditional national stray animal eradication programs and occasional small animals' humane elimination campaigns are insufficient to avert human and veterinary health risks when not coupled with modern technologies. In such environments, multiple foci of emerging and re‑emerging zoonoses easily spread, i.e. rabies, hydatidosis, leishmaniasis and toxoplasmosis. Upgrading urban and peri-urban situations requires integrated/coordinated management programmes, in which public and animal health services as well as municipalities have a crucial role. Control and upgrading programmes should be flexible and able to adapt to the specific conditions of the given country/region. In this context, intersectoral/interprofessional collaborations and community participation are crucial for any national and regional development strategies. In this respect, a global approach considering both public health and socio-economic problems shows to be extremely adequate and effective.

  6. Detection of Helminth Eggs and Identification of Hookworm Species in Stray Cats, Dogs and Soil from Klang Valley, Malaysia.

    Directory of Open Access Journals (Sweden)

    Sandee Tun

    Full Text Available The present study was conducted to determine the prevalence of helminth eggs excreted in the faeces of stray cats, dogs and in soil samples. A total of 505 fresh samples of faeces (from 227 dogs and 152 cats and soil were collected. The egg stage was detected via microscopy after the application of formalin-ether concentration technique. Genomic DNA was extracted from the samples containing hookworm eggs and used for further identification to the species level using real-time polymerase chain reaction coupled with high resolution melting analysis. Microscopic observation showed that the overall prevalence of helminth eggs among stray cats and dogs was 75.7% (95% CI = 71.2%-79.9%, in which 87.7% of dogs and 57.9% of cats were infected with at least one parasite genus. Five genera of heliminth eggs were detected in the faecal samples, including hookworms (46.4%, Toxocara (11.1%, Trichuris (8.4%, Spirometra (7.4% and Ascaris (2.4%. The prevalence of helminth infections among stray dogs was significantly higher than that among stray cats (p < 0.001. Only three genera of helminths were detected in soil samples with the prevalence of 23% (95% CI = 15.1%-31%, consisting of hookworms (16.6%, Ascaris (4% and Toxocara (2.4%. The molecular identification of hookworm species revealed that Ancylostoma ceylanicum was dominant in both faecal and soil samples. The dog hookworm, Ancylostoma caninum, was also detected among cats, which is the first such occurrence reported in Malaysia till date. This finding indicated that there was a cross-infection of A. caninum between stray cats and dogs because of their coexistent within human communities. Taken together, these data suggest the potential role of stray cats and dogs as being the main sources of environmental contamination as well as for human infections.

  7. Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges

    International Nuclear Information System (INIS)

    Kushner, Mark J.

    2003-01-01

    Magnetically enhanced capacitively coupled plasma sources use transverse static magnetic fields to modify the performance of low pressure radio frequency discharges. Magnetically enhanced reactive ion etching (MERIE) sources typically use magnetic fields of tens to hundreds of Gauss parallel to the substrate to increase the plasma density at a given pressure or to lower the operating pressure. In this article results from a two-dimensional hybrid-fluid computational investigation of MERIE reactors with plasmas sustained in argon are discussed for an industrially relevant geometry. The reduction in electron cross field mobility as the magnetic field increases produces a systematic decrease in the dc bias (becoming more positive). This decrease is accompanied by a decrease in the energy and increase in angular spread of the ion flux to the substrate. Similar trends are observed when decreasing pressure for a constant magnetic field. Although for constant power the magnitudes of ion fluxes to the substrate increase with moderate magnetic fields, the fluxes decreased at larger magnetic fields. These trends are due, in part, to a reduction in the contributions of more efficient multistep ionization

  8. Fast and accurate modeling of stray light in optical systems

    Science.gov (United States)

    Perrin, Jean-Claude

    2017-11-01

    The first problem to be solved in most optical designs with respect to stray light is that of internal reflections on the several surfaces of individual lenses and mirrors, and on the detector itself. The level of stray light ratio can be considerably reduced by taking into account the stray light during the optimization to determine solutions in which the irradiance due to these ghosts is kept to the minimum possible value. Unhappily, the routines available in most optical design software's, for example CODE V, do not permit all alone to make exact quantitative calculations of the stray light due to these ghosts. Therefore, the engineer in charge of the optical design is confronted to the problem of using two different software's, one for the design and optimization, for example CODE V, one for stray light analysis, for example ASAP. This makes a complete optimization very complex . Nevertheless, using special techniques and combinations of the routines available in CODE V, it is possible to have at its disposal a software macro tool to do such an analysis quickly and accurately, including Monte-Carlo ray tracing, or taking into account diffraction effects. This analysis can be done in a few minutes, to be compared to hours with other software's.

  9. Simulation of dust particles in dual-frequency capacitively coupled silane discharges

    International Nuclear Information System (INIS)

    Liu Xiangmei; Song Yuanhong; Xu Xiang; Wang Younian

    2010-01-01

    The behavior of nanoparticles in dual-frequency capacitively coupled silane discharges is investigated by employing a one-dimensional self-consistent fluid model. The numerical simulation tries to trace the formation, charging, growth, and transport of dust particles during the discharge, under the influences of the high- and low-frequency electric sources, as well as the gas pressure. The effects of the presence of the nanoparticles and larger anions on the plasma properties are also discussed, especially, for the bulk potential, electron temperature, and densities of various particles. The calculation results show that the nanoparticle density and charge distribution are mainly influenced by the voltage and frequency of the high-frequency source, while the voltage of the low-frequency source can also exert an effect on the nanoparticle formation, compared with the frequency. As the discharge lasts, the electric potential and electron density keep decreasing, while the electron temperature gets increasing after a sudden drop.

  10. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  11. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    Science.gov (United States)

    Tawidian, H.; Mikikian, M.; Couëdel, L.; Lecas, T.

    2011-11-01

    Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids.

  12. Plasma breakdown in a capacitively-coupled radiofrequency argon discharge

    Science.gov (United States)

    Smith, H. B.; Charles, C.; Boswell, R. W.

    1998-10-01

    Low pressure, capacitively-coupled rf discharges are widely used in research and commercial ventures. Understanding of the non-equilibrium processes which occur in these discharges during breakdown is of interest, both for industrial applications and for a deeper understanding of fundamental plasma behaviour. The voltage required to breakdown the discharge V_brk has long been known to be a strong function of the product of the neutral gas pressure and the electrode seperation (pd). This paper investigates the dependence of V_brk on pd in rf systems using experimental, computational and analytic techniques. Experimental measurements of V_brk are made for pressures in the range 1 -- 500 mTorr and electrode separations of 2 -- 20 cm. A Paschen-style curve for breakdown in rf systems is developed which has the minimum breakdown voltage at a much smaller pd value, and breakdown voltages which are significantly lower overall, than for Paschen curves obtained from dc discharges. The differences between the two systems are explained using a simple analytic model. A Particle-in-Cell simulation is used to investigate a similar pd range and examine the effect of the secondary emission coefficient on the rf breakdown curve, particularly at low pd values. Analytic curves are fitted to both experimental and simulation results.

  13. The quality of stray radiation in the ovarian region in diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Ewen, K.; Fiebach, B.J.O.; Fischer, P.G.; Loehr, E.

    1976-01-01

    Dose measurements (LiF-TLD) and recordings of stray radiation spectra (Ge(Li)-Detectors) in a phantom show that shielding of the ovaries against stray radiation is advisable even though the effectivity of this measure decreases at higher tube voltages. The exposure of the ovaries to stray radiation increases with increasing tube voltage; the radiation quality of the stray radiation is, for the most part, independent of the filter value. (orig./AK) [de

  14. A robust parasitic-insensitive successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham

    2014-09-01

    In this paper, we present a capacitive sensor digital interface circuit using true capacitance-domain successive approximation that is independent of supply voltage. Robust operation is achieved by using a charge amplifier stage and multiple comparison technique. The interface circuit is insensitive to parasitic capacitances, offset voltages, and charge injection, and is not prone to noise coupling. The proposed design achieves very low temperature sensitivity of 25ppm/oC. A coarse-fine programmable capacitance array allows digitizing a wide capacitance range of 16pF with 12.5-bit quantization limited resolution in a compact area of 0.07mm2. The fabricated prototype is experimentally verified using on-chip sensor and off-chip MEMS capacitive pressure sensor. © 2014 IEEE.

  15. A robust parasitic-insensitive successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham; Arsalan, Muhammad; Salama, Khaled N.

    2014-01-01

    In this paper, we present a capacitive sensor digital interface circuit using true capacitance-domain successive approximation that is independent of supply voltage. Robust operation is achieved by using a charge amplifier stage and multiple comparison technique. The interface circuit is insensitive to parasitic capacitances, offset voltages, and charge injection, and is not prone to noise coupling. The proposed design achieves very low temperature sensitivity of 25ppm/oC. A coarse-fine programmable capacitance array allows digitizing a wide capacitance range of 16pF with 12.5-bit quantization limited resolution in a compact area of 0.07mm2. The fabricated prototype is experimentally verified using on-chip sensor and off-chip MEMS capacitive pressure sensor. © 2014 IEEE.

  16. Usage of ray tracing transfer matrix to mitigate the stray light for ITER spectroscopy

    International Nuclear Information System (INIS)

    Kajita, S.; Veshchev, E.; Barnsley, R.; Walsh, M.

    2016-01-01

    Stray light formed by the reflection of photons on inner wall from a bright divertor region can be a serious issue in spectroscopic measurement systems in ITER. In this study, we propose a method to mitigate the influence of stray light using a ray tracing analysis. Usually, a ray tracing simulation requires a time consuming runs. We constructed transfer matrices based on the ray tracing simulation results and used them to demonstrate the influence of stray light. It is shown that the transfer matrix can be used to reconstruct the emission profile by considering the influence of the stray light without any additional ray tracing runs. Mitigation of the stray light in ITER divertor impurity monitor was demonstrated, and a method of prediction of the stray light level for the scrape off layer spectroscopy from divertor region was proposed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Pyrolysis treatment of waste tire powder in a capacitively coupled RF plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Department of Environmental Engineering, Guangdong University of Technology, Waihuanxi Road, Guangzhou 510006 (China); Tang, L. [Department of Civil Engineering, Guangzhou University, Waihuanxi Road, Guangzhou 510006 (China)

    2009-03-15

    A capacitively coupled radio-frequency (RF) plasma reactor was tested mainly for the purpose of solid waste treatment. It was found that using a RF input power between 1600 and 2000 W and a reactor pressure between 3000 and 8000 Pa (absolute pressure), a reactive plasma environment with a gas temperature between 1200 and 1800 K can be reached in this lab scale reactor. Under these conditions, pyrolysis of tire powder gave two product streams: a combustible gas and a pyrolytic char. The major components of the gas product are H{sub 2}, CO, CH{sub 4}, and CO{sub 2} The physical properties (surface area, porosity, and particle morphology) as well as chemical properties (elemental composition, heating value, and surface functional groups) of the pyrolytic char has also been examined. (author)

  18. Etching of Niobium in an Argon-Chlorine Capacitively Coupled Plasma

    Science.gov (United States)

    Radovanov, Svetlana; Samolov, Ana; Upadhyay, Janardan; Peshl, Jeremy; Popovic, Svetozar; Vuskovic, Leposava; Applied Materials, Varian Semiconductor Team; Old Dominion University Team

    2016-09-01

    Ion assisted etching of the inner surfaces of Nb superconducting radio frequency (SRF) cavities requires control of incident ion energies and fluxes to achieve the desired etch rate and smooth surfaces. In this paper, we combine numerical simulation and experiment to investigate Ar /Cl2 capacitively coupled plasma (CCP) in cylindrical reactor geometry. Plasma simulations were done in the CRTRS 2D/3D code that self-consistently solves for CCP power deposition and electrostatic potential. The experimental results are used in combination with simulation predictions to understand the dependence of plasma parameters on the operating conditions. Using the model we were able to determine the ion current and flux at the Nb substrate. Our simulations indicate the relative importance of the current voltage phase shift and displacement current at different pressures and powers. For simulation and the experiment we have used a test structure with a pillbox cavity filled with niobium ring-type samples. The etch rate of these samples was measured. The probe measurements were combined with optical emission spectroscopy in pure Ar for validation of the model. The authors acknowledge Dr Shahid Rauf for developing the CRTRS code. Support DE-SC0014397.

  19. Effects of electron inertia in capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Xiang Nong

    2004-01-01

    The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant

  20. Application of capacitively coupled rf discharge plasma for sterilization of polymer materials used in ophthalmology

    International Nuclear Information System (INIS)

    Abdullin, I.Sh.; Avetisov, S.E.; Lipatov, D.V.; Rybakova, E.G.; Bragin, V.E.; Bykanov, A.N.; Kamarentsev, E.N.

    1996-01-01

    The sterilization effect of capacitively coupled rf discharge plasma treatment of contact lenses was investigated. There were used two types of polymer: highly hydrophilic polymer with water content 76% (Navelen-76) and poly-methylmethacrylate (PMMA). There was demonstrated the possibility of effective sterilization by RF discharge plasma of a set of polymer materials used in ophthalmology. The best results were obtained for hard contact lenses. There was perfect sterilization in this case. There were not perfect sterilization in some cases of soft contact lenses treatment. It may be caused by porous structure of the external layers of this material and limited thickness of the sterilization layer. (author)

  1. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    Science.gov (United States)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  2. Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

    Science.gov (United States)

    Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG

    2018-02-01

    The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50-300 W and pressure is 25-250 Pa, the average electron temperature is about 1.7-2.1 eV and the average electron density is about 0.5 × 1017-3.6 × 1017 m-3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.

  3. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A. [Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-11-15

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  4. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    International Nuclear Information System (INIS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-01-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  5. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    Science.gov (United States)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  6. Stray field signatures of Néel textured skyrmions in Ir/Fe/Co/Pt multilayer films

    Science.gov (United States)

    Yagil, A.; Almoalem, A.; Soumyanarayanan, Anjan; Tan, Anthony K. C.; Raju, M.; Panagopoulos, C.; Auslaender, O. M.

    2018-05-01

    Skyrmions are nanoscale spin configurations with topological properties that hold great promise for spintronic devices. Here, we establish their Néel texture, helicity, and size in Ir/Fe/Co/Pt multilayer films by constructing a multipole expansion to model their stray field signatures and applying it to magnetic force microscopy images. Furthermore, the demonstrated sensitivity to inhomogeneity in skyrmion properties, coupled with a unique capability to estimate the pinning force governing dynamics, portend broad applicability in the burgeoning field of topological spin textures.

  7. Stray energy transfer during endoscopy.

    Science.gov (United States)

    Jones, Edward L; Madani, Amin; Overbey, Douglas M; Kiourti, Asimina; Bojja-Venkatakrishnan, Satheesh; Mikami, Dean J; Hazey, Jeffrey W; Arcomano, Todd R; Robinson, Thomas N

    2017-10-01

    Endoscopy is the standard tool for the evaluation and treatment of gastrointestinal disorders. While the risk of complication is low, the use of energy devices can increase complications by 100-fold. The mechanism of increased injury and presence of stray energy is unknown. The purpose of the study was to determine if stray energy transfer occurs during endoscopy and if so, to define strategies to minimize the risk of energy complications. A gastroscope was introduced into the stomach of an anesthetized pig. A monopolar generator delivered energy for 5 s to a snare without contacting tissue or the endoscope itself. The endoscope tip orientation, energy device type, power level, energy mode, and generator type were varied to mimic in vivo use. The primary outcome (stray current) was quantified as the change in tissue temperature (°C) from baseline at the tissue closest to the tip of the endoscope. Data were reported as mean ± standard deviation. Using the 60 W coag mode while changing the orientation of the endoscope tip, tissue temperature increased by 12.1 ± 3.5 °C nearest the camera lens (p energy transfer (p = 0.04 and p = 0.002, respectively) as did utilizing the low-voltage cut mode (6.6 ± 0.5 °C, p energy transfer compared to a standard generator (1.5 ± 3.5 °C vs. 9.5 ± 0.8 °C, p energy is transferred within the endoscope during the activation of common energy devices. This could result in post-polypectomy syndrome, bleeding, or perforation outside of the endoscopist's view. Decreasing the power, utilizing low-voltage modes and/or an impedance-monitoring generator can decrease the risk of complication.

  8. Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode

    Energy Technology Data Exchange (ETDEWEB)

    Angelico, E.; Seiss, T. [Enrico Fermi Institute, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 (United States); Adams, B. [Incom, Inc., 294 SouthBridge Rd, Charlton, Massachusetts 01507 (United States); Elagin, A.; Frisch, H.; Spieglan, E. [Enrico Fermi Institute, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 (United States)

    2017-02-21

    We have designed and tested a robust 20×20 cm{sup 2} thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10 nm-thick NiCr film deposited on a 96% pure Al{sub 2}O{sub 3} 3 mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50 Ω 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20×20 cm{sup 2} array of 2-dimensional square ‘pads’ with sides of 1.27 cm or 2.54 cm. The rise-time of the fast input pulse is maintained for both pickup patterns. For the pad pattern, we observe 80% of the directly coupled amplitude. For the strip pattern we measure 34% of the directly coupled amplitude on the central strip of a broadened signal. The physical decoupling of the photodetector from the pickup pattern allows easy customization for different applications while maintaining high analog bandwidth.

  9. Measurement of optical coupling between adjacent bi-material microcantilevers.

    Science.gov (United States)

    Canetta, Carlo; Narayanaswamy, Arvind

    2013-10-01

    Low thermal conductance bi-material microcantilevers are fabricated with a pad area near the free end to accommodate a focused laser spot. A pair of such cantilevers are proposed as a configuration for measuring thermal conductance of a nanostructure suspended between the two. We determine the resolution of such a device by measuring the stray conductance it would detect in the absence of any nanostructure. Stray conductance, primarily due to optical coupling, is measured for cantilevers with varying pad size and found to be as low as 0.05 nW K(-1), with cantilevers with larger pad size yielding the smallest stray conductance.

  10. Reduction of parasitic capacitance in 10 kV SiC MOSFET power modules using 3D FEM

    DEFF Research Database (Denmark)

    Jørgensen, Asger Bjørn; Christensen, Nicklas; Dalal, Dipen Narendrabhai

    2017-01-01

    The benefits of emerging wide-band gap semiconductors can only be utilized if the semiconductor is properly packaged. Capacitive coupling in the package causes electromagnetic interference during high dv/dt switching. This paper investigates the current flowing in the parasitic capacitance between...... the output node and the grounded heat sink for a custom silicon carbide power module. A circuit model of the capacitive coupling path is presented, using parasitic capacitances extracted from ANSYS Q3D. Simulated values are compared with experimental results. A new iteration of the silicon carbide power...

  11. About the EDF formation in a capacitively coupled argon plasma

    International Nuclear Information System (INIS)

    Tatanova, M; Thieme, G; Basner, R; Hannemann, M; Golubovskii, Yu B; Kersten, H

    2006-01-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions

  12. About the EDF formation in a capacitively coupled argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tatanova, M [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Thieme, G [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Basner, R [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Hannemann, M [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Golubovskii, Yu B [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Kersten, H [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany)

    2006-08-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions.

  13. Capacitively coupled radio-frequency plasmas excited by tailored voltage waveforms

    International Nuclear Information System (INIS)

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V

    2013-01-01

    By applying certain types of ‘tailored’ voltage waveforms (TVWs) to capacitively coupled plasmas, a dc self-bias and an asymmetric plasma response can be produced, even in geometrically symmetric reactors. Furthermore, these arbitrary applied waveforms can produce a number of interesting phenomena that are not present in typical single-frequency sinusoidal discharges. This electrical asymmetry effect presents emerging possibilities for the improved control of the ion energy and ion flux in these systems; parameters of vital importance to both etching and deposition applications for materials processing. With a combined research approach utilizing both experimental measurements, and particle-in-cell simulations, we review and extend recent investigations that study a particular class of TVW. The waveforms used have a pulse-type shape and are composed of a varying number of harmonic frequencies. This allows a strong self-bias to be produced, and causes most of the applied voltage to be dropped across a single sheath. Additionally, decreasing the pulse width (by increasing the number of harmonics), allows the plasma density and ion flux to be increased. Simulation and experimental results both demonstrate that this type of waveform can be used to separately control the ion flux and ion energy, while still producing a uniform plasma over large area (50 cm diameter) rf electrodes. (paper)

  14. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  15. A novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances

    International Nuclear Information System (INIS)

    Dong Linxi; Chen Jindan; Huo Weihong; Li Yongjie; Sun Lingling; Yan Haixia

    2009-01-01

    The comb capacitances fabricated by deep reactive ion etching (RIE) process have high aspect ratio which is usually smaller than 30: 1 for the complicated process factors, and the combs are usually not parallel due to the well-known micro-loading effect and other process factors, which restricts the increase of the seismic mass by increasing the thickness of comb to reduce the thermal mechanical noise and the decrease of the gap of the comb capacitances for increasing the sensitive capacitance to reduce the electrical noise. Aiming at the disadvantage of the deep RIE, a novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances is developed. One part of sensing of inertial signal of the micro-accelerometer is by the grid strip capacitances whose overlapping area is variable and which do not have the non-parallel plate's effect caused by the deep RIE process. Another part is by the sensing gap alterable capacitances whose gap between combs can be reduced by the actuators. The designed initial gap of the alterable comb capacitances is relatively large to depress the effect of the maximum aspect ratio (30 : 1) of deep RIE process. The initial gap of the capacitance of the actuator is smaller than the one of the comb capacitances. The difference between the two gaps is the initial gap of the sensitive capacitor. The designed structure depresses greatly the requirement of deep RIE process. The effects of non-parallel combs on the accelerometer are also analyzed. The characteristics of the micro-accelerometer are discussed by field emission microscopy (FEM) tool ANSYS. The tested devices based on slide-film damping effect are fabricated, and the tested quality factor is 514, which shows that grid strip capacitance design can partly improve the resolution and also prove the feasibility of the designed silicon-glass anodically bonding process.

  16. The impact of microwave stray radiation to in-vessel diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Baldzuhn, J.; Biedermann, C.; Cardella, A.; Erckmann, V.; König, R.; Köppen, M.; Zhang, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, EURATOM Association, D-17489 Greifswald (Germany); Oosterbeek, J.; Brand, H. von der; Parquay, S. [Technische Universiteit Eindhoven, department Technische Natuurkunde, working group for Plasma Physics and Radiation Technology, Den Doelch 2, 5612 AZ Eindhoven (Netherlands); Jimenez, R. [Centro de Investigationes Energeticas, Medioambientales y Technológicas, Association EURATOM/CIEMAT, Avenida Complutense 22, Madrid 28040 (Spain); Collaboration: W7-X Teasm

    2014-08-21

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m{sup 2} over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  17. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  18. Stray current monitoring at Nuremberg subway; Streustromueberwachung bei der U-Bahn Nuernberg

    Energy Technology Data Exchange (ETDEWEB)

    Altmann, M.; Halfmann, U.; Schneider, E. [Siemens AG, Erlangen (Germany). TS EL EN 2; Roesch, N. [VAG Verkehrs-AG Nuernberg, FA/SA - Starkstromanlagen, Nuernberg (Germany)

    2004-05-01

    Operating DC traction systems requires protective measures against the effects of stray currents. Damage by corrosion could occur both at railway and third party installations. The continuous effectiveness of protective measures needs to be monitored and recorded during revenue operation, and shall be capable to be demonstrated to supervising authorities. Measuring the rail-to-earth potential within the traction network under operational conditions, combined with centralized analysis, visualization, signaling and archiving is a straightforward and efficient method of stray current monitoring. For more than one year, the stray current monitoring system SITRAS SMS {sup registered} has been undergoing successful field application at the Nuremberg Subway. (orig.)

  19. A 45.8fJ/Step, energy-efficient, differential SAR capacitance-to-digital converter for capacitive pressure sensing

    KAUST Repository

    Alhoshany, Abdulaziz

    2016-05-03

    An energy-efficient readout circuit for a capacitive sensor is presented. The capacitive sensor is digitized by a 12-bit energy efficient capacitance-to-digital converter (CDC) that is based on a differential successive-approximation architecture. This CDC meets extremely low power requirements by using an operational transconductance amplifier (OTA) that is based on a current-starved inverter. It uses a charge-redistribution DAC that involves coarse-fine architecture. We split the DAC into a coarse-DAC and a fine-DAC to allow a wide capacitance range in a compact area. It covers a wide range of capacitance of 16.14 pF with a 4.5 fF absolute resolution. An analog comparator is implemented by cross-coupling two 3-input NAND gates to enable power and area efficient operation. The prototype CDC was fabricated using a standard 180 nm CMOS technology. The 12-bit CDC has a measurement time of 42.5 μs, and consumes 3.54 μW and 0.29 μW from analog and digital supplies, respectively. This corresponds to a state-of-the-art figure-of-merit (FoM) of 45.8 fJ/conversion-step. © 2016 Elsevier B.V. All rights reserved.

  20. A 45.8fJ/Step, energy-efficient, differential SAR capacitance-to-digital converter for capacitive pressure sensing

    KAUST Repository

    Alhoshany, Abdulaziz; Omran, Hesham; Salama, Khaled N.

    2016-01-01

    An energy-efficient readout circuit for a capacitive sensor is presented. The capacitive sensor is digitized by a 12-bit energy efficient capacitance-to-digital converter (CDC) that is based on a differential successive-approximation architecture. This CDC meets extremely low power requirements by using an operational transconductance amplifier (OTA) that is based on a current-starved inverter. It uses a charge-redistribution DAC that involves coarse-fine architecture. We split the DAC into a coarse-DAC and a fine-DAC to allow a wide capacitance range in a compact area. It covers a wide range of capacitance of 16.14 pF with a 4.5 fF absolute resolution. An analog comparator is implemented by cross-coupling two 3-input NAND gates to enable power and area efficient operation. The prototype CDC was fabricated using a standard 180 nm CMOS technology. The 12-bit CDC has a measurement time of 42.5 μs, and consumes 3.54 μW and 0.29 μW from analog and digital supplies, respectively. This corresponds to a state-of-the-art figure-of-merit (FoM) of 45.8 fJ/conversion-step. © 2016 Elsevier B.V. All rights reserved.

  1. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  2. [Influence of different multifocal intraocular lens concepts on retinal stray light parameters].

    Science.gov (United States)

    Ehmer, A; Rabsilber, T M; Mannsfeld, A; Sanchez, M J; Holzer, M P; Auffarth, G U

    2011-10-01

    Multifocal intraocular lenses (MIOL) are known to induce various photic phenomena depending on the optical principle. The aim of this study was to investigate the correlation between stray light measurements performed with the C-Quant (Oculus, Germany) and the results of a subjective patient questionnaire. In this study three different MIOLs were compared: AMO ReZoom (refractive design, n=10), AMO ZM900 (diffractive design, n=10) and Oculentis Mplus (near segment design, n=10). Cataract and refractive patients were enrolled in the study. Functional results were evaluated at least 3 months postoperatively followed by stray light measurements and a subjective questionnaire. Surgery was performed for all patients without complications. The three groups were matched for age, IOL power and corrected distance visual acuity (CDVA). Significantly different stray light (median) values log(s) were found (Kruskal-Wallis test, p<0.05): 1.12 log (refractive), 1.13 log (segment) and 1.28 log (diffractive). The subjective questionnaire did not show differences in glare perception but refractive MIOL patients noticed more halos surrounding light sources than the diffractive and segment MIOL patients. Stray light and subjective photopic phenomena do not show any basic correlation. Measurements in patients with refractive MIOLs showed less stray light than near segment or diffractive MIOLs. However, refractive MIOLs induced more halos compared to the other groups analyzed.

  3. A degradation model for stray current induced corrosion in underground reinforced concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2003-01-01

    This paper describes the effects of stray currents on durability and reinforcement corrosion of underground concrete structures. Cathodic protection of underground pipelines are stationary sources of stray current interference with concrete, and rail traction systems are non-stationary sources. The

  4. Investigation of Capacitively Coupled Argon Plasma Driven by Dual-Frequency with Different Frequency Configurations

    International Nuclear Information System (INIS)

    Yu Yiqing; Xin Yu; Ning Zhaoyuan; Lu Wenqi

    2011-01-01

    Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature T e decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in T e and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.

  5. Electrolytic corrosion of water pipeline system in the remote distance from stray currents—Case study

    Directory of Open Access Journals (Sweden)

    Krzysztof Zakowski​

    2016-06-01

    Full Text Available Case study of corrosion failure of urban water supply system caused by the harmful effects of stray currents was presented. The failure occurred at a site distant from the sources of these currents namely the tramway and railway traction systems. Diagnosis revealed the stray currents flow to pipeline over a remote distance of 800/1000 m from the point of failure. At the point of failure stray currents flowed from the pipeline to the ground through external insulation defects, causing the process of electrolytic corrosion of the metal. Long distance between the affected section of the pipeline and the sources of stray currents excludes the typical protection against stray currents in the form of electrical polarized drainage. Corrosion protection at this point can be achieved by using the earthing electrodes made of magnesium, which will also provide cathodic current protection as galvanic anode.

  6. Stray radiation and the Infrared Astronomical Satellite /IRAS/ telescope

    Science.gov (United States)

    Noll, R. J.; Harned, R.; Breault, R. P.; Malugin, R.

    1981-01-01

    Stray light control is a major consideration in the design of infrared cryogenically cooled telescopes such as the Infrared Astronomical Satellite (IRAS). The basic design of the baffle system, and the placement, shape, and coating of the secondary support struts for the telescope subsystem are described. The intent of this paper is to highlight the stray light problems encountered while designing the system, and to illustrate how computer analysis can be a useful design aid. Scattering measurements of the primary mirror, and a full system level scatter measurement are presented. Comparisons of predicted performance with the measured results are also presented.

  7. A survey of gastrointestinal helminth of stray dogs in Zabol city, southeastern of Iran

    Directory of Open Access Journals (Sweden)

    Geraili, A.

    2016-03-01

    Full Text Available Canids are reservoir for some zoonoses helminthic disease. They are one of main public health problem. The aim of this study was to ascertain frequency of gastrointestinal helminthic infection of stray dogs in Zabol city, southeaster of Iran. In this descriptive study, 30 stray dogs were euthanized, intestine was removed by necropsy. Then, the intestines was opened by scalpel and their contents passed through mesh sieve. The helminth were collected. The nematodes were preserved in 70% ethanol with 5% glycerin and cestodes were preserved in 70% ethanol. The cestodes were stained by acetocarmine. The nematodes were cleared by lactophenol. The genus and species of helminth were identified by identification keys. Twenty two (73.3% of stray dogs had at least one intestinal helminthic infection. Recovered helminth from stray dogs include: Taenia hydatigena (53.3%, Taenia ovis (20%, Taenia multiceps (6.6%, Mesocestoides spp (10%, Toxocara canis (23.3%, Toxocara cati (3.3%. Data showed that the stray dogs in Zabol city harbor some important zoonoses helminth parasite like Toxocara.

  8. Capacitive MEMS-based sensors : thermo-mechanical stability and charge trapping

    OpenAIRE

    van Essen, M.C.

    2009-01-01

    Micro-Electro Mechanical Systems (MEMS) are generally characterized as miniaturized systems with electrostatically driven moving parts. In many cases, the electrodes are capacitively coupled. This basic scheme allows for a plethora of specifications and functionality. This technology has presently matured and is widely employed in industry. A voltage across the electrodes will attract the movable part. This relation between electric field and separation (or capacitance) can be conveniently em...

  9. Stray-electron accumulation and effects in HIF accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Furman, M.A.; Lund, S.M.; Molvik, A.W.; Stoltz, P.; Vay, J.-L.

    2003-01-01

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. Electron accumulation is impacted by the ion beam potential, accelerating fields, multipole magnetic fields used for beam focus, and the pulse duration. We highlight the distinguishing features of heavy-ion accelerators as they relate to stray-electron issues, and present first results from a sequence of simulations to characterize the electron cloud that follows from realistic ion distributions. Also, we present ion simulations with prescribed random electron distributions, undertaken to begin to quantify the effects of electrons on ion beam quality

  10. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  11. 3D capacitive tactile sensor using DRIE micromachining

    Science.gov (United States)

    Chuang, Chiehtang; Chen, Rongshun

    2005-07-01

    This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.

  12. The RF voltage dependence of the electron sheath heating in low pressure capacitively coupled rf discharges

    International Nuclear Information System (INIS)

    Buddemeier, U.; Kortshagen, U.; Pukropski, I.

    1995-01-01

    In low pressure capacitively coupled RF discharges two competitive electron heating mechanisms have been discussed for some time now. At low pressures the stochastic sheath heating and for somewhat higher pressures the Joule heating in the bulk plasma have been proposed. When the pressure is increased at constant RF current density a transition from concave electron distribution functions (EDF) with a pronounced cold electron group to convex EDFs with a missing strong population of cold electrons is found. This transition was interpreted as the transition from dominant stochastic to dominant Joule heating. However, a different interpretation has been given by Kaganovich and Tsendin, who attributed the concave shaped EDFs to the spatially inhomogeneous RF field in combination with the nonlocality of the EDF

  13. Experimental observations of stray current effects on steel fibres embedded in mortar

    DEFF Research Database (Denmark)

    Solgaard, A.O.S.; Carsana, M.; Geiker, M.R.

    2013-01-01

    It is known that stray direct current can cause corrosive damage over time to bar reinforced concrete, but knowledge on the consequences to steel fibre reinforced concrete is limited. This paper presents analyses and corresponding results from an experimental program (parametric study) investigat......It is known that stray direct current can cause corrosive damage over time to bar reinforced concrete, but knowledge on the consequences to steel fibre reinforced concrete is limited. This paper presents analyses and corresponding results from an experimental program (parametric study......) investigating the conditions required for current to be picked up by embedded steel fibres or reinforcement (rebars). The experiments showed that there is a clear ‘length effect’ related to the susceptibility of stray current being picked up by embedded steel (fibres or rebars): the shorter the reinforcement...

  14. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    International Nuclear Information System (INIS)

    Tawidian, H; Mikikian, M.; Couedel, L.; Lecas, T.

    2011-01-01

    Dusty plasmas can be found in fusion devices. In this paper we analyse a new phenomenon occurring during dust particle growth instabilities and consisting of the appearance of small plasma spheroids in the vicinity of discharge electrodes. Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids

  15. Stray dog and cat laws and enforcement in Czech Republic and in Italy

    Directory of Open Access Journals (Sweden)

    Eva Voslářvá

    2012-01-01

    Full Text Available The growing numbers of stray dogs and cats have posed serious public-health, socioeconomic, political and animal-welfare problems in many EU countries. Stray animal population control is a complex issue and there are no easy solutions. Recognising the importance of the issue the European Commission has, since 2007, actively contributed to the elaboration of the first global welfare standards for the control of dog populations in the framework of the World Organisation for Animal Health (OIE. Problem-solving approaches vary in different countries as there is no common European Community legislation dealing with stray animal control. In this paper the authors describe the characteristics of the stray dog and cat problem in general and focus on existing European legislation. A comparative overview of policies and measures in place in the Czech Republic and in Italy is made to observe the differences between the two countries and understand the different needs in each, considering their historical and social differences (i.e. a post-communist eastern country vs a western country and founder member of what is now the European Union.

  16. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    International Nuclear Information System (INIS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-01-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis

  17. Experimental validation of a method for removing the capacitive leakage artifact from electrical bioimpedance spectroscopy measurements

    International Nuclear Information System (INIS)

    Buendia, R; Seoane, F; Gil-Pita, R

    2010-01-01

    Often when performing electrical bioimpedance (EBI) spectroscopy measurements, the obtained EBI data present a hook-like deviation, which is most noticeable at high frequencies in the impedance plane. The deviation is due to a capacitive leakage effect caused by the presence of stray capacitances. In addition to the data deviation being remarkably noticeable at high frequencies in the phase and the reactance spectra, the measured EBI is also altered in the resistance and the modulus. If this EBI data deviation is not properly removed, it interferes with subsequent data analysis processes, especially with Cole model-based analyses. In other words, to perform any accurate analysis of the EBI spectroscopy data, the hook deviation must be properly removed. Td compensation is a method used to compensate the hook deviation present in EBI data; it consists of multiplying the obtained spectrum, Z meas (ω), by a complex exponential in the form of exp(–jωTd). Although the method is well known and accepted, Td compensation cannot entirely correct the hook-like deviation; moreover, it lacks solid scientific grounds. In this work, the Td compensation method is revisited, and it is shown that it should not be used to correct the effect of a capacitive leakage; furthermore, a more developed approach for correcting the hook deviation caused by the capacitive leakage is proposed. The method includes a novel correcting expression and a process for selecting the proper values of expressions that are complex and frequency dependent. The correctness of the novel method is validated with the experimental data obtained from measurements from three different EBI applications. The obtained results confirm the sufficiency and feasibility of the correcting method

  18. Seroepidemiological survey of helminthic parasites of stray dogs in Sari City, northern Iran.

    Science.gov (United States)

    Gholami, Ishirzad; Daryani, Ahmad; Sharif, Mehdi; Amouei, Afsaneh; Mobedi, Iraj

    2011-01-15

    The objective of this study was to determine the prevalence rate of helminthic parasites in stray dogs' population especially zoonotic infections and to identify potential risk factors in the different areas of Sari city in Caspian area, north of Iran. During the period from April to September 2007, 50 stray dogs were collected from urban areas of Sari city. Recovered parasites were fixed in alcohol and stained by carmine then observed by microscope. The taxonomic study was carried out by measuring different parts of the body of helminthes and statistical tests were performed using the Chi-square test. A total of 27 adult and 23 juvenile stray dogs were collected and the overall prevalence rate of infection was 90%. The three most common helminthes were Toxocara canis (60%), Ancylostoma caninum (46%) and Dipylidium caninum (36%). Other parasites were Uncinaria stenocephala (12%), Taenia hydatigena (6%), Spirocerca lupi (6%), Dirofilaria immitis (6%), Toxascaris leonina (2%), Rictularia sp. (2%), Taenia ovis (2%) and Taenia taeniformis (2%). Five species of zoonotic helminthes recovered were T. canis, A. caninum, U. stenocephala, D. caninum and D. immitis. Hookworm infections (58%) were more common significantly in the young stray dogs (p caninum, T. canis and U. stenocephala, there was significant difference between juvenile and adult dogs (p < 0.05). The results highlight the potential role of stray dogs for transmission of helminthic parasites particularly zoonotic parasites that are a significant risk to human health.

