WorldWideScience

Sample records for straw hemicellulose hydrolysate

  1. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate

    DEFF Research Database (Denmark)

    López-Linares, Juan Carlos; Romero, Inmaculada; Cara, Cristobal

    2018-01-01

    This study evaluated the possibility of using rapeseed straw hemicellulosic hydrolysate as a fermentation medium for xylitol production. Two yeast strains, namely Debaryomyces hansenii and Candida guilliermondii, were used for this bioconversion process and their performance to convert xylose...

  2. Fractionation of hemicelluloses and lignin from rice straw by combining autohydrolysis and optimised mild organosolv delignification

    NARCIS (Netherlands)

    Moniz, Patrícia; Lino, João; Duarte, Luís C.; Roseiro, Luísa B.; Boeriu, Carmen G.; Pereira, Helena; Carvalheiro, Florbela

    2015-01-01

    An integrated strategy was followed to valorise rice straw, one of the most relevant biomass feedstocks available worldwide, to selectively recover solubilised hemicelluloses and lignin. The pathway encompassed the use of autohydrolysis to hydrolyse the hemicelluloses and an ethanol-based

  3. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis

    DEFF Research Database (Denmark)

    Garde, Arvid; Jonsson, Gunnar Eigil; Schmidt, A. S.

    2002-01-01

    Lactic acid production by Lactobacillus brevis and Lactobacillus pentosus on a hemicellulose hydrolysate (HH) of wet-oxidized wheat straw was evaluated. The potential of 11-12 g/l fermentable sugars was released from the HH through either enzymatic or acidic pretreatment. Fermentation of added......% of the theoretical maximum yield after enzymatic, or acid treatment of HH, respectively. Individually, neither of the two strains were able to fully utilize the relatively broad spectra of sugars released by the acid and enzyme treatments; however, lactic acid production increased to 95% of the theoretical maximum...... yield by co-inoculation of both strains. Xylulose was the main sugar released after enzymatic treatment of HH with Celluclast(R). Lb. brevis was able to degrade xylobiose, but was unable to assimilate xylulose, whereas Lb. pentosus was able to assimilate xylulose but unable to degrade xylobiose. (C...

  4. Fermentation of pretreated corncob hemicellulose hydrolysate to ...

    African Journals Online (AJOL)

    academicjournal

    single carbon source because the ethanol conversion of glucose was higher than that of xylose. Using parallel fermentation of corncob hemicellulose acid hydrolysate and the artificially prepared hydrolysate, it was found that complex components in the corncob hemicellulose acid hydrolysate probably promoted ethanol ...

  5. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  6. Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii

    Directory of Open Access Journals (Sweden)

    Solange Inês Mussatto

    2005-05-01

    Full Text Available Xylitol was produced by Candida guilliermondii from charcoal-treated and untreated rice straw hemicellulosic hydrolysate with or without nutrients (ammonium sulphate, calcium chloride, rice bran extract. Both, xylitol yield and volumetric productivity decreased significantly when the nutrients were added to treated and untreated hydrolysates. In the treated hydrolysate, the efficiency of xylose conversion to xylitol was 79% when the nutrients were omitted. The results demonstrated that rice straw hemicellulosic hydrolysate treated with activated charcoal was a cheap source of xylose and other nutrients for xylitol production by C. guilliermondii. The non-necessity of adding nutrients to the hydrolysate media would be very advantageous since the process becomes less costly.Este trabalho avaliou a produção de xilitol pela levedura Candida guilliermondii, a partir de hidrolisado hemicelulósico de palha de arroz não tratado e tratado com carvão ativo, ambos suplementados ou não com nutrientes (sulfato de amônio, cloreto de cálcio e extrato de farelo de arroz. Os resultados mostraram que tanto o rendimento como a produtividade volumétrica em xilitol diminuíram quando os nutrientes foram adicionados em ambos hidrolisados, tratado e não tratado. Em hidrolisado tratado, a eficiência de conversão de xilose em xilitol foi de 79% quando em ausência de nutrientes. Estes resultados mostram que o hidrolisado hemicelulósico de palha de arroz tratado com carvão ativo é uma fonte barata de xilose e outros nutrientes, para a produção de xilitol por Candida guilliermondii. A não necessidade de adicionar nutrientes ao meio a base de hidrolisado é muito vantajosa, uma vez que o processo se torna mais econômico.

  7. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.

    Science.gov (United States)

    Jia, Honghua; Shao, Tingting; Zhong, Chao; Li, Hengxiang; Jiang, Min; Zhou, Hua; Wei, Ping

    2016-10-20

    In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface methodology: time of 90min, temperature of 60°C, liquid/solid ratio of 12 (v/w), and TBAH concentration of 55%, resulting in a hemicellulose extraction of 80.07% under these conditions. The FT-IR spectrum of the extracted corncob hemicellulose is consistent with that of birchwood hemicellulose and exhibits specific absorbance of hemicelluloses at 1380, 1168, 1050, and 900cm(-1). In addition, we found that C. tropicalis can ferment the resulting corncob hemicellulosic hydrolysate with pH adjustment and activated charcoal treatment leading to a high xylitol yield and productivity of 0.77g/g and 2.45g/(Lh), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Thomsen, A.B.; Ahring, Birgitte Kiær

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g....../l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...

  9. Pretreatment and fermentation strategies to overcome the toxicity of acetic acid in hemicellulosic hydrolysates

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Acetic acid is one of the most important toxic compounds present in hemicellulosic hydrolysates. In order to overcome this problem, several strategies were studied for both biomass pretreatment and fermentation steps. Biomass deacetylation by mild alkaline pretreatment or using high pressure CO2...... where acetic acid can also be integrated as a valuable final product. For the fermentation step, it is well known that hemicellulosic hydrolysates usually need to be detoxified prior use as fermentation medium in order to improve the performance of the microorganism to convert sugars in the product...... of interest. Although detoxification improves the fermentability of hydrolysates, this additional step adds cost and complexity to the process and generates extra waste products. In this sense, the adaptation of the fermenting microorganism to increased concentrations of acetic acid can be considered...

  10. Hemicellulose-derived sugars solubilisation of rape straw. Cofermentation of pentoses and hexoses by Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    López-Linares, J.C.; Cara-Corpas, C.; Ruiz-Ramos, E.; Moya-Vilar, M.; Castro-Galiano, E.; Romero-Pulido, I.

    2015-07-01

    Bioconversion of hemicellulose sugars is essential for increasing fuel ethanol yields from lignocellulosic biomass. We report for the first time with rape straw, bioethanol production from hemicellulose sugars. Rape straw was pretreated at mild conditions with sulfuric acid to solubilize the hemicellulose fraction. This pretreatment allows obtaining a prehydrolysate, consisting basically in a solution of monomeric hemicellulosic sugars, with low inhibitor concentrations. The remaining water insoluble solid constitutes a cellulose-enriched, free of extractives material. The influence of temperature (120ºC and 130ºC), acid concentration (2-4% w/v) and pretreatment time (30-180 min) on hemicellulose-derived sugars solubilisation was evaluated. The highest hemicellulosic sugars recovery, 72.3%, was achieved at 130ºC with 2% sulfuric acid and 60 min. At these conditions, a concentrated sugars solution, 52.4 g/L, was obtained after three acid consecutive contacts, with 67% xylose and acetic acid concentration above 4.5 g/L. After a detoxification step by activated charcoal or ion-exchange resin, prehydrolysate was fermented by ethanologenic Escherichia coli. An alcoholic solution of 25 g/L and 86% of theoretical ethanol yield was attained after 144 h when the prehydrolysate was detoxified by ion-exchange resin. The results obtained in the present work show sulfuric acid pretreatment under mild conditions and E. coli as an interesting process to exploit hemicellulosic sugars in rape straw. (Author)

  11. Hemicellulose-derived sugars solubilisation of rape straw. Cofermentation of pentoses and hexoses by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Juan Carlos Lopez-Linares

    2015-09-01

    Full Text Available Bioconversion of hemicellulose sugars is essential for increasing fuel ethanol yields from lignocellulosic biomass. We report for the first time with rape straw, bioethanol production from hemicellulose sugars. Rape straw was pretreated at mild conditions with sulfuric acid to solubilize the hemicellulose fraction. This pretreatment allows obtaining a prehydrolysate, consisting basically in a solution of monomeric hemicellulosic sugars, with low inhibitor concentrations. The remaining water insoluble solid constitutes a cellulose-enriched, free of extractives material. The influence of temperature (120ºC and 130ºC, acid concentration (2-4% w/v and pretreatment time (30-180 min on hemicellulose-derived sugars solubilisation was evaluated. The highest hemicellulosic sugars recovery, 72.3%, was achieved at 130ºC with 2% sulfuric acid and 60 min. At these conditions, a concentrated sugars solution, 52.4 g/L, was obtained after three acid consecutive contacts, with 67% xylose and acetic acid concentration above 4.5 g/L. After a detoxification step by activated charcoal or ion-exchange resin, prehydrolysate was fermented by ethanologenic Escherichia coli. An alcoholic solution of 25 g/L and 86% of theoretical ethanol yield was attained after 144 h when the prehydrolysate was detoxified by ion-exchange resin. The results obtained in the present work show sulfuric acid pretreatment under mild conditions and E. coli as an interesting process to exploit hemicellulosic sugars in rape straw.

  12. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by ¤Thermoanaerobacter mathranii¤

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, B.K.

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g....../l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...

  13. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    A limited number of bacteria, yeast and fungi can convert hemicellulose or its monomers (xylose, arabinose, mannose and galactose) into ethanol with a satisfactory yield and productivity. In the present study we tested a number of thermophilic enrichment cultures, and new isolates of thermophilic...... Of D-Xylose into ethanol; (ii) test for viability and ethanol production in pretreated wheat straw hemicellulose hydrolysate; (iii) test for tolerance against high D-xylose concentrations. A total of 86 enrichment cultures and 58 pure cultures were tested and five candidates were selected which...

  14. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Olsson, Lisbeth; Thomsen, A.B.

    2003-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195degreesC) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low......-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested...

  15. Production of Transglutaminase by Streptoverticillium ladakanum NRRL-3191 Grown on Media Made from Hydrolysates of Sorghum Straw

    Directory of Open Access Journals (Sweden)

    Simón J. Téllez-Luis

    2004-01-01

    Full Text Available The aim of this work was to elucidate the suitability of the biotechnological production of transglutaminase by Streptoverticillium ladakanum NRRL-3191 grown on media made from hydrolysates of sorghum straw. Transglutaminase activity was determined in fermentations on sorghum straw hydrolysates and commercial xylose with initial xylose 10, 20 or 30 g/L. Using media containing commercial xylose 20 g/L, transglutaminase activity up to 0.282 U/mL was obtained in 96 h. Using neutralized, charcoal-treated hydrolysates of sorghum straw with xylose 30 g/L sterilized in autoclave at 121 °C, up to 0.155 U/mL was obtained in 96 h. However, when the sterilization was performed by filtration, using the same hydrolysates with xylose 20 g/L, up to 0.348 U/mL was obtained in 72 h. It was demonstrated that hydrolysates of sorghum straw are suitable media for transglutaminase production by Streptoverticillium ladakanum.

  16. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation...... in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells....... density with the hydrolysate was higher than the one with only xylan (120 mW m−2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted...

  17. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  18. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension suppleme......The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...... hydrolysis of filter cake from wet-oxidised wheat straw for 48 h with an enzyme loading of 5 FPU/g biomass resulted in glucose yields from cellulose of 58% (w/w) and 39% (w/w) using enzymes produced by R brasilianum and a commercial enzyme mixture, respectively. At higher enzyme loading (25 FPU/g biomass...

  19. Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries.

    Science.gov (United States)

    Silva-Fernandes, T; Santos, J C; Hasmann, F; Rodrigues, R C L B; Izario Filho, H J; Felipe, M G A

    2017-11-01

    Among the major challenges for hemicellulosic hydrolysate application in fermentative processes, there is the presence of toxic compounds generated during the pretreatment of the biomass, which can inhibit microbial growth. Therefore, the development of efficient, biodegradable and cost-effective detoxification methods for lignocellulosic hydrolysates is crucial. In this work, two tannin-based biopolymers (called A and B) were tested in the detoxification of sugarcane bagasse hydrolysate for subsequent fermentation by Candida guilliermondii. The effects of biopolymer concentration, pH, temperature, and contact time were studied using a 2 4 experimental design for both biopolymers. Results revealed that the biopolymer concentration and the pH were the most significant factors in the detoxification step. Biopolymer A removed phenolics, 5-hydroxymethylfurfural, and nickel from the hydrolysate more efficiently than biopolymer B, while biopolymer B was efficient to remove chromium at 15% (v/v). Detoxification enhanced the fermentation of sugarcane bagasse hydrolysate, and the biopolymers showed different influences on the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  1. Biogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Murto, Marika

    2013-01-01

    This research evaluated biogas production in batch and UASB reactors from pilot-scale acid catalysed steam pretreated and enzymatic hydrolysed wheat straw. The results showed that the pretreatment was efficient and, a sugar yield of 95% was obtained. The pretreatment improved the methane yield (0.28 m(3)/kg VS(added)) by 57% compared to untreated straw. Treatment of the straw hydrolysate with nutrient supplementation in a UASB reactor resulted in a high methane production rate, 2.70 m(3)/m(3).d at a sustainable OLR of 10.4 kg COD/m(3).d and with a COD reduction of 94%. Alternatively, co-digestion of the straw and seaweed hydrolysates in a UASB reactor also maintained a stable anaerobic process and can thus reduce the cost of nutrients addition. We have shown that biogas production from wheat straw can be competitive by pretreatment, high methane production rate in UASB reactors and also by co-digestion with seaweed hydrolysate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity

    DEFF Research Database (Denmark)

    Thomsen, M.H.; Thygesen, A.; Christensen, B.H.

    2006-01-01

    , and steam pretreatment) with a capacity of 100 kg/h was constructed and tested for pretreatment of wheat straw for ethanol production. Highest hemicellulose (C5 sugar) recovery and extraction of hemicellulose sugars was obtained at 190 degrees C whereas highest C6 sugar yield was obtained at 200 degrees C....... Lowest toxicity of hydrolysates was observed at 190 degrees C; however, addition of H2O2 improved the fermentability and sugar recoveries at the higher temperatures. The estimated total ethanol production was 223 kg/t straw assuming utilisation of both C6 and C5 during fermentation, and 0.5 g ethanol....../g sugar....

  3. Hydrolysis of solubilized hemicellulose derived from wet-oxidized wheat straw by a mixture of commercial fungal enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Skammelsen Schmidt, Anette; Thomsen, Alle Belinda; Woidemann, Anders [Risoe National Lab. (Denmark); Tenkanen, Maija [VTT Biotechnology and Food Research (Finland)

    1998-04-01

    The enzymatic hydrolysis of the solubilized hemicellulose fraction from wet-oxidized wheat straw was investigated for quantification purposes. An optimal hydrolysis depends on factors such as composition of the applied enzyme mixture and the hydrolysis conditions (enzyme loading, hydrolysis time, pH-value, and temperature). A concentrated enzyme mixture was used in this study prepared at VTT Biotechnology and Food Research, Finland, by mixing four commercial enzyme preparations. No distinctive pH-value and temperature optima were identified after a prolonged incubation of 24 hours. By reducing the hydrolysis time to 2 hours a temperature optimum was found at 50 deg. C, where a pH-value higher than 5.2 resulted in reduced activity. An enzyme-substrate-volume-ratio of 0.042, a pH-value of 5.0, and a temperature of 50 deg. C were chosen as the best hydrolysis conditions due to an improved monosaccharide yield. The hydrolysis time was chosen to be 24 hours to ensure equilibrium and total quantification. Even under the best hydrolysis conditions, the overall sugar yield from the enzymatic hydrolysis was only 85% of that of the optimal acid hydrolysis. The glucose yield were approximately the same for the two types of hydrolyses, probably due to the high cellulase activity in the VTT-enzyme mixture. For xylose and arabinose the enzymatic hydrolysis yielded only 80% of that of the acid hydrolysis. As the pentoses existed mainly as complex polymers their degradation required many different enzymes, some of which might be missing from the VTT-enzyme mixture. Furthermore, the removal of side-choins from the xylan backbone during the wet-oxidation pretreatment process might enable the hemicellulosic polymers to interact and precipitate, hence, reducing the enzymatic digestibility of the hemicellulose. (au) 8 tabs., 10 ills., 65 refs.

  4. Model Study To Assess Softwood Hemicellulose Hydrolysates as the Carbon Source for PHB Production in Paraburkholderia sacchari IPT 101.

    Science.gov (United States)

    Dietrich, Karolin; Dumont, Marie-Josée; Schwinghamer, Timothy; Orsat, Valérie; Del Rio, Luis F

    2018-01-08

    Softwood hemicellulose hydrolysates are a cheap source of sugars that can be used as a feedstock to produce polyhydroxybutyrates (PHB), which are biobased and compostable bacterial polyesters. To assess the potential of the hemicellulosic sugars as a carbon source for PHB production, synthetic media containing softwood hemicellulose sugars (glucose, mannose, galactose, xylose, arabinose) and the potentially inhibitory lignocellulose degradation products (acetic acid, 5-hydroxymethylfurfural (HMF), furfural, and vanillin) were fermented with the model strain Paraburkholderia sacchari IPT 101. Relative to pure glucose, individual fermentation for 24 h with 20 g/L mannose or galactose exhibited maximum specific growth rates of 97% and 60%, respectively. On the other hand, with sugar mixtures of glucose, mannose, galactose, xylose, and arabinose, the strain converted all sugars simultaneously to reach a maximum PHB concentration of 5.72 g/L and 80.5% PHB after 51 h. The addition of the inhibitor mixture at the following concentration, sodium acetate (2.11 g/L), HMF (0.67 g/L), furfural (0.66 g/L), and vanillin (0.93 g/L), to the sugar mixture stopped the growth entirely within 24 h. Individually, the inhibitors either had no effect or only reduced growth. Moreover, it was found that a bacterial inoculum with high initial cell density (optical density, OD ≥ 5.6) could overcome the growth inhibition to yield an OD of 13 within 24 h. Therefore, softwood hemicellulose sugars are viable carbon sources for PHB production. Nevertheless, real softwood hemicellulose hydrolysates need detoxification or a high inoculum to overcome inhibitory effects and allow bacterial growth.

  5. Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production.

    Science.gov (United States)

    Hernández-Pérez, A F; Costa, I A L; Silva, D D V; Dussán, K J; Villela, T R; Canettieri, E V; Carvalho, J A; Soares Neto, T G; Felipe, M G A

    2016-01-01

    Biotechnological production of xylitol is an attractive route to add value to a sugarcane biorefinery, through utilization of the hemicellulosic fraction of sugarcane straw, whose availability is increasing in Brazil. Herein, supplementation of the sugarcane straw hemicellulosic hydrolyzate (xylose 57gL(-1)) with maltose, sucrose, cellobiose or glycerol was proposed, and their effect as co-substrates on xylitol production by Candida guilliermondii FTI 20037 was studied. Sucrose (10gL(-1)) and glycerol (0.7gL(-1)) supplementation led to significant increase of 8.88% and 6.86% on xylose uptake rate (1.11gL(-1)h(-1) and 1.09gL(-1)), respectively, but only with sucrose, significant increments of 12.88% and 8.69% on final xylitol concentration (36.11gL(-1)) and volumetric productivity (0.75gL(-1)h(-1)), respectively, were achieved. Based on these results, utilization of complex sources of sucrose, derived from agro-industries, as nutritional supplementation for xylitol production can be proposed as a strategy for improving the yeast performance and reducing the cost of this bioprocess by replacing more expensive nutrients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.

    Science.gov (United States)

    Su, Buli; Wu, Mianbin; Zhang, Zhe; Lin, Jianping; Yang, Lirong

    2015-09-01

    A metabolically engineered Escherichia coli has been constructed for the production of xylitol, one of the top 12 platform chemicals from agricultural sources identified by the US Department of Energy. An optimal plasmid was constructed to express xylose reductase from Neurospora crassa with almost no inclusion bodies at relatively high temperature. The phosphoenolpyruvate-dependent glucose phosphotransferase system (ptsG) was disrupted to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by deleting the xylose isomerase (xylA) and xylulose kinase (xylB) genes. The putative pathway for xylitol phosphorylation was also blocked by disrupting the phosphoenolpyruvate-dependent fructose phosphotransferase system (ptsF). The xylitol producing recombinant E. coli allowed production of 172.4 g L(-1) xylitol after 110 h of fed-batch cultivation with an average productivity of 1.57 g L(-1) h(-1). The molar yield of xylitol to glucose reached approximately 2.2 (mol xylitol mol(-1) glucose). Furthermore, the recombinant strain also produced about 150 g L(-1) xylitol from hemicellulosic sugars in modified M9 minimal medium and the overall productivity was 1.40 g L(-1) h(-1), representing the highest xylitol concentration and productivity reported to date from hemicellulosic sugars using bacteria. Thus, this engineered E. coli is a candidate for the development of efficient industrial-scale production of xylitol from hemicellulosic hydrolysate. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, QiuZhuo [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); Cai, WeiMin [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240 (China)

    2008-12-15

    To minimize the cost of cellulase production, both pretreatment of the rice straw and on-site enzyme production were realized. Rice straw was first pretreated by 2% NaOH, which could increase cellulose by 54.83%, and decreased hemicellulose by 61.07% and lignin by 36.24%, respectively. Detected by SEM, significant morphological changes were observed in the tissue. Through orthogonal experiments, temperature 35 C, initial pH value 4.5 and the rotation speed of shaking bed 180 rpm were determined to be the optimal conditions for hydrolysis of rice straw by Trichoderma reesei ZM4-F3. After hydrolysis for 96 h, the production of FPA and reducing sugars could achieve 2.231 g l{sup -1} and 12.92 U ml{sup -1}, respectively. Moreover, T. reesei ZM4-F3 can decompose 68.21% of pretreated rice straw after 120 h of hydrolysis. By GC analysis, it showed that glucose is the main component of the enzymatic hydrolysates, which made GC seem to be more effective than the DNS method for analysis of the enzymatic hydrolysates as it can detect the concentration of each kind of monosaccharide more accurately. (author)

  8. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate.

    Science.gov (United States)

    Zhou, Xin; Zhou, Xuelian; Tang, Xiusheng; Xu, Yong

    2018-08-01

    One of the major obstacles in process of lignocellulosic biorefinery is the utilization of pre-hydrolysate from pre-treatment. Although lignocellulosic pre-hydrolysate can serve as an economic starting material for xylonic acid production, the advancement of xylonic acid or xylonate is still limited by further commercial value or applications. In the present study, xylose in the high concentration wheat straw pre-hydrolysate was first in-situ biooxidized to xylonate by Gluconobacter oxydans. To meet the needs of commercialization, crude powdered calcium xylonate was prepared by drying process and calcium xylonate content in the prepared crude product was more than 70%. Then, the calcium xylonate product was evaluated as concrete admixture without any complex purification steps and the results demonstrated that xylonate could improve the performance of concrete. Overall, the crude xylonate product directly produced from low-cost wheat straw pre-hydrolysate can potentially be developed as retarding reducer, which could subsequently benefit lignocellulosic biorefinery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction.

    Science.gov (United States)

    Brandenburg, Jule; Poppele, Ieva; Blomqvist, Johanna; Puke, Maris; Pickova, Jana; Sandgren, Mats; Rapoport, Alexander; Vedernikovs, Nikolajs; Passoth, Volkmar

    2018-05-26

    This study investigates biofuel production from wheat straw hydrolysate, from which furfural was extracted using a patented method developed at the Latvian State Institute of Wood Chemistry. The solid remainder after furfural extraction, corresponding to 67.6% of the wheat straw dry matter, contained 69.9% cellulose of which 4% was decomposed during the furfural extraction and 26.3% lignin. Enzymatic hydrolysis released 44% of the glucose monomers in the cellulose. The resulting hydrolysate contained mainly glucose and very little amount of acetic acid. Xylose was not detectable. Consequently, the undiluted hydrolysate did not inhibit growth of yeast strains belonging to Saccharomyces cerevisiae, Lipomyces starkeyi, and Rhodotorula babjevae. In the fermentations, average final ethanol concentrations of 23.85 g/l were obtained, corresponding to a yield of 0.53 g ethanol per g released glucose. L. starkeyi generated lipids with a rate of 0.08 g/h and a yield of 0.09 g per g consumed glucose. R. babjevae produced lipids with a rate of 0.18 g/h and a yield of 0.17 per g consumed glucose. In both yeasts, desaturation increased during cultivation. Remarkably, the R. babjevae strain used in this study produced considerable amounts of heptadecenoic, α,- and γ-linolenic acid.

  10. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate

    Science.gov (United States)

    Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang

    2011-01-01

    Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. PMID:21318171

  11. Use of fractional factorial design for selection of nutrients for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolysate

    Directory of Open Access Journals (Sweden)

    J.B. Almeida e Silva

    1998-09-01

    Full Text Available A eucalyptus hemicellulose fraction was hydrolysed by treating eucalyptus wood chips with sulfuric acid. The hydrolysate was used as the substrate to grow Paecilomyces variotii IOC-3764 cultured for 72 or 96 hours. The influence of the inhibitors, nutrients and fermentation time was verified by a 28-4 and, subsequently, a 25-1 fractional factorial design. The effects of the inhibitors (acetic acid and furfural, nutrients (rice bran, urea, potassium nitrate, ammonium sulfate, magnesium sulfate and sodium phosphate and fermentation time were investigated. The highest yield (10.59 g/L of biomass was obtained when the microorganisms were cultivated for 72 hours in a medium composed of 30 g/L rice bran, 9.4 g/L ammonium sulfate (2 g/L nitrogen and 2 g/L sodium phosphate.

  12. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Cotta, Michael A.

    2008-01-01

    In these studies, alkaline peroxide pretreatment of wheat straw was investigated. Pretreated wheat straw was hydrolyzed using cellulolytic and xylanolytic enzymes, and the hydrolysate was used to produce butanol using Clostridium beijerinckii P260. The culture produced less than 2.59 g L -1 acetone-butanol-ethanol (ABE) from alkaline peroxide wheat straw hydrolysate (APWSH) that had not been treated to reduce salt concentration (a neutralization product). However, fermentation was successful after inhibitors (salts) were removed from the hydrolysate by electrodialysis. A control glucose fermentation resulted in the production of 21.37 g L -1 ABE, while salt removed APWSH resulted in the production of 22.17 g L -1 ABE. In the two fermentations, reactor productivities were 0.30 and 0.55 g L -1 h -1 , respectively. A comparison of use of different substrates (corn fiber, wheat straw) and different pretreatment techniques (dilute sulfuric acid, alkaline peroxide) suggests that generation of inhibitors is substrate and pretreatment specific

  13. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  14. Size and Persistence of the Microbial Biomass Formed during the Humification of Glucose Hemicellulose Cellulose, and Straw in Soils Containing Different Amounts of Clay

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1983-01-01

    14C-labelled substrates were incubated at 20°C in 4 soils with clay contents ranging from 6 to 34%. Glucose was most readily decomposed, followed in order by hemicellulose, cellulose, maize straw, and barley straw. After the first 10 days of incubation, about 60% of the glucose-C had left the soils...... as CO2, compared with only 23% of the barley-C.The humified matter that remained in the soils after 3 months decayed at almost the same rate whether the origin of the matter was glucose, hemicellulose, cellulose or straw; this rate was, on the whole, independent of the caly content of the soils. Half......-C percentages increased with the clay content of the soils.The biomass was determined by fumigation with CHCl3 according to Jenkinson. After 3 months an average of 17% of the residual labelled C was in biomass; the values ranged from 37% when the labelled C was added as glucose to 2–9% when added as barley...

  15. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2008-01-01

    was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has......Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding...... to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate...

  16. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.

    Science.gov (United States)

    Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue

    2017-11-01

    Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.

  17. Liquid fuel production from hemicellulose. 2 Volumes

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    Hemicellulose was derived from a variety of pretreated wood substrates. A variety of different fungi was screened for the ability of their culture filtrates to hydrolyse hemicellulose to its composite sugars. Three strains of Clostridia were screened to see which could produce higher amounts of solvents from those sugars. C. acetobutylicum proved to produce highest amounts of butanol and conditions for maximum solvent production by this anaerobe were defined. Six strains of facultative anaerobes were screened for their ability to produce power solvents from hemicellulose derived sugars. Klebsiella pneumoniae could efficiently utilize all the major sugars present in wood hemicellulose with 2,3-butanediol being the major end product. The conditions for maximum diol production by K. pneumoniae grown on sugars normally found in hemicellulose hydrolysates were defined. The utilization of wood hemicellulose hydrolyzates by microorganisms for the production of liquid fuels was investigated. Pretreatment of aspen wood by steam-explosion was optimized with respect to maximizing the pentosan yields in the water-soluble fractions of steam-treated substrates. These fractions were then hydrolyzed by dilute sulphuric acid or by the xylanase enzyme(s) present in the culture filtrates of Trichoderma harzianum. The relative efficiencies of hydrolysis were compared with respect to the release of reducing sugars and monosaccharides. The hemicellulose hydrolyzates were then used as substrates for fermentation. Butanediol yields of 0.4-0.5 g per g of sugar consumed were achieved using K. pneumoniae up to 0.16 g butanol could be attained per g of hemicellulose sugar utilized. 102 refs., 50 figs., 169 tabs.

  18. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC)

    DEFF Research Database (Denmark)

    Thygesen, Anders; Marzorati, Massimo; Boon, Nico

    2011-01-01

    In a microbial electrolysis cell (MEC), hydrolysate produced by hydrothermal treatment of wheat straw was used for hydrogen production during selective recovery of phenols. The average H2 production rate was 0.61 m3 H2/m3 MEC·day and equivalent to a rate of 0.40 kg COD/m3 MEC·day. The microbial...... the energy content in the consumed compounds and the cell voltage of 0.7 V. The highest hydrogen production was equivalent to 0.8 kg COD/m3 MEC·day and was obtained at pH 7–8 and 25°C. Accumulation of 53% w/v phenolic compounds in the liquor was obtained by stepwise addition of the hydrolysate during...

  19. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates.

    Science.gov (United States)

    Gairola, Krishan; Smirnova, Irina

    2012-11-01

    This work explores hydrothermal d-xylose and hemicellulose to furfural conversion coupled with simultaneous furfural extraction by SC-CO(2) and the underlying reaction pathway. A maximum furfural yield of 68% was attained from d-xylose at 230°C and 12MPa. Additionally missing kinetic data for l-arabinose to furfural conversion was provided, showing close similarity to d-xylose. Furfural yields from straw and brewery waste hydrolysates were significantly lower than those obtained from model compounds, indicating side reactions with other hydrolysate components. Simultaneous furfural extraction by SC-CO(2) significantly increased extraction yield in all cases. The results indicate that furfural reacts with intermediates of pentose dehydration. The proposed processing route can be well integrated into existing lignocellulose biorefinery concepts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Evaluation of Mucor indicus and Saccharomyces cerevisiae capability to ferment hydrolysates of rape straw and Miscanthus giganteus as affected by the pretreatment method.

    Science.gov (United States)

    Lewandowska, Małgorzata; Szymańska, Karolina; Kordala, Natalia; Dąbrowska, Aneta; Bednarski, Włodzimierz; Juszczuk, Andrzej

    2016-07-01

    Rape straw and Miscanthus giganteus was pretreated chemically with oxalic acid or sodium hydroxide. The pretreated substrates were hydrolyzed with enzymatic preparations of cellulase, xylanase and cellobiase. The highest concentration of reducing sugars was achieved after hydrolysis of M. giganteus pretreated with NaOH (51.53gdm(-3)). In turn, the highest yield of enzymatic hydrolysis determined based on polysaccharides content in the pretreated substrates was obtained in the experiments with M. giganteus and oxalic acid (99.3%). Rape straw and M. giganteus hydrolysates were fermented using yeast Saccharomyces cerevisiae 7, NRRL 978 or filamentous fungus Mucor rouxii (Mucor indicus) DSM 1191. The highest ethanol concentration was determined after fermentation of M. giganteus hydrolysate pretreated with NaOH using S. cerevisiae (1.92% v/v). Considering cellulose content in the pretreated solid, the highest degree of its conversion to ethanol (86.2%) was achieved after fermentation of the hydrolysate of acid-treated M. giganteus using S. cerevisiae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process.

    Science.gov (United States)

    Baêta, Bruno Eduardo Lobo; Lima, Diego Roberto Sousa; Filho, José Gabriel Balena; Adarme, Oscar Fernando Herrera; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de

    2016-10-01

    This study aimed at optimizing the net energy recovery from hydrogen and methane production through anaerobic digestion of the hemicellulose hydrolysate (HH) obtained by desirable conditions (DC) of autohydrolysis pretreatment (AH) of sugarcane bagasse (SB). Anaerobic digestion was carried out in a two-stage (acidogenic-methanogenic) batch system where the acidogenic phase worked as a hydrolysis and biodetoxification step. This allowed the utilization of more severe AH pretreatment conditions, i.e. T=178.6°C and t=55min (DC3) and T=182.9°C and t=40.71min (DC4). Such severe conditions resulted in higher extraction of hemicelluloses from SB (DC1=68.07%, DC2=48.99%, DC3=77.40% and DC4=73.90%), which consequently improved the net energy balance of the proposed process. The estimated energy from the combustion of both biogases (H2 and CH4) accumulated during the two-stage anaerobic digestion of HH generated by DC4 condition was capable of producing a net energy of 3.15MJ·kgSB(-1)dry weight. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.

    Science.gov (United States)

    Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-04-01

    Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.

  3. Production of ethanol from hemicellulose fraction of cocksfoot grass using pichia stipitis

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Iversen, Jens Asmus; Uellendahl, Hinrich

    2013-01-01

    liquid hydrolysate to ethanol is essential for economically feasible cellulosic ethanol processes. Fermentation of the separated hemicellulose liquid hydrolysates obtained after the WEx pretreatment was done by Pichia stipitis CBS 6054 (Scheffersomyces stipitis). Results: The fermentation of the WEx...

  4. Quantification of solubilized hemicellulose from pretreated lignocellulose by acid hydrolysis and high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A.B.; Ploeger, A.; Simonsen, T.; Woidemann, A.; Schmidt, A.S.

    1996-11-01

    An investigation of the acid hydrolysis and HPLC analysis have been carried out in order to optimise the quantification of the solubilized hemicellulose fraction from wheat straw lignocellulose after pretreatment. Different acid hydrolyses have been performed to identify which conditions (concentrations of acid and hydrolysis time) gave the maximal quantification of the solubilized hemicellulose (measured as monosaccharides). Four different sugars were identified: xylose, arabinose, glucose and galactose. Some hydrolyses were carried out on aqueous samples and some using freeze-dried samples. The best overall hydrolysis was obtained by treatment of an aqueous sample with 4 %w/v sulfuric acid for 10 minutes. These conditions were not optimal for the determination of glucose, which was estimated by using a correction factor. A purification step was needed following the acid hydrolysis, and included a sulfate precipitation by barium hydroxide and elimination of remaining ions by mixed-bed ion exchange. The level of barium hydroxide addition significantly reduced the recovery of the sugars. Thus, lower than equivalent amounts of barium hydroxide were added in the purification step. For monosaccharide analysis two different HPLC columns, i.e. Aminex HPX-87P and HPX-87H with different resin ionic forms, lead (Pb{sup 2+}) and hydrogen (H{sup +}), respectively. The lead column (HPX-87P) separated all four sugars in the acid hydrolyzates, but sample purification required the removal of all interfering impurities, which resulted in poor reproducibility and a sugar recovery below 50%. The hydrogen column (HPX-87H) separated only glucose, xylose and arabinose, whereas galactose was not separated from xylose; however, the column was less sensitive towards impurities and gave improved recovery and reproducibility. Therefore, the hydrogen column (HPX-87H) was chosen for routine quantification of the hydrolyzed hemicellulose sugars. (au) 11 tabs., 8 ills., 19 refs.

  5. Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment.

    Science.gov (United States)

    Kang, Hee-Kyoung; Kim, Doman

    2012-01-01

    Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(™), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.

  6. Evaluation of Alkali-Pretreated Soybean Straw for Lignocellulosic Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Seonghun Kim

    2018-01-01

    Full Text Available Soybean straw is a renewable resource in agricultural residues that can be used for lignocellulosic bioethanol production. To enhance enzymatic digestibility and fermentability, the biomass was prepared with an alkali-thermal pretreatment (sodium hydroxide, 121°C, 60 min. The delignification yield was 34.1~53%, in proportion to the amount of sodium hydroxide, from 0.5 to 3.0 M. The lignin and hemicellulose contents of the pretreated biomass were reduced by the pretreatment process, whereas the proportion of cellulose was increased. Under optimal condition, the pretreated biomass consisted of 74.0±0.1% cellulose, 10.3±0.1% hemicellulose, and 10.1±0.6% lignin. During enzymatic saccharification using Cellic® CTec2 cellulase, 10% (w/v of pretreated soybean straw was hydrolyzed completely and converted to 67.3±2.1 g/L glucose and 9.4±0.5 g/L xylose with a 90.9% yield efficiency. Simultaneous saccharification and fermentation of the pretreated biomass by Saccharomyces cerevisiae W303-1A produced 30.5±1.2 g/L ethanol in 0.5 L fermented medium containing 10% (w/v pretreated biomass after 72 h. The ethanol productivity was 0.305 g ethanol/g dry biomass and 0.45 g ethanol/g glucose after fermentation, with a low concentration of organic acid metabolites. Also, 82% of fermentable sugar was used by the yeast for ethanol fermentation. These results show that the combination of alkaline pretreatment and biomass hydrolysate is useful for enhancing bioethanol productivity using delignified soybean straw.

  7. Gamma and electron radiation effects on straw

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Baer, M.; Huebner, G.

    1983-01-01

    Gamma and electron radiation effects on wheat straw, oat straw, barley straw and rye straw are reported. In vitro and in vivo studies show that the digestibility of these agricultural rough materials can be increased up to 80% and more at high doses. The increase of the digestibility is connected with a depolymerisation of cellulose and hemicellulose. (author)

  8. Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement.

    Science.gov (United States)

    Yang, Ming; Kuittinen, Suvi; Vepsäläinen, Jouko; Zhang, Junhua; Pappinen, Ari

    2017-11-01

    This study aims to improve acetone-butanol-ethanol production from the hydrolysates of lignocellulosic material by supplementing starchy slurry as nutrients. In the fermentations of glucose, xylose and the hydrolysates of Salix schwerinii, the normal supplements such as buffer, minerals, and vitamins solutions were replaced with the barley starchy slurry. The ABE production was increased from 0.86 to 14.7g/L by supplementation of starchy slurry in the fermentation of xylose and the utilization of xylose increased from 29% to 81%. In the fermentations of hemicellulosic and enzymatic hydrolysates from S. schwerinii, the ABE yields were increased from 0 and 0.26 to 0.35 and 0.33g/g sugars, respectively. The results suggested that the starchy slurry supplied the essential nutrients for ABE fermentation. The starchy slurry as supplement could improve the ABE production from both hemicellulosic and cellulosic hydrolysate of lignocelluloses, and it is particularly helpful for enhancing the utilization of xylose from hemicelluloses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  10. Enzymatic hydrolsis of pretreated rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Vlasenko, E.Y.; Shoemaker, S.P. [California Inst. of Food and Agricultural Research, Davis, CA (United States); Ding, H. [California Univ., Davis (Canada). Dept. of Food Science and Technology; Labavitch, J.M. [California Univ., Davis, CA (United States). Dept. of Pomology

    1997-02-01

    California rice straw is being evaluated as a feedstock for production of power and fuel. This paper examines the initial steps in the process: pretreatment of rice straw and enzymatic hydrolysis of the polysaccharides in the pretreated material to soluble sugars. Rice straw was subjected to three distinct pretreatment procedures: acid-catalyzed steam explosion (Swan Biomass Company), acid hydrolysis (U.S. DOE National Renewable Energy Laboratory), and ammonia fiber explosion or AFEX (Texas A and M University). Standard conditions for each pretreatment were used, but none was optimized for rice straw specifically. Six commercial cellulases, products of Genencor International (USA), Novo (Denmark), Iogen (Canada) and Fermtech (Russia) were used for hydrolysis. The Swan- and the acid-pretreatments effectively removed hemicellulose from rice straw, providing high yields of fermentable sugars. The AFEX-pretreatment was distinctly different from other pretreatments in that it did not significantly solubilize hemicellulose. All three pretreatment procedures substantially increased enzymatic digestibility of rice straw. Three commercial Trichoderma-reesei-derived enzyme preparations: Cellulase 100L (Iogen), Spezyme CP (Genencor), and Al (Fermtech), were more active on pretreated rice straw compared than others tested. Conditions for hydrolysis of rice straw using Cellulase 100L were evaluated. The supplementation of this enzyme preparation with cellobiase (Novozyme 188) significantly improved the parameters of hydrolysis for the Swan- and the acid-pretreated materials, but did not affect the hydrolysis of the AFEX-pretreated rice straw. (Author)

  11. ALKALI EXTRACTION OF HEMICELLULOSE FROM DEPITHED CORN STOVER AND EFFECTS ON SODA-AQ PULPING

    OpenAIRE

    Heli Cheng; Huaiyu Zhan; Shiyu Fu; Lucian A. Lucia

    2011-01-01

    A biorefinery using the process of hemicellulose pre-extraction and subsequent pulping provides a promising way for the utilization of straw biomass and resolution of problems related to silicon. In this work, hemicellulose was extracted from depithed corn stover with sodium hydroxide solution before soda-AQ pulping. Components of the extracts were quantified by ion chromatography. The parameters (alkali concentration and temperature) affecting hemicellulose pre-extraction were optimized. The...

  12. Resistant-hemicelluloses toward successive chemical treatment during cellulose fibre extraction

    Science.gov (United States)

    Naqiya, F. M. Z.; Ahmad, I.; Airianah, O. B.

    2018-04-01

    Lignocellulosic materials have high demand bio-polymers industries as it is rich in cellulose but other residues that still remain in the extracted cellulose might influence the ability of cellulose-rich material to interact with other polymers. In this study, cellulose fibre was extracted from oil palm frond (OPF) using alkali and bleaching treatment. The morphological changes of each sample after every treatment was observed using Scanning Electron Microscope (SEM) and was further chemically extracted and quantitatively evaluated via spectrophotometric method. The non-cellulosic component was found predominantly contained hemicelluloses and these remaining hemicelluloses were hydrolysed and the monosaccharides of hemicelluloses were visualised by Thin Layer Chromatography (TLC). Xylose, arabinose, mannose and glucose were detected and therefore, it is suggested that the plausible type of resistant-hemicelluloses in OPF extracted fibre are arabinoxylan, glucomannan and/or glucan.

  13. Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol

    International Nuclear Information System (INIS)

    Boucher, Jérémy; Chirat, Christine; Lachenal, Dominique

    2014-01-01

    Highlights: • Hemicellulosic ethanol from softwood hemicelluloses in a pulp mill. • Comparison of acid hydrolysis and autohydrolysis to extract hemicelluloses. • Effects of the extraction process conditions on inhibitors concentrations. • Effects of inhibitors on fermentation. - Abstract: This study deals with the production of ethanol and paper pulp in a kraft pulp mill. The use of an acid hydrolysis or a two-step treatment composed of an autohydrolysis followed by a secondary acid hydrolysis was studied. Acid hydrolysis allowed the extraction of higher quantities of sugars but led also to higher degradations of these sugars into inhibitors of fermentation. The direct fermentation of a hydrolysate resulting from an acid hydrolysis gave excellent yields after 24 h. However, the fermentation of hydrolysates after their concentration proved to be impossible. The study of the impact of the inhibitors on the fermentations showed that organic acids, and more specifically formic acid and acetic acid were greatly involved in the inhibition

  14. Chemical modification of straw by alkaline treatment. [Trolmen process

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    In straw from 9 Swedish cereal cultivars of barley, oats, wheat, and rye, low molecular weight carbohydrates constituted only 0.3-1.4% of the straw with sucrose, glucose, fructose, and the sugar alcohols arabinitol and mannitol as main constituents. Hemicellulose (18-24%), cellulose (27-37%) and Klason-lignin (19-24%) were the main constituents. The ash (3-12%) and silica (0.5-3%) values showed rather high variations. After the Trolmen process, a wet closed NaOH treatment method, there was a slight enrichment of carbohydrates and ash and a decrease of Klason-lignin in the treated straw. About 1% of phenolic acids, mainly alpha ..beta.. -dihydro-p-coumatic, trans-p-coumaric, alpha ..beta.. -dihydroferulic and trans-ferulic acids, were quantified in the black liquid from the Trolmen process. These acids were probably ester-linked to the hemicellulose in the native straw and released during alkali treatment.HOAc, probably from Ac groups in xylan, and some of the silica were also released during the process. Although the amount of dissolved lignin was small, linkages between lignin and hemicellulosic polymers, perhaps also to cellulose, may be broken during the treatment. Linkages of these types may block the carbohydrates from enzymic action and reduce the digestibility. The higher digestibility of alkali-treated straw is probably due both to breaking of such linkages and to swelling of the polysaccharides rather than removal of any large amounts of undigestible components as lignin and silica.

  15. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    Science.gov (United States)

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration.

    Science.gov (United States)

    Sasaki, Kengo; Sasaki, Daisuke; Sakihama, Yuri; Teramura, Hiroshi; Yamada, Ryosuke; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2013-11-01

    Concentrating sugars using membrane separation, followed by ethanol fermentation by recombinant xylose-assimilating Saccharomyces cerevisiae, is an attractive technology. Three nanofiltration membranes (NTR-729HF, NTR-7250, and ESNA3) were effective in concentrating glucose, fructose, and sucrose from dilute molasses solution and no permeation of sucrose. The separation factors of acetate, formate, furfural, and 5-hydroxymethyl furfural, which were produced by dilute acid pretreatment of rice straw, over glucose after passage through these three membranes were 3.37-11.22, 4.71-20.27, 4.32-16.45, and 4.05-16.84, respectively, at pH 5.0, an applied pressure of 1.5 or 2.0 MPa, and 25 °C. The separation factors of these fermentation inhibitors over xylose were infinite, as there was no permeation of xylose. Ethanol production from approximately two-times concentrated liquid hydrolysate using recombinant S. cerevisiae was double (5.34-6.44 g L(-1)) that compared with fermentation of liquid hydrolysate before membrane separation (2.75 g L(-1)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Lignin- and Hemicellulose-derived Biomass Recalcitrance

    DEFF Research Database (Denmark)

    Deralia, Parveen Kumar

    technology bringing the multitude of chemical and physical changes, which govern the level of biomass recalcitrance. The lignocellulosic biomasses in question are wheat straw and poplar and the hydrothermal pretreatment is used as pretreatment technology. The 2D HSQC NMR and wet chemistry chemical...... degree to the biomass surface, giving a proportional increase in the specific surface area opposite to wheat straw, which has a marked increase in the specific surface area. The distinctly different chemistry of lignin and hemicellulose and different lignin migration and reorganization appear...... to be correlative, helping explain differences in enzymatic saccharification performance across the pretreatment severities and between two biomasses. The main contribution of this work to the current state-of-the-art in the field is the revelation of distinct behaviors of generation of different repolymerized...

  18. Pretreatment of wheat straw for fermentation to methane

    International Nuclear Information System (INIS)

    Hashimoto, A.G.

    1986-01-01

    The effects of pretreating wheat straw with gamma-ray irradiation, ammonium hydroxide, and sodium hydroxide on methane yield, fermentation rate constant, and loss of feedstock constituents were evaluated using laboratory-scale batch fermentors. Results showed that methane yield increased as pretreatment alkali concentration increased, with the highest yield being 37% over untreated straw for the pretreatment consisting of sodium hydroxide dosage of 34 g OH - /kg volatile solids, at 90 0 C for 1 h. Gamma-ray irradiation had no significant effect on methane yield. Alkaline pretreatment temperatures above 100 0 C caused a decrease in methane yield. After more than 100 days of fermentation, all of the hemicellulose and more than 80% of the cellulose were degraded. The loss in cellulose and hemicellulose accounted for 100% of the volatile solids lost. No consistent effect of pretreatments on batch fermentation rates was noted. Semicontinuous fermentations of straw-manure mixtures confirmed the relative effectiveness of sodium- and ammonium-hydroxide pretreatments

  19. Decomposition of Rice Straw and Corn Straw Under Aerobic and Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    WANG Jing

    2017-01-01

    Full Text Available Decomposition dynamics of rice straw and corn straw at aerobic and anaerobic condition were investigated under the simulated condition in the lab. Results showed that two stages, i.e. the rapid decomposition stage from 0 to 3 months, and the slow one between 3 and 12 months, of decomposition dynamics of rice straw and corn straw were found under anaerobic and aerobic incubation condition, and more than 55%of rice straw and corn mass was lost at the initial 3 months incubation period. The half times(t1/2of rice straw and corn straw mass lost under aerobic condition were 59.2 d and 52.9 d, which were short than those(72.6 d and 79.9 dunder the anaerobic condition, respectively. Carbon release constants from rice straw and corn straw under aerobic condition were 0.61 and 0.60 per month, which were higher than those (0.55 and 0.57 per monthunder anaerobic condition. The nitrogen release from crop straw followed the same rule as the carbon release from straw. The constants of nitrogen released from rice straw and corn straw under aerobic condition were 0.25 and 2.36 per month, which were higher than those(0.16 and 2.32 per monthunder anaerobic condition. The losses of cellulose, hemicelluloses and lignin from rice straw and corn straw under aerobic condition were also higher than those under anaerobic condition. In summary, the aerobic environment increases de composition and release of organic and inorganic substances from crop straw.