  19. A simple, low-cost and robust capillary zone electrophoresis Method with capacitively coupled contactless conductivity detection for the routine determination of four selected penicillins in Money-constrained laboratories

    NARCIS (Netherlands)

    Paul, Prasanta; Sänger-van de Griend, Cari; Adams, Erwin; Van Schepdael, Ann

    2018-01-01

    A simple and robust capillary zone electrophoresis Method was developed and validated for the determination of amoxicillin and clavulanate, ampicillin, phenoxymethyl penicillin (Pen V) as well as flucloxacillin. Capacitively coupled contactless conductivity detection was employed as detection Mode

  20. WIDESPREAD OF STRAY DOGS: METHODS FOR SOLVING THE PROBLEM IN CERTAIN REGIONS OF BOSNIA AND HERZEGOVINA

    OpenAIRE

    Muhamed Katica; Nedzad Gradascevic; Nejra Hadzimusic; Zarema Obradovic; Ramo Mujkanovic; Esad Mestric; Senad Coloman; Muhamed Dupovac

    2017-01-01

    Stray dogs are the ones not microchipped, which live across the streets and other public surfaces unattended, and so represent a serious public-health problem. Lack of human support for the stray dogs causes a range of problems - from territorial status to ensuring food. Such conditions force them to activate a self-preservation mechanism and return to natural behavioral patterns. Regarding the fact that several thousands of stray dogs were recorded in observed regions of Bosnia and Herze...

  1. Pitfalls and artifacts in measuring absorption spectra and kinetics: the effect of stray light in the UV and red regions

    International Nuclear Information System (INIS)

    Czapski, Gideon; Ozeri, Yair; Goldstein, Sara

    2005-01-01

    Effects of stray light on absorption spectrum and kinetics are discussed. The extent of the stray light depends on the light source, monochromator, wavelength set by the instrument and the absorption of the sample at this wavelength. Effects of the stray light on the shape of the spectrum and the extinction coefficients are shown. Methods for determining the existence and extent of stray light are suggested and are especially relevant for studies using pulse radiolysis, flash photolysis, and stopped-flow techniques. The literature examples for artifacts due to stray light are presented for kinetics and absorption spectra

  2. Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade

    Science.gov (United States)

    Schubert, M.; Honecker, F.; Monaco, F.; Schmid-Lorch, D.; Schütz, H.; Stober, J.; Wagner, D.

    2012-09-01

    Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG) is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.

  3. Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade

    Directory of Open Access Journals (Sweden)

    Wagner D.

    2012-09-01

    Full Text Available Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.

  4. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    Energy Technology Data Exchange (ETDEWEB)

    Collarin, P.; Piovan, R. [Associazioni EURATOM-ENEA-CNR-Univ. di Padova (Italy). Gruppo di Padova per Ricerche sulla Fusione

    1995-12-31

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper.

  5. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    International Nuclear Information System (INIS)

    Collarin, P.; Piovan, R.

    1995-01-01

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper

  6. Dry Etch Black Silicon with Low Surface Damage: Effect of Low Capacitively Coupled Plasma Power

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Plakhotnyuk, Maksym; Gaudig, Maria

    2017-01-01

    Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we pr...... carrier lifetime thanks to reduced ion energy. Surface passivation using atomic layer deposition of Al2O3 improves the effective lifetime to 7.5 ms and 0.8 ms for black silicon n- and p-type wafers, respectively.......Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we...... present a RIE optimization leading to reduced surface damage while retaining excellent light trapping and low reflectivity. In particular, we demonstrate that the reduction of the capacitively coupled power during reactive ion etching preserves a reflectance below 1% and improves the effective minority...

  7. Simulations of electromagnetic effects in high-frequency capacitively coupled discharges using the Darwin approximation

    International Nuclear Information System (INIS)

    Eremin, Denis; Hemke, Torben; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2013-01-01

    The Darwin approximation is investigated for its possible use in simulation of electromagnetic effects in large size, high-frequency capacitively coupled discharges. The approximation is utilized within the framework of two different fluid models which are applied to typical cases showing pronounced standing wave and skin effects. With the first model it is demonstrated that the Darwin approximation is valid for treatment of such effects in the range of parameters under consideration. The second approach, a reduced nonlinear Darwin approximation-based model, shows that the electromagnetic phenomena persist in a more realistic setting. The Darwin approximation offers a simple and efficient way of carrying out electromagnetic simulations as it removes the Courant condition plaguing explicit electromagnetic algorithms and can be implemented as a straightforward modification of electrostatic algorithms. The algorithm described here avoids iterative schemes needed for the divergence cleaning and represents a fast and efficient solver, which can be used in fluid and kinetic models for self-consistent description of technical plasmas exhibiting certain electromagnetic activity. (paper)

  8. Seroprevalence of Ehrlichia canis infection in stray dogs from Serbia

    Directory of Open Access Journals (Sweden)

    Nataša Bogićević

    2017-03-01

    Full Text Available Canine Monocytic Ehrlichiosis is a zoonotic bacterial disease with worldwide distribution. With regards to the population of stray dogs, the disease is facilitated due to their lifestyle and the lack of anti-parasitic protection. The aim of this study was to provide serological data on the presence of a specific Ehrlichia canis IgG antibodies in stray dogs, originating from 7 municipalities in Serbia. During the period from April 2013 to June 2014, 217 canine sera were submitted to the laboratory of the Department of Infectious Diseases of Animals and Bees, Faculty of Veterinary Medicine in Belgrade. An immunofluorescent antibody test (IFAT was performed to detect antibodies to Ehrlichia canis (cut off, 1:50. Seropositive dogs were found in 5 out of 7 counties with a seroprevalence varying from 3.57% to 20% and an overall seroprevalence of 11.06% (24/217. There was no statistically significant difference between the prevalence of infection and the host age or gender. Results showed that stray dogs contribute to maintaining and spreading of Ehrlichia canis in Serbia. Due to the close relationship between people and dogs, it is of great importance to constantly monitor and improve prevention of this disease.

  9. PCR-Based Molecular Characterization of Toxocara spp. Using Feces of Stray Cats: A Study from Southwest Iran

    OpenAIRE

    Khademvatan, Shahram; Rahim, Fakher; Tavalla, Mahdi; Abdizadeh, Rahman; Hashemitabar, Mahmoud

    2013-01-01

    Feces of stray cat are potential sources of gastrointestinal parasites and play a crucial role in spreading and transmitting parasite eggs, larvae, and oocysts through contamination of soil, food, or water. In this study, we investigated the prevalence of Toxocara spp. infection in stray cats in Ahvaz city, southwest Iran. Eggs of Toxocara spp. in feces of stray cats were detected by the sucrose flotation method, and identification was conducted by polymerase chain reaction (PCR) and DNA sequ...

  10. Convergence of highly parallel stray field calculation using the fast multipole method on irregular meshes

    Science.gov (United States)

    Palmesi, P.; Abert, C.; Bruckner, F.; Suess, D.

    2018-05-01

    Fast stray field calculation is commonly considered of great importance for micromagnetic simulations, since it is the most time consuming part of the simulation. The Fast Multipole Method (FMM) has displayed linear O(N) parallelization behavior on many cores. This article investigates the error of a recent FMM approach approximating sources using linear—instead of constant—finite elements in the singular integral for calculating the stray field and the corresponding potential. After measuring performance in an earlier manuscript, this manuscript investigates the convergence of the relative L2 error for several FMM simulation parameters. Various scenarios either calculating the stray field directly or via potential are discussed.

  11. Fast 2D hybrid fluid-analytical simulation of inductive/capacitive discharges

    International Nuclear Information System (INIS)

    Kawamura, E; Lieberman, M A; Graves, D B

    2011-01-01

    A fast two-dimensional (2D) hybrid fluid-analytical transform coupled plasma reactor model was developed using the finite elements simulation tool COMSOL. Both inductive and capacitive coupling of the source coils to the plasma are included in the model, as well as a capacitive bias option for the wafer electrode. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model. The vacuum sheath of variable thickness is modeled with a fixed-width sheath of variable dielectric constant. The sheath heating is treated as an incoming heat flux at the plasma-sheath boundary, and a dissipative term is added to the sheath dielectric constant. A gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The simulation results, over a range of input powers, are in good agreement with a chlorine reactor experimental study.

  12. Implementasi Analog Front End Pada Sensor Kapasitif Untuk Pengaturan Kelembaban Menggunakan Mikrokontroller STM32

    Directory of Open Access Journals (Sweden)

    Rendy Setiawan

    2017-01-01

    Full Text Available Sensor kapasitif merupakan jenis sensor yang mengubah stimulus fisik menjadi perubahan kapasitansi. Pada sensor kapasitif, adanya stray capacitance atau kapasitansi parasitik pada sensor dapat menyebabkan kesalahan dalam pengukuran. Dalam aplikasi pengaturan kelembaban, dibutuhkan sistem pengukuran kelembaban dengan kesalahan minimum untuk mendapatkan nilai setting point dengan galat minimum. Maka diperlukan implementasi analog front end yang dapat meminimalisir kesalahan akibat stray capacitance pada sensor kapasitif untuk pengukuran kelembaban relatif. Pada sistem pengukuran sensor kapasitif ini, sensor dieksitasi dengan sinyal AC yang dihasilkan oleh generator sinyal pada frekuensi 10 KHz, kemudian diimplementasikan analog front end untuk mengondisikan sinyal dari sensor. Keluaran dari analog front end dikonversi menjadi sinyal DC menggunakan demodulator sinkron dan filter low pass lalu dikonversi menjadi data digital menggunakan ADC di mikrokontroller STM32. Hasil pengukuran yang didapatkan dengan implementasi analog front end kemudian kemudian gunakan untuk mengatur kelembaban pada sebuah plant growth chamber. Berdasarkan hasil dari pengujian, rangkaian analog front end dapat mengompensasi stray capacitance dengan kesalahan pembacaan nilai kapasitansi maksimal sebesar 4.2% pada kondisi stray capacitance sebesar 236,6pF, 174,3pF dan 115,7pF. Implementasi analog front end pada pengaturan kelembaban menghasilkan galat pada setting point maksimal sebesar 8.8% untuk nilai RH 75% dan 33%.

  13. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH{sub 3} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak, E-mail: zam89blue@gmail.com [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-09-14

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH{sub 3} plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (R{sub bulk}) and the sheath region (R{sub sheath}). Reduction and nitridation of the GO films began as soon as the NH{sub 3} plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the R{sub bulk}, NH{sub 3} plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the R{sub sheath}, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the R{sub bulk} using capacitively coupled NH{sub 3} plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  14. Capacitive MEMS-based sensors : thermo-mechanical stability and charge trapping

    NARCIS (Netherlands)

    van Essen, M.C.

    2009-01-01

    Micro-Electro Mechanical Systems (MEMS) are generally characterized as miniaturized systems with electrostatically driven moving parts. In many cases, the electrodes are capacitively coupled. This basic scheme allows for a plethora of specifications and functionality. This technology has presently

  15. Accurate Measurement of ‘Q’ Factor of An Inductive Coil Using a Modified Maxwell Wein Bridge Network

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2009-06-01

    Full Text Available The Q factor of a coil can be measured by measuring accurately the inductance and effective resistance of the coil for a specific signal. The inductance of an inductive coil is generally measured by usual inductive circuit like Maxwell-Wein Bridge, Hay Bridge etc. which suffer from error due to stray capacitance between bridge nodal point and ground and stray inductance of the inductive coil. The conventional Wagner Earth Technique is not suitable for continuous measurement. In the present paper, a modified operational amplifier based Maxwell-Wein Bridge measurement technique has been proposed in which stray capacitance and stray inductance are minimized. The experiment is done for different value of known inductance & Q factor for a specific signal. The linear characteristic with a good repeatability, linearity and variable sensitivity has been described.

  16. Modeling and Design of Capacitive Micromachined Ultrasonic Transducers Based-on Database Optimization

    International Nuclear Information System (INIS)

    Chang, M W; Gwo, T J; Deng, T M; Chang, H C

    2006-01-01

    A Capacitive Micromachined Ultrasonic Transducers simulation database, based on electromechanical coupling theory, has been fully developed for versatile capacitive microtransducer design and analysis. Both arithmetic and graphic configurations are used to find optimal parameters based on serial coupling simulations. The key modeling parameters identified can improve microtransducer's character and reliability effectively. This method could be used to reduce design time and fabrication cost, eliminating trial-and-error procedures. Various microtransducers, with optimized characteristics, can be developed economically using the developed database. A simulation to design an ultrasonic microtransducer is completed as an executed example. The dependent relationship between membrane geometry, vibration displacement and output response is demonstrated. The electromechanical coupling effects, mechanical impedance and frequency response are also taken into consideration for optimal microstructures. The microdevice parameters with the best output signal response are predicted, and microfabrication processing constraints and realities are also taken into consideration

  17. A study on protozoan infections (Giardia, Entamoeba, Isoapora and Cryptosporidium in stray dogs in Ilam province

    Directory of Open Access Journals (Sweden)

    S Kakekhani

    2011-11-01

    Full Text Available Giardia, Entamoeba, Isospora and Cryptosporidium are important protozoan parastites that caused diarrhea in human and animals. In the present study, fecal samples were collected fresh, directly from the rectum of 112 stray dogs in Ilam province. Giardia and Entamoeba were concentrated by using the formalin ether sedimentation method followed by the trichrome and iodine staining technique andCryptosporidium  oocysts  were  concentrated  by  using  the  formalin  ether  sedimentation  method  followed by the modified Ziehl-Neelsen staining technique. Of 112 stray dogs, protozoan infections were detected from feces of 46 dogs (41.07% that Giardia infection was detected from feces of 21 dogs (18.75%, Isospora 17 (15.17%, Cryptosporidium 8 (7.14% and synchronization infection to 2 protozoan in 9 dogs (8.03% and to 3 protozoan in 3 (2.67%. In the present study not observed to Entamoeba. No statistically significant differences in prevalence of protozoan parasites occurred between female (34.21 % and male (55.5 % stray dogs (p>0/05. But statistically significant differences in prevalence occurred between 1≥0 and 0 ≥1 stray dogs (p>0/05. So that stray dogs of Ilam province can cause infection of human water and food sources.

  18. Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.

    Science.gov (United States)

    Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel

    2017-04-01

    Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.

  19. False capacitance of supercapacitors

    OpenAIRE

    Ragoisha, G. A.; Aniskevich, Y. M.

    2016-01-01

    Capacitance measurements from cyclic voltammetry, galvanostatic chronopotentiometry and calculation of capacitance from imaginary part of impedance are widely used in investigations of supercapacitors. The methods assume the supercapacitor is a capacitor, while real objects correspond to different equivalent electric circuits and show various contributions of non-capacitive currents to the current which is used for calculation of capacitance. Specific capacitances which are presented in F g-1...

  20. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror.

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-06-10

    Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.

  1. Strongly capacitively coupled double quantum dots in GaAs-AlGaAs heterostructures. Preparation and electrical transport; Kapazitativ stark gekoppelte Doppelquantenpunkte in GaAs-AlGaAs-Heterostrukturen. Herstellung und elektrischer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, A.

    2007-11-22

    In this work, a double quantum dot system is studied whose two dots are electrically insulated from one another and contacted independently with two leads. The geometry is optimized to maximize the capacitive interaction between the dots. The samples are characterized by electrical transport measurements in a dilution refrigerator. It is then studied at different tunnel couplings how the capacitive interaction influences the electrical transport in equilibrium. Under certain conditions correlated tunnel processes can be observed. A simple model is derived that serves to understand these processes. The double quantum dot system is defined in lateral arrangement by reactive ion etching of a two-dimensional electron system located only 50 nm below the surface of a GaAs-AlGaAs heterostructure. The samples are characterized in a dilution refrigerator at 25 mK near the common pinch-off point of all four tunnel barriers. A measurement of the differential equilibrium conductances of both quantum dots as a function of two gate voltages yields a honeycomb-like charge stability diagram. The most important sample characteristic is the ratio between the interaction capacitance and the total capacitance of a single quantum dot. For the optimized sample, this ratio turns out to be larger than one third near the common pinch-off point, with a single-dot charging energy of up to 800 {mu}eV. At more positive gate voltages, the capacitances between the quantum dots and their leads increase more and more, thereby diminishing the charging energy. It is shown for the optimized sample that all capacitance coefficients except the dot-lead capacitances are constant to within considerable accuracy over several Coulomb blockade oscillations. In order to measure correlated electrical transport in equilibrium, special parameter regions are examined in which the charges of both quantum dots cannot fluctuate independently of each other. An analytical formula is derived that describes the

  2. Detection of Hepatozoon canis in stray dogs and cats in Bangkok, Thailand.

    Science.gov (United States)

    Jittapalapong, Sathaporn; Rungphisutthipongse, Opart; Maruyama, Soichi; Schaefer, John J; Stich, Roger W

    2006-10-01

    A rapidly increasing stray animal population in Bangkok has caused concern regarding transmission of vector-borne and zoonotic diseases. The purpose of this study was to determine if stray animals in Bangkok are a potential reservoir of Hepatozoon, a genus of tick-borne parasites that has received little attention in Thailand. Blood samples were collected from stray companion animals near monasteries in 42 Bangkok metropolitan districts. Both dogs and cats were sampled from 26 districts, dogs alone from 4 districts and cats alone from 12 districts. Samples were collected from a total of 308 dogs and 300 cats. Light microscopy and an 18 S rRNA gene-based PCR assay were used to test these samples for evidence of Hepatozoon infection. Gamonts were observed in blood smears for 2.6% of dogs and 0.7% of cats by microscopy. The PCR assay detected Hepatozoon in buffy coats from 11.4% of dogs and 32.3% of cats tested. The prevalence of infection was the same between male and female dogs or cats, and PCR-positive dogs and cats were found in 36.6% and 36.8% of the districts surveyed, respectively. There was an association between the percentages of PCR-positive dogs and cats in districts where both host species were sampled. Sequences of representative amplicons were closest to those reported for H. canis. These results represent the first molecular confirmation that H. canis is indigenous to Thailand. The unexpectedly high prevalence of Hepatozoon among stray cats indicates that their role in the epizootiology of hepatozoonosis should be investigated.

  3. A new interface weak-capacitance detection ASIC of capacitive liquid level sensor in the rocket

    Science.gov (United States)

    Yin, Liang; Qin, Yao; Liu, Xiao-Wei

    2017-11-01

    A new capacitive liquid level sensing interface weak-capacitance detection ASIC has been designed. This ASIC realized the detection of the output capacitance of the capacitive liquid level sensor, which converts the output capacitance of the capacitive liquid level sensor to voltage. The chip is fabricated in a standard 0.5μm CMOS process. The test results show that the linearity of capacitance detection of the ASIC is 0.05%, output noise is 3.7aF/Hz (when the capacitance which will be detected is 40 pF), the stability of capacitance detection is 7.4 × 10-5pF (1σ, 1h), the output zero position temperature coefficient is 4.5 uV/∘C. The test results prove that this interface ASIC can meet the requirement of high accuracy capacitance detection. Therefore, this interface ASIC can be applied in capacitive liquid level sensing and capacitive humidity sensing field.

  4. Spin-orbit controlled capacitance of a polar heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Kevin; Kopp, Thilo [Center for Electronic Correlations and Magnetism, EP VI, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Loder, Florian [Center for Electronic Correlations and Magnetism, EP VI and TP III, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany)

    2015-07-01

    Oxide heterostructures with polar films display special electronic properties, such as the electronic reconstruction at their internal interfaces with the formation of two-dimensional metallic states. Moreover, the electrical field from the polar layers is inversion-symmetry breaking and may generate a strong Rashba spin-orbit coupling (RSOC) in the interfacial electronic system. We investigate the capacitance of a heterostructure in which a strong RSOC at a metallic interface is controlled by the electric field of a surface electrode. Such a structure is for example given by a LaAlO{sub 3} film on a SrTiO{sub 3} substrate which is gated by a top electrode. We find that due to a strong RSOC the capacitance can be larger than the classical geometric value.

  5. It’s a Dog’s Life: International Tourists’ Perceptions of the Stray Dog Population of Bhutan.

    Directory of Open Access Journals (Sweden)

    Paul C Strickland

    2015-12-01

    Full Text Available This study investigates the international tourists’ perception of the stray dog population of Bhutan as little or no mention of the increasing stray dog population and their impact on tourism has been documented. After personally visiting the Kingdom on many occasions, it is evident that the stray dog population is increasing in dog numbers in major cities. The problems arising are negative comments by tourists relating to the stray dog population that are starting to appear in social media that may impact the visitor experience and the perception of Bhutan’s tourism industry. Veterinary science is aware of both increasing dog populations and the control of diseases such as Rabies however the author can find no evidence regarding challenges for the tourism industry. The problem is aided by no local veterinary clinics, no laws regarding dog governance, little funding for sterilization programs and being predominately a Buddhist country that cannot ‘cull’ animals. Using qualitative analysis from international tourist focus groups who were visiting Bhutan, this study highlights the perceptions of tourists regarding the stray dog population and how it may impact on visitor expectations. The paper suggests options that local government, Bhutanese nationals and visitors can do to assist the issue based on visitor feedback. Future research may include comparisons with other cities or countries to examine if it is a global issue or unique to Bhutan.

  6. Capacitive Feedthroughs for Medical Implants.

    Science.gov (United States)

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  7. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  8. Identification of Zoonotic Parasites isolated from Stray Dogs in Bojnurd County Located in North-East of Iran

    Directory of Open Access Journals (Sweden)

    Kourosh Arzamani

    2016-10-01

    Full Text Available Dog can represent as an important source of zoonotic disease and important health problem for human. They can carry dangerous parasitic diseases such as hydatidosis, toxocariasis and Coenurus cerebralis to humans and animals. This study was performed in order to determine the prevalence and intensity of zoonotic parasites among stray dogs from Bojnurd, the capital city of North Khorasan province in North West of Iran. During a program performing by Bojnurd municipal on the slow killing of stray dogs, 32 dogs from Jun 2013 till March 2015 were selected. At necropsy their alimentary canals were removed and to identify the species of helminthes, the nematodes were cleared in lactophenol and cestodes were stained using carmine acid. Intestinal protozoan parasites were detected with parasitological methods. 28 (87.5% of 32 stray dogs infected at least with one helminth. Seven species of cestodes were isolated from examined dogs and three species of nematode were detected. Giardia sp. and Cryptosporidium sp. detected from fecal samples. This is the first study of the prevalence of intestinal zoonotic parasites in dogs in this area. It seems control of bearing stray dogs can help human health and reduction economic losses caused by stray dog’s zoonotic parasites.

  9. Carbon Nanotubes on Titanium Substrates for Stray Light Suppression

    Science.gov (United States)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2011-01-01

    A method has been developed for growing carbon nanotubes on a titanium substrate, which makes the nano tubes ten times blacker than the current state-of-the-art paints in the visible to near infrared. This will allow for significant improvement of stray light performance in scientific instruments, or any other optical system. Because baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it is critical to develop this surface treatment on structural materials. This innovation optimizes the carbon nano - tube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The steps required to grow the nanotubes require the preparation of the surface by lapping, and the deposition of an iron catalyst over an alumina stiction layer by e-beam evaporation. In operation, the stray light controls are fabricated, and nanotubes (multi-walled 100 microns in length) are grown on the surface. They are then installed in the instruments or other optical devices.

  10. Bartonella and Toxoplasma Infections in Stray Cats from Iraq

    Science.gov (United States)

    Switzer, Alexandra D.; McMillan-Cole, Audrey C.; Kasten, Rickie W.; Stuckey, Matthew J.; Kass, Philip H.; Chomel, Bruno B.

    2013-01-01

    Because of overpopulation, stray/feral cats were captured on military bases in Iraq as part of the US Army Zoonotic Disease Surveillance Program. Blood samples were collected from 207 cats, mainly in Baghdad but also in North and West Iraq, to determine the prevalence of Bartonella and Toxoplasma infections. Nine (4.3%) cats, all from Baghdad, were bacteremic with B. henselae type I. Seroprevalence was 30.4% for T. gondii, 15% for B. henselae, and 12.6% for B. clarridgeiae. Differences in Bartonella prevalence by location were statistically significant, because most of the seropositive cats were from Baghdad. There was no association between T. gondii seropositivity and either of the two Bartonella species surveyed. This report is the first report on the prevalence of Bartonella and T. gondii among stray cats in Iraq, which allows for better evaluation of the zoonotic risk potential to the Iraqi people and deployed military personnel by feral cat colonies. PMID:24062480

  11. Opening of K+ channels by capacitive stimulation from silicon chip

    Science.gov (United States)

    Ulbrich, M. H.; Fromherz, P.

    2005-10-01

    The development of stable neuroelectronic systems requires a stimulation of nerve cells from semiconductor devices without electrochemical effects at the electrolyte/solid interface and without damage of the cell membrane. The interaction must rely on a reversible opening of voltage-gated ion channels by capacitive coupling. In a proof-of-principle experiment, we demonstrate that Kv1.3 potassium channels expressed in HEK293 cells can be opened from an electrolyte/oxide/silicon (EOS) capacitor. A sufficient strength of electrical coupling is achieved by insulating silicon with a thin film of TiO2 to achieve a high capacitance and by removing NaCl from the electrolyte to enhance the resistance of the cell-chip contact. When a decaying voltage ramp is applied to the EOS capacitor, an outward current through the attached cell membrane is observed that is specific for Kv1.3 channels. An open probability up to fifty percent is estimated by comparison with a numerical simulation of the cell-chip contact.

  12. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters

    Science.gov (United States)

    Lancaster, Emily; Rand, Jacquie; Collecott, Sheila; Paterson, Mandy

    2015-01-01

    Simple Summary Microchip identification has become an important tool to reunite stray dogs and cats with their owners, and is now compulsory in most states of Australia. Improvement of the microchipping system in Australia is limited by a lack of published Australian data documenting the problems experienced by shelter staff when using microchip data to contact the owner of a stray animal. In this study we determine the character and frequency of inaccurate microchip data to identify weaknesses in the current microchipping system. This information could be used to develop strategies that increase the accuracy of microchip data that will increase the reclaiming of stray animals. Abstract A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258) and cats (n = 6950) entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA) Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37%) had problems with their data, including being registered to a previous owner or organisation (47%), all phone numbers incorrect/disconnected (29%), and the microchip not registered (14%). A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%). The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals—87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of

  13. Lightweight linear alternators with and without capacitive tuning

    Science.gov (United States)

    Niedra, Janis M.

    1993-06-01

    Permanent magnet excited linear alternators rated tens of kW and coupled to free-piston Stirling engines are presently viewed as promising candidates for long term generation of electric power in both space and terrestrial applications. Series capacitive cancellation of the internal inductive reactance of such alternators was considered a viable way to both increase power extraction and to suppress unstable modes of the thermodynamic oscillation. Idealized toroidal and cylindrical alternator geometries are used for a comparative study of the issues of specific mass and capacitive tuning, subject to stability criteria. The analysis shows that the stator mass of an alternator designed to be capacitively tuned is always greater than the minimum achievable stator mass of an alternator designed with no capacitors, assuming equal utilization of materials ratings and the same frequency and power to a resistive load. This conclusion is not substantially altered when the usually lesser masses of the magnets and of any capacitors are added. Within the reported stability requirements and under circumstances of normal materials ratings, this study finds no clear advantage to capacitive tuning. Comparative plots of the various constituent masses are presented versus the internal power factor taken as a design degree of freedom. The explicit formulas developed for stator core, coil, capacitor, and magnet masses and for the degree of magnet utilization provide useful estimates of scaling effects.

  14. Feline immunodeficiency virus testing in stray, feral, and client-owned cats of Ottawa

    OpenAIRE

    Little, Susan E.

    2005-01-01

    Feline immunodeficiency virus (FIV) seroprevalence is evaluated in 3 groups of cats. Seventy-four unowned urban strays were tested, as well as 20 cats from a small feral cat colony, and 152 client-owned cats. Of the 246 cats tested, 161 (65%) were male and 85 (35%) were female. Seroprevalence for FIV was 23% in the urban strays, 5% in the feral cat colony, and 5.9% in the client-owned cats. Ten cats (4%) were also positive for Feline leukemia virus (FeLV) antigen, including 2 cats coinfected ...

  15. Stray current vs anodic polarization in reinforced mortar: a comparative study on steel corrosion behaviour in both regimes

    NARCIS (Netherlands)

    Chen, Zhipei; Koleva, D.A.; van Breugel, K.

    2015-01-01

    Stray current arising from direct current electrified traction systems and then circulat-ing in reinforced concrete structures may initiate corrosion or even accelerate existing corrosion processes on embedded reinforcement. Therefore, stray-current induced corrosion of nearby reinforced concrete

  16. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Robert, E-mail: Robert.Stegemann@bam.de [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Wimpory, Robert; Boin, Mirko [HZB Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Kreutzbruck, Marc [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); IKT, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2017-03-15

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. - Highlights: • Comparison of magnetic microstructure with neutron diffraction stress analysis. • High spatial resolution magnetic stray field images of hypereutectoid TIG welds. • Spatial variations of the stray fields are below the magnetic field of the earth. • GMR spin valve gradiometer arrays adapted for the evaluation of magnetic microstructures. • Magnetic stray fields are closely linked to microstructure of the material.

  17. Development of a versatile readout and test system and characterization of a capacitively coupled active pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Jens; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn, Bonn (Germany); Peric, Ivan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    With the availability of high voltage and high resistivity CMOS processes, active pixel sensors are becoming increasingly interesting for radiation detection in high energy physics experiments. Although the pixel signal-to-noise ratio and the sensor radiation tolerance were improved, active pixel sensors cannot yet compete with state-of-the-art hybrid pixel detector in a high radiation environment. Hence, active pixel sensors are possible candidates for the outer tracking detector in HEP experiments where production cost plays a role. The investigation of numerous prototyping steps and different technologies is still ongoing and requires a versatile test and readout system, which will be presented in this talk. A capacitively coupled active pixel sensor fabricated in AMS 180 nm high voltage CMOS process is investigated. The sensor is designed to be glued to existing front-end pixel readout chips. Results from the characterization are presented in this talk.

  18. A Micro Dynamically Tuned Gyroscope with Adjustable Static Capacitance

    Directory of Open Access Journals (Sweden)

    Lun Kong

    2013-02-01

    Full Text Available This paper presents a novel micro dynamically tuned gyroscope (MDTG with adjustable static capacitance. First, the principle of MDTG is theoretically analyzed. Next, some simulations under the optimized structure parameters are given as a reference for the mask design of the rotor wafer and electrode plates. As two key components, the process flows of the rotor wafer and electrode plates are described in detail. All the scanning electron microscopy (SEM photos show that the fabrication process is effective and optimized. Then, an assembly model is designed for the static capacitance adjustable MDTG, whose static capacitance can be changed by rotating the lower electrode plate support and substituting gasket rings of different thicknesses. Thus, the scale factor is easily changeable. Afterwards, the digitalized closed-loop measurement circuit is simulated. The discrete correction and decoupling modules are designed to make the closed-loop stable and cross-coupling effect small. The dual axis closed-loop system bandwidths can reach more than 60 Hz and the dual axis scale factors are completely symmetrical. All the simulation results demonstrate the proposed fabrication of the MDTG can meet the application requirements. Finally, the paper presents the test results of static and dynamic capacitance values which are consistent with the simulation values.

  19. Stray light correction on array spectroradiometers for optical radiation risk assessment in the workplace

    International Nuclear Information System (INIS)

    Barlier-Salsi, A

    2014-01-01

    The European directive 2006/25/EC requires the employer to assess and, if necessary, measure the levels of exposure to optical radiation in the workplace. Array spectroradiometers can measure optical radiation from various types of sources; however poor stray light rejection affects their accuracy. A stray light correction matrix, using a tunable laser, was developed at the National Institute of Standards and Technology (NIST). As tunable lasers are very expensive, the purpose of this study was to implement this method using only nine low power lasers; other elements of the correction matrix being completed by interpolation and extrapolation. The correction efficiency was evaluated by comparing CCD spectroradiometers with and without correction and a scanning double monochromator device as reference. Similar to findings recorded by NIST, these experiments show that it is possible to reduce the spectral stray light by one or two orders of magnitude. In terms of workplace risk assessment, this spectral stray light correction method helps determine exposure levels, with an acceptable degree of uncertainty, for the majority of workplace situations. The level of uncertainty depends upon the model of spectroradiometers used; the best results are obtained with CCD detectors having an enhanced spectral sensitivity in the UV range. Thus corrected spectroradiometers require a validation against a scanning double monochromator spectroradiometer before using them for risk assessment in the workplace. (paper)

  20. Stray light correction on array spectroradiometers for optical radiation risk assessment in the workplace.

    Science.gov (United States)

    Barlier-Salsi, A

    2014-12-01

    The European directive 2006/25/EC requires the employer to assess and, if necessary, measure the levels of exposure to optical radiation in the workplace. Array spectroradiometers can measure optical radiation from various types of sources; however poor stray light rejection affects their accuracy. A stray light correction matrix, using a tunable laser, was developed at the National Institute of Standards and Technology (NIST). As tunable lasers are very expensive, the purpose of this study was to implement this method using only nine low power lasers; other elements of the correction matrix being completed by interpolation and extrapolation. The correction efficiency was evaluated by comparing CCD spectroradiometers with and without correction and a scanning double monochromator device as reference. Similar to findings recorded by NIST, these experiments show that it is possible to reduce the spectral stray light by one or two orders of magnitude. In terms of workplace risk assessment, this spectral stray light correction method helps determine exposure levels, with an acceptable degree of uncertainty, for the majority of workplace situations. The level of uncertainty depends upon the model of spectroradiometers used; the best results are obtained with CCD detectors having an enhanced spectral sensitivity in the UV range. Thus corrected spectroradiometers require a validation against a scanning double monochromator spectroradiometer before using them for risk assessment in the workplace.

  1. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    Science.gov (United States)

    Biesheuvel, P. M.; Bazant, M. Z.

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  2. Study of Intestinal Helminthes of Stray Dogs and Thir Public Heath Importance in Hamadan City

    Directory of Open Access Journals (Sweden)

    Kh. Rahmati

    2016-11-01

    Full Text Available Introduction: Intestinal helminthesof dogs are a serious threat to human health and may cause dangerous diseases such as: hydatidosis and visceral larva migrans, that which cause severe complications in human. Th aim of this study was to determine the prevalenceof intestinal helminthes of stray dogs in Hamadan city, Iran.. Methods: A total of 103 stray dogswere shot in the inner and around of the city in year 2015. Following necropsy, the intestines' contents of dogs were examined for helminthes macroscopically. Thn, the collected worms, aftr washing with saline,were counted and identifid according to being Nematode, Cestodeor Acantcephala. Thn, collected Nematodes were put in glass containers containing 70% ethanol-glycerine and Cestodes aftr processing on slides were put in the 10% formalin. To identify the species of helminthes, the Cestodes were stained using carmine acid and Nematodes were cleared in lacto-phenol. Results: Result indicated that, 74(71.8%stray dogs were infected at least by one species of intestinal helminthes. Th species of parasites were as follows: Echinococcus granulosus 37.9%, Dipylidium caninum 51.5%, Toxocara canis 19.4%, Taenia hydatigena 24.3%, T. multiceps 2.9%, T. ovis 1.9%, Mesocest oideslineatus 4.9%, and Acantho cephala 5.8%. Thre was no association between insex, season and region with prevalence of intestinal helminthes (P 0.05 between the prevalence of intestinal helminthes and dogs' age. Conclusions: Ths study indicatesd that,infection rate of helminthes in stray dogs is washigh in Hamadan city. Thse parasites are important in terms of human health and economic aspects. Threfore, it is more essential that public health authoritiesto develop control strategies for stray dogs population.

  3. Gastrointestinal parasites in stray and shelter cats in the municipality of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Pâmela Figueiredo Pereira

    Full Text Available Abstract The increasingly urban nature of the population has led many people to choose independent pets, such as cats. This situation has also made it possible for these animals to be abandoned, thus increasing the numbers of cats on the streets and in shelters. These animals can act as a source of infection for other hosts. Between 2014 and 2015, the frequency of gastrointestinal parasites in captive and stray cats in the municipality of Rio de Janeiro was analyzed. Ninety-one fecal samples were collected from captive cats and 172 from stray cats. Centrifugal sedimentation and flotation techniques were used. The frequency of parasites among the stray cats was 77.3%, and this was significantly higher than the frequency observed in captive cats (49.5%. Helminths were detected more frequently, and hookworms were the parasites most detected. Toxocara cati, Cystoisospora sp. and Dipylidium caninum were also detected. No statistical difference in the frequency of parasites was observed between the sexes among the captive cats. However, among the stray cats, males (85.5% presented higher positivity than females (71.8%. The high frequency of hookworms, which are the agent for “cutaneous larva migrans” in humans, shows the need to control parasitic infections among the cats studied.

  4. PCR-based molecular characterization of Toxocara spp. using feces of stray cats: a study from Southwest Iran.

    Science.gov (United States)

    Khademvatan, Shahram; Rahim, Fakher; Tavalla, Mahdi; Abdizadeh, Rahman; Hashemitabar, Mahmoud

    2013-01-01

    Feces of stray cat are potential sources of gastrointestinal parasites and play a crucial role in spreading and transmitting parasite eggs, larvae, and oocysts through contamination of soil, food, or water. In this study, we investigated the prevalence of Toxocara spp. infection in stray cats in Ahvaz city, southwest Iran. Eggs of Toxocara spp. in feces of stray cats were detected by the sucrose flotation method, and identification was conducted by polymerase chain reaction (PCR) and DNA sequencing. Of the 140 fecal samples that were randomly collected from public environments during the months of January to May 2012, 45% were found to harbour Toxocara spp. eggs. The highest prevalence of Toxocara spp. eggs was found in the central area of Ahvaz city (28.6%). T. canis eggs were found in 4 (6.34%) of the 63 positive samples. Stray cats are found in parks, playgrounds, and other public places and may be a potential contamination risk. Identification of Toxocara spp. using molecular methods is sufficiently sensitive to detect low levels of parasites and identify the different Toxocara spp. in feces. The relatively high prevalence of Toxocara spp. infection may continue to increase due to lack of effective environmental hygiene control in Iran. Consequently, there is a need to plan adequate programs to detect, identify, and control this infection as well as stray cats in the region.

  5. PCR-based molecular characterization of Toxocara spp. using feces of stray cats: a study from Southwest Iran.

    Directory of Open Access Journals (Sweden)

    Shahram Khademvatan

    Full Text Available Feces of stray cat are potential sources of gastrointestinal parasites and play a crucial role in spreading and transmitting parasite eggs, larvae, and oocysts through contamination of soil, food, or water. In this study, we investigated the prevalence of Toxocara spp. infection in stray cats in Ahvaz city, southwest Iran. Eggs of Toxocara spp. in feces of stray cats were detected by the sucrose flotation method, and identification was conducted by polymerase chain reaction (PCR and DNA sequencing. Of the 140 fecal samples that were randomly collected from public environments during the months of January to May 2012, 45% were found to harbour Toxocara spp. eggs. The highest prevalence of Toxocara spp. eggs was found in the central area of Ahvaz city (28.6%. T. canis eggs were found in 4 (6.34% of the 63 positive samples. Stray cats are found in parks, playgrounds, and other public places and may be a potential contamination risk. Identification of Toxocara spp. using molecular methods is sufficiently sensitive to detect low levels of parasites and identify the different Toxocara spp. in feces. The relatively high prevalence of Toxocara spp. infection may continue to increase due to lack of effective environmental hygiene control in Iran. Consequently, there is a need to plan adequate programs to detect, identify, and control this infection as well as stray cats in the region.

  6. A review on stray current-induced steel corrosion in infrastructure

    NARCIS (Netherlands)

    Chen, Zhipei; Koleva, D.A.; van Breugel, K.

    2017-01-01

    Metallic corrosion can cause substantial damage at various levels and in almost all types of infrastructure. For metallic corrosion to occur, a certain external environment and the presence of corrodents are the prerequisites. Stray current-induced corrosion, however, is a rather underestimated

  7. DNA Nucleotides Detection via capacitance properties of Graphene

    Science.gov (United States)

    Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash

    2016-05-01

    In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.

  8. Experimental Study on the Influence of AC Stray Current on the Cathodic Protection of Buried Pipe

    Directory of Open Access Journals (Sweden)

    Qingmiao Ding

    2016-01-01

    Full Text Available The size of the damaged area of the coating and its position on the pipeline impacted the cathodic protection potential, and there was a damaged area of the greatest impact value. When damaged area was 300 mm2, the IR drop was the largest, and this situation could easily lead to inadequate protection; when the parallel spacing between pipeline and interference source was unchanged, the measured value curves of cathodic protection potential presented “U” shaped trend with the increasing stray current interference intensity. Under certain parallel spacing between pipeline and interference source, high alternating stray current intensity would cause serious negative offsets, so that the overprotection of the pipeline occurred, and make the coating crack; there was a parallel threshold length. When less than the threshold, the pipe-ground potential increases rapidly with the parallel length increasing. In order to judge whether a pipeline was interference by AC stray current and the risk of stray current corrosion, we should make a comprehensive analysis of the cathodic protection energizing potential, the switch-off potential, AC pipe-soil potential, IR drops, and so on.

  9. What's in a name? Perceptions of stray and feral cat welfare and control in Aotearoa, New Zealand.

    Science.gov (United States)

    Farnworth, Mark J; Campbell, Joanna; Adams, Nigel J

    2011-01-01

    New Zealanders (n = 354) rated the acceptability of lethal and nonlethal cat control methods and the importance of conservation and welfare. Lethal control was more acceptable for feral cats than strays; for nonlethal control, the inverse was true. More than concern for the welfare of cats subjected to control, perceived conservation benefits, risk of disease transfer, and companion cat welfare dictated the acceptability of control measures. Similarly, the welfare consideration for groups of cats differed, transitioning from companion (highest) to feral (lowest). Differences in attitudes toward acceptability of control methods were evident. In particular, nonhuman animal professionals ranked lethal control as more acceptable than did nonanimal professionals. Cat caregivers (owners) considered both conservation and welfare issues of greater importance than did nonowners. Owners ranked the acceptability of nonlethal control methods higher for stray cats, but not feral, than did nonowners. This research indicates that the use of the terms stray and feral may have significant impact on cats in New Zealand. There is also a greater consideration of conservation values than of welfare in stray and feral cat control.

  10. Molecular detection of blood pathogens and their impacts on levels of packed cell volume in stray dogs from Thailand

    Directory of Open Access Journals (Sweden)

    Supawadee Piratae

    2017-04-01

    Full Text Available Objective: To evaluate the prevalence of blood parasite infection in stray dogs by PCR technique and the association between levels of packed cell volume (PCV and blood parasitic infection in stray dogs. Methods: A total of 65 blood samples were collected from stray dogs in animal quarantine station from Mahasarakham, Thailand to evaluate the levels of PCV before molecular screening for tick-borne pathogens infection. Results: Stray dogs were positive with one or more pathogens in 44 (67.69% out of 65 blood samples. Ehrlichia canis [43.1%, 95% confidence interval (CI: 38.1–48.1] was the most common blood pathogen found infecting in stray dogs in Mahasarakham Province, followed by Anaplasma platys (29.2%, 95% CI: 24.2–34.2, Hepatozoon canis (12.3%, 95% CI: 7.3–17.3 and Babesia canis vogeli (6.2%, 95% CI: 1.2–11.2, respectively. Moreover, co-infections with two pathogens were identified in 11 (16.9% of dogs examined and two (2.9% dogs were coinfections with three pathogens. Statistically significant relationship between the PCV levels and Ehrlichia canis infection was found (P < 0.05. Conclusions: This study indicated that blood pathogens are spreading in stray dogs and they are potentially high risk of agent transmission to human via exposure with tick vectors. It was also the first report of Anaplasma platys infection in dogs in north-eastern part of Thailand.

  11. Counteracting Animal Homelessness and Providing Care for Stray Animals as a Task of a Commune

    OpenAIRE

    Szalewska, Małgorzata

    2017-01-01

    The analysis of Polish binding law acts allows one to assume that, on normative level, the obligation of public administration to provide care for stray animals is deeply embedded. Both the Animal Protection Act, as well as the Act on Maintaining Cleanliness, indicate the tasks of a commune in the scope of providing care for stray animals, catching homeless animals and counteracting their homelessness. Simultaneously, the analysis of jurisdiction, and inquiries as well as considerations emerg...

  12. Precise measurements of neutral gas temperature using Fiber Bragg Grating sensor in Argon capacitively coupled plasmas

    Science.gov (United States)

    Han, Daoman; Liu, Zigeng; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-09-01

    Neutral gas temperature was measured using Fiber Bragg Grating sensor (FBGs) in capacitively coupled argon plasmas. Thermometry is based on the thermal equilibrium between the sensor and neutral gases, which is found to become faster with increasing pressure. It is also observed that the neutral gas temperature is higher than the room temperature by 10 120 °depending on the experiental conditions, and gas temperature shows significant non-uniformity in space. In addition, radial profiles of neutral temperature at different pressures, resemble these of ion density, obtained by a floating double probe. Specifically, at low pressure, neutral gas temperature and ion density peak at the center of the reactor, while the peak appears at the edge of the electrode at higher pressure. The neutral gas heating is mainly caused by the elastic collisions of Ar + with neutral gas atoms in the sheath region after Ar + gaining a certain energy. This work was supported by the National Natural Science Foundation of China (NSFC) (Grants No. 11335004, 11405018, and 61137005).

  13. Heart Rate Variability Monitoring during Sleep Based on Capacitively Coupled Textile Electrodes on a Bed

    Directory of Open Access Journals (Sweden)

    Hong Ji Lee

    2015-05-01

    Full Text Available In this study, we developed and tested a capacitively coupled electrocardiogram (ECG measurement system using conductive textiles on a bed, for long-term healthcare monitoring. The system, which was designed to measure ECG in a bed with no constraints of sleep position and posture, included a foam layer to increase the contact region with the curvature of the body and a cover to ensure durability and easy installation. Nine healthy subjects participated in the experiment during polysomnography (PSG, and the heart rate (HR coverage and heart rate variability (HRV parameters were analyzed to evaluate the system. The experimental results showed that the mean of R-peak coverage was 98.0% (95.5%–99.7%, and the normalized errors of HRV time and spectral measures between the Ag/AgCl system and our system ranged from 0.15% to 4.20%. The root mean square errors for inter-beat (RR intervals and HR were 1.36 ms and 0.09 bpm, respectively. We also showed the potential of our developed system for rapid eye movement (REM sleep and wake detection as well as for recording of abnormal states.

  14. Stray dog meat consumption and rabies | Wiwanitkit | African Health ...

    African Journals Online (AJOL)

    Stray dog meat consumption and rabies. V Wiwanitkit. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/ahs.v14i3.41 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  15. Individual monitoring in high-energy stray radiation fields

    International Nuclear Information System (INIS)

    Hoefert, M.; Stevenson, G.R.

    1995-01-01

    Due to the lack of passive or active devices that could be considered as personal dosemeters in high-energy stray fields one can at present only perform individual monitoring around high energy accelerators. Of all detectors currently available it is shown that the NTA film is the most suitable method for individually monitoring the neutron exposure of more than 3000 persons regularly, reliably, and cost effectively like at CERN. (author)

  16. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  17. Analysis of stray grain formation in single crystal CMSX-4 superalloy; Analyse der Bildung von Fehlkoernern in einer einkristallinen CMSX-4-Superlegierung

    Energy Technology Data Exchange (ETDEWEB)

    Chmiela, Bartosz; Sozanska, Maria; Cwajna, Jan [Silesian Univ. of Technology, Katowice (Poland). Dept. of Materials Science; Szeliga, Dariusz [Rzeszow Univ. of Technology (Poland). Dept. of Materials Science; Jarczyk, Jerzy [ALD Vacuum Technologies, Hanau (Germany)

    2013-08-01

    Modern single crystal (SX) turbine blades are fabricated by directional solidification using a grain selector. The grain selection process was investigated by numerical simulation and verified by the experiment. A coupled ProCAST and cellular automaton finite element (CAFE) model was used in this study. According to the latest literature data, we designed the grain selector. Simulation confirmed an optimal grain selection efficiency of the applied selector geometry. The obtained experimental results reveal the possibility of stray grain formation in SX castings with a designed selector, in contrast to the simulation results. (orig.)

  18. Simulation and optimization of a dc SQUID with finite capacitance

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise an the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT = 1.2 and 5 nHK. Within a range of ..beta.. and ..beta../sub c/ between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 nHK.

  19. Simulation and optimization of a dc SQUID with finite capacitance

    Science.gov (United States)

    de Waal, V. J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise and the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT=1.2 and 5 nH K. Within a range of β and β c between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 mH K.

  20. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  1. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    Science.gov (United States)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  2. Feline immunodeficiency virus testing in stray, feral, and client-owned cats of Ottawa.

    Science.gov (United States)

    Little, Susan E

    2005-10-01

    Feline immunodeficiency virus (FIV) seroprevalence is evaluated in 3 groups of cats. Seventy-four unowned urban strays were tested, as well as 20 cats from a small feral cat colony, and 152 client-owned cats. Of the 246 cats tested, 161 (65%) were male and 85 (35%) were female. Seroprevalence for FIV was 23% in the urban strays, 5% in the feral cat colony, and 5.9% in the client-owned cats. Ten cats (4%) were also positive for Feline leukemia virus (FeLV) antigen, including 2 cats coinfected with FeLV and FIV. Seroprevalence for FIV in cats from Ottawa is similar to that found in other nonrandom studies of cats in North America.

  3. Measurement of stray EC radiation on W7-AS

    Science.gov (United States)

    Gandini, F.; Hirsch, M.; Cirant, S.; Erckmann, V.; Granucci, G.; Kasparek, W.; Laqua, H. P.; Muzzini, V.; Nowak, S.; Radau, S.

    2001-10-01

    In the framework of a collaboration between IFP-CNR Milano, IPP Garching/Greifswald and IPF Stuttgart, a set of four millimeterwave probes has been installed in W7-AS stellarator at selected positions of the inner vessel wall. Their purpose is to observe RF stray radiation during operation in presence of strong level of Electron Cyclotron (EC) waves, used for plasma start-up, heating and current drive. The aim of these measurements is to benchmark two complementary theoretical models for the distribution of the stray radiation in the vessel. From these codes, quantitative predictions are expected for the spatial distribution of the RF wall load and the RF-impact on in-vessel components in large future devices such as W7-X and, possibly, ITER. This input is important to optimize the wall armour and select rf-compatible in-vessel materials. We present first measurements from different heating and startup scenarios, with up to 800 kW of injected power at 140 GHz and different launching geometries. An analysis of measurements performed on FTU using a previous version of sniffer probe is also presented.

  4. Measurement of stray EC radiation on W7-AS

    International Nuclear Information System (INIS)

    Gandini, F.; Cirant, S.; Granucci, G.; Muzzini, V.; Nowak, S.; Hirsch, M.; Erckmann, V.; Laqua, H.P.; Radau, S.; Kasparek, W.

    2001-01-01

    In the framework of a collaboration between IFP-CNR Milano, IPP Garching/Greifswald and IPF Stuttgart, a set of four millimeterwave probes has been installed in W7-AS stellarator at selected positions of the inner vessel wall. Their purpose is to observe RF stray radiation during operation in presence of strong level of Electron Cyclotron (EC) waves, used for plasma start-up, heating and current drive. The aim of these measurements is to benchmark two complementary theoretical models for the distribution of the stray radiation in the vessel. From these codes, quantitative predictions are expected for the spatial distribution of the RF wall load and the RF-impact on in-vessel components in large future devices such as W7-X and, possibly, ITER. This input is important to optimize the wall armour and select rf-compatible in-vessel materials. We present first measurements from different heating and startup scenarios, with up to 800 kW of injected power at 140 GHz and different launching geometries. An analysis of measurements performed on FTU using a previous version of sniffer probe is also presented

  5. Selective virtual capacitive impedance loop for harmonics voltage compensation in islanded microgrids

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril

    2013-01-01

    Parallel inverters having LCL output filters cause voltage distortions at the point of common coupling (PCC) in islanded microgrids when non-linear loads are present. A capacitive virtual impedance loop could be used to provide selective harmonic compensation in islanded microgrids, instead of in...... resistance for selective harmonic compensation in islanded microgrids. Simulation results were given to show the suitability of the proposed algorithms in reducing the voltage harmonics at the PCC.......Parallel inverters having LCL output filters cause voltage distortions at the point of common coupling (PCC) in islanded microgrids when non-linear loads are present. A capacitive virtual impedance loop could be used to provide selective harmonic compensation in islanded microgrids, instead...... of introducing additional active or passive filters into the system that could compromise the stability of the microgrid. However, the performance of these compensation loops becomes degraded when a virtual resistance is introduced with the aim to improve the overall stability of the parallel inverters...

  6. Prevalence of intestinal helminth parasites in stray dogs in urban ...

    African Journals Online (AJOL)

    A total of 246 faecal samples were collected between October 2015 to February 2016, 154 from stray dogs in Harare and 92 from rural dogs in Arcturas, Goromonzi and Christon Bank. The samples were examined by flotation and sedimentation methods and helminth eggs identified and EPG counted. Of the 246 samples, ...

  7. A capacitive bioelectrode for recording electrophysiological signals

    International Nuclear Information System (INIS)

    Moreno Garcia, E.; Mujica Ascencio, S.; Rosa Vazquez, J. M.de la; Stolik Isakina, S.

    2012-01-01

    In this paper we describe a gel-free sensor with on-board electrode design, which capacitive couples to the skin to detect the electrical activity in the body. The integrated sensor is manufactured on a standard printed circuit board within 2.2 cm diameter enclosure that can operate through fabric or other insulation. The electrode includes amplification (60db gain) and passive band pass filtering (0.5 to 100 Hz). Active shielding surrounding the sensor plate is used to reduce noise pickup. The input referred noise, measured over the electrode bandwidth is 4 μV rms at 0.2 mm sensor distance, and 16 μV rms at 1.2 mm distance trough two cotton cloths. The bioelectrodes were coupled to the scalp trough hair for EEG signals (with 80 db gain), and coupled to the chest through clothing for ECG signals. The recorded signals show well performance of the designed bielectrode. (Author)

  8. MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study.

    Science.gov (United States)

    van Nierop, Lotte E; Slottje, Pauline; Kingma, Herman; Kromhout, Hans

    2013-07-01

    We assessed postural body sway performance after exposure to movement induced time-varying magnetic fields in the static magnetic stray field in front of a 7 Tesla (T) magnetic resonance imaging scanner. Using a double blind randomized crossover design, 30 healthy volunteers performed two balance tasks (i.e., standing with eyes closed and feet in parallel and then in tandem position) after standardized head movements in a sham, low exposure (on average 0.24 T static magnetic stray field and 0.49 T·s(-1) time-varying magnetic field) and high exposure condition (0.37 T and 0.70 T·s(-1)). Personal exposure to static magnetic stray fields and time-varying magnetic fields was measured with a personal dosimeter. Postural body sway was expressed in sway path, area, and velocity. Mixed-effects model regression analysis showed that postural body sway in the parallel task was negatively affected (P < 0.05) by exposure on all three measures. The tandem task revealed the same trend, but did not reach statistical significance. Further studies are needed to investigate the possibility of independent or synergetic effects of static magnetic stray field and time-varying magnetic field exposure. In addition, practical safety implications of these findings, e.g., for surgeons and others working near magnetic resonance imaging scanners need to be investigated. Copyright © 2012 Wiley Periodicals, Inc.

  9. Experimental investigation of standing wave effect in dual-frequency capacitively coupled argon discharges: role of a low-frequency source

    Science.gov (United States)

    Zhao, Kai; Liu, Yong-Xin; Kawamura, E.; Wen, De-Qi; Lieberman, M. A.; Wang, You-Nian

    2018-05-01

    It is well known that the plasma non-uniformity caused by the standing wave effect has brought about great challenges for plasma material processing. To improve the plasma uniformity, a low-frequency (LF) power source is introduced into a 100 MHz very-high-frequency (VHF) capacitively coupled argon plasma reactor. The effect of the LF parameters (LF voltage amplitude ϕ L and LF source f L) on the radial profile of plasma density has been investigated by utilizing a hairpin probe. The result at a low pressure (1 Pa) is compared to the one obtained by a 2D fluid-analytical capacitively coupled plasma model, showing good agreement in the plasma density radial profile. The experimental results show that the plasma density profile exhibits different dependences on ϕ L and f L at different gas pressures/electrode driven types (i.e., the two rf sources are applied on one electrode (case I) and separate electrodes (case II)). At low pressures (e.g., 8 Pa), the pronounced standing wave effect revealed in a VHF discharge can be suppressed at a relatively high ϕ L or a low f L in case I, because the HF sheath heating is largely weakened due to strong modulation by the LF source. By contrast, ϕ L and f L play insignificant roles in suppressing the standing wave effect in case II. At high pressures (e.g., 20 Pa), the opposite is true. The plasma density radial profile is more sensitive to ϕ L and f L in case II than in case I. In case II, the standing wave effect is surprisingly enhanced with increasing ϕ L at higher pressures; however, the center-high density profile caused by the standing wave effect can be compensated by increasing f L due to the enhanced electrostatic edge effect dominated by the LF source. In contrast, the density radial profile shows a much weaker dependence on ϕ L and f L in case I at higher pressures. To understand the different roles of ϕ L and f L, the electron excitation dynamics in each case are analyzed based on the measured spatio

  10. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. An approach to evaluate capacitance, capacitive reactance and resistance of pivoted pads of a thrust bearing

    Science.gov (United States)

    Prashad, Har

    1992-07-01

    A theoretical approach is developed for determining the capacitance and active resistance between the interacting surfaces of pivoted pads and thrust collar, under different conditions of operation. It is shown that resistance and capacitive reactance of a thrust bearing decrease with the number of pads times the values of these parameters for an individual pad, and that capacitance increases with the number of pads times the capacitance of an individual pad. The analysis presented has a potential to diagnose the behavior of pivoted pad thrust bearings with the angle of tilt and the ratio of film thickness at the leading to trailing edge, by determining the variation of capacitance, resistance, and capacitive reactance.

  12. Torque magnetometry by use of capacitance type transducer

    International Nuclear Information System (INIS)

    Braught, M.C.; Pechan, M.J.

    1992-01-01

    Interfacial anisotropy in magnetic multilayered samples comprised of nanometer thick magnetic layers alternating with non-magnetic layers is investigated by torque magnetometry in the temperature regime of 4 to 300K. The design, construction and use of a capacitance type transducer wherein the sample is mounted directly on with the plate of the capacitor, will be described. As a result the sample and transducer spatially coexist at the sample temperature in an applied external field, eliminating mechanical coupling from the cryogenic region to a remote room temperature transducer. The capacitor measuring the torque of the sample is paired with a reference capacitor. The difference between torque influenced capacitance and the reference is then determined by a differential transimpedance amplifier. Since both capacitors are physically identical variables such as temperature, vibration, orientation and external devices are minimized. Torques up to 300 dyne-cm can be measured with a sensitivity of 0.010 dyne-cm

  13. PENGARUH PEMBELAJARAN KOOPERATIF TWO STAY TWO STRAY BERPENDEKAT AN SETS TERHADAP HASIL BELAJAR KIMIA SISWA SMA NEGERI 1 COMAL

    Directory of Open Access Journals (Sweden)

    A. T. Setiawan

    2016-07-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui pengaruh pembelajaran kooperatif two stay two stray berpendekatan SETS terhadap hasil belajar siswa. Desain eksperimen yang digunakan dalam penelitian ini adalah quasi experimental design. Hasil penelitian menunjukkan bahwa pembelajaran kooperatif two stay two stray berpendekatan SETS berpengaruh signitikan terhadap hasil belajar pada materi pokok teori asam basa dengan kontribusi koefisien determinasi sebesar 25%. Selain itu, pembelajaran juga mencapai ketuntasan belajar klasikal sebesar 37 dari 43 siswa, sehingga pembelajaran tersebut termasuk efektif.This study aimed to determine the effect of two stay two stray cooperative learning with SETS approach on student learning outcomes. Experimental design used in this study is a quasi experimental design. The results showed that two stay two stray cooperative learning with SETS approach have a significant effect on learning outcomes in acid-base theory of the subject matter with the contribution of the determination coefficient of 25%. In addition, the study also achieved mastery learning classical by 37 of the 43 students, so that it includes effective learning.

  14. Ferroelectric negative capacitance domain dynamics

    Science.gov (United States)

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2018-05-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.

  15. Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    Science.gov (United States)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-09-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  16. Passive inference of collision frequency in magnetized capacitive argon discharge

    Science.gov (United States)

    Binwal, S.; Joshi, J. K.; Karkari, S. K.; Kaw, P. K.; Nair, L.

    2018-03-01

    A non-invasive method of determining the collision frequency νm by measuring the net plasma impendence in a magnetized, capacitive-coupled, radio-frequency (rf) discharge circuit is developed. The collision frequency has been analytically expressed in terms of bulk plasma reactance, wherein standard sheath models have been used to estimate the reactance offered due to the capacitive rf sheaths at the discharge plates. The experimental observations suggest that in the un-magnetized case, νm remains constant over a range of rf current but steadily increases as the background pressure reduces. In the magnetized case, the collision frequency has been observed to decay with the increase in rf current while it remains unaffected by the background pressure. A qualitative discussion has been presented to explain these characteristics.

  17. Aspheric surface measurement using capacitive probes

    Science.gov (United States)

    Tao, Xin; Yuan, Daocheng; Li, Shaobo

    2017-02-01

    With the application of aspheres in optical fields, high precision and high efficiency aspheric surface metrology becomes a hot research topic. We describe a novel method of non-contact measurement of aspheric surface with capacitive probe. Taking an eccentric spherical surface as the object of study, the averaging effect of capacitive probe measurement and the influence of tilting the capacitive probe on the measurement results are investigated. By comparing measurement results from simultaneous measurement of the capacitive probe and contact probe of roundness instrument, this paper indicates the feasibility of using capacitive probes to test aspheric surface and proposes the compensation method of measurement error caused by averaging effect and the tilting of the capacitive probe.

  18. Gastrointestinal Helminths and Ectoparasites in the Stray Cats (Felidae: Felis catus) of Ahar Municipality, Northwestern Iran

    Science.gov (United States)

    YAKHCHALI, Mohammad; HAJIPOUR, Nasser; MALEKZADEH-VIAYEH, Reza; ESMAEILNEJAD, Bijan; NEMATI-HARAVANI, Taher; FATHOLLAHZADEH, Mohammad; JAFARI, Rasool

    2017-01-01

    Background: The stray cats are considered as the sources of emerging humans and domestic livestock pathogens and the zoonoses of public health importance. The present study was aimed to elucidate intestinal helminth infections and infestation with ectoparasites of the stray cats of Ahar City, northwestern Iran. Methods: Totally, 51 stray cats were randomly trapped from different parts of the city between Mar and Nov 2013. The cats were assessed for ectoparasites by hair brushing, skin scraping, acetate tape preparation and othic swabs. They were euthanized and inspected for helminths infection. Results: Overall prevalence of helminths and flea were 44/51 (86.3%) and 31/51 (60.78%), respectively. The infection rates were significantly different among different age groups (PDipylidium caninum (29.41%), T. hydatigena (19.6%)) were identified. The predominant infectious helminths in all the infected cats were T. cati (86.3% with egg per gram of feces 27.75±9). Of the 270 collected fleas, two species of Ctenocephalides felis (80%) and C. canis (20%) were notably frequent in the cats aged 2-3-year-old. The average number of fleas per each infected cat was recorded as 5.29, with no incidence of cross-infection. Conclusion: The results indicated the high rate of helminths infections and flea infestation in the urban stray cats of which Toxocara cati and Ctenocephalides felis may play important roles as zoonotic agents in the region. PMID:28761492

  19. "Negative capacitance" in resistor-ferroelectric and ferroelectric-dielectric networks: Apparent or intrinsic?

    Science.gov (United States)

    Saha, Atanu K.; Datta, Suman; Gupta, Sumeet K.

    2018-03-01

    In this paper, we describe and analytically substantiate an alternate explanation for the negative capacitance (NC) effect in ferroelectrics (FE). We claim that the NC effect previously demonstrated in resistance-ferroelectric (R-FE) networks does not necessarily validate the existence of "S" shaped relation between polarization and voltage (according to Landau theory). In fact, the NC effect can be explained without invoking the "S"-shaped behavior of FE. We employ an analytical model for FE (Miller model) in which the steady state polarization strictly increases with the voltage across the FE and show that despite the inherent positive FE capacitance, reduction in FE voltage with the increase in its charge is possible in a R-FE network as well as in a ferroelectric-dielectric (FE-DE) stack. This can be attributed to a large increase in FE capacitance near the coercive voltage coupled with the polarization lag with respect to the electric field. Under certain conditions, these two factors yield transient NC effect. We analytically derive conditions for NC effect in R-FE and FE-DE networks. We couple our analysis with extensive simulations to explain the evolution of NC effect. We also compare the trends predicted by the aforementioned Miller model with Landau-Khalatnikov (L-K) model (static negative capacitance due to "S"-shape behaviour) and highlight the differences between the two approaches. First, with an increase in external resistance in the R-FE network, NC effect shows a non-monotonic behavior according to Miller model but increases according to L-K model. Second, with the increase in ramp-rate of applied voltage in the FE-DE stack, NC effect increases according to Miller model but decreases according to L-K model. These results unveil a possible way to experimentally validate the actual reason of NC effect in FE.

  20. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    Directory of Open Access Journals (Sweden)

    Aiping Zeng

    2017-01-01

    Full Text Available The plasma treatment on commercial active carbon (AC was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI.

  1. Gastrointestinal helminth parasites of pet and stray dogs as a potential risk for human health in Bahir Dar town, north-western Ethiopia

    Directory of Open Access Journals (Sweden)

    Tadiwos Abere

    Full Text Available Aim: A cross-sectional study was carried out from November 2011 to April 2012 to determine the prevalence and species of gastrointestinal (GI helminth parasites in pet and stray dogs as a potential risk for human health in Bahir Dar town, northwestern Ethiopia. Materials and Methods: A total of 384 and 46 faecal samples were collected from pet and stray dogs, respectively and xamined by using standard coprologic techniques. Results: The overall prevalence of GI helminth infection in pet and stray dogs was 75.26 and 84.78%, respectively. The detected parasites with their frequencies in pet dogs were Ancylostoma caninum (78.89%, Toxocara canis (39.79%, Dipylidium caninum (29.75%, Strongyloides stercoralis (29.06%, Taeniidae (23.87% and Trichuris vulpis (7.95%. Stray dogs were found more likely to be polyparasitized and presented higher prevalence of A. caninum, T. canis, S. stercoralis, Trichuris vulpis and Taeniidae (P < 0.05 than domiciled ones. Diphyllobothrium latum was detected only in 10.25% of stray dogs. Toxocara canis and A. caninum (P < 0.05 were detected more frequently in dogs with less than 6 months of age (P <0.05 than old age dogs. The sex or breed groups didn't significantly affect the prevalence of parasites. A significant variation was recorded (P < 0.05 between different feeding systems where higher prevalence was observed in uncontrolled feeding group (82.18% compared to controlled feeding (32.08%. Conclusion: Different gastrointestinal parasites in pet and stray dogs were identified in the study area that can potentially infect humans and cause serious public-health problems. Thus, concerted efforts should therefore be made to educate dog owners to embrace modern dog disease control programs and measures have to be taken on stray dogs. [Vet World 2013; 6(7.000: 388-392

  2. THE SOCIETY’S PERCEPTION OF THE LIFE QUALITY AND POPULATION CONTROL OF STRAY DOGS

    Directory of Open Access Journals (Sweden)

    Flavio Fernando Batista Moutinho

    2015-10-01

    Full Text Available In most Brazilian municipalities there is an overpopulation of stray dogs, which causes problems to the urban order, the environment and the public health, in addition to mistreatment to these dogs. In such context we foresee the need of developing actions targeting the population control of these animals. This essay aims at knowing the perception of social actors, such as managers of entities responsible for control actions, managers of NGOs working with animal protection and population in general with respect to the life quality and population control of stray dogs. Questionnaires were used on samples of individuals of these three groups and the data thereof were analyzed with descriptive statistics techniques and frequency comparison. The results allowed us to conclude that the society’s perception of population control and life quality of these animals bear important differences under the viewpoint of the three evaluated groups; however, they also bear significant similarities, especially with respect to the perception of the responsibility for the development of population control actions, the acceptance of using public funds intended to public health in control actions, the classification of such population density as large and the poor life quality of these animals. population control, social perception, stray dog.,

  3. Effect of stray current on corrosion behavior of reinforcing steel: importance of cell geometry and orientation with respect to the electrical field

    NARCIS (Netherlands)

    Chen, Zhipei; Koleva, D.A.

    2016-01-01

    Stray current circulating in reinforced concrete structures may initiate corrosion or accelerate existing corrosion processes on embedded reinforcement. In some cases, the range of dangerous or unwanted interactions of stray currents under favorable conditions (environment), is much broader than is

  4. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance

    Science.gov (United States)

    Zhi, Lei; Zhang, Wenliang; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Liu, Zonghuai; Lei, Zhibin

    2018-05-01

    Strong coupling of electroactive components on conductive carbonaceous matrix to fabricate flexible hybrid electrodes represents a promising approach towards high performance supercapacitors. This work reports the fabrication of holey nickel cobalt layered double hydroxide (NiCo-LDH) nanosheets that are vertically grown on the cotton cloth-derived activated textile carbon (aTC). The abundant nanoholes on the thin-sheet NiCo-LDH not only enhance the electrode efficiency for efficient Faradaic redox reactions but also facilitate access of electrolyte to the electrode surface, thus giving rise to 70% capacitance arising from their outer surface. As a result, the aTC-NiCo hybrid electrode is capable of simultaneously achieving extremely high areal capacitance (6.37 F cm-2), mass capacitance (525 F g-1) and volumetric capacitance (249 F cm-3) at a practical level of mass loading (6.72 mg cm-2). Moreover, a solid-state asymmetric capacitor built with aTC-NiCo as positive electrode and active carbon-coated on aTC as negative electrode can deliver a volumetric energy density of 7.4 mWh cm-3 at a power density of 103 mW cm-3, while preserving a superior power performance, satisfying cycling stability and good mechanical flexibility.

  5. IMPLEMENTASI MODEL PEMBELAJARAN TWO STAY TWO STRAY DALAM PEMBELAJARAN BERBASIS KEMAMPUAN BERPIKIR KRITIS KELAS V SD

    Directory of Open Access Journals (Sweden)

    M. Yusuf Setia Wardana

    2017-04-01

    Full Text Available Benefits of mathematics are to equip students with the ability to think logically, analytical, systematically, critically, and creatively, as well as the ability to cooperate. Based on observations in elementary school, there are 40% of students have not reached KKM and students have lack of critical abilities to understand math problems, and they have low activity of the study. One of models that can be applied is Two Stay Two Stray. The study used True Experimental Design with Posttest-Only Control Design. The population in this study was all fifth grade students of SD Negeri Semarang Rejosari 03. Data of critical thinking skills of the students in average on test of critical thinking skills mastery was 3.31 ≥ 2.67, it can be said to have a complete description. The conclusion is a model of Two Stay Two Stray being effective for critical thinking skills and mathematics learning outcomes of fifth grade students in SD Negeri Rejosari 03 Semarang. Keywords: two stay two stray model, critical thinking ability.

  6. Capacitive coupling in hybrid graphene/GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, Pauline, E-mail: psimonet@phys.ethz.ch; Rössler, Clemens; Krähenmann, Tobias; Varlet, Anastasia; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2015-07-13

    Coupled hybrid nanostructures are demonstrated using the combination of lithographically patterned graphene on top of a two-dimensional electron gas (2DEG) buried in a GaAs/AlGaAs heterostructure. The graphene forms Schottky barriers at the surface of the heterostructure and therefore allows tuning the electronic density of the 2DEG. Conversely, the 2DEG potential can tune the graphene Fermi energy. Graphene-defined quantum point contacts in the 2DEG show half-plateaus of quantized conductance in finite bias spectroscopy and display the 0.7 anomaly for a large range of densities in the constriction, testifying to their good electronic properties. Finally, we demonstrate that the GaAs nanostructure can detect charges in the vicinity of the heterostructure's surface. This confirms the strong coupling of the hybrid device: localized states in the graphene ribbon could, in principle, be probed by the underlying confined channel. The present hybrid graphene/GaAs nanostructures are promising for the investigation of strong interactions and coherent coupling between the two fundamentally different materials.

  7. Capacitive coupling in hybrid graphene/GaAs nanostructures

    International Nuclear Information System (INIS)

    Simonet, Pauline; Rössler, Clemens; Krähenmann, Tobias; Varlet, Anastasia; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner

    2015-01-01

    Coupled hybrid nanostructures are demonstrated using the combination of lithographically patterned graphene on top of a two-dimensional electron gas (2DEG) buried in a GaAs/AlGaAs heterostructure. The graphene forms Schottky barriers at the surface of the heterostructure and therefore allows tuning the electronic density of the 2DEG. Conversely, the 2DEG potential can tune the graphene Fermi energy. Graphene-defined quantum point contacts in the 2DEG show half-plateaus of quantized conductance in finite bias spectroscopy and display the 0.7 anomaly for a large range of densities in the constriction, testifying to their good electronic properties. Finally, we demonstrate that the GaAs nanostructure can detect charges in the vicinity of the heterostructure's surface. This confirms the strong coupling of the hybrid device: localized states in the graphene ribbon could, in principle, be probed by the underlying confined channel. The present hybrid graphene/GaAs nanostructures are promising for the investigation of strong interactions and coherent coupling between the two fundamentally different materials

  8. Efficiency of Capacitively Loaded Converters

    DEFF Research Database (Denmark)

    Andersen, Thomas; Huang, Lina; Andersen, Michael A. E.

    2012-01-01

    This paper explores the characteristic of capacitance versus voltage for dielectric electro active polymer (DEAP) actuator, 2kV polypropylene film capacitor as well as 3kV X7R multi layer ceramic capacitor (MLCC) at the beginning. An energy efficiency for capacitively loaded converters...... is introduced as a definition of efficiency. The calculated and measured efficiency curves for charging DEAP actuator, polypropylene film capacitor and X7R MLCC are provided and compared. The attention has to be paid for the voltage dependent capacitive load, like X7R MLCC, when evaluating the charging...... polypropylene film capacitor can be the equivalent capacitive load. Because of the voltage dependent characteristic, X7R MLCC cannot be used to replace the DEAP actuator. However, this type of capacitor can be used to substitute the capacitive actuator with voltage dependent property at the development phase....

  9. Capacitance of circular patch resonator

    International Nuclear Information System (INIS)

    Miano, G.; Verolino, L.; Naples Univ.; Panariello, G.; Vaccaro, V.G.; Naples Univ.

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants

  10. Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor: Two dimensional simulations

    Institute of Scientific and Technical Information of China (English)

    Xiang Xu; Hao Ge; Shuai Wang; Zhongling Dai; Younian Wang; Aimin Zhu

    2009-01-01

    A two-dimensional (2D) fluid model is presented to study the discharge of argon in a dual frequency capacitively coupled plasma (CCP) reactor. We are interested in the influence of low-frequency (LF) source parameters such as applied voltage amplitudes and low frequencies on the plasma characteristics. In this paper, the high frequency is set to 60 MHz with voltage 50 V. The simulations were carried out for low frequencies of 1, 2 and 6 MHz with LF voltage 100 V, and for LF voltages of 60, 90 and 120 V with low frequency 2 MHz. The results of 2D distributions of electric field and ion density, the ion flux impinging on the substrate and the ion energy on the powered electrode are shown. As the low frequency increases, two sources become from uncoupling to coupling, When two sources are uncoupling, the increase in LF has little impact on the plasma characteristics, but when two sources are coupling, the increase in LF decreases the uniformities of ion density and ion flux noticeably. It is also found that with the increase in LF voltage, the uniformities in the radial direction of ion density distribution and ion flux at the powered electrode decreases significantly, and the energy of ions bombarding on the powered electrode increases significantly.