  20. Bioethanol production using genetically modified and mutant wheat and barley straws

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Washington State Univ., Pullman, WA (US). Dept. of Biological Engineering; East China Univ. of Science and Technology, Shanghai (CN). State Key Laboratory of Bioreactor Engineering; Liu, Y. [Michigan State Univ., East Lansing, MI (US). Biosystems and Agricultural Engineering; Chen, S. [Washington State Univ., Pullman, WA (US). Dept. of Biological Systems Engineering; Zemetra, R.S. [Univ. of Idaho, Moscow, ID (US). Plant, Soil, and Entomological Sciences

    2011-01-15

    To improve the performance of wheat and barley straws as feedstocks for ethanol biorefining, the genetic modifications of down regulating Cinnamoyl-CoA reductase and low phytic acid mutation have been introduced into wheat and barley respectively. In this study, total 252 straw samples with different genetic background and location were collected from the field experiment based on a randomized complete block design. The fiber analysis (neutral detergent fiber, acid detergent fiber, and acid detergent lignin) indicated that there were no significant differences between modified and wild type straw lines in terms of straw compositions. However, the difference did exist among straw lines on fiber utilization. 16 straw samples were further selected to conduct diluted acid pretreatment, enzymatic hydrolysis and fermentation. The data indicated that the phytic acid mutant and transgenic straws have changed the fiber structure, which significantly influences their hydrolysibility. These results may lead to a possible solution of mutant or genetic modified plant species that is capable to increase the hydrolysibility of biomass without changing their compositions and sacrificing their agronomy performance. (author)

  1. Evaluasi Perlakuan Pendahuluan Menggunakan Kalsium Hidroksida untuk Biokonversi Jerami Padi Menjadi L-Asam Laktat oleh Rhizopus oryzae AT3 (Evaluation of Lime Pretreatment for Bioconversion of Rice Straw to L-Lactic Acid by Rhizopus Oryzae AT3

    Directory of Open Access Journals (Sweden)

    Dhina Aprilia Nurani Widyahapsari

    2016-12-01

    Full Text Available L-lactic acid can be used as a precursor of polylactic acid (PLA. PLA is a biodegradable biomaterial commonly used for biodegradable plastics. Lactic acid can be produced from lignocelluloses materials such as rice straw. Rice straw is composed of cellulose and hemicellulose that can be hydrolyzed to fermentable sugar by cellulolytic and hemicellulolytic enzymes then converted to L-lactic acid by Rhizopus oryzae. As most cellulose and hemicellulose present in lignocellulose biomass are not readily accessible for these enzyme, pretreatment is required to alter the structure of lignocellulose substrates. This research aimed to investigate the effect of lime pretreatment on rice straw bioconversion to L-lactic acid by Rhizopus oryzae AT3. Rice straw was pretreated with lime (Ca(OH2 at 85 °C for 16 hours. Unpretreated and pretreated rice straw were hydrolyzed using crude enzyme that produced by Trichoderma reesei Pk1J2. Enzyme production was carried out by solid state fermentation using rice straw and rice brand as substrate. Enzymatic hydrolysis was carried out in flasks. Each flask was added with unpretreated or pretreated rice straw, buffer citrate solution and crude enzyme then hydrolyzed for 0-96 hours. Hydrolysate was fermented by Rhizopus oryzae AT3 for 0-6 days by using adsorbed carrier solid-state fermentation method with polyurethane foam as inert support material. Lime pretreatment at 85 °C for 16 hour led to significant solubilisation of lignin and hemicellulose. It involved lignocellulose structure modified that enhance enzymatic hydrolysis and resulted higher reducing sugars than unpretreated rice straw. The high reducing sugars was not related to high lactic acid yields. Fermentation of pretreated rice straw hydrolysate by Rhizopus oryzae AT3 did not only produce L-lactic acid but also other compound. On the other hand, fermentation of unpretreated rice straw hydrolysate only produced L-lactic acid.   ABSTRAK Polimerisasi asam

  2. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.

    Science.gov (United States)

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças de Almeida; Silva, João Batista de Almeida e; Giulietti, Marco

    2010-05-01

    The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

  3. Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment.

    Science.gov (United States)

    Salvachúa, Davinia; Martínez, Angel T; Tien, Ming; López-Lucendo, María F; García, Francisco; de Los Ríos, Vivian; Martínez, María Jesús; Prieto, Alicia

    2013-08-10

    Identifying new high-performance enzymes or enzyme complexes to enhance biomass degradation is the key for the development of cost-effective processes for ethanol production. Irpex lacteus is an efficient microorganism for wheat straw pretreatment, yielding easily hydrolysable products with high sugar content. Thus, this fungus was selected to investigate the enzymatic system involved in lignocellulose decay, and its secretome was compared to those from Phanerochaete chrysosporium and Pleurotus ostreatus which produced different degradation patterns when growing on wheat straw. Extracellular enzymes were analyzed through 2D-PAGE, nanoLC/MS-MS, and homology searches against public databases. In wheat straw, I. lacteus secreted proteases, dye-decolorizing and manganese-oxidizing peroxidases, and H2O2 producing-enzymes but also a battery of cellulases and xylanases, excluding those implicated in cellulose and hemicellulose degradation to their monosaccharides, making these sugars poorly available for fungal consumption. In contrast, a significant increase of β-glucosidase production was observed when I. lacteus grew in liquid cultures. P. chrysosporium secreted more enzymes implicated in the total hydrolysis of the polysaccharides and P. ostreatus produced, in proportion, more oxidoreductases. The protein pattern secreted during I. lacteus growth in wheat straw plus the differences observed among the different secretomes, justify the fitness of I. lacteus for biopretreatment processes in 2G-ethanol production. Furthermore, all these data give insight into the biological degradation of lignocellulose and suggest new enzyme mixtures interesting for its efficient hydrolysis.

  4. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Integrating of lignocellulose-based and starch-rich biomass-based hydrogen production was investigated by mixing wheat straw hydrolysate with a wheat grain hydrolysate for improved fermentation. Enzymatic pretreatment and hydrolysis of wheat grains led to a hydrolysate with a sugar concentration of

  5. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  6. Effects of Aspergillus niger (K8) on nutritive value of rice straw ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the use of solid state fermentation for the improvement of the quality of rice straw as animal feed. Rice straw was fermented using Aspergillus niger (K8) with and without additional nitrogen source (urea). Cellulose, hemicelluloses, organic matter (OM), dry matter (DM), acid ...

  7. Bioconversion process of rice straw by thermotolerant cellulolytic ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    state fermentation for bioethanol production is a focus of current attention. ... Optimization of fermentation conditions showed highest cellulolytic enzymes ... using dilute acid pretreated rice straw hydrolysate with initial soluble ...

  8. Production of single-cell protein from enzymatic hydrolyzate of rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, M.; Kometani, Y.; Tanaka, M.; Matsuno, R.; Kamikubo, T.

    1982-01-01

    The components of rice straw, pretreated with sodium chlorite, cellulose and hemicellulose were solubilized with culture filtrate of Pellicularia filamentosa or Trichoderma reesei. The ratio of glucose to total sugar in the solution obtained from the cellulose component with the culture filtrate of Pellicularia filamentosa was approximately twice that of Trichoderma reesei. Ten yeast strains (Candida utilis, C. tropicalis, C. guilliermondii, C. parapsilosis, Torulopsis xylinus, Trichosporon cutaneum, Debaryomyces hansenii, Rhodotorula glutinis, Saccharomyces fragilis and Saccharomyces cerevisiae) were cultivated as test organisms for single-cell protein (SCP) production on sugar solutions obtained from the straw, cellulose and hemicellulose components, pretreated with the culture filtrate of Pellicularia filamentosa. Sugar consumption, in terms of total sugar and cell yield, of the culture with the sugar solution obtained from pretreated straw were; 70% and 6.8 g/l for Candida tropicalis, 56% and 6.4 g/l for Torulopsis xylinus, 76% and 10.1 g/l for Trichosporon cutaneum, and 74% and 7.6 g/l for Candida guilliermondii. In addition, the highest consumption with respect to total sugar (87%) and the best dry cell yield (15.6 g/l) were observed with the culture of Trichosporon cutaneum using the sugar solution obtained from the hemicellulose component. (Refs. 17).

  9. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Directory of Open Access Journals (Sweden)

    Erdei Borbála

    2012-03-01

    Full Text Available Abstract Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS, resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and

  10. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    Smart Katherine A

    2011-09-01

    Full Text Available Abstract Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput.

  11. Wet oxidation pretreatment of rape straw for ethanol production

    International Nuclear Information System (INIS)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  12. Producing ergosterol from corn straw hydrolysates using ...

    African Journals Online (AJOL)

    Ergosterol is an economically important metabolite produced by Saccharomyces cerevisiae. In this study, the production of ergosterol by the strain using corn straw as an inexpensive carbon source was investigated. The total yield of ergosterol was determined by both the biomass and ergosterol content in yeast cells which ...

  13. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    Science.gov (United States)

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  14. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Twin-screw extrusion for hemicellulose recovery: influence on extract purity and purification performance.

    Science.gov (United States)

    Zeitoun, Rawan; Pontalier, Pierre Yves; Marechal, Philippe; Rigal, Luc

    2010-12-01

    A twin-screw extruder was used for the extraction of wheat bran hemicelluloses by the co-extrusion of wheat straw and bran. As compared with a stirred reactor extraction, a twin-screw extruder resulted in a lower extraction rate (only about 24% of hemicelluloses in the wheat bran), but it has the advantages of a shorter residence time for the vegetable matter and a lower chemical and water consumption. Hemicellulose powder production is usually effected via an expensive alcoholic precipitation step after concentration. Ultrafiltration was investigated as a means to reduce the alcohol consumption. Trials were made with hollow fiber polyethersulfone membranes with a molecular weight cut-off of 30 kDa. Ultrafiltration mainly concentrated the extract and removed small molecules such as monosaccharides and minerals. The combination of the anion-exchange chromatography and ultrafiltration allowed for the removal of colored compounds. 2010 Elsevier Ltd. All rights reserved.

  16. Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Xia, Liming

    2010-12-15

    Three corn stover hydrolysates, enzymatic hydrolysates prepared from acid and alkaline pretreatments separately and hemicellulosic hydrolysate prepared from acid pretreatment, were evaluated in composition and fermentability. For enzymatic hydrolysate from alkaline pretreatment, ethanol yield on fermentable sugars and fermentation efficiency reached highest among the three hydrolysates; meanwhile, ethanol yield on dry corn stover reached 0.175 g/g, higher than the sum of those of two hydrolysates from acid pretreatment. Fermentation process of the enzymatic hydrolysate from alkaline pretreatment was further investigated using free and immobilized cells of recombinant Saccharomyces cerevisiae ZU-10. Concentrated hydrolysate containing 66.9 g/L glucose and 32.1 g/L xylose was utilized. In the fermentation with free cells, 41.2 g/L ethanol was obtained within 72 h with an ethanol yield on fermentable sugars of 0.416 g/g. Immobilized cells greatly enhanced the ethanol productivity, while the ethanol yield on fermentable sugars of 0.411 g/g could still be reached. Repeated batch fermentation with immobilized cells was further attempted up to six batches. The ethanol yield on fermentable sugars maintained above 0.403 g/g with all glucose and more than 92.83% xylose utilized in each batch. These results demonstrate the feasibility and efficiency of ethanol production from corn stover hydrolysates. (author)

  17. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...

  18. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  19. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Directory of Open Access Journals (Sweden)

    Jørgensen Henning

    2008-04-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

  1. Isolation and Characterization of Yeasts Able to Assimilate Sugarcane Bagasse Hemicellulosic Hydrolysate and Produce Xylitol Associated with Veturius transversus (Passalidae, Coleoptera, and Insecta

    Directory of Open Access Journals (Sweden)

    Italo Thiago Silveira Rocha Matos

    2017-01-01

    Full Text Available Yeasts are an important component of insect gut microbial content, playing roles such as degradation of polymers and toxic compounds, biological control, and hormone, vitamin, and digestive enzyme production. The xylophagous beetle gut is a hyperdiverse habitat and a potential source of new species with industrial abilities such as enzyme production, pentose fermentation, and biodetoxification. In this work, samples of Veturius transversus (Passalidae, Coleoptera, and Insecta were collected from the Central Amazon Rainforest. Their guts were dissected and a total of 20 microbial colonies were isolated using sugarcane bagasse hemicellulosic hydrolysate. They were identified as having 10 distinct biochemical profiles, and genetic analysis allowed identification as three clades in the genera Candida, Williopsis, and Geotrichum. All colonies were able to assimilate D-xylose and 18 were able to produce xylitol, especially a strain of Geotrichum, with a maximum yield of 0.502 g·g−1. These results agree with a previous prediction that the microbial community associated with xylophagous insects is a promising source of species of biotechnological interest.

  2. Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis

    International Nuclear Information System (INIS)

    Yuan, Zhengqiu; Long, Jinxing; Wang, Tiejun; Shu, Riyang; Zhang, Qi; Ma, Longlong

    2015-01-01

    Highlights: • Novel pretreatment of ball milling combined with hydrothermal method was presented. • Intensification effect of ball milling was significant for corn straw enzymolysis. • Ball milling destroyed the physical structure of corn straw. • Chemical (liquid mixture) method removed lignin and hemicellulose. • Glucose yield increased from 0.41 to 13.86 mg mL −1 under the optimized condition. - Abstract: Enhancement of the cellulose accessibility is significant for biomass enzymatic hydrolysis. Here, we reported an efficient combined pretreatment for corn straw enzymolysis using ball milling and dilute acid hydrothermal method (a mixture solvent of H 2 O/ethanol/sulfuric acid/hydrogen peroxide liquid). The process intensification effect of ball milling on the pretreatment of the corn straw was studied through the comparative characterization of the physical–chemical properties of the raw and pretreated corn straw using FT-IR, BET, XRD, SEM, and HPLC analysis. The effect of the pretreatment temperature was also investigated. Furthermore, various pretreatment methods were compared as well. Moreover, the pretreatment performance was measured by enzymolysis. The results showed that ball milling had a significant process intensification effect on the corn straw enzymolysis. The glucose concentration was dramatically increased from 0.41 to 13.86 mg mL −1 after the combined treatment of ball milling and hydrothermal. The efficient removal of lignin and hemicellulose and the enlargement of the surface area were considered to be responsible for this significant increase based on the intensive analysis on the main components and the physical–chemical properties of the raw and pretreated corn straw

  3. Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals

    Directory of Open Access Journals (Sweden)

    Cao Huong Giang

    2014-12-01

    Full Text Available A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF. Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.

  4. Plasma-Assisted Pretreatment of Wheat Straw

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Leipold, Frank; Bindslev, Henrik

    2011-01-01

    O3 generated in a plasma at atmospheric pressure and room temperature, fed with dried air (or oxygen-enriched dried air), has been used for the degradation of lignin in wheat straw to optimize the enzymatic hydrolysis and to get more fermentable sugars. A fixed bed reactor was used combined...... with a CO2 detector and an online technique for O3 measurement in the fed and exhaust gas allowing continuous measurement of the consumption of O3. This rendered it possible for us to determine the progress of the pretreatment in real time (online analysis). The process time can be adjusted to produce wheat...... straw with desired lignin content because of the online analysis. The O3 consumption of wheat straw and its polymeric components, i.e., cellulose, hemicellulose, and lignin, as well as a mixture of these, dry as well as with 50% water, were studied. Furthermore, the process parameters dry matter content...

  5. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  6. Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw.

    Science.gov (United States)

    Szczerbowski, Danielle; Pitarelo, Ana Paula; Zandoná Filho, Arion; Ramos, Luiz Pereira

    2014-12-19

    Two fractions of sugarcane, namely bagasse and straw (or trash), were characterized in relation to their chemical composition. Bagasse presented values of glucans, hemicelluloses, lignin and ash of 37.74, 27.23, 20.57 and 6.53%, respectively, while straw had 33.77, 27.38, 21.28 and 6.23% of these same components. Ash content was relatively high in both cane biomass fractions. Bagasse showed higher levels of contaminating oxides while straw had a higher content of alkaline and alkaline-earth oxides. A comparison between the polysaccharide chemical compositions of these lignocellulosic materials suggests that similar amounts of fermentable sugars are expected to arise from their optimal pretreatment and enzymatic hydrolysis. Details about the chemical properties of cane biomass holocellulose, hemicelluloses A and B and α-cellulose are provided, and these may offer a good opportunity for designing more efficient enzyme cocktails for substrate saccharification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.

    Science.gov (United States)

    Li, Zhengqi; Zhao, Wei; Meng, Baihong; Liu, Chunlong; Zhu, Qunyi; Zhao, Guangbo

    2008-11-01

    With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.

  8. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products...... degreesC with addition of 12 bar oxygen and 6.5 g l(-1) Na2CO3. At these conditions the hemicellulose fraction from 100 g straw consisted of soluble hemicellulose (16 g), low molecular weight carboxylic acids (11 g), monomeric phenols (0.48 g) and 2-furoic acid (0.01 g). Formic acid and acetic acid...... constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from...

  9. Characteristics and community diversity of a wheat straw-colonizing ...

    African Journals Online (AJOL)

    A microbial community named WSD-5 was successfully selected from plant litter and soil after longterm directed acclimation at normal temperature. After 15 days of cultivation at 30°C, the degradation rate of wheat straw by WSD-5 was 75.6%. For cellulose, hemicellulose and lignin, the degradation rates were 94.2, 81.9 ...

  10. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    Science.gov (United States)

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    Science.gov (United States)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  12. Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions.

    Science.gov (United States)

    Costa, Carlos E; Romaní, Aloia; Cunha, Joana T; Johansson, Björn; Domingues, Lucília

    2017-03-01

    In this work, four robust yeast chassis isolated from industrial environments were engineered with the same xylose metabolic pathway. The recombinant strains were physiologically characterized in synthetic xylose and xylose-glucose medium, on non-detoxified hemicellulosic hydrolysates of fast-growing hardwoods (Eucalyptus and Paulownia) and agricultural residues (corn cob and wheat straw) and on Eucalyptus hydrolysate at different temperatures. Results show that the co-consumption of xylose-glucose was dependent on the yeast background. Moreover, heterogeneous results were obtained among different hydrolysates and temperatures for each individual strain pointing to the importance of designing from the very beginning a tailor-made yeast considering the specific raw material and process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Changes of chemical and mechanical behavior of torrefied wheat straw

    DEFF Research Database (Denmark)

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    200 °C there was no obvious structural change of the wheat straw. At 200–250 °C hemicelluloses started to decompose and were totally degraded when torrefied at 300 °C for 2 h, while cellulose and lignin began to decompose at about 270–300 °C. Tensile failure strength and strain energy of oven dried...

  14. Oxalic acid pretreatment of rice straw particles and loblolly pine chips : release of hemicellulosic carbohydrates

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    This study was conducted to evaluate the effect of oxalic acid (OA) pretreatment on carbohydrates released from rice straw particles and wood chips. The results showed that OA treatment accelerated carbohydrates extraction from rice straw particles and wood chips. OA pretreatment dramatically increased the amount of carbohydrates extracted, up to 24 times for wood...

  15. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  16. Effect of Additions on Ensiling and Microbial Community of Senesced Wheat Straw

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Joni M. Barnes; Tracy P. Houghton

    2005-04-01

    Crop residues collected during or after grain harvest are available once per year and must be stored for extended periods. The combination of air, high moisture, and high microbial loads leads to shrinkage during storage and risk of spontaneous ignition. Ensiling is a wet preservation method that could be used to store these residues stably. To economically adapt ensiling to biomass that is harvested after it has senesced, the need for nutrient, moisture, and microbial additions must be determined. We tested the ensiling of senesced wheat straw in sealed columns for 83 d. The straw was inoculated with Lactobacillus plantarum and amended with several levels of water and free sugars. The ability to stabilize the straw polysaccharides was strongly influenced by both moisture and free sugars. Without the addition of sugar, the pH increased from 5.2 to as much as 9.1, depending on moisture level, and losses of 22% of the cellulose and 21% of the hemicellulose were observed. By contrast, when sufficient sugars were added and interstitial water was maintained, a final pH of 4.0 was attainable, with correspondingly low (<5%) losses of cellulose and hemicellulose. The results show that ensiling should be considered a promising method for stable storage of wet biorefinery feedstocks.

  17. Thermal decomposition characteristics of microwave liquefied rape straw residues using thermogravimetric analysis

    Science.gov (United States)

    Xingyan Huang; Cornelis F. De Hoop; Jiulong Xie; Chung-Yun Hse; Jinqiu Qi; Yuzhu Chen; Feng Li

    2017-01-01

    The thermal decomposition characteristics of microwave liquefied rape straw residues with respect to liquefaction condition and pyrolysis conversion were investigated using a thermogravimetric (TG) analyzer at the heating rates of 5, 20, 50 °C min-1. The hemicellulose decomposition peak was absent at the derivative thermogravimetric analysis (DTG...

  18. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation–alkaline pretreatment

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules. - Highlights: • Pretreatment of wheat straw by gamma radiation and NaOH was investigated. • Irradiation pretreatment can significantly decrease NaOH consumption. • Reducing sugar yield reached 72.67% at 100 kGy and 2% NaOH treatment for 1 h.

  19. Modified Rice Straw as Adsorbent Material to Remove Aflatoxin B1 from Aqueous Media and as a Fiber Source in Fino Bread

    OpenAIRE

    Sherif R. Mohamed; Tarek A. El-Desouky; Ahmed M. S. Hussein; Sherif S. Mohamed; Khayria M. Naguib

    2016-01-01

    The aims of the current work are in large part the benefit of rice straw to be used as adsorbent material and natural source of fiber in Fino bread. The rice straw was subjected to high temperature for modification process and the chemical composition was carried out and the native rice straw contained about 41.15% cellulose, 20.46% hemicellulose, and 3.91% lignin while modified rice straw has 42.10, 8.65, and 5.81%, respectively. The alkali number was tested and showed an increase in the alk...

  20. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin.

    Science.gov (United States)

    Lin, Lili; Yan, Rong; Liu, Yongqiang; Jiang, Wenju

    2010-11-01

    The artificial biomass based on three biomass components (cellulose, hemicellulose and lignin) were developed on the basis of a simplex-lattice approach. Together with a natural biomass sample, they were employed in enzymatic hydrolysis researches. Different enzyme combines of two commercial enzymes (ACCELLERASE 1500 and OPTIMASH BG) showed a potential to hydrolyze hemicellulose completely. Negligible interactions among the three components were observed, and the used enzyme ACCELLERASE 1500 was proven to be weak lignin-binding. On this basis, a multiple linear-regression equation was established for predicting the reducing sugar yield based on the component proportions in a biomass. The hemicellulose and cellulose in a biomass sample were found to have different contributions in staged hydrolysis at different time periods. Furthermore, the hydrolysis of rice straw was conducted to validate the computation approach through considerations of alkaline solution pretreatment and combined enzymes function, so as to understand better the nature of biomass hydrolysis, from the aspect of three biomass components.

  1. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].

    Science.gov (United States)

    Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng

    2015-05-01

    Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some

  3. Utilization of poor quality roughages III. Effect of gamma irradiation on chemical composition and structural polysaccharides utilization of straws

    International Nuclear Information System (INIS)

    Rai, S.N.; Mudgal, V.D.

    1985-01-01

    The wheat and paddy straws were irradiated with 60 Co gamma source in doses of 10 5 and 10 6 rad, respectively. The data indicated that these doses applied to straws were not sufficient to bring the appreciable changes in the chemical composition in wheat straw. However, the cell wall constituents, acid detergent fiber, hemicellulose, cellulose, lignin : cellulose ratio and acid insoluble ash decreased (P < 0.05), while cell contents increased (P < 0.01) in irradiated samples of paddy straw. The findings further revealed that small changes in chemical composition due to irradiation could not bring any significant changes in the in vitro digestibility values for any of the fibre components in both the straws, except in paddy straw, where the in vitro acid detergent fibre digestibility was reduced (P < 0.05), while availability index increased (P < 0.05) due to irradiation. (author)

  4. Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Moyson, E.; Verachtert, H. (Catholic Univ. of Leuven (Belgium). Faculty of Agriculture)

    1991-12-01

    The influence of the growth of three higher fungi on the composition of wheat straw was investigated. Pleurotus pulmonarius, P. sajor-caju and Lentinus edodes grew very well on lignocellulosic substrates, breaking down a considerable amount of lignin. The initial lignin concentration of straw was halved after 12 weeks of fungal growth, doubling the enzymic digestibility. Together with lignin, the higher fungi consumed half of the amount of hemicellulose (i.e. 15%), leaving cellulose fairly intact, which should remain as an energy source for ruminants. (orig.).

  5. Acidic Pretreatment of Wheat Straw in Decanol for the Production of Surfactant, Lignin and Glucose

    Directory of Open Access Journals (Sweden)

    Boris Estrine

    2011-12-01

    Full Text Available Wheat straw is an abundant residue of agriculture which is increasingly being considered as feedstock for the production of fuels, energy and chemicals. The acidic decanol-based pre-treatment of wheat straw has been investigated in this work. Wheat straw hemicellulose has been efficiently converted during a single step operation into decyl pentoside surfactants and the remaining material has been preserved keeping all its promises as potential feedstock for fuels or value added platform chemicals such as hydroxymethylfurfural (HMF. The enzymatic digestibility of the cellulose contained in the straw residue has been evaluated and the lignin prepared from the material characterized. Wheat-based surfactants thus obtained have exhibited superior surface properties compared to fossil-based polyethoxylates decyl alcohol or alkyl oligoglucosides, some of which are largely used surfactants. In view of the growing importance of renewable resource-based molecules in the chemical industry, this approach may open a new avenue for the conversion of wheat straw into various chemicals.

  6. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda

    2009-01-01

    fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate produced 178.0 ml-H-2/g-sugars. The effluents from both bioethanol and biohydrogen processes were further used to produce methane with the yields of 0.324 and 0.381 m(3)/kg volatile solids (VS)added, respectively....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus...

  7. ASSESSMENT OF THE BIODIVERSITY OF SAMPLES USED FOR ISOLATION OF MICROBIAL STRAINS CAPABLE OF CONVERTING STRAW DESTINED AS A SUBSTRATE FOR BIOGAS PLANT

    Directory of Open Access Journals (Sweden)

    Krystyna Cybulska

    2016-01-01

    Full Text Available In biogas plants, almost any type of organic matter can be used as a substrate to produce biogas. To make the process of methane fermentation more effective, these materials are pretreated. This applies in particular to a group of difficult substrates. Straw, due to its hemicellulose structure and saturation, is hardly fermented by biogas reactor microorganisms. The methods of post-harvest residue preparation for anaerobic digestion being applied so far are expensive, while their application has a negative effect on methanoegenic bacteria. Therefore, the microorganisms being able to degrade straw hemicellulose structure, utilisation of which could precede the proper fermentation process, have been searched for. This paper presents the results of microbial biodiversity analysis in the environmental samples being lupin, cereal, rape and maize straw as well as hay and haylage at different degradation stages. The analysis of biodiversity will help at a further stage of study to isolate active microbial strains showing cellulolytic, hemicellulolytic or ligninolytic activity which are desirable in the process of straw biodegradation. Analysis of the microbial count was performed by the method of deep inoculation on different microbiological culture media. The conducted tests include determination of the number of fungi, bacteria and actinomycetes. The results obtained confirm the usefulness of the analysed samples for isolation of microbial strains capable of converting straw preceding the biogas production.

  8. Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw

    DEFF Research Database (Denmark)

    Thomsen, Mette Hedegaard; Thygesen, Anders; Thomsen, Anne Belinda

    2009-01-01

    of the pretreated fibers and hydrolysate from the two-step system gave higher ethanol yield (64-75%) than that obtained from the three-step system (61-65%), due to higher enzymatic cellulose convertibility. At the optimal conditions (two steps, 195A degrees C for 6 min), 69% of available C6-sugar could be fermented...... into ethanol with a high hemicellulose recovery (65%). The concentration of furfural obtained during the pretreatment process increased versus temperature from 50 mg/l at 190A degrees C to 1,200 mg/l at 205A degrees C as a result of xylose degradation. S. cerevisiae detoxified the hydrolysates by degradation...

  9. Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design.

    Science.gov (United States)

    Alves, Lourdes A; Vitolo, Michele; Felipe, Maria das Graças A; de Almeida e Silva, João Batista

    2002-01-01

    The sugarcane bagasse hydrolysate, which is rich in xylose, can be used as culture medium for Candida guilliermondii in xylitol production. However, the hydrolysate obtained from bagasse by acid hydrolysis at 120 degrees C for 20 min has by-products (acetic acid and furfural, among others), which are toxic to the yeast over certain concentrations. So, the hydrolysate must be pretreated before using in fermentation. The pretreatment variables considered were: adsorption time (15,37.5, and 60 min), type of acid used (H2So4 and H3Po4), hydrolysate concentration (original, twofold, and fourfold concentrated), and active charcoal (0.5, 1.75 and 3.0%). The suitability of the pretreatment was followed by measuring the xylose reductase (XR) and xylitol dehydrogenase (XD) activity of yeast grown in each treated hydrolysate. The response surface methodology (2(4) full factorial design with a centered face) indicated that the hydrolysate might be concentrated fourfold and the pH adjusted to 7.0 with CaO, followed by reduction to 5.5 with H3PO4. After that it was treated with active charcoal (3.0%) by 60 min. This pretreated hydrolysate attained the high XR/XD ratio of 4.5.

  10. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037.

    Science.gov (United States)

    Hernández-Pérez, Andrés Felipe; de Arruda, Priscila Vaz; Felipe, Maria das Graças de Almeida

    2016-01-01

    Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH4)2SO4, and full supplementation with (NH4)2SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30°C, 200rpm, for 48h in 125mL Erlenmeyer flasks containing either 25 or 50mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67gg(-1)) was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34gL(-1)h(-1)) was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Microbial Activity and Silica Degradation in Rice Straw

    Science.gov (United States)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity

  12. Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings.

    Science.gov (United States)

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2012-02-15

    This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Hemicellulose conversion by anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S; Honry, M P; Christopher, R W

    1985-01-01

    This research was undertaken to study the digestibility of the hemicellulose fractions of an aquatic biomass, a land-based biomass and a biomass-waste blend under various fermentation conditions. The conversion of hemicellulose was higher than those of cellulose and protein under the mesophilic condition. Hemicellulose was converted at a much lower efficency than cellulose during thermophilic digestion. In contrast, cellulose conversion was about the same under mesophilic and thermophilic conditions. Cellulose was utilized in preference to hemicellulose during mesophilic fermentation of nitrogen-supplemented Bermuda grass. It was speculated that Bermuda grass cellulose was converted at a higher efficiency than hemicellulose in the pressure of external nitrogen because the metabolism of the breakdown product (glucose) of cellulose required the least investment of enzymes and energy. 4 references.

  14. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose

    DEFF Research Database (Denmark)

    Bjerre, A.B.; Bjerring Olesen, A.; Fernqvist, T.

    1996-01-01

    to 10 min) gave about 85% w/w yield of converting cellulose to glucose. The process water, containing dissolved hemicellulose and carboxylic acids, has proven to be a direct nutrient source for the fungus Aspergillus niger producing exo-beta-xylosidase. Furfural and hydroxymethyl-furfural, known...

  15. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    Science.gov (United States)

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Enhanced biohydrogen production from oat straw co-digested with cow dung / sewage sludge by combined aerobic digestion and anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Loretta Li

    2016-03-01

    Full Text Available Hydrogen was produced from oat straw by combined aerobic and anaerobic fermentation with fungi and cow dung. With aerobic pre-digestion, the maximum hydrogen production rate reached 133 ml/g volatile suspended solids per hour. The maximum hydrogen yield was 71.5 ml/g straw in 6 days by biological process. The lignocellulosic conversion of oak-straw waste was 39%, with the complex component converting 68% of the hemi-cellulose and 61% of the cellulose, but only 34% of lignin conversion. Aerobic pre-digestion by Trichoderma viride and Saccharomyces cerevisiae was significantly effective for lignin degradation.  Combining aerobic and anaerobic fermentation is a promising low-cost efficient and environmentally friendly method, compared with hydrogen fermentation, not only for hydrogen production, but also for converting straw biomass.

  17. Nitrogen fertilization affects silicon concentration, cell wall composition and biofuel potential of wheat straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko; Laursen, Kristian Holst; Lindedam, Jane

    2014-01-01

    Nitrogen is an essential input factor required for plant growth and biomass production. However, very limited information is available on how nitrogen fertilization affects the quality of crop residues to be used as lignocellulosic feedstock. In the present study, straw of winter wheat plants grown...... linearly from 0.32% to 0.71% over the range of nitrogen treatments. Cellulose and hemicellulose were not affected by the nitrogen supply while lignin peaked at medium rates of nitrogen application. The nitrogen treatments had a distinct influence on the silicon concentration, which decreased from 2.5% to 1.......5% of the straw dry matter when the nitrogen supply increased from 48 to 192kgha-1. No further decline in Si occurred at higher rates of nitrogen application. The most abundant metals in the straw were potassium and calcium and their concentrations almost doubled over the range of nitrogen supplies. The enzymatic...

  18. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    Science.gov (United States)

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  19. Valorization of sunflower meal through the production of ethanol from the hemicellulosic fraction

    Directory of Open Access Journals (Sweden)

    Bruna Tavares

    Full Text Available ABSTRACT Sunflower is among the major oil seeds crop grown in the world and the by-products generated during the seeds processing represent an attractive source of lignocellulosic biomass for bioprocesses. The conversion of lignocellulosic fibers into fermentable sugars has been considered as a promising alternative to increase the demand for ethanol. The present study aimed to establish the fermentation conditions for ethanol production by Scheffersomyces stipitis ATCC 58376 in sunflower meal hemicellulosic hydrolysate, through a 23 CCRD (Central Composite Rotational Design factorial design. Under the selected conditions (pH 5.25, 29 ºC and 198 rpm the final ethanol concentration was 13.92 g L-1 and the ethanol yield was 0.49 g g-1.

  20. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    Science.gov (United States)

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Separation and purification of hemicellulose-derived saccharides from wood hydrolysate by combined process.

    Science.gov (United States)

    Wang, Xiaojun; Zhuang, Jingshun; Jiang, Jungang; Fu, Yingjuan; Qin, Menghua; Wang, Zhaojiang

    2015-11-01

    Prehydrolysis of wood biomass prior to kraft cooking provides a stream containing hemicellulose-derived saccharides (HDSs) but also undesired non-saccharide compounds (NSCs) that were resulted from lignin depolymerization and carbohydrate degradation. In this study, a combined process consisting of lime treatment, resin adsorption, and gel filtration was developed to separate HDSs from NSCs. The macro-lignin impurities that accounted for 32.2% of NSCs were removed by lime treatment at 1.2% dosage with negligible HDSs loss. The majority of NSCs, lignin-derived phenolics, were eliminated by mixed bed ion exchange resin, elevating NSCs removal to 94.0%. The remaining NSCs, furfural and hydroxymethylfurfural, were excluded from HDSs by gel filtration. Chemical composition analysis showed that xylooligosaccharides (XOS) with the degree of depolymerization from 2 to 6 accounted for 28% of the total purified HDSs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mutation of Cellulose Synthase Gene Improves the Nutritive Value of Rice Straw

    Directory of Open Access Journals (Sweden)

    Yanjing Su

    2012-06-01

    Full Text Available Rice straw is an important roughage resource for ruminants in many rice-producing countries. In this study, a rice brittle mutant (BM, mutation in OsCesA4, encoding cellulose synthase and its wild type (WT were employed to investigate the effects of a cellulose synthase gene mutation on rice straw morphological fractions, chemical composition, stem histological structure and in situ digestibility. The morphological fractions investigation showed that BM had a higher leaf sheath proportion (43.70% vs 38.21%, p0.05 was detected in neutral detergent fiber (NDFom and ADL contents for both strains. Histological structure observation indicated that BM stems had fewer sclerenchyma cells and a thinner sclerenchyma cell wall than WT. The results of in situ digestion showed that BM had higher DM, NDFom, cellulose and hemicellulose disappearance at 24 or 48 h of incubation (p<0.05. The effective digestibility of BM rice straw DM and NDFom was greater than that of WT (31.4% vs 26.7% for DM, 29.1% vs 24.3% for NDFom, p<0.05, but the rate of digestion of the slowly digested fraction of BM rice straw DM and NDF was decreased. These results indicated that the mutation in the cellulose synthase gene could improve the nutritive value of rice straw for ruminants.

  3. Optimization of microwave pretreatment on wheat straw for ethanol production

    DEFF Research Database (Denmark)

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  4. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, E.

    2010-12-15

    Agricultural residues from rapeseed biodiesel industry (rapeseed cake, rape straw, crude glycerol), which represent the 82%wt. of the oilseed rape, currently have only low-grade applications in the market. For this, a scenario was built on exploiting qualities of rapeseed biodiesel residues for forming added-value products, and expanding and upgrading an existing biodiesel plant, to an oilseed rape biorefinery by 2020 in European ground. Selection of products was based on a technological feasibility study given the time frame, while priority was given to Low-Value-High-Volume readily marketed products, like production of energy and feed. Products selected except rapeseed biodiesel, were ethanol, biogas, enzymes energy, chemical building blocks, and superior quality animal fodder. The production lines were analyzed and prospects for 2020 were projected on a critical basis. Particular merit was given to two products, ethanol from cellulose, and cellulolytic enzymes from rape straw. Cellulosic ethanol from rape straw was optimized for all production steps, i.e. for thermo-chemical pretreatment, enzyme hydrolysis, and fermentation of C6 sugars. Thermo-chemical pretreatment was studied with Wet oxidation technique at different conditions of temperature, reaction time, and oxygen pressure, but also factors like pre-soaking straw in warm water, or recycling liquid were also studied. Wet oxidation has been extensively tested in the past for different substrates, and gives promising results with indicators that are important for cellulosic ethanol production; C6 sugars recovery, high digestibility for enzymes, and limited formed degradation products. Here, optimal pretreatment conditions for rape straw were first presoaking rape straw at 80 deg. C for 20 minutes, and then wet-oxidize with 12 bar of oxygen at 205 deg. C for 3 minutes. Recovery of cellulose and hemicellulose under these conditions was 105% and 106% respectively, while recovery of lignin was 86%. When this

  5. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, E

    2010-12-15

    Agricultural residues from rapeseed biodiesel industry (rapeseed cake, rape straw, crude glycerol), which represent the 82%wt. of the oilseed rape, currently have only low-grade applications in the market. For this, a scenario was built on exploiting qualities of rapeseed biodiesel residues for forming added-value products, and expanding and upgrading an existing biodiesel plant, to an oilseed rape biorefinery by 2020 in European ground. Selection of products was based on a technological feasibility study given the time frame, while priority was given to Low-Value-High-Volume readily marketed products, like production of energy and feed. Products selected except rapeseed biodiesel, were ethanol, biogas, enzymes energy, chemical building blocks, and superior quality animal fodder. The production lines were analyzed and prospects for 2020 were projected on a critical basis. Particular merit was given to two products, ethanol from cellulose, and cellulolytic enzymes from rape straw. Cellulosic ethanol from rape straw was optimized for all production steps, i.e. for thermo-chemical pretreatment, enzyme hydrolysis, and fermentation of C6 sugars. Thermo-chemical pretreatment was studied with Wet oxidation technique at different conditions of temperature, reaction time, and oxygen pressure, but also factors like pre-soaking straw in warm water, or recycling liquid were also studied. Wet oxidation has been extensively tested in the past for different substrates, and gives promising results with indicators that are important for cellulosic ethanol production; C6 sugars recovery, high digestibility for enzymes, and limited formed degradation products. Here, optimal pretreatment conditions for rape straw were first presoaking rape straw at 80 deg. C for 20 minutes, and then wet-oxidize with 12 bar of oxygen at 205 deg. C for 3 minutes. Recovery of cellulose and hemicellulose under these conditions was 105% and 106% respectively, while recovery of lignin was 86%. When this

  6. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw

    Science.gov (United States)

    Yi Ding; Bo Du; Xuebing Zhao; J.Y. Zhu; Dehua Liu

    2017-01-01

    Phosphomolybdic acid (PMo12) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo12 with solubilization of a fraction of hemicelluloses, and the PMo12...

  7. Effect of iron salt type and dosing mode on Fenton-based pretreatment of rice straw for enzymatic hydrolysis.

    Science.gov (United States)

    Gan, Yu-Yan; Zhou, Si-Li; Dai, Xiao; Wu, Han; Xiong, Zi-Yao; Qin, Yuan-Hang; Ma, Jiayu; Yang, Li; Wu, Zai-Kun; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2018-06-15

    Fenton-based processes with four different iron salts in two different dosing modes were used to pretreat rice straw (RS) samples to increase their enzymatic digestibility. The composition analysis shows that the RS sample pretreated by the dosing mode of iron salt adding into H 2 O 2 has a much lower hemicellulose content than that pretreated by the dosing mode of H 2 O 2 adding into iron salt, and the RS sample pretreated by the chloride salt-based Fenton process has a much lower lignin content and a slightly lower hemicellulose content than that pretreated by the sulphate salt-based Fenton process. The higher concentration of reducing sugar observed on the RS sample with lower lignin and hemicellulose contents justifies that the Fenton-based process could enhance the enzymic hydrolysis of RS by removing hemicellulose and lignin and increasing its accessibility to cellulase. FeCl 3 ·6H 2 O adding into H 2 O 2 is the most efficient Fenton-based process for RS pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. COMPARISON OF TWO CHEMICAL PRETREATMENTS OF RICE STRAW FOR BIOGAS PRODUCTION BY ANAEROBIC DIGESTION

    Directory of Open Access Journals (Sweden)

    Zilin Song,

    2012-06-01

    Full Text Available Lignocellulosic biomass is considered the most abundant renewable resource that has the potential to contribute remarkably in the supply of biofuel. Previous studies have shown that chemical pretreatment prior to anaerobic digestion (AD can increase the digestibility of lignocellulosic biomass and methane yield. In the present study, the effect of rice straw pretreatment using ammonium hydroxide (NH3•H2O and hydrogen peroxide (H2O2 on the biogasification performance through AD was investigated. A self-designed, laboratory-scale, and continuous anaerobic biogas digester was used for the evaluation. Results showed that the contents of the rice straw, i.e. the lignin, cellulose, and hemicellulose were degraded significantly after the NH3•H2O and H2O2 treatments, and that biogas production from all pretreated rice straw increased. In addition, the optimal treatments for biogas production were the 4% and 3% H2O2 treatments (w/w, which yielded 327.5 and 319.7 mL/gVS, biogas, respectively, higher than the untreated sample. Biogas production from H2O2 pretreated rice straw was more favorable than rice straw pretreated with same concentration of ammonia, ranking in the order of 4% ≈ 3% > 2% > 1%. The optimal amount of H2O2 treatment for rice straw biogas digestion is 3% when economics and biogas yields are considered.

  9. Avaliação de diferentes tipos de carvão ativo na destoxificação de hidrolisado de palha de arroz para produção de xilitol Evaluation of different kinds of activated charcoal used for rice straw hydrolysate detoxification for xylitol production

    Directory of Open Access Journals (Sweden)

    Solange Inês Mussatto

    2004-03-01

    Full Text Available O hidrolisado hemicelulósico de palha de arroz foi tratado com cinco tipos de carvão ativo (pó e granulado com o objetivo de remover, por adsorção, compostos tóxicos que podem agir como inibidores no processo de bioconversão de xilose em xilitol, por Candida guilliermondii. Os valores máximos de fator de rendimento em xilitol (Y P/S = 0,67g g-1 e produtividade volumétrica (Q P = 0,61g L-1 h-1 foram atingidos quando o hidrolisado foi tratado com carvão ativo em pó de partículas de tamanho pequeno (0,043mm, baixa granulometria (32% retidos em peneira de 325mesh e grande área superficial (860m² g-1, características as quais favoreceram a adsorção dos compostos tóxicos.Rice straw hemicellulosic hydrolysate was treated with five kinds of activated charcoal (powdered and granulated in order to remove, by adsorption, toxic compounds that can be act as inhibitors in the bioconversion of xylose to xylitol, by Candida guilliermondii. Maximum values of xylitol yield factor (Y P/S= 0.67g g-1 and volumetric productivity (Q P=0.61g L-1h-1 were provided by powdered activated charcoal with small particles size (0.043mm, low granulometry (32% restrained in 325mesh and large surface area (860m² g-1, characteristics which favoured the toxic compounds adsorption.

  10. Actinomycete enzymes and activities involved in straw saccharification

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, A J; Ball, A S [Liverpool Univ. (UK). Dept. of Genetics and Microbiology

    1990-01-01

    This research programme has been directed towards the analysis of actinomycete enzyme systems involved in the degradation of plant biomass (lignocellulose.) The programme was innovative in that a novel source of enzymes was systematically screened and wheat straw saccharifying activity was the test criterion. Over 200 actinomycete strains representing a broad taxonomic range were screened. A range of specific enzyme activities were involved and included cellulase, xylanase, arabinofuranosidase, acetylesterase, {beta}-xylosidase and {beta}-glucosidase. Since hemicellulose (arabinoxylan) was the primary source of sugar, xylanases were characterized. The xylan-degrading systems of actinomycetes were complex and nonuniform, with up to six separate endoxylanases identified in active strains. Except for microbispora bispora, actinomycetes were found to be a poor source of cellulase activity. Evidence for activity against the lignin fraction of straw was produced for a range of actinomycete strains. While modification reactions were common, cleavage of inter-monomer bonds, and utilization of complex polyphenolic compounds were restricted to two strains: Thermomonospora mesophila and Streptomyces badius. Crude enzyme preparations from actinomycetes can be used to generate sugar, particularly pentoses, directly from cereal straw. The potential for improvements in yield rests with the formulation to cooperative enzyme combinations from different strains. The stability properties of enzymes from thermophilic strains and the general neutral to alkali pH optima offer advantages in certain process situations. Actinomycetes are a particularly rich source of xylanases for commercial application and can rapidly solubilise a lignocarbohydrate fraction of straw which may have both product and pretreatment potential. 31 refs., 4 figs., 5 tabs.

  11. Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2010-11-01

    Full Text Available Abstract Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. Conclusions We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.

  12. Fungal pretreatment of straw for enhanced biogas yield

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xinmei; Pilar Castillo, Maria del; Schnuerer, Anna

    2013-07-01

    Among lignocellulosic materials from the agricultural sector, straw is considered to have the biggest potential as a biofuel and therefore also represents a big potential for biogas production. However, the degradation of lignocellulosic materials is somewhat restricted due to the high content of lignin that binds cellulose and hemicellulose and makes them unavailable for microbial degradation. Consequently, low methane yields are achieved. The biodegradability of the lignocellulosic material can be increased by a pretreatment. Optimally the pre-treatment should give an increase in the formation of sugars while avoiding the degradation or loss of carbohydrates and the formation of inhibitory by-products. The treatment should also be cost-effective. Different methods for pre-treatment of lignocellulosic material have been explored, for example thermal, acid, alkaline and oxidative pretreatments. However, they often have a high energy demand. Biological treatment with fungi represents an alternative method for pretreatment of lignocellulosic materials that could be comparably more environmentally friendly, easier to operate and with low energy input. The fungal groups of interest for lignocellulose degradation are the wood decaying fungi, such as the white-, brown-rot and cellulose degraders. The purpose with this work was to increase the biogas potential of straw by using a pretreatment with fungi. Straw was incubated with fungi at aerobic conditions under certain periods of time. The growth and colonization of the straw by the fungi was expected to increase the availability of the lignocellulosic structure of the straw and thus positively affect the biogas potential. In addition also, the spent lignocellulosic material from the cultivation of edible fungi was investigated. We hypothesized that also growth of edible fungi could give a more accessible material and thus give higher biogas potential compared to the substrate before fungal growth.

  13. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.

    Science.gov (United States)

    Yen, Hong-Wei; Chang, Jung-Tzu

    2015-05-01

    The conversion of abundant lignocellulosic biomass (LCB) to valuable compounds has become a very attractive idea recently. This study successfully used LCB (rice straw) hydrolysate as a carbon source for the cultivation of oleaginous yeast-Rhodotorula glutinis in an airlift bioreactor. The lipid content of 34.3 ± 0.6% was obtained in an airlift batch with 60 g reducing sugars/L of LCB hydrolysate at a 2 vvm aeration rate. While using LCB hydrolysate as the carbon source, oleic acid (C18:1) and linoleic acid (C18:2) were the predominant fatty acids of the microbial lipids. Using LCB hydrolysate in the airlift bioreactor at 2 vvm achieved the highest cell mass growth as compared to the agitation tank. Despite the low lipid content of the batch using LCB hydrolysate, this low cost feedstock has the potential of being adopted for the production of β-carotene instead of lipid accumulation in the airlift bioreactor for the cultivation of R. glutinis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Science.gov (United States)

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of thermo-chemical pretreatment plus microbial fermentation and enzymatic hydrolysis on saccharification and lignocellulose degradation of corn straw.

    Science.gov (United States)

    Wang, Ping; Chang, Juan; Yin, Qingqiang; Wang, Erzhu; Zhu, Qun; Song, Andong; Lu, Fushan

    2015-10-01

    In order to increase corn straw degradation, the straw was kept in the combined solution of 15% (w/w) lime supernatant and 2% (w/w) sodium hydroxide with liquid-to-solid ratio of 13:1 (mL/g) at 83.92°C for 6h; and then added with 3% (v/v) H2O2 for reaction at 50°C for 2h; finally cellulase (32.3 FPU/g dry matter) and xylanase (550 U/g dry matter) was added to keep at 50°C for 48 h. The maximal reducing sugars yield (348.77 mg/g) was increased by 126.42% (Pcellulose, hemicellulose and lignin in pretreated corn straw with enzymatic hydrolysis were increased by 40.08%, 45.71% and 52.01%, compared with the native corn straw with enzymatic hydrolysis (P<0.05). The following study indicated that the combined microbial fermentation and enzymatic hydrolysis could further increase straw degradation and reducing sugar yield (442.85 mg/g, P<0.05). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China

    Directory of Open Access Journals (Sweden)

    Jiguang Zhang

    2016-07-01

    Full Text Available To determine the effects of straw incorporation on soil nutrients, enzyme activity, and aggregates in tobacco fields, we conducted experiments with different amounts of wheat and maize straw in Zhucheng area of southeast Shandong province for three years (2010–2012. In the final year of experiment (2012, straw incorporation increased soil organic carbon (SOC and related parameters, and improved soil enzyme activity proportionally with the amount of straw added, except for catalase when maize straw was used. And maize straw incorporation was more effective than wheat straw in the tobacco field. The percentage of aggregates >2 mm increased with straw incorporation when measured by either dry or wet sieving. The mean weight diameter (MWD and geometric mean diameter (GMD in straw incorporation treatments were higher than those in the no-straw control (CK. Maize straw increased soil aggregate stability more than wheat straw with the same incorporation amount. Alkaline phosphatase was significantly and negatively correlated with soil pH. Sucrase and urease were both significantly and positively correlated with soil alkali-hydrolysable N. Catalase was significantly but negatively correlated with soil extractable K (EK. The MWD and GMD by dry sieving had significantly positive correlations with SOC, total N, total K, and EK, but only significantly correlated with EK by wet sieving. Therefore, soil nutrients, metabolic enzyme activity, and aggregate stability might be increased by increasing the SOC content through the maize or wheat straw incorporation. Moreover, incorporation of maize straw at 7500 kg·hm−2 was the best choice to enhance soil fertility in the tobacco area of Eastern China.

  17. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor.