  11. Symptoms and Cognitive Effects of Exposure to Magnetic Stray Fields of MRI Scanners

    NARCIS (Netherlands)

    Vocht, Frank Gérard de

    2006-01-01

    People working routinely with magnetic resonance imaging (MRI) systems report a number of symptoms related to their presence in the inhomogeneous static magnetic fields (the stray field) surrounding these scanners. Experienced symptoms and neurobehavioral performance among engineers manufacturing

  12. Stray cats are more frequently infected with zoonotic protists than pet cats.

    Science.gov (United States)

    Kvac, Martin; Hofmannova, Lada; Ortega, Ynes; Holubova, Nikola; Horcickova, Michaela; Kicia, Marta; Hlaskova, Lenka; Kvetonova, Dana; Sak, Bohumil; McEvoy, John

    2017-12-06

    Faecal samples were collected from cats kept as pets (n = 120) and stray cats (n = 135) in Central Europe (Czech Republic, Poland and Slovakia) and screened for the presence of Cryptosporidium spp., Giardia intestinalis (Kunstler, 1882), Encephalitozoon spp. and Enterocytozoon bieneusi Desportes, Le Charpentier, Galian, Bernard, Cochand-Priollet, Lavergne, Ravisse et Modigliani, 1985 by PCR analysis of the small-subunit of rRNA (Cryptosporidium spp. and G. intestinalis) and ITS (microsporidia) genes. Sequence analysis of targeted genes revealed the presence of C. felis Iseki, 1979, G. intestinalis assemblage F, E. cuniculi Levaditi, Nicolau et Schoen, 1923 genotype II, and E. bieneusi genotype D. There was no correlation between the occurrence of detected parasites and sex, presence of diarrhoea or drug treatment (drug containing pyrantel and praziquantel). Compared to pet cats (7%), stray cats (30%) were statistically more frequently infected with protist parasites and overall may present a greater risk to human health.

  13. Stray Cats Gastrointestinal Parasites and its Association With Public Health in Ahvaz City, South Western of Iran

    Science.gov (United States)

    Khademvatan, Shahram; Abdizadeh, Rahman; Rahim, Fakher; Hashemitabar, Mahamoud; Ghasemi, Mohammad; Tavalla, Mahdi

    2014-01-01

    Background: Cats are the hosts for some zoonotic parasites such as Toxoplasma gondii and Toxocara spp. which are important in medicine and veterinary. Studies on the prevalence of intestinal parasites of cats have received little attention in south west of Iran. Objectives: The current study aimed to investigate the prevalence of parasites in stray cats in Ahvaz. Materials and Methods: Random sampling was carried out from January to May 2012. One hundred and forty fecal samples from stray cats were examined using sucrose flotation method. Results: Gastrointestinal parasites were found in 121 of the 140 (86.4%) examined samples. The parasites detected in stray cats were Toxocara spp. (45%, 63/140), Isospora spp. (21.4%, 30/140), nematode larvae (21.4%, 30/140), Taenia spp. (18.6%, 26/140), Sarcocystis spp. (17.1%, 24/140), Eimeria spp. (15%, 21/140), Blastocystis spp. (14.3%, 20/140), Giardia spp, (10.7%, 15/140), Physaloptera spp. (7.1%, 10/140), and amoeba cyst (5.7%, 8/140) respectively. The prevalence of infection by Joyexiella spp. and hook worms (4.3%, 6/140), for example, Dipylidium caninum (2.9%, 4/140) was similar; and the prevalence of infection by T. gondii and Dicrocoelium dendriticum was similar (1.4%, 2/140). Conclusions: Since the prevalence of zoonotic gastrointestinal parasites such as Toxocara spp. in stray cats is high, there is a need to plan adequate programs to control these zoonotic parasites. PMID:25485047

  14. Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Fragiacomo, Giulio; Hansen, Ole

    2009-01-01

    This paper describes the design and fabrication of a capacitive pressure sensor that has a large capacitance signal and a high sensitivity of 76 pF/bar in touch mode operation. Due to the large signal, problems with parasitic capacitances are avoided and hence it is possible to integrate the sensor...... bonding to create vacuum cavities. The exposed part of the sensor is perfectly flat such that it can be coated with corrosion resistant thin films. Hysteresis is an inherent problem in touch mode capacitive pressure sensors and a technique to significantly reduce it is presented....... with a discrete components electronics circuit for signal conditioning. Using an AC bridge electronics circuit a resolution of 8 mV/mbar is achieved. The large signal is obtained due to a novel membrane structure utilizing closely packed hexagonal elements. The sensor is fabricated in a process based on fusion...

  15. Stray dogs and cats as potential sources of soil contamination with zoonotic parasites

    Directory of Open Access Journals (Sweden)

    Katarzyna Szwabe

    2017-03-01

    Cat faeces represent a more important potential source of environmental contamination with zoonotic parasites than dog faeces. Among the detected parasites of stray dogs and cats, Toxocara present an important zoonotic risk for the local human population, especially children.

  16. Evaluation of stray radiofrequency radiation emitted by electrosurgical devices

    International Nuclear Information System (INIS)

    De Marco, M; Maggi, S

    2006-01-01

    Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m -1 (E-field 400 V m -1 ). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy

  17. Gastrointestinal and ectoparasites from urban stray dogs in Fortaleza (Brazil): high infection risk for humans?

    Science.gov (United States)

    Klimpel, Sven; Heukelbach, Jörg; Pothmann, David; Rückert, Sonja

    2010-08-01

    Dogs are important definite or reservoir hosts for zoonotic parasites. However, only few studies on the prevalence of intestinal parasites in urban areas in Brazil are available. We performed a comprehensive study on parasites of stray dogs in a Brazilian metropolitan area. We included 46 stray dogs caught in the urban areas of Fortaleza (northeast Brazil). After euthanization, dogs were autopsied. Ectoparasites were collected, and the intestinal content of dogs were examined for the presence of parasites. Faecal samples were collected and analysed using merthiolate iodine formaldehyde concentration method. A total of nine different parasite species were found, including five endoparasite (one protozoan, one cestode and three nematode species) and four ectoparasite species (two flea, one louse and one tick species). In the intestinal content, 3,162 specimens of four helminth species were found: Ancylostoma caninum (prevalence, 95.7%), Dipylidium caninum (45.7%), Toxocara canis (8.7%) and Trichuris vulpis (4.3%). A total of 394 ectoparasite specimens were identified, including Rhipicephalus sanguineus (prevalence, 100.0%), Heterodoxus spiniger (67.4%), Ctenocephalides canis (39.1%) and Ctenocephalides felis (17.4%). In the faeces, intestinal parasites were detected in 38 stray dogs (82.6%), including oocysts of Giardia sp. (2.2%) and eggs of the nematode A. caninum (82.6%). Neither eggs nor larval stages of D. caninum, T. canis or T. vulpis were detected in dog faeces. Sensitivity of faecal examination for A. caninum was 86.4% (95% confidence interval, 72.0-94.3) but zero percentage for the other intestinal helminth species. Our data show that stray dogs in northeast Brazil carry a multitude of zoonotic ecto- and endoparasites, posing a considerable risk for humans. With the exception of A. caninum, sensitivity of faecal examination was negligible.

  18. Coherent control of two individual electron spins and influence of hyperfine coupling in a double quantum dot

    International Nuclear Information System (INIS)

    Tarucha, S; Obata, T; Pioro-Ladriere, M; Brunner, R; Shin, Y-S; Kubo, T; Tokura, Y

    2011-01-01

    Electric dipole spin resonance of two individual electrons and the influence of hyperfine coupling on the spin resonance are studied for a double quantum dot equipped with a micro-magnet. The spin resonance occurs by oscillating the electron in each dot at microwave (MW) frequencies in the presence of a micro-magnet induced stray field. The observed continuous wave (CW) and time-resolved spin resonances are consistent with calculations in which the MW induced AC electric field and micro-magnet induced stray field are taken into account. The influence of hyperfine coupling causes an increase and broadening of the respective CW spin resonance peaks through dynamical nuclear polarization when sweeping up the magnetic field. This behaviour appears stronger for the larger of the two spin resonance peaks and in general becomes more pronounced as the MW power increases, both reflecting that the electron-nuclei interaction is more efficient for the stronger spin resonance. In addition the hyperfine coupling effect only becomes pronounced when the MW induced AC magnetic field exceeds the fluctuating nuclear field.

  19. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  20. Molecular detection of Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli in stray dogs in Mahasarakham province, Thailand.

    Science.gov (United States)

    Piratae, Supawadee; Pimpjong, Kiattisak; Vaisusuk, Kotchaphon; Chatan, Wasupon

    2015-01-01

    Canine tick borne diseases showing distribution worldwide have caused morbidity and mortality in dogs. This study observed the mainly tick borne pathogens described for dogs in Thailand, Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli. From May to July 2014, blood samples were collected from 79 stray dogs from 7 districts of Mahasarakham province to molecular surveyed for 16s rRNA gene of E. canis and 18s rRNA gene of H. canis and B. canis vogeli. Twenty eight (35.44%) of stray dogs showed the infection with tick borne pathogens. The prevalence of E. canis infection was the highest with 21.5% (17/79). DNA of H. canis and B. canis vogeli were detected at the prevalence of 10.1% (8/79) and 6.3% (5/79), respectively. Co-infection between E. canis and B. canis vogeli were identified in 2 (2.5%) dogs. The results indicated that a wide range of tick borne pathogens are circulation in the canine population in Mahasarakham province. This study is the first report on prevalence of E. canis, H. canis and B. canis vogeli in stray dogs in Mahasarakham, a province in northern part of Thailand. This data providing is important to understand the prevalence of E. canis, H. canis and B. canis vogeli infection in stray dogs in this region, which will assist in the management of these blood parasite.

  1. An estimate of the radiation-induced cancer risk from the whole-body stray radiation exposure in neutron radiotherapy

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1982-01-01

    1980 BEIR III risk factors have been used to estimate the secondary cancer risks from the whole-body stray radiation exposures occurring in neutron radiotherapy. Risks were calculated using linear, linear-quadratic and quadratic dose-response models for the gamma component of the stray radiation. The linear dose-response model was used to calculate risk for the neutron component of the stray radiation. These estimates take into consideration for the first time the age and sex distribution of patients undergoing neutron therapy. Changes in risk as a function of the RBE (10-100) assigned to the stray neutron radiation component have also been assessed. Excess risks in neutron-treated patients have been compared with excess risks for photon-treated patients and with the expected incidence of cancer in a normal population having the same age and sex distribution. Results indicate that it will be necessary to tolerate a higher incidence of secondary cancers in patients undergoing fast neutron therapy than is the case with conventional photon therapy. For neutron RBEs of less than 50 the increased risk is only a fraction of the normal expected incidence of cancer in this population. Comparison of the radiation-induced risk with reported normal tissue complication rates in the treatment volume indicates that the excess cancer risk is substantially lower than the risk from other late normal tissue effects. (author)

  2. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    International Nuclear Information System (INIS)

    Arefin, Md Shamsul; Redoute, Jean-Michel; Rasit Yuce, Mehmet; Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian

    2014-01-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  3. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    Energy Technology Data Exchange (ETDEWEB)

    Arefin, Md Shamsul, E-mail: md.arefin@monash.edu; Redoute, Jean-Michel; Rasit Yuce, Mehmet [Electrical and Computer Systems Engineering, Monash University, Melbourne (Australia); Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian [Mechanical and Aerospace Engineering, Monash University, Melbourne (Australia)

    2014-06-02

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  4. Shielding of the NBI boxes against W7-X magnetic stray fields

    Energy Technology Data Exchange (ETDEWEB)

    Kick, Manfred [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)], E-mail: Kick@arcor.de; Sielanko, Juliusz [Maria Curie Sklodowska University, Pl. M. C. Sklodowskie 1, 20-031 Lublin (Poland); Heinemann, Bernd; Riedl, Rudolf; Speth, Eckehart; Staebler, Albrecht [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2009-06-15

    Neutral Beam Injection (NBI), besides ECRH, is foreseen as one of the main heating devices at the W7-X stellarator currently under construction at IPP Greifswald, Germany. In a final stage 20 MW of NBI heating power will be installed generated by two NBI boxes of the ASDEX Upgrade (AUG) type. Since magnetic fields generally affect the trajectories of charged particles, essentially all the NBI boxes - including ion sources, acceleration sections, neutralisers and deflection magnets - must be shielded against the stray fields of W7-X. In the magnetic stray fields of W7-X there exist significant radial and toroidal components whereas at tokamaks the vertical components are dominant. The power loads on the ion dump and the protecting structures of the deflecting magnets and the beam lines caused by residual beam ions, therefore, will be strongly different. Thus the shielding concept of AUG cannot simply be taken over, but must be carefully redesigned in order to remain below the critical power limits. New modelling calculations of the magnetic shielding, the ion trajectories and the resulting power loads have been carried out for the 'high iota' and 'low shear' experimental scenarios of W7-X. The fields taken for these calculations are modelled by averaging the calculated W7-X stray fields on the one hand, and by fields generated by two-hypothetical-planar coils perpendicular to the x-y plane, on the other hand. The shielding concept for W7-X mainly consist of iron plates in the outer side regions of the boxes and as little magnetic material as possible inside the boxes.

  5. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters

    Directory of Open Access Journals (Sweden)

    Emily Lancaster

    2015-05-01

    Full Text Available A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258 and cats (n = 6950 entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37% had problems with their data, including being registered to a previous owner or organisation (47%, all phone numbers incorrect/disconnected (29%, and the microchip not registered (14%. A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%. The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals—87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of microchip data to facilitate the reclaiming of stray dogs and cats.

  6. Avalanche transistor pulser for fast-gated operation of micro-channel plate image-intensifiers

    International Nuclear Information System (INIS)

    Lundy, A.; Parker, J.R.; Lunsford, J.S.; Martin, A.D.

    1977-01-01

    Transistors operated in the avalanche mode are employed to generate a 1000 volt 10 to 30 nsec wide pulse with less than 4 nsec rise and fall times. This pulse is resistively attenuated to approximately equal to 270 volts and drives the image intensifier tube which is a load of approximately equal to 200 pf. To reduce stray inductance and capacitance, transistor chips were assembled on a thick-film hybrid substrate. Circuit parameters, operating conditions, and coupling to the microchannel plate image-intensifier (MCPI 2 ) tube are described. To provide dc operating voltages and control of transient voltages on the MCPI 2 tube a resistance-capacitance network has been developed which (a) places the MCPI 2 output phosphor at ground, (b) provides programmable gains in ''f-stop'' steps, and (c) minimizes voltage transients on the MCPI 2 tube

  7. Nanoscale capacitance: A quantum tight-binding model

    Science.gov (United States)

    Zhai, Feng; Wu, Jian; Li, Yang; Lu, Jun-Qiang

    2017-01-01

    Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C‧ and an effective capacitance Cd of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C‧ moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C‧. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties.

  8. Gastrointestinal Helminths and Ectoparasites in the Stray Cats (Felidae: Felis catus of Ahar Municipality, Northwestern Iran

    Directory of Open Access Journals (Sweden)

    Mohammad YAKHCHALI

    2017-06-01

    Full Text Available Background: The stray cats are considered as the sources of emerging humans and domestic livestock pathogens and the zoonoses of public health importance. The present study was aimed to elucidate intestinal helminth infections and infestation with ectoparasites of the stray cats of Ahar City, northwestern Iran.Methods: Totally, 51 stray cats were randomly trapped from different parts of the city between Mar and Nov 2013. The cats were assessed for ectoparasites by hair brushing, skin scraping, acetate tape preparation and othic swabs. They were euthanized and inspected for helminths infection.Results: Overall prevalence of helminths and flea were 44/51 (86.3% and 31/51 (60.78%, respectively. The infection rates were significantly different among different age groups (P<0.05. Of the 282 isolated helminths, three species of nematodes (Toxocara cati (86.3%, T. leonina (11.77%, Ancylostoma tubaeforme (5.9% and four species of cestodes (Taenia taeniaeformis (64.7%, Mesocestoides lineatus (49.02%, Dipylidium caninum (29.41%, T. hydatigena (19.6% were identified. The predominant infectious helminths in all the infected cats were T. cati (86.3% with egg per gram of feces 27.75±9. Of the 270 collected fleas, two species of Ctenocephalides felis (80% and C. canis (20% were notably frequent in the cats aged 2-3-year-old. The average number of fleas per each infected cat was recorded as 5.29, with no incidence of cross-infection.Conclusion: The results indicated the high rate of helminths infections and flea infestation in the urban stray cats of which Toxocara cati and Ctenocephalides felis may play important roles as zoonotic agents in the region.

  9. Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors.

    Science.gov (United States)

    Zhang, Yao; Ma, Rui; Zhen, Xue V; Kudva, Yogish C; Bühlmann, Philippe; Koester, Steven J

    2017-11-08

    A novel graphene-based variable capacitor (varactor) that senses glucose based on the quantum capacitance effect was successfully developed. The sensor utilizes a metal-oxide-graphene varactor device structure that is inherently compatible with passive wireless sensing, a key advantage for in vivo glucose sensing. The graphene varactors were functionalized with pyrene-1-boronic acid (PBA) by self-assembly driven by π-π interactions. Successful surface functionalization was confirmed by both Raman spectroscopy and capacitance-voltage characterization of the devices. Through glucose binding to the PBA, the glucose concentration in the buffer solutions modulates the level of electrostatic doping of the graphene surface to different degrees, which leads to capacitance changes and Dirac voltage shifts. These responses to the glucose concentration were shown to be reproducible and reversible over multiple measurement cycles, suggesting promise for eventual use in wireless glucose monitoring.

  10. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These

  11. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    International Nuclear Information System (INIS)

    Liu, Wen-Yao; Xu, Yong; Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-01

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*( 3 P 2 ) and Ar*( 3 P 0 ) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF 4 was found to significantly increase the metastable destruction rate by the CF 4 quenching, especially for large CF 4 content and high pressure, it becomes the dominant depopulation process

  12. Seroprevalence and Risk Factors Associated with Seropositivity to Toxoplasma gondii among Stray and Domestic Cats (Felis silvestris catus

    Directory of Open Access Journals (Sweden)

    Christel Bohn T. Garcia

    2014-12-01

    Full Text Available Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis. It is widespread in the environment and infects a variety of warm-blooded animals, causing miscarriages and birth problems. Previous studies in the Philippines have determined the seropositivity of T. gondii in humans. However, the seroprevalence of the parasite among household pets, par ticularly its feline def initive host, remains insufficient . This study aimed to: (1 determine the seroprevalence of T. gondii antibodies among domestic and stray cats in the Philippines; and, (2 to analyze the risk factors associated with seropositivity. Blood samples from 59 domestic and stray cats were collected and tested for T. gondii seropositivity using a commercially available indirect ELISA kit, while pet owners and handlers were given questionnaires about their cats. Thirteen or 22.03% of the cats were seropositive to T. gondii, and risk factor analysis revealed a significant difference between domestic and stray cats with regard to diet (p = 0.026, OR = 8.333, c = 0.299 and domestication (p = 0.039, OR = 5.000, c = 0.276. Cats fed with table food tested 31.43% seropositive compared to the 4.35% of those fed with cat food, whereas 33.33% of the stray cats were seropositive compared to 7.69% for domestic cats. Odds ratio test showed that the risk factors studied were associated with higher likelihood of T. gondii seropositivity. These results implicate diet and environment in the transmission dynamics of T. gondii among cats.

  13. Effects of different levels of intraocular stray light on kinetic perimetry findings.

    Directory of Open Access Journals (Sweden)

    Kazunori Hirasawa

    Full Text Available To evaluate the effect of different levels of intraocular stray light on kinetic perimetry findings.Twenty-five eyes of 25 healthy young participants were examined by automated kinetic perimetry (Octopus 900 using Goldmann stimuli III4e, I4e, I3e, I2e, and I1e. Each stimulus was presented with a velocity of 3°/s at 24 meridians with 15° intervals. Four levels of intraocular stray light were induced using non-white opacity filter (WOF filters and WOFs applied to the clear plastic eye covers of the participants. The visual acuity, pupil diameter, isopter area, and kinetic sensitivity of each meridian were analyzed for each WOF density.Visual acuity deteriorated with increasing WOF densities (p < 0.01. With a visual acuity of 0.1 LogMAR units, the isopter areas for III4e, I4e, I3e, I2e, and I1e decreased by -32.7 degree2 (-0.2%, -255.7 degree2 (-2.6%, -381.2 degree2 (-6.2%, -314.8 degree2 (-12.8%, and -59.2 degree2 (-15.2%, respectively; kinetic sensitivity for those stimuli decreased by -0.1 degree (-0.1%, -0.8 degree (-1.4%, -1.6 degree (-3.7%, -2.7 degree (-9.7%, and -1.7 degree (-16.2%, respectively. The pupil diameter with each WOF density was not significantly different.Kinetic perimetry measurements with a high-intensity stimulus (i.e., III4e were unaffected by intraocular stray light. In contrast, measurements with the I4e, I3e, I2e, and I1e stimuli, especially I2e and I1e, were affected. Changes in the shape of the isopter resulting from opacity must be monitored, especially in cases of smaller and lower-intensity stimuli.

  14. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation

    NARCIS (Netherlands)

    Porada, S.; Hamelers, H.V.M.; Bryjak, M.; Presser, V.; Biesheuvel, P.M.; Weingarth, D.

    2014-01-01

    Capacitive technologies, such as capacitive deionization and energy harvesting based on mixing energy (“capmix” and “CO2 energy”), are characterized by intermittent operation: phases of ion electrosorption from the water are followed by system regeneration. From a system application point of view,

  15. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    International Nuclear Information System (INIS)

    Frentiu, Tiberiu; Mihaltan, Alin I.; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-01-01

    Highlights: → Use of a miniaturized analytical system with microtorch plasma for Hg determination. → Determination of Hg in non- and biodegradable materials using cold vapor generation. → Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min -1 Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl 2 reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO 3 -H 2 SO 4 mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml -1 or 0.08 μg g -1 in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg -1 , while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  16. Decoding of digital magnetic recording with longitudinal magnetization of a tape from a magneto-optical image of stray fields

    Science.gov (United States)

    Lisovskii, F. V.; Mansvetova, E. G.

    2017-05-01

    For digital magnetic recording of encoded information with longitudinal magnetization of the tape, the connection between the domain structure of a storage medium and magneto-optical image of its stray fields obtained using a magnetic film with a perpendicular anisotropy and a large Faraday rotation has been studied. For two-frequency binary code without returning to zero, an algorithm is developed, that allows uniquely decoding of the information recorded on the tape based on analysis of an image of stray fields.

  17. An epidemiological survey on intestinal helminths of stray dogs in Mashhad, North-east of Iran.

    Science.gov (United States)

    Emamapour, Seyed Rasoul; Borji, Hassan; Nagibi, Abolghasem

    2015-06-01

    This research was conducted to determine the prevalence of gastrointestinal helminths in stray dogs in the northeast of Iran, with special attention to those parasites that can be transmitted to human. In this experiment, a total of 72 adult and 18 juvenile stray dogs were collected and necropsied for the presence of helminth parasites from October 2011 to August 2012. The overall prevalence of gastrointestinal helminths was 86 % (95 % CI: 79.2-92.8 %). The observed helminths of the gastrointestinal tract were listed as follows: Toxocara canis (29 %), Toxascaris leonina (7 %), Ancylostoma caninum (2 %), Taenia hydatigena (43 %), Dipylidium caninum (39 %), Echinococcus granulosus (38 %), Mesocestoides lineatus (16 %), Taenia multiceps (11 %), Taenia ovis (3 %). There were no significant differences for the prevalence of gastrointestinal helminths between female (83.6 %) and male (89.7 %) and between young (89 %) and adult (72.2 %) animals. However, the prevalence of E. granulosus, T. hydatigena and D. caninum showed an increasing trend with increasing host age, significantly. Based on our data, it is important to point out the presence of zoonotic agents, namely E. granulosus and T. canis in stray dogs in the investigated area. Due to its impact on public health, appropriate control measures should be taken and it is recommended to determine the most appropriate preventive methods.

  18. Experimental investigation of the ECRH stray radiation during the start-up phase in Wendelstein 7-X

    Science.gov (United States)

    Moseev, Dmitry; Laqua, Heinrich; Marsen, Stefan; Stange, Torsten; Braune, Harald; Erckmann, Volker; Gellert, Florian; Oosterbeek, Johann Wilhelm; Wenzel, Uwe

    2017-07-01

    Electron cyclotron resonance heating (ECRH) is the main heating mechanism in the Wendelstein 7-X stellarator (W7-X). W7-X is equipped with five absolutely calibrated sniffer probes that are installed in each of the five modules of the device. The sniffer probes monitor energy flux of unabsorbed ECRH radiation in the device and interlocks are fed with the sniffer probe signals. The stray radiation level in the device changes significantly during the start-up phase: plasma is a strong microwave absorber and during its formation the stray radiation level in sniffer probes reduces by more than 95%. In this paper, we discuss the influence of neutral gas pressure and gyrotron power on plasma breakdown processes.

  19. Comparison of stray light in spectrometer systems using a low cost monochromatic light source

    DEFF Research Database (Denmark)

    Thorseth, Anders; Lindén, Johannes; Dam-Hansen, Carsten

    2014-01-01

    We present an experimental setup that is under development for automated stray light characterization of spectrometers. The setup uses a tuneable monochromator which enables this characterization on relatively cost low equipment. We present the measured line spread functions for two spectrometers...

  20. Circuit mismatch and current coupling effect influence on paralleling SiC MOSFETs in multichip power modules

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper reveals that there are circuit mismatches and a current coupling effect in the direct bonded copper (DBC) layout of a silicon carbide (SiC) MOSFET multichip power module. According to the modelling and the mathematic analysis of the DBC layout, the mismatch of the common source stray i...

  1. Prevalence of Protozoa and Gastrointestinal Helminthes in Stray Cats in Zanjan Province, North-West of Iran

    Directory of Open Access Journals (Sweden)

    SA Altome

    2009-07-01

    Full Text Available Background: Cats and other felines act as definitive hosts for many intestinal parasites, some of which are responsible for several zoonotic diseases.  The aim of this study was to determine the type and prevalence of protozoa and gastrointestinal helminthes among stray cats. Methods: A cross sectional study was conducted. Digestive tracts of 100 stray cats in Zanjan Province, north-west of Iran were autopsied in order to recognize gastrointestinal helminthes and intestinal protozoan parasites. These cats were collected by baited cage trapped from October 2007 to September 2008. Gender and species of helminthes and protozoa were rec­ognized using authentic diagnostic criteria. Statistical evaluation was performed by SPSS version 14. Results: Forty-two percent of cats were infected with intestinal protozoan parasites, 33% were infected with cestodes and 39% infected with gastrointestinal nematodes. Four species protozoan parasites and eight gastrointestinal helminthes were recovered from the animals, including Taenia taeniaeformis, Dipylidium spp., Joyeuxiella pasqaulei, Toxocara cati, Phy­saloptera praeputialis, Rectalaria spp., Onicolla, Cystoisospora spp., Toxoplasma gondii, and Sarcocystis spp . Conclusions: The high infection rate of Toxoplasma and some gastrointestinal helminthes in stray cats is considered to be critical from the viewpoint of public health importance.

  2. Prevalence of zoonotic intestinal parasites in household and stray dogs in rural areas of Hamadan, Western Iran.

    Science.gov (United States)

    Sardarian, K; Maghsood, A H; Ghiasian, S A; Zahirnia, A H

    2015-06-01

    Zoonotic parasitic infections are a major global public and veterinary health problem and widespread among dogs. The objective of this study was to assess the prevalence of intestinal parasites in stray and household dogs in the rural areas of Hamadan district. During 2012, 1,500 fresh fecal samples from 243 household and 1,257 stray dogs were examined by using direct wet mount, simple zinc sulfate flotation, and Lugol's solution staining. Of 1,500 dogs, 20.4% were positive for intestinal parasites. Helminthes eggs were more frequently found in fecal samples than protozoan cysts or trophozoites (15.9% vs. 4.5%, respectively). Toxocara canis was the most frequently detected parasite, with a prevalence of 6.3%, followed by Taenia/Echinococcus spp. (2.9%), Isospora spp. (2.7%), and Toxascaris leonina (2.6%). Helminthes and protozoa were significantly more prevalent in household dogs than in stray dogs (Pparasites indicated that people residing in this area are at risk of exposure to these potentially hazardous zoonotic pathogens. Mass education of the general population is highly recommended to increase awareness of the potential for horizontal transmission of these parasitic infections from dogs to humans.

  3. Graphene bolometer with thermoelectric readout and capacitive coupling to an antenna

    Science.gov (United States)

    Skoblin, Grigory; Sun, Jie; Yurgens, August

    2018-02-01

    We report on a prototype graphene radiation detector based on the thermoelectric effect. We used a split top gate to create a p-n junction in the graphene, thereby making an effective thermocouple to read out the electronic temperature in the graphene. The electronic temperature is increased due to the AC currents induced in the graphene from the incoming radiation, which is first received by an antenna and then directed to the graphene via the top-gate capacitance. With the exception of the constant DC voltages applied to the gate, the detector does not need any bias and is therefore very simple to use. The measurements showed a clear response to microwaves at 94 GHz with the signal being almost temperature independent in the 4-100 K temperature range. The optical responsivity reached ˜700 V/W.

  4. Toward Superior Capacitive Energy Storage: Recent Advances in Pore Engineering for Dense Electrodes.

    Science.gov (United States)

    Liu, Congcong; Yan, Xiaojun; Hu, Fei; Gao, Guohua; Wu, Guangming; Yang, Xiaowei

    2018-04-01

    With the rapid development of mobile electronics and electric vehicles, future electrochemical capacitors (ECs) need to store as much energy as possible in a rather limited space. As the core component of ECs, dense electrodes that have a high volumetric energy density and superior rate capability are the key to achieving improved energy storage. Here, the significance of and recent progress in the high volumetric performance of dense electrodes are presented. Furthermore, dense yet porous electrodes, as the critical precondition for realizing superior electrochemical capacitive energy, have become a scientific challenge and an attractive research focus. From a pore-engineering perspective, insight into the guidelines of engineering the pore size, connectivity, and wettability is provided to design dense electrodes with different porous architectures toward high-performance capacitive energy storage. The current challenges and future opportunities toward dense electrodes are discussed and include the construction of an orderly porous structure with an appropriate gradient, the coupling of pore sizes with the solvated cations and anions, and the design of coupled pores with diverse electrolyte ions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  6. Virtual electrical capacitance tomography sensor

    International Nuclear Information System (INIS)

    Li, Y; Yang, W Q

    2005-01-01

    Electrical capacitance tomography (ECT) is an effective technique for elucidating the distribution of dielectric materials inside closed pipes or vessels. This paper describes a virtual electrical capacitance tomography (VECT) system, which can simulate a range of sensor and hardware configurations and material distributions. A selection of popular image reconstruction algorithms has been made available and image error and capacitance error tools enable their performance to be evaluated and compared. Series of frame-by-frame results can be stored for simulating real-time dynamic flows. The system is programmed in Matlab with DOS functions. It is convenient to use and low-cost to operate, providing an effective tool for engineering experiment

  7. Flexible PVDF ferroelectric capacitive temperature sensor

    KAUST Repository

    Khan, Naveed

    2015-08-02

    In this paper, a capacitive temperature sensor based on polyvinylidene fluoride (PVDF) capacitor is explored. The PVDF capacitor is characterized below its Curie temperature. The capacitance of the PVDF capacitor changes vs temperature with a sensitivity of 16pF/°C. The linearity measurement of the capacitance-temperature relation shows less than 0.7°C error from a best fit straight line. An LC oscillator based temperature sensor is demonstrated based on this capacitor.

  8. Generation of strong inhomogeneous stray fields by high-anisotropy permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Samofalov, V.N. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine)]. E-mail: samofalov@kpi.kharkov.ua; Ravlik, A.G. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine); Belozorov, D.P. [National Scientific Center Kharkov Institute of Physics and Techonology, NAS of Ukraine, 1 Akademicheskaja St., 61108 Kharkov (Ukraine); Avramenko, B.A. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine)

    2004-10-01

    Magnetic stray fields for systems of permanent magnets with high magnetic anisotropy are calculated and measured. It is shown that intensity of these fields exceeds value of an induction of a material of magnets in some time. Besides, these fields are characterized by high gradients, and size H-bar H can reach values up to10{sup 10}-10{sup 11}Oe{sup 2}/cm. Estimations of extremely achievable fields and their gradients are made.

  9. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    application of advanced methods for detailed electrochemical characterisation during operation. An operating stack is subject to steep compositional gradients in the gaseous reactant streams, and significant temperature gradients across each cell and across the stack, which makes it a complex system...... Fuel Cell A/S was characterised in detail using electrochemical impedance spectroscopy. An investigation of the optimal geometrical placement of the current probes and voltage probes was carried out in order to minimise measurement errors caused by stray impedances. Unwanted stray impedances...... are particularly problematic at high frequencies. Stray impedances may be caused by mutual inductance and stray capacitance in the geometrical set-up and do not describe the fuel cell. Three different stack geometries were investigated by electrochemical impedance spectroscopy. Impedance measurements were carried...

  10. Stray-field-induced Faraday contributions in wide-field Kerr microscopy and -magnetometry

    International Nuclear Information System (INIS)

    Markó, D.; Soldatov, I.; Tekielak, M.; Schäfer, R.

    2015-01-01

    The magnetic domain contrast in wide-field Kerr microscopy on bulk specimens can be substantially distorted by non-linear, field-dependent Faraday rotations in the objective lens that are caused by stray-field components emerging from the specimen. These Faraday contributions, which were detected by Kerr-magnetometry on grain-oriented iron–silicon steel samples, are thoroughly elaborated and characterized. They express themselves as a field-dependent gray-scale offset to the domain contrast and in highly distorted surface magnetization curves if optically measured in a wide field Kerr microscope. An experimental method to avoid such distortions is suggested. In the course of these studies, a low-permeability part in the surface magnetization loop of slightly misoriented (110)-surfaces in iron–silicon sheets was discovered that is attributed to demagnetization effects in direction perpendicular to the sheet surface. - Highlights: • Magnetizing a finite sample in a Kerr microscope leads to sample-generated stray-fields. • They cause non-linear, field- and position-dependent Faraday rotations in the objective. • This leads to a modulation of the Kerr contrast and to distorted MOKE loops. • A method to compensate these Faraday rotations is presented

  11. Simulation study of wave phenomena from the sheath region in single frequency capacitively coupled plasma discharges; field reversals and ion reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.; Turner, M. M. [National Centre for Plasma Science and Technology, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2013-07-15

    Capacitively coupled radio-frequency (RF) discharges have great significance for industrial applications. Collisionless electron heating in such discharges is important, and sometimes is the dominant mechanism. This heating is usually understood to originate in a stochastic interaction between electrons and the electric fields. However, other mechanisms may also be important. There is evidence of wave emission with a frequency near the electron plasma frequency, i.e., ω{sub pe}, from the sheath region in collisionless capacitive RF discharges. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. These waves are damped in a few centimeters during their propagation from the sheath towards the bulk plasma. The damping occurs because of the Landau damping or some related mechanism. This research work reports that the emission of waves is associated with a field reversal during the expanding phase of the sheath. Trapping of electrons near to this field reversal region is observed. The amplitude of the wave increases with increasing RF current density amplitude J(tilde sign){sub 0} until some maximum is reached, beyond which the wave diminishes and a new regime appears. In this new regime, the density of the bulk plasma suddenly increases because of ion reflection, which occurs due to the presence of strong field reversal near sheath region. Our calculation shows that these waves are electron plasma waves. These phenomena occur under extreme conditions (i.e., higher J(tilde sign){sub 0} than in typical experiments) for sinusoidal current waveforms, but similar effects may occur with non-sinusoidal pulsed waveforms for conditions of experimental interest, because the rate of change of current is a relevant parameter. The effect of electron elastic collisions on plasma waves is also investigated.

  12. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, Tiberiu, E-mail: ftibi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, Alin I., E-mail: alinblaj2005@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Ponta, Michaela, E-mail: mponta@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Darvasi, Eugen, E-mail: edarvasi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, Maria, E-mail: frentiu.maria@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, Emil, E-mail: emilcordos@gmail.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2011-10-15

    Highlights: {yields} Use of a miniaturized analytical system with microtorch plasma for Hg determination. {yields} Determination of Hg in non- and biodegradable materials using cold vapor generation. {yields} Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min{sup -1} Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl{sub 2} reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO{sub 3}-H{sub 2}SO{sub 4} mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml{sup -1} or 0.08 {mu}g g{sup -1} in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg{sup -1}, while recovery in two polyethylene certified reference materials in the range 98.7 {+-} 4.5% (95% confidence level).

  13. Fast simultaneous determination of trimethoprim and sulfamethoxazole by capillary zone electrophoresis with capacitively coupled contactless conductivity detection.

    Science.gov (United States)

    da Silva, Iranaldo Santos; Vidal, Denis Tadeu Rajh; do Lago, Claudimir Lucio; Angnes, Lúcio

    2013-04-01

    The association of trimethoprim and sulfamethoxazole is a very effective with antibiotic properties, and commonly used in the treatment of a variety of infections. Due to the importance in diseases treatment of humans and also of animals, the development of methods for their quantification in commercial formulations is highly desirable. In the present study, a rapid method for simultaneous determination of these compounds using CE with capacitively coupled contactless conductivity detection was developed. A favorable working region for both analytes was from 12.5 to 200 μmol/L (linear responses with R > 0.999 for N = 5). Other parameters calculated were sensitivity (1.28 ± 0.10/1.45 ± 0.11) min/(μmol L), RSD (4.5%/2.0%), and LOD (1.1/3.3) μmol/L for trimethoprim and sulfamethoxazole, respectively. Under this condition, the total run time was only 2.6 min. The proposed method was applied to the determination of trimethoprim and sulfamethoxazole in commercial samples and the results were compared to those obtained by using a HPLC pharmacopoeia method. This new method is advantageous for quality-control analyses of trimethoprim and sulfamethoxazole in pharmaceuticals samples, because it is rapid and precise. Moreover, it is less laborious and demands minimum amounts of reagents in comparison to the recommended method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.

    Science.gov (United States)

    Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G

    2018-01-11

    We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.

  15. rf Quantum Capacitance of the Topological Insulator Bi2Se3 in the Bulk Depleted Regime for Field-Effect Transistors

    Science.gov (United States)

    Inhofer, A.; Duffy, J.; Boukhicha, M.; Bocquillon, E.; Palomo, J.; Watanabe, K.; Taniguchi, T.; Estève, I.; Berroir, J. M.; Fève, G.; Plaçais, B.; Assaf, B. A.

    2018-02-01

    A metal-dielectric topological-insulator capacitor device based on hexagonal-boron-nitrate- (h -BN) encapsulated CVD-grown Bi2Se3 is realized and investigated in the radio-frequency regime. The rf quantum capacitance and device resistance are extracted for frequencies as high as 10 GHz and studied as a function of the applied gate voltage. The superior quality h -BN gate dielectric combined with the optimized transport characteristics of CVD-grown Bi2Se3 (n ˜1018 cm-3 in 8 nm) on h -BN allow us to attain a bulk depleted regime by dielectric gating. A quantum-capacitance minimum and a linear variation of the capacitance with the chemical potential are observed revealing a Dirac regime. The topological surface state in proximity to the gate is seen to reach charge neutrality, but the bottom surface state remains charged and capacitively coupled to the top via the insulating bulk. Our work paves the way toward implementation of topological materials in rf devices.