    Science.gov (United States)

    Zahed, Omid; Jouzani, Gholamreza Salehi; Abbasalizadeh, Saeed; Khodaiyan, Faramarz; Tabatabaei, Meisam

    2016-05-01

    The present study was set to develop a robust and economic biorefinery process for continuous co-production of ethanol and xylitol from rice straw in a membrane bioreactor. Acid pretreatment, enzymatic hydrolysis, detoxification, yeast strains selection, single and co-culture batch fermentation, and finally continuous co-fermentation were optimized. The combination of diluted acid pretreatment (3.5 %) and enzymatic conversion (1:10 enzyme (63 floating-point unit (FPU)/mL)/biomass ratio) resulted in the maximum sugar yield (81 % conversion). By concentrating the hydrolysates, sugars level increased by threefold while that of furfural reduced by 50 % (0.56 to 0.28 g/L). Combined application of active carbon and resin led to complete removal of furfural, hydroxyl methyl furfural, and acetic acid. The strains Saccharomyces cerevisiae NCIM 3090 with 66.4 g/L ethanol production and Candida tropicalis NCIM 3119 with 9.9 g/L xylitol production were selected. The maximum concentrations of ethanol and xylitol in the single cultures were recorded at 31.5 g/L (0.42 g/g yield) and 26.5 g/L (0.58 g/g yield), respectively. In the batch co-culture system, the ethanol and xylitol productions were 33.4 g/L (0.44 g/g yield) and 25.1 g/L (0.55 g/g yield), respectively. The maximum ethanol and xylitol volumetric productivity values in the batch co-culture system were 65 and 58 % after 25 and 60 h, but were improved in the continuous co-culture mode and reached 80 % (55 g/L) and 68 % (31 g/L) at the dilution rate of 0.03 L per hour, respectively. Hence, the continuous co-production strategy developed in this study could be recommended for producing value-added products from this hugely generated lignocellulosic waste.

  19. Cellulose-hemicellulose interaction in wood secondary cell-wall

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Shi; Hong, Yu; Chen, Youping; Xiong, Liming

    2015-01-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose. (paper)

  20. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  1. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    Science.gov (United States)

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams

    Energy Technology Data Exchange (ETDEWEB)

    Saari, P.

    2011-06-15

    Carbohydrates are composed of a number of various monosaccharides, glucose being the most abundant. Some of the monosaccharides are valuable compounds used in the food and pharmaceutical industries. They can be separated from biomass hydrolysates e.g. by chromatographic methods. In this thesis, chromatographic separation of valuable compounds using ion exchange resins was studied on an industrial scale. Of special interest were rare monosaccharides in biomass hydrolysates. A novel chromatographic separation process was developed for fucose, starting from pre-processed spent sulfite liquor. The core of the process consists of three chromatographic separations with different types of ion exchange resins. Chromatographic separation of galactose was tested with three biomass hydrolysates; lactose, gum arabic and hemicellulose hydrolysates. It was demonstrated that also galactose can be separated from complex carbohydrate mixtures. A recovery process for arabinose from citrus pectin liquid residual and for mannose from wood pulp hydrolysate were also developed and experimentally verified. In addition to monosaccharides, chromatographic separation of glycinebetaine from vinasse was examined with a hydrogen form weak acid cation exchange resin. The separation involves untypical peak formation depending, for example, on the pH and the cation composition. The retention mechanism was found to be hydrogen bonding between glycinebetaine and the resin. In the experimental part, all four resin types - strong acid cation, strong base anion, weak acid cation and weak base anion exchange resins - were used. In addition, adsorption equilibria data of seven monosaccharides and sucrose were measured with the resins in sodium and sulfate forms because such data have been lacking. It was found out that the isotherms of all sugars were linear under industrial conditions. A systematic method for conceptual process design and sequencing of chromatographic separation steps were developed

  3. Conversion of rice straw to sugars by dilute-acid hydrolysis

    International Nuclear Information System (INIS)

    Karimi, Keikhosro; Kheradmandinia, Shauker; Taherzadeh, Mohammad J.

    2006-01-01

    Hydrolysis of rice straw by dilute sulfuric acid at high temperature and pressure was investigated in one and two stages. The hydrolyses were carried out in a 10-l reactor, where the hydrolysis retention time (3-10 min), pressure (10-35 bar) and acid concentration (0-1%) were examined. Optimization of first stage hydrolysis is desirable to achieve the highest yield of the sugars from hemicellulose and also as a pretreatment for enzymatic hydrolysis. The results show the ability of first stage hydrolysis to depolymerize xylan to xylose with a maximum yield of 80.8% at hydrolysis pressure of 15 bar, 10 min retention time and 0.5% acid concentration. However, the yield of glucose from glucan was relatively low in first stage hydrolysis at a maximum of 25.8%. The solid residuals were subjected to further dilute-acid hydrolysis in this study. This second-stage hydrolysis without addition of the acid could not increase the yield of glucose from glucan beyond 26.6%. On the other hand, the best results of the hydrolysis were achieved, when 0.5% sulfuric acid was added prior to each stage in two-stage hydrolysis. The best results of the second stage of the hydrolysis were achieved at the hydrolysis pressure and the retention time of 30 bar and 3 min in the second stage hydrolysis, where a total of 78.9% of xylan and 46.6% of glucan were converted to xylose and glucose, respectively in the two stages. Formation of furfural and HMF were functions of the hydrolysis pressure, acid concentration, and retention time, whereas the concentration of acetic acid was almost constant at pressure of higher than 10 bar and a total retention time of 10 min

  4. Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus.

    Science.gov (United States)

    Schroyen, Michel; Van Hulle, Stijn W H; Holemans, Sander; Vervaeren, Han; Raes, Katleen

    2017-11-01

    The impact of various phenolic compounds, vanillic acid, ferulic acid, p-coumaric acid and 4-hydroxybenzoic acid on anaerobic digestion of lignocellulosic biomass (hemp straw and miscanthus) was studied. Such phenolic compounds have been known to inhibit biogas production during anaerobic digestion. The different phenolic compounds were added in various concentrations: 0, 100, 500, 1000 and 2000mg/L. A difference in inhibition of biomethane production between the phenolic compounds was noted. Hydrolysis rate, during anaerobic digestion of miscanthus was inhibited up to 50% by vanillic acid, while vanillic acid had no influence on the initial rate of biogas production during the anaerobic digestion of hemp straw. Miscanthus has a higher lignin concentration (12-30g/100gDM) making it less accessible for degradation, and in combination with phenolic compounds released after harsh pretreatments, it can cause severe inhibition levels during the anaerobic digestion, lowering biogas production. To counter the inhibition, lignin degrading enzymes can be used to remove or degrade the inhibitory phenolic compounds. The interaction of laccase and versatile peroxidase individually with the different phenolic compounds was studied to have insight in the polymerization of inhibitory compounds or breakdown of lignocellulose. Hemp straw and miscanthus were incubated with 0, 100 and 500mg/L of the different phenolic compounds for 0, 6 and 24h and pretreated with the lignin degrading enzymes. A laccase pretreatment successfully detoxified the substrate, while versatile peroxidase however was inhibited by 100mg/L of each of the individual phenolic compounds. Finally a combination of enzymatic detoxification and subsequent biogas production showed that a decrease in phenolic compounds by laccase treatment can considerably lower the inhibition levels of the biogas production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Production of butanol (a biofuel) from agricultural residues: Part II - Use of corn stover and switchgrass hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Dien, Bruce; Iten, Loren; Bowman, Michael J.; Cotta, Michael A. [United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research, 1815 N. University Street, Peoria, IL 61604 (United States); Hughes, Stephen; Liu, Siqing [USDA-ARS-NCAUR, Renewable Product Technology, 1815 N. University Street, Peoria, IL 61604 (United States); Sarath, Gautam [USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska, 314 Biochemistry Hall, East Campus, Lincoln, NE 68583 (United States)

    2010-04-15

    Acetone butanol ethanol (ABE) was produced from hydrolysed corn stover and switchgrass using Clostridium beijerinckii P260. A control experiment using glucose resulted in the production of 21.06 g L{sup -1} total ABE. In this experiment an ABE yield and productivity of 0.41 and 0.31 g L{sup -1} h{sup -1} was achieved, respectively. Fermentation of untreated corn stover hydrolysate (CSH) exhibited no growth and no ABE production; however, upon dilution with water (two fold) and wheat straw hydrolysate (WSH, ratio 1:1), 16.00 and 18.04 g L{sup -1} ABE was produced, respectively. These experiments resulted in ABE productivity of 0.17-0.21 g L{sup -1} h{sup -1}. Inhibitors present in CSH were removed by treating the hydrolysate with Ca(OH){sub 2} (overliming). The culture was able to produce 26.27 g L{sup -1} ABE after inhibitor removal. Untreated switchgrass hydrolysate (SGH) was poorly fermented and the culture did not produce more than 1.48 g L{sup -1} ABE which was improved to 14.61 g L{sup -1}. It is suggested that biomass pretreatment methods that do not generate inhibitors be investigated. Alternately, cultures resistant to inhibitors and able to produce butanol at high concentrations may be another approach to improve the current process. (author)

  6. Recovery of monosaccharides from lignocellulosic hydrolysates by ion exclusion chromatography.

    Science.gov (United States)

    Lodi, Gabriele; Pellegrini, Laura Annamaria; Aliverti, Alessandro; Rivas Torres, Beatriz; Bernardi, Marco; Morbidelli, Massimo; Storti, Giuseppe

    2017-05-05

    The production of sugars from lignocellulosic biomass is the key to a sustainable, renewable chemical industry. Glucose, xylose and other monosaccharides can be easily produced by hydrolyzing cellulose and hemicellulose, the primary polysaccharides in biomass. However, the hydrolysis of biomass generates byproducts that, together with the mineral acid normally added in the hydrolysis step, have to be removed before the downstream conversion processes. In this work, the recovery of monosaccharides from lignocellulosic hydrolysates by means of Ion Exclusion Chromatography (IEC) has been studied. The analyzed process relies on new pretreatment and hydrolysis steps, involving the neutralization of the hydrolysate with sodium hydroxide. The adsorption behavior of the main components involved in the separation has been experimentally investigated. Pulse tests at the high loading encountered in preparative conditions have been performed for a selected group of model components found in the hydrolysates. For all the electrolytes, the retention volume fraction was always between the interparticle porosity and the total column porosity, confirming that ion exclusion was the dominant retention mechanism. On the other hand, sugars eluted before the total column porosity, indicating partial steric exclusion from the resin pores. This observation was then confirmed by size-exclusion experiments with polyethylene glycol standards, from which the distribution coefficient of the studied sugars has been determined. The comparison between the elution profiles of the same sugars in pure form and as a mixture present in the hydrolysate showed differences in both peak shape and retention times. Therefore, an investigation of the influence of the main electrolytes contained in the hydrolysates on sugars adsorption has been performed through the pulse on a plateau method. The electrolytes were found to enhance the sugars retention by promoting their adsorption onto the resin. However

  7. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    Carà, P.D.; Pagliaro, M.; Elmekawy, A.; Brown, D.R.; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running

  8. Inhibitory Compounds in Lignocellulosic Biomass Hydrolysates during Hydrolysate Fermentation Processes

    NARCIS (Netherlands)

    Zha, Y.; Muilwijk, B.; Coulier, L.C.; Punt, P.J.

    2012-01-01

    To compare the composition and performance of various lignocellulosic biomass hydrolysates as fermentation media, 8 hydrolysates were generated from a grass-like and a wood biomass. The hydrolysate preparation methods used were 1) dilute acid, 2) mild alkaline, 3) alkaline/peracetic acid, and 4)

  9. An economic evaluation of biological conversion of wheat straw to butanol: A biofuel

    International Nuclear Information System (INIS)

    Qureshi, N.; Saha, B.C.; Cotta, M.A.; Singh, V.

    2013-01-01

    Highlights: ► An economic evaluation of bioconversion of wheat straw to butanol was performed. ► Wheat straw and utilities impact butanol economics significantly. ► Sulfuric acid and sodium hydroxide affect butanol production cost adversely. ► Annexation of butanol plant to an existing distillery improves butanol economics. ► Butanol production cost from wheat straw was estimated to be $1.31–1.00/kg. - Abstract: A cost estimation study was performed for a biological butanol production plant with a capacity of 150 × 10 6 kg butanol/year. Wheat straw (WS) was used as a feedstock. In addition to butanol, acetone (78.05 × 10 6 kg/year) and ethanol (28.54 × 10 6 kg/year) would also be produced. The total capital cost for this plant was $193.07 × 10 6 . This exercise was based in part on data generated in our laboratory and in part on data obtained from literature. The design, mass balance, and energy balance simulations were performed using SuperPro Designer (Version 8.5003, 2012). For butanol production wheat straw would be pretreated with dilute (1% v/v) sulfuric acid at 121 °C for 1 h followed by separate hydrolysis (using enzymes), fermentation and recovery. Enzyme cost for wheat straw hydrolysis was adapted from literature ($0.16/kg butanol). Utilities which included steam/high pressure steam, cooling/chilling water, and electricity represented the major cost of the operation (49.18%) followed by raw materials (26.81%). Based on batch fermentation of wheat straw hydrolysate and distillative recovery of acetone butanol ethanol (ABE), butanol production cost was estimated to be $1.30/kg for a grass-rooted/green-field plant. Application of a membrane recovery process could reduce this price to $1.00/kg for a plant annexed to an existing distillery.

  10. Biological utilization of bagasse, a lignocellulose waste

    CSIR Research Space (South Africa)

    Paterson-Jones, JC

    1989-01-01

    Full Text Available for the production of single cell protein from the hemicelluloses and cellulose hydrolysates and the production of ethanol from the the cellulose by simultaneous saccharification and fermentation and from the hemicelluloses hydroly-sate by direct fermentation...

  11. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose.

    Science.gov (United States)

    Wu, Jiaqiang; Hu, Jinlong; Zhao, Shumiao; He, Mingxiong; Hu, Guoquan; Ge, Xiangyang; Peng, Nan

    2018-05-01

    Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg -1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L -1  h -1 and the yield of 0.40 g g -1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L -1  h -1 and yield of 0.17 g g -1 straw. C. intermedia FL023 was tolerant to 0.5 g L -1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L -1 xylitol from xylose with the productivity of 0.38 g L -1  h -1 and the yield of 0.57 g g -1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.

  12. Hypolipidemic effect of hemicellulose component of coconut fiber.

    Science.gov (United States)

    Sindhurani, J A; Rajamohan, T

    1998-08-01

    The neutral detergent fiber (NDF) isolated from coconut kernel was digested with cellulase and hemicellulase and the residual fiber rich in hemicellulose (without cellulose) and cellulose (with out hemicellulose) were fed to rats and compared with a fiber free group. The results indicate that hemicellulose rich fiber showed decreased concentration of total cholesterol, LDL + VLDL cholesterol and increased HDL cholesterol, while cellulose rich fiber showed no significant alteration. There was increased HMG CoA reductase activity and increased incorporation of labeled acetate into free cholesterol. Rats fed hemicellulose rich coconut fiber produced lower concentration of triglycerides and phospholipids and lower release of lipoproteins into circulation. There was increased concentration of hepatic bile acids and increased excretion of faecal sterols and bile acids. These results indicate that the hemicellulose component of coconut fiber was responsible for the observed hypolipidemic effect.

  13. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.

    Science.gov (United States)

    Rahnama, Nooshin; Foo, Hooi Ling; Abdul Rahman, Nor Aini; Ariff, Arbakariya; Md Shah, Umi Kalsom

    2014-12-12

    Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels. Rice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the

  14. New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract

    Directory of Open Access Journals (Sweden)

    Debora Danielle Virginio da Silva

    2014-12-01

    Full Text Available The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH42SO4; peptone and yeast extract; (NH42SO4, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH42SO4, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH42SO4 and rice bran extract. Together, these findings indicate that: a for both yeasts (NH42SO4 was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials.

  15. Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw

    International Nuclear Information System (INIS)

    Carvalho, Danila Morais de; Sevastyanova, Olena; Queiroz, José Humberto de; Colodette, Jorge Luiz

    2016-01-01

    Highlights: • Mathematical approach to optimize the process of cold alkaline extraction. • Hemicelluloses and lignin removal from biomasses by cold alkaline extraction. • Higher xylan and lignin removal for straw during pretreatment. • Formation of pseudo-extractives for eucalyptus during pretreatment. • Higher ethanol production for pretreated sugarcane straw. - Abstract: Optimal conditions for the cold alkaline extraction (CAE) pretreatment of eucalyptus, sugarcane bagasse and sugarcane straw are proposed in view of their subsequent bioconversion into ethanol through the semi-simultaneous saccharification and fermentation (SSSF) process (with presaccharification followed by simultaneous saccharification and fermentation, or SSF). The optimum conditions, which are identified based on an experiment with a factorial central composite design, resulted in the removal of 46%, 52% and 61% of the xylan and 15%, 37% and 45% of the lignin for eucalyptus, bagasse and straw, respectively. The formation of pseudo-extractives was observed during the CAE of eucalyptus. Despite the similar glucose concentration and yield for all biomasses after 12 h of presaccharification, the highest yield (0.065 g_e_t_h_a_n_o_l/g_b_i_o_m_a_s_s), concentrations (5.74 g L"−"1) and volumetric productivity for ethanol (0.57 g L"−"1 h"−"1) were observed for the sugarcane straw. This finding was most likely related to the improved accessibility of cellulose that resulted from the removal of the largest amount of xylan and lignin.

  16. Effects of an acid/alkaline treatment on the release of antioxidants and cellulose from different agro-food wastes.

    Science.gov (United States)

    Vadivel, Vellingiri; Moncalvo, Alessandro; Dordoni, Roberta; Spigno, Giorgia

    2017-06-01

    The present investigation was aimed to evaluate the release of both antioxidants and cellulosic fibre from different agro-food wastes. Cost-effective and easily available agro-food residues (brewers' spent grains, hazelnut shells, orange peels and wheat straw) were selected and submitted to a double-step acid/alkaline fractionation process. The obtained acid and alkaline liquors were analysed for total phenols content and antioxidant capacity. The final fibre residue was analysed for the cellulose, lignin and hemicellulose content. The total phenols content and antioxidant capacity of the acid liquors were higher than the alkaline hydrolysates. Orange peels and wheat straw gave, respectively, the highest (19.70±0.68mg/g dm ) and the lowest (4.70±0.29mg/g dm ) total phenols release. Correlation between antioxidant capacity of the liquors and their origin depended on the analytical assay used to evaluate it. All the acid liquors were also rich in sugar degradation products (mainly furfural). HPLC analysis revealed that the most abundant phenolic compound in the acid liquors was vanillin for brewers' spent grains, hazelnut shells and wheat straw, and p-hydroxybenzoic acid for orange peels. Wheat straw served as the best raw material for cellulose isolation, providing a final residue with a high cellulose content (84%) which corresponded to 45% of the original cellulose. The applied process removed more than 90% of the hemicellulose fraction in all the samples, while delignification degree ranged from 67% (in hazelnut shells), to 93% (in brewers' spent grains). It was not possible to select a unique raw material for the release of highest levels of both total phenols and cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Different physical and chemical pretreatments of wheat straw for enhanced biobutanol production in simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Thirmal, Chumangalah; Dahman, Yaser [Department of Chemical Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)

    2011-07-01

    The objective of this study is to increase butanol product yields using wheat straw as the biomass. First this study examined different pretreatment and saccharification processes to obtain the maximum sugar concentration. Three different physical and chemical pretreatment methods for the wheat straws were examined in the present work in comparison with physical pretreatment alone as a reference. This included water, acidic, and alkaline pretreatment. For all cases, physical pretreatment represented by 1 mm size reduction of the straws was applied prior to each pretreatment. Results showed that 13.91 g/L glucose concentration was produced from saccharification with just the physical pretreatment (i.e., no chemical pretreatment). This represented {approx}5-20 % lower sugar release in saccharification compared to the other three pretreatment processes. Saccharification with acid pretreatment obtained the highest sugar concentrations, which were 18.77 g/L glucose and 12.19 g/L xylose. Second this study produced butanol from simultaneous saccharification and fermentation (SSF) using wheat straw hydrolysate and Clostridium beijerinckii BA101. Water pretreatment was applied to separate lignin and polysaccharides from the wheat straw. Physical pretreatment was applied prior to water pretreatment where, wheat straw was grounded into fine particles less than 1 mm size. Another experiment was conducted where physical pretreatment was applied alone prior to SSF (i.e. no chemical pretreatment was applied). Both processes converted more than 10% of wheat straw into butanol product. This was 2% higher than previous studies. The results illustrated that SSF with physical pretreatment alone obtained 2.61 g/L butanol.

  18. Upgrading the Hemicellulosic Fraction of Biomass into Biofuel Valorisation de la fraction hémicellulosique de la biomasse en biocarburants

    Directory of Open Access Journals (Sweden)

    Ben Chaabane F.

    2013-06-01

    Full Text Available Hemicelluloses are polymers composed mainly of C5 sugars (pentosans . They constitute a significant part of lignocellulosic biomass (LCB, as they can be up to 30% of the total mass. The upgrading of the hemicellulosic components is thus a prerequisite for profitable biofuel production from LCB. When LCB undergoes acid pretreatment, the hemicellulose-derived fraction is mainly composed of monomeric pentoses (xylose, arabinose and oligomeric pentoses both resulting from the thermo-chemical hydrolysis. The hemicellulosic fraction is not fermentable into ethanol by wild type strains of Saccharomyces cerevisiae. Over the past 20 years, several groups have worked to genetically modify this yeast in order to render it capable offermenting pentose constituents. These efforts were met with varying degrees of success, especially in the case of industrial substrates. In this paper, we describe two other possible ways of using the hemicellulosic fraction, each of which may contribute to the economic viability of biofuel production from LCB. The first one is its use as a carbon substrate for the production of cellulases by Trichoderma reesei, since cellulases are needed for the enzymatic hydrolysis of cellulose. The second is the AcetoneButanol-Ethanol (ABE fermentation using anaerobic bacteria of the genus Clostridium. The produced ABE mixture has very interesting fuel properties and can be directly blended with gasoline. Les hémicelluloses sont des polymères composés principalement de sucres en C5 (pentosanes. Elles constituent une part importante de la biomasse lignocellulosique (BLC, puisqu’elles représentent jusqu’à 30 % de la masse totale. La valorisation des constituants hémicellulosiques est donc un prérequis pour la profitabilité de la production de biocarburants à partir de BLC. Lorsque l’on applique un prétraitement acide à la BLC, la fraction hémicellulosique résultante est principalement composée de pentoses monom

  19. Ethanol production from rape straw by a two-stage pretreatment under mild conditions.

    Science.gov (United States)

    Romero, Inmaculada; López-Linares, Juan C; Delgado, Yaimé; Cara, Cristóbal; Castro, Eulogio

    2015-08-01

    The growing interest on rape oil as raw material for biodiesel production has resulted in an increasing availability of rape straw, an agricultural residue that is an attractive renewable source for the production of second-generation bioethanol. Pretreatment is one of the key steps in such a conversion process. In this work, a sequential two-stage pretreatment with dilute sulfuric acid (130 °C, 60 min, 2% w/v H2SO4) followed by H2O2 (1-5% w/v) in alkaline medium (NaOH) at low temperature (60, 90 °C) and at different pretreatment times (30-90 min) was investigated. The first-acid stage allows the solubilisation of hemicellulose fraction into fermentable sugars. The second-alkaline peroxide stage allows the delignification of the solid material whilst the cellulose remaining in rape straw turned highly digestible by cellulases. Simultaneous saccharification and fermentation with 15% (w/v) delignified substrate at 90 °C, 5% H2O2 for 60 min, led to a maximum ethanol production of 53 g/L and a yield of 85% of the theoretical.

  20. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    Science.gov (United States)

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.

  1. One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    Science.gov (United States)

    Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang

    2018-01-01

    To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one

  2. Économie d'un procédé d'hydrolyse enzymatique et fermentation de la paille de blé pour la production d'alcool carburant Economics of a Process for Producing Alcohol Fuels by Enzymatic Hydrolysis and Fermentation of Wheat Straw

    Directory of Open Access Journals (Sweden)

    Arlie J. P.

    2006-11-01

    Full Text Available Après définition des grandes lignes d'un procédé de base d'hydrolyse-fermentation de la paille de blé, l'analyse de sensibilité montre que le rendement de l'hydrolyse a une grande importance sur les bilans énergétique et économique. Des rendements de l'ordre de 85 % permettent d'obtenir des valeurs d'investissement par tonne de pétrole économisée tout à fait comparables à celles obtenues par d'autres techniques de valorisation de la biomasse en alcool, telle la synthèse du méthanol obtenu après gazéification du bois à l'oxygène. The basic features of a process for production from cereal straw of an acetone-butanol mixture for use as a gasoline substitute are described. They include pretreatment and enzymatic hydrolysis of the substrate followed by fermentation of the sugars produced. A cost evaluation based on the performances of a reference process is presented. Then, an analysis of the sensitivity of the cost price of the process to the variation of the important parameters such as production capacity, enzyme productivity, hydrolysis yield is carried out. The energy balance of the process is presented.

  3. Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karagöz, Pınar; Karakashev, Dimitar Borisov

    2013-01-01

    from the liquid fraction of pretreated rapeseed straw, without any dilution or need for additives. However, when the hydrolysate was used undiluted the ethanol yield was only 37% compared to yield of the control, in which pure sugars in synthetic medium were used. The decrease of ethanol yield...... showed that the two strains together could achieve up to 85% of the theoretical ethanol yield based on the sugar composition of the rapeseed straw, which was 14% and 50% higher compared to the yield with the yeast or the bacteria alone, respectively. Biotechnol. Bioeng. © 2012 Wiley Periodicals, Inc.......The newly isolated extreme thermophile Thermoanaerobacter pentosaceus was used for ethanol production from alkaline-peroxide pretreated rapeseed straw (PRS). Both the liquid and solid fractions of PRS were used. T. pentosaceus was able to metabolize the typical process inhibitors present...

  4. Use of hemicellulose hydrolate in the production of fatty acids. Udnyttelse af hemicellulosehydrolysat til fremstilling af fede syrer

    Energy Technology Data Exchange (ETDEWEB)

    Hamann Spendler, F.

    1988-06-15

    Cellulose fibers can be produced from straw by an organosolve process or similar week acid hydrolysis. The hydrolysate sugars can further be converted to volatile fatty acids by fermentation. The composition of the hydrolysate was analyzed. Xylose was predominant, but in a lower contration than expected from the overall COD-content. This study has shown that if the fermentation is carried out in a fixed film reactor, composition of the acid mixture in the broth yield and conversion speed are strongly dependent on pH and retention time. The production of the more valuable acids, such as lactic acid and butyric acid is favored by a pH around 6,0. Lactid acid should be produced at low retention times of app. 4 hours or less, whereas butyric acid requires retention times of 40 - 60 hours. Attempt to recover the acids by extraction with a solvent compose of tertiary amines and nonylphenol did not prove to be succesful. Other ways of recovering the acids reported in the litterature have been studied and are going to be tested out in the second phase of the project.

  5. Effect of sodium hydroxide, ozone and sulphur dioxide on the composition and in vitro digestibility of wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ghedalia, D.; Miron, J.

    1981-01-01

    Wheat straw was treated with 5% sodium hydroxide, ozone, and 5% sulphur dioxide at 70 C for 72 h, and the effect of treatments on the composition and the in vitro organic matter digestibility (IVOMD) by rumen microorganisms was studied. Ozone and SO/sub 2/ solubilised most or all of the straw hemicellulose, converting it into cell solubles, whereas sodium hydroxide exerted a limited effect in this direction. The level of cell solubles increased from 31.8 to 48.2 and 52.2% and that of the reducing sugars from 2.2 to 15.6 and 24.3%, by ozone and SO/sub 2/ treatments, respectively. The IVOMD of straw was significantly increased by 80% (from 44 to 80%) with SO/sub 2/, whereas NaOH and ozone improved the IVOMD by only 50% (from 44 to 66%). The initial digestibility (ID at 6 h) suggested to represent substrate fermentability was significantly increased by SO/sub 2/ from 7.4 to 29.3%. In the present study, SO/sub 2/ was found to be the most efficient treatment for wheat straw in terms of overall degradability and fermentability. The technological advantage of the proposed treatment lies in the low moisture content (40%) and the moderate temperature required (70/sup 0/C), conditions which could be attained by solar systems. 19 references, 2 figures, 3 tables.

  6. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products.

    Science.gov (United States)

    Ingram, Thomas; Wörmeyer, Kai; Lima, Juan Carlos Ixcaraguá; Bockemühl, Vera; Antranikian, Garabed; Brunner, Gerd; Smirnova, Irina

    2011-04-01

    The conversion of lignocellulose to valuable products requires I: a fractionation of the major components hemicellulose, cellulose, and lignin, II: an efficient method to process these components to higher valued products. The present work compares liquid hot water (LHW) pretreatment to the soda pulping process and to the ethanol organosolv pretreatment using rye straw as a single lignocellulosic material. The organosolv pretreated rye straw was shown to require the lowest enzyme loading in order to achieve a complete saccharification of cellulose to glucose. At biomass loadings of up to 15% (w/w) cellulose conversion of LHW and organosolv pretreated lignocellulose was found to be almost equal. The soda pulping process shows lower carbohydrate and lignin recoveries compared to the other two processes. In combination with a detailed analysis of the different lignins obtained from the three pretreatment methods, this work gives an overview of the potential products from different pretreatment processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Further development of chemical and biological processes for production of bioethanol: Optimisation of pre-treatment processes and characterisation of products

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Anne Belinda; Schmidt, Anette Skammelsen

    1999-03-01

    The efficiency of several processes for pre-treatment of lignocellulose has been investigated to provide feedstock for enzymatic hydrolysis and fermentation. Wet oxidation (WO) (with and without alkaline) has been investigated for wheat straw, birch wood, and willow treating 60 g/L. Three different harvest years of wheat straw were included to evaluate the effect of crop variation from year to year. Comparative studies were made using steaming and steam explosion of wheat straw. Alkaline WO fractionated wheat straw efficiently into solubilised hemicellulose and a highly convertible cellulose fraction. High oxygen (12 bar) during WO and low lignin in treated fibres resulted in highly convertible cellulose. Different optimal reaction conditions were found for different harvest years. For straw 1993 and 1997, conditions were 185 deg. C, 15 minutes resulting in 9-10 g/L solubilised hemicellulose and 63-67% cellulose convertibility. For straw 1994, conditions were 195 deg. C, 5 minutes resulting in 7.5 g/L solubilised hemicellulose and 96% cellulose convertibility. For willow, the optimal pre-treatment was WO without alkaline using 185 deg. C, 15 minutes, giving 8.2 g/L hemicellulose in solution and 50% cellulose convertibility. For birch wood, the best process conditions were hydrothermal treatment (without oxygen and alkaline). At 200 deg. C and 15 minutes, 8 g/L hemicellulose was solubilised with high recoveries for both polysaccharides, however, poor cellulose convertibility was found (<30%). Alkaline WO resulted in the highest cellulose convertibility but low contents of solubilised hemicellulose (<4 g/L). In general, formation of furfural was avoided by adding alkaline during wet oxidation. In the absence of alkaline, furfural formation was higher (up to 130 mg/100 g wheat straw) than that of steam explosion (43 mg/100 g straw). Formation of carboxylic acids was highest during alkaline wet oxidation and highest for birch wood (up to 8 g/L). Minor amounts of

  9. Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis.

    Science.gov (United States)

    Puri, V P; Pearce, G R

    1986-04-01

    Sugarcane bagasse and wheat straw were subjected to alkali treatment at 200 degrees C for 5 min and at 3.45 MPa gas pressure (steam and nitrogen), followed by an explosive discharge through a defibrating nozzle, in an attempt to improve the rate and extent of digestibility. The treatment resulted in the solubilization of 40-45% of the components and in the production of a pulp that gave saccharification yields of 80 and 65% in 8 h for bagasse and wheat straw, respectively. By comparison, alkali steaming at 200 degrees C (1.72 MPa) for 5 min gave saccharification yields of only 58 and 52% in 48 h. The increase in temperature from 140 to 200 degrees C resulted in a gradual increase in in vitro organic matter digestibility (IVOMD) for both the substrates. Also, the extent of alkalinity during pretreatment appears to effect the reactivity of the final product towards enzymes. Pretreatment times ranging from 5 to 60 caused a progressive decline in the IVOMD of bagasse and wheat straw by the alkali explosion method and this was accompanied by a progressive decrease in pH values after explosion. In the alkali-steaming method, pretreatment time had no apparent effect with either substrate. An analysis of the alkali-exploded products showed that substantial amounts of hemicellulose and a small proportion of the lignin were solubilized. The percentage crystallinity of the cellulose did not alter in either substrate but there was a substantial reduction in the degree of polymerization. The superiority of the alkali-explosion pretreatment is attributed to the efficacy of fiber separation and disintegration; this increases the surface area and reduces the degree of polymerization.

  10. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps.

    Science.gov (United States)

    Sánchez, Rafael; Espinosa, Eduardo; Domínguez-Robles, Juan; Loaiza, Javier Mauricio; Rodríguez, Alejandro

    2016-11-01

    Wheat straw was cooked under different pulping processes: Soda (100°C, 7% NaOH, 150min), Kraft (170°C, 16% alkalinity, 25% sulfidity, 40min) and Organosolv (210°C, 60% ethanol, 60min). Once the pulps were obtained, lignocellulose nanofibers (LCNF) were isolated by mechanical process and TEMPO-mediated oxidation followed by a high pressure homogenization. After pulping process, the different pulps were characterized and its chemical composition was determined. The pulps characterization indicates that the Soda process is the process that, despite producing less delignification, retains much of the hemicelluloses in the pulp, being this content a key factor in the nanofibrillation process. Regarding the LCNF obtained by mechanical process, those nanofibers isolated from Organosolv wheat pulp (OWP) and Kraft wheat pulp (KWP) show low values for nanofibrillation yield, specific surface area and greater diameter. However, those nanofibers isolated from Soda wheat pulp (SWP) reach much higher values for these parameters and presents a diameter of 14nm, smaller than those obtained by TEMPO-mediated oxidation from OWP. Smaller diameters are generally obtained in TEMPO-oxidized LCNF. This work concludes that the lignin content does not affect greatly to obtain LCNF as does the hemicellulose content, so it is accurate to use a soft pulping process. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1.

    Science.gov (United States)

    Ma, Jiangshan; Zhang, Keke; Huang, Mei; Hector, Stanton B; Liu, Bin; Tong, Chunyi; Liu, Qian; Zeng, Jiarui; Gao, Yan; Xu, Ting; Liu, Ying; Liu, Xuanming; Zhu, Yonghua

    2016-01-01

    Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe 2+  + H 2 O 2  + H +  → Fe 3+  + OH· + H 2 O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline ( P  Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe 3+ -reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P  Fenton-like reactions. Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism exists in a bacteria degradation system, which provides a new perspective for how natural plant biomass is decomposed by bacteria. This degradative system may offer an alternative approach to the fungi system for lignocellulosic biofuels production.

  12. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  13. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Daniel J. Yelle; Gisela Buschle-Diller

    2011-01-01

    Nanoreinforced hydrogels with a unique network structure were prepared from wood cellulose whiskers coated with chemically modified wood hemicelluloses. The hemicelluloses were modified with 2-hydroxyethylmethacrylate prior to adsorption onto the cellulose whiskers in aqueous medium. Synthesis of the hydrogels was accomplished by in situ radical polymerization of the...

  14. Hydrolysis of Rice Straw Pretreated by Na2SO3 Over Fe-resin/NaCl

    Directory of Open Access Journals (Sweden)

    YANG Hui

    2017-05-01

    Full Text Available To increase the conversion of rice straw(RS and the yield of products, we employed three methods, which were ultrasonic wave, steam explosion and Na2SO3 pretreatment to pretreat RS(the treated RS noted as CS-RS, ZQ-RS and Na2SO3-RS, respectively and found that Na2SO3 treatment was the best pretreatment method based on XRD, SEM, elemental analysis and content of cellulose, hemicellulose and lignin. The conversion of Na2SO3-RS and the yield of total reducing sugar(TRS and levulinic acid(LA were 97.3%, 29.6% and 13.5%, respectively by 10% Fe-resin in 3.3% NaCl solution under 200 ℃.

  15. Antioxidative Activity of Tobacco Leaf Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Guohua Rao

    2007-01-01

    Full Text Available Discarded tobacco leaf protein hydrolysate (DTLPH was prepared by enzymatic hydrolysis using papain and then separated using ultrafiltration (UF membranes with molecular mass cut-off (MMCO of 10, 5, 3 and 1 kDa. Four permeate fractions including 10-K, 5-K, 3-K and 1-K (the permeate fractions from 10, 5, 3 and 1 kDa hydrolysate fractions were obtained. The 5-K hydrolysate fraction had high oxidation inhibilitory ratio (42.62 %, which was about twofold higher than the original hydrolysate and as high as that of vitamin E (α-tocopherol. The fractionated hydrolysates were superior to the original hydrolysate in the antioxidative activity tested. Moreover, these separated hydrolysates showed the enhanced functional property. The amino acid composition of 5-K hydrolysate was analyzed and the results show that the high antioxidative activity of 5-K hydrolysate was derived from high content of histidine, methionine, cystine and tryptophan.

  16. Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by Same Vessel Saccharification and Co-Fermentation

    DEFF Research Database (Denmark)

    Karagöz, Pinar; Vaitkeviciute-Rocha, Indre; Özkan, Melek

    2012-01-01

    Alkaline peroxide pretreatment of rapeseed straw was evaluated for conversion of cellulose and hemicellulose to fermentable sugars. After pretreatment, a liquid phase called pretreatment liquid and a solid phase were separated by filtration. The neutralized pretreatment liquids were used in a co...... pretreatment combination with respect to overall ethanol production. At this condition, 5.73g ethanol was obtained from pretreatment liquid and 14.07g ethanol was produced by co-fermentation of solid fraction with P. stipitis. Optimum delignification was observed when 0.5M MgSO4 was included...... in the pretreatment mixture, and it resulted in 0.92% increase in ethanol production efficiency....

  17. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk

    International Nuclear Information System (INIS)

    Banchorndhevakul, Siriwattana

    2002-01-01

    Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study

  18. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk

    Science.gov (United States)

    Banchorndhevakul, Siriwattana

    2002-08-01

    Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study.

  19. Production and Utilization of Hemicelluloses from Renewable Resources for Sustainable Advanced Products

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa

    Vast amounts of by-products are generated every year from agricultural crop production and hence great quantities of polysaccharides remain underutilized. The polysaccharides from agricultural by-products can be separated and used in the form of new materials. This thesis is devoted...... to the possibility of using hemicelluloses for special polysaccharide film applications in the packaging sector, starting from hemicellulose isolations from a side product of agricultural processes, hemicellulose characterization and assessing material properties and the potential use of hemicellulose films in later.......35, while the waterextracted material had an Ara/Xyl ratio of 0.54. In order to analyse the monosaccharide composition of the isolated hemicelluloses, a method based on gas chromatography-mass spectrometry analysis of acetylated methyl glycosides was developed. The derivatives of the monosaccharides...

  20. Effect of agitation rate on ethanol production from sugar maple hemicellulosic hydrolysate by Pichia stipitis.

    Science.gov (United States)

    Shupe, Alan M; Liu, Shijie

    2012-09-01

    Concentrated dilute acid hydrolysate was obtained from hot water extracts of Acer saccharum (sugar maple) and was fermented to ethanol by Pichia stipitis in a 1.3-L-benchtop bioreactor. The conditions under which the highest ethanol yield was achieved were when the air flow rate was set to 100 cm(3) and the agitation rate was set to 150 rpm resulting in an overall mass transfer coefficient (K(L)a) of 0.108 min(-1). A maximum ethanol concentration of 29.7 g/L was achieved after 120 h of fermentation; however, after 90 h of fermentation, the ethanol concentration was only slightly lower at 29.1 g/L with a yield of 0.39 g ethanol per gram of sugar consumed. Using the same air flow rate and adjusting the agitation rate resulted in lower ethanol yields of 0.25 g/g at 50 rpm and 0.30 g/g at 300 rpm. The time it takes to reach the maximum ethanol concentration was also affected by the agitation rate. The ethanol concentration continued to increase even after 130 h of fermentation when the agitation rate was set at 50 rpm, whereas the maximum ethanol concentration was reached after only 68.5 h at 300 rpm.

  1. Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis.

    Science.gov (United States)

    Wang, Xiahui; Tsang, Yiu Fai; Li, Yuhao; Ma, Xiubing; Cui, Shouqing; Zhang, Tian-Ao; Hu, Jiajun; Gao, Min-Tian

    2017-11-01

    In this study, it was found that the type of phenolic acids derived from rice straw was the major factor affecting ethanol fermentation by Pichia stipitis. The aim of this study was to investigate the inhibitory effect of phenolic acids on ethanol fermentation with rice straw. Different cellulases produced different ratios of free phenolic acids to soluble conjugated phenolic acids, resulting in different fermentation efficiencies. Free phenolic acids exhibited much higher inhibitory effect than conjugated phenolic acids. The flow cytometry results indicated that the damage to cell membranes was the primary mechanism of inhibition of ethanol fermentation by phenolic acids. The removal of free phenolic acids from the hydrolysates increased ethanol productivity by 2.0-fold, indicating that the free phenolic acids would be the major inhibitors formed during saccharification. The integrated process for ethanol and phenolic acids may constitute a new strategy for the production of low-cost ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22.

    Science.gov (United States)

    Zhang, Yuming; Chen, Xiangrong; Luo, Jianquan; Qi, Benkun; Wan, Yinhua

    2014-04-01

    A thermophilic lactic acid (LA) producer was isolated and identified as Bacillus coagulans strain IPE22. The strain showed remarkable capability to ferment pentose, hexose and cellobiose, and was also resistant to inhibitors from lignocellulosic hydrolysates. Based on the strain's promising features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid-liquid separation and detoxification were avoided. Using this process, 46.12 g LA could be produced from 100g dry wheat straw with a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU (filter paper activity units)/g cellulose. The process by B. coagulans IPE22 provides an economical route to produce LA from lignocellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments.

    Science.gov (United States)

    Daly, Paul; van Munster, Jolanda M; Blythe, Martin J; Ibbett, Roger; Kokolski, Matt; Gaddipati, Sanyasi; Lindquist, Erika; Singan, Vasanth R; Barry, Kerrie W; Lipzen, Anna; Ngan, Chew Yee; Petzold, Christopher J; Chan, Leanne Jade G; Pullan, Steven T; Delmas, Stéphane; Waldron, Paul R; Grigoriev, Igor V; Tucker, Gregory A; Simmons, Blake A; Archer, David B

    2017-01-01

    The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL

  4. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ye Sun; Jay J Cheng [North Carolina State Univ., Dept. of Biological and Agricultural Engineering, Raleigh, NC (United States)

    2005-09-01

    Ethanol production from lignocellulosic materials provides an alternative energy production system. Rye and bermudagrass that are used in hog farms for nutrient uptake from swine wastewater have the potential for fuel ethanol production because they have a relative high cellulose and hemicellulose content. Dilute sulfuric acid pretreatment of rye straw and bermudagrass before enzymatic hydrolysis of cellulose was investigated in this study. The biomass at a solid loading rate of 10% was pretreated at 121 deg C with different sulfuric acid concentrations (0.6, 0.9, 1.2 and 1.5%, w/w) and residence times (30, 60, and 90 min). Total reducing sugars, arabinose, galactose, glucose, and xylose in the prehydrolyzate were analyzed. In addition, the solid residues were hydrolyzed by cellulases to investigate the enzymatic digestibility. With the increasing acid concentration and residence time, the amount of arabinose and galactose in the filtrates increased. The glucose concentration in the prehydrolyzate of rye straw was not significantly influenced by the sulfuric acid concentration and residence time, but it increased in the prehydrolyzate of bermudagrass with the increase of pretreatment severity. The xylose concentration in the filtrates increased with the increase of sulfuric acid concentration and residence time. Most of the arabinan, galactan and xylan in the biomass were hydrolyzed during the acid pretreatment. Cellulose remaining in the pretreated feedstock was highly digestible by cellulases from Trichoderma reesei. (Author)

  5. Protein Hydrolysates/Peptides in Animal Nutrition

    Science.gov (United States)

    McCalla, Jeff; Waugh, Terry; Lohry, Eric

    The use of protein hydrolysates as an important nutrient for growth and maintenance has been increasing in animal nutrition. Although animal proteins and protein hydrolysates are widely used however, recently vegetable protein hydrolysates are gaining importance. This chapter reviews the use of protein hydrolysates developed by enzyme hydrolysis and by solid state fermentation process in animal nutrition especially for piglets and compares it with the standard products such as plasma and fishmeal.

  6. Sensory Characteristics of Mud Clam (Polymesoda Erosa) Hydrolysate

    International Nuclear Information System (INIS)

    Normah Ismail; Noorasma Mustakim

    2016-01-01

    Mud clam (Polymesoda erosa) was hydrolysed using two different microbial enzymes; alcalase and flavourzyme. The volatile compounds, amino acids and molecular weight associated with umami and bitter taste in mud clam hydrolysate were determined by head space solid phase micro-extraction gas chromatography (HS-SPME-GCMS), High performance liquid chromatography (HPLC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The characteristics of hydrolysates produced using alcalase and flavourzyme were compared. In total, eighteen, seven and six volatile compounds were identified in the flesh, alcalase hydrolysate and flavourzyme hydrolysate, respectively. 2-piperidinone volatile compound content which is associated with bitterness was 6.79 % in alcalase hydrolysate and 3.78 % in flavourzyme hydrolysate. SDS-PAGE results showed that alcalase hydrolysate contains smaller peptide (<52 kDa) compared to flavourzyme hydrolysate (<126 kDa). In addition, sensory analysis using quantitative descriptive analysis (QDA) showed that flavourzyme hydroysate was the least bitter but elicited more umami taste compared to alcalase hydrolysate. Further treatments are still needed to enhance umami taste and to remove bitter taste in mud clam hydrolysate. (author)

  7. Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate.

    Science.gov (United States)

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; Silva, Silvio S

    2013-10-01

    Selection of the raw material and its efficient utilization are the critical factors in economization of second generation (2G) ethanol production. Fermentation of the released sugars into ethanol by a suitable ethanol producing microorganism using cheap media ingredients is the cornerstone of the overall process. This study evaluated the potential of rice bran extract (RBE) as a cheap nitrogen source for the production of 2G ethanol by Scheffersomyces (Pichia) stipitis NRRL Y-7124 using sugarcane bagasse (SB) hemicellulosic hydrolysate. Dilute acid hydrolysis of SB showed 12.45 g/l of xylose and 0.67 g/l of glucose along with inhibitors. It was concentrated by vacuum evaporation and submitted to sequential detoxification (neutralization by calcium hydroxide and charcoal adsorption). The detoxified hydrolysate revealed the removal of furfural (81 %) and 5-hydroxymethylfurfural (61 %) leading to the final concentration of glucose (1.69 g/l) and xylose (33.03 g/l). S. stipitis was grown in three different fermentation media composed of detoxified hydrolysate as carbon source supplemented with varying nitrogen sources i.e. medium #1 (RBE + ammonium sulfate + calcium chloride), medium #2 (yeast extract + peptone) and medium #3 (yeast extract + peptone + malt extract). Medium #1 showed maximum ethanol production (8.6 g/l, yield 0.22 g/g) followed by medium #2 (8.1 g/l, yield 0.19 g/g) and medium #3 (7.4 g/l, yield 0.18 g/g).

  8. Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties

    Science.gov (United States)

    Chen, Ge-Gu; Qi, Xian-Ming; Li, Ming-Peng; Guan, Ying; Bian, Jing; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2015-11-01

    A facile and environmentally friendly method was introduced to incorporate montmorillonite (MMT) as an inorganic phase into quaternized hemicelluloses (QH) for forming hemicellulose-based films. Two fillers, polyvinyl alcohol (PVA) and chitin nanowhiskers (NCH), were added into the hemicelluloses/MMT hybrid matrices to prepare hybrid films, respectively. The hybrid films were nanocomposites with nacre-like structure and multifunctional characteristics including higher strength and good oxygen barrier properties via the electrostatic and hydrogen bonding interactions. The addition of PVA and NCH could induce changes in surface topography, and effectively enhance mechanical strength, thermal stability, transparency, and oxygen barrier properties. The tensile strengths of the composite films FPVA(0.3), FPVA(0.5), and FNCH(0.8) were 53.7, 46.3, and 50.1 MPa, respectively, which were 171%, 134%, and 153% larger than the FQH-MMT film (19.8 MPa). The tensile strength, and oxygen transmission rate of QH-MMT-PVA film were better than those of quaternized hemicelluloses/MMT films. Thus, the proper filler is very important for the strength of the hybrid film. These results provide insights into the understanding of the structural relationships of hemicellulose-based composite films in coating and packaging application for the future.

  9. Comparison of various pretreatments for ethanol production enhancement from solid residue after rumen fluid digestion of rice straw.

    Science.gov (United States)

    Zhang, Haibo; Zhang, Panyue; Ye, Jie; Wu, Yan; Liu, Jianbo; Fang, Wei; Xu, Dong; Wang, Bei; Yan, Li; Zeng, Guangming

    2018-01-01

    The rumen digested residue of rice straw contains high residual carbohydrates, which makes it a potential cellulosic ethanol feedstock. This study evaluated the feasibility and effectiveness of applying microwave assisted alkali (MAP), ultrasound assisted alkali (UAP), and ball milling pretreatment (BMP) to enhance ethanol production from two digested residues (2.5%-DR and 10%-DR) after rumen fluid digestion of rice straw at 2.5% and 10.0% solid content. Results revealed that 2.5%-DR and 10%-DR had a cellulose content of 36.4% and 41.7%, respectively. MAP and UAP improved enzymatic hydrolysis of digested residue by removing the lignin and hemicellulose, while BMP by decreasing the particle size and crystallinity. BMP was concluded as the suitable pretreatment, resulting in an ethanol yield of 116.65 and 147.42mgg -1 for 2.5%-DR and 10%-DR, respectively. The integrated system including BMP for digested residue at 2.5% solid content achieved a maximum energy output of 7010kJkg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    Science.gov (United States)

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  11. Assessment of effect of chemical treatment to carnauba's fibers straw

    International Nuclear Information System (INIS)

    Carvalho, T.M.P. de; Carvalho, L.F.M.; Oliveira, R.R. de; Sousa, F.M.S. de; Sousa, R.C. de; Marques, J.R.

    2016-01-01

    The use of natural fibers in composite materials has been highlighted in the scientific field. However, its application in polymer matrices usually requires surface modifications. The objective of this work was to treat carnauba's straw fibers with NaOH 1 % and NaOH 5% solutions and measure the water absorption. We used the X-ray diffraction (XRD configuration “Bragg- Brentano) for verification of the crystalline phases and Fourier Transform Infrared Spectroscopy (FTIR) to identify functional groups. The alkali treatment allowed the solubilization of the hemicellulose and lignin without causing changes to cellulose, as indicated by FTIR spectrophotometry and by the increase in crystallinity content. The samples showed the typical peaks of constituents of the fiber. The natural fiber showed an average water absorption of 256 %; fiber treated with NaOH 1%, 315 %; and treated with NaOH 5%, 405 %. Therefore, it is evident improvement in hydrophilicity, fundamental aspect in the interaction fiber / matrix. (author)

  12. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  13. The Last Straw

    CERN Multimedia

    McFarlane, K.W.

    2002-01-01

    On 4 December 2002 at Hampton University, we completed processing the 'straws' for the Barrel TRT. The straws are plastic tubes 4 mm in diameter and 1.44 m long. More than 52 thousand straws will be used to build the drift tube detectors in the Barrel TRT. The picture shows some members of the Hampton production team ceremonially cutting the last straw to its final precise length. The production team, responsible for processing 64 thousand straws, included Jacquelyn Hodges, Carolyn Griffin, Princess Wilkins, Aida Kelly, Alan Fry, and (not pictured) Chuck Long, Nedra Peeples, and Hilda Williams. The straws have a cosmopolitan history. First, plastic film from a U.S. company was shipped to Russia to be coated with conductive materials and adhesive. The coated film was slit into long ribbons and sent to the UK to be wound into tubes. The tubes were then sent to two ATLAS collaborators in Russia, PNPI (Gatchina) and JINR (Dubna), where they were reinforced with carbon fibres to make them stiff and accuratel...

  14. Chemical conversion of hemicellulose coproducts from forest biorefineries to polymers and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boluk, Y.; Jost, R. [Alberta Research Council, Edmonton, AB (Canada)

    2009-07-01

    Raw material is the basis of the chemical industry. This presentation discussed the chemical conversion of hemicellulose coproducts from forest biorefineries to polymers and chemicals. Biorefining pretreatment processes open up the biomass structure, release hemicelluloses and overcome the resistance to enzymatic hydrolysis. Although hemicellulose is the second most abundant carbohydrate, it does not have many industrial applications. The state of released hemicellulose whether polymeric, oligomeric or monosaccharides depends primarily on the pretreatment process conditions. Physical pretreatment methods include high-pressure steaming and steam explosion; milling and grinding; extrusion; and high-energy radiation. The chemical pretreatment methods involve the use of alkali, acid, gas and oxidizing agents as well as solvents. The biological pretreatment methods involve the use of lignin consuming fungi and cellulose consuming fungi. A profitable use of C5 sugars in monomeric, oligomeric and polymeric forms is necessary for a viable wood to bioethanol process. Hemicellulose composition varies depending on the biomass source. It usually has a lower molecular weight than cellulose, contains branching, and is comprised of several different monosaccharides. The existing commercial chemical products include xylitol, mannitol, and furfural. The hemicellulose coproducts from a lignocellulosic biorefinery have the potential to become a feasible replacement for their fossil-based equivalents. tabs., figs.

  15. Chemical Synthesis of Hemicellulose Fragments

    DEFF Research Database (Denmark)

    Böhm, Maximilian Felix

    Hemicelluloses constitute a significant part of plant biomass, yet so far it has been difficult to make use of this class of polysaccharides. A lack of access to this class of molecules prevents the use of enzymatic studies to increase our understanding of the biochemical processes relevant to th...

  16. Straw quality for its combustion in a straw-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Allica, J.; Blanco, F.; Garbisu, C. [NEIKER, Instituto Vasco de Investigacion y Desarrollo Agrario, Derio (Spain); Mitre, A.J.; Gonzalez Bustamante, J.A. [IBERDROLA Ingenieria y Consultoria, Bilbao (Spain); Itoiz, C. [Energia Hidroelectrica de Navarra, Pamplona (Spain); Alkorta, I. [Universidad del Pais Vasco, Bilbao (Spain). Facultad de Ciencias

    2001-07-01

    ENERGIA HIDROELECTRICA DE NAVARRA, S.A. (Navarra, Spain) is erecting a 25 MW power generation plant using straw for electricity generation. Cereal straws have proved to be difficult to burn in most existing combustion systems. During the last two years, a study has been carried out in Navarra to investigate the possibilities of improving the fuel quality of straw by a reduction in its K{sup +} and Cl{sup -} contents. The simple leaching of K{sup +} and Cl{sup -} with water by exposure to natural rainfall in the field resulted in considerable reductions of these two elements. A reduction in the K{sup +} content of the cereal plants caused by exposure to natural rainfall has been observed during plant ripening (before crop harvesting). Some varieties of straw show lower initial K{sup +} contents, making them more suitable for this purpose. There seems to be no clear correlation between the relative decrease in K{sup +} content and the amount of accumulated rainfall. Our results have also shown a very close correlation between K{sup +} content and electrical conductivity. The simplicity of this latter measurement makes this parameter a very interesting option to test the straw quality directly in the field. Structural components of the straw were not decomposed during the time when we left the straw in the field. Finally, the Cl{sup -} content in straw was increased when the Cl{sup -} dose from the fertiliser was increased. On the other hand, the content of K{sup +} was not influenced by the applied amount of K{sup +} fertiliser. (Author)

  17. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Bingzhi Chen

    Full Text Available Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation and GH43 (hemicellulose and pectin degradation, and the lyase families PL1, PL3 and PL4 (pectin degradation but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3'-tag digital gene expression (DGE reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.

  18. Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Rafał Łukajtis

    2018-03-01

    Full Text Available This paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment, an optimal catalyst concentration was selected for constant values of temperature and pre-treatment time. For enzymatic hydrolysis, optimal process time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performed with 85% phosphoric acid, the optimum temperature and hydrolysis time were determined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars was determined using HPLC. The obtained hydrolysates were subjected to ethanol fermentation. The concentrations of fermentation inhibitors are given and their effects on the alcoholic fermentation efficiency are discussed.

  19. Utilization of cellulose and hemicellulose of pig faeces by Trichoderma viride

    NARCIS (Netherlands)

    Wit, de W.

    1980-01-01

    The purpose of this investigation was to study the microbiological degradation of the cellulose-hemicellulose-lignin complexes of the faeces of pigs. Cellulose, hemicellulose and lignin are components of the cell wall of plants and residues of plant material occur in large quantities in faeces

  20. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2012-12-01

    Full Text Available Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp. were evaluated. Papain hydrolysis showed the highest DH value (89.44%, followed by alcalase hydrolysis (83.35%. Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions.

  1. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89ml-H2/g-VS (190ml-H2/g-sugars) and 307ml-CH4/g-VS, respectively were...... energy of 13.4kJ/g-VS. Dominant hydrogen-producing bacteria in the H2-UASB reactor were Thermoanaerobacter wiegelii, Caldanaerobacter subteraneus, and Caloramator fervidus. Meanwhile, the CH4-UASB reactor was dominated with methanogens of Methanosarcina mazei and Methanothermobacter defluvii. The results...

  2. WOOD HEMICELLULOSE/CHITOSAN-BASED SEMI-INTERPENETRATING NETWORK HYDROGELS: MECHANICAL, SWELLING AND CONTROLLED DRUG RELEASE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Muzaffer Ahmet Karaaslan

    2010-04-01

    Full Text Available The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose, and glucose. The effects of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study, and the ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid.

  3. Wheat straw lignin degradation induction to aromatics by por Aspergillus spp. and Penicillium chrysogenum

    Directory of Open Access Journals (Sweden)

    Baltierra-Trejo Eduardo

    2016-02-01

    Full Text Available Wheat straw is a recalcitrant agricultural waste; incineration of this material represents an important environmental impact. Different reports have been made regarding the use of the structural components of wheat straw, i.e. cellulose, hemicellulose and lignin; however, lignin has been less exploited because it is largely considered the recalcitrant part. Residual wheat straw lignin (REWSLI has a potential biotech-nological value if depolymerization is attained to produce aromatics. Ligninolytic mitosporic fungus represent an alternative where very little research has been done, even though they are capable of depol-ymerize REWSLI in simple nutritional conditions in relatively short periods, when compared to basidio-mycetes. The aim of this research was to study the depolymerization activity of Aspergillus spp and Penicillium spp on semipurified REWSLI as the sole carbon source to produce aromatics. The depoly-merization capacity was determined by the activity of the laccase, lignin peroxidase and manganese peroxidase enzymes. The generated aromatics derived from the REWSLI depolymerization were identi-fied by gas chromatography. Obtained results revealed that Penicillium chrysogenum depolymerized the lignin material by 34.8% during the 28-day experimentation period. Laccase activity showed the largest activity with 111 U L-1 in a seven-day period, this enzyme induction was detected in a smaller period than that required by basidiomycetes to induce it. Moreover, the enzymatic activity was produced with-out the addition of an extra carbon source as metabolic inductor. Aspergillus spp and Penicillium spp generated guaiacol, vanillin, and hydroxybenzoic, vanillinic, syringic and ferulic acid with a maximum weekly production of 3.5, 3.3, 3.2, 3.3, 10.1 and 21.9 mg mL-1, respectively.

  4. Alkali extraction and physicochemical characterization of hemicelluloses from young bamboo (Phyllostachys pubescens Mazel

    Directory of Open Access Journals (Sweden)

    Qiang Luo

    2012-11-01

    Full Text Available Two hemicellulose fractions were obtained by extraction of one-month- old young bamboo (Phyllostachys pubescens Mazel. The fractionation procedure employed 2% NaOH as extractant, followed by filtration, acidification, precipitation, and washing with 70% ethanol solution. The total yield was 26.2%, based on the pentosan content in bamboo. The physicochemical properties were determined and sugar composition analysis showed that the hemicelluloses consisted mainly of xylose, arabinose, galactose, and a small amount of uronic acid. Furthermore, based on FT-IR and NMR spectra analyses, the structure of hemicelluloses was determined to be mainly arabinoxylans linked via (1→4-β-glycosidic bonds with branches of arabinose and 4-O-methyl-D-glucuronic acid. The molecular weights were 6387 Da and 4076 Da, corresponding to the hemicelluloses HA and HB. Finally, the thermal stability was elucidated using the TG-DTG method. The obtained results can provide important information for understanding young bamboo and the hemicelluloses in it.

  5. Enzymatic hydrolyses of pretreated eucalyptus residues, wheat straw or olive tree pruning, and their mixtures towards flexible sugar-based biorefineries

    DEFF Research Database (Denmark)

    Silva-Fernandes, Talita; Marques, Susana; Rodrigues, Rita C. L. B.

    2016-01-01

    Eucalyptus residues, wheat straw, and olive tree pruning are lignocellulosic materials largely available in Southern Europe and have high potential to be used solely or in mixtures in sugar-based biorefineries for the production of biofuels and other bio-based products. Enzymatic hydrolysis...

  6. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    Science.gov (United States)

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  7. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  8. CHARACTERISTICS OF CORN STALK HEMICELLULOSE PYROLYSIS IN A TUBULAR REACTOR

    OpenAIRE

    Gao-Jin Lv; Shu-Bin Wu; Rui Lou

    2010-01-01

    Pyrolysis characteristics of corn stalk hemicellulose were investigated in a tubular reactor at different temperatures, with focus mainly on the releasing profiles and forming behaviors of pyrolysis products (gas, char, and tar). The products obtained were further identified using various approaches (including GC, SEM, and GC-MS) to understand the influence of temperature on product properties and compositions. It was found that the devolatilization of hemicellulose mainly occurred at low tem...

  9. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  10. Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR

    Science.gov (United States)

    Teramura, Hiroshi; Sasaki, Kengo; Oshima, Tomoko; Aikawa, Shimpei; Matsuda, Fumio; Okamoto, Mami; Shirai, Tomokazu; Kawaguchi, Hideo; Ogino, Chiaki; Yamasaki, Masanori; Kikuchi, Jun; Kondo, Akihiko

    2015-01-01

    A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45–0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = –0.95 to –0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate. PMID:26083431

  11. Pretreatment and Fractionation of Wheat Straw for Production of Fuel Ethanol and Value-added Co-products in a Biorefinery

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2014-08-01

    Full Text Available An integrated process has been developed for a wheat straw biorefinery. In this process, wheat straw was pretreated by soaking in aqueous ammonia (SAA, which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment conditions included 15 wt% NH4OH, 1:10 solid:liquid ratio, 65 oC and 15 hours. Under these conditions, 48% of the original lignin was removed, whereas 98%, 83% and 78% of the original glucan, xylan, and arabinan, respectively, were preserved. The pretreated material was subsequently hydrolyzed with a commercial hemicellulase to produce a solution rich in xylose and low in glucose plus a cellulose-enriched solid residue. The xylose-rich solution then was used for production of value-added products. Xylitol and astaxanthin were selected to demonstrate the fermentability of the xylose-rich hydrolysate. Candida mogii and Phaffia rhodozyma were used for xylitol and astaxanthin fermentation, respectively. The cellulose-enriched residue obtained after the enzymatic hydrolysis of the pretreated straw was used for ethanol production in a fed-batch simultaneous saccharification and fermentation (SSF process. In this process, a commercial cellulase was used for hydrolysis of the glucan in the residue and Saccharomyces cerevisiae, which is the most efficient commercial ethanol-producing organism, was used for ethanol production. Final ethanol concentration of 57 g/l was obtained at 27 wt% total solid loading.

  12. Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels : mechanical swelling and controlled drug release properties

    Science.gov (United States)

    Ahmet M. Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2010-01-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the...

  13. Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production.

    Science.gov (United States)

    Li, Huiling; Dai, Qingqing; Ren, Junli; Jian, Longfei; Peng, Feng; Sun, Runcang; Liu, Guoliang

    2016-01-20

    In the present study, a graded ethanol precipitation technique was employed to obtain hemicelluloses from the alkali-extracted corncob liquid. The relationship between the structural characteristics of alkali-soluble corncob hemicelluloses and the production of furfural was investigated by a heterogeneous process in a biphasic system. Results showed that alkali-soluble corncob hemicelluloses mainly consisted of glucuronoarabinoxylans and L-arabino-(4-O-methylglucurono)-D-xylans, and the drying way had less influence on the sugar composition, molecular weights and the functional groups of hemicelluloses obtained by the different ethanol concentration precipitation except for the thermal property, the amorphous structure and the ability for the furfural production. Furthermore, alkali-soluble corncob hemicelluloses with higher xylose content, lower branch degree, higher polydispersity and crystallinity contributed to the furfural production. A highest furfural yield of 45.41% with the xylose conversion efficiency of 99.06% and the furfural selectivity of 45.84% was obtained from the oven-dried hemicelluloses precipitated at the 30% (v/v) ethanol concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. MASS BALANCE OF SILICA IN STRAW FROM THE PERSPECTIVE OF SILICA REDUCTION IN STRAW PULP

    Directory of Open Access Journals (Sweden)

    Celil Atik,

    2012-06-01

    Full Text Available The high silica content of wheat straw is an important limiting factor for straw pulping. High silica content complicates processing and black liquor recovery, wears out factory installations, and lowers paper quality. Each section of wheat straw has different cells and chemical compositions and thus different silica content. In this work, the silica content of balled straw samples were examined according to their physical components, including internodes, nodes, leaves (sheath and blade, rachis, grain, other plant bodies, and other plant spikes. Mass distribution of silica was determined by a dry ashing method. Half (50.90% of the silica comes from leaves, and its mechanical separation will reduce the silica content in wheat straw pulp significantly. Destroying silica bodies by sonication will increase the strength properties of straw pulp.

  15. Antihypertensive potential of bioactive hydrolysate from edible bird's nest

    Science.gov (United States)

    Ramachandran, Ravisangkar; Babji, Abdul Salam; Sani, Norrakiah Abdullah

    2018-04-01

    The aim of this study is to determine and compare the proximate composition, the degree of hydrolysis (DH) and the antihypertensive activity of edible bird's nest (EBN) hydrolysates of two different drying methods. Four types of enzymes (alcalase, bromelain, pancreatin and papain) were used in this study and with different hydrolysis time (30, 60, 90, 120, 180 and 240 min). The highest DH for alcalase (79.48 - 84.09%), pancreatine (77.10 - 80.45%) and papain (82.33%) for EBN hydrolysates was produced with alcalase treatment at 60 - 90 min, pancreatine treatment at 30 - 90 min and papain treatment at 90 min. Bromelain generated hydrolysates showed low DH. EBN hydrolysed using alcalase, pancreatin and papain have significantly higher protein content compared to raw EBN and the moisture content of all hydrolysates treatments was significantly lower compared to raw EBN. For antihypertensive assay, freeze dried EBN hydrolysates have higher antihypertensive activity compared to spray dried hydrolysates. The highest antihypertensive activity for freeze dried samples was produced by alcalase, bromelain and pancreatin and in the range of 80.22 - 86.97%. Meanwhile, papain proved to be less effective in producing hydrolysate with antihypertensive ability. In conclusion, EBN hydrolysate prepared by alcalase, bromelain and pancreatin could be classified as a functional food as it showed significant antihypertensive activity.

  16. Straw detector: 1 - Vacuum: 0

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model.   Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed.  “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...

  17. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  18. KINETIC STUDY FOR THE THERMAL DECOMPOSITION OF HEMICELLULOSE ISOLATED FROM CORN STALK

    Directory of Open Access Journals (Sweden)

    Gao-Jin Lv

    2010-04-01

    Full Text Available In order to study the thermal decomposition characteristics of hemicellulose, a highly efficient procedure was carried out to extract hemicellulose from corn stalk. Several different sugar units were observed by 13C NMR spectra to show the presence and species of hemicellulose. Following isolation of the hemicellulose, experimental research on its thermal behavior were carried out with a thermogravimetric analyzer under inert atmosphere at heating rates ranging from 10 to 50°C/min, and the kinetic parameters were calculated by the Kissinger and Ozawa methods, respectively. It was found that the thermal degradation of hemicellulose mainly occurred in the temperature range 180-340°C with a final residue yield of 24% at 700°C. An increase of the heating rate could slightly increase both the temperatures at which the peak weight loss rate was observed and the maximum value of weight loss rate. The activation energy (E and the pre-exponential factor (lnA obtained by the Kissinger and Ozawa methods were 213.3kJ mol-1, 211.6kJ mol-1 and 46.2min-1, 45.9min-1, respectively. Even though the data showed little difference, the fitting degree of the Ozawa method was better than that of the Kissinger method. The experimental results and kinetic parameters may provide useful data for effective design and improvement of thermochemical conversion units.

  19. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

    Science.gov (United States)

    Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M

    2013-02-01

    Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed animal protein hydrolysate. 573.200... ANIMALS Food Additive Listing § 573.200 Condensed animal protein hydrolysate. (a) Identity. The condensed animal protein hydrolysate is produced from the meat byproducts scraped from cured (salted) hides taken...

  1. Lead accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble.

    Science.gov (United States)

    Kumhomkul, Thapakorn; Panich-pat, Thanawan

    2013-08-01

    Straw mushrooms were grown on lead contaminated rice straw and stubble. Study materials were dried, acid digested, and analyzed for lead using flame atomic absorption spectrophotometry. The results showed the highest lead concentration in substrate was 445.350 mg kg⁻¹ in Treatment 3 (T3) and the lowest was BD (below detection) in Treatment 1 (T1). The maximum lead content in straw mushrooms was 5.072 mg kg⁻¹ dw in pileus of T3 and the minimum lead content in straw mushrooms was BD in egg and mature (stalk and pileus) stage of T1. The lead concentration in straw mushrooms was affected by the age of the mycelium and the morphology of mushrooms. Mushrooms' lead uptake produced the highest accumulation in the cell wall. Some lead concentrations in straw mushrooms exceeded the EU standard (>3 mg kg⁻¹ dw).

  2. Bitterness and Physichochemical Properties of Angelwing Clam (Pholas Orientalis) Hydrolysate

    International Nuclear Information System (INIS)

    Normah Ismail; Nurul Fasihah Razak

    2016-01-01

    Protein hydrolysates from angelwing clam were obtained by enzymatic hydrolysis using bromelain. The bitterness of hydrolysates was evaluated based on the degree hydrolysis (DH), sensory analysis, molecular weight distribution and functional group. By using 3 % of enzyme substrate ratio bromelain resulted in high DH value at 12.57 % when angelwing clam was hydrolysed for 2 hours. Sensory analysis showed that angelwing hydrolysate was bitter. Angelwing hydrolysate had molecular weight below 50 kDa. The lower molecular weight indicated that the protein has been degraded into smaller peptide chains which contribute to bitter taste. Moreover, the high peak of amine group in angelwing hydrolysate (3385.6 cm -1 ) suggested that bitterness exists. Angelwing hydrolysate had higher protein content, lower fat content and had good water holding capacity than the flesh. This result suggested that angelwing hydrolysate could be useful as food ingredient even though bitter taste developed after the hydrolysis. Thus, debittering should be considered in order to pave the way for full utilization of angelwing clam hydrolysate as a food ingredient. (author)

  3. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A B; Skammelsen Schmidt, A

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates `losses` of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation.

  4. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    International Nuclear Information System (INIS)

    Bjerre, A.B.; Skammelsen Schmidt, A.

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates 'losses' of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation

  5. Effect of Partial Pre-Extraction of Hemicelluloses on the Properties of Pinus radiata Chemimechanical Pulps

    Directory of Open Access Journals (Sweden)

    Pablo Reyes

    2015-09-01

    Full Text Available Extraction of hemicelluloses prior to pulping and conversion of the extracted hemicelluloses to other bioproducts could provide additional revenue to traditional pulp and paper industries. The effect of hemicelluloses pre-extraction with a hydrothermal (HT process on Pinus radiata chemimechanical pulp (CMP properties was investigated in this study. The HT extraction resulted in a release of 7% to 58% of the initial amount of hemicelluloses from the wood. The extraction yield increased with temperature and extraction time. This hemicellulosic fraction was in the form of low molar mass oligomers with molecular weights varying from 1.5 to 100 kDa. Compared with the control (unextracted CMP pulp, the HT pre-extraction significantly reduced the refining energy to obtain a given fibrillation degree (freeness. The pulp yield with the HT/CMP process was in the range of 56% to 75%. Fiber properties of the pulps from pre-extracted wood, such as fiber length, were reduced, while increases in fiber width, fines content, fiber coarseness, and kink index were observed in comparison with the control pulps. The strength properties of CMP pulps decreased with increasing amounts of hemicellulose removal during the stage prior to pulping.

  6. Antiulcerative Activity of Milk Proteins Hydrolysates.

    Science.gov (United States)

    Carrillo, Wilman; Monteiro, Karin Maia; Martínez-Maqueda, Daniel; Ramos, Mercedes; Recio, Isidra; Carvalho, João Ernesto de

    2018-04-01

    Several studies have shown the protective effect of dairy products, especially α-lactalbumin and derived hydrolysates, against induced gastric ulcerative lesions. The mucus strengthening represents an important mechanism in the defense of gastrointestinal mucosa. Previously, a hydrolysate from casein (CNH) and a hydrolysate from whey protein concentrate rich in β-lactoglobulin (WPH) demonstrated a stimulatory activity on mucus production in intestinal goblet cells. The aim of this work was to evaluate the possible antiulcerative activity of these two hydrolysates in an ethanol-induced ulcer model in rats. All tested samples significantly reduced the ulcerative lesions index (ULI), compared with the saline solution, using doses of 300 and 1000 mg kg -1 body weight with decreases up to 66.3% ULI. A dose-response relationship was found for both hydrolysates. The involvement of endogenous sulfhydryl (SH) groups and prostaglandins (PGs) in the antiulcerative activity was evaluated using their blockage. The antiulcerative activity of WPH showed a drastic decrease in presence of N-ethylmaleimide (from 41.4% to 9.2% ULI). However, the CNH antiulcerative properties were not significantly affected. The cytoprotective effect of WPH appears to depend on a PG-mediated mechanism. In conclusion, CNH and WPH demonstrated in vivo antiulcerative properties and represent a promising alternative as protectors of the gastric mucosa.

  7. Microbial Production of Xylitol from Oil Palm Empty Fruit Bunch Hydrolysate: Effects of Inoculum and pH

    Directory of Open Access Journals (Sweden)

    M.T.A.P. Kresnowati

    2016-11-01

    Full Text Available Considering its high content of hemicellulose, oil palm empty fruit bunch (EFB lignocellulosic biomass waste from palm oil processing has the potential to be utilized as the raw material for the production of xylitol, a low calorie, low GI, and anti cariogenic alternative sugar with similar sweetness to sucrose. This research explored the possibility of converting EFB to xylitol via green microbial fermentation, in particular the effects of inoculum and initial pH on the fermentation performance. It was observed that the cell concentration in the inoculum and the initial pH affect cell growth and xylitol production. pH 5 was observed to give the best fermentation performance. Further, the fermentation tended to yield more xylitol at higher initial cell concentration. It was also observed that no growth or fermentation inhibitory compounds were found in the EFB hydrolysate obtained from enzymatic hydrolysis of EFB. Thus it can be used directly as substrate for xylitol fermentation.

  8. Download this PDF file

    African Journals Online (AJOL)

    Ovat Ovat

    improved due to the degradation of cellulose and hemicellulose by ... straw, palm bunch, corn stalk, corn cobs, waste cotton, leaves ..... hemicelluloses, lignin and the degree of decay in the wood .... mushroom in Waste Paper with some added.

  9. Effect of vitrification on number of inner cell mass in mouse blastocysts in conventional straw, closed pulled straw, open pulled straw and cryoloop carriers

    International Nuclear Information System (INIS)

    Ghasem, S.; Negar, K.

    2013-01-01

    Objective: To compare the effect of using open and closed carriers on count of inner cell mass in vitrified mouse blastocyst after warming. Methods: The experimental study was conducted at Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, from April to September 2010. Forty female NMRI (Naval Medical Research Institute, USA) mice were injected with pregnant mares serum gonadotropin and human chorionic gonadotropin in order to induce super ovulation. Following the latter injection, two or three females were caged with the same-breed male mice. The presence of vaginal plug was examined the following morning. To collect blastocyst embryos, the pregnant females were sacrificed by cervical dislocation at 88-90 hours after the injection and dissected. Blastocysts were collected in phosphate-buffered saline and allocated to four groups: vitrification in conventional straw, closed pulled straw, open pulled straw and cryoloop. The vitrification solution was ethylene glycol, Ficol and sucrose (EFS) 20% and 40%. After storage for 1 month in liquid nitrogen, the blastocysts were thawed in 0.5 M sucrose then cultured in M16 medium. After 6 hours of culture, the number of expanded blastocysts was recorded and stained by double-dye technique. After staining, the number of total cell and inner cell mass was calculated. Results: The re-expansion rate of blastocysts in the cryoloop group (n=90; 78.26%) was significantly higher (p<0.05) than open pulled straw (n=83; 69.16%), closed pulled straw (n=68; 54.83%) and conventional straws (n=63; 51.21%) groups. Significant differences (p<0.05) in the number of inner cell mass in blastocysts vitrified in open pulled straws, closed straws and cryoloop with blastocysts cryopreserved in conventional straws. Conclusion: The re-expansion rate and total cell number of mouse blastocysts vitrified using open system had a better result compared with the closed system. The value of cryoloop and open pulled straws as carriers in

  10. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  11. Extraction of microcrystalline cellulose from rice straw and its effect on polyvinyl alcohol biocomposites film

    Science.gov (United States)

    Chin, Kwok-Mern; Ting, Sam Sung; Lin, Ong Hui; Owi, Wei Tieng

    2017-07-01

    The poor management and underutilization of agricultural wastes had proliferated interest of researchers around the world to find alternatives to utilize them as potential value-added products. One of the green alternatives is by extracting cellulose from these waste materials and incorporating them in polymer as reinforcement fillers. The surging amount of plastic waste also posed major issues to the environment due to its recalcitrance to degrade. Microcrystalline cellulose (MCC-RS) was extracted from rice straw through cyclic alkaline and bleaching treatment to remove hemicellulose and lignin respectively. Polyvinyl alcohol (PVOH) was chosen as the matrix and different ratios of PVOH / MCC-RS films were prepared (2.5, 5.0, 7.5 and 10.0wt% of MCC) through solution casting method and its tensile, thermal and morphological properties were studied. X-ray powder diffraction (XRD) results showed increased crystallinity of MCC-RS after chemical treatment (from 44.5% to 60.8%) due to the successful removal of lignin and hemicellulose, which was then confirmed with Fourier transform infrared spectroscopy (FTIR) results. For the biocomposites, both tensile strength and Young's modulus of the films increased with increasing MCC-RS content up until 7.5wt%, supported with scanning electron microscopy (SEM) results which depicted improvement in the interfacial adhesion between MCC-RS and PVOH. From the overall results, the improvement in properties of biocomposite from cellulose-based microfiller had shown promising future in application of the water soluble plastic packaging industry.

  12. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment-severity equation.

    Science.gov (United States)

    Le, Duy Michael; Sørensen, Hanne R; Knudsen, Niels Ole; Schjoerring, Jan K; Meyer, Anne S

    2014-01-01

    Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal pretreatments could be divided into two groups: 1) Phosphorus, magnesium, potassium, manganese, zinc, and calcium correlated with xylose and arabinose (that is, hemicellulose), and levels of these constituents present in the fiber fraction after pretreatment varied depending on the pretreatment-severity; and 2) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due to pretreatment pH, was developed. Using this equation, the mineral levels could be predicted with R(2) > 0.75; for some with R(2) up to 0.96. Pretreatment conditions, especially pH, significantly influenced the levels of phosphorus, magnesium, potassium, manganese, zinc, and calcium in the resulting fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass.

  13. The structural features of hemicelluloses dissolved out at different cooking stages of active oxygen cooking process.

    Science.gov (United States)

    Shi, Jianbin; Yang, Qiulin; Lin, Lu

    2014-04-15

    This work described the morphologic changes of corn stalk and the structural characterization of its hemicelluloses dissolved in yellow liquor at different cooking stages. The results showed that active oxygen cooking process was an efficient method to depolymerize the corn stalk into cellulose, hemicelluloses, and lignin as a pretreatment of biomass conversion. This cooking process can also be divided into three phases: bulk delignification, extended delignification, and residual delignification. During the heating-up period 57.67% of hemicelluloses and 62.31% of lignin were removed from the raw material. However, only 15% of hemicelluloses and 23.21% of lignin were removed during at temperature' period. The hemicelluloses from the corn stalk and yellow liquor were composed of (1→4)-β-D-xylopyranose backbones substituted with α-l-arabinofuranosyl, 4-O-methyl-α-D-glucuronic acid, and some methoxyl residues. The backbones of hemicelluloses were gradually cleaved during the cooking process. The acetyl groups substituted with xylopyranosyl residues were completely cleaved during the cooking process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Oyster mushroom cultivation with rice and wheat straw.

    Science.gov (United States)

    Zhang, Ruihong; Li, Xiujin; Fadel, J G

    2002-05-01

    Cultivation of the oyster mushroom, Pleurotus sajor-caju, on rice and wheat straw without nutrient supplementation was investigated. The effects of straw size reduction method and particle size, spawn inoculation level, and type of substrate (rice straw versus wheat straw) on mushroom yield, biological efficiency, bioconversion efficiency, and substrate degradation were determined. Two size reduction methods, grinding and chopping, were compared. The ground straw yielded higher mushroom growth rate and yield than the chopped straw. The growth cycles of mushrooms with the ground substrate were five days shorter than with the chopped straw for a similar particle size. However, it was found that when the straw was ground into particles that were too small, the mushroom yield decreased. With the three spawn levels tested (12%, 16% and 18%), the 12% level resulted in significantly lower mushroom yield than the other two levels. Comparing rice straw with wheat straw, rice straw yielded about 10% more mushrooms than wheat straw under the same cultivation conditions. The dry matter loss of the substrate after mushroom growth varied from 30.1% to 44.3%. The straw fiber remaining after fungal utilization was not as degradable as the original straw fiber, indicating that the fungal fermentation did not improve the feed value of the straw.

  15. Effect of Protein Hydrolysates on Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Ossum, Carlo G.; Andersen, Lisa Lystbæk; Nielsen, Henrik Hauch

    Effect of Fish Protein Hydrolysates on Pancreatic Cancer Cells Carlo G. Ossum1, Lisa Lystbæk Andersen2, Henrik Hauch Nielsen2, Else K. Hoffmann1, and Flemming Jessen2 1University of Copenhagen, Department of Biology, Denmark, 2Technical University of Denmark (DTU), National Food Institute, Denmark...... hydrolysates obtained by enzymatic hydrolysis on cancer cell proliferation. Skin and belly flap muscle from trout were hydrolysed with the unspecific proteases Alcalase, Neutrase, or UE1 (all from Novozymes, Bagsværd, Denmark) to a hydrolysis degree of 1-15%. The hydrolysates were tested for biological...... activities affecting cell proliferation and ability to modulate caspase activity in pancreatic cancer cells COLO357 and BxPC-3 in vitro. A number of the hydrolysates showed caspase promoting activity; in particular products containing muscle tissue, i.e. belly flap, were able to stimulate caspase activity...

  16. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  17. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    Science.gov (United States)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  18. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  19. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Imparato, Valentina

    2017-01-01

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investig......Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study...... investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped...... long-term effects and to identify the optimum balance between straw removal and biochar application rate....

  20. Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate.

    Science.gov (United States)

    Aulitto, Martina; Fusco, Salvatore; Bartolucci, Simonetta; Franzén, Carl Johan; Contursi, Patrizia

    2017-01-01

    The transition from a petroleum-based economy towards more sustainable bioprocesses for the production of fuels and chemicals (circular economy) is necessary to alleviate the impact of anthropic activities on the global ecosystem. Lignocellulosic biomass-derived sugars are suitable alternative feedstocks that can be fermented or biochemically converted to value-added products. An example is lactic acid, which is an essential chemical for the production of polylactic acid, a biodegradable bioplastic. However, lactic acid is still mainly produced by Lactobacillus species via fermentation of starch-containing materials, the use of which competes with the supply of food and feed. A thermophilic and cellulolytic lactic acid producer was isolated from bean processing waste and was identified as a new strain of Bacillus coagulans , named MA-13. This bacterium fermented lignocellulose-derived sugars to lactic acid at 55 °C and pH 5.5. Moreover, it was found to be a robust strain able to tolerate high concentrations of hydrolysate obtained from wheat straw pre-treated by acid-catalysed (pre-)hydrolysis and steam explosion, especially when cultivated in controlled bioreactor conditions. Indeed, unlike what was observed in microscale cultivations (complete growth inhibition at hydrolysate concentrations above 50%), B. coagulans MA-13 was able to grow and ferment in 95% hydrolysate-containing bioreactor fermentations. This bacterium was also found to secrete soluble thermophilic cellulases, which could be produced at low temperature (37 °C), still retaining an optimal operational activity at 50 °C. The above-mentioned features make B. coagulans MA-13 an appealing starting point for future development of a consolidated bioprocess for production of lactic acid from lignocellulosic biomass, after further strain development by genetic and evolutionary engineering. Its optimal temperature and pH of growth match with the operational conditions of fungal enzymes hitherto

  1. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID.

    Science.gov (United States)

    Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto

    2017-09-01

    Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  2. ETHANOL PRODUCTION FROM THE MIXTURE OF HEMICELLULOSE PREHYDROLYSATE AND PAPER SLUDGE

    OpenAIRE

    Li Kang,; Yoon Y. Lee,; Sung-Hoon Yoon,; Allen J. Smith,; Gopal A. Krishnagopalan

    2012-01-01

    Much of the hemicellulose fraction of pulp mill feedstock is released into black liquor during the pulping process, and it is combusted to recover chemicals and energy in the form of steam and electricity. It is technically feasible to recover this fraction of carbohydrates and convert it into value-added products. In this study, a portion of the hemicellulose in pulp feed was hydrolyzed to soluble sugars by hot-water treatment. The sugars (mixtures of pentose, hexose, and their oligomers) we...

  3. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  4. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  5. Effect of Casein Hydrolysates on Yogurt Fermentation and Texture Properties during Storage

    Directory of Open Access Journals (Sweden)

    Qiang-Zhong Zhao

    2006-01-01

    Full Text Available Effects of casein hydrolysates by papain on acidification of the yogurts and growth of probiotic bacteria during yogurt fermentation have been investigated. The viability of probiotic bacteria and texture characteristics of the yogurts during storage at 4 °C have been evaluated. The hydrolysates strongly decreased the fermentation and coagulation time of the yogurts. The post-fermentation acidification was retarded by the hydrolysates. The hydrolysates increased the probiotic counts during initial fermentation stage. The growth of the probiotic organisms decreased at the final stage. Survival of probiotic bacteria was improved by the hydrolysates. The hydrolysates significantly (p<0.05 increased the adhesiveness of the yogurts except for 0.5 % of hydrolysate with degree of hydrolysis of 8.5 %. The sensory evaluation scores of the yogurts were significantly (p<0.05 improved by the hydrolysates after the storage. The effect of casein hydrolysates on fermentation and texture properties was related to the molecular mass of the hydrolysates.

  6. Gamma and electron radiation effects on agricultural by-products with high fibre content

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Baer, M.; Nehring, K.

    1983-01-01

    Gamma and electron radiation effects on wheat straw, oat straw, barley straw, rye straw and dried green fodder are reported. In vitro and in vivo studies show that the digestibility of these agricultural by-products with high fibre content can be increased up to 80% and more at high doses. The increase of the digestibility is connected with a depolymerization of the cellulose and hemicellulose. (author)

  7. Mixture of residual fish hydrolysate and fish extract hydrolysate to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... 42°C. Replacement of nutrient broth-starch with residual fish hydrolysate-starch led to the enzyme production to .... Paddy husk, raw unpolished rice, fertilizers such as ..... Saunders BC (eds) Practical Organic Chemistry. 4th.

  8. Safety of protein hydrolysates, fractions thereof and

    NARCIS (Netherlands)

    Gertjan Schaafsma

    2009-01-01

    This paper evaluates the safety for humans with regard to consumption of protein hydrolysates and fractions thereof, including bioactive peptides. The available literature on the safety of protein, protein hydrolysates, fractions thereof and free amino acids on relevant food legislation is reviewed

  9. Comparison of Diafiltration and Size-Exclusion Chromatography to Recover Hemicelluloses From Process Water From Thermomechanical Pulping of Spruce

    Science.gov (United States)

    Andersson, Alexandra; Persson, Tobias; Zacchi, Guido; Stålbrand, Henrik; Jönsson, Ann-Sofi

    Hemicelluloses constitute one of the most abundant renewable resources on earth. To increase their utilization, the isolation of hemicelluloses from industrial biomass side-streams would be beneficial. A method was investigated to isolate hemicelluloses from process water from a thermomechanical pulp mill. The method consists of three steps: removal of solids by microfiltration, preconcentration of the hemicelluloses by ultrafiltration, and purification by either size-exclusion chromatography (SEC) or diafiltration. The purpose of the final purification step is to separate hemicelluloses from small oligosaccharides, monosaccharides, and salts. The ratio between galactose, glucose, and mannose in oligo- and polysaccharides after preconcentration was 0.8∶1∶2.8, which is similar to that found in galactoglucomannan. Continuous diafiltration was performed using a composite fluoro polymer membrane with cutoff of 1000 Da. After diafiltration with four diavolumes the purity of the hemicelluloses was 77% (gram oligo- and polysaccharides/ gram total dissolved solids) and the recovery was 87%. Purification by SEC was performed with 5, 20, and 40% sample loadings, respectively and a flow rate of 12 or 25 mL/min (9 or 19 cm/h). The purity of hemicelluloses after SEC was approx 82%, and the recovery was above 99%. The optimal sample load and flow rate were 20% and 25 mL/min, respectively. The process water from thermomechanical pulping of spruce is inexpensive. Thus, the recovery of hemicelluloses is not of main importance. If the purity of 77%, obtained with diafiltration, is sufficient for the utilization of the hemicelluloses, diafiltration probably offers a less expensive alternative in this application.

  10. Straw-to-soil or straw-to-energy? An optimal trade off in a long term sustainability perspective

    International Nuclear Information System (INIS)

    Monteleone, Massimo; Cammerino, Anna Rita Bernadette; Garofalo, Pasquale; Delivand, Mitra Kami

    2015-01-01

    Highlights: • Energy balance and GHG savings of a straw-to-electricity value chain were determined. • An “expanded” LCA was performed, from farm field to electricity delivery. • Both direct and indirect factors of land use change have been considered in the analysis. • No-tillage and crop rotation significantly improved the system performance. • A win–win, sustainable solution for the energy use of straw has been identified. - Abstract: This study examined some management strategies of wheat cultivation system and its sustainability in using straw as an energy feedstock. According to the EU regulatory framework on biofuels, no GHG emissions should be assigned to straws when they are used for energy. Given this relevance in the current energy policy, it is advisable to include all possible marginal effects related to land use, resource utilization and management changes in the comparison of different biomass options. Coherently, an expanded life cycle assessment (LCA) was applied to include the upstream cultivation phase and to make a comparison between “straw to soil” and “straw to energy”. Different crop management conditions in Southern Italy were simulated, by using the CropSyst model, to estimate the long-term soil organic carbon and annual N 2 O soil emissions. Three wheat cropping systems were considered: the conventional single wheat system without straw removal (W0) and with partial straw removal (W1), together with a no-tillage “wheat-wheat-herbage” rotation system with partial straw removal (W2). The results of the simulations were integrated in the LCA to compare fossil energy consumption and greenhouse gas (GHG) emissions of straw-to-electricity with respect to the fossil-based electricity system. The “improved” rotational wheat cropping system (W2) gave the best performance in terms both of GHG savings and fossil displacement, thus stressing that straw use for energy generation in parallel with the optimization of the

  11. Opportunities and barriers to straw construction

    DEFF Research Database (Denmark)

    White, Caroline Meyer; Howard, Thomas J.; Lenau, Torben Anker

    2012-01-01

    produced to support communication between clients and the consultants and facilitate the straw build design and decision making process. The intended audiences for the design guide are clients of small scale construction projects, architects, engineers, builders of straw construction, homeowner...... construction, and a series of qualitative interviews with a variety of stakeholders from previous straw build housing projects, results were gathered to find the most influential motives, barriers and considerations for straw build housing construction. Based on this empirical data, a design guide has been...

  12. Nutritive value of wheat straw treated with gaseous or liquid ammonia trough nylon bag and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Samad Sadeghi

    2016-04-01

    increased and their neutral detergent fiber (NDF and acid detergent fiber (ADF contents reduced significantly (P< 0.05 with increasing the level of ammonia in both gaseous or liquid forms, although, the 6% level was more affective. There were no significant differences between the experimental treatments in organic matter, ether extract and ash contents. Crude protein content increased from 3.71% in untreated wheat straw to 13.41% in treated straw with 6% ammonia in liquid form. The chemical composition measurements revealed that ammonia treatment in liquid form was more effective in comparison with the gaseous form. The increase in CP content of the treated wheat straw was in agreement with data reported by other workers. The lower levels of NDF and ADF of the straw due to ammonia treatments appear to be due to solubiliziation of hemicellulose component. The nylon bag measurements showed that soluble fraction (a and b, rate of degradation of fraction b (r, potential degradability (PD and effective degradability (ED were all associated with the level of applied ammonia. Dry matter disappearance significantly (P< 0.05 increased with increasing the level of ammonia mainly in gaseous form. For all the in situ parameters the most effective level of ammonia was 6%. Total produced gas after 24 hrs of incubation confirmed that the highest level of ammonia (6% had the greatest effects on a, c, ME, NEL, OMD and SCFA parameters. Conclusion The overall results showed that wheat straw treatment with 6% ammonia in either gaseous or liquid forms could improve its feeding value for ruminants significantly (P< 0.05. Straw treatment with ammonia in liquid form was totally more effective than the other form (gaseous. It seems that ammonia fixation in treated wheat straw with liquid ammonia has been related to the moisture content rather than its forms. In farm and commercial scales handling and application of large amount and liquid ammonia and treating straw is inapplicable. It was

  13. Review of straw chambers

    International Nuclear Information System (INIS)

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e + e - experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed

  14. Optimization of wet oxidation pretreatment of wheat straw

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Thomsen, A.B.

    1998-01-01

    with a 15-min reaction time. Under these conditions, 55% of the lignin and 80% of the hemicellulose were solubilized, while 95% of the cellulose remained in the solid fraction. At 185 degrees C, the reaction kinetics was of pseudo first-order. The rate constant for hemicellulose solubilization was higher...... than that for lignin, whereas the rate for cellulose was very low. The cellulose recovery (95-100%) was significantly higher than that for hemicellulose (60%). At temperatures above 185 degrees C, recoveries decreased due to increased degradation. Only half of the COD-content could be accounted...

  15. Sequencing and Comparative Analysis of the Straw Mushroom (Volvariella volvacea) Genome

    Science.gov (United States)

    Bao, Dapeng; Gong, Ming; Zheng, Huajun; Chen, Mingjie; Zhang, Liang; Wang, Hong; Jiang, Jianping; Wu, Lin; Zhu, Yongqiang; Zhu, Gang; Zhou, Yan; Li, Chuanhua; Wang, Shengyue; Zhao, Yan; Zhao, Guoping; Tan, Qi

    2013-01-01

    Volvariella volvacea, the edible straw mushroom, is a highly nutritious food source that is widely cultivated on a commercial scale in many parts of Asia using agricultural wastes (rice straw, cotton wastes) as growth substrates. However, developments in V. volvacea cultivation have been limited due to a low biological efficiency (i.e. conversion of growth substrate to mushroom fruit bodies), sensitivity to low temperatures, and an unclear sexuality pattern that has restricted the breeding of improved strains. We have now sequenced the genome of V. volvacea and assembled it into 62 scaffolds with a total genome size of 35.7 megabases (Mb), containing 11,084 predicted gene models. Comparative analyses were performed with the model species in basidiomycete on mating type system, carbohydrate active enzymes, and fungal oxidative lignin enzymes. We also studied transcriptional regulation of the response to low temperature (4°C). We found that the genome of V. volvacea has many genes that code for enzymes, which are involved in the degradation of cellulose, hemicellulose, and pectin. The molecular genetics of the mating type system in V. volvacea was also found to be similar to the bipolar system in basidiomycetes, suggesting that it is secondary homothallism. Sensitivity to low temperatures could be due to the lack of the initiation of the biosynthesis of unsaturated fatty acids, trehalose and glycogen biosyntheses in this mushroom. Genome sequencing of V. volvacea has improved our understanding of the biological characteristics related to the degradation of the cultivating compost consisting of agricultural waste, the sexual reproduction mechanism, and the sensitivity to low temperatures at the molecular level which in turn will enable us to increase the industrial production of this mushroom. PMID:23526973

  16. Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea genome.

    Directory of Open Access Journals (Sweden)

    Dapeng Bao

    Full Text Available Volvariella volvacea, the edible straw mushroom, is a highly nutritious food source that is widely cultivated on a commercial scale in many parts of Asia using agricultural wastes (rice straw, cotton wastes as growth substrates. However, developments in V. volvacea cultivation have been limited due to a low biological efficiency (i.e. conversion of growth substrate to mushroom fruit bodies, sensitivity to low temperatures, and an unclear sexuality pattern that has restricted the breeding of improved strains. We have now sequenced the genome of V. volvacea and assembled it into 62 scaffolds with a total genome size of 35.7 megabases (Mb, containing 11,084 predicted gene models. Comparative analyses were performed with the model species in basidiomycete on mating type system, carbohydrate active enzymes, and fungal oxidative lignin enzymes. We also studied transcriptional regulation of the response to low temperature (4°C. We found that the genome of V. volvacea has many genes that code for enzymes, which are involved in the degradation of cellulose, hemicellulose, and pectin. The molecular genetics of the mating type system in V. volvacea was also found to be similar to the bipolar system in basidiomycetes, suggesting that it is secondary homothallism. Sensitivity to low temperatures could be due to the lack of the initiation of the biosynthesis of unsaturated fatty acids, trehalose and glycogen biosyntheses in this mushroom. Genome sequencing of V. volvacea has improved our understanding of the biological characteristics related to the degradation of the cultivating compost consisting of agricultural waste, the sexual reproduction mechanism, and the sensitivity to low temperatures at the molecular level which in turn will enable us to increase the industrial production of this mushroom.

  17. Developments for the TOF Straw Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, A.

    2006-07-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp{yields}d{pi}{sup +} data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  18. Developments for the TOF Straw Tracker

    International Nuclear Information System (INIS)

    Ucar, A.

    2006-01-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp→dπ + data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  19. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Science.gov (United States)

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  20. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  1. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover.

    Science.gov (United States)

    Kaparaju, Prasad; Felby, Claus

    2010-05-01

    The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Power from triticale straw

    Energy Technology Data Exchange (ETDEWEB)

    Dassanayake, M.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the feasibility of using triticale straw for production of electricity in Canada. Triticale is a manmade hybrid of wheat and rye and it has a high potential of growth in Canada. The cost ($/MWh) of producing electricity from triticale straw was estimated using a data intensive techno-economic model. The study also determined the optimum size of a biomass power plant (MW) which is a trade-off between capital cost of the plant and transportation cost of biomass. Cost curves were also developed in order to evaluate the impact of scale on power production costs. The location of the power plant and the future expansion of triticale were among the factors considered in the techno-economic mode. The scope of the work included all the processes beginning with the collection of straw to the conversion to electricity through direct combustion at the power plant. According to the preliminary results, the cost of producing power from triticale straw is higher than coal-based electricity production in western Canada.

  3. Fibrillar assembly of bacterial cellulose in the presence of wood-based hemicelluloses.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Sugiyama, Junji

    2017-09-01

    Composite materials mimicking the plant cell wall structure were made by culturing cellulose-producing bacteria together with secondary-wall hemicelluloses from wood. The effects of spruce galactoglucomannan (GGM) and beech xylan on the nanoscale morphology of bacterial cellulose were studied in the original, hydrated state with small-angle X-ray scattering (SAXS). The SAXS intensities were fitted with a model covering multiple levels of the hierarchical structure. Additional information on the structure of dried samples was obtained using scanning and transmission electron microscopy and infra-red spectroscopy. Both hemicelluloses induced a partial conversion of the cellulose crystal structure from I α to I β and a reduction of the cross-sectional dimensions of the cellulose microfibrils, thereby affecting also their packing into bundles. The differences were more pronounced in samples with xylan instead of GGM, and they became more significant with higher hemicellulose concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment.

    Science.gov (United States)

    Girgih, Abraham T; Chao, Dongfang; Lin, Lin; He, Rong; Jung, Stephanie; Aluko, Rotimi E

    2015-12-01

    Isolated pea protein (IPP) dispersions (1%, w/v) were pretreated with high pressure (HP) of 200, 400, or 600 MPa for 5 min at 24 °C or high temperature (HT) for 30 min at 100 °C prior to hydrolysis with 1% (w/w) Alcalase. HP pretreatment of IPP at 400 and 600 MPa levels led to significantly (P40%) oxygen radical absorption capacity (ORAC) of hydrolysates. 2,2-Diphenyl-1-picrylhydrazyl, superoxide radical and hydroxyl radical scavenging activities of pea protein hydrolysates were also significantly (PProtein hydrolysates from HT IPP showed no ORAC, superoxide or hydroxyl scavenging activity but had significantly (Pprotein hydrolysates had weaker antioxidant properties than glutathione but overall, the HP pretreatment was superior to HT pretreatment in facilitating enzymatic release of antioxidant peptides from IPP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [The influence of straw, particularly rice straw, together with calcium-cyanamide on the microbiological activity of two Portuguese soils (author's transl)].