  16. Investigations of prevalence of antibodies to B.canis in stray dogs in territory of Belgrade

    Directory of Open Access Journals (Sweden)

    Radojičić Sonja

    2006-01-01

    Full Text Available The paper covers investigations of stray dogs in the territory of the city of Belgrade. A total of 184 blood serum samples were examined for the presence of antibodies specific to Brucella canis. The method of slow agglutination in a test tube with 2- mercaptoethanol was used in the diagnostic procedure. Of the 184 examined serums, 49 (26.63% had a titer of 1/50, 25 serums had a titer of 1/100 (13.58%, while 20 serums had a titer equal to or bigger than 1/200 (10.87%. Furthermore, 15 samples of full blood from serologiclly negative animals were also presented for isolation. The bacteriological finding for these samples was negative. The obtained results indicate that the number of seropositive stray dogs in the territory of Belgrade is extremely high and that 10.87% of the testes animals are definitely infected with Brucella canis.

  17. The Design, Construction and Test of stray light suppression baffles for the CHAMP satellite

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1997-01-01

    The Advanced Stellar Compass, to be delivered from IAU to the CHAMP project, requires some kind of stray-light suppressing shade to be mounted in front of the lens, in order to minimize the thermal impact and to maximize the performance envelope when subjected to non-stellar external light sources...

  18. Dosimeter charging and/or reading apparatus

    International Nuclear Information System (INIS)

    Fine, L.T.; Jackson, T.P.

    1980-01-01

    A device is disclosed for charging and/or reading a capacitor associated with an electrometer incorporated in a radiation dosimeter for the purpose of initializing or ''zeroing'', the dosimeter at the commencement of a radiation measurement cycle or reading it at any time thereafter. The dosimeter electrometer has a movable electrode the position of which is indicative of the charge remaining on the dosimeter capacitor and in turn the amount of radiation incident on the dosimeter since it was zeroed. The charging device also includes means for discharging, immediately upon conclusion of the dosimeter capacitor charging operation, stray capacitance inherent in the dosimeter by reason of its mechanical construction. The charge on the stray capacitance, if not discharged at the conclusion of the dosimeter capacitor charging operation, leaks off during the measurement cycle, introducing measurement errors. A light source and suitable switch means are provided for automatically illuminating the movable electrode of the dosimeter electrometer as an incident to charging the dosimeter capacitor to facilitate reading the initial, or ''zero'', position of the movable electrometer electrode after the dosimeter capacitor has been charged and the stray capacitance discharged. Also included is a manually actuatable switch means, which is operable independently of the aforementioned automatic switch means, to energize the lamp and facilitate reading of the dosimeter without charging

  19. Helminth Infections of Stray Dogs from Garmsar, Semnan Province, Central Iran

    Science.gov (United States)

    Eslami, A; Ranjbar-Bahadori, Sh; Meshgi, B; Dehghan, M; Bokaie, S

    2010-01-01

    Background The aim was to study the gastro-intestinal helminths of stray dogs of Garmsar, Semnan Province, Central Iran, and its impacts on human health and animal production. Methods During 2006, the alimentary tracts of 50 stray dogs at necropsy, selected from villages around Garmsar, were removed, and examined for helminth infections. Subsequently helminths were collected from the contents of each part and scraped sample of small intestines of washed materials in a 100-mesh sieve. To identify the species of helminths, the nematodes were cleared in lactophenol and cestodes were stained using carmine acid. Results Mixed infection was the rule and 40 dogs (80%) harbored more than one species of helminth. Taenia hydatigena was the most prevalent species (80%) followed by Echinococcus granulosus (64%), Toxocara canis (22%), Mesocestoides lineatus (12%), Taenia multiceps (10%) and Dipylidium caninum (4%). The mean intensity of worm infection was low (1–3) except for that of E. granulosus (645). No significant difference was noticed between sex, age and most helminth infections except for that of sex and T. hydatigena (P=0.001) as well as age and T. canis (P=0.001). Conclusion Although human infection with T. hydatigena is unlikely, but other helminths reported in this study are of zoonotic importance, and may pose a threat to community health, and reduce the productions of ruminants harboring taeniid metacestodes. PMID:22347264

  20. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    Science.gov (United States)

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  1. Calculation of secondary capacitance of compact Tesla pulse transformer

    International Nuclear Information System (INIS)

    Yu Binxiong; Liu Jinliang

    2013-01-01

    An analytic expression of the secondary capacitance of a compact Tesla pulse transformer is derived. Calculated result by the expression shows that two parts contribute to the secondary capacitance, namely the capacitance between inner and outer magnetic cores and the attached capacitance caused by the secondary winding. The attached capacitance equals to the capacitance of a coaxial line which is as long as the secondary coil, and whose outer and inner diameters are as large as the inner diameter of the outer magnetic and the outer diameter of the inner magnetic core respectively. A circuital model for analyzing compact Tesla transformer is built, and numeric calculation shows that the expression of the secondary capacitance is correct. Besides, a small compact Tesla transformer is developed, and related test is carried out. Test result confirms the calculated results by the expression derived. (authors)

  2. Quantum capacitance of the armchair-edge graphene nanoribbon

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Quantum capacitance of the ... Abstract. The quantum capacitance, an important parameter in the design of nanoscale devices, is derived for armchair-edge single-layer graphene nanoribbon with semiconducting property. The quantum capacitance ...

  3. Resistive and Capacitive Based Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Winncy Y. Du

    2008-04-01

    Full Text Available Resistive and capacitive (RC sensors are the most commonly used sensors. Their applications span homeland security, industry, environment, space, traffic control, home automation, aviation, and medicine. More than 30% of modern sensors are direct or indirect applications of the RC sensing principles. This paper reviews resistive and capacitive sensing technologies. The physical principles of resistive sensors are governed by several important laws and phenomena such as Ohm’s Law, Wiedemann-Franz Law; Photoconductive-, Piezoresistive-, and Thermoresistive Effects. The applications of these principles are presented through a variety of examples including accelerometers, flame detectors, pressure/flow rate sensors, RTDs, hygristors, chemiresistors, and bio-impedance sensors. The capacitive sensors are described through their three configurations: parallel (flat, cylindrical (coaxial, and spherical (concentric. Each configuration is discussed with respect to its geometric structure, function, and application in various sensor designs. Capacitance sensor arrays are also presented in the paper.

  4. A PARASITOLOGIC AND MOLECULAR SURVEY OF HEPATOZOON CANIS INFECTION IN STRAY DOGS IN NORTHEAST OF IRAN.

    Science.gov (United States)

    Barati, Ali; Razmi, Gholamreza

    2018-05-15

    Canine hepatozoonosis, caused by H. canis, is a tick-borne disease in domestic and wild dogs that is transmitted by ingestion of Rhipicephalus sanguineus ticks. The aim of the study was to detect H. canis in stray dogs in Iran using blood smear examination and molecular techniques. From October 2014 to September 2015, 150 EDTA blood samples were collected from stray dogs in the northeast region of Iran. Blood smears were microscopically examined for the presence of Hepatozoon gamonts; whole blood was evaluated by PCR, with subsequent sequencing and phylogenetic analysis. Hepatozoon spp. Gamonts were observed in the neutrophils of 5/150 (3.3%) blood smears, whereas Hepatozoon spp. 18S rDNA was detected in 12/150 (8.0%) blood samples from stray dogs. There was a good agreement between microscopy and PCR methods. (Kappa= 0.756). The highest rate of infection was seasonally detected in the summer (pHepatozoon spp infection was not significant by gender and age factors (p>0.05). The alignment analysis of the sequenced samples showed ≥99% similarity with other nucleotide sequences of Hepatozoon spp. in GenBank. The phylogenetic tree also revealed that the nucleotide sequences in this study were clustered in the H. canis clade and different from the H. felis and H. americanum clades. According to the results, it is concluded that H. canis infection is present among dogs in northeastern region of Iran.

  5. Capacitance of carbon-based electrical double-layer capacitors.

    Science.gov (United States)

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  6. Gastrointestinal Helminthic Parasites in Stray Cats (Felis catus from North of Iran

    Directory of Open Access Journals (Sweden)

    A Rezaei-Doust

    2007-08-01

    Full Text Available Background: Cats play a crucial role in the epidemiology of gastrointestinal helminthic parasites and also play a major role in transmitting of these parasites through faecal contamination of soil, food or water. The aim of this study was to determine the species of gastrointestinal helminthes parasites in stray cats from a rural area of Bandar-e-Anzali, Iran.Method: Gastrointestinal helminthes were collected from 50 necropsied stray cats (Felis catus after capturing them by trapping from different regions of the city and humanely euthanatized in Bandar-e-Anzali, a port in the Caspian Sea in northern Iran, from March to November 2003. Results: The prevalence of infection was 90%, with those of individual parasites being Diplopylidium nolleri 54%, Phy­saloptera praeputialis 32%, Ancylostoma tubaeforme 20%, Joyeuxiella pasqualei 10%, Toxocara cati 8%, Pterygoderma­tites affinis 6%, Ancylostoma caninum 4%, and Taenia taeniaeformis 2%. Concurrent infections with two or more parasites were recorded in 34% of the individuals. In relation to the sex, the differences were not significant. Conclusion: P. praeputialis, T. cati, D. nolleri and sometime J. pasqualei are the commonest Helminthes in cats. This is the first reported isolation of P. affinis and A. caninum infections from cats in Iran.

  7. Novel RF-MEMS capacitive switching structures

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, Henricus V.; Fiorini, P.; De Raedt, W.; Tilmans, H.A.C.

    2002-01-01

    This paper reports on novel RF-MEMS capacitive switching devices implementing an electrically floating metal layer covering the dielectric to ensure intimate contact with the bridge in the down state. This results in an optimal switch down capacitance and allows optimisation of the down/up

  8. The Pyramidal Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal...

  9. The pyramidal capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2010-01-01

    This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal...

  10. Capacitive acoustic wave detector and method of using same

    Science.gov (United States)

    Yost, William T. (Inventor)

    1994-01-01

    A capacitor having two substantially parallel conductive faces is acoustically coupled to a conductive sample end such that the sample face is one end of the capacitor. A non-contacting dielectric may serve as a spacer between the two conductive plates. The formed capacitor is connected to an LC oscillator circuit such as a Hartley oscillator circuit producing an output frequency which is a function of the capacitor spacing. This capacitance oscillates as the sample end coating is oscillated by an acoustic wave generated in the sample by a transmitting transducer. The electrical output can serve as an absolute indicator of acoustic wave displacement.

  11. Comment on "Density functional theory is straying from the path toward the exact functional"

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Medvedev et al (Reports, 6 January 2017, p. 49) argue that recent density functionals stray from the path toward exactness. This conclusion rests on very compact 1s2 and 1s22s2 systems favored by the Hartree-Fock picture. Comparison to actual energies for the same systems indicates that the "stra...

  12. Scanning Capacitance Microscopy | Materials Science | NREL

    Science.gov (United States)

    obtained using scanning capacitance microscopy. Top Right: Image of p-type and n-type material, obtained 'fingers' of light-colored n-type material on a yellow and blue background representing p-type material material, obtained using scanning capacitance microscopy, in a sample semiconductor device; the image shows

  13. Mode transition of power dissipation and plasma parameters in an asymmetric capacitive discharge

    International Nuclear Information System (INIS)

    Lee, Soo-Jin; Lee, Hyo-Chang; Bang, Jin-young; Oh, Seung-Ju; Chung, Chin-Wook

    2013-01-01

    Electrical characteristics and plasma parameters were experimentally investigated in asymmetric capacitively coupled plasma with various argon gas pressures. At a low discharge current region, the transferred power to the plasma was proportional to the current, while the transferred power increased proportionally to square of the current at a high discharge current region. The mode transition of power dissipation occurred at the lower discharge current region with the high gas pressure. At the low radio-frequency power or low discharge current, the plasma density increased linearly with the discharge current, while at the high power or high discharge current, the rate of an increase in the plasma density depended on the gas pressures. A transition of the discharge resistance was also found when the mode transition of the power dissipation occurred. These changes in the electrical characteristics and the plasma parameters were mainly caused by the power dissipation mode transition from the plasma bulk to the sheath in the capacitive discharge with the asymmetric electrode, which has extremely high self-bias voltages. - Highlights: • Mode transition of the power dissipation in an asymmetrical capacitive discharge • Evolution of the discharge power, electrode voltage, and discharge impedance • Electron temperature and plasma density on the power dissipation mode transition

  14. An Accurate Study on Capacitive Microphone with Circular Diaphragm Using a Higher Order Elasticity Theory

    Directory of Open Access Journals (Sweden)

    Shakiba Dowlati

    Full Text Available Abstract This study has been undertaken to investigate the mechanical behavior of the capacitive microphone with clamped circular diaphragm using modified couple stress theory in comparison to the classical one. Presence of the length scale parameter in modified couple stress theory provides the means to evaluate the size effect on the microphone mechanical behavior. Investigating Pull-in phenomenon and dynamic behavior of the microphone are the matters provided due to the application of a step DC voltage. Also the effects of different air damping coefficients on dynamic pull-in voltage and pull-in time have been studied. The output level or sensitivity of the microphone has been studied by investigating the frequency response in term of magnitude for different length scale parameters to figure out how the length scale parameter affects on the sensitivity of the capacitive microphone. To achieve these ends, the nonlinear differential equation of the circular diaphragm has been extracted using Kirchhoff thin plate theory. Then, a Step-by-Step Linearization Method (SSLM has been used to escape from the nonlinearity of the differential equation. Afterwards, Galerkin-based reduced-order model has been applied to solve the obtained equation.

  15. Capacitance densitometer for flow regime identification

    International Nuclear Information System (INIS)

    Shipp, R.L. Jr.

    1978-01-01

    This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid

  16. Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor

    International Nuclear Information System (INIS)

    Limbut, Warakorn; Thavarungkul, Panote; Kanatharana, Proespichaya; Wongkittisuksa, Booncharoen; Asawatreratanakul, Punnee; Limsakul, Chusak

    2010-01-01

    Cost-effective disposable electrodes were fabricated from copper clad laminate, usually used for printed circuit board (PCB) in electronic industries, by using dry film photoresist. Electro-oxidation (anodisation) was employed to obtain a good formation of thiourea film on the electrode surface. The affinity binding pair of carcinoembryonic antigen (CEA) and anti-carcinoembryonic antigen (anti-CEA) was used as a model system. Anti-CEA was immobilized on thiourea film via covalent coupling. This modified electrode was incorporated with a capacitive system for CEA analysis. This capacitive immunosensor provided a linear range between 0.01 and 10 ng ml -1 with a detection limit of 10 pg ml -1 . When applied to analyze CEA in serum samples, the results agreed well with the enzyme linked fluorescent assay (ELFA) technique (P > 0.05). The proposed strategy for the preparation of disposable modified copper electrode is very cost effective and simple. Moreover, it provides good reproducibility. This technique can easily be applied to immobilize other biological sensing elements for biosensors development.

  17. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  18. Barged/In-river steelhead migrant data - Evaluation of methods to reduce straying rates of barged juvenile steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of this study are to develop methods to reduce wandering and straying of steelhead (Oncorhynchus mykiss) that are collected and barged from the Snake River...

  19. Laboratory data on Snake River steelhead - Evaluation of methods to reduce straying rates of barged juvenile steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of this study are to develop methods to reduce wandering and straying of steelhead (Oncorhynchus mykiss) that are collected and barged from the Snake River...

  20. A survey study on gastrointestinal parasites of stray cats in northern region of Nile delta, Egypt.

    Directory of Open Access Journals (Sweden)

    Reda E Khalafalla

    Full Text Available A survey study on gastrointestinal parasites in 113 faecal samples from stray cats collected randomly from Kafrelsheikh province, northern region of Nile delta of Egypt; was conducted in the period between January and May 2010. The overall prevalence was 91%. The results of this study reported seven helminth species: Toxocara cati (9%, Ancylostoma tubaeforme (4%, Toxascaris leonina (5%, Dipylidium caninum (5%, Capillaria spp. (3%, Taenia taeniformis (22% and Heterophyes heterophyes (3%, four protozoal species: Toxoplasma gondii (9%, Sarcocyst spp. (1%, Isospora spp. (2% and Giardia spp. (2% and two arthropod species; Linguatula serrata (2% and mites eggs (13%. The overall prevalence of intestinal parasites may continue to rise due to lack of functional veterinary clinics for cat care in Egypt. Therefore, there is a need to plan adequate control programs to diagnose, treat and control gastrointestinal parasites of companion as well as stray cats in the region.

  1. A Survey Study on Gastrointestinal Parasites of Stray Cats in Northern Region of Nile Delta, Egypt

    Science.gov (United States)

    Khalafalla, Reda E.

    2011-01-01

    A survey study on gastrointestinal parasites in 113 faecal samples from stray cats collected randomly from Kafrelsheikh province, northern region of Nile delta of Egypt; was conducted in the period between January and May 2010. The overall prevalence was 91%. The results of this study reported seven helminth species: Toxocara cati (9%), Ancylostoma tubaeforme (4%), Toxascaris leonina (5%), Dipylidium caninum (5%), Capillaria spp. (3%), Taenia taeniformis (22%) and Heterophyes heterophyes (3%), four protozoal species: Toxoplasma gondii (9%), Sarcocyst spp. (1%), Isospora spp. (2%) and Giardia spp. (2%) and two arthropod species; Linguatula serrata (2%) and mites eggs (13%). The overall prevalence of intestinal parasites may continue to rise due to lack of functional veterinary clinics for cat care in Egypt. Therefore, there is a need to plan adequate control programs to diagnose, treat and control gastrointestinal parasites of companion as well as stray cats in the region. PMID:21760884

  2. Helminth Infections of Stray Dogs from Garmsar, Semnan Province, Central Iran

    Directory of Open Access Journals (Sweden)

    A Eslami

    2010-12-01

    Full Text Available Background: The aim was to study the gastro-intestinal helminths of stray dogs of Garmsar, Sem­nan Province, Central Iran, and its impacts on human health and animal production.Methods: During 2006, the alimentary tracts of 50 stray dogs at necropsy, selected from villages around Garmsar, were removed, and examined for helminth infections. Subsequently helminths were collected from the contents of each part and scraped sample of small intestines of washed materials in a 100-mesh sieve. To identify the species of helminths, the nematodes were cleared in lactophenol and cestodes were stained using carmine acid.Results: Mixed infection was the rule and 40 dogs (80% harbored more than one species of helminth. Taenia hydatigena was the most prevalent species (80% followed by Echinococcus granulosus (64%, Toxocara canis (22%, Mesocestoides lineatus (12%, Taenia multiceps (10% and Dipylidium caninum (4%. The mean intensity of worm infection was low (1-3 ex­cept for that of E. granulosus (645. No significant difference was noticed between sex, age and most helminth infections except for that of sex and T. hydatigena (P=0.001 as well as age and T. canis (P=0.001.Conclusion: Although human infection with T. hydatigena is unlikely, but other helminths re­ported in this study are of zoonotic importance, and may pose a threat to community health, and reduce the productions of ruminants harboring taeniid metacestodes.

  3. Ferroelectric Negative Capacitance Domain Dynamics

    OpenAIRE

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2017-01-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transien...

  4. Contactless vector network analysis using diversity calibration with capacitive and inductive coupled probes

    Directory of Open Access Journals (Sweden)

    T. Zelder

    2007-06-01

    Full Text Available Contactless vector network analysis based on a diversity calibration is investigated for the measurement of embedded devices in planar circuits. Conventional contactless measurement systems based on two probes for each measurement port have the disadvantage that the signal-to-noise system dynamics strongly depends on the distance between the contactless probes.

    In order to avoid a decrease in system dynamics a diversity based measurement system is presented. The measurement setup uses one inductive and two capacitive probes. As an inductive probe a half magnetic loop in combination with a broadband balun is introduced. In order to eliminate systematic errors from the measurement results a diversity calibration algorithm is presented. Simulation and measurement results for a one-port configuration are shown.

  5. Distribution of coronary arterial capacitance in a canine model.

    Science.gov (United States)

    Lader, A S; Smith, R S; Phillips, G C; McNamee, J E; Abel, F L

    1998-03-01

    The capacitative properties of the major left coronary arteries, left main (LM), left anterior descending (LAD), and left circumflex (LCX), were studied in 19 open-chest isolated dog hearts. Capacitance was determined by using ramp perfusion and a left ventricular-to-coronary shunt diastolic decay method; both methods gave similar results, indicating a minimal systolic capacitative component. Increased pericardial pressure (PCP), 25 mmHg, was used to experimentally alter transmural wall pressure. The response to increased PCP was different in the LAD vs. LCX; increasing PCP decreased capacitance in the LCX but increased capacitance in the LAD. This may have been due to the different intramural vs. epicardial volume distribution of these vessels and a decrease in intramural tension during increased PCP. Increased PCP decreased LCX capacitance by approximately 13%, but no changes in conductance or zero flow pressure intercept occurred in any of the three vessels, i. e., evidence against the waterfall theory of vascular collapse at these levels of PCP. Coronary arterial capacitance was also linearly related to perfusion pressure.

  6. Microstrip Cross-coupled Interdigital SIR Based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    R. K. Maharjan

    2012-09-01

    Full Text Available A simple and compact 4.9 GHz bandpass filter for C-band applications is proposed. This paper presents a novel microstrip cross-coupled interdigital half-wavelength stepped impedance resonator (SIR based bandpass filter (BPF.The designed structure is similar to that of a combination of two parallel interdigital capacitors. The scattering parameters of the structure are measured using vector network analyzer (VNA. The self generated capacitive and inductive reactances within the interdigital resonators exhibited in a resonance frequency of 4.9 GHz. The resonant frequency and bandwidth of the capacitive cross-coupled resonator is directly optimized from the physical arrangement of the resonators. The measured insertion loss (S21 and return loss (S11 were 0.3 dB and 28 dB, respectively, at resonance frequency which were almost close to the simulation results.

  7. Phase correction of electromagnetic coupling effects in cross-borehole EIT measurements

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2015-01-01

    Borehole EIT measurements in a broad frequency range (mHz to kHz) are used to study subsurface geophysical properties. However, accurate measurements have long been difficult because the required long electric cables introduce undesired inductive and capacitive coupling effects. Recently, it has been shown that such effects can successfully be corrected in the case of single-borehole measurements. The aim of this paper is to extend the previously developed correction procedure for inductive coupling during EIT measurements in a single borehole to cross-borehole EIT measurements with multiple borehole electrode chains. In order to accelerate and simplify the previously developed correction procedure for inductive coupling, a pole–pole matrix of mutual inductances is defined. This consists of the inductances of each individual chain obtained from calibration measurements and the inductances between two chains calculated from the known cable positions using numerical modelling. The new correction procedure is successfully verified with measurements in a water-filled pool under controlled conditions where the errors introduced by capacitive coupling were well-defined and could be estimated by FEM forward modelling. In addition, EIT field measurements demonstrate that the correction methods increase the phase accuracy considerably. Overall, the phase accuracy of cross-hole EIT measurements after correction of inductive and capacitive coupling is improved to better than 1 mrad up to a frequency of 1 kHz, which substantially improves our ability to characterize the frequency-dependent complex electrical resistivity of weakly polarizable soils and sediments in situ. (paper)

  8. A Preliminary Study on the Helminth Fauna in Necropsied Stray Cats (Felis catus in Beni-Suef, Egypt

    Directory of Open Access Journals (Sweden)

    Khaled Mohamed El-Dakhly

    2017-10-01

    Full Text Available Stray cats play a crucial role in the epidemiology of endoparasites, particularly helminths, due to predating a wide range of both vertebrate and invertebrate hosts, often of veterinary and zoonotic importance. Therefore, a total of 62 stray cats were necropsied in Beni-Suef province, Egypt and examined for helminth parasites. The overall prevalence of infection was 87.0%. The recovered helminths consisted of 10 species of trematodes (Heterophyes heterophyes, Pygidiopsis summa, H. nocens, Echinochasmus liliputanus, Alaria sp., Procerovum varium, Ascocotyle sp., Haplorchis sp., Prohemistomum vivax, Euparadistomum herpestesi, five cestodes (Dipylidium caninum, Diplopylidium acanthoterta, D. nolleri, Joyeuxiella sp. and Taenia taeniaeformis, and two nematodes (Toxascaris leonina and larvae of Anisakis simplex. The most prevalent helminths were Dipylidium caninum (62.9%, Toxascaris leonina (33.8%, Diplopylidium nolleri (22.5% and Echinochasmus liliputanus (6.45%. Thirty (48.39% cats were co-infected by one species, 22 (35.48% by two and three (4.84% by more than two species. It has been found that cats aged more than 3 years were the most infected. Both male and female cats were parasitized. The infection was the most prevalent in both summer and autumn. In conclusion, veterinarians must highlight more attention towards both stray and domestic cats, as they are considered reservoir hosts for a wide host range of parasites, particularly helminths, and the zoonotic importance of such parasites should be taken on consideration.

  9. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    Science.gov (United States)

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor ( Q ) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  10. Solar Cell Capacitance Determination Based on an RLC Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Petru Adrian Cotfas

    2018-03-01

    Full Text Available The capacitance is one of the key dynamic parameters of solar cells, which can provide essential information regarding the quality and health state of the cell. However, the measurement of this parameter is not a trivial task, as it typically requires high accuracy instruments using, e.g., electrical impedance spectroscopy (IS. This paper introduces a simple and effective method to determine the electric capacitance of the solar cells. An RLC (Resistor Inductance Capacitor circuit is formed by using an inductor as a load for the solar cell. The capacitance of the solar cell is found by measuring the frequency of the damped oscillation that occurs at the moment of connecting the inductor to the solar cell. The study is performed through simulation based on National Instruments (NI Multisim application as SPICE simulation software and through experimental capacitance measurements of a monocrystalline silicon commercial solar cell and a photovoltaic panel using the proposed method. The results were validated using impedance spectroscopy. The differences between the capacitance values obtained by the two methods are of 1% for the solar cells and of 9.6% for the PV panel. The irradiance level effect upon the solar cell capacitance was studied obtaining an increase in the capacitance in function of the irradiance. By connecting different inductors to the solar cell, the frequency effect upon the solar cell capacitance was studied noticing a very small decrease in the capacitance with the frequency. Additionally, the temperature effect over the solar cell capacitance was studied achieving an increase in capacitance with temperature.

  11. Electrosorption capacitance of nanostructured carbon-based materials.

    Science.gov (United States)

    Hou, Chia-Hung; Liang, Chengdu; Yiacoumi, Sotira; Dai, Sheng; Tsouris, Costas

    2006-10-01

    The fundamental mechanism of electrosorption of ions developing a double layer inside nanopores was studied via a combination of experimental and theoretical studies. A novel graphitized-carbon monolithic material has proven to be a good electrical double-layer capacitor that can be applied in the separation of ions from aqueous solutions. An extended electrical double-layer model indicated that the pore size distribution plays a key role in determining the double-layer capacitance in an electrosorption process. Because of the occurrence of double-layer overlapping in narrow pores, mesopores and micropores make significantly different contributions to the double-layer capacitance. Mesopores show good electrochemical accessibility. Micropores present a slow mass transfer of ions and a considerable loss of double-layer capacitance, associated with a shallow potential distribution inside pores. The formation of the diffuse layer inside the micropores determines the magnitude of the double-layer capacitance at low electrolyte concentrations and at conditions close to the point of zero charge of the material. The effect of the double-layer overlapping on the electrosorption capacitance can be reduced by increasing the pore size, electrolyte concentration, and applied potential. The results are relevant to water deionization.

  12. Bidirectional reflectance distribution function /BRDF/ measurements of stray light suppression coatings for the Space Telescope /ST/

    Science.gov (United States)

    Griner, D. B.

    1979-01-01

    The paper considers the bidirectional reflectance distribution function (BRDF) of black coatings used on stray light suppression systems for the Space Telescope (ST). The ST stray light suppression requirement is to reduce earth, moon, and sun light in the focal plane to a level equivalent to one 23 Mv star per square arcsecond, an attenuation of 14 orders of magnitude. It is impractical to verify the performance of a proposed baffle system design by full scale tests because of the large size of the ST, so that a computer analysis is used to select the design. Accurate computer analysis requires a knowledge of the diffuse scatter at all angles from the surface of the coatings, for all angles of incident light. During the early phases of the ST program a BRDF scanner was built at the Marshall Space Flight Center to study the scatter from black materials; the measurement system is described and the results of measurements on samples proposed for use on the ST are presented.

  13. Some aspects of stray losses in large power transformers

    International Nuclear Information System (INIS)

    Valkovic, Zvonimir

    2002-01-01

    The paper presents some results of the investigation of stray losses in power transformers that are caused by high-current loops. The investigation was focused on: a) additional losses in tank cover around high-current bushings and the way of their reduction, b) extra leakage flux and additional losses due to high current delta-connections. The insertion of nonmagnetic gaps between the phase bushings reduces the extra cover losses more than three times. A nonmagnetic plate around the high-current bushings reduces these extra losses practically to zero. The extra losses due to the high-current delta-connections could be significant for the transformer loss level. These extra losses could be controlled (reduced) by the design layout of the delta-connections. (Author)

  14. Design of double capacitances infrasonic receiver

    International Nuclear Information System (INIS)

    Wang Changhai; Han Kuixia; Wang Fei

    2003-01-01

    The article introduces the theory of infrasonic generation and reception of nuclear explosion. An idea of the design of double capacitances infrasonic receiver using CPLD technology is given in it. Compare with the single capacitance infrasonic receiver, sensitivity of the improved receiver can be improved scores of times, dynamic range can be improved largely, and the whole performance gets improvement a lots

  15. Interdigitated electrodes as impedance and capacitance biosensors: A review

    Science.gov (United States)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  16. Effects of stray lights on Faraday rotation measurement for polarimeter-interferometer system on EAST.

    Science.gov (United States)

    Zou, Z Y; Liu, H Q; Ding, W X; Chen, J; Brower, D L; Lian, H; Wang, S X; Li, W M; Yao, Y; Zeng, L; Jie, Y X

    2018-01-01

    A double-pass radially view 11 chords polarimeter-interferometer system has been operated on the experimental advanced superconducting tokamak and provides important current profile information for plasma control. Stray light originating from spurious reflections along the optical path (unwanted reflections from various optical components/mounts and transmissive optical elements such as windows, waveplates, and lens as well as the detectors) and also direct feedback from the retro-reflector used to realize the double-pass configuration can both contribute to contamination of the Faraday rotation measurement accuracy. Modulation of the Faraday rotation signal due to the interference from multiple reflections is observable when the interferometer phase (plasma density) varies with time. Direct reflection from the detector itself can be suppressed by employing an optical isolator consisting of a λ/4-waveplate and polarizer positioned in front of the mixer. A Faraday angle oscillation during the density ramping up (or down) can be reduced from 5°-10° to 1°-2° by eliminating reflections from the detector. Residual modulation arising from misalignment and stray light from other sources must be minimized to achieve accurate measurements of Faraday rotation.

  17. Bioenergetics of mammalian sperm capacitation.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods.

  18. A reciprocity-based formula for the capacitance with quadrupolar electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungbo [Gachon University of Medicine and Science, Incheon (Korea, Republic of)

    2011-11-15

    A new capacitance formula for the practical design and characterization of quadrupolar electrode arrays with capacitive structures was derived based on the reciprocal theorem. The reciprocity-based capacitance formula agreed with the empirical equations established to estimate the capacitance of a single strip line or disk electrode compensating for the fringing field effect that occurs at the electrode edge. The reciprocity-based formula was applied to compute the capacitance measurable by using a quadrupolar square electrode array with a symmetric dipole-dipole configuration and was compared with the analytical equation established based on the image method assuming that the electrodes were points. The results showed that the capacitance of the quadrupolar electrodes was determined by the size of the quadrupolar electrodes relative to the separation distance between the electrodes and that the reciprocity-based capacitance formula was in agreement with the established analytical equation if the separated distance between the electrodes relative to the electrode size was large enough.

  19. A reciprocity-based formula for the capacitance with quadrupolar electrodes

    International Nuclear Information System (INIS)

    Cho, Sungbo

    2011-01-01

    A new capacitance formula for the practical design and characterization of quadrupolar electrode arrays with capacitive structures was derived based on the reciprocal theorem. The reciprocity-based capacitance formula agreed with the empirical equations established to estimate the capacitance of a single strip line or disk electrode compensating for the fringing field effect that occurs at the electrode edge. The reciprocity-based formula was applied to compute the capacitance measurable by using a quadrupolar square electrode array with a symmetric dipole-dipole configuration and was compared with the analytical equation established based on the image method assuming that the electrodes were points. The results showed that the capacitance of the quadrupolar electrodes was determined by the size of the quadrupolar electrodes relative to the separation distance between the electrodes and that the reciprocity-based capacitance formula was in agreement with the established analytical equation if the separated distance between the electrodes relative to the electrode size was large enough.

  20. Possibility of reducing stray losses and parasitic torques in two-phase emergency feeding of induction motors

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Bendl, Jiří; Chomát, Miroslav; Klíma, J.

    2006-01-01

    Roč. 51, č. 2 (2006), s. 109-131 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA102/04/0215 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction motor * emergency operation of electrical drives * stray losses Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Measurement Error Estimation for Capacitive Voltage Transformer by Insulation Parameters

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2017-03-01

    Full Text Available Measurement errors of a capacitive voltage transformer (CVT are relevant to its equivalent parameters for which its capacitive divider contributes the most. In daily operation, dielectric aging, moisture, dielectric breakdown, etc., it will exert mixing effects on a capacitive divider’s insulation characteristics, leading to fluctuation in equivalent parameters which result in the measurement error. This paper proposes an equivalent circuit model to represent a CVT which incorporates insulation characteristics of a capacitive divider. After software simulation and laboratory experiments, the relationship between measurement errors and insulation parameters is obtained. It indicates that variation of insulation parameters in a CVT will cause a reasonable measurement error. From field tests and calculation, equivalent capacitance mainly affects magnitude error, while dielectric loss mainly affects phase error. As capacitance changes 0.2%, magnitude error can reach −0.2%. As dielectric loss factor changes 0.2%, phase error can reach 5′. An increase of equivalent capacitance and dielectric loss factor in the high-voltage capacitor will cause a positive real power measurement error. An increase of equivalent capacitance and dielectric loss factor in the low-voltage capacitor will cause a negative real power measurement error.

  2. Electrical method for the measurements of volume averaged electron density and effective coupled power to the plasma bulk

    Science.gov (United States)

    Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.

    2016-02-01

    Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.

  3. Development trends of combined inductance-capacitance electromechanical energy converters

    Directory of Open Access Journals (Sweden)

    Karayan Hamlet

    2018-01-01

    Full Text Available In the article the modern state of completely new direction of electromechanical science such as combined inductive-capacitive electromechanics is considered. The wide spectra of its possible practical applications and prospects for further development are analyzed. A new approach for mathematical description of transients in dualcon jugate dynamic systems is proposed. On the basis of the algorithm differential equations for inductive-capacitive compatible electromechanical energy converters are derived. The generalized Lagrangian theory of combined inductively-capacitive electric machines was developed as a union of generalized Lagrangian models of inductive and capacitive electro-mechanical energy converters developed on the basis of the basic principles of binary-conjugate electrophysics. The author gives equations of electrodynamics and electromechanics of combined inductive-capacitive electric machines in case there are active electrotechnical materials of dual purpose (ferroelectromagnets in the structure of their excitation system. At the same time, the necessary Lagrangian for combined inductive-capacitive forces was built using new technologies of interaction between inductive and capacitive subsystems. The joint solution of these equations completely determines the dynamic behavior and energy characteristics of the generalized model of combined machines of any design and in any modes of interaction of their functional elements

  4. Magnetic charge distribution and stray field landscape of asymmetric néel walls in a magnetically patterned exchange bias layer system

    Science.gov (United States)

    Zingsem, Norbert; Ahrend, Florian; Vock, Silvia; Gottlob, Daniel; Krug, Ingo; Doganay, Hatice; Holzinger, Dennis; Neu, Volker; Ehresmann, Arno

    2017-12-01

    The 3D stray field landscape above an exchange bias layer system with engineered domain walls has been fully characterized by quantitative magnetic force microscopy (qMFM) measurements. This method is based on a complete quantification of the MFM tip’s imaging properties and the subtraction of its contribution from the measured MFM data by deconvolution in Fourier space. The magnetically patterned Ir17Mn83/Co70Fe30-exchange-bias-multilayers have been designed to contain asymmetric head-to-head (hh)/tail-to-tail (tt) Néel walls between domains of different magnetic anisotropies for potential use in guided particle transport. In the current application, qMFM reveals the effective magnetic charge profile on the surface of the sample—with high spatial resolution and in an absolute quantitative manner. These data enable to calculate the magnetostatic potential and the full stray field landscape above the sample surface. It has been successfully tested against: (i) micromagnetic simulations of the magnetization structure of a comparable exchange-bias layer system, (ii) measurements of the magnetization profile across the domain boundary with x-ray photoemission electron microscopy, and (iii) direct stray field measurements obtained by scanning Hall probe microscopy at elevated scan heights. This approach results in a quantitative determination of the stray field landscape at close distances to the sample surface, which will be of importance for remote magnetic particle transport applications in lab-on-a-chip devices. Furthermore, the highly resolving and quantitative MFM approach reveals details of the domain transition across the artificially structured phase boundary, which have to be attributed to a continuous change in the materials parameters across this boundary, rather than an abrupt one.

  5. Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    Directory of Open Access Journals (Sweden)

    Alpha A. Lee

    2016-06-01

    Full Text Available Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and hence power density. We show via an analytical theory and Monte Carlo simulations that charging is sensitively dependent on the affinity of ions to the pores, and that high capacitances can be obtained for ionophobic pores of widths significantly larger than the ion diameter. Our theory also predicts that charging can be hysteretic with a significant energy loss per cycle for intermediate ionophilicities. We use these observations to explore the parameter regimes in which a capacitance-power-hysteresis trilemma may be avoided.

  6. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    Directory of Open Access Journals (Sweden)

    Yogesh B. Gianchandani

    2008-04-01

    Full Text Available This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane roomtemperature- vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μmdiameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated.