    Science.gov (United States)

    Glathe, H; El Din, A; Scheuer, A

    1976-01-01

    The influence of calcium-cyanamide upon the microbiological activity was tested in pot experiments under controlled conditions in two Portuguese soils (sandy and loamy) after the addition of rice or wheat straw (rice straw 0.275% N, wheat straw 0.307% N). The amount of straw was equalled to 100 dz/ha, the application of calcium-cyanamide to 25, 50 and 100 kg N/ha. In the containers treated with straw the total amount of microorganisms (Koch-method) was higher in sandy than in loamy soil after 30 days, but after 70 days it was higher in loamy soil. The content of active nitrogen (NH4 + NO3) increased, when calcium-cyanamide was added, but decreased after the application of straw. After 70 days sandy soil again showed an increase of active nitrogen. Straw increased the rates of CO2-production considerably, wheat straw was superior to rice straw. Calcium-cyanamide increased the CO2-production more in sandy than in loamy soil or German loess, which was also used for this experiment. Only in the case of rice straw higher doses of calcium-cyanamide had a positive effect. After 70 days the CO2-production rose only when rice straw was applied. The dehydrogenase-activity was increased in both soils, but a superiority of wheat straw occurred in sandy soil only. The microbiological activity in the pots with straw was higher in sandy than in loamy soil, the addition of calcium-cyanamide accelerated it. Doses of 25-50 kg N/ha are sufficient generally. The period of the formation of insoluble organic N-compounds, usually connected with the application of organic matter with a wide N:C-ratio, seems to be reduced by the addition of calcium-cyanamide.

  6. Cellulase-poor xylanases produced by Trichoderma reesei RUT C-30 on hemicellulose substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gamerith, G.; Groicher, R. (Lenzing AG (Austria). Dept. of Research and Development); Zeilinger, S.; Herzog, P.; Kubicek, C.P. (Technische Univ., Vienna (Austria). Abt. fuer Mikrobielle Biochemie)

    1992-12-01

    Hemicellulose components from industrial viscose fibre production are characterized by a lower cellulose content than commerical xylan and the pressence of a carboxylic acid fraction originating from the alkaline degradation of carbohydrates during the process. This substrate, after neutralization, can be used by Trichoderma reesei RUT C-30 for the production of cellulase-poor xylanases, useful for the pulp and paper industry. The yields of xylanase ranged up to almost 400 units/ml, with a ratio of carboxymethylcellulase/xylanase of less than 0.015. This crude xylanase enzyme mixture was shown to be superior to that obtained on beech-wood xylan when used for bleaching and, particularly, upgrading of hard-wood chemical pulp by selective removal of the xylan components. Biochemical studies indicate that the low cellulase production by T. reesei grown on these waste hemicelluloses is the result of a combination of at least three factors: (a) The comparatively low content of cellulose in these hemicellulosic wastes, (b) the inhibitory action of the carboxylic acid fraction present in the hemicellulosic wastes on growth and sporulation of T. reesei, and (c) the use of a mycelial inoculum that is unable to initiate the atack on the cellulose components within the carbon source. (orig.).

  7. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw☆

    Science.gov (United States)

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B.; Du, Chenyu

    2013-01-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

  8. Bio-composites made from pine straw

    Science.gov (United States)

    Cheng Piao; Todd F. Shupe; Chung Y. Hse; Jamie Tang

    2004-01-01

    Pine straw is renewable natural resource that is under-utilized. The objective of this study was to evaluate the physical and mechanical performances of pine straw composites. Three panel density levels (0.8, 0.9, 1.0 g/cm2) and two resin content levels (1% pMDI + 4% UF, 2% pMDI + 4% UF) were selected as treatments. For the pine-straw-bamboo-...

  9. Acetone-butanol fermentation of lignocellulosic hydrolysates for the butanol production

    Science.gov (United States)

    Morozova, Tatyana; Semyonov, Sergey

    2017-11-01

    It is known that the use of lignocellulosic hydrolysates reduces the production cost of biofuel such as biobutanol and bioethanol. But for the most successful application of the hydrolysates for the biofuel production, it is necessary to apply an inexpensive and effective detoxification method and to use of cost-effective growth factors. In the present study, we evaluated the use of an acid hydrolysate of spruce and an enzymatic hydrolysate of miscanthus cellulose for the biobutanol production. To remove inhibitors from the hydrolysates, we applied the traditional physicochemical method with overliming and the biodetoxification method based on the use of the specially adapted activated sludge. Calcium hydroxide (150 g/L) was used for the neutralization. The biological method of detoxification of lignocellulosic hydrolysates was carried out under non-sterile conditions at room temperature by the specially adapted activated sludge of the urban wastewater treatment plants. The acetone-butanol fermentation was carried out by a strain of bacteria Clostridium acetobutylicum ATCC 824. The treatment by overliming removed 84-85 % and 83-86% of 5-hydroxymethylfurfural (5-HMF) and furfural from the hydrolysates respectively. Using the method of biodetoxification the content of furfural decreased by 98% and concentration of 5-HMF - by 97-99%. In the present study as an inexpensive source of growth substances for the fermentation of the hydrolysates it has been suggested to use decantate of the brewer's spent grain. The obtained results showed that the brewer's spent grain can be used in the biofuel production as efficiently as the synthetic growth substances.

  10. Using rice straw to manufacture ceramic bricks

    Directory of Open Access Journals (Sweden)

    Gorbunov German Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors offer their advanced and efficient methodologies for the recycling of the rice straw, as well as the novel approaches to the ceramic brick quality improvement through the application of the rice straw as the combustible additive and through the formation of amorphous silica in the course of the rice straw combustion. The co-authors provide characteristics of the raw materials, production techniques used to manufacture ceramic bricks, and their basic properties in the article. The co-authors describe the simulated process of formation of amorphous silica. The process in question has two independent steps (or options: 1 rice straw combustion and ash formation outside the oven (in the oxidizing medium, and further application of ash as the additive in the process of burning clay mixtures; 2 adding pre-treated rice straw as the combustible additive into the clay mixture, and its further burning in compliance with the pre-set temperature mode. The findings have proven that the most rational pre-requisite of the rice straw application in the manufacturing of ceramic bricks consists in feeding milled straw into the clay mixture to be followed by molding, drying and burning. Brick samples are highly porous, and they also demonstrate sufficient compressive strength. The co-authors have also identified optimal values of rice straw and ash content in the mixtures under research.

  11. ADVANTAGES AND DISADVANTAGES OF STRAW-BALE BUILDING

    Directory of Open Access Journals (Sweden)

    Larisa Brojan

    2014-06-01

    Full Text Available This paper is focused on general properties of straw bale as a building material which has been proven by buildings throughout the world to be an appropriate material choice. Still, there are many hesitations about using this alternative building material. The building techniques are relatively easy to learn and the performance of straw bale structures has a high value in terms of several aspects as long as general requirements are followed. The primary benefit of straw bale as a building material is its low embodied energy. It also has high thermal and sound insulation properties. Many previous research studies on straw bale building have been focused on structural stability, fire resistance and assessing moisture content in straw bales which is one of the major issues. Therefore, special attention needs to be devoted to details to insure proper building safety. Render selection is especially crucial and an extremely important step in straw bale building, not only in matters concerning moisture but also structural capacity and fire protection. A major disadvantage of straw bale construction is its lack of material research. The paper is divided into three parts in which advantages and disadvantages of such a building are discussed. In the third part, results are presented for a survey in which correspondents emphasized the advantages and disadvantages of living in a straw bale building.

  12. Thermal Properties of Wood-Plastic Composites Prepared from Hemicellulose-extracted Wood Flour

    Directory of Open Access Journals (Sweden)

    A.A. Enayati

    2013-01-01

    Full Text Available Hemicellulose of Southern Yellow Pine wood spices was extracted by pressurized hot water at three different temperatures: 140°C, 155°C and 170°C. Compounding with PP (polypropylene was performed by extrusion after preparing wood flour and sieving to determine its mesh size. The ratio of wood to polymer was 50:50 based on oven-dry weight of wood flour. All extraction treatments and control samples were compounded under two sets of conditions, without and with 2% MAPP as coupling agent. Injection molding was used to make tensile test samples (dogbone from the pellets made by extrusion. Thermal properties of wood-plastic composites were studied by TGA and DSC while the thermal stability of pretreated wood flours, PP and MAPP were studied by TGA as well. The greater weight loss of wood materials was an indication that higher treatment temperature increases the extractability of hemicellulose. The removal of hemicellulose by extraction improves thermal stability of wood flour, especially for extraction at 170°C. Wood-plastic composites made from extracted fibers at 170°C showed the highest thermal stability. Coupling agent did not have a significant effect on thermal stability but it improved the degree of crystallinity of the composites.Surface roughness of wood fiber increased after treatment. Extraction of hemicellulose increased the degree of crystallinity but it was not significant except for samples from treated wood flour at 170°C and with MAPP.

  13. Factors affecting antioxidant activity of soybean meal and caseine protein hydrolysates

    International Nuclear Information System (INIS)

    Korczak, J.

    1998-01-01

    Antioxidative activity of protein hydrolysates was dependent on the raw material, condition of hydrolysis and lipid substrate used in model systems. Soybean meal hydrolysate was more active in lard and in linoleic acid emulsion than caseine hydrolysate, whereas caseine was more active in vegetable oils. Antioxidant activity of evaluated protein hydrolysates in all lipid systems, with or without oxidation catalysts, suggests them as natural food additives for lipid stabilization, thus for improvement of its nutritional value and sensory properties

  14. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties: Rice straw as a feedstock for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Satlewal, Alok [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Joint Inst. for Biological Sciences, Biosciences Division; Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Agrawal, Ruchi [Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Bhagia, Samarthya [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Das, Parthapratim [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Ragauskas, Arthur J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering

    2017-10-17

    The surplus availability of rice straw, its limited usage and environment pollution caused by inefficient burning has fostered research for its valorization to biofuels. This review elucidates the current status of rice straw potential around the globe along with recent advances in revealing the critical factors responsible for its recalcitrance and chemical properties. The role and accumulation of high silica content in rice straw has been elucidated with its impact on enzymatic hydrolysis in a biorefinery environment. The correlation of different pretreatment approaches in modifying the physiochemical properties of rice straw and improving the enzymatic accessibility has also been discussed. This study highlights new challenges, resolutions and opportunities for rice straw based biorefineries.

  15. Effects of process parameters of various pretreatments on enzymatic hydrolysability of Ceiba pentandra (L.) Gaertn. (Kapok) fibre: A response surface methodology study

    International Nuclear Information System (INIS)

    Tye, Ying Ying; Lee, Keat Teong; Wan Abdullah, Wan Nadiah; Leh, Cheu Peng

    2015-01-01

    Kapok fibre is a promising raw material to produce sugar by enzymatic hydrolysis. In this work, effects of water, acid and alkaline pretreatments on the enzymatic sugar yield were studied through response surface methodology (RSM) and supported by the analysis of chemical compositions and physical structure of the fibre. For water pretreatment, reaction temperature and time were the independent variables while chemical concentration was also used as the third independent variable for acid and alkaline pretreatments. For all pretreatments, the enzymatic hydrolysis conditions were kept constant. The structure of pretreated fibre was also examined using scanning electron microscope (SEM). Results showed that water and acid pretreatments effectively dissolved hemicellulose of the fibre with the latter unveiled better results. The alkaline pretreatment resulted in the highest total glucose yield (g/kg of untreated fibre) as compared to water and acid pretreatments. SEM analysis illustrated that water and acid pretreatments led severe destruction of fibre structure; however, both of these pretreatments exhibited lower enhancement of enzymatic hydrolysability of kapok fibre as compared to that observed in alkaline pretreatment. - Highlights: • Effect of pretreatments on sugar yield was studied by response surface methodology. • Glucose yield was highly related to the chemical compositions of pretreated fibers. • Pretreatments altered the physical structure of kapok fibers. • Enzymatic hydrolysability of fibre was improved the most by alkaline treatment. • Over 94% cellulose of the pretreated fibres was converted to glucose

  16. Development of Sausages Containing Mechanically Deboned Chicken Meat Hydrolysates.

    Science.gov (United States)

    Jin, S K; Choi, J S; Choi, Y J; Lee, S J; Lee, S Y; Hur, S J

    2015-07-01

    Pork meat sausages were prepared using protein hydrolysates from mechanically deboned chicken meat (MDCM). In terms of the color, compared to the controls before and after storage, the redness (a*) was significantly higher in sausages containing MDCM hydrolysates, ascorbate, and sodium erythorbate. After storage, compared to the other sausage samples, the yellowness (b*) was lower in the sausages containing ascorbate and sodium erythorbate. TBARS was not significantly different among the sausage samples before storage, whereas TBARS and DPPH radical scavenging activities were significantly higher in the sausagescontainingascorbate and sodium erythorbate, compared to the other sausage samples after 4 wk of storage. In terms of sensory evaluation, the color was significantly higher in the sausages containing MDCM hydrolysates, ascorbate, and sodium erythorbate, compared to the other sausage samples after 4 wk of storage. The "off-flavor" and overall acceptability were significantly lower in the sausages containing MDCM hydrolysates than in the other sausage samples. In most of the developed countries, meat from spent laying hens is not consumed, leading toan urgent need for effectively utilization or disposal methods. In this study, sausages were prepared using spent laying hens and protein hydrolysates from mechanically deboned chicken meat. Sausage can be made by spent laying hens hydrolysates, although overall acceptability was lower than those of other sausage samples. © 2015 Institute of Food Technologists®

  17. Use and co-combustion of straw in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, J S [SK Power, Ballerup (Denmark)

    1997-12-31

    Coal has in more decades been the backbone of the Danish energy production. As a consequence of a political wish to utilize domestic fuel and reduce the massive use of coal and the CO{sub 2} emission, straw has since 1989 been used in Denmark at small-scale combined heat and power plants. All straw-fired combined heat and power plants in Denmark are owned by the power stations. Furthermore some district heating plants owned by the municipalities, consumers or privately owned, also use straw as a fuel, as in the middle of the eighties it was prohibited to use coal as fuel in district heating plants. Different rules of subsidies and duties made natural gas or biomass the most competitive fuel for the district heating plants. For various other reasons there are also some oil-fired district heating plants in operation. Today five straw-fired combined heat and power plants in Denmark are in commercial operation. Three of these plants exclusively use straw as a fuel, one uses both straw, wood chips and natural gas, and one straw and coal. These five combined heat and power plants, having a total annual consumption of straw of approx. 200 000 tonnes, supply district heating to five medium-sized towns. On 14 June 1993 an agreement was made in the Danish Parliament ordering the power stations to reach an annual volume input of 1.2 mill. tonnes of straw and 0.2 mill. tonnes of wood chips in year 2000. Therefore two new plants are under construction and co-combustion with straw is being installed at an existing coal-fired power station. In addition, two large plants are under consideration. With the two plants under construction and with the co-combustion plant, the straw consumption is expected to increase to 430 000 tons of straw per year. These two plants will start operations in 1995 and 1997 respectively. All the operating straw-fired combined heat and power stations show an economic loss. Besides the price of fuel, this is due to the efficiency of the plants, which with

  18. Use and co-combustion of straw in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, J.S. [SK Power, Ballerup (Denmark)

    1996-12-31

    Coal has in more decades been the backbone of the Danish energy production. As a consequence of a political wish to utilize domestic fuel and reduce the massive use of coal and the CO{sub 2} emission, straw has since 1989 been used in Denmark at small-scale combined heat and power plants. All straw-fired combined heat and power plants in Denmark are owned by the power stations. Furthermore some district heating plants owned by the municipalities, consumers or privately owned, also use straw as a fuel, as in the middle of the eighties it was prohibited to use coal as fuel in district heating plants. Different rules of subsidies and duties made natural gas or biomass the most competitive fuel for the district heating plants. For various other reasons there are also some oil-fired district heating plants in operation. Today five straw-fired combined heat and power plants in Denmark are in commercial operation. Three of these plants exclusively use straw as a fuel, one uses both straw, wood chips and natural gas, and one straw and coal. These five combined heat and power plants, having a total annual consumption of straw of approx. 200 000 tonnes, supply district heating to five medium-sized towns. On 14 June 1993 an agreement was made in the Danish Parliament ordering the power stations to reach an annual volume input of 1.2 mill. tonnes of straw and 0.2 mill. tonnes of wood chips in year 2000. Therefore two new plants are under construction and co-combustion with straw is being installed at an existing coal-fired power station. In addition, two large plants are under consideration. With the two plants under construction and with the co-combustion plant, the straw consumption is expected to increase to 430 000 tons of straw per year. These two plants will start operations in 1995 and 1997 respectively. All the operating straw-fired combined heat and power stations show an economic loss. Besides the price of fuel, this is due to the efficiency of the plants, which with

  19. Processing Methods of Alkaline Hydrolysate from Rice Husk

    Directory of Open Access Journals (Sweden)

    Olga D. Arefieva

    2017-07-01

    Full Text Available This paper devoted to finding processing methods of alkaline hydrolysate produced from rice husk pre-extraction, and discusses alkaline hydrolysate processing schemed and disengagement of some products: amorphous silica of various quality, alkaline lignin, and water and alkaline extraction polysaccharides. Silica samples were characterized: crude (air-dried, burnt (no preliminary water treatment, washed in distilled water, and washed in distilled water and burnt. Waste water parameters upon the extraction of solids from alkaline hydrolysate dropped a few dozens or thousand times depending on the applied processing method. Color decreased a few thousand times, turbidity was virtually eliminated, chemical oxygen demanded about 20–136 times; polyphenols content might decrease 50% or be virtually eliminated. The most prospective scheme obtained the two following solid products from rice husk alkaline hydrolysate: amorphous silica and alkaline extraction polysaccharide. Chemical oxygen demand of the remaining waste water decreased about 140 times compared to the silica-free solution.

  20. Study of straw chamber lifetime with argon ethane

    International Nuclear Information System (INIS)

    Adler, J.; Bolton, T.; Bunnell, K.; Cheu, E.; Grab, C.; Mazaheri, G.; Odian, A.; Pitman, D.; Stockhausen, W.; Toki, W.; Wadley, W.; Wood, C.; Mir, R.

    1989-01-01

    We present detailed laboratory measurements of the lifetime of a small test chamber, simulating the Mark III straw vertex chamber conditions. The tests were carried out with an argon-ethane 50/50 gas mixture at 3 atm absolute pressure and 3.9 kV applied to the wires. After the accumulation of ≅ 0.02 C/cm on a single straw, continuous discharges began. The addition of alcohol or water vapor to the gas mixture was found to extend the lifetime of the straws. Continuous flow of the gas mixture with water vapor through the straws prolonged the lifetime significantly. We present results on the effects of changing the gas mixture inside the straws at regular time intervals. Adding a small percentage of water vapor to the argon-ethane gas and flowing the gas mixture in the straws can improve the lifetime by more than an order of magnitude. An accumulated charge of 1.0 C/cm on a single straw has been obtained. (orig.)

  1. Application of cationic hemicelluloses produced from corn husk as polyelectrolytes in sewage treatment

    Directory of Open Access Journals (Sweden)

    Alan Soares Landim

    2013-01-01

    Full Text Available Hemicelluloses were extracted from corn husk and converted into cationic hemicelluloses using 2,3-epoxypropyltrimethylammonium chloride. The degree of substitution was determined as 0.43 from results of elemental analysis. The cationic derivative was also characterized by Fourier transform infrared spectroscopy and Carbon-13 magnetic nuclear ressonance. The produced polymer was employed as coagulant aid in a sewage treatment station (STS of the municipal department of water and sewer (Departamento Municipal de Água e Esgoto - DMAE in Uberlândia-Minas Gerais, Brazil, using Jar test experiments. Its performance was compared to ACRIPOL C10, a commercial cationic polyacrylamide regularly used as a coagulant at the STS. The best result of the jar-test essays was obtained when using cationic hemicelluloses (10 mg L- 1 as coagulant aid and ferric chloride as coagulante (200 mg L- 1. The resultsof color and turbidity reduction, 37 and 39%, respectively, were better than when using only ferric chloride. These results were also higher than those of commercial polyacrylamide, on the order of 32.4 and 38.7%, respectively. The results showed that the cationic hemicelluloses presented similar or even superior performance when compared to ACRIPOL C10, demonstrating that the polyelectrolytes produced from recycled corn husks can replace commercial polymers in sewage treatment stations.

  2. Manufacturing and process optimization of porous rice straw board

    Science.gov (United States)

    Liu, Dejun; Dong, Bing; Bai, Xuewei; Gao, Wei; Gong, Yuanjuan

    2018-03-01

    Development and utilization of straw resources and the production of straw board can dramatically reduce straw waste and environmental pollution associated with straw burning in China. However, the straw board production faces several challenges, such as improving the physical and mechanical properties, as well as eliminating its formaldehyde content. The recent research was to develop a new straw board compound adhesive containing both inorganic (MgSO4, MgCO3, active silicon and ALSiO4) and organic (bean gum and modified Methyl DiphenylDiisocyanate, MDI) gelling materials, to devise a new high frequency straw board hot pressing technique and to optimize the straw board production parameters. The results indicated that the key hot pressing parameters leading to porous straw board with optimal physical and mechanical properties. These parameters are as follows: an adhesive containing a 4:1 ratio of inorganic-to-organic gelled material, the percentage of adhesive in the total mass of preload straw materials is 40%, a hot-pressing temperature in the range of 120 °C to 140 °C, and a high frequency hot pressing for 10 times at a pressure of 30 MPa. Finally, the present work demonstrated that porous straw board fabricated under optimal manufacturing condition is an environmentally friendly and renewable materials, thereby meeting national standard of medium density fiberboard (MDF) with potential applications in the building industry.

  3. Fungal diversity of rice straw for meju fermentation.

    Science.gov (United States)

    Kim, Dae-Ho; Kim, Seon-Hwa; Kwon, Soon-Wo; Lee, Jong-Kyu; Hong, Seung-Beom

    2013-12-01

    Rice straw is closely associated with meju fermentation and it is generally known that the rice straw provides meju with many kinds of microorganisms. In order to elucidate the origin of meju fungi, the fungal diversity of rice straw was examined. Rice straw was collected from 12 Jang factories where meju are produced, and were incubated under nine different conditions by altering the media (MEA, DRBC, and DG18), and temperature (15°C, 25°C, and 35°C). In total, 937 strains were isolated and identified as belonging to 39 genera and 103 species. Among these, Aspergillus, Cladosporium, Eurotium, Fusarium, and Penicillium were the dominant genera. Fusarium asiaticum (56.3%), Cladosporium cladosporioides (48.6%), Aspergillus tubingensis (37.5%), A. oryzae (31.9%), Eurotium repens (27.1%), and E. chevalieri (25.0%) were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study were also isolated from meju. Specifically, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum, and Penicillium polonicum (11.8%), which are abundant species in meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum, and P. polonicum, which are abundant in the low temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 15°C and 25°C, whereas A. oryzae, E. repens, and E. chevalieri, which are abundant in the high temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 25°C and 35°C. This suggests that the mycobiota of rice straw has a large influence in the mycobiota of meju. The influence of fungi on the rice straw as feed and silage for livestock, and as plant pathogens for rice, are discussed as well.

  4. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals

    DEFF Research Database (Denmark)

    Østergaard Petersen, Mai; Larsen, Jan; Thomsen, Mette Hedegaard

    2009-01-01

    straw at pilot scale (up to 100 kg h(-1)) where six different pretreatment conditions have been investigated; all pretreatment conditions have been evaluated with regards to recovery of sugars after pretreatment (both C5 and C6) and convertibility of the cellulosic part of the fibers into ethanol......In the IBUS process (Integrated Biomass Utilization System) lignocellulosic biomass is converted into ethanol at high dry matter content without addition of chemicals and with a strong focus on energy efficiency. This study describes optimization of continuous hydrothermal pretreatment of wheat....... The experiments show that the optimum pretreatment parameters are 195 degrees C for 6-12 min. At these conditions, a total of app. 70% of the hemicellulose is recovered, 93-94% of the cellulose is recovered in the fibers and app. 89% of the cellulose in the fibers can be converted into ethanol by commercial...

  5. PADI ASIC for straw tube read-out

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Traeger, Michael; Fruehauf, Jochen; Schmidt, Christian [GSI, Darmstadt (Germany); Ciobanu, Mircea [ISS, Bucharest (Romania); Collaboration: CBM-Collaboration

    2016-07-01

    A prototype of the CBM MUCH straw tube detector consisting of six individual straws of 6mm inner diameter and 220 mm length filled with Ar/CO{sub 2} gas mixture has been tested at the COSY accelerator in Juelich. The straw tubes were connected to the FEET-PADI6-HDa PCB equipped with PADI-6 fast amplifier/discriminator ASIC. As a reference counter in this measurement the scCVD diamond detector has been used delivering excellent timing, time resolution below 100 ps (sigma), and very precise position information, below 50 μm. The demonstrated position resolution of about 160 μm of the straw tube read out with PADI-6 ASIC confirms the capability of the PADI chip and puts this development as a very attractive readout option for straw tubes and wire chambers.

  6. Logistics Mode and Network Planning for Recycle of Crop Straw Resources

    OpenAIRE

    Zhou, Lingyun; Gu, Weidong; Zhang, Qing

    2013-01-01

    To realize the straw biomass industrialized development, it should speed up building crop straw resource recycle logistics network, increasing straw recycle efficiency, and reducing straw utilization cost. On the basis of studying straw recycle process, this paper presents innovative concept and property of straw recycle logistics network, analyses design thinking of straw recycle logistics network, and works out straw recycle logistics mode and network topological structure. Finally, it come...

  7. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.

    Science.gov (United States)

    Walton, Sara L; Bischoff, Kenneth M; van Heiningen, Adriaan R P; van Walsum, G Peter

    2010-08-01

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.

  8. Physiological Importance and Mechanisms of Protein Hydrolysate Absorption

    Science.gov (United States)

    Zhanghi, Brian M.; Matthews, James C.

    Understanding opportunities to maximize the efficient digestion and assimilation by production animals of plant- and animal-derived protein products is critical for farmers, nutritionists, and feed manufacturers to sustain and expand the affordable production of high quality animal products for human consumption. The challenge to nutritionists is to match gastrointestinal tract load to existing or ­inducible digestive and absorptive capacities. The challenge to feed manufacturers is to develop products that are efficient substrates for digestion, absorption, and/or both events. Ultimately, the efficient absorption of digesta proteins depends on the mediated passage (transport) of protein hydrosylate products as dipeptides and unbound amino acids across the lumen- and blood-facing membranes of intestinal absorptive cells. Data testing the relative efficiency of supplying protein as hydrolysates or specific dipeptides versus as free amino acids, and the response of animals in several physiological states to feeding of protein hydrolysates, are presented and reviewed in this chapter. Next, data describing the transport mechanisms responsible for absorbing protein hydrolysate digestion products, and the known and putative regulation of these mechanisms by their substrates (small peptides) and hormones are presented and reviewed. Several conclusions are drawn regarding the efficient use of protein hydrolysate-based diets for particular physiological states, the economically-practical application of which likely will depend on technological advances in the manufacture of protein hydrolysate products.

  9. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass

    NARCIS (Netherlands)

    Panagiotopoulos, I.; Bakker, R.; Vrije, de G.J.; Niel, van E.W.J.; Koukios, E.; Claassen, P.A.M.

    2011-01-01

    Four dilute-acid pretreated and hydrolysed lignocellulosic raw materials were evaluated as substrates for fermentative hydrogen production by Caldicellulosiruptor saccharolyticus. Their fermentability was ranked in the order: barley straw > wheat straw > corn stalk > corn cob. The content

  10. The study of applying rice straw resources for ruminant production in Hanzhong city%汉中市水稻秸秆资源在反刍动物生产中的应用研究

    Institute of Scientific and Technical Information of China (English)

    张智鹏; 熊伟曼; 赵玥; 田和平

    2017-01-01

    汉中市水稻秸秆资源丰富,是反刍动物重要的粗饲料来源.在实际生产中,由于缺乏正确的处理方法,没有发挥出应有的营养价值.本文针对水稻秸秆的营养特点,详细阐述了不同处理方法对水稻秸秆品质的影响,在改善秸秆的适口性,提高粗蛋白含量,促进纤维素、半纤维素和木质素的降解等方面有显著的效果.为汉中市水稻秸秆在畜牧业生产中的高效利用提供科学依据.%In Hanzhong city,there are abundant resources of rice straw which are the important source of roughage for ruminants.In practical production,due to the lack of proper treatment,the nutritional value of rice strw cannot be well excavated.In this paper,the effects of different treatment methods on the quality of rice straw were elaborated with respect to the nutritional characteristics of rice straw.Significant effects were found as regard to the improvement in palatability of straw,the increase of the crude protein content,as well as the promotion of degradating cellulose,hemicellulose and lignin.The current paper can provide scientific basis for efficient use of rice straw in the livestock industry in Hanzhong city.

  11. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Latorres, J M; Rios, D G; Saggiomo, G; Wasielesky, W; Prentice-Hernandez, C

    2018-02-01

    Protein hydrolysates from white shrimp ( Litopenaeus vannamei ) with different degrees of hydrolysis (DH-10 and 20%) were prepared using the enzymes Alcalase 2.4 L and Protamex. The hydrolysates were evaluated for amino acid composition, solubility, foaming properties, emulsifying and antioxidant activity. All the hydrolysates showed high concentrations of Glutamic Acid, Aspartic acid, Arginine, Glycine, Lysine, Proline. It was found that the increase in the production of negatively charged amino acids was related to increase in DH. The hydrophobic amino acids were higher for hydrolysates obtained with Alcalase (10% DH) and Protamex (20% DH). The results indicated that higher degree of hydrolysis showed positive relation with the protein solubility of the hydrolysates, while negatively influenced foam and emulsification properties. The antioxidant properties presented by the white shrimp protein hydrolysates were influenced by the composition and peptides size. Hydrolysates with higher peptide chain showed the highest antioxidant power for the 2,2-Diphenyl-1-picrylhydrazyl radical scavenging and reducing power, while hydrolysates with lower peptide chain showed higher antioxidant power for 2,2'-azinobis (3-ethylbenzothiazoline sulfonic acid) radical scavenging. All hydrolysates showed dose-dependent antioxidant activities. Therefore, the results of the present study suggest that white shrimp is a potential source of protein hydrolysates as bioactive ingredients for the use in the formulation of functional foods as well as natural antioxidants in lipid food systems.

  12. Cryopreservation of boar semen in mini- and maxi-straws.

    Science.gov (United States)

    Bwanga, C O; de Braganca, M M; Einarsson, S; Rodriguez-Martinez, H

    1990-10-01

    Split ejaculates from four boars were frozen with a programmable freezing machine, in mini- (0.25 ml) and maxi- (5 ml) plastic straws with an extender at either acidic (6.3) or alkaline (7.4) pH. Glycerol (3%) was used as cryoprotectant. The freezing of the semen was monitored by way of thermocouples placed in the straws. Post-thaw motility and acrosome integrity were evaluated; the latter using phase contrast microscopy, eosin-nigrosin stain and electron microscopy. Post-thaw sperm motility was significantly higher when semen was frozen in mini-straws than in maxi-straws. For the mini-straws, the motility was better when semen was exposed to an acidic environment during freezing, but this beneficial effect of the low extracellular pH was not evident when maxi-straws were thawed. The motility of the spermatozoa diminished significantly during the thermoresistance test (0 h and 2 h time) at 37 degrees C in a similar way for both straws and extracellular pH's. The freezing procedure, no matter the extracellular pH, did not cause major acrosomal damages, but significantly more normal apical ridges were present in the mini-straws than in the maxi-straws. This in vitro evaluation indicated that the freezing method employed was better for mini- than for maxi-straws since the freezing of the 5 ml volumes was not homogeneous, due to the large section area between the surface and the core of the straw.

  13. Analysis and simulation of straw fuel logistics

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Daniel [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Agricultural Engineering

    1998-12-31

    Straw is a renewable biomass that has a considerable potential to be used as fuel in rural districts. This bulky fuel is, however, produced over large areas and must be collected during a limited amount of days and taken to the storages before being ultimately transported to heating plants. Thus, a well thought-out and cost-effective harvesting and handling system is necessary to provide a satisfactory fuel at competitive costs. Moreover, high-quality non-renewable fuels are used in these operations. To be sustainable, the energy content of these fuels should not exceed the energy extracted from the straw. The objective of this study is to analyze straw as fuel in district heating plants with respect to environmental and energy aspects, and to improve the performance and reduce the costs of straw handling. Energy, exergy and emergy analyses were used to assess straw as fuel from an energy point of view. The energy analysis showed that the energy balance is 12:1 when direct and indirect energy requirements are considered. The exergy analysis demonstrated that the conversion step is ineffective, whereas the emergy analysis indicated that large amounts of energy have been used in the past to form the straw fuel (the net emergy yield ratio is 1.1). A dynamic simulation model, called SHAM (Straw HAndling Model), has also been developed to investigate handling of straw from the fields to the plant. The primary aim is to analyze the performance of various machinery chains and management strategies in order to reduce the handling costs and energy needs. The model, which is based on discrete event simulation, takes both weather and geographical conditions into account. The model has been applied to three regions in Sweden (Svaloev, Vara and Enkoeping) in order to investigate the prerequisites for straw harvest at these locations. The simulations showed that straw has the best chances to become a competitive fuel in south Sweden. It was also demonstrated that costs can be

  14. Numerical modeling of straw combustion in a fixed bed

    DEFF Research Database (Denmark)

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter

    2005-01-01

    . The straw combustion processes include moisture evaporation, straw pyrolysis, gas combustion, and char combustion. The model provides detailed information of the structure of the ignition flame front. Simulated gas species concentrations at the bed surface, ignition flame front rate, and bed temperature......Straw is being used as main renewable energy source in grate boilers in Denmark. For optimizing operating conditions and design parameters, a one-dimensional unsteady heterogeneous mathematical model has been developed and experiments have been carried out for straw combustion in a fixed bed...... are in good agreement with measurements at different operating conditions such as primary air-flow rate, pre-heating of the primary air, oxygen concentration, moisture content in straw, and bulk density of the straw in the fixed bed. A parametric study indicates that the effective heat conductivity, straw...

  15. Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity

    Science.gov (United States)

    2013-01-01

    Background Recently, in order to improve the resistance of flax plants to pathogen infection, transgenic flax that overproduces β-1,3-glucanase was created. β-1,3-glucanase is a PR protein that hydrolyses the β-glucans, which are a major component of the cell wall in many groups of fungi. For this study, we used fourth-generation field-cultivated plants of the Fusarium -resistant transgenic line B14 to evaluate how overexpression of the β-1,3-glucanase gene influences the quantity, quality and composition of flax fibres, which are the main product obtained from flax straw. Results Overproduction of β-1,3-glucanase did not affect the quantity of the fibre obtained from the flax straw and did not significantly alter the essential mechanical characteristics of the retted fibres. However, changes in the contents of the major components of the cell wall (cellulose, hemicellulose, pectin and lignin) were revealed. Overexpression of the β-1,3-glucanase gene resulted in higher cellulose, hemicellulose and pectin contents and a lower lignin content in the fibres. Increases in the uronic acid content in particular fractions (with the exception of the 1 M KOH-soluble fraction of hemicelluloses) and changes in the sugar composition of the cell wall were detected in the fibres of the transgenic flax when compared to the contents for the control plants. The callose content was lower in the fibres of the transgenic flax. Additionally, the analysis of phenolic compound contents in five fractions of the cell wall revealed important changes, which were reflected in the antioxidant potential of these fractions. Conclusion Overexpression of the β-1,3-glucanase gene has a significant influence on the biochemical composition of flax fibres. The constitutive overproduction of β-1,3-glucanase causes a decrease in the callose content, and the resulting excess glucose serves as a substrate for the production of other polysaccharides. The monosaccharide excess redirects the phenolic

  16. Some characteristics of the long straw drift tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Ivanov, A.B.; Livinskij, V.V.; Lobastov, S.P.; Lysan, V.M.; Mishin, S.V.; Peshekhonov, V.D.

    1998-01-01

    This article represents the construction and testing of the long straw drift tubes of different types. The diameter and the length of each straw were equal to 15 mm and 3 m respectively. The cathode resistance of these straws has a small value, i.e. about 100 Ohm/m. Thus, they do not have a large attenuation length. Installation of the spacers reduces the effective straw length by 0.5 % per meter, at least

  17. Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland.

    Science.gov (United States)

    Jessen, Jan Eric; Orlygsson, Johann

    2012-01-01

    Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol) and xylose (1.25 mol/mol). Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose) pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g(-1)) but the lowest on straw (0.8 mM·g(-1)). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g(-1) to 3.3 mM·g(-1) using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g(-1).

  18. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... in the treated waste could be converted into respectively hexose and pentose sugars compared to 46% for cellulose and 36% for hemicellulose in the raw waste. For all wet oxidation conditions tested, total carbohydrate recoveries were high (> 89%) and 44-66% of the original lignin could be converted into non......-toxic carboxylic acids mainly (2.2-4.5 % on DS basis). Simultaneous saccharification and fermentation (SSF) of the treated waste at 10% DS by Saccharomyces cerevisae yielded average ethanol concentrations of 16.5 to 22 g l(-1) for enzyme loadings of 5 and 25 FPU g(-1) DS, respectively. The cellulose to ethanol...

  19. The effect of long or chopped straw on pig behaviour.

    Science.gov (United States)

    Lahrmann, H P; Oxholm, L C; Steinmetz, H; Nielsen, M B F; D'Eath, R B

    2015-05-01

    In the EU, pigs must have permanent access to manipulable materials such as straw, rope, wood, etc. Long straw can fulfil this function, but can increase labour requirements for cleaning pens, and result in problems with blocked slatted floors and slurry systems. Chopped straw might be more practical, but what is the effect on pigs' behaviour of using chopped straw instead of long straw? Commercial pigs in 1/3 slatted, 2/3 solid pens of 15 pigs were provided with either 100 g/pig per day of long straw (20 pens) or of chopped straw (19 pens). Behavioural observations were made of three focal pigs per pen (one from each of small, medium and large weight tertiles) for one full day between 0600 and 2300 h at each of ~40 and ~80 kg. The time spent rooting/investigating overall (709 s/pig per hour at 40 kg to 533 s/pig per hour at 80 kg), or directed to the straw/solid floor (497 s/pig per hour at 40 kg to 343 s/pig per hour at 80 kg), was not affected by straw length but reduced with age. Time spent investigating other pigs (83 s/pig per hour at 40 kg), the slatted floor (57 s/pig per hour) or pen fixtures (21 s/pig per hour) was not affected by age or straw length. Aggressive behaviour was infrequent, but lasted about twice as long in pens with chopped straw (2.3 s/pig per hour at 40 kg) compared with pens with long straw (1.0 s/pig per hour at 40 kg, P=0.060). There were no significant effects of straw length on tail or ear lesions, but shoulders were significantly more likely to have minor scratches with chopped straw (P=0.031), which may reflect the higher levels of aggression. Smaller pigs showed more rooting/investigatory behaviour, and in particular directed towards the straw/solid floor and the slatted floor than their larger pen-mates. Females exhibited more straw and pen fixture-directed behaviour than males. There were no effects of pig size or sex on behaviour directed towards other pigs. In summary, pigs spent similar amounts of time interacting with straw

  20. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    Science.gov (United States)

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  1. Dust-Firing of Straw and Additives

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    In the present work, the ash chemistry and deposition behavior during straw dust-firing were studied by performing experiments in an entrained flow reactor. The effect of using spent bleaching earth (SBE) as an additive in straw combustion was also investigated by comparing with kaolinite. During...... dust-firing of straw, the large (>∼2.5 μm) fly ash particles generated were primarily molten or partially molten spherical particles rich in K, Si, and Ca, supplemented by Si-rich flake-shaped particles. The smaller fly ash particles (...

  2. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    Science.gov (United States)

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein digestibility (IVPD) were determined. The results indicated that the enzymatic hydrolysis of WPC 80 and sodium caseinate by Protamex improved the solubility and IVPD of their hydrolysates. WPC 80, sodium caseinate and their hydrolysates were high-quality proteins and had a surplus of essential amino acids compared with the FAO/WHO/UNU (1985) reference standard. The nutritive value of WPC 80 and its hydrolysates was superior to that of sodium caseinate and its hydrolysates as indicated by some nutritional parameters such as the amino acid composition, chemical score, EAA index and predicted BV. However, the E-PER was lower for the WPC hydrolysates as compared to unhydrolyzed WPC 80 but sodium caseinate and its hydrolysates did not differ significantly. The nutritional qualities of WPC 80, sodium caseinate and their hydrolysates were good and make them appropriate for food formulations or as nutritional supplements. PMID:16421963

  3. Development and performance of resistive seamless straw-tube gas chambers

    International Nuclear Information System (INIS)

    Takubo, Y.; Aoki, M.; Ishihara, A.; Ishii, J.; Kuno, Y.; Maeda, F.; Nakahara, K.; Nosaka, N.; Sakamoto, H.; Sato, A.; Terai, K.; Igarashi, Y.; Yokoi, T.

    2005-01-01

    A new straw-tube gas chamber which is made of seamless straw-tubes, instead of ordinary wound-type straw-tubes is developed. Seamless straw-tubes have various advantages over ordinary wound-type ones, in particular, in terms of mechanical strength and lesser wall thickness. Our seamless straw-tubes are fabricated to be resistive so that the hit positions along the straw axis can be read by cathode planes placed outside the straw-tube chambers, where the cathode strips run transverse to the straw axis. A beam test was carried out at KEK to study their performance. As a result of the beam test, the position resolution of the cathode strips of 220μm is achieved, and an anode position resolution of 112μm is also obtained

  4. Investigation on the structure of the hemicellulose obtained from the fiber of Sansevieria trifasciata leaves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, U.; Mukherjee, A.K.

    1981-01-01

    Hydrolysis of purified hemicellulose from extractive-free, delignified fiber of S. trifaciata leaves gave a product containing D-xylose and 4-O-methyl-D-glucuronic acid in molecular ratio 5:1. Hemicellulose consists of a polymer of (1 to 4)-linked D-xylopyranosyl residues having branches of D-xylopyranosyl and 4-O-methyl-alpha-D-glucopyranosyluronic acid groups on the O-2 atoms of the main chain.

  5. Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, Evangelos; Moukouli, Maria

    2011-01-01

    Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae F12 were used to ferment carbohydrates of wet exploded pre-treated wheat straw (PWS) directly to ethanol. Both microorganisms were first grown aerobically to produce cell mass and thereafter fermented PWS to ethanol under...... anaerobic conditions. During fermentation, soluble and insoluble carbohydrates were hydrolysed by the lignocellulolytic system of F. oxysporum. Mixed substrate fermentation using PWS and corn cobs (CC) in the ratio 1:2 was used to obtain an enzyme mixture with high cellulolytic and hemicellulolytic...... activities. Under these conditions, activities as high as 34300, 9100, 326, 24, 169, 27 and 254 U dm−3 of xylanase, endoglucanase, β-glucosidase, arabinofuranosidase, avicelase, feruloyl esterase and acetyl esterase, respectively, were obtained. The replacement of the enzyme production phase of F. oxysporum...

  6. Tracking with Straw Tubes in the PANDA Experiment

    Directory of Open Access Journals (Sweden)

    Bragadireanu M.

    2014-03-01

    Full Text Available The PANDA spectrometer will be built at the FAIR facility at Darmstadt (Germany to perform accurate tests of the strong interaction through ¯pp and ¯pA annihilation studies. The charged particle tracking at PANDA will be done using both solid state and gaseous detectors. Among the latter, two straw tube detector systems will be built [1]. The cylindrical, central straw tube tracker features a high spatial and momentum resolution for a wide range of particle momenta from about 8 GeV/c down to a few 100 MeV/c, together with particle identification in the momentum region below about 1 GeV/c by measuring the specific energy-loss. A new technique, based on self-supporting straw double layers with intrinsic wire tension developed for the COSY-TOF straw tracker [2], has been adopted for the PANDA trackers. The development of the readout electronics for the straw tubes is ongoing. Prototypes have been produced and used to instrument straw tube modules that have been tested with cosmic rays and proton beams. Design issues of the PANDA straw tubes, together with the results of the prototype tests are presented.

  7. Direct ethanol conversion of pretreated straw by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (National Technical Univ., Athens (GR). Dept. of Chemical Engineering)

    1991-01-01

    Factors affecting the direct conversion of alkali pretreated straw to ethanol by Fusarium oxysporum F3 were investigated and the alkali level used for pretreatment and the degree of delignification of straw were found to be the most important. A linear correlation between ethanol yield and both the degree of straw delignification and the alkali level was observed. At optimum delignified straw concentration (4% w/v), a maximum ethanol yield of 0.275 g ethanol g{sup -1} of straw was obtained corresponding to 67.8% of the theoretical yield. (author).

  8. Soil bacterial community shifts associated with sugarcane straw removal

    Science.gov (United States)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  9. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  10. Direct transformation of xylan-type hemicelluloses to furfural via SnCl₄ catalysts in aqueous and biphasic systems.

    Science.gov (United States)

    Wang, Wenju; Ren, Junli; Li, Huiling; Deng, Aojie; Sun, Runcang

    2015-05-01

    Direct catalytic transformation of xylan-type hemicelluloses to furfural in the aqueous system and the biphasic system were comparatively investigated under mild conditions. Screening of several promising chlorides for conversion of beech xylan in the aqueous system revealed the Lewis acid SnCl4 was the most effective catalyst. Comparing to the single aqueous system, the bio-based 2-methyltetrahydrofuran (2-MTHF)/H2O biphasic system was more conducive to the synthesis of furfural, in which the highest furfural yield of 78.1% was achieved by using SnCl4 as catalysts under the optimized reaction conditions (150°C, 120 min). Additionally, the influences of xylan-type hemicelluloses with different chemical and structural features from beech, corncob and bagasse on the furfural production were studied. It was found that furfural yield to some extent was determined by the xylose content in hemicelluloses and also had relationships with the molecular weight of hemicelluloses and the degree of crystallization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The radiolytic cracking decomposion of the plant cellulose materials and their chemcial properties

    International Nuclear Information System (INIS)

    Shou Hongxia

    1987-01-01

    Under the treatment with high energy radiation, plant cellulose materials undergo a series of changes in chemical and physical properties. This paper describes the chemical changes of water-soluble carbohydrate, easy-to-hydrolyse carbohydrate, hard-to-hydrolyse carbohydrate, amino acid and protein in rice straw after irradiation with 60 Co γ-ray. The content of water-soluble carbohydrate in rice straw can be increased significantly by such treatment. The combination treatment of irradiation and acid or alkali soaker can reduce the dose for the radiolytic cracking decomposition and produce a good effect

  12. Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

    2007-03-30

    The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

  13. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

    Science.gov (United States)

    Hasunuma, Tomohisa; Ismail, Ku Syahidah Ku; Nambu, Yumiko; Kondo, Akihiko

    2014-02-01

    Lignocellulosic biomass dedicated to bioethanol production usually contains pentoses and inhibitory compounds such as furfural that are not well tolerated by Saccharomyces cerevisiae. Thus, S. cerevisiae strains with the capability of utilizing both glucose and xylose in the presence of inhibitors such as furfural are very important in industrial ethanol production. Under the synergistic conditions of transaldolase (TAL) and alcohol dehydrogenase (ADH) overexpression, S. cerevisiae MT8-1X/TAL-ADH was able to produce 1.3-fold and 2.3-fold more ethanol in the presence of 70 mM furfural than a TAL-expressing strain and a control strain, respectively. We also tested the strains' ability by mimicking industrial ethanol production from hemicellulosic hydrolysate containing fermentation inhibitors, and ethanol production was further improved by 16% when using MT8-1X/TAL-ADH compared to the control strain. Transcript analysis further revealed that besides the pentose phosphate pathway genes TKL1 and TAL1, ADH7 was also upregulated in response to furfural stress, which resulted in higher ethanol production compared to the TAL-expressing strain. The improved capability of our modified strain was based on its capacity to more quickly reduce furfural in situ resulting in higher ethanol production. The co-expression of TAL/ADH genes is one crucial strategy to fully utilize undetoxified lignocellulosic hydrolysate, leading to cost-competitive ethanol production. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. 2nd international expert meeting straw power; 2. Internationale Fachtagung Strohenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    Within the 2nd Guelzow expert discussions at 29th to 30th March, 2012 in Berlin (Federal Republic of Germany), the following lectures were held: (1) Promotion of the utilisation of straw in Germany (A. Schuette); (2) The significance of straw in the heat and power generation in EU-27 member states in 2020 and in 2030 under consideration of the costs and sustainability criteria (C. Panoutsou); (3) State of he art of the energetic utilization of hay goods in Europe (D. Thraen); (4) Incineration technological characterisation of straw based on analysis data as well as measured data of large-scale installations (I. Obernberger); (5) Energetic utilization of hay goods in Germany (T. Hering); (6) Actual state of the art towards establishing the first German straw thermal power station (R. Knieper); (7) Straw thermal power plants at agricultural sow farms and poultry farms (H. Heilmann); (8) Country report power from straw in Denmark (A. Evald); (9) Country report power from straw in Poland (J. Antonowicz); (10) Country report power from straw in China (J. Zhang); (11) Energetic utilisation of straw in Czechia (D. Andert); (12) Mobile pelletization of straw (S. Auth); (13) Experiences with the straw thermal power plant from Vattenfall (N. Kirkegaard); (14) Available straw potentials in Germany (potential, straw provision costs) (C. Weiser); (15) Standardization of hay good and test fuels - Classification and development of product standards (M. Englisch); (16) Measures of reduction of emissions at hay good incinerators (V. Lenz); (17) Fermentation of straw - State of the art and perspectives (G. Reinhold); (18) Cellulosis - Ethanol from agricultural residues - Sustainable biofuels (A. Hartmair); (19) Syngas by fermentation of straw (N. Dahmen); (20) Construction using straw (D. Scharmer).

  15. Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis.

    Science.gov (United States)

    O'Sullivan, Dara; Nongonierma, Alice B; FitzGerald, Richard J

    2017-10-01

    Enzymatic hydrolysis of sodium caseinate (NaCas) may lead to the development of bitterness. Careful selection of hydrolysis conditions (i.e. enzyme preparation and duration) yielding different degrees of hydrolysis (DH) may aid in the development of low bitterness. Eighteen NaCas hydrolysates were generated with four enzyme preparations (Alcalase 2.4L, Prolyve 1000, FlavorPro Whey and pepsin) to different DH values. Hydrolysate bitterness score, assessed using a trained panel (ten assessors), generally increased at higher DH values for Alcalase, Prolyve and pepsin hydrolysates. However, all FlavorPro Whey hydrolysates (DH 0.38-10.62%) displayed low bitterness score values ( 0.05). Enzyme preparation and DH affect the bitterness of NaCas hydrolysates. The results are relevant for the generation of NaCas hydrolysates with reduced bitterness. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Protein and protein hydrolysates in sports nutrition.

    Science.gov (United States)

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  17. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...... rapidly and was more constrained in the briquetted straw compared to the unprocessed straw, potentially due to the smaller fiber size and less intracellular air of the briquetted straw. However, for the unprocessed and briquetted wheat straw there was no difference between the hygroscopic sorption...