  7. A capacitive ECG array with visual patient feedback.

    Science.gov (United States)

    Eilebrecht, Benjamin; Schommartz, Antje; Walter, Marian; Wartzek, Tobias; Czaplik, Michael; Leonhardt, Steffen

    2010-01-01

    Capacitive electrocardiogram (ECG) sensing is a promising technique for less constraining vital signal measurement and close to a commercial application. Even bigger trials testing the diagnostic significance were already done with single lead systems. Anyway, most applications to be found in research are limited to one channel and thus limited in its diagnostic relevance as only diseases coming along with a change of the heart rate can be diagnosed adequately. As a consequence the need for capacitive multi-channel ECGs combining the diagnostic relevance and the advantages of capacitive ECG sensing emerges. This paper introduces a capacitive ECG measurement system which allows the recording of standardized ECG leads according to Einthoven and Goldberger by means of an electrode array with nine electrodes.

  8. Electron heating in low pressure capacitive discharges revisited

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences University of California, Berkeley, California 94720 (United States)

    2014-12-15

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  9. Electron heating in low pressure capacitive discharges revisited

    International Nuclear Information System (INIS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-01-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account

  10. Electron heating in low pressure capacitive discharges revisited

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  11. Negative capacitance in a ferroelectric capacitor.

    Science.gov (United States)

    Khan, Asif Islam; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur Rahman; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2015-02-01

    The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

  12. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions

  13. 3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field.

    Science.gov (United States)

    Huber, Christian; Abert, Claas; Bruckner, Florian; Groenefeld, Martin; Schuschnigg, Stephan; Teliban, Iulian; Vogler, Christoph; Wautischer, Gregor; Windl, Roman; Suess, Dieter

    2017-08-25

    Additive manufacturing of polymer-bonded magnets is a recently developed technique, for single-unit production, and for structures that have been impossible to manufacture previously. Also, new possibilities to create a specific stray field around the magnet are triggered. The current work presents a method to 3D print polymer-bonded magnets with a variable magnetic compound fraction distribution. This means the saturation magnetization can be adjusted during the printing process to obtain a required external field of the manufactured magnets. A low-cost, end-user 3D printer with a mixing extruder is used to mix permanent magnetic filaments with pure polyamide (PA12) filaments. The magnetic filaments are compounded, extruded, and characterized for the printing process. To deduce the quality of the manufactured magnets with a variable magnetic compound fraction, an inverse stray field framework is developed. The effectiveness of the printing process and the simulation method is shown. It can also be used to manufacture magnets that produce a predefined stray field in a given region. This opens new possibilities for magnetic sensor applications. This setup and simulation framework allows the design and manufacturing of polymer-bonded permanent magnets, which are impossible to create with conventional methods.

  14. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    International Nuclear Information System (INIS)

    Xu Hui-Jing; Shu-Xia Zhao; Gao Fei; Zhang Yu-Ru; Li Xue-Chun; Wang You-Nian

    2015-01-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. (paper)

  15. Toxocara nematodes in stray cats from shiraz, southern iran: intensity of infection and molecular identification of the isolates.

    Directory of Open Access Journals (Sweden)

    Fattaneh Mikaeili

    2013-12-01

    Full Text Available Toxocara is a common nematode of cats in different parts of Iran. Despite the close association of cats with human, no attempt has been done so far for molecular identification of this nematode in the country. Therefore, current study was performed on identification of some isolates of Toxocara from stray cats in Shiraz, Fars Province, Southern Iran, based on morphological and molecular approaches, and also determination of intensity of infection.This cross-sectional study was carried out on 30 stray cats trapped from different geographical areas of Shiraz in 2011. Adult male and female worms were recovered from digestive tract after dissection of cats. Morphological features using existing keys and PCR-sequencing of ITS-rDNA region and pcox1 mitochondrial l gene were applied for the delineating the species of the parasites.Eight out of 30 cats (26.7% were found infected with Toxocara nematodes. All the isolates were confirmed as Toxocara cati based on morphological features and the sequence of ribosomal and mitochondrial targets. Intensity of infection ranged from one to a maximum of 39 worms per cat, with a mean of 10.25±12.36, and higher abundance of female nematodes.The most prevalent ascaridoid nematode of stray cats in the study area was T. cati and female nematodes were more abundant than that of males. This issue has important role in spreading of eggs in the environment and impact on human toxocariasis.

  16. cLite – A Capacitive Signal Conditioning IC

    Directory of Open Access Journals (Sweden)

    Krauss Gudrun

    2009-12-01

    Full Text Available The ZMD31210 cLite™ – a new member of the ZMDI’s Lite™ family of low-cost sensor signal conditioner (SSC integrated circuits – is described in this paper. The cLite™ is the first conditioner for capacitive sensors. Supporting sensor capacitances from 2 pF up to 260 pF, the new sensor signal conditioner covers a wide range of applications. An important aspect of conditioning a capacitance sensor input signal is the adaptation of the capacitive-to-digital converter (CDC input range to the sensor signal span and offset values in order to maximize accuracy. All typical features of the Lite™ family including the digital calibration math based on EEPROM-stored coefficients and a variety of outputs (I2C™, SPI, PDM, and programmable alarms are integrated in the cLite™ as well. Additional features including a sleep mode and low supply voltage range (down to 2.3 V support the low power concept. The paper focuses in particular on the capacitance sensor adaptation and high precision sensor conditioning.

  17. Study on effective MOSFET channel length extracted from gate capacitance

    Science.gov (United States)

    Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato

    2018-01-01

    The effective channel length (L GCM) of metal-oxide-semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.

  18. Surface functional groups in capacitive deionization with porous carbon electrodes

    Science.gov (United States)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  19. Reducing the capacitance of piezoelectric film sensors

    Energy Technology Data Exchange (ETDEWEB)

    González, Martín G., E-mail: mggonza@fi.uba.ar [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires (Argentina); Sorichetti, Patricio A.; Santiago, Guillermo D. [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2016-04-15

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N{sup 2}, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  20. Reducing the capacitance of piezoelectric film sensors

    International Nuclear Information System (INIS)

    González, Martín G.; Sorichetti, Patricio A.; Santiago, Guillermo D.

    2016-01-01

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N"2, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  1. Capacitive-discharge-pumped copper bromide vapour laser

    International Nuclear Information System (INIS)

    Sukhanov, V B; Fedorov, V F; Troitskii, V O; Gubarev, F A; Evtushenko, Gennadii S

    2007-01-01

    A copper bromide vapour laser pumped by a high-frequency capacitive discharge is developed. It is shown that, by using of a capacitive discharge, it is possible to built a sealed off metal halide vapour laser of a simple design allowing the addition of active impurities into the working medium. (letters)

  2. Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system

    Czech Academy of Sciences Publication Activity Database

    Mojzeszek, N.; Farah, J.; Klodowska, M.; Ploc, Ondřej; Stolarczyk, L.; Waligorski, M. P. R.; Olko, P.

    2017-01-01

    Roč. 34, č. 2 (2017), s. 80-84 ISSN 1120-1797 Institutional support: RVO:61389005 Keywords : secondary neutrons * proton therapy * pencil beam scanning systtems * out-of-field doses * stray neutron doses * TEPC Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 1.990, year: 2016

  3. Humoral immune response to Dipylidium caninum infection of stray dogs in Taiwan.

    Science.gov (United States)

    Shin, J W; Liao, W T

    2002-04-02

    Two kinds of homogeneous proglottid, mature and gravid, of Dipylidium caninum were used as the antigens for immunodiagnosis of canine dipylidiosis in stray dogs in Tainan, Taiwan. The ELISA was performed on 30 serum samples; 24 from dipylidiosis, four from ancylostomosis and two from toxocariosis. The ELISA have specificity and sensitive of 100 and 50% for mature proglottid extract, and 75 and 100%, respectively, for gravid proglottid extract. EITB technique showed two major peptide bands of 94.8 and 97.9kDa were recognized in the sera pool of infected dogs.

  4. Induced radioactivity of materials by stray radiation fields at an electron accelerator

    CERN Document Server

    Rokni, S H; Gwise, T; Liu, J C; Roesler, S

    2002-01-01

    Samples of soil, water, aluminum, copper and iron were irradiated in the stray radiation field generated by the interaction of a 28.5 GeV electron beam in a copper-dump in the Beam Dump East facility at the Stanford Linear Accelerator Center. The specific activity induced in the samples was measured by gamma spectroscopy and other techniques. In addition, the isotope production in the samples was calculated with detailed Monte Carlo simulations using the FLUKA code. The calculated activities are compared to the experimental values and differences are discussed.

  5. The split delivery capacitated team orienteering problem

    NARCIS (Netherlands)

    Archetti, C.; Bianchessi, N.; Speranza, M. G.; Hertz, A.

    2014-01-01

    In this article, we study the capacitated team orienteering problem where split deliveries are allowed. A set of potential customers is given, each associated with a demand and a profit. The set of customers to be served by a fleet of capacitated vehicles has to be identified in such a way that the

  6. Magnetostatic coupling of 90 domain walls in FeNi/Cu/Co trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kurde, Julia; Miguel, Jorge; Kuch, Wolfgang [Freie Universitaet, Berlin (Germany); Bayer, Daniela; Aeschlimann, Martin [Technische Universitaet, Kaiserslautern (Germany); Sanchez-Barriga, Jaime; Kronast, Florian; Duerr, Herrmann A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany)

    2011-07-01

    The magnetic interlayer coupling of FeNi/Cu/Co trilayered microstructures has been studied by means of X-ray magnetic circular dichroism in combination with photoelectron emission microscopy (XMCD-PEEM). We find that a parallel coupling between magnetic domains coexists with a non-parallel coupling between magnetic domain walls of each ferromagnetic layer. We attribute the non-parallel coupling of the two magnetic layers to local magnetic stray fields arising at domain walls in the magnetically harder Co layer. In the magnetically softer FeNi layer non-ordinary domain walls such as 270 and 90 domain walls with overshoot of the magnetization either inwards or outwards relative to the turning direction of the Co magnetization are identified. Micromagnetic simulations reveal that in the absence of magnetocrystalline anisotropy, both types of overshooting domain walls are energetically equivalent. However, if a uniaxial in-plane anisotropy is present, the relative orientation of the domain walls with respect to the anisotropy axis determines which of these domain walls is energetically favorable.

  7. Percoll gradient-centrifuged capacitated mouse sperm have increased fertilizing ability and higher contents of sulfogalactosylglycerolipid and docosahexaenoic acid-containing phosphatidylcholine compared to washed capacitated mouse sperm.

    Science.gov (United States)

    Furimsky, Anna; Vuong, Ngoc; Xu, Hongbin; Kumarathasan, Premkumari; Xu, Min; Weerachatyanukul, Wattana; Bou Khalil, Maroun; Kates, Morris; Tanphaichitr, Nongnuj

    2005-03-01

    Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.

  8. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  9. Factors affecting the prevalence of mange-mite infestations in stray dogs of Yucatán, Mexico.

    Science.gov (United States)

    Rodriguez-Vivas, R I; Ortega-Pacheco, A; Rosado-Aguilar, J A; Bolio, G M E

    2003-07-10

    The aim of the present study was to determine the factors affecting the prevalence of mange-mite infestations in stray dogs of Yucatán, Mexico. The study was carried out in 200 stray dogs of Mérida capital city of Yucatán, Mexico. Four samples (head, thoracic-abdominal area, extremities and ear) were taken from each animal by skin scraping and examined microscopically in 10% KOH solution to detect the presence of mites. Mites were also collected from the external ear canal of dogs using cotton-tipped swabs. The prevalence of different mite species was calculated. A primary screening was performed using 2xK contingency tables of exposure variables. All variables with PDemodex canis (23.0%) was the most frequent mite, followed by Sarcoptes scabei var. canis (7.0%) and Otodectes cynotis (3.5%). The following factors were found: body condition (bad, OR: 5.35, CI 95%: 1.66-17.3; regular, OR: 3.72, CI 95%: 1.39-9.99) and the presence of macroscopic lesions of dermatosis (OR: 42.80, CI 95%: 13.65-134.24).

  10. Can root electrical capacitance be used to predict root mass in soil?

    Science.gov (United States)

    Dietrich, R C; Bengough, A G; Jones, H G; White, P J

    2013-07-01

    Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates. The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes. Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series. The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.

  11. Antibody Detection to Feline Immunodeficiency virus (FIV in stray cats in Ahvaz, southwestern Iran

    Directory of Open Access Journals (Sweden)

    Mosallanejad, B.

    2010-01-01

    Full Text Available The present study was performed to determine the prevalence of FIV in stray cat's population of Ahvaz different area. Serum samples were collected from 90 cats from 2005 to 2007. The studied cats were divided into two age groups (3 years and based on clinical signs (such as lymphadenopathy, periodontal diseases, gingivitis, abscess and cashecsi into two groups also. The results were analyzed using Fischer's exact test and Chi-square analysis. Prevalence to FIV antibodies in these cats was 15.55% (14 of 90 by means of ELISA Test Kit, indicating that this virus is present in the ecosystem. The infection had more prevalence in cats above 3 years (78.6%; 11 of 14 compared with cats less than 3 years (21.4%; 3 of 14. Statistical analysis showed significant difference between different age groups (P0.05. Three out of 12 cases (25% which had clinical signs and 11 out of 78 cases (14.1% which hadn’t clinical signs were seropositive. There was no significant difference between the two groups also (P>0.05. This study showed that FIV exist among cat's population of Ahvaz area and separation of companion and stray cats is very important for prevention of disease transmission to companion cats.

  12. Community perception regarding rabies prevention and stray dog control in urban slums in India.

    Science.gov (United States)

    Herbert, Mrudu; Riyaz Basha, S; Thangaraj, Selvi

    2012-12-01

    The lack of community awareness about rabies control is a major issue that thwarts efforts to prevent human deaths caused by rabies. The objectives of this study were (1) to assess community knowledge and attitudes about rabies, rabies prevention and stray dog control in an urban slum community and (2) to determine the factors that influence rabies awareness in urban slums. Using a systematic random sampling strategy, 185 participants were selected from 8 urban slums. The data were collected by direct interview using a pre-tested, structured questionnaire. In the study population, 74.1% of the participants had heard about rabies, and 54.1% knew that rabies is a fatal disease. Only 33.5% of the interviewees felt that people in the community had a role to play in controlling the stray dog population. Gender, age and educational status were significantly associated with rabies awareness. Our study indicates that there are gaps in the knowledge and attitudes of individuals living in urban slums regarding rabies prevention and control. Efforts to promote awareness should be targeted at men, older people and uneducated individuals. Copyright © 2012 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  13. Carbon nanofiber supercapacitors with large areal capacitances

    KAUST Repository

    McDonough, James R.

    2009-01-01

    We develop supercapacitor (SC) devices with large per-area capacitances by utilizing three-dimensional (3D) porous substrates. Carbon nanofibers (CNFs) functioning as active SC electrodes are grown on 3D nickel foam. The 3D porous substrates facilitate a mass loading of active electrodes and per-area capacitance as large as 60 mg/ cm2 and 1.2 F/ cm2, respectively. We optimize SC performance by developing an annealing-free CNF growth process that minimizes undesirable nickel carbide formation. Superior per-area capacitances described here suggest that 3D porous substrates are useful in various energy storage devices in which per-area performance is critical. © 2009 American Institute of Physics.

  14. Verification of high voltage rf capacitive sheath models with particle-in-cell simulations

    Science.gov (United States)

    Wang, Ying; Lieberman, Michael; Verboncoeur, John

    2009-10-01

    Collisionless and collisional high voltage rf capacitive sheath models were developed in the late 1980's [1]. Given the external parameters of a single-frequency capacitively coupled discharge, plasma parameters including sheath width, electron and ion temperature, plasma density, power, and ion bombarding energy can be estimated. One-dimensional electrostatic PIC codes XPDP1 [2] and OOPD1 [3] are used to investigate plasma behaviors within rf sheaths and bulk plasma. Electron-neutral collisions only are considered for collisionless sheaths, while ion-neutral collisions are taken into account for collisional sheaths. The collisionless sheath model is verified very well by PIC simulations for the rf current-driven and voltage-driven cases. Results will be reported for collisional sheaths also. [1] M. A. Lieberman, IEEE Trans. Plasma Sci. 16 (1988) 638; 17 (1989) 338 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Phys. 104 (1993) 321 [3] J. P. Verboncoeur, A. B. Langdon and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199

  15. Capacitive behavior of highly-oxidized graphite

    Science.gov (United States)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  16. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  17. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    Science.gov (United States)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  18. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    International Nuclear Information System (INIS)

    Khuri-Yakub, Butrus T; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated front-end electronic circuits we developed and their use for 2D and 3D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a micro-electro-mechanical systems technology for many medical diagnostic and therapeutic applications

  19. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    Science.gov (United States)

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  20. Development of AC-coupled, poly-silicon biased, p-on-n silicon strip detectors in India for HEP experiments

    Science.gov (United States)

    Jain, Geetika; Dalal, Ranjeet; Bhardwaj, Ashutosh; Ranjan, Kirti; Dierlamm, Alexander; Hartmann, Frank; Eber, Robert; Demarteau, Marcel

    2018-02-01

    P-on-n silicon strip sensors having multiple guard-ring structures have been developed for High Energy Physics applications. The study constitutes the optimization of the sensor design, and fabrication of AC-coupled, poly-silicon biased sensors of strip width of 30 μm and strip pitch of 55 μm. The silicon wafers used for the fabrication are of 4 inch n-type, having an average resistivity of 2-5 k Ω cm, with a thickness of 300 μm. The electrical characterization of these detectors comprises of: (a) global measurements of total leakage current, and backplane capacitance; (b) strip and voltage scans of strip leakage current, poly-silicon resistance, interstrip capacitance, interstrip resistance, coupling capacitance, and dielectric current; and (c) charge collection measurements using ALiBaVa setup. The results of the same are reported here.

  1. Carrier accumulation and depletion in point-contact capacitance-voltage measurements

    Science.gov (United States)

    Naitou, Yuichi

    2017-11-01

    Scanning capacitance microscopy (SCM) is a variation of atomic force microscopy in which a conductive probe tip detects the bias modulated capacitance for the purpose of measuring the nanoscale semiconductor carrier concentration. SCM can be regarded as a point-contact capacitance-voltage system, and its capacitance-voltage properties are different from those of a conventional parallel-plate capacitor. In this study, the charge accumulation and depletion behavior of a semiconductor sample were closely investigated by SCM. By analyzing the tip-sample approach curve, the effective probe tip area and charge depletion depth could be quantitatively determined.

  2. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    Science.gov (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  3. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  4. Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States); Moore, Nathaniel; Pribyl, Patrick; Gekelman, Walter [Department of Physics, University of California, Los Angeles, California 90095 (United States)

    2013-11-15

    The control of ion energy and angular distributions (IEADs) is critically important for anisotropic etching or deposition in microelectronic fabrication processes. With single frequency capacitively coupled plasmas (CCPs), the narrowing in angle and spread in energy of ions as they cross the sheath are definable functions of frequency, sheath width, and mean free path. With increases in wafer size, single frequency CCPs are finding difficulty in meeting the requirement of simultaneously controlling plasma densities, ion fluxes, and ion energies. Dual-frequency CCPs are being investigated to provide this flexible control. The high frequency (HF) is intended to control the plasma density and ion fluxes, while the ion energies are intended to be controlled by the low frequency (LF). However, recent research has shown that the LF can also influence the magnitude of ion fluxes and that IEADs are determined by both frequencies. Hence, separate control of fluxes and IEADs is complex. In this paper, results from a two-dimensional computational investigation of Ar/O{sub 2} plasma properties in an industrial reactor are discussed. The IEADs are tracked as a function of height above the substrate and phase within the rf cycles from the bulk plasma to the presheath and through the sheath with the goal of providing insights to this complexity. Comparison is made to laser-induced fluorescence experiments. The authors found that the ratios of HF/LF voltage and driving frequency are critical parameters in determining the shape of the IEADs, both during the transit of the ion through the sheath and when ions are incident onto the substrate. To the degree that contributions from the HF can modify plasma density, sheath potential, and sheath thickness, this may provide additional control for the IEADs.

  5. The capacitated team orienteering problem with incomplete service

    NARCIS (Netherlands)

    Archetti, Claudia; Bianchessi, Nicola; Speranza, M. Grazia

    2013-01-01

    In this paper we study the capacitated version of the Team Orienteering Problem (TOP), that is the Capacitated TOP (CTOP) and the impact of relaxing the assumption that a customer, if served, must be completely served. We prove that the profit collected by the CTOP with Incomplete Service (CTOP-IS)

  6. Capacitance for carbon capture

    International Nuclear Information System (INIS)

    Landskron, Kai

    2018-01-01

    Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO 2 into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Automatic Power Factor Correction Using Capacitive Bank

    OpenAIRE

    Mr.Anant Kumar Tiwari,; Mrs. Durga Sharma

    2014-01-01

    The power factor correction of electrical loads is a problem common to all industrial companies. Earlier the power factor correction was done by adjusting the capacitive bank manually [1]. The automated power factor corrector (APFC) using capacitive load bank is helpful in providing the power factor correction. Proposed automated project involves measuring the power factor value from the load using microcontroller. The design of this auto-adjustable power factor correction is ...

  8. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ya' akobovitz, A. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva (Israel); Bedewy, M. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. J. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  9. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    International Nuclear Information System (INIS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-01-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices

  10. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    Science.gov (United States)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  11. EFFECT OF DIESEL CONTAMINATION ON CAPACITANCE VALUES OF CRUDE PALM OIL

    Directory of Open Access Journals (Sweden)

    C. H. FIZURA

    2014-06-01

    Full Text Available Measurement of crude palm oil (CPO contamination is a major concern in CPO quality monitoring. In this study, capacitive sensing technique was used to monitor diesel contamination levels in CPO. A low cost capacitive sensing system was developed by using AD7746 capacitance to digital converter. The capacitance value of CPO samples with different contamination levels (v/v% ranged from 0% to 50% was collected at a room temperature (25°C. The objective of this study is to find a relationship between capacitance values and diesel contamination levels in CPO. The results showed that capacitance value decreased as the diesel contamination levels increased. For the 0% to 50% contamination range, the regression equation was y = 0.0002x2 - 0.0125x + 0.936 with R2 value of 0.96. For the 0% to 10% contamination range (where the percentage was the representative of potential contaminations levels found in CPO the correlation equation was y = -0.02x + 0.95 with R2 value of 0.95. These results indicated that capacitive sensing technique has potential for CPO quality monitoring.

  12. A survey of ectoparasite infestations in stray dogs of Gwang-ju City, Republic of Korea.

    Science.gov (United States)

    Chee, Jeong Hyun; Kwon, Jung Kee; Cho, Ho Seong; Cho, Kyoung Oh; Lee, Yu Jin; Abd El-Aty, A M; Abdel-Aty, A M; Shin, Sung Shik

    2008-03-01

    This study was designed to investigate the incidence of ectoparasite infestation among stray dogs in Gwang-ju City, Republic of Korea. A total of 103 stray dogs collected in the Animal Shelter of Gwang-ju City from November 2003 to August 2005 were investigated in this study. Ectoparasites of one or more genera were detected in 45.6% (47 / 103) of the dogs examined for dermatologic lesions and/or skin scrapings (from 3-5 affected areas). Otodectes cynotis was found to be the most frequent parasite (22.3%, 23 / 103), followed by Sarcoptes scabiei var canis (19.4%, 20 / 103), Ctenocephalides canis (6.8%, 7 / 103), Demodex canis (4.9%, 5 / 103), and Trichodectes canis (1.0%, 1 / 103). Monospecific infestation was found in 83.0% (39 / 47) of the affected dogs, whereas concurrent infestations with 2 or more ectoparasites per animal were found in 17.0% (8 / 47) of the affected dogs. Trichodectes canis is reported for the first time in the Republic of Korea. Dogs less than 1 yr old were more heavily infected than other age groups (66.7%), and small-sized dogs of less than 3 kg body weight were more heavily infected than larger dogs (41.7%).

  13. High Voltage Bi-directional Flyback Converter for Capacitive Actuator

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    in the converter, including the most dominating parameters of the high voltage transformer viz., self-capacitance and leakage inductance. The specific capacitive load for this converter is a dielectric electro active polymer (DEAP) actuator, which can be used as an effective replacement for conventional actuators...... in a number of applications. In this paper, the discharging energy efficiency definition is introduced. The proposed converter has been experimentally tested with the film capacitive load and the DEAP actuator, and the experimental results are shown together with the efficiency measurements....

  14. Modelling of the dual frequency capacitive sheath in the intermediate pressure range

    International Nuclear Information System (INIS)

    Boyle, P C; Robiche, J; Turner, M M

    2004-01-01

    The nonlinearity of the plasma sheath in dual frequency capacitively coupled reactors is investigated for frequencies well above the ion plasma frequency. This work focuses on the behaviour of the voltage and the sheath width with respect to the driving current source and the collisionality regime. For typical plasma processing applications, the gas pressure ranges from a few milliTorrs to hundreds of milliTorrs, and the ion dynamics span different collisional regimes. To describe these different ion dynamics, we have used a collisionless model and a variable mobility model. The sheath widths and the voltages obtained from these two models have then been compared

  15. Magnetostatic coupling of 900 domain walls in Fe19Ni81/Cu/Co trilayers

    International Nuclear Information System (INIS)

    Kurde, J; Miguel, J; Kuch, W; Bayer, D; Aeschlimann, M; Sanchez-Barriga, J; Kronast, F; Duerr, H A

    2011-01-01

    The magnetic interlayer coupling of Fe 19 Ni 81 /Cu/Co trilayered microstructures has been studied by means of x-ray magnetic circular dichroism in combination with photoelectron emission microscopy (XMCD-PEEM). We find that a parallel coupling between magnetic domains coexists with a non-parallel coupling between magnetic domain walls (DWs) of each ferromagnetic layer. We attribute the non-parallel coupling of the two magnetic layers to local magnetic stray fields arising at DWs in the magnetically harder Co layer. In the magnetically softer FeNi layer, non-ordinary DWs, such as 270 0 and 90 0 DWs with overshoot of the magnetization either inwards or outwards relative to the turning direction of the Co magnetization, are identified. Micromagnetic simulations reveal that in the absence of magnetic anisotropy, both types of overshooting DWs are energetically equivalent. However, if a uniaxial in-plane anisotropy is present, the relative orientation of the DWs with respect to the anisotropy axis determines which of these DWs is energetically favorable.

  16. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    Czech Academy of Sciences Publication Activity Database

    Farah, J.; Mares, V.; Romero-Exposito, M.; Trinkl, S.; Domingo, C.; Dufek, V.; Klodowska, M.; Kubančák, Ján; Knezevic, Z.; Ploc, Ondřej

    2015-01-01

    Roč. 42, č. 5 (2015), s. 2572-2584 ISSN 0094-2405 Institutional support: RVO:61389005 Keywords : scanning proton therapy * measurement of stray neutrons * spectrometry * ambient dose eyuivalent * intercomparison Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.496, year: 2015

  17. Capacitance for carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Landskron, Kai [Department of Chemistry, Lehigh University, Bethlehem, PA (United States)

    2018-03-26

    Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO{sub 2} into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. 2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges

    International Nuclear Information System (INIS)

    Kawamura, E; Lichtenberg, A J; Lieberman, M A; Marakhtanov, A M

    2016-01-01

    A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths. (paper)

  19. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    Science.gov (United States)

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  20. Low Power/Low Voltage Interface Circuitry for Capacitive Sensors

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    This thesis focuses mainly on low power/low voltage interface circuits, implemented in CMOS, for capacitive sensors. A brief discussion of demands and possibilities for analog signal processing in the future is presented. Techniques for low power design is presented. This is done by analyzing power...... power consumption. It is shown that the Sigma-Delta modulator is advantageous when embedded in a feedback loop with a mechanical sensor. Here a micro mechanical capacitive microphone. Feedback and detection circuitry for a capacitive microphone is presented. Practical implementations of low power....../low voltage interface circuitry is presented. It is demonstrated that an amplifier optimized for a capacitive microphone implemented in a standard 0.7 micron CMOS technology competes well with a traditional JFET amplifier. Furthermore a low power/low voltage 3rd order Sigma-Delta modulator is presented...

  1. Development of electrical capacitance sensor for tomography

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Jaafar Abdullah; Ismail Mustapha; Sazrol Azizee Ariff; Susan Maria Sipaun; Lojius Lombigit

    2004-01-01

    Electrical capacitance tomography (ECT) is one of the successful methods for imaging 2-phase liquid/gas mixture in oil pipelines and solids/gas mixture in fluidized bed and pneumatic conveying system for improvement of process plants. This paper presents the design development of an electrical capacitance sensor for use with an ECT system. This project is aimed at developing a demonstration ECT unit to be used in the oil pipe line. (Author)

  2. Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    OpenAIRE

    Lee, Alpha A; Vella, Dominic; Goriely, Alain; Kondrat, Svyatoslav

    2015-01-01

    Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and he...

  3. Capacitance and surface of carbons in supercapacitors

    OpenAIRE

    Lobato Ortega, Belén; Suárez Fernández, Loreto; Guardia, Laura; Álvarez Centeno, Teresa

    2017-01-01

    This research is focused in the missing link between the specific surface area of carbons surface and their electrochemical capacitance. Current protocols used for the characterization of carbons applied in supercapacitors electrodes induce inconsistencies in the values of the interfacial capacitance (in F m−2), which is hindering the optimization of supercapacitors. The constraints of both the physisorption of N2 at 77 K and the standard methods used for the isotherm analysis frequently lead...

  4. Time-Domain Analysis of Coupled Carbon Nano tube Interconnects

    International Nuclear Information System (INIS)

    Fathi, D.

    2014-01-01

    This paper describes a new method for the analysis of coupling effects including the crosstalk effects between two driven coupled single-walled carbon nano tubes (SWCNTs) and the intertalk effects between two neighboring shells in a multi walled carbon nano tube (MWCNT), based on transmission line circuit modeling. Using rigorous calculations, a new parametric transfer function has been obtained for the analysis of the impact of aggressor line on the victim line, which depends on the various coupling parameters such as the mutual inductance, the coupling capacitance, and the tunneling resistance. The influences of various parameters such as the contact resistance and the switching factor on the time behavior of coupling effects between the two coupled CNTs and an important effect named “crosstalk-induced delay” are studied and analyzed

  5. Dispersion capacitive de l'interface H2SO4/Pt Capacitive dispersion ...

    African Journals Online (AJOL)

    Administrateur

    Département de Physique, Faculté des Sciences Exactes. Université des .... d'un comportement idéal de la capacité. Au vu .... Figure 2 : Photographie de la cellule Pt/0,5 MH2SO4 (fabriquée par Verre-Lab Constantine) plongée dans un bain.

  6. Capacitance level probe, Type FSK 88

    International Nuclear Information System (INIS)

    Vogt, W.

    2001-01-01

    The aim of the capacitive level probe, Type FSK 88, is to supervise the level within vessels continuously and to signalize alterations immediately. Since 1987 the level probe is installed in the pool for burn up fuel elements and in the reactor containment sump of BWRs, PWRs and WWERs. The capacitive level probe of type FSK 88 was qualified for Loss of Coolant Accidents and seismic events according to international rules. The measuring principle takes credit from the fact that the dielectric with different dielectric constants in a condensator changes the capacity of the condensator. (Authors)

  7. Clean energy generation using capacitive electrodes in reverse electrodialysis

    NARCIS (Netherlands)

    Vermaas, David; Bajracharya, S.; Bastos Sales, B.; Saakes, Michel; Hamelers, B.; Nijmeijer, Dorothea C.

    2013-01-01

    Capacitive reverse electrodialysis (CRED) is a newly proposed technology to generate electricity from mixing of salt water and fresh water (salinity gradient energy) by using a membrane pile as in reverse electrodialysis (RED) and capacitive electrodes. The salinity difference between salt water and

  8. Accurate sizing of supercapacitors storage system considering its capacitance variation.

    OpenAIRE

    Trieste , Sony; Bourguet , Salvy; Olivier , Jean-Christophe; Loron , Luc; Le Claire , Jean-Claude

    2011-01-01

    International audience; This paper highlights the energy errors made for the design of supercapacitors used as a main energy source. First of all, the paper presents the two definitions of capacitance of a capacitance-voltage dependent material. The number of supercapacitors is important for the application purchasing cost. That is why the paper introduces an analytical model and an electrical model along with an identification method for the capacitance variation. This variation is presented...

  9. Development of a real-time, semi-capacitive impedance phlebography device

    Directory of Open Access Journals (Sweden)

    Sören Niklas Weyer

    2015-04-01

    Full Text Available Chronic venous insufficiency of the lower limbs is a disease which is caused by an increased blood pressure inside the veins of the leg and the resulting increase of the contained blood volume.This work focuses on developing a device which uses impedance plethysmography to obtain information about the blood volume in the lower leg and provides the possibility to measure the impedance semi contact-less, e.g. through compression stockings. Furthermore a real-time beat-to-beat interval detection algorithm was implemented. Finally, the function of the developed impedance measuring system and the whole system was verified by comparing it with a gold standard.In comparison to the conductive coupling, the system performed similarly. The analysis showed that the developed system is suitable for semi-capacitive IPG. The algorithm was implemented conservatively since it provided a good false-positive rate of 0%, but only a moderate sensitivity of about 68%.Reliable and continuous measurement of the pulse signal was only possible in periods of immobility.Chronic venous insufficiency of the lower limbs is a disease which is caused by an increased blood pressure inside the veins of the leg and the resulting increase of the contained blood volume.\\\\ This work focuses on developing a device which uses impedance plethysmography to obtain information about the blood volume in the lower leg and provides the possibility to measure the impedance semi contact-less, e.g. through compression stockings. Furthermore a real-time beat-to-beat interval detection algorithm was implemented. Finally, the function of the developed impedance measuring system and the whole system was verified by comparing it with a gold standard.\\\\ In comparison to the conductive coupling, the system performed similarly. The analysis showed that the developed system is suitable for semi-capacitive IPG. The algorithm was implemented conservatively since it provided a good false-positive rate

  10. Design of capacitance measurement module for determining critical cold temperature of tea leaves

    Directory of Open Access Journals (Sweden)

    Yongzong Lu

    2016-12-01

    Full Text Available Critical cold temperature is one of the most crucial control factors for crop frost protection. Tea leaf's capacitance has a significant response to cold injury and appears as a peak response to a typical low temperature which is the critical temperature. However, the testing system is complex and inconvenient. In view of these, a tea leaf's critical temperature detector based on capacitance measurement module was designed and developed to measure accurately and conveniently the capacitance. Software was also designed to measure parameters, record data, query data as well as data deletion module. The detector utilized the MSP430F149 MCU as the control core and ILI9320TFT as the display module, and its software was compiled by IAR5.3. Capacitance measurement module was the crucial part in the overall design which was based on the principle of oscillator. Based on hardware debugging and stability analysis of capacitance measurement module, it was found that the output voltage of the capacitance measurement circuit is stable with 0.36% average deviation. The relationship between capacitance and 1/Uc2 was found to be linear distribution with the determination coefficient above 0.99. The result indicated that the output voltage of capacitance measurement module well corresponded to the change in value of the capacitance. The measurement error of the circuit was also within the required range of 0 to 100 pF which meets the requirement of tea leaf's capacitance. Keywords: Tea leaves, Critical cold temperature, Capacitance peak response, Frost protection, Detector

  11. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    Science.gov (United States)

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  12. Electric field theory and the fallacy of void capacitance

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The concept of the capacitance of a gaseous void is discussed as applied to electrical insulation science. The most pertinent aspect of the capacitance definition is that of reference to a single-valued potential difference between surfaces. This implies that these surfaces must be surfaces...

  13. Estimation of Leakage Potential of Selected Sites in Interstate and Tri-State Canals Using Geostatistical Analysis of Selected Capacitively Coupled Resistivity Profiles, Western Nebraska, 2004

    Science.gov (United States)

    Vrabel, Joseph; Teeple, Andrew; Kress, Wade H.

    2009-01-01

    With increasing demands for reliable water supplies and availability estimates, groundwater flow models often are developed to enhance understanding of surface-water and groundwater systems. Specific hydraulic variables must be known or calibrated for the groundwater-flow model to accurately simulate current or future conditions. Surface geophysical surveys, along with selected test-hole information, can provide an integrated framework for quantifying hydrogeologic conditions within a defined area. In 2004, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, performed a surface geophysical survey using a capacitively coupled resistivity technique to map the lithology within the top 8 meters of the near-surface for 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Assuming that leakage between the surface-water and groundwater systems is affected primarily by the sediment directly underlying the canal bed, leakage potential was estimated from the simple vertical mean of inverse-model resistivity values for depth levels with geometrically increasing layer thickness with depth which resulted in mean-resistivity values biased towards the surface. This method generally produced reliable results, but an improved analysis method was needed to account for situations where confining units, composed of less permeable material, underlie units with greater permeability. In this report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, the authors use geostatistical analysis to develop the minimum-unadjusted method to compute a relative leakage potential based on the minimum resistivity value in a vertical column of the resistivity model. The minimum-unadjusted method considers the effects of homogeneous confining units. The minimum-adjusted method also is developed to incorporate the effect of local lithologic heterogeneity on water

  14. Stray dogs as indicators of Toxoplasma gondii distributed in the environment: the first report across an urban-rural gradient in China

    Directory of Open Access Journals (Sweden)

    Yan Chao

    2012-01-01

    Full Text Available Abstract Background Toxoplasmosis is an important parasitic zoonosis caused by the protozoan Toxoplasma gondii that is distributed world-wide and infects a variety of hosts. However, the prevalence of T. gondii in the environment (such as soil, water and food is largely unknown. Due to the technical difficulty in oocyst counting directly, an alternative assay using the serologic status of T. gondii in free-living animals, such as stray or free-living dogs, as an indicator, can be used to evaluate environmental contamination indirectly, as they are exposed to the same risk of infection as humans and other animals. Results In the present study, 231 stray or free-living dogs across an urban-rural gradient were examined to assess the frequency of T. gondii in the environment. Specific antibodies to T. gondii were found in 93 dogs (40.3% by enzyme-linked immunosorbent assay (ELISA, and no statistically significant differences were observed in seroprevalences of T. gondii between urban dogs (38.7% and rural dogs (41% (p > 0.05. Conclusions A high seroprevalence of T. gondii in stray or free-living dogs in the present study indicates that there would be a wide distribution and a constant infection pressure of T. gondii across an urban-rural gradient, and the oocysts of T. gondii in the environment would be an important source of infection for humans and other animals both in urban and rural areas in China.