  18. Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex

    Science.gov (United States)

    Shao, Dongkai; Yotprayoonsak, Peerapong; Saunajoki, Ville; Ahlskog, Markus; Virtanen, Jorma; Kangas, Veijo; Volodin, Alexander; Van Haesendonck, Chris; Burdanova, Maria; Mosley, Connor D. W.; Lloyd-Hughes, James

    2018-04-01

    We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.

  19. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  20. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures

    Science.gov (United States)

    Hemicelluloses are major components of plant biomass, but their fermentation in the rumens of cattle and other ruminants is poorly understood. We compared four species of the ruminally dominant genus Prevotella and the well-known hemicellulose utilizer, Butyrivibrio fibrisolvens, with respect to deg...

  1. Possibilities and evaluation of straw pretreatment

    DEFF Research Database (Denmark)

    Knudsen, Niels Ole; Jensen, Peter Arendt; Sander, Bo

    1998-01-01

    Biomass utilisation by cofiring of straw in a pulverised coal fire boiler is economically attractive compared to dedicated straw fired plants. However, the high content of potassium and chloride impedes utilisation of the fly ash, deactivates the de NOx catalysts in the flue gas cleaning system...

  2. Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter; Hansen, Hans Ove

    2013-01-01

    of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...

  3. Extração e caracterização de hemiceluloses de Pinus radiata e sua viabilidade para a produção de bioetanol Extraction and characterization of hemicelluloses from Pinus radiata and its feasibility for bioethanol production

    Directory of Open Access Journals (Sweden)

    Pablo Reyes

    2013-02-01

    neutral aqueous solutions of hemicelluloses from Pinus radiata wood chips and investigate their feasibility for bioethanol production. Hemicelluloses in P. radiata represented 26 g/100 g wood (o.d.w. and hexoses are responsible for approximately 64% of this amount. According to the different extraction conditions, approximately 50% of the hemicellulosic fraction was solubilized and recovered after precipitation with ethanol. The recovered hemicellulosic fractions were in the form of oligomers with weight-average molecular weigth (Mw varying from 4x10³ to 4x10(5 g/mol. Hemicellulosic oligomers were hydrolyzed with dilute sulfuric acid and the hydrolysates concentrated until approximately 70 g/L of hexoses and fermented by Saccharomyces cerevisiae yeast. Fermentation results showed that sugar obtained from acid and neutral extractions were fermented to ethanol with maximum yields of 63% and 54% (22 g/ L and 19 g/L, respectively. The conversion of wood hemicellulosic substrates to ethanol is feasible but the low ethanol yields obtained make the process not economically attractive and optimization of the process or alternatives uses for hemicelluloses should be evaluated.

  4. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    Science.gov (United States)

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Nutritional evaluation of treated canola straw for ruminants using in ...

    African Journals Online (AJOL)

    The results show that organic matter digestibility (OMD) and metabolizable energy (ME) for treated canola straw were significantly higher than that of untreated canola straw (control) (p<0.001). Gas productions at 24 h for untreated canola straw (control) and treated canola straw were 20.03 and 27.07 ml, respectively.

  6. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    The use of vegetable biomass as substrate for ethanol production could reduce the existing usage of fossil fuels, thereby minimizing negative environmental impacts. Due to mechanical harvesting of sugarcane, the amount of pointer and straw has increased in sugarcane fields, becoming inputs of great energy potential.

  7. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    Juliana

    2015-02-11

    Feb 11, 2015 ... The use of vegetable biomass as substrate for ethanol production could reduce the ... Fermentation was performed in a laboratory scale using the J10 and FT858 ... Key words: Hydrolysis of sugarcane straw and pointers, sugarcane juice, ..... Ethanol: An Overview about Composition, Pretreatment Methods,.

  8. Straw Combustion in a Grate Furnace

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    1998-01-01

    Fixed-bed combustion of straw has been conducted in a 15 cm diameter and 137 cm long cylindrical reactor. Air, which could be preheated, was introduced through the bottom plate. The straw was ignited at the top with a radiation heater. After ignition, when a self-sustaining reaction front...

  9. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet

  10. Production of Ethanol from Sugars and Lignocellulosic Biomass by Thermoanaerobacter J1 Isolated from a Hot Spring in Iceland

    Directory of Open Access Journals (Sweden)

    Jan Eric Jessen

    2012-01-01

    Full Text Available Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol and xylose (1.25 mol/mol. Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g−1 but the lowest on straw (0.8 mM·g−1. Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g−1 to 3.3 mM·g−1 using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g−1.

  11. Antibacterial activity of papain hydrolysed camel whey and its fractions

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Goda, Hanan A.; De Gobba, Cristian

    2016-01-01

    Camel whey (ON) was hydrolysed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial activity of the CW, camel whey hydrolysate (CWH) and the obtained SEC-fractions was assessed using the disc-diffusion method. The CWH exhibited significantly...

  12. Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses

    International Nuclear Information System (INIS)

    Norsyabilah, R.; Hanim, S.S.; Norsuhaila, M.H.; Noraishah, A.K.; Siti Kartina

    2013-01-01

    Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

  13. Sport Nutrition Drinks Based on Octopus Protein Hydrolysate

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2017-02-01

    Full Text Available AbstractSport nutrition drinks are well-known in escalating athlete’s performance and endurance. These product developed from whey protein hydrolysates and soybean protein hydrolysates have already been recognized, however expansion from marine product is comparatively rare. Octopus (Octopus cyanea widely acknowledged containing taurine and rich in amino acids is potential to be developed as ingredient for sport nutrition drink. The aims of this study were to create and characterize sport nutrition drinks based on marine peptides through Octopus protein hydrolyzate. Octopus protein hydrolysate has 77.78±2.69% degree of hydrolysis and 751.02±10.63 mg / 100g taurine. Sports nutrition drinks with the addition of 4% Octopus protein hydrolyzate was acceptable sensory panelists, and the serving size of 600 ml contained taurine 726.06±0.82 mg and detected 17 types of amino acids.

  14. Transformation of /sup 14/C labelled plant components in soil in relation to immobilization and remineralization of /sup 15/N fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Azam, F.; Haider, K.; Malik, K.A.

    1985-01-01

    Uniformly /sup 14/C labeled glucose, cellulose and wheat straw and specifically /sup 14/C labeled lignin component in corn stalks were aerobically incubated for 12 weeks in a chernozem soil along with /sup 15/N labeled ammonium sulfate. Glucose was most readily decomposed, followed in order by cellulose, wheat straw and corn stalk lignins labeled at methoxyl-, side chain 2- and ring-C. More than 50% of /sup 14/C applied as glucose, cellulose and wheat straw evolved as CO/sub 2/ during the first week. Lignin however, decomposed relatively slowly. A higher proportion of /sup 14/C was transformed into microbial biomass whereas lignins contributed a little to this fraction. After 12 weeks of incubation nearly 60% of the lignin /sup 14/C was found in humic compounds of which more than 70% was resistant to hydrolysis with 6N HCl. Maximum incorporation of /sup 15/N in humic compounds was observed in cellulose amended soil. However, in this case more than 80% of the /sup 15/N was in hydrolysable forms. Immobilization-remineralization of applied /sup 15/N was most rapid in glucose treated soil and a complete immobilization followed by remineralization was observed after 3 days. The process was much slow in soil treated with cellulose, wheat straw or corn stalks. More than 70% of the newly immobilized N was in hydrolysable forms mainly representing the microbial component. Serial hydrolysis of soil at different incubation intervals showed a greater proportion of 6N HCl hydrolysable /sup 14/C and /sup 15/N in fractions representing microbial material. /sup 14/C from lignin carbons was relatively more uniformly distributed in different fractions as compared to glucose, cellulose and wheat straw where a major portion of /sup 14/C was in easily hydrolysable fractions. 25 refs., 3 figs., 4 tabs.

  15. Sport Nutrition Drinks Based on Octopus Protein Hydrolysate

    OpenAIRE

    Bambang Riyanto; Wini Trilaksani; Rika Lestari

    2017-01-01

    AbstractSport nutrition drinks are well-known in escalating athlete’s performance and endurance. These product developed from whey protein hydrolysates and soybean protein hydrolysates have already been recognized, however expansion from marine product is comparatively rare. Octopus (Octopus cyanea) widely acknowledged containing taurine and rich in amino acids is potential to be developed as ingredient for sport nutrition drink. The aims of this study were to create and characterize sport nu...

  16. A novel micro-straw for cryopreservation of small number of human spermatozoon

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2017-01-01

    Full Text Available Cryopreservation of few spermatozoa is still a major challenge for male fertility preservation. This study reports use a new micro-straw (LSL straw for freezing few spermatozoa for intracytoplasmic sperm injection (ICSI. Semen samples from 22 fertile donors were collected, and each semen sample was diluted and mixed with cryoprotectant in a ratio of 1:1, and then frozen using three different straws such as LSL straw (50-100 μl, traditional 0.25 ml and 0.5 ml straws. For freezing, all straws were fumigated with liquid nitrogen, with temperature directly reducing to −130-−140°C. Sperm concentration, progressive motility, morphology, acrosome integrity, and DNA fragmentation index were evaluated before and after freezing. After freezing-thawing, LSL straw group had significantly higher percentage of sperm motility than traditional 0.25 ml and 0.5 ml straw groups (38.5% vs 27.4% and 25.6%, P 0.05. As LSL straws were thinner and hold very small volume, the freezing rate of LSL straw was obviously faster than 0.25 ml straw and 0.5 ml straws. In conclusion, LSL micro-straws may be useful to store few motile spermatozoa with good recovery of motility for patients undergoing ICSI treatment.

  17. Large-scale straw supplies to existing coal-fired power stations

    International Nuclear Information System (INIS)

    Gylling, M.; Parsby, M.; Thellesen, H.Z.; Keller, P.

    1992-08-01

    It is considered that large-scale supply of straw to power stations and decentral cogeneration plants could open up new economical systems and methods of organization of straw supply in Denmark. This thesis is elucidated and involved constraints are pointed out. The aim is to describe to what extent large-scale straw supply is interesting with regard to monetary savings and available resources. Analyses of models, systems and techniques described in a foregoing project are carried out. It is reckoned that the annual total amount of surplus straw in Denmark is 3.6 million tons. At present, use of straw which is not agricultural is limited to district heating plants with an annual consumption of 2-12 thousand tons. A prerequisite for a significant increase in the use of straw is an annual consumption by power and cogeneration plants of more than 100.000 tons. All aspects of straw management are examined in detail, also in relation to two actual Danish coal-fired plants. The reliability of straw supply is considered. It is concluded that very significant resources of straw are available in Denmark but there remain a number of constraints. Price competitiveness must be considered in relation to other fuels. It is suggested that the use of corn harvests, with whole stems attached (handled as large bales or in the same way as sliced straw alone) as fuel, would result in significant monetary savings in transport and storage especially. An equal status for whole-harvested corn with other forms of biomass fuels, with following changes in taxes and subsidies could possibly reduce constraints on large scale straw fuel supply. (AB) (13 refs.)

  18. Acid hydrolysis of hemicelluloses in beech sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Hojnos, J

    1977-01-01

    The hemicellulose of beechwood consists mainly of 4-O-methylglucuronoxylan, 92.4 to 94.4% of which is selectively hydrolyzed to D-xylose (1) by exposing moist beechwood sawdust to HCl (g) at 50/sup 0/ for 50 min. The prepn. of 1 in 85.6% yield from beechwood sawdust can also be carried out by heating it at 140/sup 0/ for 70 to 100 min in 3 to 4.5% H/sub 2/SO/sub 3/ soln. Dry SO/sub 2/(g) does not hydrolyze beechwood sawdust.

  19. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, S.; Nair, L.M.; Kuhad, R.C. [Delhi Univ., New Delhi (India). Dept. of Microbiology, Lignocellulose Biotechnology Laboratory

    2008-04-15

    Lignocellulosic biomass is the most abundant energy resource in the world and is a potential source of carbon substrate for the production of ethanol via fermentation. However, the presence of lignin restricts access to holocellulose. It is necessary to break or remove the lignin in plant residues prior to their hydrolysis. Pretreatment is needed to liberate cellulose and hemicellulose from the lignins. This paper discussed a biological delignification method that avoided the use of toxic and corrosive chemicals. The in situ microbial delignification process used white rot fungi as a basidiomycetes for biological pretreatment. The study examined the capability of 4 basidiomycetes fungi, notably: (1) Phanerochaete chrysosporium; (2) Pycnoporus cinnabarinus; (3) fungal isolate RCK-1; and (4) fungal isolate RCK-3. The fungi were used to delignify wheat straw and improve hydrolysis procedures. Attempts were also made to ferment the acid hydrolysates from fungal-pretreated lignocellulosic materials. Results of the experiment showed that higher yields of ethanol were obtained using selective lignin-degrading fungi as a pretreatment method. 39 refs., 3 tabs., 4 figs.

  20. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  1. The hypolipidemic effect and antithrombotic activity of Mucuna pruriens protein hydrolysates.

    Science.gov (United States)

    Herrera Chalé, Francisco; Ruiz Ruiz, Jorge Carlos; Betancur Ancona, David; Acevedo Fernández, Juan José; Segura Campos, Maira Rubi

    2016-01-01

    Hydrolysates and peptide fractions (PF) obtained from M. pruriens protein concentrates with commercial and digestive enzymatic systems were studied for their hypolipidemic and antithrombotic activities. Hydrolysates obtained with Pepsin-Pancreatin (PP) and their peptide fractions inhibited cholesterol micellar solubility with a maximum value of 1.83% in PP. Wistar rats were used to evaluate the hypolipidemic effect of hydrolysates and PF. The higher reductions of cholesterol and triglyceride levels were exhibited by PP and both peptide fractions 10 kDa from both hydrolysates showed the maximum antithrombotic activity with values of 33.33% for PF > 10 kDa from AF and 31.72% for PF > 10 kDa from PP. The results suggest that M. pruriens bioactive peptides with the hypolipidemic effect and antithrombotic activity might be utilized as nutraceuticals.

  2. Cellulase Production from Spent Lignocellulose Hydrolysates by Recombinant Aspergillus niger▿

    Science.gov (United States)

    Alriksson, Björn; Rose, Shaunita H.; van Zyl, Willem H.; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    2009-01-01

    A recombinant Aspergillus niger strain expressing the Hypocrea jecorina endoglucanase Cel7B was grown on spent hydrolysates (stillage) from sugarcane bagasse and spruce wood. The spent hydrolysates served as excellent growth media for the Cel7B-producing strain, A. niger D15[egI], which displayed higher endoglucanase activities in the spent hydrolysates than in standard medium with a comparable monosaccharide content (e.g., 2,100 nkat/ml in spent bagasse hydrolysate compared to 480 nkat/ml in standard glucose-based medium). In addition, A. niger D15[egI] was also able to consume or convert other lignocellulose-derived compounds, such as acetic acid, furan aldehydes, and phenolic compounds, which are recognized as inhibitors of yeast during ethanolic fermentation. The results indicate that enzymes can be produced from the stillage stream as a high-value coproduct in second-generation bioethanol plants in a way that also facilitates recirculation of process water. PMID:19251882

  3. Comparison of Neuroprotective and Cognition-Enhancing Properties of Hydrolysates from Soybean, Walnut, and Peanut Protein

    Directory of Open Access Journals (Sweden)

    Wenzhi Li

    2016-01-01

    Full Text Available Hydrolysates were prepared from soybean, walnut, and peanut protein by papain, respectively. Their amino acid compositions and molecular weight distributions, the effects of various hydrolysates on H2O2-induced injury PC12 cells, and cognition of mice were investigated, respectively. Results showed that the three hydrolysates were dominated by the peptides with 1–3 KDa with large amount of neurotrophic amino acids. All the hydrolysates exhibited much stronger inhibitory activity against H2O2-induced toxicity than cerebrolysin, and soy protein hydrolysate showed the highest activity. Moreover, the hydrolysates also could reduce the rate of nonviable apoptotic cells at the concentration of 2 mg/mL. The test of animal’s cognition indicated that three hydrolysates could present partly better effect of improving recurred memory ability of normal mice and consolidated memory ability of anisodine-treated mice than piracetam. Therefore, soybean, walnut, and peanut protein hydrolysates were recommended as a potential food raw material for prevention or treatment of neurodegenerative disorders.

  4. Utilization of straw in district heating and CHP plants

    International Nuclear Information System (INIS)

    Nikolaisen, L.

    1993-01-01

    In Denmark 64 straw-fired district heating plants and 6 decentral CHP plants have been built since 1980 which are completely or partly straw-fired. The annual straw consumption in the district heating plants is 275,000 tons and in the decentral plants about 200,000 tons. The size of the district heating plants amounts to 0.5 MW - 10 MW and that of the CHP plants to 7 MW - 67 MW heat flow rate. Either whole bales or cut/scarified straw is used for firing. Hesston bales of about 450 kg control the market. The Centre of Biomass Technology is an activity supported 100 % by the Danish Energy Agency with the purpose of increasing the use of straw and wood in the energy supply (orig.)

  5. Emergy Evaluation of Different Straw Reuse Technologies in Northeast China

    Directory of Open Access Journals (Sweden)

    Xiaoxian Zhang

    2015-08-01

    Full Text Available Open burning of straw in China has degraded agricultural environments and has become a contributor to air pollution. Development of efficient straw-reuse technologies not only can yield economic benefits but also can protect the environment and can provide greater benefit to society. Thus, the overall benefits of straw-reuse technologies must be considered when making regional development planning and enterprise technology decisions. In addition, agricultural areas in China cross several climatic zones and have different weather characteristics and cultural conditions. In the present study, we assessed five types of straw-reuse technologies (straw-biogas production, -briquetting, -based power generation, -gasification, and -bioethanol production, using emergy analysis, in northeast China. Within each type, five individual cases were investigated, and the highest-performing cases were used for comparison across technologies. Emergy indices for comprehensive benefits for each category, namely, EYR, ELR, and ESI were calculated. Calculated indices suggest that straw-briquetting and -biogas production are the most beneficial technologies in terms of economy, environmental impact, and sustainability compared to straw-based power generation, -gasification, and -bioethanol production technologies. These two technologies can thus be considered the most suitable for straw reuse in China.

  6. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov.

    Science.gov (United States)

    Guamán-Burneo, Maria C; Dussán, Kelly J; Cadete, Raquel M; Cheab, Monaliza A M; Portero, Patricia; Carvajal-Barriga, Enrique J; da Silva, Sílvio S; Rosa, Carlos A

    2015-10-01

    This study evaluated D-xylose-assimilating yeasts that are associated with rotting wood from the Galápagos Archipelago, Ecuador, for xylitol production from hemicellulose hydrolysates. A total of 140 yeast strains were isolated. Yeasts related to the clades Yamadazyma, Kazachstania, Kurtzmaniella, Lodderomyces, Metschnikowia and Saturnispora were predominant. In culture assays using sugarcane bagasse hemicellulose hydrolysate, Candida tropicalis CLQCA-24SC-125 showed the highest xylitol production, yield and productivity (27.1 g L(-1) xylitol, Y p/s (xyl) = 0.67 g g(-1), Qp = 0.38 g L(-1). A new species of Cyberlindnera, strain CLQCA-24SC-025, was responsible for the second highest xylitol production (24 g L(-1), Y p/s (xyl) = 0.64 g g(-1), Qp = 0.33 g L(-1) h(-1)) on sugarcane hydrolysate. The new xylitol-producing species Cyberlindnera galapagoensis f.a., sp. nov., is proposed to accommodate the strain CLQCA-24SC-025(T) (=UFMG-CM-Y517(T); CBS 13997(T)). The MycoBank number is MB 812171.

  7. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12.

    Science.gov (United States)

    Juturu, Veeresh; Wu, Jin Chuan

    2018-03-01

    Thermophilic Bacillus coagulans JI12 was used to ferment hemicellulose hydrolysate obtained by acid hydrolysis of oil palm empty fruit bunch at 50 °C and pH 6, producing 105.4 g/L of l-lactic acid with a productivity of 9.3 g/L/H by fed-batch fermentation under unsterilized conditions. Simultaneous saccharification and fermentation (SSF) was performed at pH 5.5 and 50 °C to convert both hemicellulose hydrolysate and cellulose-lignin complex in the presence of Cellic Ctec2 cellulases using yeast extract (20 g/L) as the nitrogen source, giving 114.0 g/L of l-lactic acid with a productivity of 5.7 g/L/H. The SSF was also conducted by replacing yeast extract with equal amount of dry Bakers' yeast, achieving 120.0 g/L of l-lactic acid with a productivity of 4.3 g/L/H. To the best of our knowledge, these lactic acid titers and productivities are the highest ever reported from lignocellulose hydrolysates. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  8. An Uncoventional Approach for a Straw Tube-Microstrip Detector

    OpenAIRE

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.

    2004-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  9. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    Science.gov (United States)

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Radiation disinfection of rice-straw products

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Ishigaki, Isao; Ohki, Yumi.

    1991-01-01

    For the quarantine treatment of rice-straw products from foreign countries, irradiation effects of gamma-rays and electron beams on plant pathogenic microorganisms especially on fungi were investigated. The total aerobic bacteria in rice-straw was determined to be 3x10 7 - 3x10 8 per gram which consisted mainly of Pseudomonas, Flavobacterium, Arthrobacter and Erwinia. The principal bacteria in rice-straw could be eliminated with 5 kGy of gamma irradiation. Deinococcus proteolyticus and Pseudomonas radiora were the main survivors at 5 to 12 kGy of irradiation. Saprophytic fungus which belongs to Dimorphospora also survived up to 8 kGy of irradiation. The D 10 values of 26 strains of fungi isolated from rice-straw were 1.1 to 2.5 times higher in the dry condition compared to the values when irradiated in 0.067 M phosphate buffer solution. The induction dose in the dry condition also increased from 1.5 to 10 times than that in the wet condition. In the case of electron beam irradiation of fungi under dry conditions, D 10 values were about 1.3 times higher than that of gamma irradiation. From this study, the dose necessary to reduce the plant pathogenic fungi in rice-straw at a level below 10 -4 per gram was estimated to be as 7-8 kGy for gamma-irradiation and 10 kGy for electron beam irradiation. (author)

  11. Radiation disinfection of rice-straw products

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Ishigaki, Isao (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Ohki, Yumi

    1991-11-01

    For the quarantine treatment of rice-straw products from foreign countries, irradiation effects of gamma-rays and electron beams on plant pathogenic microorganisms especially on fungi were investigated. The total aerobic bacteria in rice-straw was determined to be 3x10{sup 7} - 3x10{sup 8} per gram which consisted mainly of Pseudomonas, Flavobacterium, Arthrobacter and Erwinia. The principal bacteria in rice-straw could be eliminated with 5 kGy of gamma irradiation. Deinococcus proteolyticus and Pseudomonas radiora were the main survivors at 5 to 12 kGy of irradiation. Saprophytic fungus which belongs to Dimorphospora also survived up to 8 kGy of irradiation. The D{sub 10} values of 26 strains of fungi isolated from rice-straw were 1.1 to 2.5 times higher in the dry condition compared to the values when irradiated in 0.067 M phosphate buffer solution. The induction dose in the dry condition also increased from 1.5 to 10 times than that in the wet condition. In the case of electron beam irradiation of fungi under dry conditions, D{sub 10} values were about 1.3 times higher than that of gamma irradiation. From this study, the dose necessary to reduce the plant pathogenic fungi in rice-straw at a level below 10{sup -4} per gram was estimated to be as 7-8 kGy for gamma-irradiation and 10 kGy for electron beam irradiation. (author).

  12. Residual biomass potential of commercial and pre-commercial sugarcane cultivars

    Directory of Open Access Journals (Sweden)

    Marcos Guimarães de Andrade Landell

    2013-10-01

    Full Text Available Sugarcane (Saccharum spp. is an efficient and sustainable alternative for energy generation compared to non-renewable sources. Currently, during the mechanized harvest process, the straw left in the field can be used in part for the second generation ethanol and increasing the electric energy production. Thus, this study aimed to provide information on the potential for residual biomass cultivars of sugarcane cropping system. This study provides the following information: yield of straw, depending on the calculated leaf area index and the number of tillers per linear meter; primary energy production of several sugarcane genotypes; contribution of dry tops and leaves; biomass yield; and evaluation of fiber, cellulose, hemicellulose and lignin. Preliminary results obtained by researchers of the State of São Paulo, Brazil, and reCviews related studies are presented. The results suggest that the production of sugarcane straw content varies according to the cultivars; the greater mass of sugarcane straw is in the top leaves and that the potential for the crude energy production of sugarcane per area unit can be increased using fiber-rich species or species that produce more straw. The straw indexes was shown to be a good indicator and allow the estimation of straw volumes generated in a sugarcane crop. The cellulose, hemicellulose and lignin composition in sugarcane is distinct among varieties. Therefore, it is possible to develop distinct biomass materials for energy production and for the development of sugarcane mills using biochemical processes and thermal routes.

  13. Economic benefit analysis of cultivating Pleurotus ostreatus with rape straw

    Science.gov (United States)

    Guan, Qinlan; Gong, Mingfu; Tang, Mei

    2018-04-01

    The cultivation of Pleurotus ostreatus with rape straw not only can save the cultivation cost of P. ostreatus, but also can reuse the resources and protect the environment. By adding different proportion of rape straw to the cultivation material of P. ostreatus, the reasonable amount of rape straw was selected and the economic benefit of P. ostreatus cultivated with the optimum amount of rape straw was analyzed. The results showed that adding 10% to 40% rape straw to the cultivation material of P. ostreatus did not affect the yield and biological conversion rate of P. ostreatus, and the ratio of production and investment of the amount of rape straw in the range of 10% to 50% was higher than of cottonseed husk alone as the main material of the formula.

  14. Short communication: Tryptic β-casein hydrolysate modulates enteric nervous system development in primary culture.

    Science.gov (United States)

    Cossais, F; Clawin-Rädecker, I; Lorenzen, P C; Klempt, M

    2017-05-01

    The intestinal tract of the newborn is particularly sensitive to gastrointestinal disorders, such as infantile diarrhea or necrotizing colitis. Perinatal development of the gut also encompasses the maturation of the enteric nervous system (ENS), a main regulator of intestinal motility and barrier functions. It was recently shown that ENS maturation can be enhanced by nutritional factors to improve intestinal maturation. Bioactivity of milk proteins is often latent, requiring the release of bioactive peptides from inactive native proteins. Several casein-derived hydrolysates presenting immunomodulatory properties have been described recently. Furthermore, accumulating data indicate that milk-derived hydrolysate can enhance gut maturation and enrichment of milk formula with such hydrolysates has recently been proposed. However, the capability of milk-derived bioactive hydrolysate to target ENS maturation has not been analyzed so far. We, therefore, investigated the potential of a recently described tryptic β-casein hydrolysate to modulate ENS growth parameters in an in vitro model of rat primary culture of ENS. Rat primary cultures of ENS were incubated with a bioactive tryptic β-casein hydrolysate and compared with untreated controls or to cultures treated with native β-casein or a Prolyve β-casein hydrolysate (Lyven, Colombelles, France). Differentiation of enteric neurons and enteric glial cells, and establishment of enteric neural network were analyzed using immunohistochemistry and quantitative PCR. Effect of tryptic β-casein hydrolysate on bone morphogenetic proteins (BMP)/Smad pathway, an essential regulator of ENS development, was further assessed using quantitative PCR and immunochemistry. Tryptic β-casein hydrolysate stimulated neurite outgrowth and simultaneously modulated the formation of enteric ganglia-like structures, whereas native β-casein or Prolyve β-casein hydrolysate did not. Additionally, treatment with tryptic bioactive

  15. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles...... and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  16. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    Science.gov (United States)

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors

    Directory of Open Access Journals (Sweden)

    Xiao-Shuang Shi

    2017-01-01

    Full Text Available Three semicontinuous continuous stirred-tank reactors (CSTR operating at mesophilic conditions (35°C were used to investigate the effect of hydraulic retention time (HRT on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs.

  18. Estimation and change tendency of rape straw resource in Leshan

    Science.gov (United States)

    Guan, Qinlan; Gong, Mingfu

    2018-04-01

    Rape straw in Leshan area are rape stalks, including stems, leaves and pods after removing rapeseed. Leshan area is one of the main rape planting areas in Sichuan Province and rape planting area is large. Each year will produce a lot of rape straw. Based on the analysis of the trend of rapeseed planting area and rapeseed yield from 2008 to 2014, the change trend of rape straw resources in Leshan from 2008 to 2014 was analyzed and the decision-making reference was provided for resource utilization of rape straw. The results showed that the amount of rape straw resources in Leshan was very large, which was more than 100,000 tons per year, which was increasing year by year. By 2014, the amount of rape straw resources in Leshan was close to 200,000 tons.

  19. Removal of phenol from aqueous solution using rice straw as adsorbent

    Science.gov (United States)

    Sarker, Nandita; Fakhruddin, A. N. M.

    2017-06-01

    Phenol is an environmental pollutant; the present study was conducted to examine the adsorption of phenol by rice straw. For this purpose raw (untreated), physically treated (boiled and dried) and thermally treated (heated at 230 °C for 3 h to produce ash) rice straw were selected to determine phenol removal efficiency at different contact times and adsorbent dosages for 1 and Percentage of removal of phenol increased as the adsorbent dose increase. The removal efficiency increase in the order of: raw rice straw ash) rice straw. Langmuir and Freundlich isotherm was developed for 1 and ash) treated rice straw. Freundlich isotherm best fit the equilibrium data for 1 mm thermally treated rice straw. The results showed that thermally treated rice straw (ash) can be developed as a potential adsorbent for phenol removal from aqueous solution.

  20. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues.

    Science.gov (United States)

    Al-Abdallah, Wahib; Dahman, Yaser

    2013-11-01

    The present study demonstrates the ability to produce green biocellulose nanofibers using the renewable resources of agriculture residues. Locally grown wheat straws (WS) were hydrolyzed under different conditions. Their hydrolysates were utilized to produce the nanofibers in separate hydrolysis fermentation process by Gluconacetobacter xylinus strain bacterium. Highest biocellulose production of ~10.6 g/L was achieved with samples that were enzymatically hydrolyzed. Moreover, acidic hydrolyzed WS produced up to 9.7 g/L, with total sugar concentrations in culture media of 43 g/L. Generally, enzymatic hydrolysis of WS resulted in more total sugar concentration than the acidic hydrolysis (i.e., 52.12 g/L), while water hydrolysis produced the least. This can be related to utilizing Xylanase in addition to Cellulase and Beta-glucosidase that helps to hydrolyse WS dry basis of cellulose and hemicelluloses. Sugar mixtures produced under all hydrolysis conditions were mainly composed of glucose and xylose with average percentages of 56 and 28 %, respectively. Acidic hydrolysis at higher acid concentration, as well as soaking WS in the acidic solution for longer time, improved the total sugar concentration in the culture media by 18 %. Conducting thermal treatment at more intense conditions of higher temperature or heating time improved the total sugar produced with acidic hydrolysis. These conditions, however, resulted in further production of furfural, which considerably affected bacterial cells proliferation. This resulted in lowest sugar consumption in the range of 62-64 % that affected final BC production.

  1. Effect of straw application on nitrogen uptake and growth of rice

    International Nuclear Information System (INIS)

    Haryanto; Idawati.

    1990-01-01

    A pot experiment has been conducted to know the effect of straw application on the efficiency of nitrogen uptake and growth rice plant. The rice straw was applied at different time i.e. 0, 1, 2, 3 and 4 weeks before tranplanting. Soil without rice straw was used as control. Thirty gram of rice straw having 3.61 percent of N-15 atom excess was incorporated into 6 kg of latosol soil originated from Pasar jumat, in which Atomoita I, a lowland rice variety, was planted. Urea was given once at the tranplanting time. The result showed that the longer the time of the rice straw application prior to the transplanting time, the higher the N-straw uptake efficiency in the rice plant at any different stages. The highest efficiency was 6.14 percent, reached with straw applicaions at 4 weeks before tranplanting. Compared to the control, straw applications 2 weeks or more before tranplanting resulted in higher grain production, while application at or before 2 weeks of tranplanting produced lower production. (authors). 9 refs.; 5 tabs

  2. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    Directory of Open Access Journals (Sweden)

    Octavian BASTON

    2012-12-01

    Full Text Available Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regarding lactic acid yields andproductivity. After 48 hours of chicory and Jerusalem artichhoke hydrolysates fermentation, from all the studied strains, Lb2 produced the highest lactic acid yield (0.97%. Lb2 produced after 48 hours of fermentation the lowest pH value of 3.45±0.01. Lb2 showed greater lactic acid productivity compared to the other studied lactic acid bacteria, the highest values, 0.13 g·L-1·h-1fromJerusalem artichoke hydrolysate and 0.11g·L-1·h-1 from chicory hydrolysate, being produced after 24 hours of fermentation.

  3. Ethanol production from marine algal hydrolysates using Escherichia coli KO11.

    Science.gov (United States)

    Kim, Nag-Jong; Li, Hui; Jung, Kwonsu; Chang, Ho Nam; Lee, Pyung Cheon

    2011-08-01

    Algae biomass is a potential raw material for the production of biofuels and other chemicals. In this study, biomass of the marine algae, Ulva lactuca, Gelidium amansii,Laminaria japonica, and Sargassum fulvellum, was treated with acid and commercially available hydrolytic enzymes. The hydrolysates contained glucose, mannose, galactose, and mannitol, among other sugars, at different ratios. The Laminaria japonica hydrolysate contained up to 30.5% mannitol and 6.98% glucose in the hydrolysate solids. Ethanogenic recombinant Escherichia coli KO11 was able to utilize both mannitol and glucose and produced 0.4g ethanol per g of carbohydrate when cultured in L. japonica hydrolysate supplemented with Luria-Bertani medium and hydrolytic enzymes. The strategy of acid hydrolysis followed by simultaneous enzyme treatment and inoculation with E. coli KO11 could be a viable strategy to produce ethanol from marine alga biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Design and performance of a straw tube drift chamber

    International Nuclear Information System (INIS)

    Oh, S.H.; Wesson, D.K.; Cooke, J.; Goshaw, A.T.; Robertson, W.J.; Walker, W.D.

    1991-01-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider. (orig.)

  5. Design and performance of a straw tube drift chamber

    Science.gov (United States)

    Oh, S. H.; Wesson, D. K.; Cooke, J.; Goshaw, A. T.; Robertson, W. J.; Walker, W. D.

    1991-06-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider.

  6. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates.

    Science.gov (United States)

    Shazly, Ahmed Behdal; He, Zhiyong; El-Aziz, Mahmoud Abd; Zeng, Maomao; Zhang, Shuang; Qin, Fang; Chen, Jie

    2017-10-01

    Buffalo and bovine caseins were hydrolysed by alcalase and trypsin to produce novel antioxidant peptides. The casein hydrolysates were purified using ultrafiltration (UF) and further characterized by RP-HPLC. The fractions produced higher antioxidant activities were identified for their peptides using LC MS/MS. All UF-VI (MWcasein (UF-VI with 54.84-fold purification) showed higher antioxidant activity than that obtained by trypsin. Trypsin hydrolysate contained high amount of hydrophobic amino acids while alcalase hydrolysate consisted mainly of Ser, Arg, Ala and Leu. The antioxidant peptides identified by LC MS/MS were RELEE, MEDNKQ and TVA, EQL in buffalo casein hydrolysates produced by trypsin and alcalase, respectively. Mechanism and reaction pathways of selected antioxidant peptides with ABTS were proposed. Conclusively, buffalo casein provided antioxidant peptides similar to bovine, suggesting that buffalo casein is a novel source of antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. (Hemi)cellulose degradation by microorganisms from the intestinal tract of arthropods

    NARCIS (Netherlands)

    Cazemier, Anne Engeline

    1999-01-01

    Photosynthesis yields up to 136 x 1015 g of dry plant material annually. Major components of this plant material are cellulose and hemicellulose. Under anaerobic conditions, these plant polymers may be converted to methane and carbon dioxide.The residence time for this anaerobic conversion can be a

  8. Experimental investigation of pyrolysis process of corn straw

    OpenAIRE

    Lei Wang; Shengqiang Shen; Shuhua Yang; Xinguang Shi

    2010-01-01

    The present paper was performed to analyze the pyrolysis process of corn straw. Based on the thermogravimetric analysis, the component of pyrolysis gas of corn straw was tested using the gas chromatograph analyzer. Experimental results showed that, as the reaction temperature increases, the component of H 2 and CH 4 increases, whereas the component of CO and CO 2 decreases. Finally, the mechanism of pyrolysis process of corn straw was revealed from the point of view of the molecular structure...

  9. Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber

    DEFF Research Database (Denmark)

    Terán Hilares, Ruly; de Souza, Rebeca Andrade; Marcelino, Paulo Franco

    2018-01-01

    condition (7.45 UA490nm). By using SCB hydrolysate-based medium, the highest red pigment production (18.71 AU490nm) was achieved under dark condition and the glucose and cellobiose present in the hydrolysate were metabolized. SCB enzymatic hydrolysate was demonstrated to be a promising carbon source...

  10. Debittering of Protein Hydrolysates by Lactobacillus LBL-4 Aminopeptidase

    Directory of Open Access Journals (Sweden)

    Bozhidar Tchorbanov

    2011-01-01

    Full Text Available Yoghurt strain Lactobacillus LBL-4 cultivated for 8–10 h at pH ~6.0 was investigated as a considerable food-grade source of intracellular aminopeptidase. Cell-free extract manifesting >200 AP U/l was obtained from cells harvested from 1 L culture media. Subtilisin-induced hydrolysates of casein, soybean isolate, and Scenedesmus cell protein with degree of hydrolysis 20–22% incubated at 45∘C for 10 h by 10 AP U/g peptides caused an enlarging of DH up to 40–42%, 46–48%, and 38–40% respectively. The DH increased rapidly during the first 4 h, but gel chromatography studies on BioGel P-2 showed significant changes occurred during 4–10 h of enzyme action when the DH increased gradually. After the digestion, the remained AP activity can be recovered by ultrafiltration (yield 40–50%. Scenedesmus protein hydrolysate with DH 20% was inoculated by Lactobacillus LBL-4 cells, and after 72 h cultivation the DH reached 32%. The protein hydrolysates (DH above 40% obtained from casein and soybean isolate (high Q value demonstrated a negligible bitterness while Scenedesmus protein hydrolysates (low Q value after both treatments were free of bitterness.

  11. Combined enzymatic hydrolysis and fermentation of hemicellulose to 2,3-butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Yu, E.K.C.; Deschatelets, L.; Saddler, J.N.

    1984-06-01

    Hemicellulose-rich fractions from several agricultural residues were converted to 2,3-butanediol by a combined enzymatic hydrolysis and fermentation process. Culture filtrates from Trichoderma harzianum E58 were used to hydrolyze the substrates while Klebsiella pneumoniae fermented the liberated sugars to 2,3-butanediol. Approximately 50-60% of a 5% (w/v) xylan preparation could be hydrolyzed and quantitatively converted to 2,3-butanediol using this procedure. Although enzymatic hydrolysis was optimal at pH 5.0 and 50/sup 0/C, the combined hydrolysis and fermentation was most efficient at pH 6.5 and 30/sup 0/C. Combined hydrolysis and fermentation resulted in butanediol levels that were 20-40% higher than could be obtained with a separate hydrolysis and fermentation process. The hemicellulose-rich water-soluble fractions obtained from a variety of steam-exploded agricultural residues could be readily used by the combined hydrolysis and fermentation approach resulting in butanediol yields of 0.4-0.5 g/g of reducing sugar utilized.

  12. The effect of gamma irradiation on crude fibre NDF, ADF, and ADL of some Syrian agricultural residues

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1992-07-01

    The effects of 150 KGy of gamma irradiation on crude fibre and its main components (cellulose, hemicellulose-cellulose and lignin) and on neutral detergent fibre (NDF), acid detergent lignin (ADL), and acid detergent fibre (ADF) were investigated. The results indicate that gamma irradiation decreased Cf content by 30%, 28%, 29%, and 17% for cottonwood, lentils straw, apple-tree pruning products and olive-oil cake, respectively. NDF values also decreased by 5%, 23%, 13% and 3% for, cottonwood, lentils straw, olive-oil cake and apple-tree pruning products respectively. Gamma irradiation (150 KGy) had no effects on ADF and ADL for lentils straw, apple-tree pruning products and olive-oil cake whereas, ADF decreased by 8.5% and ADL by 8.3 for cottonwood. Hemicellulose content increased by 12% for cottonwood while decreased by 54% for lentils straw and by 33% for apple-tree pruning products with no effects for olive-oil cake. Cellulose content decreased by 8.6% for cottonwood whereas no effects for the remaining residues were seen. Gamma irradiation treatment improved the nutritive value of the agriculture residues examined. The reduction in crude fibre content varies with the residue. (author). 15 refs., 5 tabs

  13. Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Dong, Jin-Jun; Han, Rui-Zhi; Xu, Guo-Chao; Gong, Lei; Xing, Wan-Ru; Ni, Ye

    2018-07-01

    The toxicity of furfural residues (FRs) hydrolysate is a major obstacle in its application. This work focused on the detoxification of FRs hydrolysate and its application in butanol fermentation. Combination of activated carbon and resin 717 was appropriate for the detoxification of hydrolysate. Mixed sterilization of FRs hydrolysate and corn steep liquor (CSL) was better than the separate ones, since proteins in CSL could adsorb and remove toxic components during sterilization. The results further confirmed that simultaneous sterilization of activated carbon + resin and fermentation medium was more efficient for detoxification and butanol production, in which 76.4% of phenolic compounds and 99.3% of Maillard reaction products were removed, 8.48 g/L butanol and 12.61 g/L total solvent were obtained. This study provides feasible and economic approaches for the detoxification of FRs hydrolysate and its application in butanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    Science.gov (United States)

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw oxides iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system.

    Science.gov (United States)

    Zhao, Jun; Ni, Tian; Xun, Weibing; Huang, Xiaolei; Huang, Qiwei; Ran, Wei; Shen, Biao; Zhang, Ruifu; Shen, Qirong

    2017-06-01

    To study the influence of straw incorporation with and without straw decomposer on bacterial community structure and biological traits, a 3-year field experiments, including four treatments: control without fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus 7500 kg ha -1 straw incorporation (NPKS), and chemical fertilizer plus 7500 kg ha -1 straw incorporation and 300 kg ha -1 straw decomposer (NPKSD), were performed in a rice-wheat cropping system in Changshu (CS) and Jintan (JT) city, respectively. Soil samples were taken right after wheat (June) and rice (October) harvest in both sites, respectively. The NPKS and NPKSD treatments consistently increased crop yields, cellulase activity, and bacterial abundance in both sampling times and sites. Moreover, the NPKS and NPKSD treatments altered soil bacterial community structure, particularly in the wheat harvest soils in both sites, separating from the CK and NPK treatments. In the rice harvest soils, both NPKS and NPKSD treatments had no considerable impacts on bacterial communities in CS, whereas the NPKSD treatment significantly shaped bacterial communities compared to the other treatments in JT. These practices also significantly shifted the bacterial composition of unique operational taxonomic units (OTUs) rather than shared OTUs. The relative abundances of copiotrophic bacteria (Proteobacteria, Betaproteobacteria, and Actinobacteria) were positively correlated with soil total N, available N, and available P. Taken together, these results indicate that application of straw incorporation with and without straw decomposer could particularly stimulate the copiotrophic bacteria, enhance the soil biological activity, and thus, contribute to the soil productivity and sustainability in agro-ecosystems.

  16. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.

    Science.gov (United States)

    Chen, Zhiwen; Hu, Thomas Q; Jang, Ho Fan; Grant, Edward

    2016-12-01

    The hemicellulose composition of a pulp significantly affects its chemical and physical properties and thus represents an important process control variable. However, complicated steps of sample preparation make standard methods for the carbohydrate analysis of pulp samples, such as high performance liquid chromatography (HPLC), expensive and time-consuming. In contrast, pulp analysis by attenuated total internal reflection Fourier transform infrared spectroscopy (ATR FT-IR) requires little sample preparation. Here we show that ATR FT-IR with discrete wavelet transform (DWT) and standard normal variate (SNV) spectral preprocessing offers a convenient means for the qualitative and quantitative analysis of hemicelluloses in bleached kraft pulp and alkaline treated kraft pulp. The pulp samples investigated include bleached softwood kraft pulps, bleached hardwood kraft pulps, and their mixtures, as obtained from Canadian industry mills or blended in a lab, and bleached kraft pulp samples treated with 0-6% NaOH solutions. In the principal component analysis (PCA) of these spectra, we find the potential both to differentiate all pulps on the basis of hemicellulose compositions and to distinguish bleached hardwood pulps by species. Partial least squares (PLS) multivariate analysis gives a 0.442 wt% root mean square errors of prediction (RMSEP) for the prediction of xylan content and 0.233 wt% RMSEP for the prediction of mannan content. These data all support the idea that ATR FT-IR has a great potential to rapidly and accurately predict the content of xylan and mannan for bleached kraft pulps (softwood, hardwood, and their mixtures) in industry. However, the prediction of xylan and mannan concentrations presented a difficulty for pulp samples with modified cellulose crystalline structure. © The Author(s) 2016.

  17. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption.

    Science.gov (United States)

    Jeong, So-Yeon; Trinh, Ly Thi Phi; Lee, Hong-Joo; Lee, Jae-Won

    2014-01-01

    A two-step detoxification process consisting of electrodialysis and adsorption was performed to improve the fermentability of oxalic acid hydrolysates. The constituents of the hydrolysate differed significantly between mixed hardwood and softwood. Acetic acid and furfural concentrations were high in the mixed hardwood, whereas 5-hydroxymethylfurfural (HMF) concentration was relatively low compared with that of the mixed softwood. The removal efficiency of acetic acid reached 100% by electrodialysis (ED) process in both hydrolysates, while those of furfural and HMF showed very low, due to non-ionizable properties. Most of the remaining inhibitors were removed by XAD-4 resin. In the mixed hardwood hydrolysate without removal of the inhibitors, ethanol fermentation was not completed. Meanwhile, both ED-treated hydrolysates successfully produced ethanol with 0.08 and 0.15 g/Lh ethanol productivity, respectively. The maximum ethanol productivity was attained after fermentation with 0.27 and 0.35 g/Lh of detoxified hydrolysates, which were treated by ED, followed by XAD-4 resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The possibility of using flue gases as a medium for straw drying

    Directory of Open Access Journals (Sweden)

    Goryl Wojciech

    2016-01-01

    Full Text Available The paper presents the possibility of drying straw in dedicated and innovative straw dryers with a modified drying system. The basic problem behind the use of bales of straw as a fuel is their moisture content. The moisture content is mostly dependent on the time of harvest and the conditions of storage. The humidity level of dry straw may be as low as 10%, however harvesting the straw during unfavourable weather conditions may cause the moisture level to increase up to 60–70% of the relative humidity, a value often observed for fresh biomass. Experimental studies were conducted to examine the effectiveness of drying and heat transfer in the straw bale. The studies have shown that the inner layers of the bale heat up much faster and achieve significantly higher temperatures than the outer ones. With the application of dedicated straw dryers, a homogenous field of moisture content in the straw bale is achieved in a very cost effective way.

  19. A Novel Approach for an Integrated Straw Tube-Microstrip Detector

    Science.gov (United States)

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Passamonti, L.; Pierluigi, D.; Pucci, C.; Russo, A.; Saviano, G.; Casali, F.; Bettuzzi, M.; Bianconi, D.; Baruffaldi, F.; Perilli, E.; Massa, F.

    2006-06-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell/spl reg/ lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported as well.

  20. Wheat-straw as roughage component in finishing diets of growing ...

    African Journals Online (AJOL)

    to use wheat-straw in diets, this study was conducted (i) to determine the degree whereto the inclusion of wheat-straw in finishing diets for lambs affected digestibility, N retention and animal performance, and (ii) to evaluate ammoniated wheat straw as roughage component in a balanced diet, containing. >60% concentrates ...

  1. Obtaining of Peracetic Cellulose from Oat Straw for Paper Manufacturing

    Directory of Open Access Journals (Sweden)

    Tetyana V. Zelenchuk

    2017-10-01

    Full Text Available Background. Development of technology for obtaining peracetic pulp from oat straw and its use in the production of one of the paper mass types. Objective. Determination of peracetic cooking technological parameters’ optimal values for oat straw peracetic cellulose quality indicators. Methods. The oat straw cooking was carried out with peracetic acid at 95 ± 1 °C from 90 to 180 min for hydromodulus 8:1 and 7:1, using a sodium tungstate catalyst. To determine the oat straw peracetic cellulose mechanical indexes, laboratory samples of paper weighing 70 g/m2 were made. Results. Technological parameters’ optimum values (temperature, cooking duration, hydromodulus, hydrogen peroxide and acetic acid concentration for the oat straw delignification process were established. It is shown that the sodium tungstate catalyst addition to the cooking solution at a rate of up to 1 % of the plant raw material weight helps to reduce the lignin content in cellulose to 15 %. A diagram of the cellulose yield dependence on its residual lignin content for various methods of non-wood plant material species delignification is constructed. The high efficiency of the peracetic method for obtaining cellulose from non-wood plant raw materials, in particular from oat straw, has been confirmed. It is determined that the obtained peracetic cellulose from oat straw has high mechanical indexes. Conclusions. Oat straw peracetic cellulose can be used for the production of paper and cardboard mass types, in particular wrapping paper.

  2. Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii

    Science.gov (United States)

    Spindler, Diane D.; Grohmann, Karel; Wyman, Charles E.

    1992-01-01

    A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.

  3. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    Science.gov (United States)

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  4. Antioxidant properties of Australian canola meal protein hydrolysates.

    Science.gov (United States)

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; He, Rong; Girgih, Abraham; Aluko, Rotimi E

    2014-03-01

    Antioxidant activities of canola protein hydrolysates (CPHs) and peptide fractions prepared using five proteases and ultrafiltration membranes (1, 3, 5, and 10kDa) were investigated. CPHs had similar and adequate quantities of essential amino acids. The effective concentration that scavenged 50% (EC50) of the ABTS(+) was greatest for the <1kDa pancreatin fraction at 10.1μg/ml. CPHs and peptide fractions scavenged DPPH(+) with most of the EC50 values being <1.0mg/ml. Scavenging of superoxide radical was generally weak, except for the <1kDa pepsin peptide fraction that had a value of 51%. All CPHs inhibited linoleic acid oxidation with greater efficiency observed for pepsin hydrolysates. The oxygen radical absorbance capacity of Alcalase, chymotrypsin and pepsin hydrolysates was found to be better than that of glutathione (GSH) (p<0.05). These results show that CPHs have the potential to be used as bioactive ingredients in the formulation of functional foods against oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Giuseppe eColla

    2014-09-01

    Full Text Available The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L. coleoptile elongation rate test (experiment 1, a rooting test on tomato cuttings (experiment 2; and two greenhouse experiments: a dwarf pea (Pisum sativum L. growth test (experiment 3, and a tomato (Solanum lycopersicum L. nitrogen uptake trial (experiment 4. Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the four concentrations tested (0.375, 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid (IAA treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21%, 35%, 24%, and 26%, respectively in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L significantly increased the shoot length of the giberellin (GA-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5%, 15% and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances.

  6. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11

    Energy Technology Data Exchange (ETDEWEB)

    Solden, Lindsey M.; Hoyt, David W.; Collins, William B.; Plank, Johanna E.; Daly, Rebecca A.; Hildebrand, Erik; Beavers, Timothy J.; Wolfe, Richard; Nicora, Carrie D.; Purvine, Sam O.; Carstensen, Michelle; Lipton, Mary S.; Spalinger, Donald E.; Firkins, Jeffrey L.; Wolfe, Barbara A.; Wrighton, Kelly C.

    2016-12-13

    Ruminants have co-evolved with their gastrointestinal microbial communities that aid in the digestion of plant materials, providing energy for the host. The ability of this microbiome to adapt to altered host diets may dramatically impact the survival of wild ruminant populations, especially under future climate change scenarios. To identify microorganisms capable of degrading climatedriven increases in woody biomass in arctic and boreal regions, we sampled rumen fluids from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. Our findings show that the BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals, including humans. Metagenomic reconstruction yielded the first five BS11 genomes, phylogenetically resolving two genera within this taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for degrading hemicellulose sugars to short-chain fatty acids, metabolites vital for ruminant energy. Active hemicellulosic fermentation, as well as butyrate and acetate production, were validated by shotgun proteomics and rumen metabolite detection using NMR, illuminating the vital role BS11 play in carbon transformations within the rumen. These results demonstrate that woody biomass selects for BS11 members, providing arctic herbivores with metabolic redundancy to sustain energy generation in a changing vegetative environment.

  7. Utilization of straw for Bihudung production

    Energy Technology Data Exchange (ETDEWEB)

    Tietjen, C

    1955-01-01

    Surplus straw unwanted for farmyard-manure preparation is best utilized for the production of manure gas. In the German Bihugas process, anaerobic fermentation of wheat straw, alone or mixed with beet leaves, at 31/sup 0/ for 22 to 36 days produces about 15 cu m gas of 44 to 46% CO/sub 2/ content/100 kg material. The decomposition product supplies an organic manure of favorable C/N ratio, generally <20 : 1.

  8. Antioxidant activities of red tilapia (Oreochromis niloticus) protein hydrolysates as influenced by thermolysin and alcalase

    Science.gov (United States)

    Daud, Nur'Aliah; Babji, Abdul Salam; Yusop, Salma Mohamad

    2013-11-01

    The hydrolysis process was performed on fish meat from Red Tilapia (Oreochromis niloticus) by enzymes thermolysin and alcalase under optimum conditions. The hydrolysis was performed from 0 - 4 hours at 37°C. Hydrolysates after 2 hours incubation with thermolysin and alcalase had degree of hydrolysis of 76.29 % and 63.49 %, respectively. The freeze dried protein hydrolysate was tested for peptide content and characterized with respect to amino acid composition. The result of increased peptide content in Red Tilapia (O. Niloticus) hydrolysates obtained was directly proportional to the increase activities of different proteolytic enzymes. The result of amino acid composition showed that the sample used contained abundant Gly, Ala, Asp, Glu, Lys and Leu in residues or peptide sequences. Both enzymatic hydrolysates were tested for anti-oxidant activity with DPPH and ABTS assay. Alcalase yielded higher anti-oxidative activity than Thermolysin hydrolysates after 1 hour incubation, but both enzymes hydrolysates showed a significant decrease of anti-oxidant activity after 2 hours of incubation. Hydrolysates from Red Tilapia may contribute as a health promoting ingredient in functional foods to reduce oxidation stress caused by accumulated free radicals.

  9. Agro-industrial residues in biotechnological production of xylitol/ Resíduos agroindustriais para produção biotecnológica de xilitol

    Directory of Open Access Journals (Sweden)

    Maria Celia de Oliveira Hauly

    2004-05-01

    Full Text Available Lignocellulosic residues, such as sugarcane bagasse, rice and oat straw and forest cuttings, are abundant and inexpensive sources of carbohydrates (cellulose and hemicellulose with potential application in several conversion processes. Xylose, the predominant sugar in the hemicellulose fraction can be converted to xylitol. Xylitol is a polyol with some interesting properties that can make it an important product for the food and pharmaceutical industry. It is a compound with sweetness similar to that sucrose, is non-cariogenic, tolerated by diabetics and recommended for obese people. This polyol is currently produced by chemical catalysis of the xylose from lignocellulosic residues. However, this process needs expensive purification steps to obtain pure xylitol. Alternatively, it can be produced by biotechnological methods, using microorganisms, specially yeasts. These processes consist of hemicellulosic hydrolysate fermentation from agro-industrial residues, wich could compete with the traditional chemical method. The present work aims the accomplishment of a review about xylitol detaching the structural aspects, ways of attainment and applications; main hemicellulosic substrates used in its production; acid hydrolysis and treatment of the hemicellulosic hydrolysate for use as substrate to produce xylitol by microbial way.Resíduos lignocelulósicos tais como bagaço de cana-de-açúcar, palha de arroz, casca de aveia e resíduos florestais representam fontes abundantes e não dispendiosas de carboidratos (celulose e hemicelulose com potencial aplicação em processos de conversão química ou microbiana em produtos de interesse comercial. Xilose, o açúcar predominante na fração hemicelulósica pode ser convertido em xilitol. O xilitol é um poliol com propriedades físico-química importantes para as indústrias alimentícia e farmacêutica. É um composto com doçura semelhante à da sacarose, anticariogênico, tolerado por diabéticos e

  10. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  11. A Novel Approach for an Integrated Straw tube-Microstrip Detector

    OpenAIRE

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.

    2005-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell $^{\\circledR}$ lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  12. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system

    International Nuclear Information System (INIS)

    Nishiguchi, H.; Evtoukhovitch, P.; Fujii, Y.; Hamada, E.; Mihara, S.; Moiseenko, A.; Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J.; Tsamalaidze, Z.; Tsverava, N.; Ueno, K.; Volkov, A.

    2017-01-01

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10 −16 , 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for this sensitivity places several stringent requirements on the detector development. The experiment requires to detect the monochromatic electron of 105 MeV, the momentum resolution is primarily limited by the multiple scattering effect for this momentum region. Thus we need the very light material detector in order to achieve an excellent momentum resolution, better than 2%, for 100 MeV region. In order to fulfil such a requirement, the thin-wall straw-tube planar tracker has been developed by an extremely light material which is operational in vacuum. The COMET straw tracker consists of 9.8 mm diameter straw tube, longer than 1 m length, with 20-μm-thick Mylar foil and 70-nm-thick aluminium deposition. Currently even thinner and smaller, 12 μm thick and 5 mm diameter, straw is under development by the ultrasonic welding technique.

  13. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system

    Energy Technology Data Exchange (ETDEWEB)

    Nishiguchi, H., E-mail: hajime.nishiguchi@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Evtoukhovitch, P. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Fujii, Y. [Institute of High Energy Physics (IHEP), 19B YuquanLu, Shijingshan district, Beijing 1000049 (China); Hamada, E.; Mihara, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Moiseenko, A. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J. [Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tsamalaidze, Z.; Tsverava, N. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Ueno, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Volkov, A. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation)

    2017-02-11

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10{sup −16}, 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for this sensitivity places several stringent requirements on the detector development. The experiment requires to detect the monochromatic electron of 105 MeV, the momentum resolution is primarily limited by the multiple scattering effect for this momentum region. Thus we need the very light material detector in order to achieve an excellent momentum resolution, better than 2%, for 100 MeV region. In order to fulfil such a requirement, the thin-wall straw-tube planar tracker has been developed by an extremely light material which is operational in vacuum. The COMET straw tracker consists of 9.8 mm diameter straw tube, longer than 1 m length, with 20-μm-thick Mylar foil and 70-nm-thick aluminium deposition. Currently even thinner and smaller, 12 μm thick and 5 mm diameter, straw is under development by the ultrasonic welding technique.

  14. Bioethanol Production from Sugarcane Bagasse by a Novel Brazilian Pentose Fermenting Yeast Scheffersomyces shehatae UFMG-HM 52.2: Evaluation of Fermentation Medium

    Directory of Open Access Journals (Sweden)

    F. A. F. Antunes

    2014-01-01

    Full Text Available Bioconversion of hemicellulosic sugars into second generation (2G ethanol plays a pivotal role in the overall success of biorefineries. In this study, ethanol production performance of a novel xylose-fermenting yeast, Scheffersomyces shehatae UFMG-HM 52.2, was evaluated under batch fermentation conditions using sugarcane bagasse (SB hemicellulosic hydrolysate as carbon source. Dilute acid hydrolysis of SB was performed to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH. It was concentrated, detoxified, and supplemented with nutrients in different formulations to prepare the fermentation medium to the yeast evaluation performance. S. shehatae UFMG-HM 52.2 (isolated from Brazilian Atlantic rain forest ecosystem was used in fermentations carried out in Erlenmeyer flasks maintained in a rotator shaker at 30°C and 200 rpm for 72 h. The use of a fermentation medium composed of SBHH supplemented with 5 g/L ammonium sulfate, 3 g/L yeast extract, and 3 g/L malt extract resulted in 0.38 g/g of ethanol yield and 0.19 g L.h of volumetric productivity after 48 h of incubation time.

  15. Life cycle assessment of rice straw-based power generation in Malaysia

    International Nuclear Information System (INIS)

    Shafie, S.M.; Masjuki, H.H.; Mahlia, T.M.I.

    2014-01-01

    This paper presents an application of LCA (Life Cycle Assessment) with a view to analyzing the environment aspects of rice straw-based power generation in Malaysia. It also compares rice straw-based power generation with that of coal and natural gas. GHG (Greenhouse gas) emission savings were calculated. It finds that rice straw power generation can save GHG (greenhouse gas) emissions of about 1.79 kg CO 2 -eq/kWh compared to coal-based and 1.05 kg CO 2 -eq/kWh with natural gas based power generation. While the development of rice straw-based power generation in Malaysia is still in its early stage, these paddy residues offer a large potential to generate electricity because of their availability. Rice straw power plants not only could solve the problem of removing rice straw from fields without open burning, but also could reduce GHG emissions that contribute to climate change, acidification, and eutrophication, among other environmental problems. - Highlights: • Overall rice straw preparations contribute 224.48 g CO 2 -eq/kg rice straw. • The most constraints due to GHG (greenhouse gas) emission is from transportation. • Distance collection centre to plant less than 110 km to obtains minimum emissions. • Rice straw can save GHG emissions 1.79 kg CO 2 -eq/kWh compared to coal power. • GHG saving 1.05 kg CO 2 -eq/kWh compared to natural gas based power generation

  16. System analyse cellulose ethanol in combines - Combustion characterisation of lignin from cellulose based ethanol production; Systemanalys foer cellulosabaserad etanol i kombinat - Foerbraenningskarakterisering av lignin fraan cellulosabaserad etanolproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Lindstedt, Jan; Wingren, Anders; Magnusson, Staffan; Wiinikka, Henrik; Westbom, Urban; Lidman, Marcus; Groenberg, Carola

    2012-02-15

    In this work 3 different hydrolysed lignin fractions produced from Sugarcane Bagasse, Spruce and Wheat Straw were burned in a 150 kW horizontal furnace equipped with a powder burner to assess the combustion behaviour of hydrolysed lignin fuels. The combustion experiments showed that the feeding properties of all three lignin fractions were better compared to ordinary wood powder

  17. Analysis of energetic exploitation of straw in Vojvodina

    International Nuclear Information System (INIS)

    Dodic, Sinisa N.; Dodic, Jelena M.; Popov, Stevan D.; Zekic, Vladislav N.; Rodic, Vesna O.; Tica, Nedeljko Lj.

    2011-01-01

    The Autonomous Province of Vojvodina is an autonomous province in the Republic of Serbia. It is located in the northern part of the country, in the Pannonia plain. Vojvodina is an energy-deficient province. The average yearly quantity of the cellulose wastes in Vojvodina amounts to about 9 millions tons barely in the agriculture, and the same potential on the level of Serbia estimates to almost 13 million tons. This study gives the analysis of energetic exploitation of straws from stubble cereals processed in different forms. Costs for the equipment that uses biomass in the EU are approximately two times higher with respect to those for the equipment for combustion of natural gas or of fuel oil. Costs of investments for combustion of biomass in Vojvodina if compared with the cited data are approximately for 40-50% lower. The difference of the investment costs for the construction of such units is because units for straw combustion designed and constructed in our country, have neither the complicated devices for manipulation of fuels, nor the devices for the waste gasses processing. The definite conclusions about the economic justification of the energetic exploitation of stubble straws can be obtained only by comparison of costs of the so obtained energy, with the costs of energy obtained through the combustion of classical fuels. Previous comparisons were the most often based on the comparisons of value of prices of the equivalent straw quantity with the process of fuel oil of other classical fuels. Such the comparisons leaded to the very positive evaluations of the economical effects of straws, without taking into account the realizability of the named method. Namely, comparisons of straw and fuel oil hardly could lead to the conclusion that these two fuels are mutually substitutable. According to its physical properties, straw is most similar to firewood, but the preciousness and lacking of this the very resource excludes it from the comparative analysis, so

  18. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    OpenAIRE

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-...

  19. Additives on in vitro ruminal fermentation characteristics of rice straw

    Directory of Open Access Journals (Sweden)

    Vanessa Peripolli

    Full Text Available ABSTRACT The objective of this study was to evaluate the effects of mineral and protein-energy (MPES, exogenous fibrolytic enzyme supplements (ES, combination of MPES + ES, and straw without supplement (WS on digestibility, fermentation kinetic parameters, cumulative gas production, methane, CO2 production, and volatile fatty acid concentration of rice straw of low and high nutritional value, estimated by in vitro techniques. The experimental design was randomized and factorial 2 × 4: two straws (low and high nutritional value incubated with four supplements (MPES, ES, MPES + ES, and WS and their interactions. Four experimental periods were used, totaling four replications per treatment over time. Data were analyzed by PROC MIXED of SAS. The in vitro dry matter and organic matter digestibilities of the rice straw with high nutritional value was improved by MPES, while the combination of MPES + ES supplements inhibited the digestibility of this straw. Dietary carbohydrate and nitrogen increased through MPES and MPES + ES supplements resulted in an increase in NH3-N concentration and a decrease in CO2 production due to the microbial mass formation. However, this increase was not enough to improve organic matter degradability parameters, cummulative gas production, gas production kinetics, and acetate:propionate ratio and reduce methane emissions. The straw with high nutritional value showed greater content of nitrogen fraction a, effective degradability, cummulative gas production, and methane and CO2 productions comparing with low-nutritional value straw. The use of MPES and MPES + ES supplements can be used as strategy to mitigate CO2 in ruminant production systems that use rice straw.

  20. Comparison of sodium carbonate-oxygen and sodium hydroxide-oxygen pretreatments on the chemical composition and enzymatic saccharification of wheat straw.

    Science.gov (United States)

    Geng, Wenhui; Huang, Ting; Jin, Yongcan; Song, Junlong; Chang, Hou-Min; Jameel, Hasan

    2014-06-01

    Pretreatment of wheat straw with a combination of sodium carbonate (Na2CO3) or sodium hydroxide (NaOH) with oxygen (O2) 0.5MPa was evaluated for its delignification ability at relatively low temperature 110°C and for its effect on enzymatic hydrolysis efficiency. In the pretreatment, the increase of alkali charge (as Na2O) up to 12% for Na2CO3 and 6% for NaOH, respectively, resulted in enhancement of lignin removal, but did not significantly degrade cellulose and hemicellulose. When the pretreated solid was hydrolyzed with a mixture of cellulases and hemicellulases, the sugar yield increased rapidly with the lignin removal during the pretreatment. A total sugar yield based on dry matter of raw material, 63.8% for Na2CO3-O2 and 71.9% for NaOH-O2 was achieved under a cellulase loading of 20FPU/g-cellulose. The delignification efficiency and total sugar yield from enzymatic hydrolysis were comparable to the previously reported results at much higher temperature without oxygen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects.

    Science.gov (United States)

    Claessens, M; Calame, W; Siemensma, A D; van Baak, M A; Saris, W H M

    2009-01-01

    To study the effect of four protein hydrolysates from vegetable (pea, gluten, rice and soy) and two protein hydrolysates from animal origin (whey and egg) on glucagon and insulin responses. Eight healthy normal-weight male subjects participated in this study. The study employed a repeated-measures design with Latin square randomization and single-blind trials. Protein hydrolysates used in this study (pea, rice, soy, gluten, whey and egg protein hydrolysate) consisted of 0.2 g hydrolysate per kg body weight (bw) and 0.2 g maltodextrin per kg bw and were compared to maltodextrin alone. Postprandial plasma glucose, glucagon, insulin and amino acids were determined over 2 h. All protein hydrolysates induced an enhanced insulin secretion compared to maltodextrin alone and a correspondingly low plasma glucose response. A significant difference was observed in area under the curve (AUC) for plasma glucagon between protein hydrolysates and the maltodextrin control drink (Pprotein hydrolysate induced the lowest glucagon response. High amino-acid-induced glucagon response does not necessarily go together with low insulin response. Protein hydrolysate source affects AUC for glucagon more profoundly than for insulin, although the protein load used in this study seemed to be at lower level for significant physiological effects.

  2. Percutaneous removal of pulmonary artery emboli with hydrolyser catheter in pigs

    International Nuclear Information System (INIS)

    Lacoursiere, L.; Millward, S.; Veinot, J.P.; Labinaz, M.

    2001-01-01

    To evaluate the efficacy and safety of the Hydrolyser catheter for per,cutaneous treatment of massive pulmonary embolism in pigs. Twelve pigs, each weighing between 55 kg and 89 kg, were used. Radio-opaque 9 cm x 0.8 cm and 4.5 cm x 0.8 cm clots, produced by mixing pig blood with iodinated contrast agent in vacutainers, were injected via the jugular vein until central pulmonary embolism (main and proximal lobar arteries) was obtained with significant systemic and pulmonary hemodynamic modifications. From a femoral approach, the 7-French Hydrolyser thrombectomy catheter was run over a 0.025-inch (0.64-mm) guide wire to remove the pulmonary emboli. Hemodynamic, gasometric and angiographic monitoring was performed before and after treatment. The procedure's safety and completeness of emboli removal was assessed by cardiopulmonary autopsy. Three of the 12 pigs died during embolization. Thrombectomy was therefore performed in 9, and central emboli could be obtained in 7 of the 9. The Hydrolyser could be manipulated only in central pulmonary arteries and could aspirate only central emboli in 5 of the 7 pigs that had them. Despite minimal angiographic improvement seen in these 5, there was no significant hemodynamic and gasometric improvement after treatment. The procedure induced an increase in free hemoglobin blood levels. Autopsies revealed an average of 2 endothelial injuries per pig (mainly adherent endocardial thrombi) in both nontreated (n = 3) and Hydrolyser-treated (n = 9) groups. The Hydrolyser thrombectomy catheter can be promptly positioned and easily steered in central pulmonary arteries. It can be used to partially remove central emboli, but not peripheral pulmonary emboli. Most of the injuries observed may not have been strictly related to Hydrolyser use. The pig might not be a suitable animal model for treatment of massive pulmonary embolism. (author)

  3. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).

    Science.gov (United States)

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    Red seaweed, Kappaphycus alvarezii, holds great promise for use in biofuel production due to its high carbohydrate content. In this study, we investigated the effect of fermentation inhibitors to the K. alvarezii hydrolysate on cell growth and ethanol fermentation. In addition, detoxification of fermentation inhibitors was performed to decrease the fermentation inhibitory effect. 5-Hydroxymethylfurfural and levulinic acid, which are liberated from acidic hydrolysis, was also observed in the hydrolysate of K. alvarezii. These compounds inhibited ethanol fermentation. In order to remove these inhibitors, activated charcoal and calcium hydroxide were introduced. The efficiency of activated charcoals was examined and over-liming was used to remove the inhibitors. Activated charcoal was found to be more effective than calcium hydroxide to remove the inhibitors. Detoxification by activated charcoal strongly improved the fermentability of dilute acid hydrolysate in the production of bioethanol from K. alvarezii with Saccharomyces cerevisiae. The optimal detoxifying conditions were found to be below an activated charcoal concentration of 5%.

  4. Bioactive L acidissima protein hydrolysates using Box-Behnken design.

    Science.gov (United States)

    Sonawane, Sachin K; Arya, Shalini S

    2017-07-01

    This study examines the extraction and hydrolysis of proteins using single factor and Box-Behnken Design (BBD). From single factor tests, optimised extraction parameters were 1% alkali concentration, 40 °C temperature, 60 min time, and 1:20 solid to alkali ratio. Under these conditions; 924.31 mg/g of total protein was obtained from Limonia acidissima (L acidissima). The maximum degree of hydrolysis was 39.82% at pH 2, enzyme to substrate ratio 2.5% (w/w), and hydrolysis time was 42.41 min using BBD design. L acidissima seed protein hydrolysate showed 32.94% DPPH and 88.18% of ABTS activity at concentration of 100 µg/ml and 1 mg/ml, respectively. Reducing power of 0.16 and metal chelating activity of 87.39% was obtained from 5 mg/ml protein hydrolysates. This implied that L acidissima seed protein hydrolysate could be utilised in protein rich product or as protein supplements.

  5. Assessment of effect of chemical treatment to carnauba's fibers straw; Avaliacao do efeito de tratamento quimico as fibras da palha de carnauba

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, T.M.P. de; Carvalho, L.F.M.; Oliveira, R.R. de; Sousa, F.M.S. de; Sousa, R.C. de; Marques, J.R., E-mail: thaismarjore.pc@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Piaui (IFPI), Teresina, PI (Brazil)

    2016-07-01

    The use of natural fibers in composite materials has been highlighted in the scientific field. However, its application in polymer matrices usually requires surface modifications. The objective of this work was to treat carnauba's straw fibers with NaOH 1 % and NaOH 5% solutions and measure the water absorption. We used the X-ray diffraction (XRD configuration “Bragg- Brentano) for verification of the crystalline phases and Fourier Transform Infrared Spectroscopy (FTIR) to identify functional groups. The alkali treatment allowed the solubilization of the hemicellulose and lignin without causing changes to cellulose, as indicated by FTIR spectrophotometry and by the increase in crystallinity content. The samples showed the typical peaks of constituents of the fiber. The natural fiber showed an average water absorption of 256 %; fiber treated with NaOH 1%, 315 %; and treated with NaOH 5%, 405 %. Therefore, it is evident improvement in hydrophilicity, fundamental aspect in the interaction fiber / matrix. (author)

  6. Synthesis of hemicellulose-acrylic acid graft copolymer super water absorbent resin by ultrasonic irradiation technology

    Directory of Open Access Journals (Sweden)

    Fangfang LIU

    2015-12-01

    Full Text Available The hemicellulose super water absorbent resin is prepared by using ultrasonic irradiation technology, with the waste liquid produced during the preparation of viscose fiber which contains a large amount of hemicellulose as raw material, acrylic acid as graft monomer, N,N’-methylene bis acrylamide (NMBA as cross linking agent, and (NH42S2O8-NaHSO3 as the redox initiation system. The synthesis conditions, structure and water absorption ability of resin are discussed. The results indicate that water absorbency of the resin is 311 g/g, the tap water absorbency is 102 g/g, the normal saline absorbency is 55 g/g, and the artificial urine absorbency is 31 g/g under the optimal synthesis conditions, so the resin has great water absorption rate and water retaining capacity. The FT-IR and SEM analysis shows that the resin with honeycomb network structure is prepared. The successfully synthesized of the resin means that the hemicellulose waste liquid can be highly effectively recycled, and it provides a kind of new raw material for the synthesis of super water absorbent resin.

  7. Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw.

    Science.gov (United States)

    Sampietro, Diego Alejandro; Vattuone, Marta Amelia; Isla, María Ines

    2006-07-01

    Several compounds related with plant defense and pharmacological activities have been isolated from sugarcane. Straw phytotoxins and their possible mechanisms of growth inhibition are largely unknown. A bioassay-guided fractionation of the phytotoxic constituents leachated from a sugarcane straw led to the isolation of trans-ferulic (trans-FA), cis-ferulic (cis-FA), vanillic (VA) and syringic (SA) acids. The straw leachates and their identified constituents significantly inhibited root growth of lettuce and four weeds. VA was more phytotoxic to root elongation than FA and SA. The identified phenolic compounds significantly increased leakage of root cell constituents, inhibited dehydrogenase activity and reduced chlorophyll content in lettuce. VA and FA inhibited mitotic index while SA increased cell division. Additive (VA-FA and FA-SA) and synergistic (VA-SA) interactions on root growth were observed at the response level of EC(25). Although the isolated compounds differed in their relative phytotoxic activities, the observed physiological responses suggest that they have a common mode of action. HPLC analysis indicated that sugarcane straw can potentially release 1.43 (ratio 2:1, trans:cis), 1.14 and 0.14mmolkg(-1) (straw dry weight) of FA, VA and SA, respectively. As phenolic acids are often found spatially concentrated in the top soil layers under plant straws, further studies are needed to establish the impact of these compounds in natural settings.

  8. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more...

  9. Commercialization Development of Crop Straw Gasification Technologies in China

    Directory of Open Access Journals (Sweden)

    Zhengfeng Zhang

    2014-12-01

    Full Text Available Crop straw gasification technologies are the most promising biomass gasification technologies and have great potential to be further developed in China. However, the commercialization development of gasification technology in China is slow. In this paper, the technical reliability and practicability of crop straw gasification technologies, the economic feasibility of gas supply stations, the economic feasibility of crop straw gasification equipment manufacture enterprises and the social acceptability of crop straw gasification technologies are analyzed. The results show that presently both the atmospheric oxidation gasification technology and the carbonization pyrolysis gasification technology in China are mature and practical, and can provide fuel gas for households. However, there are still a series of problems associated with these technologies that need to be solved for the commercialization development, such as the high tar and CO content of the fuel gas. The economic feasibility of the gas supply stations is different in China. Parts of gas supply stations are unprofitable due to high initial investment, the low fuel gas price and the small numbers of consumers. In addition, the commercialization development of crop straw gasification equipment manufacture enterprises is hindered for the low market demand for gasification equipment which is related to the fund support from the government. The acceptance of the crop straw gasification technologies from both the government and the farmers in China may be a driving force of further commercialization development of the gasification technologies. Then, the crop straw gasification technologies in China have reached at the stage of pre-commercialization. At this stage, the gasification technologies are basically mature and have met many requirements of commercialization, however, some incentives are needed to encourage their further development.

  10. Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg.

    Science.gov (United States)

    Chalamaiah, M; Hemalatha, R; Jyothirmayi, T; Diwan, Prakash V; Bhaskarachary, K; Vajreswari, A; Ramesh Kumar, R; Dinesh Kumar, B

    2015-02-01

    The aim of this study was to prepare protein hydrolysates from underutilized common carp (Cyprinus carpio) egg and to investigate their immunomodulatory effects in vivo. Common carp (Cyprinus carpio) egg (roe) was hydrolysed by pepsin, trypsin, and Alcalase. Chemical composition (proximate, amino acid, mineral and fatty acid compositions) and molecular mass distribution of the three hydrolysates were determined. The carp egg protein hydrolysates (CEPHs) were evaluated for their immunomodulatory effects in BALB/c mice. CEPHs (0.25, 0.5 and 1 g/kg body weight) were orally administered daily to female BALB/c mice (4-6 wk, 18-20 g) for a period of 45 d. After 45 d, mice were sacrificed and different tissues were collected for the immunologic investigations. The three hydrolysates contained high protein content (64%-73%) with all essential amino acids, and good proportion of ω-3 fatty acids, especially docosahexaenoic acid. Molecular mass analysis of hydrolysates confirmed the conversion of large-molecular-weight roe proteins into peptides of different sizes (5-90 kDa). The three hydrolysates significantly enhanced the proliferation of spleen lymphocytes. Pepsin hydrolysate (0.5 g/kg body weight) significantly increased the splenic natural killer cell cytotoxicity, mucosal immunity (secretory immunoglobulin A) in the gut and level of serum immunoglobulin A. Whereas Alcalase hydrolysate induced significant increases in the percentages of CD4+ and CD8+ cells in spleen. The results demonstrate that CEPHs are able to improve the immune system and further reveal that different CEPHs may exert differential influences on the immune function. These results indicate that CEPHs could be useful for several applications in the health food, pharmaceutical, and nutraceutical industries. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  12. Protein hydrolysates and recovery of muscle damage following eccentric exercise

    Directory of Open Access Journals (Sweden)

    Dale M.J.

    2015-01-01

    Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.

  13. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications.

    Science.gov (United States)

    Bouasker, Marwen; Belayachi, Naima; Hoxha, Dashnor; Al-Mukhtar, Muzahim

    2014-04-11

    The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw.

  14. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications

    Directory of Open Access Journals (Sweden)

    Marwen Bouasker

    2014-04-01

    Full Text Available The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw.

  15. Isolation and characterization of pulp from sugarcane bagasse and rice straw

    International Nuclear Information System (INIS)

    Saiful Azhari, S.; Suhardy, D.; Kasim, F.H; Nazry Saleh, M.

    2007-01-01

    The amount of sugarcane bagasse and rice straw in the state of Perlis (Malaysia) is abundant while its utilization is still limited. One of the alternatives for the bagasse and straw utilization is as pulp raw material. This paper reviews on pulp from sugarcane bagasse and rice straw and its suitability for paper production. In this study, the pulp was extracted by the Soxhlet extraction method. The objective of this study was to investigate the cellulose, lignin and silica content of the pulp from sugarcane bagasse and rice straw. For rice straw, the presence of large amount of pentosanes in the pulp and black liquors, which also contain silica were decreased the using of straw in the paper industry. Therefore, formic acid pulping and NaOH treatment are studied to reduce or prevent silica. The isolated pulp samples were further characterized by Scanning Electron Microscope (SEM) to investigate their fiber dimensions. (Author)

  16. Effect of increasing amounts of straw on pigs’ explorative behaviour

    DEFF Research Database (Denmark)

    Jensen, Margit Bak; Herskin, Mette S.; Forkman, Björn

    2015-01-01

    According to European legislation, pigs must have permanent access to sufficient quantity of materialto enable manipulation activities. However, few studies have quantified how much straw is needed tofulfil the requirements of growing pigs. We investigated the effect of increasing amount of straw...... on pigs’manipulation of the straw, and hypothesised that after a certain point increasing straw amount will nolonger increase oral manipulation further. From 30 to 80 kg live weight, pigs were housed in 90 groups of18 pigs in pens (5.48 m × 2.48 m) with partly slatted concrete floor and daily provided...... with the percentage ofpigs manipulating straw simultaneously. This was recorded in three 1-h intervals (1 h before and 1 h afterstraw allocation in the morning, as well as from 17 to 18 h in the afternoon). With increasing quantity ofstraw provided, we found a curvilinear (P increase in the time spent in oral...

  17. Coffee Stirrers and Drinking Straws as Disposable Spatulas

    Science.gov (United States)

    Turano, Morgan A.; Lobuono, Cinzia; Kirschenbaum, Louis J.

    2015-01-01

    Although metal spatulas are damaged through everyday use and become discolored and corroded by chemical exposure, plastic drinking straws are inexpensive, sterile, and disposable, reducing the risk of cross-contamination during laboratory procedures. Drinking straws are also useful because they come in a variety of sizes; narrow sample containers…

  18. Design and operation of large straw-tube drift chamber planes

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, C; Brown, D; Huston, J; Maul, A; Miller, R; Nyugen, A; Sorrell, L; Yosef, C [Physics and Astronomy Dept., Michigan State Univ., East Lansing, MI (United States); Mani, S [Physics Dept., Univ. of California, Davis, CA (United States); Choudhary, B C; Kapoor, V; Shivpuri, R [Dept. of Physics and Astrophysics, Delhi Univ. (India); Baker, W; DeSoi, W; Johnstone, C; Kourbanis, I; Lukens, P; Skow, D; Wu, G H [Fermilab, Batavia, IL (United States); Alverson, G; Chang, P; Dlugosz, W; Faissler, W; Garelick, D; Glaubman, M; Lirakis, C; Pothier, E; Yasuda, T [Dept. of Physics, Northeastern Univ., Boston, MA (United States); Gutierrez, P [Dept. of Physics and Astronomy, Univ. of Oklahoma, Norman, OK (United States); Hartman, K; Oh, B Y; Toothacker, W; Whitmore, J [Dept. of Physics, Pennsylvania State Univ., University Park, PA (United States); Blusk, S R; Chung, W H; Engels, E Jr; Shepard, P F; Weerasundara, D D.S. [Dept. of Physics and

    1991-10-01

    We describe the design, construction and operation of a straw-tube drift chamber consisting of four X and four Y planes of 16 mm diameter straw-tubes, each 280 cm long. Straws were glued together for rigidity and were mounted into a frame which served as a gas manifold and maintained wire-to-wire precision. A novel conductive gasket was used to seal the tubes and provide electrical contact to the aluminized surface of the straws. The chamber has been successfully used in a high rate experiment (E706 at Fermilab) and has achieved its design resolution of better than 250 {mu}m per tube averaged over the whole chamber. (orig.).

  19. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    Science.gov (United States)

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  20. Potential alternatives of heat and power technology application using rice straw in Thailand

    International Nuclear Information System (INIS)

    Suramaythangkoor, Tritib; Gheewala, Shabbir H.

    2010-01-01

    Rice straw could be used for heat and power with the current technologies available in Thailand. The cost of rice straw for power generation at 0.38-0.61 Baht/MJ e (at rice straw price 930-1500 Baht/t) is not competitive with coal at 0.30 Baht/MJ e but comparable with other biomass at 0.35-0.53 Baht/MJ e . However, utilization of rice straw in industrial boilers is a more competitive and flexible option with two alternatives; (1) installing rice straw fired boilers instead of heavy oil fired or natural gas ones when selecting new boilers; and (2) fuel switching from coal to rice straw for existing boilers with cost saving of feedstock supply by 0.01 Baht/MJ h . Based on its properties (Slagging index, R s = 0.04; fouling index, R f 0.24), rice straw is not expected to have significant operating problems or different emissions compared with wheat straw and rice husk under similar operating conditions. (author)

  1. Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.; Peiris, P. [University of Western Sydney, Penrith (Australia). School of Science, Food and Horticulture; Young-Jae Jeon; Svenson, C.; Rogers, P. [University of New South Wales, Sydney (Australia). School of Biotechnology and Biomolecular Sciences; Pearce, J. [Manildra Group, Bomaderry (Australia)

    2005-07-01

    Stillage is the main residue from the starch-to-ethanol fermentation process.Carbohydrates (hemicellulose and cellulose) comprise approximately 50% (w/w)of the total components of stillage. Conversion of the hemicellulose and cellulose to fermentable sugars and then to ethanol has the potential to significantly increase the efficiency of the process. The hydrolysis of stillage to fermentable sugars was optimised using 2% (v/v) H{sub 2}SO{sub 4} at 100{sup o}C for 5.5 h and produced 18 g/L xylose, 11.5 g/L arabinose and 6.5 g/L glucose from 120 g/L stillage. Further hydrolysis using enzymes increased the release of glucose by 61%. Furfural, acetate and lactate were the main inhibitors present in the acid hydrolysate of stillage. The lignin-derived inhibitors hydroxymethylfuraldehyde, hydroxybenzaldehyde, vanillin and syringaldehyde were not detected. Neutralisation of the hydrolysate with lime to pH 5 decreased the concentration of furfural by 50%. Fermentation of hydrolysate supplemented with glucose 10 g/L, by recombinant Zymomonas mobilis ZM4(pZB5), produced 11 g/L of ethanol after 70 h, with residual xylose 12 g/L. Supplementation of the hydrolysate with 5 g/L yeast extract and 40 g/L glucose produced 28 g/L ethanol with 2.6 g/L residual xylose after 18 h. Arabinose was not utilised by this particular recombinant strain. From the results, Z. mobilis ZM4(pZB5) may be a suitable candidate for the fermentation of both glucose and xylose in stillage acid hydrolysates. (author)

  2. Utilization of agricultural cellulose wastes

    Energy Technology Data Exchange (ETDEWEB)

    Valkanas, G N; Economidis, D G; Koukios, E G; Valkanas, C G

    1977-05-05

    Wastes, example, straw, are prehydrolyzed to convert pentosanes, starches, and hemicelluloses to monosaccharides; the remaining pulp is 50% cellulose. Thus, dry wheat straw 0.8 kg was treated with 10 L of 0.3% aqueous HCl at 5-5.5 atm and 145/sup 0/ and a space velocity of 0.55 L/min, washed with dry steam, followed by water at 120 to 130/sup 0/, and more dry steam, and compressed at 25 kg/cm/sup 2/ to yield a product containing 45 to 50 wt % water. The sugar solution obtained (1394 L) contained 1.34 wt % reducing sugars, a straw hydrolysis of 23 wt %, and comprised xylose 74.3, mannose 5.2, arabinose 11.8, glucose 5.9, galactose 2.9%, and furfural 0.16 g/L. The cellulose residue had a dry weight of 0.545 kg. a yield of 68.2 wt % and contained cellulose 53.1, hemicelluloses 12.6%, lignin 22.1, ash and extractables 12.2%. The degree of polymerization was 805 glucose units.

  3. Environmental performance of straw-based pulp making: A life cycle perspective.

    Science.gov (United States)

    Sun, Mingxing; Wang, Yutao; Shi, Lei

    2018-03-01

    Agricultural straw-based pulp making plays a vital role in pulp and paper industry, especially in forest deficient countries such as China. However, the environmental performance of straw-based pulp has scarcely been studied. A life cycle assessment on wheat straw-based pulp making in China was conducted to fill of the gaps in comprehensive environmental assessments of agricultural straw-based pulp making. On average, the global warming potential (GWP), GWP excluding biogenic carbon, acidification potential and eutrophication potential of wheat straw based pulp making are 2299kg CO 2 -eq, 4550kg CO 2 -eq, 16.43kg SO 2 -eq and 2.56kg Phosphate-eq respectively. The dominant factors contributing to environmental impacts are coal consumption, electricity consumption, and chemical (NaOH, ClO 2 ) input. Chemical input decrease and energy recovery increase reduce the total environmental impacts dramatically. Compared with wood-based and recycled pulp making, wheat straw-based pulp making has higher environmental impacts, which are mainly due to higher energy and chemical requirements. However, the environmental impacts of wheat straw-based pulp making are lower than hemp and flax based pulp making from previous studies. It is also noteworthy that biogenic carbon emission is significant in bio industries. If carbon sequestration is taken into account in pulp making industry, wheat straw-based pulp making is a net emitter rather than a net absorber of carbon dioxide. Since wheat straw-based pulp making provides an alternative for agricultural residue management, its evaluation framework should be expanded to further reveal its environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Performance of long straw tubes using dimethyl ether

    International Nuclear Information System (INIS)

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F.L.; Gianotti, P.; Giardoni, M.; Guaraldo, C.; Lanaro, A.; Lucherini, V.; Mecozzi, A.; Passamonti, L.; Russo, V.; Sarwar, S.

    1995-01-01

    A cylindrical tracking detector with an inner radius of one meter employing straw tubes is being envisaged for the FINUDA experiment aimed at hyper-nuclear physics at DAΦNE, the Frascati φ-factory. A prototype using several 10 mm and 20 mm diameter, two meter long aluminized mylar straws has been assembled and tested with a one GeV/c pion beam. While operating with dimethyl ether, gas gain, space resolution, and device systematics have been studied. A simple method of correction for systematics due to straw eccentricity has been developed and, once applied, a space resolution better than 40 μm can be reached. (orig.)

  5. The FINUDA straw tube detector

    CERN Document Server

    Zia, A; Bertani, M; Bianco, S; Fabbri, Franco Luigi; Gianotti, P; Giardoni, M; Lucherini, V; Mecozzi, A; Pace, E; Passamonti, L; Qaiser, N; Russo, V; Tomassini, S; Sarwar, S; Serdyouk, V

    2001-01-01

    An array of 2424 2.6- m-long, 15- mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled at National Laboratories of Frascati of INFN for the FINUDA experiment. The array covers a cylindrical tracking surface of 18 m sup 2 and provides coordinate measurement in the drift direction and along the wire with a resolution of the order of 100 and 300 mu m, respectively. The array has finished the commissioning phase and tests with cosmic rays are underway. The status straw tubes array and a very preliminary result from cosmic rays test are summarized in this work.

  6. The FINUDA straw tube detector

    International Nuclear Information System (INIS)

    Zia, A.; Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F.L.; Gianotti, P.; Giardoni, M.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaiser, N.; Russo, V.; Tomassini, S.; Sarwar, S.; Serdyouk, V.

    2001-01-01

    An array of 2424 2.6- m-long, 15- mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled at National Laboratories of Frascati of INFN for the FINUDA experiment. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire with a resolution of the order of 100 and 300 μm, respectively. The array has finished the commissioning phase and tests with cosmic rays are underway. The status straw tubes array and a very preliminary result from cosmic rays test are summarized in this work

  7. The FINUDA straw tube detector

    Science.gov (United States)

    Zia, A.; Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F. L.; Gianotti, P.; Giardoni, M.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaiser, N.; Russo, V.; Tomassini, S.; Sarwar, S.; Serdyouk, V.

    2001-04-01

    An array of 2424 2.6- m-long, 15- mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled at National Laboratories of Frascati of INFN for the FINUDA experiment. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire with a resolution of the order of 100 and 300 μm, respectively. The array has finished the commissioning phase and tests with cosmic rays are underway. The status straw tubes array and a very preliminary result from cosmic rays test are summarized in this work.

  8. TG-FTIR Study of the Influence of potassium Chloride on Wheat Straw Pyrolysis

    DEFF Research Database (Denmark)

    Jensen, Anker; Dam-Johansen, Kim; Wójtowicz, M.A.

    1998-01-01

    of products into char, tar and gas. In this work, a combination of thermogravimetry and evolved gas analysis by Fourier transform infrared analysis (TG-FTIR) has been applied to study the influence of potassium chloride (KCl) on wheat straw pyrolysis. Raw straw, washed straw and washed straw impregnated...

  9. Study on the Pretreating Approaches for the Potato Straws

    OpenAIRE

    An Yumin; Wang Jukui; Huang Ye; Xu Xiaomei

    2016-01-01

    This paper proposes an approach to pretreat the potato straws. Specifically, potato straws are handled using various kinds of chemical solutions, including HCI, H2SO4, NaOH and NaOH+H2O2, under different concentrations. For each kind of solution, particular indicators, such as the cellulose content as well as scarification ratio of the treated straws, are studied in the paper. Based on orthogonal experiments, the best pretreatment effect is obtained by using the solution of 4% NaOH under temp...

  10. Pork fat hydrolysed by Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Sørensen, B. B.; Stahnke, Louise Heller; Zeuthen, Peter

    1993-01-01

    Staphylococcus xylosus is used as a starter culture in the production of fermented sausages. Its ability to hydrolyse pork fat was investigated. Within 15 days of incubation an interaction of bacterial growth, lipase production and lipase activity in a pork fat containing medium caused liberation...

  11. Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions

    International Nuclear Information System (INIS)

    Jin, Qiang; Zhang, Hongman; Yan, Lishi; Qu, Liang; Huang, He

    2011-01-01

    The kinetic characterization of hemicellulose hydrolysis of corn stover was investigated using a new reactor of dilute acid cycle spray flow-through (DCF) pretreatment. The primary purpose was to obtain kinetic data for hemicellulose hydrolysis with sulfuric acid concentrations (10-30 kg m -3 ) at relatively low temperatures (90-100 o C). A simplified kinetic model was used to describe its performance at moderate conditions. The results indicate that the rates of xylose formation and degradation are sensitive to flow rate, temperature and acid concentration. Moreover, the kinetic data of hemicellulose hydrolysis fit a first-order reaction model and the experimental data with actual acid concentration after accounting for the neutralization effect of the substrates at different temperatures. Over 90% of the xylose monomer yield and below 5.5% of degradation product (furfural) yield were observed in this reactor. Kinetic constants for hemicellulose hydrolysis models were analyzed by an Arrhenius-type equation, and the activation energy of xylose formation were 111.6 kJ mol -1 , and 95.7 kJ mol -1 for xylose degradation, respectively. -- Highlights: → Investigating a novel pretreatment reactor of dilute acid cycle spray flow-through. → Xylose yield is sensitive to flow rate, temperature and acid concentration. → Obtaining relatively higher xylose monomer yield and lower fermentation inhibitor. → Lumping hemicellulose and xylan oligmers together in the model is a valid way. → The kinetic model as a guide for reactor design, and operation strategy optimization.

  12. Properties of Wheat-Straw Boards with Frw Based on Interface Treatment

    Science.gov (United States)

    Zhu, X. D.; Wang, F. H.; Liu, Y.

    This paper explored the effect of MDI, UF and FRW content on the mechanical and fire retardant property of straw based panels with surface alkali liquor processing. In order to manufacture the straw based panel with high quality, low toxic and fire retardant, the interface of wheat-straw was treated with alkaline liquid, and the orthogonal test was carried out to optimize the technical parameters. The conductivity and diffusion coefficient K of the straw material after alkaline liquid treatment increased obviously. This indicated that alkaline liquid treatment improved the surface wet ability of straw, which is helpful for the infiltration of resin. The results of orthogonal test showed that the optimized treating condition was alkaline liquid concentration as 0.4-0.8%, alkaline dosage as 1:2.5-1:4.5, alkalinetreated time as 12h-48 h.The physical and mechanical properties of wheat-straw boards after treated increased remarkably and it could satisfy the national standard. The improvement of the straw surface wet ability is helpful to the forming of chemical bond. Whereas the variance analysis of the fire retardant property of straw based panel showed that TTI, pkHRR and peak value appearance time were not affected by the MDI, UF and FRW content significantly. The results of orthogonal test showed that the optimized processing condition was MDI content as 3%, UF resin content as 6% and the FRW content as 10%.

  13. Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans.

    Science.gov (United States)

    Drummond, Elaine; Flynn, Sarah; Whelan, Helena; Nongonierma, Alice B; Holton, Thérèse A; Robinson, Aisling; Egan, Thelma; Cagney, Gerard; Shields, Denis C; Gibney, Eileen R; Newsholme, Philip; Gaudel, Celine; Jacquier, Jean-Christophe; Noronha, Nessa; FitzGerald, Richard J; Brennan, Lorraine

    2018-05-02

    Evidence exists to support the role of dairy derived proteins whey and casein in glycemic management. The objective of the present study was to use a cell screening method to identify a suitable casein hydrolysate and to examine its ability to impact glycemia related parameters in an animal model and in humans. Following screening for the ability to stimulate insulin secretion in pancreatic beta cells, a casein hydrolysate was selected and further studied in the ob/ob mouse model. An acute postprandial study was performed in 62 overweight and obese adults. Acute and long-term supplementation with the casein hydrolysate in in vivo studies in mice revealed a glucose lowering effect and a lipid reducing effect of the hydrolysate (43% reduction in overall liver fat). The postprandial human study revealed a significant increase in insulin secretion ( p = 0.04) concomitant with a reduction in glucose ( p = 0.03). The area under the curve for the change in glucose decreased from 181.84 ± 14.6 to 153.87 ± 13.02 ( p = 0.009). Overall, the data supports further work on the hydrolysate to develop into a functional food product.

  14. Generating a positive energy balance from using rice straw for anaerobic digestion

    Directory of Open Access Journals (Sweden)

    V.H. Nguyen

    2016-11-01

    The net energy of the rice straw supply chain for biogas generation through AD is 3,500 MJ per ton of straw. This rice straw management option can provide a 70% net output energy benefit. The research highlighted the potential of rice straw as a clean fuel source with a positive energy balance, helping to reduce greenhouse gas emissions compared with the existing practice of burning it in the field.

  15. The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells: an example of metabolic plasticity.

    Science.gov (United States)

    de Castro, María; Miller, Janice G; Acebes, José Luis; Encina, Antonio; García-Angulo, Penélope; Fry, Stephen C

    2015-04-01

    Cell-suspension cultures (Zea mays L., Black Mexican sweet corn) habituated to 2,6-dichlorobenzonitrile (DCB) survive with reduced cellulose owing to hemicellulose network modification. We aimed to define the hemicellulose metabolism modifications in DCB-habituated maize cells showing a mild reduction in cellulose at different stages in the culture cycle. Using pulse-chase radiolabeling, we fed habituated and non-habituated cultures with [(3)H]arabinose, and traced the distribution of (3)H-pentose residues between xylans, xyloglucans and other polymers in several cellular compartments for 5 h. Habituated cells were slower taking up exogenous [(3)H]arabinose. Tritium was incorporated into polysaccharide-bound arabinose and xylose residues, but habituated cells diverted a higher proportion of their new [(3)H]xylose residues into (hetero) xylans at the expense of xyloglucan synthesis. During logarithmic growth, habituated cells showed slower vesicular trafficking of polymers, especially xylans. Moreover, habituated cells showed a decrease in the strong wall-binding of all pentose-containing polysaccharides studied; correspondingly, especially in log-phase cultures, habituation increased the proportion of (3)H-hemicelluloses ([(3)H]xylans and [(3)H]xyloglucan) sloughed into the medium. These findings could be related to the cell walls' cellulose-deficiency, and consequent reduction in binding sites for hemicelluloses; the data could also reflect the habituated cells' reduced capacity to integrate arabinoxylans by extra-protoplasmic phenolic cross-linking, as well as xyloglucans, during wall assembly. © 2015 Institute of Botany, Chinese Academy of Sciences.

  16. Carbohydrate analysis of hemicelluloses by gas chromatography-mass spectrometry of acteylated methyl glycosides

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa; Plackett, David; Egsgaard, Helge

    2012-01-01

    A method based on gas chromatography–mass spectrometry analysis of acetylated methyl glycosides was developed in order to analyze monosaccharides obtained from various hemicelluloses. The derivatives of monosaccharide standards, arabinose, glucose, and xylose were studied in detail and 13C...

  17. Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates.

    Science.gov (United States)

    West, Thomas P

    2016-01-01

    The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.

  18. Numerical investigation of ash deposition in straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    in the design phase of straw-fired boilers. Some of the primary model outputs include improved heat transfer rate predictions and detailed information about local deposit formation rates. This information is essential when boiler availability and efficiency is to be estimated. A stand-alone program has been...... accumulation rates encountered during straw combustion in grate-fired boilers. The sub-models have been based on information about the combustion and deposition properties of straw gathered from the literature and combined into a single Computational Fluid Dynamics (CFD) based analysis tool which can aid...... transfer mechanisms have a pronounced influence on the combustion pattern. The combined set of sub-models has been evaluated using the straw-fired boiler at Masnedø CHP plant as a test case. The predicted grate combustion and KCl release patterns are in qualitative agreement with experimental findings...