  15. An integrated energy-efficient capacitive sensor digital interface circuit

    KAUST Repository

    Omran, Hesham

    2014-06-19

    In this paper, we propose an energy-efficient 13-bit capacitive sensor interface circuit. The proposed design fully relies on successive approximation algorithm, which eliminates the need for oversampling and digital decimation filtering, and thus low-power consumption is achieved. The proposed architecture employs a charge amplifier stage to acheive parasitic insensitive operation and fine absolute resolution. Moreover, the output code is not affected by offset voltages or charge injection. The successive approximation algorithm is implemented in the capacitance-domain using a coarse-fine programmable capacitor array, which allows digitizing wide capacitance range in compact area. Analysis for the maximum achievable resolution due to mismatch is provided. The proposed design is insensitive to any reference voltage or current which translates to low temperature sensitivity. The operation of a prototype fabricated in a standard CMOS technology is experimentally verified using both on-chip and off-chip capacitive sensors. Compared to similar prior work, the fabricated prototype achieves and excellent energy efficiency of 34 pJ/step.

  16. Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions.

    Science.gov (United States)

    Uralcan, Betul; Aksay, Ilhan A; Debenedetti, Pablo G; Limmer, David T

    2016-07-07

    We use molecular dynamics simulations in a constant potential ensemble to study the effects of solution composition on the electrochemical response of a double layer capacitor. We find that the capacitance first increases with ion concentration following its expected ideal solution behavior but decreases upon approaching a pure ionic liquid in agreement with recent experimental observations. The nonmonotonic behavior of the capacitance as a function of ion concentration results from the competition between the independent motion of solvated ions in the dilute regime and solvation fluctuations in the concentrated regime. Mirroring the capacitance, we find that the characteristic decay length of charge density correlations away from the electrode is also nonmonotonic. The correlation length first decreases with ion concentration as a result of better electrostatic screening but increases with ion concentration as a result of enhanced steric interactions. When charge fluctuations induced by correlated ion-solvent fluctuations are large relative to those induced by the pure ionic liquid, such capacitive behavior is expected to be generic.

  17. Two Superconducting Charge Qubits Coupled by a Josephson Inductance

    Science.gov (United States)

    Watanabe, Michio; Yamamoto, Tsuyoshi; Pashkin, Yuri A.; Astafiev, Oleg; Nakamura, Yasunobu; Tsai, Jaw-Shen

    2007-03-01

    When the quantum oscillations [Pashkin et al., Nature 421, 823 (2003)] and the conditional gate operation [Yamamoto et al., Nature 425, 941 (2003)] were demonstrated using superconducting charge qubits, the charge qubits were coupled capacitively, where the coupling was always on and the coupling strength was not tunable. This fixed coupling, however, is not ideal because for example, it makes unconditional gate operations difficult. In this work, we aimed to tunably couple two charge qubits. We fabricated circuits based on the theoretical proposal by You, Tsai, and Nori [PRB 68, 024510 (2003)], where the inductance of a Josephson junction, which has a much larger junction area than the qubit junctions, couples the qubits and the coupling strength is controlled by the external magnetic flux. We confirmed by spectroscopy that the large Josephson junction was indeed coupled to the qubits and that the coupling was turned on and off by the external magnetic flux. In the talk, we will also discuss the quantum oscillations in the circuits.

  18. Wireless Capacitive Pressure Sensor Operating up to 400 Celcius from 0 to 100 psi Utilizing Power Scavenging

    Science.gov (United States)

    Scardelletti, Maximilian C.; Ponchak, George E.; Harsh, Kevin; Mackey, Jonathan A.; Meredith, Roger D.; Zorman, Christian A.; Beheim, Glenn M.; Dynys, Frederick W.; Hunter, Gary W.

    2014-01-01

    In this paper, a wireless capacitive pressure sensor developed for the health monitoring of aircraft engines has been demonstrated. The sensing system is composed of a Clapp-type oscillator that operates at 131 MHz. The Clapp oscillator is fabricated on a alumina substrate and consists of a Cree SiC (silicon carbide) MESFET (Metal Semiconductor Field Effect Transistors), this film inductor, Compex chip capacitors and Sporian Microsystem capacitive pressure sensor. The resonant tank circuit within the oscillator is made up of the pressure sensor and a spiral thin film inductor, which is used to magnetically couple the wireless pressure sensor signal to a coil antenna placed over 1 meter away. 75% of the power used to bias the sensing system is generated from thermoelectric power modules. The wireless pressure sensor is operational at room temperature through 400 C from 0 to 100 psi and exhibits a frequency shift of over 600 kHz.

  19. SU-E-T-598: Parametric Equation for Quick and Reliable Estimate of Stray Neutron Doses in Proton Therapy and Application for Intracranial Tumor Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Bonfrate, A; Farah, J; Sayah, R; Clairand, I [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-roses (France); De Marzi, L; Delacroix, S [Institut Curie Centre de Protontherapie d Orsay (CPO), Orsay (France); Herault, J [Centre Antoine Lacassagne (CAL) Cyclotron biomedical, Nice (France); Lee, C [National Cancer Institute, Rockville, MD (United States); Bolch, W [Univ Florida, Gainesville, FL (United States)

    2015-06-15

    Purpose: Development of a parametric equation suitable for a daily use in routine clinic to provide estimates of stray neutron doses in proton therapy. Methods: Monte Carlo (MC) calculations using the UF-NCI 1-year-old phantom were exercised to determine the variation of stray neutron doses as a function of irradiation parameters while performing intracranial treatments. This was done by individually changing the proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and the air gap size while their impact on neutron doses were put into a single equation. The variation of neutron doses with distance from the target volume was also included in it. Then, a first step consisted in establishing the fitting coefficients by using 221 learning data which were neutron absorbed doses obtained with MC simulations while a second step consisted in validating the final equation. Results: The variation of stray neutron doses with irradiation parameters were fitted with linear, polynomial, etc. model while a power-law model was used to fit the variation of stray neutron doses with the distance from the target volume. The parametric equation fitted well MC simulations while establishing fitting coefficients as the discrepancies on the estimate of neutron absorbed doses were within 10%. The discrepancy can reach ∼25% for the bladder, the farthest organ from the target volume. Finally, the validation showed results in compliance with MC calculations since the discrepancies were also within 10% for head-and-neck and thoracic organs while they can reach ∼25%, again for pelvic organs. Conclusion: The parametric equation presents promising results and will be validated for other target sites as well as other facilities to go towards a universal method.

  20. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    International Nuclear Information System (INIS)

    Charles Doret, S; Amini, Jason M; Wright, Kenneth; Volin, Curtis; Killian, Tyler; Ozakin, Arkadas; Denison, Douglas; Hayden, Harley; Pai, C-S; Slusher, Richart E; Harter, Alexa W

    2012-01-01

    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled dc electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on dc electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains. (paper)

  1. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations

    Science.gov (United States)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    2018-04-01

    Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

  2. Optimization Design Method for the CMOS-type Capacitive Micro-Machined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    D. Y. Chiou

    2011-12-01

    Full Text Available In this study, an integrated modeling technique for characterization and optimization design of the complementary metal-oxide-semiconductor (CMOS capacitive micro-arrayed ultrasonic transducer (pCMOS-CMUT is presented. Electromechanical finite element simulations are performed to investigate its operational characteristics, such as the collapse voltage and the resonant frequency. Both the numerical and experimental results are in good agreement. In order to simultaneously customize the resonant frequency and minimize the collapse voltage, the genetic algorithm (GA is applied to optimize dimensional parameters of the transducer. From the present results, it is concluded that the FE/GA coupling approach provides another efficient numerical tool for multi-objective design of the pCMOS-CMUT.

  3. Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetery

    Science.gov (United States)

    Chuss, David T.

    2011-01-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feed horn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS).

  4. Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.

    Science.gov (United States)

    Zhan, Cheng; Jiang, De-en

    2016-03-03

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. Our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.

  5. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.

    Science.gov (United States)

    Dang, Yong-Qiang; Ren, Shao-Zhao; Liu, Guoyang; Cai, Jiangtao; Zhang, Yating; Qiu, Jieshan

    2016-11-14

    There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs) on reduced graphene oxide (rGO). The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H₂SO₄. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g), and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.

  6. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Dang

    2016-11-01

    Full Text Available There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs on reduced graphene oxide (rGO. The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H2SO4. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g, and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.

  7. The Design of Phase-Locked-Loop Circuit for Precision Capacitance Micrometer

    Directory of Open Access Journals (Sweden)

    Li Shujie

    2016-01-01

    Full Text Available High precision non-contact micrometer is normally divided into three categories: inductance micrometer, capacitance micrometer and optical interferometer micrometer. The capacitance micrometer is widely used because it has high performance to price ratio. With the improvement of automation level, precision of capacitance micrometer is required higher and higher. Generally, capacitance micrometer consists of the capacitance sensor, capacitance/voltage conversion circuit, and modulation and demodulation circuits. However, due to the existing of resistors, capacitors and other components in the circuit, the phase shift of the carrier signal and the modulated signal might occur. In this case, the specific value of phase shift cannot be determined. Therefore, error caused by the phase shift cannot be eliminated. This will reduce the accuracy of micrometer. In this design, in order to eliminate the impact of the phase shift, the phase-locked-loop (PLL circuit is employed. Through the experiment, the function of tracking the input signal phase and frequency is achieved by the phase-locked-loop circuit. This signal processing method can also be applied to tuber electrical resistance tomography system and other precision measurement circuit.

  8. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    Science.gov (United States)

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  9. Calculating and optimizing inter-electrode capacitances of charge division microchannel plate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Bo, E-mail: chenb@ciomp.ac.cn [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, Hong-Ji; Wang, Hai-Feng; He, Ling-Ping [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Jin, Fang-Yuan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-04-01

    Based on the principle of charge division microchannel plate detectors, the inter-electrode capacitances of charge division anodes which are related to electronic noise of the charge sensitive amplifier and crosstalk effect of the anode are presented. Under all the requirements of charge division microchannel plate detectors such as the imaging linearity and spatial resolution, decreasing the inter-electrode capacitances is one way to improve the imaging performance. In this paper, we illustrate the simulation process of calculating the inter-electrode capacitances. Moreover, a Wedge and Strip (WSZ) anode is fabricated with the picosecond laser micromachining process. Comparing the simulated capacitances and measured capacitances, the three-dimensional finite element method is proved to be valid. Furthermore, by adjusting the design parameters of the anode, the effects of the substrate permittivity, insulation width and the size of pitch on the inter-electrode capacitances have been analysed. The structure of the charge division anode has been optimized based on the simulation data.

  10. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    OpenAIRE

    Chen, Jian Z.; Darhuber, Anton A.; Troian, Sandra M.; Wagner, Sigurd

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable wi...

  11. Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers

    Directory of Open Access Journals (Sweden)

    Ben Minnaert

    2017-09-01

    Full Text Available Wireless power transfer from one transmitter to multiple receivers through inductive coupling is slowly entering the market. However, for certain applications, capacitive wireless power transfer (CWPT using electric coupling might be preferable. In this work, we determine closed-form expressions for a CWPT system with one transmitter and two receivers. We determine the optimal solution for two design requirements: (i maximum power transfer, and (ii maximum system efficiency. We derive the optimal loads and provide the analytical expressions for the efficiency and power. We show that the optimal load conductances for the maximum power configuration are always larger than for the maximum efficiency configuration. Furthermore, it is demonstrated that if the receivers are coupled, this can be compensated for by introducing susceptances that have the same value for both configurations. Finally, we numerically verify our results. We illustrate the similarities to the inductive wireless power transfer (IWPT solution and find that the same, but dual, expressions apply.

  12. Pulmonary Mycobacterium tuberculosis (Beijing strain infection in a stray dog : clinical communication

    Directory of Open Access Journals (Sweden)

    S.D.C. Parsons

    2008-05-01

    Full Text Available Mycobacterium tuberculosis infection in dogs is rarely reported and has not previously been documented in South Africa. A case of a stray Maltese crossbreed dog with extensive multifocal pulmonary tuberculosis due to M. tuberculosis is described. Pulmonary granulomas in this case were poorly encapsulated and contained large numbers of acid-fast bacteria, highlighting the potential for infected companion animals to excrete the pathogen. Treatment of canine tuberculosis is generally not advised, and for this reason, euthanasia of diseased animals must be advocated in most instances. Physicians and veterinarians must be aware that companion animals with active disease caused by M. tuberculosis could act as a potential source of infection.

  13. Molecular and serological surveillance of canine enteric viruses in stray dogs from Vila do Maio, Cape Verde.

    Science.gov (United States)

    Castanheira, Pedro; Duarte, Ana; Gil, Solange; Cartaxeiro, Clara; Malta, Manuel; Vieira, Sara; Tavares, Luis

    2014-04-23

    Infections caused by canine parvovirus, canine distemper virus and canine coronavirus are an important cause of mortality and morbidity in dogs worldwide. Prior to this study, no information was available concerning the incidence and prevalence of these viruses in Cape Verde archipelago. To provide information regarding the health status of the canine population in Vila do Maio, Maio Island, Cape Verde, 53 rectal swabs were collected from 53 stray dogs during 2010 and 93 rectal swabs and 88 blood samples were collected from 125 stray dogs in 2011. All rectal swabs (2010 n = 53; 2011 n = 93) were analysed for the presence of canine parvovirus, canine distemper virus and canine coronavirus nucleic acids by quantitative PCR methods. Specific antibodies against canine distemper virus and canine parvovirus were also assessed (2011 n = 88).From the 2010 sampling, 43.3% (23/53) were positive for canine parvovirus DNA, 11.3% (6/53) for canine distemper virus RNA and 1.9% (1/53) for canine coronavirus RNA. In 2011, the prevalence values for canine parvovirus and canine coronavirus were quite similar to those from the previous year, respectively 44.1% (41/93), and 1.1% (1/93), but canine distemper virus was not detected in any of the samples analysed (0%, 0/93). Antibodies against canine parvovirus were detected in 71.6% (63/88) blood samples and the seroprevalence found for canine distemper virus was 51.1% (45/88). This study discloses the data obtained in a molecular and serological epidemiological surveillance carried out in urban populations of stray and domestic animals. Virus transmission and spreading occurs easily in large dog populations leading to high mortality rates particularly in unvaccinated susceptible animals. In addition, these animals can act as disease reservoirs for wild animal populations by occasional contact. Identification of susceptible wildlife of Maio Island is of upmost importance to evaluate the risk of pathogen spill over from

  14. Enabling Junction Temperature Estimation via Collector-Side Thermo-Sensitive Electrical Parameters through Emitter Stray Inductance in High-Power IGBT Modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Li, Wuhua; Iannuzzo, Francesco

    2018-01-01

    This paper proposes the adoption of the inherent emitter stray inductance LeE in high-power insulated gate bipolar transistor (IGBT) modules as a new dynamic thermo-sensitive electrical parameter (d-TSEP). Furthermore, a family of 14 derived dynamic TSEP candidates has been extracted and classified...

  15. 3D printed biomimetic whisker-based sensor with co-planar capacitive sensing

    NARCIS (Netherlands)

    Delamare, John; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2016-01-01

    This paper describes the development of a whisker sensor for tactile purposes and which is fabricated by 3D printing. Read-out consists of a capacitive measurement of a co-planar capacitance which is affected by a dielectric that is driven into the electric field of the capacitance. The current

  16. Capacitance-voltage characteristics of GaAs ion-implanted structures

    Directory of Open Access Journals (Sweden)

    Privalov E. N.

    2008-08-01

    Full Text Available A noniterative numerical method is proposed to calculate the barrier capacitance of GaAs ion-implanted structures as a function of the Schottky barrier bias. The features of the low- and high-frequency capacitance-voltage characteristics of these structures which are due to the presence of deep traps are elucidated.

  17. A new recontruction algorithm for use with capacitance-based tomography

    Directory of Open Access Journals (Sweden)

    Ø. Isaksen

    1994-01-01

    Full Text Available A new reconstruction algorithm for use with capacitance-based process tomography is proposed. A numerical simulator, capable of calculating the capacitances for a particular sensor configuration and flow regime is used together with a parameter representation of the dielectric distribution and an optimization algorithm. The algorithm calculates these parameters and hence the dielectric distribution, by minimizing a function defined as a weighted sum of square differences between the measured and estimated capacitances. The method is tested by using both synthetic and experimental data, and the results are compared with results from the commonly used Linear Back Projection (LBP algorithm. The method is capable of obtaining the correct parameter values for all the flow regimes tested, and does provide a better estimate than the LBP method. The method proves to be very promising, and is a step towards quantitative capacitance tomography.

  18. Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingwei; Li, Xiaohan; Dai, Na; Wang, Gengchao; Wang, Zhun [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237 (China)

    2010-08-15

    Super-hydrophilic conducting polyaniline was prepared by surface modification of polyaniline using tetraethyl orthosilicate in water/ethanol solution, whereas its conductivity was 4.16 S cm{sup -1} at 25 C. And its electrochemical capacitance performances as an electrode material were evaluated by the cyclic voltammetry and galvanostatic charge/discharge test in 0.1 M H{sub 2}SO{sub 4} aqueous solution. Its initial specific capacitance was 500 F g{sup -1} at a constant current density of 1.5 A g{sup -1}, and the capacitance still reached about 400 F g{sup -1} after 5000 consecutive cycles. Moreover, its capacitance retention ratio was circa 70% with the growth of current densities from 1.5 to 20 A g{sup -1}, indicating excellent rate capability. It would be a promising electrode material for aqueous redox supercapacitors. (author)

  19. Optimal Design and Tradeoffs Analysis for Planar Transformer in High Power DC-DC Converters

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    with optimal behaviors is proposed, which constructs the top layer paralleling with the bottom layer and then in series with the other turns of the primary so that a lower magneto motive force (MMF) ratio m can be obtained as well as minimized AC resistance, leakage inductance and even stray capacitance. A 1...

  20. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    Science.gov (United States)

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  1. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.

    Science.gov (United States)

    Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao

    2018-03-31

    Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2010-01-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a

  3. A Review of High Voltage Drive Amplifiers for Capacitive Actuators

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail...

  4. Capacitance Regression Modelling Analysis on Latex from Selected Rubber Tree Clones

    International Nuclear Information System (INIS)

    Rosli, A D; Baharudin, R; Hashim, H; Khairuzzaman, N A; Mohd Sampian, A F; Abdullah, N E; Kamaru'zzaman, M; Sulaiman, M S

    2015-01-01

    This paper investigates the capacitance regression modelling performance of latex for various rubber tree clones, namely clone 2002, 2008, 2014 and 3001. Conventionally, the rubber tree clones identification are based on observation towards tree features such as shape of leaf, trunk, branching habit and pattern of seeds texture. The former method requires expert persons and very time-consuming. Currently, there is no sensing device based on electrical properties that can be employed to measure different clones from latex samples. Hence, with a hypothesis that the dielectric constant of each clone varies, this paper discusses the development of a capacitance sensor via Capacitance Comparison Bridge (known as capacitance sensor) to measure an output voltage of different latex samples. The proposed sensor is initially tested with 30ml of latex sample prior to gradually addition of dilution water. The output voltage and capacitance obtained from the test are recorded and analyzed using Simple Linear Regression (SLR) model. This work outcome infers that latex clone of 2002 has produced the highest and reliable linear regression line with determination coefficient of 91.24%. In addition, the study also found that the capacitive elements in latex samples deteriorate if it is diluted with higher volume of water. (paper)

  5. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    International Nuclear Information System (INIS)

    Bora, B.

    2015-01-01

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage

  6. On non-linear dynamics of coupled 1+1DOF versus 1+1/2DOF Electro-Mechanical System

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2014-01-01

    The electro-mechanical systems (EMS) are used from nano-/micro-scale (NEMS/MEMS) up to macro-scale applications. From mathematical view point, they are modelled with the second order differential equation (or a set of equations) for mechanical system, which is nonlinearly coupled with the second...... or the first order differential equation (or a set of equations) for electrical system, depending on properties of the electrical circuit. For the sake of brevity, we assume a 1DOF mechanical system, coupled to 1 or 1/2DOF electrical system (depending whether the capacitance is, or is not considered......). In the paper, authors perform a parametric study to identify operation regimes, where the capacitance term contributes to the non-linear behaviour of the coupled system. To accomplish this task, the classical method of multiple scales is used. The parametric study allows us to assess for which applications...

  7. Analysis of new actuation methods for capacitive shunt micro switchs

    Directory of Open Access Journals (Sweden)

    Ben Sassi S

    2016-01-01

    Full Text Available This work investigates the use of new actuation methods in capacitive shunt micro switches. We formulate the coupled electromechanical problem by taking into account the fringing effects and nonlinearities due to mid-plane stretching. Static analysis is undertaken using the Differential Quadrature Method (DQM to obtain the pull in voltage which is verified by means of the Finite Element Method (FEM. Based on Galerkin approximation, a single degree of freedom dynamic model is developed and limit-cycle solutions are calculated using the Finite Difference Method (FDM. In addition to the harmonic waveform signal, we apply novel actuation waveform signals to simulate the frequency-response. We show that, biased signals, using a square wave signal reduces significantly the pull-in voltage compared to the triangular and harmonic signal . Finally, these results are validated experimentally.

  8. Radiation protection measurements with the variance-covariance method in the stray radiation fields from photon and proton therapy facilities

    DEFF Research Database (Denmark)

    Lillhök, J.; Persson, L.; Andersen, Claus E.

    2017-01-01

    , the dose-average lineal energy, the dose-average quality factor and the dose equivalent. The neutron component measured by the detectors at the proton beam was studied through Monte Carlo simulations using the code MCNP6. In the photon beam the stray absorbed dose ranged between 0.3 and 2.4 μGy per monitor...

  9. Capacitive Imaging For Skin Characterization and Solvent Penetration

    OpenAIRE

    Xiao, P; Zhang, X; Bontozoglou, C

    2016-01-01

    Capacitive contact imaging has shown potential in measuring skin properties including hydration, micro relief analysis, as well as solvent penetration measurements . Through calibration we can also measure the absolute permittivity of the skin, and from absolute permittivity we then work out the absolute water content (or solvent content) in skin. In this paper, we present our latest study of capacitive contact imaging for skin characterization, i.e. skin hydration and skin damages etc. The r...

  10. Introducing radiality constraints in capacitated location-routing problems

    Directory of Open Access Journals (Sweden)

    Eliana Mirledy Toro Ocampo

    2017-03-01

    Full Text Available In this paper, we introduce a unified mathematical formulation for the Capacitated Vehicle Routing Problem (CVRP and for the Capacitated Location Routing Problem (CLRP, adopting radiality constraints in order to guarantee valid routes and eliminate subtours. This idea is inspired by formulations already employed in electric power distribution networks, which requires a radial topology in its operation. The results show that the proposed formulation greatly improves the convergence of the solver.

  11. A Choice Experiment Analysis of the Management of the Stray Dog Population in the UK.

    OpenAIRE

    Siettou, Christina; Fraser, Iain; Fraser, Rob

    2013-01-01

    In this paper we present the results of a pilot study investigating the public’s view on the pet overpopulation problem. The Choice Experiment aims to understand the UK public’s awareness of the issue, its views and its willingness to participate and pay for a reduction in the rate of animals being “put to sleep”. Our preliminary results indicate that the public are willing to pay to keep healthy stray dogs alive for longer in Local Authority kennels beyond the current seven day statutory per...

  12. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    Science.gov (United States)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  13. Dimensionality crossover in vortex dynamics of magnetically coupled F-S-F hybrids

    International Nuclear Information System (INIS)

    Karapetrov, G; Belkin, A; Iavarone, M; Yefremenko, V; Pearson, J E; Novosad, V; Divan, R; Cambel, V

    2011-01-01

    We report on the vortex dynamics in magnetically coupled F-S-F trilayers extracted from the analysis of the resistance-current isotherms. The superconducting thin film that is conventionally in the 2D vortex limit exhibits quite different behavior when sandwiched between ferromagnetic layers. The value of the dynamic critical exponent strongly increases in the F-S-F case due to screening of the stray vortex field by the adjacent ferromagnetic layers, leading to an effective dimensional crossover in vortex dynamics. Furthermore, the directional pinning by the magnetic stripe domains induces anisotropy in the vortex glass transition temperature and causes metastable avalanche behavior at strong driving currents.

  14. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    International Nuclear Information System (INIS)

    Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-01-01

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices

  15. Measurements of the Effects of Smoke on Active Circuits

    International Nuclear Information System (INIS)

    Tanaka, T.J.

    1999-01-01

    Smoke has long been recognized as the most common source of fire damage to electrical equipment; however, most failures have been analyzed after the fire was out and the smoke vented. The effects caused while the smoke is still in the air have not been explored. Such effects have implications for new digital equipment being installed in nuclear reactors. The U.S. Nuclear Regulatory Commission is sponsoring work to determine the impact of smoke on digital instrumentation and control. As part of this program, Sandia National Laboratories has tested simple active circuits to determine how smoke affects them. These tests included the study of three possible failure modes on a functional board: (1) circuit bridging, (2) corrosion (metal loss), and (3) induction of stray capacitance. The performance of nine different circuits was measured continuously on bare and conformably coated boards during smoke exposures lasting 1 hour each and continued for 24 hours after the exposure started. The circuit that was most affected by smoke (100% change in measured values) was the one most sensitive to circuit bridging. Its high impedance (50 MOmega) was shorted during the exposure, but in some cases recovered after the smoke was vented. The other two failure modes, corrosion and induced stray capacitance, caused little change in the function of the circuits. The smoke permanently increased resistance of the circuit tested for corrosion, implying that the cent acts were corroded. However, the change was very small (< 2%). The stray-capacitance test circuit showed very little change after a smoke exposure in either the short or long term. The results of the tests suggest that conformal coatings and type of circuit are major considerations when designing digital circuitry to be used in critical control systems

  16. Measurements of the effects of smoke on active circuits

    International Nuclear Information System (INIS)

    Tanaka, T.J.

    1998-01-01

    Smoke has long been recognized as the most common source of fire damage to electrical equipment; however, most failures have been analyzed after the fire was out and the smoke vented. The effects caused while the smoke is still in the air have not been explored. Such effects have implications for new digital equipment being installed in nuclear reactors. The US Nuclear Regulatory Commission is sponsoring work to determine the impact of smoke on digital instrumentation and control. As part of this program, Sandia National Laboratories has tested simple active circuits to determine how smoke affects them. These tests included the study of three possible failure modes on a functional board: (1) circuit bridging, (2) corrosion (metal loss), and (3) induction of stray capacitance. The performance of nine different circuits was measured continuously on bare and conformally coated boards during smoke exposures lasting 1 hour each and continued for 24 hours after the exposure started. The circuit that was most affected by smoke (100% change in measured values) was the one most sensitive to circuit bridging. Its high impedance (50 Mohm) was shorted during the exposure, but in some cases recovered after the smoke was vented. The other two failure modes, corrosion and induced stray capacitance, caused little change in the function of the circuits. The smoke permanently increased resistance of the circuit tested for corrosion, implying that the contacts were corroded. However, the change was very small (< 2%). The stray capacitance test circuit showed very little change after a smoke exposure in either the short or long term. The results of the tests suggest that conformal coatings and type of circuit are major considerations when designing digital circuitry to be used in critical control systems

  17. A new capacitive/resistive probe method for studying magnetic surfaces

    International Nuclear Information System (INIS)

    Kitajima, Sumio; Takayama, Masakazu; Zama, Tatsuya; Takaya, Kazuhiro; Takeuchi, Nobunao; Watanabe, Hiroshige

    1991-01-01

    A new capacitive/resistive probe method for mapping the magnetic surfaces from resistance or capacitance between a magnetic surface and a vacuum vessel was developed and tested. Those resistances and capacitances can be regarded as components of a simple electrical bridge circuit. This method exploits electrical transient response of the bridge circuit for a square pulse. From equiresistance or equicapacitance points, the magnetic surface structure can be deduced. Measurements on the Tohoku University Heliac, which is a small-size standard heliac, show good agreement with numerical calculations. This method is particularly useful for pulse-operated machines. (author)

  18. Some observations on stray magnetic fields and power outputs from short-wave diathermy equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R.W.M.; Dunscombe, P.B.

    1984-04-01

    Recent years have seen increasing interest in the possible hazards arising from the use of nonionizing electromagnetic radiation. Relatively large and potentially hazardous fields are to be found in the vicinity of short-wave and microwave equipment used in physiotherapy departments to produce therapeutic temperature rises. This note reports the results of measurements of the stray magnetic field and power output of a conventional short-wave diathermy unit when applied to tissue-equivalent phantoms. The dependence of these quantities on the variables, i.e. power setting of the unit, capacitor plate size, phantom size and phantom-capacitor plate separation, are discussed.

  19. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    Science.gov (United States)

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  20. New Type Multielectrode Capacitance Sensor for Liquid Level

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y R [China University of Petroleum (Huadong), Qingdao (China); Shi, A P [Shandong University of Science and Technology, Qingdao (China); Chen, G Q [Shandong University of Science and Technology, Qingdao (China); Chang, Y Y [Shandong University of Science and Technology, Qingdao (China); Hang, Z [Shandong University of Science and Technology, Qingdao (China); Liu, B M [Binzhou University, Binzhou (China)

    2006-10-15

    This paper introduces the design of a new type multielectrode capacitance sensor for liquid level. The system regards electric field sensor MC33794 as the core and applies microcontroller MC9S12DJ128 to realize intelligent liquid level monitoring system, which overcomes the disadvantages of the traditional capacitance sensor, improves on the anti-jamming ability and the measurement precision and simplifies the system structure. Finally, the paper sums up the design of the system.

  1. Detecting size and shape of bodies capacitatively

    International Nuclear Information System (INIS)

    Walton, H.

    1980-01-01

    The size and shape of a body is determined by rolling it between the plates of capacitors and measuring the capacitance changes. A capacitor comprising two parallel, spaced wires inclined to the rolling direction and above and below the rolling body scans sections of the body along its longitudinal axis, another determines the body's lengths and a third comprising two non-parallel wires determines the position of the body. The capacitance changes are compared with those produced by a body of known size and shape so that the size and shape of the body can be determined. (author)

  2. Prevalence of Echinococcus granulosus taeniasis in stray dogs in the region of Constantine (North-East Algeria).

    Science.gov (United States)

    Kohil, K; Benchikh El Fegoun, M C; Gharbi, M

    2017-10-01

    In North Africa, the domestic dog is regarded as the main reservoir for infection by Echinococcus granulosus of domestic livestock and man. In Algeria, there is very little data on the rate of infestation of dogs, while the prevalence of E. granulosus in the definitive host is a very reliable marker of the potential risk of transmission of cystic tapeworm to humans and livestock. To find out this information, a survey was conducted to assess the prevalence of infection with E. granulosus in stray dogs in the region of Constantine (North-East Algeria). We autopsied and examined 120 stray dogs, 22 (18.3%) of which were infected with E. granulosus, with an average intensity of infestation of 249 worms. The prevalence in the area of survey was evaluated: 15.5% (14/90) and 26.6% (8/30) dogs were parasitized by E. granulosus in urban and rural areas respectively. The influence of age on the rate of infection was very marked. In addition, the appreciation of the prevalence of parasitism by cestodes as a whole showed that 56 (46.6%) animals out of 120 were infected. Facing such a situation of endemic tapeworm parasitism, with a potential risk of transmission to humans, there is an urgent need to take measures to control and break the epidemiological cycles of the parasite.

  3. Classic and Quantum Capacitances in Bernal Bilayer and Trilayer Graphene Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Hatef Sadeghi

    2013-01-01

    Full Text Available Our focus in this study is on characterizing the capacitance voltage (C-V behavior of Bernal stacking bilayer graphene (BG and trilayer graphene (TG as the channel of FET devices. The analytical models of quantum capacitance (QC of BG and TG are presented. Although QC is smaller than the classic capacitance in conventional devices, its contribution to the total metal oxide semiconductor capacitor in graphene-based FET devices becomes significant in the nanoscale. Our calculation shows that QC increases with gate voltage in both BG and TG and decreases with temperature with some fluctuations. However, in bilayer graphene the fluctuation is higher due to its tunable band structure with external electric fields. In similar temperature and size, QC in metal oxide BG is higher than metal oxide TG configuration. Moreover, in both BG and TG, total capacitance is more affected by classic capacitance as the distance between gate electrode and channel increases. However, QC is more dominant when the channel becomes thinner into the nanoscale, and therefore we mostly deal with quantum capacitance in top gate in contrast with bottom gate that the classic capacitance is dominant.

  4. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.

    Science.gov (United States)

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław

    2017-12-20

    The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the

  5. Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena

    Science.gov (United States)

    White, William E.

    2013-01-01

    Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698

  6. Mechanical strain can switch the sign of quantum capacitance from positive to negative.

    Science.gov (United States)

    Hanlumyuang, Yuranan; Li, Xiaobao; Sharma, Pradeep

    2014-11-14

    Quantum capacitance is a fundamental quantity that can directly reveal many-body interactions among electrons and is expected to play a critical role in nanoelectronics. One of the many tantalizing recent physical revelations about quantum capacitance is that it can possess a negative value, hence allowing for the possibility of enhancing the overall capacitance in some particular material systems beyond the scaling predicted by classical electrostatics. Using detailed quantum mechanical simulations, we found an intriguing result that mechanical strains can tune both signs and values of quantum capacitance. We used a small coaxially gated carbon nanotube as a paradigmatical capacitor system and showed that, for the range of mechanical strain considered, quantum capacitance can be adjusted from very large positive to very large negative values (in the order of plus/minus hundreds of attofarads), compared to the corresponding classical geometric value (0.31035 aF). This finding opens novel avenues in designing quantum capacitance for applications in nanosensors, energy storage, and nanoelectronics.

  7. Conduction-coupled Tesla transformer.

    Science.gov (United States)

    Reed, J L

    2015-03-01

    A proof-of-principle Tesla transformer circuit is introduced. The new transformer exhibits the high voltage-high power output signal of shock-excited transformers. The circuit, with specification of proper circuit element values, is capable of obtaining extreme oscillatory voltages. The primary and secondary portions of the circuit communicate solely by conduction. The destructive arcing between the primary and secondary inductors in electromagnetically coupled transformers is ubiquitous. Flashover is eliminated in the new transformer as the high-voltage inductors do not interpenetrate and so do not possess an annular volume of electric field. The inductors are remote from one another. The high voltage secondary inductor is isolated in space, except for a base feed conductor, and obtains earth by its self-capacitance to the surroundings. Governing equations, for the ideal case of no damping, are developed from first principles. Experimental, theoretical, and circuit simulator data are presented for the new transformer. Commercial high-temperature superconductors are discussed as a means to eliminate the counter-intuitive damping due to small primary inductances in both the electromagnetic-coupled and new conduction-coupled transformers.

  8. Design of traveling wave windows for the PEP-II RF coupling network

    International Nuclear Information System (INIS)

    Kroll, N.M.; Ng, C.K.; Judkins, J.; Neubauer, M.

    1995-05-01

    The waveguide windows in the PEP-II RF coupling network have to withstand high power of 500 kW. Traveling wave windows have lower power dissipation than conventional self-matched windows, thus rendering the possibility of less stringent mechanical design. The traveling wave behavior is achieved by providing a reflecting iris on each side of the window, and depending on the configuration of the irises, traveling wave windows are characterized as inductive or capacitive types. A numerical design procedure using MAFIA has been developed for traveling wave windows. The relative advantages of inductive and capacitive windows are discussed. Furthermore, the issues of bandwidth and multipactoring are also addressed

  9. Coupling of the PISCES device modeler to a 3-D Maxwell FDTD solver

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.A.; Jones, M.E.; Mason, R.J. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The authors show how PISCES-like semiconductor models can be joined non-invasively to finite difference time domain models for the calculation of coupled external electromagnetics. The method involves tricking the standard current boundary condition for the device model into accepting an effective parallel external capacitance. For nearly steady state device conditions the authors show the results for a transmission line-coupled PISCES diode to agree well with those for an ideal diode.

  10. Negative quantum capacitance induced by midgap states in single-layer graphene.

    Science.gov (United States)

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.

  11. The interfacial capacitance of an oxidised polycrystalline gold electrode in an aqueous HClO4 electrolyte

    International Nuclear Information System (INIS)

    Grdeń, M.

    2013-01-01

    The interfacial capacitance of a polycrystalline gold electrode electrochemically oxidised in an aqueous 0.1 M HClO 4 electrolyte has been investigated by means of the electrochemical impedance spectroscopy. From 1.3 to 3 monolayers of Au atoms were oxidised under constant potential conditions and for various oxidation times. The capacitance of the oxidised layers was analysed as a function of the electrode potential and the extent of the surface oxidation. It was found that the interfacial capacitance decreases upon surface oxidation. The components of the interfacial capacitance of the oxidised layer: the double layer capacitance and the capacitance of the oxidised layer; have been separated. The capacitance of the double layer of the oxidised surface was found to be comparable to the capacitance measured for the metallic surface. - Highlights: • The impedance spectra for thin layers of Au oxides/hydroxides were acquired. • Separate determination of the double layer and the oxide capacitances of oxidised Au • The double layer capacitances of oxidised and non-oxidised Au surfaces are comparable

  12. Low Capacitive Inductors for Fast Switching Devices in Active Power Factor Correction Applications

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work is to inves......This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work...... is to investigate different winding approaches and identify suitable solutions for high switching frequency/high speed transition PFC designs. A low parasitic capacitance PCB based inductor design is proposed to address the challenges imposed by high switching frequency PFC Boost converters....

  13. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    Directory of Open Access Journals (Sweden)

    Xiang Zhi

    2015-03-01

    Full Text Available This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  14. Development of a capacitive ice sensor to measure ice growth in real time.