  19. Composition of the enzymatic and acid hydrolyzates of gamma-irradiated rice straw

    International Nuclear Information System (INIS)

    Abad, L.V.; Banzon, R.B.; Rosa, A. de la

    1989-01-01

    Gamma irradiation was utilized to induce structural changes in rice straw that would enhance the conversion of its cellulose and ligno-cellulosic components to glucose and other reducing sugars. With the appropriate fermentation conditions these sugars can eventually be converted into alcohol. Rice straw materials were irradiated at varying doses (0-500 kgy) and hydrolyzed by the use of a) cellulose enzyme and b) 1% sulfuric acid. The composition of the hydrolyzates of rice straw was studied by thin layer chromatography (TLC) coupled with the Nelson-Somogyi test for its quantification. Acid hydrolyzates of rice straw showed a maximum increase of 16.46% in its total reducing sugars at 300 Kgy. TLC of the acid hydrolyzates of rice straw revealed the presence of glucose, xylose, arabinose, and cellobiose. However, it was only with xylose that a significant increase in yield was observed with the non-irradiated straw 12.55% xylose yield was noted while with rice straw-irradiated at 400 Kgy a maximum yield of 15.90% xylose was obtained. Total reducing sugar of the enzymatic hydrolyzate of rice straw showed a maximum increase of 205% at 500 Kgy. TLC revealed that only glucose was present in the enzymatic hydrolyzate. Glucose yield increase from 2.49% (0 Kgy) to 7.31% (500 Kgy). The results showed that radiation pre-treatment of rice straw induces significant increases in reducing sugar for both enzymatic and hydrolyzate. (Auth.). 2 tabs.; 1 fig

  20. Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

    OpenAIRE

    Waraporn Apiwatanapiwat; Pilanee Vaithanomsat; Phanu Somkliang; Taweesiri Malapant

    2009-01-01

    This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reactio...

  1. ECONOMIC ANALYSIS OF SELECTED OPTIONS OF STRAW USE DEPENDING ON HARVESTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Lukasz KUTA

    2014-10-01

    Full Text Available Post-harvest straw deserves particular attention among agricultural raw materials. It can be intended for sale, applied as litter material in animal husbandry or used in field fertilization. To a lesser extent it can be used for fodder production, covering mounds of roots and tubers and the production of insulation materials in horticulture and building construction. Using surplus straw directly for energy generation, including production of pellets and briquettes, should also be considered rational. Several applications were analyzed. The main purpose of the research is to determine the profitability level of winter wheat cultivation and of energy use of the straw obtained. Among others, they included situations in which obtained straw was used in the production of pellets, in fertilization after prior grinding and mixing with manure or used for direct sale. For our calculations, the costs/ha of wheat cultivation and then straw collection were estimated. The comparative analysis of various options of wheat straw utilization shows the highest profitability in the option of selling the straw and mineral fertilization.

  2. Microbial Production of Xylitol from L-arabinose by Metabolically Engineered Escherichia coli

    Science.gov (United States)

    Xylitol is used commercially as a natural sweetener in some food products such as chewing gum, soft drinks, and confectionery. It is currently produced by chemical reduction of D-xylose derived from plant materials, mainly hemicellulosic hydrolysates from birch trees. Expanding the substrate range...

  3. Towards an Understanding of How Protein Hydrolysates Stimulate More Efficient Biosynthesis in Cultured Cells

    Science.gov (United States)

    Siemensma, André; Babcock, James; Wilcox, Chris; Huttinga, Hans

    In the light of the growing demand for high quality plant-derived hydrolysates (i.e., HyPep™ and UltraPep™ series), Sheffield Bio-Science has developed a new hydrolysate platform that addresses the need for animal-free cell culture medium supplements while also minimizing variability concerns. The platform is based upon a novel approach to enzymatic digestion and more refined processing. At the heart of the platform is a rationally designed animal component-free (ACF) enzyme cocktail that includes both proteases and non-proteolytic enzymes (hydrolases) whose activities can also liberate primary components of the polymerized non-protein portion of the raw material. This enzyme system is added during a highly optimized process step that targets specific enzyme-substrate reactions to expand the range of beneficial nutritional factors made available to cells in culture. Such factors are fundamental to improving the bio-performance of the culture system, as they provide not merely growth-promoting peptides and amino acids, but also key carbohydrates, lipids, minerals, and vitamins that improve both rate and quality of protein expression, and serve to improve culture life due to osmo-protectant and anti-apoptotic properties. Also of significant note is that, compared to typical hydrolysates, the production process is greatly reduced and requires fewer steps, intrinsically yielding a better-controlled and therefore more reproducible product. Finally, the more sophisticated approach to enzymatic digestion renders hydrolysates more amenable to sterile filtration, allowing hydrolysate end users to experience streamlined media preparation and bioreactor supplementation activities. Current and future development activities will evolve from a better understanding of the complex interactions within a handful of key biochemical pathways that impact the growth and productivity of industrially relevant organisms. Presented in this chapter are some examples of the efforts that

  4. Production of Lupinus angustifolius protein hydrolysates with improved functional properties

    Directory of Open Access Journals (Sweden)

    Millán, Francisco

    2005-06-01

    Full Text Available Protein hydrolysates wer e obtained from lupin flour and from the purified globulin α -conglutin, and their functional properties were studied. Hydrolysis with alcalase for 60 minutes yielded degrees of hydrolysis ranging from 4 % to 11 % for lupin flour, and from 4 % to 13% for α -conglutin. Protein solubility, oil absorption, foam capacity and stability, emulsifying activity, and emulsion stability of hydrolysates with 6% degree of hydrolysis were determined and compared with the properties of the original flour. The protein hydrolysates showed better functional properties than the original proteins. Most importantly, the solubility of the α -conglutin and L. angustifolius flour hydrolysates was increased by 43 % and 52 %, respectively. Thus, lupin seed protein hydrolysates have improved functional properties and could be used in the elaboration of a variety of products such as breads, cakes, and salad dressings.Se obtuvieron hidrolizados proteicos de la harina del altramuz y de la globulina α - conglutina purificada y se estudiaron sus propiedades funcionales. La hidrólisis con alcalasa durante 60 minutos produjo hidrolizados con grados de hidrólisis entre el 4 % y el 11 % para la harina y entre el 4 % y el 13 % para la α - conglutina. Se estudió en un hidrolizado con un 6 % de grado de hidrólisis la solubilidad proteica, absorción de aceite, capacidad y estabilidad espumante y actividad y estabilidad emulsificante. Los hidrolizados proteicos mostraron mejores propiedades funcionales que las proteínas originales. Más aún, la solubilidad de los hidrolizados de α - conglutina y la harina se incrementó en un 43 % y 52 % respectivamente. Así pues, hidrolizados de proteínas de semilla de lupino presentan mejores propiedades funcionales y podrían usarse en la elaboración de productos como pan, dulces, salsas o cremas.

  5. Protein Hydrolysates as Hypoallergenic, Flavors and Palatants for Companion Animals

    Science.gov (United States)

    Nagodawithana, Tilak W.; Nelles, Lynn; Trivedi, Nayan B.

    Early civilizations have relied upon their good sense and experience to develop and improve their food quality. The discovery of soy sauce centuries ago can now be considered one of the earliest protein hydrolysates made by man to improve palatability of foods. Now, it is well known that such savory systems are not just sources for enjoyment but complex semiotic systems that direct the humans to satisfy the body's protein need for their sustenance. Recent developments have resulted in a wide range of cost effective savory flavorings, the best known of which are autolyzed yeast extracts and hydrolyzed vegetable proteins. New technologies have helped researchers to improve the savory characteristics of yeast extracts through the application of Maillard reaction and by generating specific flavor enhancers through the use of enzymes. An interesting parallel exists in the pet food industry, where a similar approach is taken in using animal protein hydrolysates to create palatability enhancers via Maillard reaction scheme. Protein hydrolysates are also utilized extensively as a source of nutrition to the elderly, young children and immuno-compromised patient population. These hydrolysates have an added advantage in having peptides small enough to avoid any chance of an allergenic reaction which sometimes occur with the consumption of larger sized peptides or proteins. Accordingly, protein hydrolysates are required to have an average molecular weight distribution in the range 800-1,500 Da to make them non-allergenic. The technical challenge for scientists involved in food and feed manufacture is to use an appropriate combination of enzymes within the existing economic constraints and other physical factors/limitations, such as heat, pH, and time, to create highly palatable, yet still nutritious and hypoallergenic food formulations.

  6. Biodegradation of wheat straw by different isolates of Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    A.R. Astaraei

    2016-04-01

    Full Text Available Efficient use of agricultural wastes due to their recycling and possible production of cost effective materials, have economic and ecological advantages. A biological method used for degrading agricultural wastes is a new method for improving the digestibility of these materials and favoring the ease of degradation by other microorganisms. This research was carried out to study the possible biodegradation of wheat straw by different species and isolates of Trichoderma fungi. Two weeks after inoculation of wheat straw by different isolates, oven drying in 75◦C, the samples were weighted and (Acid Detergent Fiber ADF and NDF (Neutral Detergent Fiber reductions of each sample under influence of fungal growth were compared with their controls. The results showed that biodegradation of wheat straw were closely related to fungi species and also its isolates. The Reductions in NDF and ADF of wheat straw by T. reesei and T. longibrachiatum were more pronounced compared to others, although T. reesei was superior in ADF of wheat straw reduction. It is concluded that for improving in digestibility and also shortening the timing of composting process, it is recommended to treat the wheat straw with Trichoderma fungi and especially with T. reesei and T. longibrachiatum that performed well and had excellent efficiencies.

  7. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Science.gov (United States)

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  8. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  9. Straw and energy crops- analysis of economy, energy and environment

    International Nuclear Information System (INIS)

    Parsby, M.

    1996-01-01

    The purpose of the biomass agreement of 14 June 1993 was to increase the use of biomass fuels in the Danish power plants to 1.2 million tons straw and 200 000 wood chips. Contribution from straw combustion should reach 25 PJ in year 2000. However biomass cultivation can endanger the governmental policy of pesticide and nitrogen reduction in agriculture. In the worst harvest years straw quantity can be reduced to 70 % of the normal level, while in good years there would occur a 3-4 fold excess of straw. Supply depends in a decisive degree on the offered price as the indirect cost can vary much (wet straw, delayed sawing, lost fertilizer value etc.). Potential for energy crops can be based on ca 300 000 ha present fallow agricultural areas. Cost is higher than that for straw, the most probable plants are elephant grass, willow, rape, sugar beets, winter cereals. Cost is lower for perennial plants, but at least 10-12 years are necessary for such crops to become profitable. Generally the biofuel crops are more expensive than crops for immediate combustion. Expenses for energy crops will decrease with time per ton dry matter, but ground rent for soils previously fallow has to be taken into account. A reduced nitrogen fertilization will reduce the economic profits quite essentially due to smaller harvests. Pesticide consumption will not have to grow as straw and elephant grass do not require any larger quantities (unless very large areas of one crop are cultivated).(EG) 92 refs

  10. Chemical composition and utilization of rice straw by goats in Malaysia

    International Nuclear Information System (INIS)

    Tuen, A.A.; Mahyuddin Dahan, M.

    1991-01-01

    Three experiments were conducted to assess the nutritive value of various types of rice straw for use by goats. In Experiment 1, four varieties of rice straw were exposed to heavy rain and sunshine for 10 days to assess the change in chemical composition and degradation in the rumen. The exposure led to a reduction in the contents of nitrogen and phosphorus. The degradation in the rumen of the samples exposed to the above weather conditions varied from 20.9 to 34.5%. In Experiment 2, the intake and digestion of untreated, urea supplemented, and urea treated rice straw of unknown variety were investigated using six male goats. Treating with urea resulted in significantly higher intake (p 3 ) and volatile fatty acid (VFA) concentrations and negative N retention were obtained when the goats were fed on untreated straw. With urea treated straw, however, higher concentrations of NH 3 and VFAs and positive N retention were obtained. From the isotope dilution measurement it was observed that the amount of dietary P absorbed was significantly (p < 0.05) higher in goats fed untreated straw than in those fed urea treated straw. In Experiment 3, the rate of passage of small particles through the digestive tract of goats fed the diets in Experiment 2 was measured. The mean rumen retention time ranged from 31.2 to 38.7 h. Although not significantly different, there was a tendency for the transit time to be longer in goats fed the urea treated straw than those on other diets. 43 refs, 2 figs, 7 tabs

  11. FTIR spectra of whey and casein hydrolysates in relation to their functional properties

    NARCIS (Netherlands)

    Ven, van der C.; Muresan, S.; Gruppen, H.; Bont, D.B.A.; Merck, K.B.; Voragen, A.G.J.

    2002-01-01

    Mid-infrared spectra of whey and casein hydrolysates were recorded using Fourier transform infrared (FTIR) spectroscopy. Multivariate data analysis techniques were used to investigate the capacity of FTIR spectra to classify hydrolysates and to study the ability of the spectra to predict bitterness,

  12. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  13. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    International Nuclear Information System (INIS)

    Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2013-01-01

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd 2+ ) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd 2+ concentration and rescued Cd 2+ -induced chlorosis in Arabidopsis thaliana. Under Cd 2+ stress conditions, NAA increased Cd 2+ retention in the roots and most Cd 2+ in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd 2+ , whereas it significantly increased the content of hemicellulose 1 and the amount of Cd 2+ retained in it. There were highly significant correlations between Cd 2+ concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd 2+ or NAA + Cd 2+ treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd 2+ in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd 2+ toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd 2+ fixation in the root, thus reducing the translocation of Cd 2+ from roots to shoots

  14. Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Ahring, B.K.; Licht, D.; Schmidt, A.S.

    1999-01-01

    evaluated with respect to total sugars, xylose, and 2-furfural produced. The concentration of sugars tended to be highest in hydrolysates produced at high oxygen pressures, whereas the concentration of 2-furfural was lowest in hydrolysates produced at low oxygen pressures and high carbonate concentrations...... with the commercial enzyme Celluclast(R) or with acid hydrolysis improved the ethanol yield from the hydrolysates. Treatment with Pentopan(TH) Mono BG or Pulpzyme(R) HC, both endo-1,4-beta-xylanases, had no effect neither had co-cultivation with the xylanase-producing Dictyoglomus B4. (C) 1998 Published by Elsevier...

  15. The Cooperative Effect of Genistein and Protein Hydrolysates on the Proliferation and Survival of Osteoblastic Cells (hFOB 1.19

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2016-11-01

    Full Text Available Chum salmon skin gelatin, de-isoflavoned soy protein, and casein were hydrolyzed at two degrees of hydrolysis. Genistein, the prepared hydrolysates, and genistein-hydrolysate combinations were assessed for their proliferative and anti-apoptotic effects on human osteoblasts (hFOB 1.19 to clarify potential cooperative effects between genistein and these hydrolysates in these two activities. Genistein at 2.5 μg/L demonstrated the highest proliferative activity, while the higher dose of genistein inhibited cell growth. All hydrolysates promoted osteoblast proliferation by increasing cell viability to 102.9%–131.1%. Regarding etoposide- or NaF-induced osteoblast apoptosis, these hydrolysates at 0.05 g/L showed both preventive and therapeutic effects against apoptosis. In the mode of apoptotic prevention, the hydrolysates decreased apoptotic cells from 32.9% to 15.2%–23.7% (etoposide treatment or from 23.6% to 14.3%–19.6% (NaF treatment. In the mode of apoptotic rescue, the hydrolysates lessened the extent of apoptotic cells from 15.9% to 13.0%–15.3% (etoposide treatment or from 13.3% to 10.9%–12.7% (NaF treatment. Gelatin hydrolysates showed the highest activities among all hydrolysates in all cases. All investigated combinations (especially the genistein-gelatin hydrolysate combination had stronger proliferation, apoptotic prevention, and rescue than genistein itself or their counterpart hydrolysates alone, suggesting that genistein cooperated with these hydrolysates, rendering greater activities in osteoblast proliferation and anti-apoptosis.

  16. Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica.

    Science.gov (United States)

    Sun, Yong-Chang; Wen, Jia-Long; Xu, Feng; Sun, Run-Cang

    2011-05-01

    Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-D-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1→4)-linked d-xylopyranosyl residues, having ramifications of α-L-arabinofuranose and 4-O-methyl-D-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400°C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source.

    Science.gov (United States)

    Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A

    2015-09-28

    Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.

  18. Corrosion Investigations in Straw-Fired Power Plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Karlsson, A

    2001-01-01

    of accelerated corrosion. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely the Masnedø, Rudkøbing and Ensted CHP plants. Three types......In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... of exposure were undertaken to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam...

  19. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.

    Science.gov (United States)

    Peng, Feng; Guan, Ying; Zhang, Bing; Bian, Jing; Ren, Jun-Li; Yao, Chun-Li; Sun, Run-Cang

    2014-04-01

    Hemicelluloses were extracted from holocellulose of bamboo by alkaline treatment. The phosphorylated poly(vinyl alcohol) (P-PVA) samples with various substitution degrees were prepared through the esterification of PVA and phosphoric acid. A series of hydrogels of semi-interpenetrating polymeric networks (semi-IPN) composed of hemicelluloses-g-poly(acrylic acid) (HM-g-PAA) and the phosphorylated poly(vinyl alcohol) (P-PVA) were prepared by radical polymerization using potassium persulphate (KPS) as initiator. The HM-g-PAA networks were crosslinked by N,N-methylenebisacrylamide (MBA) as a crosslinking agent in the presence of linear P-PVA. FT-IR results confirmed that the hydrogels comprised a porous crosslink structure of P-PVA and HM with side chains that carried carboxylate and phosphorylate groups. SEM observations indicated that the incorporation of P-PVA induced highly porous structure, and P-PVA was uniformly dispersed in the polymeric network. The interior network structures of the semi-IPN matrix became more porous with increasing P-PVA. The TGA results showed that the thermo-decomposing temperature and thermal stability were increased effectively for intruding the chain of P-PVA. The maximum equilibrium swelling ratio of hydrogels in distilled water and 0.9 wt% sodium chloride solutions was up to 1085 g g(-1) and 87 g g(-1), respectively. The compressive strength increased with increasing the MBA/HM and P-PVA/HM ratios, and decreased with the increment of AA/HM ratio. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Preparation of antioxidant enzymatic hydrolysates from honeybee-collected pollen using plant enzymes.

    Science.gov (United States)

    Marinova, Margarita D; Tchorbanov, Bozhidar P

    2011-01-09

    Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate) in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate) and proline iminopeptidase (0.03 U/g substrate) from cabbage leaves (Brassica oleracea var. capitata), and aminopeptidase (0.2 U/g substrate) from chick-pea cotyledons (Cicer arietinum L.) were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH), total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20-28%), total phenolics (15.3-27.2 μg/mg sample powder), and proteins (162.7-242.8 μg/mg sample powder), respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42-46% inhibition). The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.

  1. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.

    Science.gov (United States)

    Arslan, Yeşim; Eken-Saraçoğlu, Nurdan

    2010-11-01

    In this study, we investigated the use of hazelnut shell as a renewable and low cost lignocellulosic material for bioethanol production for the first time. High lignin content of hazelnut shell is an important obstacle for such a biotransformation. Biomass hydrolysis with acids yields reducing sugar with several inhibitors which limit the fermentability of sugars. The various conditioning methods for biomass and hydrolysate were performed to overcome the toxicity and their effects on the subsequent fermentation of hazelnut shell hydrolysate by Pichia stipitis were evaluated with shaking flasks experiments. Hazelnut shells hydrolysis with 0.7M H(2)SO(4) yielded 49 gl(-1) total reducing sugars and fermentation inhibitors in untreated hydrolysate. First, it was shown that several hydrolysate detoxification methods were solely inefficient in achieving cell growth and ethanol production in the fermentation of hazelnut shell hydrolysates derived from non-delignified biomass. Next, different pretreatments of hazelnut shells were considered for delignification and employed before hydrolysis in conjunction with hydrolysate detoxification to improve alcohol fermentation. Among six delignification methods, the most effective pretreatment regarding to ethanol concentration includes the treatment of shells with 3% (w/v) NaOH at room temperature, which was integrated with sequential hydrolysate detoxification by overliming and then treatment with charcoal twice at 60 degrees C. This treatment brought about a total reduction of 97% in furans and 88.4% in phenolics. Almost all trialed treatments caused significant sugar loss. Under the best assayed conditions, ethanol concentration of 16.79gl(-1) was reached from a hazelnut shell hyrolysate containing initial 50g total reducing sugar l(-1) after partial synthetic xylose supplementation. This value is equal to 91.25% of ethanol concentration that was obtained from synthetic d-xylose under same conditions. The present study

  2. Production of hydrolysate from processed Nile tilapia (Oreochromis niloticus residues and assessment of its antioxidant activity

    Directory of Open Access Journals (Sweden)

    Daniela Miotto BERNARDI

    2016-01-01

    Full Text Available Abstract The objective of this work was to produce protein hydrolysates from by-products of the Nile tilapia fileting process, and to assess the effects of different hydrolysis times on the antioxidant activity of the hydrolysed animal-based protein, in free form and incorporated into a food matrix. Gutted tilapia heads and carcasses were hydrolysed by Alcalase® for different hydrolysis times producing six hydrolysates. The protein content, degree of hydrolysis, reverse-phase high-performance liquid chromatography, and antioxidant activity by the ORAC, FRAP and TEAC methods were analysed. Three mini-hamburger formulations were produced and the lipidic oxidation of mini-hamburger was determined by TBARS. The protein contained in the residue was completely recovered in the process. The hydrolysates varied in their degree of hydrolysis, but presented similar levels of antioxidant activity. In the mini-hamburgers the hydrolysate was capable of delaying oxidation after 7 days of storage. Hydrolysis of tilapia processing by-products produced peptides may be used in the formulation of functional foods.

  3. A Study Of Biogas Production From Rice Straw In An Underground Digester

    International Nuclear Information System (INIS)

    Akpabio, O; Sambo, A.S; Fai, F

    2002-01-01

    The rising cost of petroleum products, the growing world population with diminishing resources and increasing wastes has brought about the need for sourcing alternative resources in order to bring about sustainable development. In this regard. this research was conceived to innovate design and construction of a biogas digester and to study the production of biogas from rice straw. An underground biogas digester was designed. Constructed and tested. The test digestion produced biogas yield of 0.020 M/KXg from green cow dung. In the study of biogas production from rice straw, four bench digesters of one d m3 (I litre) each were used. The bench digester produced biogas yields of 0.0149 m3/kg of rice straw, 0.0389 m3/kg of a mixture of rice straw and cow dung and 0.0792 m3/kg of cow dung. Scaled up digestion of rice straw in the underground digester gave biogas yield of 7.37 x 104 m3/kg. The biogas produced from rice straw was found to contain 38.52% of carbon dioxide and no hydrogen sulphide. It was concluded that the biogas generation from rice straw was encouraging, but scale up yields was low. The limiting factors on biogas production from rice straw with the effect of digester design or biogas production are presented and discussed

  4. Thermal transitions of the amorphous polymers in wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under...

  5. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.

    Science.gov (United States)

    Hall, Felicia G; Jones, Owen G; O'Haire, Marguerite E; Liceaga, Andrea M

    2017-06-01

    Recently, the benefits of entomophagy have been widely discussed. Due to western cultures' reluctance, entomophagy practices are leaning more towards incorporating insects into food products. In this study, whole crickets (Gryllodes sigillatus) were hydrolyzed with alcalase at 0.5, 1.5, and 3.0% (w/w) for 30, 60, and 90min. Degree of hydrolysis (DH), amino acid composition, solubility, emulsion and foaming properties were evaluated. Hydrolysis produced peptides with 26-52% DH compared to the control containing no enzyme (5% DH). Protein solubility of hydrolysates improved (p30% soluble protein at pH 3 and 7 and 50-90% at alkaline pH, compared with the control. Emulsion activity index ranged from 7 to 32m 2 /g, while foamability ranged from 100 to 155% for all hydrolysates. These improved functional properties demonstrate the potential to develop cricket protein hydrolysates as a source of functional alternative protein in food ingredient formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Urea-ensiled rice straw as a feed for cattle in Thailand

    African Journals Online (AJOL)

    straw. Rice straw contains about 3% crude protein (air- dry basis), 35% crude fiber and 1900kcal DE/kg of straw. Because of its low energy and protein content, ... corn, 9,4 kg soybean meal, 10 kg coconut meal, 2 kg mineral, 2 kg bone meal and 1 kg salt. Table 3 Performance of crossbred heifers fed with different roughages.

  7. Xylitol Production from Eucalyptus Wood Hydrolysates in Low-Cost Fermentation Media

    Directory of Open Access Journals (Sweden)

    José Diz

    2002-01-01

    Full Text Available Several aspects concerning the bioconversion of xylose-containing hydrolysates (obtained from Eucalyptus wood into xylitol were assessed. Debaryomyces hansenii yeast strains were adapted to fermentation media (obtained either by prehydrolysis or autohydrolysis- posthydrolysis of wood supplemented with low-cost nutrients. Media containing up to 80 g/L xylose were efficiently fermented when the hydrolysates were detoxified by charcoal adsorption and supplemented with corn steep liquor.

  8. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.

    Science.gov (United States)

    Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi

    2017-08-01

    With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.

  9. Life cycle GHG analysis of rice straw bio-DME production and application in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Sagisaka, Masayuki; Yamaguchi, Katsunobu

    2013-01-01

    Highlights: • Life cycle GHG emissions of rice straw bio-DME production in Thailand are assessed. • Bio-DME replaces diesel in engines and supplements LPG for household application. • Rice straw bio-DME in both cases of substitution helps reduce GHG emissions. - Abstract: Thailand is one of the leading countries in rice production and export; an abundance of rice straw, therefore, is left in the field nowadays and is commonly burnt to facilitate quick planting of the next crop. The study assesses the life cycle greenhouse gas (GHG) emissions of using rice straw for bio-DME production in Thailand. The analysis is divided into two scenarios of rice straw bio-DME utilization i.e. used as automotive fuel for diesel engines and used as LPG supplement for household application. The results reveal that that utilization of rice straw for bio-DME in the two scenarios could help reduce GHG emissions by around 14–70% and 2–66%, respectively as compared to the diesel fuel and LPG substituted. In case rice straw is considered as a by-product of rice cultivation, the cultivation of rice straw will be the major source of GHG emission contributing around 50% of the total GHG emissions of rice straw bio-DME production. Several factors that can affect the GHG performance of rice straw bio-DME production are discussed along with measures to enhance GHG performance of rice straw bio-DME production and utilization

  10. ON THE RECOVERY OF HEMICELLULOSE BEFORE KRAFT PULPING

    Directory of Open Access Journals (Sweden)

    Carlos Vila,

    2012-07-01

    Full Text Available To assess the feasibility of implementing hemicellulose recovery stages in kraft mills, Eucalyptus globulus wood samples were subjected to aqueous treatments with hot, compressed water (autohydrolysis processing to achieve partial dissolution of xylan. Autohydrolyzed solids were subjected to kraft pulping under selected conditions to yield a pulp of low kappa number, and to an optimized TCF bleaching sequence made up of three stages (alkaline oxygen delignification, chelating, and pressurized hydrogen peroxide, with minimized additions of pulping and bleaching chemicals. The final product had a relatively low kappa number (1.4, 641 mL/g ISO intrinsic viscosity, and 86.4% brightness.

  11. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils

    International Nuclear Information System (INIS)

    Liu, Yu-Rong; Dong, Ji-Xin; Han, Li-Li; Zheng, Yuan-Ming; He, Ji-Zheng

    2016-01-01

    Currently, rice straw return in place of burning is becoming more intensive in China than observed previously. However, little is known on the effect of returned rice straw on mercury (Hg) methylation and microbial activity in contaminated paddy fields. Here, we conduct a microcosm experiment to evaluate the effect of rice straw amendment on the Hg methylation and potential nitrification in two paddy soils with distinct Hg levels. Our results show that amended rice straw enhanced Hg methylation for relatively high Hg content soil, but not for low Hg soil, spiking the same additional fresh Hg. methylmercury (MeHg) concentration was significantly correlated to the dissolved organic carbon (DOC) content and relative abundance of dominant microbes associated with Hg methylation. Similarly, amended rice straw was found to only enhance the potential nitrification rate in soil with relatively high Hg content. These findings provide evidence that amended rice straw differentially modulates Hg methylation and nitrification in Hg contaminated soils possibly resulting from different characteristics in the soil microbial community. This highlights that caution should be taken when returning rice straw to contaminated paddy fields, as this practice may increase the risk of more MeHg production. Main finding: Rice straw amendment enhanced both Hg methylation and nitrification potential in the relatively high, but not low, Hg soil. - Highlights: • Rice straw enhanced Hg methylation in relatively high Hg content paddy soils. • Microbial community directly correlated to the Hg methylation. • Mercury methylation in soils depend on Hg bioavailability and microbial activities. • Hg input affects microbial community associated with decomposition of rice straw.

  12. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum.

    Science.gov (United States)

    Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D

    2013-11-01

    The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Directory of Open Access Journals (Sweden)

    Li-Hong Deng

    2014-01-01

    Full Text Available Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification.

  14. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Science.gov (United States)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  15. Effect of Furfural, Vanillin and Syringaldehyde on Candida guilliermondii Growth and Xylitol Biosynthesis

    Science.gov (United States)

    Kelly, Christine; Jones, Opal; Barnhart, Christopher; Lajoie, Curtis

    Xylitol is a five-carbon sugar alcohol with established commercial use as an alternative sweetener and can be produced from hemicellulose hydrolysate. However, there are difficulties with microbiological growth and xylitol biosynthesis on hydrolysate because of the inhibitors formed from hydrolysis of hemicellulose. This research focused on the effect of furfural, vanillin, and syringaldehyde on growth of Candida guilliermondii and xylitol accumulation from xylose in a semi-synthetic medium in microwell plate and bioreactor cultivations. All three compounds reduced specific growth rate, increased lag time, and reduced xylitol production rate. In general, increasing concentration of inhibitor increased the severity of inhibition, except in the case of 0.5 g vanillin per liter, which resulted in a faster late batch phase growth rate and increased biomass yield. At concentrations of 1 g/1 or higher, furfural was the least inhibitory to growth, followed by syringaldehyde. Vanillin most severely reduced specific growth rate. All three inhibitors reduced xylitol production rate approximately to the same degree.

  16. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates.

    Science.gov (United States)

    Yust, María del Mar; Millán-Linares, María del Carmen; Alcaide-Hidalgo, Juan María; Millán, Francisco; Pedroche, Justo

    2012-07-01

    Some dietary proteins possess biological properties which make them potential ingredients of functional or health-promoting foods. Many of these properties are attributed to bioactive peptides that can be released by controlled hydrolysis using exogenous proteases. The aim of this work was to test the improvement of hypocholesterolaemic and antioxidant activities of chickpea protein isolate by means of hydrolysis with alcalase and flavourzyme. All hydrolysates tested exhibited better hypocholesterolaemic activity when compared with chickpea protein isolate. The highest cholesterol micellar solubility inhibition (50%) was found after 60 min of treatment with alcalase followed by 30 min of hydrolysis with flavourzyme. To test antioxidant activity of chickpea proteins three methods were used: β-carotene bleaching method, reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect since antioxidant activity of protein hydrolysates may not be attributed to a single mechanism. Chickpea hydrolysates showed better antioxidant activity in all assays, especially reducing power and DPPH scavenging effect than chickpea protein isolate. The results of this study showed the good potential of chickpea protein hydrolysates as bioactive ingredients. The highest bioactive properties could be obtained by selecting the type of proteases and the hydrolysis time. Copyright © 2012 Society of Chemical Industry.

  17. Preparation and Mechanical Properties of Pressed Straw Concrete Brick

    Science.gov (United States)

    Sumarni, S.; Wijanarko, W.

    2018-03-01

    Rice straws have been widely used as wall filler material in China, Australia, and United States, by spinning them into hays with an approximate dimension of 40 cm of height, 40cm of thickness and 60 cm of width, using a machine. Then, the hays are placed into a wall frame until they fill it completely. After that, the wall frame is covered with wire mesh and plastered. In this research, rice straws are to be used as concrete brick fillers, by pressing the straws into hays and then putting them into the concrete brick mold along with mortar. The objective of this research is to investigate the mechanical properties of concrete brick, namely: compressive strength, specific gravity, and water absorption power. This research used experimental research method. It was conducted by using concrete bricks which had 400 cm of width, 200 cm of height, and 100 cm of thickness, made from rice straws, cement, sand, and water as the test sample. The straws were each made different by their volume. The mortars used in this research were made from cement, sand, and water, with the ratio of 1:7:0.5. The concrete bricks were made by pressing straws mixed with glue into hays, and then cut by determined variations of volume. The variations of hays volume were 0 m3, 0.000625 m3, 0.00075 m3, 0.000875 m3, 0.00125 m3, 0.0015 m3, 0.00175 m3, 0.001875 m3, 0.00225 m3, and 0.002625 m3. There were 3 samples for each volumes of hays. The result shows that the straw concrete bricks reached the maximum compressive strength of 1.92 MPa, specific gravity of 1,702 kg/m3, and water absorption level of 3.9 %. Based on the provided measurements of products in the Standar Nasional Indonesia (Indonesian product standardization), the concrete bricks produced attained the prescribed standard quality.

  18. Investigation of rye straw ash sintering characteristics and the effect of additives

    International Nuclear Information System (INIS)

    Wang, Liang; Skreiberg, Øyvind; Becidan, Michael; Li, Hailong

    2016-01-01

    Highlights: • Rye straw ash has a high sintering tendency at elevated temperatures. • Addition of additive increases melting temperature of the rye straw ash. • Kaolin addition leads to formation of silicates binding K in the ash. • Calcite and Ca-sludge promotes formation of silicates and phosphates in the ash. • Calcite addition restrains attaching and accumulation of rye straw ash melts. - Abstract: The understanding of ash sintering during combustion of agricultural residues is far from complete, because of the high heterogeneity of the content and composition of ash forming matters and the complex transformation of them. In order to make agricultural residues competitive fuels on the energy market, further research efforts are needed to investigate agricultural residues’ ash sintering behavior and propose relevant anti-sintering measures. The aim of this work was to investigate the ash characteristics of rye straw and effects of additives. Three additives were studied regarding their abilities to prevent and abate rye straw ash sintering. Standard ash fusion characterization and laboratory-scale sintering tests were performed on ashes from mixtures of rye straw and additives produced at 550 °C. Ash residues from sintering tests at higher temperatures were analyzed using a combination of X-ray diffraction (XRD) and scanning electron microscopy–energy dispersive X-ray spectrometry (SEM–EDX). High sintering and melting tendency of the rye straw ash at elevated temperatures was observed. Severe sintering of the rye straw ash was attributed to the formation and fusion of low temperature K–silicates and K–phosphates with high K/Ca ratios. Among the three additives, calcite served the best one to mitigate sintering of the rye straw ash. Ca from the calcite promoted formation of high temperature silicates and calcium rich K–phosphates. In addition, calcite may hinder aggregating of ash melts and further formation of large ash slag. Therefore

  19. Development toward rapid and efficient screening for high performance hydrolysate lots in a recombinant monoclonal antibody manufacturing process.

    Science.gov (United States)

    Luo, Ying; Pierce, Karisa M

    2012-07-01

    Plant-derived hydrolysates are widely used in mammalian cell culture media to increase yields of recombinant proteins and monoclonal antibodies (mAbs). However, these chemically varied and undefined raw materials can have negative impact on yield and/or product quality in large-scale cell culture processes. Traditional methods that rely on fractionation of hydrolysates yielded little success in improving hydrolysate quality. We took a holistic approach to develop an efficient and reliable method to screen intact soy hydrolysate lots for commercial recombinant mAb manufacturing. Combined high-resolution (1) H nuclear magnetic resonance (NMR) spectroscopy and partial least squares (PLS) analysis led to a prediction model between product titer and NMR fingerprinting of soy hydrolysate with cross-validated correlation coefficient R(2) of 0.87 and root-mean-squared-error of cross-validation RMSECV% of 11.2%. This approach screens for high performance hydrolysate lots, therefore ensuring process consistency and product quality in the mAb manufacturing process. Furthermore, PLS analysis was successful in discerning multiple markers (DL-lactate, soy saccharides, citrate and succinate) among hydrolysate components that positively and negatively correlate with titer. Interestingly, these markers correlate to the metabolic characteristics of some strains of taxonomically diverse lactic acid bacteria (LAB). Thus our findings indicate that LAB strains may exist during hydrolysate manufacturing steps and their biochemical activities may attribute to the titer enhancement effect of soy hydrolysates. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  20. Determining In Vitro Gas Production Kinetics and Methane Production of Wheat Straw and Soybean Straw Pelleted with Different Additives

    OpenAIRE

    GÜLEÇYÜZ, Emre; KILIÇ, Ünal

    2018-01-01

    In this study, it was aimed todetermine the effects of pelletting on the invitro gas productions (IVGP), invitro digestibilities and methane productions of wheat straw and soy strawpelletted with different additives such as molasses, guar meal and sepolite. Inthe study, 2x2x4 factorial experimental design was used and total 16 groups (2straws (wheat-soybean), 2 different sepiolite applications (absent-present) and4 additives (control, guar meal,molasses and guar meal +molasses) wereformed.The...

  1. Effects of Some Additives on In Vitro True Digestibility of Wheat and Soybean Straw Pellets

    Directory of Open Access Journals (Sweden)

    Kılıc Unal

    2017-07-01

    Full Text Available This study was aimed to explore the nutrient content, relative feed values (RFV and in vitro true digestibilities (IVTD of wheat straw and soybean straw pellets produced with the addition of molasses, guar meal and sepiolite. In this experiment, 16 groups were created for 2 different straws (wheat/soybean straws, 2 different sepiolite applications (available/not available and 4 different applications (control, guar meal, molasses, guar meal+molasses in accordance with the 2×2×4 factorial design. A Daisy incubator was used to determine the IVTD of the feeds. According to the results, molasses and guar meal increased the RFV of soybean straws, while molasses and guar meal treatments and sepiolite did not affect the RFV of wheat straws. It was observed that sepiolite increased the RFV’s of soybean straw for guar meal and guar meal+molasses. The higher IVTD’s were found for guar meal (without sepiolite treatment of soybean straw and guar meal (with sepiolite treatment of wheat straw. Molasses and guar meal addition to wheat and soybean straws improved the crude protein contents. In conclusion, straw pelleting can be used as an alternative forage conservation method to close the gap in forage supply during the winter.

  2. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    Science.gov (United States)

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes 3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders.

  3. Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber.

    Science.gov (United States)

    Terán Hilares, Ruly; de Souza, Rebeca Andrade; Marcelino, Paulo Franco; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César

    2018-04-15

    Sugarcane bagasse (SCB) hydrolysate could be an interesting source for red pigment production by Monascus ruber Tieghem IOC 2225. The influence of different wavelength of light-emitting diode (LED) at 250 μmol.m -2 .s -1 of photon flux density on red pigment production by M. ruber in glucose-based medium was evaluated. Then, SCB hydrolysate was used as carbon source under the previously selected light incidence conditions. In glucose-based medium, the highest pigment production was achieved in fermentation assisted with orange LED light (8.28 UA 490nm ), white light (8.26 UA 490nm ) and under dark condition (7.45 UA 490nm ). By using SCB hydrolysate-based medium, the highest red pigment production (18.71 AU 490nm ) was achieved under dark condition and the glucose and cellobiose present in the hydrolysate were metabolized. SCB enzymatic hydrolysate was demonstrated to be a promising carbon source for high thermal stability red pigment production (activation energy of 10.5 kcal.mol -1 ), turning an interesting alternative for implementation in biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Front-end electronics for long straw tube systems

    International Nuclear Information System (INIS)

    Paulos, J.J.; Blake, S.L.

    1990-01-01

    This paper addresses several critical issues in the readout of long, small diameter plastic straw tubes for central tracking subsystems. Of particular concern are signal attentuation in long straw tubes and signal reflections which arise from improper termination at the ends of the tube. This work is part of a 12 institution collaboration to design and validate a hybrid central tracking chamber (HCTC) utilizing both straw tube and scintillating fiber components. The HCTC design calls for 4 mm diameter plastic straw tubes spanning the entire central tracking region (6-8 m) with readout electronics at both ends. An electrical isolator may be used at the center of each wire to separate each tube into two electrically isolated regions so as to reduce occupancy by a factor of two. With this scheme, no track is farther than 4 m from the associated readout electronics. The HCTC collaboration includes the participation of researchers at the University of Pennsylvania who have contributed a preamplifier and shaper ship which is used in the simulations presented here. A more complete discussion of the HCTC design can be found in the paper by Dr. Alfred Goshaw

  5. The Straw Tube Trackers of the PANDA Experiment

    International Nuclear Information System (INIS)

    Gianotti, P.; Lucherini, V.; Pace, E.; Boca, G.L.; Costanza, S.; Genova, P.; Lavezzi, L.; Montanga, P.; Rotondi, A.; Bragadireanu, M.; Vasile, M.E.; Pietreanu, D.; Biernat, J.; Jowzaee, S.; Korcyl, G.; Palka, M.; Salabura, P.; Smyrski, J.; Fiutowski, T.; Idzik, M.; Przyborowski, D.; Korcyl, K.; Kulessa, P.; Pysz, K.; Dobbs, S.; Tomaradze, A.; Bettoni, D.; Fioravanti, E.; Garzia, I.; Savrie, M.; Kozlov, V.; Mertens, M.; Ohm, H.; Orfanitski, S.; Ritman, J.; Serdyuk, V.; Wintz, P.; Spataro, S.

    2013-06-01

    The PANDA experiment will be built at the FAIR facility at Darmstadt (Germany) to perform accurate tests of the strong interaction through p-bar p and p-bar A annihilation's studies. To track charged particles, two systems consisting of a set of planar, closed-packed, self-supporting straw tube layers are under construction. The PANDA straw tubes will have also unique characteristics in term of material budget and performance. They consist of very thin mylar-aluminized cathodes which are made self-supporting by means of the operation gas-mixture over-pressure. This solution allows to reduce at maximum the weight of the mechanical support frame and hence the detector material budget. The PANDA straw tube central tracker will not only reconstruct charged particle trajectories, but also will help in low momentum (< 1 GeV) particle identification via dE/dx measurements. This is a quite new approach that PANDA tracking group has first tested with detailed Monte Carlo simulations, and then with experimental tests of detector prototypes. This paper addresses the design issues of the PANDA straw tube trackers and the performance obtained in prototype tests. (authors)

  6. Analisi Termostrutturale del Sistema Clessidra-Straws dell'Eesperimento FINUDA

    CERN Document Server

    Tommasini, S

    2000-01-01

    È stato studiato il comportamento termostrutturale del sistema Clessidra-StrawTubes dell¹esperimento FINUDA. In particolare è stata studiata l¹influenza della temperatura sulla sagitta e sulla freccia dei fili di tungsteno e degli $9 straws in relazione alla deformazione termica della clessidra su cui sono vincolati.

  7. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions.

  8. Uracil in formic acid hydrolysates of deoxyribonucleic acid

    Science.gov (United States)

    Schein, Arnold H.

    1966-01-01

    1. When DNA is hydrolysed with formic acid for 30min. at 175° and the hydrolysate is chromatographed on paper with propan-2-ol–2n-hydrochloric acid, in addition to expected ultraviolet-absorbing spots corresponding to guanine, adenine, cytosine and thymine, an ultraviolet-absorbing region with RF similar to that of uracil can be detected. Uracil was separated from this region and identified by its spectra in acid and alkali, and by its RF in several solvent systems. 2. Cytosine, deoxyribocytidine and deoxyribocytidylic acid similarly treated with formic acid all yielded uracil, as did a mixture of deoxyribonucleotides. 3. Approx. 4% of deoxyribonucleotide cytosine was converted into uracil by the formic acid treatment. ImagesFig. 1. PMID:5949371

  9. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    International Nuclear Information System (INIS)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-01-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC 50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries. - Highlights: ► Radiation was applied for the hydrolysis of tuna cooking juice protein. ► The degree of hydrolysis were increased by irradiation and the antioxidant activity of hydrolysate was higher than protein. ► This result suggest that radiation is useful method for the hydrolysis of protein.

  10. The straw tube technology for the LHCb outer tracking system

    OpenAIRE

    Bachmann, S; Bagaturia, I; Deppe, H; Eisele, F; Haas, T; Hajduk, L; Langenegger, U; Michalowski, J; Nawrot, A; Polok, G; Pellegrino, A; Schuijlenburg, H; Schwierz, R; Sluijk, T; Spelt, J

    2004-01-01

    For the outer tracking system of the LHCb spectrometer 53.760 straws of 2.5 m length will be used. They are arranged in detector modules of 5 m length and 0.34 m width. The envisaged spatial resolution over the entire active area is 200$mu$m resulting in stringent requirements on the accuracy for the module construction. In this paper we discuss the optimisation of the straws, design and construction of detector modules. The long term operation properties of straws in two different counting g...

  11. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  12. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  13. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Directory of Open Access Journals (Sweden)

    Ting Jiang

    Full Text Available An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH, condensed acid-catalyzed liquid hot water hydrolysate (CALH and condensed acid-catalyzed sulfite hydrolysate (CASH as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF, vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  14. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats.

    Directory of Open Access Journals (Sweden)

    M Garcés-Rimón

    Full Text Available The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.

  15. Prediction of heating value of straw by proximate data, and near infrared spectroscopy

    International Nuclear Information System (INIS)

    Huang Caijin; Han Lujia; Yang Zengling; Liu Xian

    2008-01-01

    Exploration of straw resources for energy production has been attracting agricultural scientists and engineers for decades. And the heating value of straw has always been the focus when initiating a straw-based biomass energy project. Nevertheless determination of heating values of straw needs delicate and expensive calorimeter, and is time-consuming. It's quite desirable to develop quick and easy model predicting heating values of straw. In this study, we proposed three applicable models, first two are multiple linear regression (MLR) equations by contents of moisture, ash, and volatile matter, the other one is based on the near infrared spectroscopy (NIRS) technology. All the models provide satisfactory estimations of heating values of straw samples. The adjusted determination coefficients for MLR models were 0.9049 and 0.9039, and determination coefficients of calibration for NIRS model was 0.9604; When evaluated on independent validation, the determination coefficients were 0.8595, 0.8524 and 0.8946, respectively. The results indicated that both MLR models and NIRS model have the potential to predict the heating values of straw, while the NIRS model presented better accuracy

  16. Results from beam tests of a 2.4 m straw chamber

    International Nuclear Information System (INIS)

    Cizeron, R.; Fournier, D.; Noppe, J.M.; Perdereau, O.; Schaffer, A.C.

    1991-03-01

    Straw chambers have been shown to have good position resolution. By virtue of their cylindrical geometry they are capable of operating in vacuum, which opens the interesting possibility of tracking with a minimum of material. The feasibility of constructing a large surface straw chamber has been studied. A prototype chamber with 2.4 m long straws capable of operating in vacuum has been developed and tested in beams at CERN

  17. Cage-enrichment: rabbit does prefer straw or a compressed wooden block

    Directory of Open Access Journals (Sweden)

    Jorine M. Rommers

    2014-12-01

    Full Text Available The effect of different food related materials on the behaviour of commercial meat rabbit does was investigated to provide them enrichment. Five different treatments were tested. Control (pens without additional enrichment, C was compared with pens containing a pinewood stick (Pine, straw in a plastic bin (Straw, a compressed wooden block (Ply or a combination of straw and a pinewood stick (Straw+Pine. The experiment was conducted on a commercial rabbit farm using 80 cages with multiparous lactating hybrid (Hycole rabbit does. Behavioural observations were conducted in the first 4 wk of 2 successive lactations of 6 wk each, twice a week from 15:00 to 18:30 h. Once every week the consumption of gnawing materials and soiling of the cages was scored. More does were significantly occupied with Straw and Ply than with Pine (24±20, 11±9 and 4±3% of does, respectively for a longer duration (4±4, 2±2, 0.1±0.2% of observed time, respectively. In does of Straw+Pine group, the pinewood was barely touched and straw was preferred. It can be concluded that straw (loose material and wooden block are used by the animals as enrichment material to gnaw or chew on. The materials remain attractive for the 2 lactations which were measured. The pinewood stick as provided in this study was rarely used and it may be questioned whether it is sufficient as enrichment material or if it should be provided in another way than hanging on the roof of the cage. This study provides a first step towards a positive list of enrichment materials that can be used in commercial rabbit farming in The Netherlands.

  18. COMPARATIVE STUDY ON ANGIOTENSIN CONVERTING ENZYME INHIBITORY ACTIVITY OF HYDROLYSATE OF MEAT PROTEIN OF INDONESIAN LOCAL LIVESTOCKS

    Directory of Open Access Journals (Sweden)

    J. Jamhari

    2014-10-01

    Full Text Available The experiment was conducted to investigate the angiotensin converting enzyme (ACE inhibitoryactivity of hydrolysate in meat protein of Bali cattle, Kacang goat, native chicken, and local duck. Themeats of Bali cattle, Kacang goat, native chicken, and local duck were used in this study. The meatswere ground using food processor added with aquadest to obtain meat extract. The meat extracts werethen hydrolyzed using protease enzymes to obtain hydrolysate of meat protein. Protein concentration ofmeat extract and hydrolysate of meat protein were determined, and were confirmed by sodium dodecylsulfate - poly acrylamide gel electrophoresis (SDS-PAGE. ACE inhibitory activity of hydrolysate ofmeat protein derived from Bali cattle, Kacang goat, native chicken, and local duck was also determined.The results showed that protein concentration of hydrolysate of meat protein of Bali cattle, Kacang goat,native chicken, and local duck meat was significantly higher than their meat extracts. SDS-PAGEanalysis indicated that hydrolysate of meat protein of Bali cattle, Kacang goat, native chicken, and localduck had more peptides with lower molecular weight, compared to their meat extracts. Hydrolysate ofmeat protein of Bali cattle, Kacang goat, native chicken, and local duck had potencies in inhibiting ACEactivity, so it will potentially reduce blood pressure.

  19. Radiation pre-treating straw hydrolyzed by cellulase resulted from immobilized Trichoderma reesei growing cells

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Minoru Kumakura

    1992-01-01

    Wheat and rice straw was irradiated by electron beam with different dose at the presence of 4% NaOH or without 4% NaOH. The powder fraction above 200 meshes in pretreated rice straw increased with increasing doses and it was more at presence of 4% NaOH than that without 4% NaOH. The pretreated straw was hydrolyzed with 1% cellulase at 40 degree C for 48 h. The glucose yield (%) was given a rise with the increase of irradiation dose and it was 70% and 80% over that of un-pretreated rice and wheat straw, respectively. At the presence of 4% NaOH, the glucose yield increased as the irradiation dose increased from 0 to 5 x 10 5 Gy, reaching a maximum, 35% for wheat straw and 36.6% for rice straw, which increased by about 2.5 times in comparison with un-pretreated straw, then decrease with increasing the irradiation dose to 10 x 10 5 Gy. The glucose yield reached 19% and 22% for rice and wheat straw in 6 days of hydrolysis, respectively

  20. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    Science.gov (United States)

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.