    Science.gov (United States)

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  15. Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp

    International Nuclear Information System (INIS)

    Sande, M.J. van de; Mullen, J.J.A.M. van der

    2002-01-01

    Excitation and light production processes in gas discharge lamps are the result of inelastic collisions between atoms and free electrons in the plasma. Therefore, knowledge of the electron density n e and temperature T e is essential for a proper understanding of such plasmas. In this paper, an experimental system for laser Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp and measurements of n e and T e in this lamp are presented. The experimental system is suitable for low electron temperatures (down to below 0.2 eV) and employs a triple grating spectrograph for a high stray light rejection, or equivalently a low stray light redistribution (R eff approximately 7x10 -9 nm -1 at 0.5 nm from the laser wavelength). The electron density detection limit of the system is n e approximately 10 16 m -3 . The modifications to the lamp that were necessary for the measurements are described, and results are presented and compared to previous work and trends expected from the electron particle and energy balances. The electron density and temperature are about n e approximately 10 19 m -3 and T e approximately 1 eV in the most active part of the plasma; the exact values depend on the argon filling pressure, the mercury pressure and the position in the lamp. (author)

  16. Stray dogs and cats as potential sources of soil contamination with zoonotic parasites.

    Science.gov (United States)

    Szwabe, Katarzyna; Blaszkowska, Joanna

    2017-03-22

    The main source of many zoonoses is soil contaminated with feline and canine faeces. Thus, the aim of this study was to estimate the prevalence of intestinal parasites in stray dogs and cats adopted in Lodz shelter (Poland). In total, 163 faecal samples were collected from 95 dogs and 68 cats from 2011 to 2012. The samples were processed by sedimentation techniques using Mini Parasep®SF. Six parasite genera belonging to protozoa, cestoda, and nematoda, were found in dogs, while eight were found in cats. Out of the 163 fecal samples, 37.4% were positive for the presence at least one species of intestinal parasites. The majority of positive dog samples contained eggs from Toxocara and Trichuris genera, and the family Ancylostomatidae, while Toxocara and Taenia eggs, as well as Cystoisospora oocysts, predominated in cat faeces. A significantly higher prevalence of parasites was noted in cats (48.5%) than in dogs (29.5%) (χ2=6.15, P=0.013). The Toxocara genus was the most prevalent parasite in both populations; eggs were found in 27.9% and 16.8% of cats and dogs, respectively. Animals younger than 12 months of age showed higher infection rates with Toxocara, but differences were not statistically significant. The average numbers of Toxocara eggs/gram of faeces in positive puppy and kitten samples were over 5 and 7 times higher than in older dogs and cats, respectively. Mixed infection were found in dogs (5.3%) and cats (8.8%). Cat faeces represent a more important potential source of environmental contamination with zoonotic parasites than dog faeces. Among the detected parasites of stray dogs and cats, Toxocara present an important zoonotic risk for the local human population, especially children.

  17. Simulation of cold plasma in a chamber under high- and low-frequency voltage conditions for a capacitively coupled plasma

    Institute of Scientific and Technical Information of China (English)

    Hao Daoxin; Cheng Jia; Ji Linhong; Sun Yuchun

    2012-01-01

    The characteristics of cold plasma,especially for a dual-frequency capacitively coupled plasma (CCP),play an important role for plasma enhanced chemical vapor deposition,which stimulates further studies using different methods.In this paper,a 2D fluid model was constructed for N2 gas plasma simulations with CFD-ACE+,a commercial multi-physical software package.First,the distributions of electric potential (Epot),electron number density (Ne),N number density (N) and electron temperature (Te) are described under the condition of high frequency (HF),13.56 MHz,HF voltage,300 V,and low-frequency (LF) voltage,0 V,particularly in the sheath.Based on this,the influence of HF on Ne is further discussed under different HF voltages of 200 V,300 V,400 V,separately,along with the influence of LF,0.3 MHz,and various LF voltages of 500 V,600 V,700 V.The results show that sheaths of about 3 mm are formed near the two electrodes,in which Epot and Te vary extensively with time and space,while in the plasma bulk Epot changes synchronously with an electric potential of about 70 V and Te varies only in a small range.N is also modulated by the radio frequency,but the relative change in N is small.Ne varies only in the sheath,while in the bulk it is steady at different time steps.So,by comparing Ne in the plasma bulk at the steady state,we can see that Ne will increase when HF voltage increases.Yet,Ne will slightly decrease with the increase of LF voltage.At the same time,the homogeneity will change in both x and y directions.So both HF and LF voltages should be carefully considered in order to obtain a high-density,homogeneous plasma.

  18. CMOS capacitive biosensors for highly sensitive biosensing applications.

    Science.gov (United States)

    Chang, An-Yu; Lu, Michael S-C

    2013-01-01

    Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.

  19. CMOS capacitive sensors for lab-on-chip applications a multidisciplinary approach

    CERN Document Server

    Ghafar-Zadeh, Ebrahim

    2010-01-01

    The main components of CMOS capacitive biosensors including sensing electrodes, bio-functionalized sensing layer, interface circuitries and microfluidic packaging are verbosely explained in chapters 2-6 after a brief introduction on CMOS based LoCs in Chapter 1. CMOS Capacitive Sensors for Lab-on-Chip Applications is written in a simple pedagogical way. It emphasises practical aspects of fully integrated CMOS biosensors rather than mathematical calculations and theoretical details. By using CMOS Capacitive Sensors for Lab-on-Chip Applications, the reader will have circuit design methodologies,

  20. Energy-Efficient Capacitance-to-Digital Converters for Smart Sensor Applications

    KAUST Repository

    Alhoshany, Abdulaziz

    2017-12-01

    One of the key requirements in the design of wireless sensor nodes and miniature biomedical devices is energy efficiency. For a sensor node, which is a sensor and readout circuit, to survive on limited energy sources such as a battery or harvested energy, its energy consumption should be minimized. Capacitive sensors are candidates for use in energy-constrained applications, as they do not consume static power and can be used in a wide range of applications to measure different physical, chemical or biological quantities. However, the energy consumption is dominated by the capacitive interface circuit, i.e. the capacitance-to-digital converter (CDC). Several energy-efficient CDC architectures are introduced in this dissertation to meet the demand for high resolution and energy efficiency in smart capacitive sensors. First, we propose an energy-efficient CDC based on a differential successive-approximation data converter. The proposed differential CDC employs an energy-efficient operational transconductance amplifier (OTA) based on an inverter. A wide capacitance range with fine absolute resolution is implemented in the proposed coarse-fine DAC architecture which saves 89% of silicon area. The proposed CDC achieves an energy efficiency figure-of-merit () of 45.8fJ/step, which is the best reported energy efficiency to date. Second, we propose an energy efficient CDC for high-precision capacitive resolution by using oversampling and noise shaping. The proposed CDC achieves 150 aF absolute resolution and an energy efficiency of 187fJ/conversion-step which outperforms state of the art high-precision differential CDCs. In the third and last part, we propose an in-vitro cancer diagnostic biosensor-CMOS platform for low-power, rapid detection, and low cost. The introduced platform is the first to demonstrate the ability to screen and quantify the spermidine/spermine N1 acetyltransferase (SSAT) enzyme which reveals the presence of early-stage cancer, on the surface of a

  1. Inside-out electrical capacitance tomography

    DEFF Research Database (Denmark)

    Kjærsgaard-Rasmussen, Jimmy; Meyer, Knud Erik

    2011-01-01

    In this work we demonstrate the construction of an ‘inside-out’ sensor geometry for electrical capacitance tomography (ECT). The inside-out geometry has the electrodes placed around a tube, as usual, but measuring ‘outwards’. The flow between the electrodes and an outer tube is reconstructed...

  2. Triboelectricity in capacitive biopotential measurements.

    Science.gov (United States)

    Wartzek, Tobias; Lammersen, Thomas; Eilebrecht, Benjamin; Walter, Marian; Leonhardt, Steffen

    2011-05-01

    Capacitive biopotential measurements suffer from strong motion artifacts, which may result in long time periods during which a reliable measurement is not possible. This study examines contact electrification and triboelectricity as possible reasons for these artifacts and discusses local triboelectric effects on the electrode-body interface as well as global electrostatic effects as common-mode interferences. It will be shown that most probably the triboelectric effects on the electrode-body interface are the main reason for artifacts, and a reduction of artifacts can only be achieved with a proper design of the electrode-body interface. For a deeper understanding of the observed effects, a mathematical model for triboelectric effects in highly isolated capacitive biopotential measurements is presented and verified with experiments. Based on these analyses of the triboelectric effects on the electrode-body interface, different electrode designs are developed and analyzed in order to minimize artifacts due to triboelectricity on the electrode-body interface. © 2011 IEEE

  3. Countering the stray magnetic field of the CUSP trap by using additional coils

    CERN Document Server

    Thole, Jelle

    2016-01-01

    The ASACUSA experiment at the Antiproton Decelerator (AD) at CERN tries to measure the Hyperfine Structure (HFS) of Antihydrogen (H ̄) using a Rabi spectroscopy set-up. In measuring this HFS it will yield a very precise test of CPT-symmetry. For this set-up to work a homogeneous magnetic field is needed in the cavity where the Hyperfine transition of H ̄ occurs. Due to the stray fields from the CUSP trap, where H ̄ is produced, additional coils are needed to counter these fields. It is found, using COMSOL simulations, that two coils are suitable for this. Leading to a relative standard deviation of the magnetic field of σB/B = 1.06%.

  4. Quality assessment of MOZAIC and IAGOS capacitive hygrometers: insights from airborne field studies

    Directory of Open Access Journals (Sweden)

    Patrick Neis

    2015-10-01

    Full Text Available In 2011, the MOZAIC (Measurement of Ozone by AIRBUS In-Service Aircraft successor programme IAGOS (In-service Aircraft for a Global Observing System started to equip their long-haul passenger aircraft with the modified capacitive hygrometer Vaisala HUMICAP® of type H. The assurance of the data quality and the consistency of the data set during the transition from MOZAIC Capacitive Hygrometers to IAGOS Capacitive Hygrometers were evaluated within the CIRRUS-III and AIRTOSS-ICE field studies. During these performance tests, the capacitive hygrometers were operated aboard a Learjet 35A aircraft together with a closed-cell Lyman-α fluorescence hygrometer, an open-path tunable diode laser (TDL system and a closed-cell, direct TDL absorption hygrometer for water vapour measurement. For MOZAIC-typical operation conditions, the comparison of relative humidity (RH data from the capacitive hygrometers and reference instruments yielded remarkably good agreement with an uncertainty of 5% RH. The temperature dependence of the sensor's response time was derived from the cross-correlation of capacitive hygrometer data and smoothed data from the fast-responding reference instruments. The resulting exponential moving average function could explain the major part of the observed deviations between the capacitive hygrometers and the reference instruments.

  5. Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology

    International Nuclear Information System (INIS)

    Mayo, S.; Kopanski, J. J.; Guthrie, W. F.

    1998-01-01

    Overlay measurements of the relative alignment between sequential layers are one of the most critical issues for integrated circuit (IC) lithography. We have implemented on an AFM platform a new intermittent-contact scanning capacitance microscopy (IC-SCM) mode that is sensitive to the tip proximity to an IC interconnect, thus making it possible to image conductive structures buried under planarized dielectric layers. Such measurements can be used to measure IC metal-to-resist lithography overlay. The AFM conductive cantilever probe oscillating in a vertical plane was driven at frequency ω, below resonance. By measuring the tip-to-sample capacitance, the SCM signal is obtained as the difference in capacitance, ΔC(ω), at the amplitude extremes. Imaging of metallization structures was obtained with a bars-in-bars aluminum structure embedded in a planarized dielectric layer 1 μm thick. We have also modeled, with a two-dimensional (2D) electrostatic field simulator, IC-SCM overlay data of a metallization structure buried under a planarized dielectric having a patterned photoresist layer deposited on it. This structure, which simulates the metal-to-resist overlay between sequential IC levels, allows characterization of the technique sensitivity. The capacitance profile across identical size electrically isolated or grounded metal lines embedded in a dielectric was shown to be different. The floating line shows capacitance enhancement at the line edges, with a minimum at the line center. The grounded line shows a single capacitance maximum located at the line center, with no edge enhancement. For identical line dimensions, the capacitance is significantly larger for grounded lines making them easier to image. A nonlinear regression algorithm was developed to extract line center and overlay parameters with approximately 3 nm resolution at the 95% confidence level, showing the potential of this technique for sub-micrometer critical dimension metrology. Symmetric test

  6. Integrated microelectronic capacitive readout subsystem for lab-on-a-chip applications

    International Nuclear Information System (INIS)

    Spathis, Christos; Georgakopoulou, Konstantina; Petrellis, Nikos; Efstathiou, Konstantinos; Birbas, Alexios

    2014-01-01

    A mixed-signal capacitive biosensor readout system is presented with its main readout functionality embedded in an integrated circuit, compatible with complementary metal oxide semiconductor-type biosensors. The system modularity allows its usage as a consumable since it eventually leads to a system-on-chip where sensor and readout circuitry are hosted on the same die. In this work, a constant current source is used for measuring the input capacitance. Compared to most capacitive biosensor readout circuits, this method offers the convenience of adjusting both the range and the resolution, depending on the requirements dictated by the application. The chip consumes less than 5 mW of power and the die area is 0.06 mm 2 . It shows a broad input capacitance range (capable of measuring bio-capacitances from 6 pF to 9.8 nF), configurable resolution (down to 1 fF), robustness to various biological experiments and good linearity. The integrated nature of the readout system is proven to be sufficient both for one-time in situ (consumable-type) bio-measurements and its incorporation into a point-of-care system. (paper)

  7. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    Science.gov (United States)

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  8. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2015-10-01

    Full Text Available Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  9. Determination of electron density and temperature in a capacitively coupled RF discharge in neon by OES complemented with a CR model

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, Z; Dvorak, P; Trunec, D [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Brzobohaty, O, E-mail: zdenek@physics.muni.c [Institute of Scientific Instruments of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 147, 612 64 Brno (Czech Republic)

    2010-12-22

    A method of determination of electron temperature and electron density in plasmas based on optical emission spectroscopy complemented with collisional-radiative modelling (OES/CRM) was studied in this work. A radiofrequency (13.56 MHz) capacitively coupled discharge in neon at 10 Pa was investigated by intensity calibrated optical emission spectroscopy. The absolute intensities of neon transitions between 3p and 3s states were fitted with a collisional-radiative (CR) model in order to determine the electron temperature and electron density. Measuring techniques such as imaging with an ICCD camera were adopted for supplementary diagnostics. The obtained results were compared with the results of compensated Langmuir probe measurement and one-dimensional particle-in-cell/Monte Carlo (PIC/MC) simulation. The results of OES/CRM and PIC/MC method were in close agreement in the case of electron temperature in the vicinity of a driven electrode. The determined value of electron temperature was about 8 eV. In bulk plasma, the measured spectra were not satisfactorily fitted. In the case of electron density only relative agreement was obtained between OES/CRM and Langmuir probe measurement; the absolute values differed by a factor of 5. The axial dependence of electron density calculated by PIC/MC was distinct from them, reaching the maximum values between the results of the other two methods. The investigation of power dependence of plasma parameters close to the driven electrode showed a decrease in electron temperature and an increase in electron density together with increasing incoming RF power. The calculated spectra fitted very well the measured spectra in this discharge region.

  10. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    Science.gov (United States)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  11. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    Science.gov (United States)

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  12. Capacitors and Resistance-Capacitance Networks.

    Science.gov (United States)

    Balabanian, Norman; Root, Augustin A.

    This programed textbook was developed under a contract with the United States Office of Education as Number 5 in a series of materials for use in an electrical engineering sequence. It is divided into three parts--(1) capacitors, (2) voltage-current relationships, and (3) simple resistance-capacitance networks. (DH)

  13. Prevalence and Potential Risk Factors for Bartonella Infection in Tunisian Stray Dogs.

    Science.gov (United States)

    Belkhiria, Jaber; Chomel, Bruno B; Ben Hamida, Taoufik; Kasten, Rickie W; Stuckey, Matthew J; Fleischman, Drew A; Christopher, Mary M; Boulouis, Henri-Jean; Farver, Thomas B

    2017-06-01

    Bartonellae are blood-borne and vector-transmitted pathogens, some are zoonotic, which have been reported in several Mediterranean countries. Transmission from dogs to humans is suspected, but has not been clearly demonstrated. Our objectives were to determine the seroprevalence of Bartonella henselae, Bartonella vinsonii subsp. berkhoffii, Bartonella clarridgeiae, and Bartonella bovis (as a proxy for Candidatus Bartonella merieuxii) in stray dogs from Tunisia, identify the Bartonella species infecting the dogs and evaluate potential risk factors for canine infection. Blood samples were collected between January and November 2013 from 149 dogs in 10 Tunisian governorates covering several climatic zones. Dog-specific and geographic variables were analyzed as potential risk factors for Bartonella spp. seropositivity and PCR-positivity. DNA was extracted from the blood of all dogs and tested by PCR for Bartonella, targeting the ftsZ and rpoB genes. Partial sequencing was performed on PCR-positive dogs. Twenty-nine dogs (19.5%, 95% confidence interval: 14-27.4) were seropositive for one or more Bartonella species, including 17 (11.4%) for B. vinsonii subsp. berkhoffii, 14 (9.4%) for B. henselae, 13 (8.4%) for B. clarridgeiae, and 7 (4.7%) for B. bovis. Statistical analysis revealed a few potential risk factors, mainly dog's age and breed, latitude and average winter temperature. Twenty-two (14.8%) dogs, including 8 of the 29 seropositive dogs, were PCR-positive for Bartonella based on the ftsZ gene, with 18 (81.8%) of these 22 dogs also positive for the rpoB gene. Partial sequencing showed that all PCR-positive dogs were infected with Candidatus B. merieuxii. Dogs from arid regions and regions with cold average winter temperatures were less likely to be PCR-positive than dogs from other climatic zones. The widespread presence of Bartonella spp. infection in Tunisian dogs suggests a role for stray dogs as potential reservoirs of Bartonella species in Tunisia.

  14. A new normalization method based on electrical field lines for electrical capacitance tomography

    International Nuclear Information System (INIS)

    Zhang, L F; Wang, H X

    2009-01-01

    Electrical capacitance tomography (ECT) is considered to be one of the most promising process tomography techniques. The image reconstruction for ECT is an inverse problem to find the spatially distributed permittivities in a pipe. Usually, the capacitance measurements obtained from the ECT system are normalized at the high and low permittivity for image reconstruction. The parallel normalization model is commonly used during the normalization process, which assumes the distribution of materials in parallel. Thus, the normalized capacitance is a linear function of measured capacitance. A recently used model is a series normalization model which results in the normalized capacitance as a nonlinear function of measured capacitance. The newest presented model is based on electrical field centre lines (EFCL), and is a mixture of two normalization models. The multi-threshold method of this model is presented in this paper. The sensitivity matrices based on different normalization models were obtained, and image reconstruction was carried out accordingly. Simulation results indicate that reconstructed images with higher quality can be obtained based on the presented model

  15. Effect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance

    Science.gov (United States)

    Saeidi, Ali; Jazaeri, Farzan; Stolichnov, Igor; Luong, Gia V.; Zhao, Qing-Tai; Mantl, Siegfried; Ionescu, Adrian M.

    2018-03-01

    This work experimentally demonstrates that the negative capacitance effect can be used to significantly improve the key figures of merit of tunnel field effect transistor (FET) switches. In the proposed approach, a matching condition is fulfilled between a trained-polycrystalline PZT capacitor and the tunnel FET (TFET) gate capacitance fabricated on a strained silicon-nanowire technology. We report a non-hysteretic switch configuration by combining a homojunction TFET and a negative capacitance effect booster, suitable for logic applications, for which the on-current is increased by a factor of 100, the transconductance by 2 orders of magnitude, and the low swing region is extended. The operation of a hysteretic negative capacitance TFET, when the matching condition for the negative capacitance is fulfilled only in a limited region of operation, is also reported and discussed. In this late case, a limited improvement in the device performance is observed. Overall, the paper demonstrates the main beneficial effects of negative capacitance on TFETs are the overdrive and transconductance amplification, which exactly address the most limiting performances of current TFETs.

  16. Large area, low capacitance Si(Li) detectors for high rate x-ray applications

    International Nuclear Information System (INIS)

    Rossington, C.S.; Fine, P.M.; Madden, N.W.

    1992-10-01

    Large area, single-element Si(Li) detectors have been fabricated using a novel geometry which yields detectors with reduced capacitance and hence reduced noise at short amplifier pulse-processing times. A typical device employing the new geometry with a thickness of 6 mm and an active area of 175 mm 2 has a capacitance of only 0.5 pf, compared to 2.9 pf for a conventional planar device with equivalent dimensions. These new low capacitance detectors, used in conjunction with low capacitance field effect transistors, will result in x-ray spectrometers capable of operating at very high count rates while still maintaining excellent energy resolution. The spectral response of the low capacitance detectors to a wide range of x-ray energies at 80 K is comparable to typical state-of-the-art conventional Si(Li) devices. In addition to their low capacitance, the new devices offer other advantages over conventional detectors. Detector fabrication procedures, I-V and C-V characteristics, noise performance, and spectral response to 2-60 keV x-rays are described

  17. Capacitance enhancement via electrode patterning

    International Nuclear Information System (INIS)

    Ho, Tuan A.; Striolo, Alberto

    2013-01-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties

  18. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  19. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    NARCIS (Netherlands)

    Chen, J.-Z.; Darhuber, A.A.; Troian, S.M.; Wagner, S.

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is

  20. A Flexible Capacitive Sensor with Encapsulated Liquids as Dielectrics

    Directory of Open Access Journals (Sweden)

    Yasunari Hotta

    2012-03-01

    Full Text Available Flexible and high-sensitive capacitive sensors are demanded to detect pressure distribution and/or tactile information on a curved surface, hence, wide varieties of polymer-based flexible MEMS sensors have been developed. High-sensitivity may be achieved by increasing the capacitance of the sensor using solid dielectric material while it deteriorates the flexibility. Using air as the dielectric, to maintain the flexibility, sacrifices the sensor sensitivity. In this paper, we demonstrate flexible and highly sensitive capacitive sensor arrays that encapsulate highly dielectric liquids as the dielectric. Deionized water and glycerin, which have relative dielectric constants of approximately 80 and 47, respectively, could increase the capacitance of the sensor when used as the dielectric while maintaining flexibility of the sensor with electrodes patterned on flexible polymer substrates. A reservoir of liquids between the electrodes was designed to have a leak path, which allows the sensor to deform despite of the incompressibility of the encapsulated liquids. The proposed sensor was microfabricated and demonstrated successfully to have a five times greater sensitivity than sensors that use air as the dielectric.

  1. Probing 2D black phosphorus by quantum capacitance measurements

    International Nuclear Information System (INIS)

    Kuiri, Manabendra; Kumar, Chandan; Chakraborty, Biswanath; Gupta, Satyendra N; Naik, Mit H; Jain, Manish; Sood, A K; Das, Anindya

    2015-01-01

    Two-dimensional materials and their heterostructures have emerged as a new class of materials, not only for fundamental physics but also for electronic and optoelectronic applications. Black phosphorus (BP) is a relatively new addition to this class of materials. Its strong in-plane anisotropy makes BP a unique material for making conceptually new types of electronic devices. However, the global density of states (DOS) of BP in device geometry has not been measured experimentally. Here, we report the quantum capacitance measurements together with the conductance measurements on an hBN-protected few-layer BP (∼six layers) in a dual-gated field effect transistor (FET) geometry. The measured DOS from our quantum capacitance is compared with density functional theory (DFT). Our results reveal that the transport gap for quantum capacitance is smaller than that in conductance measurements due to the presence of localized states near the band edge. The presence of localized states is confirmed by the variable range hopping seen in our temperature dependence conductivity. A large asymmetry is observed between the electron and hole side. This asymmetric nature is attributed to the anisotropic band dispersion of BP. Our measurements establish the uniqueness of quantum capacitance in probing the localized states near the band edge, hitherto not seen in conductance measurements. (paper)

  2. Fabrication of a printed capacitive air-gap touch sensor

    Science.gov (United States)

    Lee, Sang Hoon; Seo, Hwiwon; Lee, Sangyoon

    2018-05-01

    Unlike lithography-based processes, printed electronics does not require etching, which makes it difficult to fabricate electronic devices with an air gap. In this study, we propose a method to fabricate capacitive air-gap touch sensors via printing and coating. First, the bottom electrode was fabricated on a flexible poly(ethylene terephthalate) (PET) substrate using roll-to-roll gravure printing with silver ink. Then poly(dimethylsiloxane) (PDMS) was spin coated to form a sacrificial layer. The top electrode was fabricated on the sacrificial layer by spin coating with a stretchable silver ink. The sensor samples were then put in a tetrabutylammonium (TBAF) bath to generate the air gap by removing the sacrificial layer. The capacitance of the samples was measured for verification, and the results show that the capacitance increases in proportion to the applied force from 0 to 2.5 N.

  3. A microcontroller-based interface circuit for lossy capacitive sensors

    International Nuclear Information System (INIS)

    Reverter, Ferran; Casas, Òscar

    2010-01-01

    This paper introduces and analyses a low-cost microcontroller-based interface circuit for lossy capacitive sensors, i.e. sensors whose parasitic conductance (G x ) is not negligible. Such a circuit relies on a previous circuit also proposed by the authors, in which the sensor is directly connected to a microcontroller without using either a signal conditioner or an analogue-to-digital converter in the signal path. The novel circuit uses the same hardware, but it performs an additional measurement and executes a new calibration technique. As a result, the sensitivity of the circuit to G x decreases significantly (a factor higher than ten), but not completely due to the input capacitances of the port pins of the microcontroller. Experimental results show a relative error in the capacitance measurement below 1% for G x x ) shows the effectiveness of the circuit

  4. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  5. Structural, electronic properties, and quantum capacitance of B, N and P-doped armchair carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi-Khoshdel, S. Morteza, E-mail: mmousavi@iust.ac.ir [Department of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jahanbakhsh-bonab, Parisa [Department of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Targholi, Ehsan [Young Researchers and Elite Club, Abhar Branch, Islamic Azad University, Abhar (Iran, Islamic Republic of)

    2016-10-07

    Using DFT calculations, we study the structural parameters, electronic properties and quantum capacitance of N, B, and P-doped armchair carbon nanotubes (CNTs). Fermi level shifts towards conduction band and valence band in N- and B-doped CNTs, respectively. While in the case of P atom, despite having an extra valence electron than carbon, there is no shift in Fermi level. The results revealed from a symmetric capacitance enhancement in P-doped CNT and an asymmetric capacitance enhancement in B and N-doped CNTs. The greatest amount of quantum capacitance of N-doped (6, 6) CNT could be achieved at the concentration range of 0.1–0.15. - Highlights: • Exploration of variation in quantum capacitance of CNTs through doping N, B and P atoms. • Quantum capacitance of CNTs is sensitive to impurities entered in carbon nanotubes. • Maximum quantum capacitance of N-doped CNTs is achieved at the concentration range of 0.1–0.15.

  6. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    Science.gov (United States)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  7. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.

    Science.gov (United States)

    Sheberla, Dennis; Bachman, John C; Elias, Joseph S; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 (Ni 3 (HITP) 2 ), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  8. A report on the alimentary canal helminthic infestation of stray and pet dogs in Tabriz

    Directory of Open Access Journals (Sweden)

    Y Gharedaghi

    2008-08-01

    Full Text Available From September to December 2007, fecal specimens of 100 stray and pet dogs in Tabriz were examined by saturated salt flotation and Telmann sedimentation methods to determine the prevalence of gastrointestinal helminth infestation. Helminth infestation was encountered in 31 (31% of the fecal samples examined. The eggs of two different cestodes and three different nematodes were identified in the contaminated fecal samples. The helminth eggs found were identified as Taenia hydatigena (4%, Dipylidium caninum (6%, Toxocara canis (10%, Ancylostoma caninum (6% and Trichuris vulpis (5%. No trematoda eggs and nematode larvae were found in this study.

  9. An Enhanced Sensing Application Based on a Flexible Projected Capacitive-Sensing Mattress

    Directory of Open Access Journals (Sweden)

    Wen-Ying Chang

    2014-04-01

    Full Text Available This paper presents a cost-effective sensor system for mattresses that can classify the sleeping posture of an individual and prevent pressure ulcers. This system applies projected capacitive sensing to the field of health care. The charge time (CT method was used to sensitively and accurately measure the capacitance of the projected electrodes. The required characteristics of the projected capacitor were identified to develop large-area applications for sensory mattresses. The area of the electrodes, the use of shielding, and the increased length of the transmission line were calibrated to more accurately measure the capacitance of the electrodes in large-size applications. To offer the users comfort in the prone position, a flexible substrate was selected and covered with 16 × 20 electrodes. Compared with the static charge sensitive bed (SCSB, our proposed system-flexible projected capacitive-sensing mattress (FPCSM comes with more electrodes to increase the resolution of posture identification. As for the body pressure system (BPS, the FPCSM has advantages such as lower cost, higher aging-resistance capability, and the ability to sense the capacitance of the covered regions without physical contact. The proposed guard ring design effectively absorbs the noise and interrupts leakage paths. The projected capacitive electrode is suitable for proximity-sensing applications and succeeds at quickly recognizing the sleeping pattern of the user.

  10. Capacitive Sensors for Feedback Control of Microfluidic Devices

    Science.gov (United States)

    Chen, J. Z.; Darhuber, A. A.; Troian, S. M.; Wagner, S.

    2003-11-01

    Automation of microfluidic devices based on thermocapillary flow [1] requires feedback control and detection techniques for monitoring the location, and ideally also composition and volume of liquid droplets. For this purpose we have developed a co-planar capacitance technique with a sensitivity of 0.07 pF at a frequency of 370 kHz. The variation in capacitance due to the presence of a droplet is monitored by the output frequency of an RC relaxation oscillator consisting of two inverters, one resistor and one capacitor. We discuss the performance of this coplanar sensor as a function of the electrode dimensions and geometry. These geometric variables determine the electric field penetration depth within the liquid, which in our studies ranged from 30 to 450 microns. Numerical solutions for the capacitance corresponding to the exact fabricated geometry agree very well with experimental data. An approximate analytic solution, which ignores fringe field effects, provides a simple but excellent guide for design development. [1] A. A. Darhuber et al., Appl. Phys. Lett. 82, 657 (2003).

  11. Quaternary sediment architecture in the Orkhon Valley (central Mongolia) inferred from capacitive coupled resistivity and Georadar measurements

    Science.gov (United States)

    Mackens, Sonja; Klitzsch, Norbert; Grützner, Christoph; Klinger, Riccardo

    2017-09-01

    Detailed information on shallow sediment distribution in basins is required to achieve solutions for problems in Quaternary geology, geomorphology, neotectonics, (geo)archaeology, and climatology. Usually, detailed information is obtained by studying outcrops and shallow drillings. Unfortunately, such data are often sparsely distributed and thus cannot characterise entire basins in detail. Therefore, they are frequently combined with remote sensing methods to overcome this limitation. Remote sensing can cover entire basins but provides information of the land surface only. Geophysical methods can close the gap between detailed sequences of the shallow sediment inventory from drillings at a few spots and continuous surface information from remote sensing. However, their interpretation in terms of sediment types is often challenging, especially if permafrost conditions complicate their interpretation. Here we present an approach for the joint interpretation of the geophysical methods ground penetrating radar (GPR) and capacitive coupled resistivity (CCR), drill core, and remote sensing data. The methods GPR and CCR were chosen because they allow relatively fast surveying and provide complementary information. We apply the approach to the middle Orkhon Valley in central Mongolia where fluvial, alluvial, and aeolian processes led to complex sediment architecture. The GPR and CCR data, measured on profiles with a total length of about 60 km, indicate the presence of two distinct layers over the complete surveying area: (i) a thawed layer at the surface, and (ii) a frozen layer below. In a first interpretation step, we establish a geophysical classification by considering the geophysical signatures of both layers. We use sedimentological information from core logs to relate the geophysical classes to sediment types. This analysis reveals internal structures of Orkhon River sediments, such as channels and floodplain sediments. We also distinguish alluvial fan deposits and

  12. Frequency Splitting Elimination and Cross-Coupling Rejection of Wireless Power Transfer to Multiple Dynamic Receivers

    Directory of Open Access Journals (Sweden)

    Narayanamoorthi R.

    2018-01-01

    Full Text Available Simultaneous power transfer to multiple receiver (Rx system is one of the key advantages of wireless power transfer (WPT system using magnetic resonance. However, determining the optimal condition to uniformly transfer the power to a selected Rx at high efficiency is the challenging task under the dynamic environment. The cross-coupling and frequency splitting are the dominant issues present in the multiple Rx dynamic WPT system. The existing analysis is performed by considering any one issue present in the system; on the other hand, the cross coupling and frequency splitting issues are interrelated in dynamic Rx’s, which requires a comprehensive design strategy by considering both the problems. This paper proposes an optimal design of multiple Rx WPT system, which can eliminate cross coupling, frequency splitting issues and increase the power transfer efficiency (PTE of selected Rx. The cross-coupling rejection, uniform power transfer is performed by adding an additional relay coil and independent resonance frequency tuning with capacitive compensation to each Rx unit. The frequency splitting phenomena are eliminated using non-identical transmitter (Tx and Rx coil structure which can maintain the coupling between the coil under the critical coupling limit. The mathematical analysis of the compensation capacitance calculation and optimal Tx coil size identification is performed for the four Rx WPT system. Finite element analysis and experimental investigation are carried out for the proposed design in static and dynamic conditions.

  13. A branch-and-cut-and-price algorithm for the mixed capacitated general routing problem

    DEFF Research Database (Denmark)

    Bach, Lukas; Wøhlk, Sanne; Lysgaard, Jens

    2016-01-01

    In this paper, we consider the Mixed Capacitated General Routing Problem which is a combination of the Capacitated Vehicle Routing Problem and the Capacitated Arc Routing Problem. The problem is also known as the Node, Edge, and Arc Routing Problem. We propose a Branch-and-Cut-and-Price algorithm...

  14. Capacitive properties of polypyrrole/activated carbon composite

    Directory of Open Access Journals (Sweden)

    Porjazoska-Kujundziski Aleksandra

    2014-01-01

    Full Text Available Electrochemical synthesis of polypyrrole (PPy and polypyrrole / activated carbon (PPy / AC - composite films, with a thickness between 0.5 and 15 μm were performed in a three electrode cell containing 0.1 mol dm-3 Py, 0.5 mol dm-3 NaClO4 dissolved in ACN, and dispersed particles of AC (30 g dm-3. Electrochemical characterization of PPy and PPy / AC composites was performed using cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS techniques. The linear dependences of the capacitance (qC, redox capacitance (qred, and limiting capacitance (CL of PPy and PPy / AC - composite films on their thickness (L, obtained by electrochemical and impedance analysis, indicate a nearly homogeneous distribution of the incorporated AC particles in the composite films (correlation coefficient between 0.991 and 0.998. The significant enhancement of qC, qred, and CL, was observed for composite films (for ∼40 ± 5% in respect to that of the “pure” PPy. The decreased values of a volume resistivity in the reduced state of the composite film, ρ = 1.3 ⋅ 106 Ω cm (for L = 7.5 μm, for two orders of magnitude, compared to that of PPy - film with the same thickness, ρ ∼ 108 Ω cm, was also noticed.

  15. Flexible PVDF ferroelectric capacitive temperature sensor

    KAUST Repository

    Khan, Naveed; Omran, Hesham; Yao, Yingbang; Salama, Khaled N.

    2015-01-01

    sensitivity of 16pF/°C. The linearity measurement of the capacitance-temperature relation shows less than 0.7°C error from a best fit straight line. An LC oscillator based temperature sensor is demonstrated based on this capacitor.

  16. Ultrahigh Temperature Capacitive Pressure Sensor

    Science.gov (United States)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  17. A Possible Minimum Toy Model with Negative Differential Capacitance for Self-sustained Current Oscillation

    International Nuclear Information System (INIS)

    Xiong Gang; Sun Zhouzhou; Wang Xiangrong

    2007-01-01

    We generalize a simple model for superlattices to include the effect of differential capacitance. It is shown that the model always has a stable steady-state solution (SSS) if all differential capacitances are positive. On the other hand, when negative differential capacitance is included, the model can have no stable SSS and be in a self-sustained current oscillation behavior. Therefore, we find a possible minimum toy model with both negative differential resistance and negative differential capacitance which can include the phenomena of both self-sustained current oscillation and I-V oscillation of stable SSSs.

  18. Intrinsic Low Hysteresis Touch Mode Capacitive Pressure Sensor

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio; Pedersen, Thomas; Hansen, Ole

    2011-01-01

    Hysteresis has always been one of the main concerns when fabricating touch mode capacitive pressure sensors (TMCPS). This phenomenon can be fought at two different levels: during fabrication or after fabrication with the aid of a dedicated signal conditioning circuit. We will describe...... a microfabrication step that can be introduced in order to reduce drastically the hysteresis of this type of sensors without compromising their sensitivity. Medium-high range (0 to 10 bar absolute pressure) TMCPS with a capacitive signal span of over 100pF and less than 1 % hysteresis in the entire pressure range...

  19. A multichannel portable ECG system with capacitive sensors

    International Nuclear Information System (INIS)

    Oehler, M; Schilling, M; Ling, V; Melhorn, K

    2008-01-01

    Capacitive sensors can be employed for measuring the electrocardiogram of a human heart without electric contact with the skin. This configuration avoids contact problems experienced by conventional electrocardiography. In our studies, we integrated these capacitive electrocardiogram electrodes in a 15-sensor array and combined this array with a tablet personal computer. By placing the system on the patient's body, we can measure a 15-channel electrocardiogram even through clothes and without any preparation. The goal of this development is to provide a new diagnostic tool that offers the user a reproducible, easy access to a fast and spatially resolved diagnostic 'heart view'

  20. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.

    Science.gov (United States)

    Sun, Fei; Liu, Xiaoyan; Wu, Hao Bin; Wang, Lijie; Gao, Jihui; Li, Hexing; Lu, Yunfeng

    2018-05-02

    To circumvent the imbalances of electrochemical kinetics and capacity between Li + storage anodes and capacitive cathodes for lithium-ion capacitors (LICs), we herein demonstrate an efficient solution by boosting the capacitive charge-storage contributions of carbon electrodes to construct a high-performance LIC. Such a strategy is achieved by the in situ and high-level doping of nitrogen atoms into carbon nanospheres (ANCS), which increases the carbon defects and active sites, inducing more rapidly capacitive charge-storage contributions for both Li + storage anodes and PF 6 - storage cathodes. High-level nitrogen-doping-induced capacitive enhancement is successfully evidenced by the construction of a symmetric supercapacitor using commercial organic electrolytes. Coupling a pre-lithiated ANCS anode with a fresh ANCS cathode enables a full-carbon LIC with a high operating voltage of 4.5 V and high energy and power densities thereof. The assembled LIC device delivers high energy densities of 206.7 and 115.4 Wh kg -1 at power densities of 0.225 and 22.5 kW kg -1 , respectively, as well as an unprecedented high-power cycling stability with only 0.0013% capacitance decay per cycle within 10 000 cycles at a high power output of 9 kW kg -1 .